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Abstract:
We study sequential sealed bid auctions with decreasing reserve prices when there are two identical objects for
sale and unit-demand bidders (existing literature has dealt with the case of weakly increasing reserve prices).
Under decreasing reserve prices bidders may have an incentive not to bid in the first auction, and no equilibrium
exists with a strictly increasing stage one bidding function. However, we find that an equilibrium always exists,
and its shape depends on the distance between the two reserve prices. The equilibrium exhibits some pooling
at the stage one auction, which disappears in the limit as the number of bidders tends to infinity. We also show
revenue equivalence between first-price and second-price sequential auctions under decreasing reserve prices.
Finally, our results allow us to shed some light on an optimal order problem (increasing versus decreasing
exogenous reserve prices) for selling the two objects.
Keywords: sequential auctions, first-price auction, second-price auction, revenue equivalence
JEL classification: C7, D44
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1 Introduction

We study a model of sequential sealed bid auctions with decreasing reserve prices. Sequential auctions are
widely adopted to sell, among other things, U.S. Treasury bills, wines, and agricultural products. Nowadays,
eBay is an increasingly popular venue for sequentially selling units of the same consumer product (electronic
calculators, wristwatches, etcetera). It is not uncommon for the same seller to use alternate auctions – with or
without reserve price – for different units of the same consumer product.

In the theoretical literature, sequential sealed bid auctions have received relatively scarce attention: Milgrom
and Weber (1999) and Weber (1983), provide theoretical analyses of sequential auctions for multiple identical
objects under the assumption that there are no reserve prices. Gong, Tan, and Xing (2014) (GTX henceforth)
study sequential auctions for identical objects with unit-demand bidders, allowing for different reserve prices
at different stages. When the reserve prices are (weakly) ascending, GTX identify an equilibrium and provide an
equivalence result between sequential first-price and second-price auctions. However, when reserve prices are
descending, they identify an equilibrium only if the stage one reserve price is sufficiently larger than the stage
two reserve price (see the equilibrium (a) later in the introduction). Moreover, they prove the non existence of
an equilibrium with a strictly increasing stage one bidding function.

Our paper completes their analysis of decreasing reserve prices. Therefore, we study sequential auctions
with two identical objects and unit-demand bidders. Our main contribution shows that for any pair of decreas-
ing reserve prices there exists a pure strategy equilibrium, which we completely characterize for both sequential
first-price auctions and sequential second-price auctions. In particular, we confirm the non-existence of an equi-
librium with a strictly increasing bidding function and we find that the equilibrium has a partially flat stage
one bidding function.

In order to better understand our key finding, it is useful to recall a few properties of the equilibrium for the
case of ascending reserve prices. To fix the ideas, let us focus on sequential second-price auctions, for which the
equilibrium bidding at stage two is straightforward. Let 𝑟1, 𝑟2 denote the reserve prices for the first and second
auction, respectively. Then, given 𝑟1 ≤ 𝑟2, a bidder with value 𝑥 ∈ [𝑟1, 𝑟2] participates only in the first auction,
and bids as in a single-unit auction. Meanwhile, a bidder with value 𝑥 > 𝑟2 participates in both auctions; in
the stage one auction, he bids less aggressively than in a single-unit auction because, if he loses, he will have
another opportunity to win.

Domenico Menicucci is the corresponding author.
© 2018 Walter de Gruyter GmbH, Berlin/Boston.

1

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Landi and Menicucci DE GRUYTER

With descending reserve prices, the incentive to shade bids at stage one is magnified because, all else being
equal, 𝑟2 < 𝑟1 makes the stage two auction more profitable for a bidder that can participate in both stages. In
particular, a bidder may choose not to compete at stage one even though his value is greater than 𝑟1, because
winning the object at price 𝑟1 may be less profitable than competing in the second auction.1 This force must
be taken into account when constructing an equilibrium, and we prove that its shape depends on the distance
between 𝑟1 and 𝑟2.

Specifically, the equilibrium for second-price sequential auctions is such that:

a. When 𝑟1 is sufficiently larger than 𝑟2, none of the bidder types participates in the stage one auction.

b. When 𝑟1 − 𝑟2 takes on intermediate values, there is a threshold 𝛾 > 𝑟1 such that in the stage one auction,
bidders with value smaller than 𝛾 do not bid, and bidders with value at least 𝛾 bid 𝑟1.

c. If 𝑟1 is close to 𝑟2, the equilibrium is characterized by two thresholds, 𝛾 (whose value is different from before)
and 𝜆 > 𝛾, such that in the stage one auction, bidders with value smaller than 𝛾 do not bid, bidders with
value between 𝛾 and 𝜆 bid 𝑟1, and bidders with value bigger than 𝜆 adopt a strictly increasing bidding
function.

Existence of a pure strategy equilibrium is obtained by allowing for a partially flat bidding function. This
implies that a bidder’s beliefs about the values of the other active bidders at stage two do not depend only
on the stage one winning bid, but also on the bid he has submitted at stage one. These beliefs are important
because they affect a bidder’s total payoff as evaluated at stage one. Deriving and handling these beliefs is not
entirely straightforward, but plays a key role in establishing the existence of the equilibrium.

We then remark that the flat portion of the stage one bidding function tends to disappear when the number
of bidders tends to infinity. We prove that for each 𝑟1 > 𝑟2, the equilibrium in (c) emerges if the number of
bidders is sufficiently large, and in that case 𝛾 and 𝜆 are both close to 𝑟1. Therefore, (almost) every bidder with
value above 𝑟1 bids at the stage one auction – and according to a strictly increasing function.

An additional finding in our paper is that sequential first-price and second-price auctions are revenue equiv-
alent even under decreasing reserve prices. This result is useful since sequential first-price auctions are some-
what more complicated to deal with than sequential second-price auctions. This is because, at stage two, there
exists no dominant bid; hence, the beliefs outlined above affect also the stage two equilibrium bids.

Finally, our findings allow us to deal with a problem introduced in GTX about the optimal order in which
two objects should be auctioned. The setting considered has two sellers, each of whom owns one of the two
objects; it is commonly known that one seller has value 𝑟 > 0 for her object while the other seller has value zero
for her object. The objects are offered through sequential auctions such that at each stage the reserve price is
equal to the seller’s value for the object auctioned at that stage. An auctioneer chooses the object which is put
for sale first in order to maximize the sum of the sellers’ profits. GTX use the equilibrium in (a) to show that
decreasing reserve prices are optimal if 𝑟 is large. However, our equilibria in (b) and (c) allow us to consider any
𝑟, and we prove that increasing reserve prices are optimal when 𝑟 is small. We also obtain very specific results
if the values are uniformly distributed.2

To the best of our knowledge, a partially flat equilibrium bidding function is a novel feature in standard sym-
metric auctions. Che and Gale (1998) obtain it in auctions with financially constrained bidders; Niedermayer,
Shneyerov, and Xu (2016) in foreclosure auctions with asymmetric bidders.

In order to see the effects of financial constraints, consider a single unit second-price auction in which each
bidder cannot pay, and bid, more than a certain amount 𝑤 > 0 which is independent of his value for the object,
𝑥.3 The equilibrium bid of type 𝑥 is the smaller number between 𝑥 and 𝑤. This generates a flat portion in the
equilibrium bidding function for values above 𝑤. Our result in case (c) is different since the stage one bidding
function is flat only for intermediate values, and strictly increasing thereafter. The flat portion in our model is
driven by the existence of two stages and decreasing reserve prices, not by budget constraints.

Niedermayer et al. (2016) examine foreclosure auctions in which the bidders are a lender and some real
estate brokers. In these auctions, the lender has a credit of 𝑣 > 0 (the balance of the mortgage) towards the
house owner, and will earn the smaller amount between the revenues from the auction and 𝑣. In addition, the
lender privately observes the resale price 𝑥 of the house.

In equilibrium, the lender’s bidding function has a flat region for a range of intermediate values of 𝑥. Specif-
ically, when 𝑥 is much smaller than 𝑣, the lender bids an amount that increases with 𝑥 because his bid plays
the role of a reserve price which increases his revenue. When 𝑥 takes on larger values that are still below 𝑣,
the lender bids 𝑣, because this is the maximum amount that he can receive from the winner of the auction.
(Winning the house and reselling it in the market would generate even lower revenues.) Finally, for 𝑥 larger
than 𝑣, the lender bids again an amount that increases with 𝑥 (but is less than 𝑥) because the lender wants to
win the auction to cash the favorable resale price.
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The mechanism which generates a partially flat bidding function is very different from ours, as it depends
on the asymmetry between the lender and ordinary bidders, and the fact that the lender may turn out to be
either a buyer or a seller.

The remainder of the paper is organized as follows: Section 2 describes the model in detail. Section 3 pro-
vides the analysis for sequential second-price auctions. Section 4 proves that sequential first-price auctions and
sequential second-price auctions are revenue equivalent. Section 5 contains our analysis for the optimal order
problem, while Section 6 concludes. All the proofs are either in the Appendix or the Supplementary Material.

2 The Model

Two identical objects are offered to 𝑛 ≥ 3 bidders through two sequential (sealed bid) auctions with reserve
prices – 𝑟1 and 𝑟2, respectively – which are common knowledge. In particular, one object is offered using an
auction with reserve price 𝑟1, and the winning bid is publicly announced. In case the highest bid is submitted
by 𝑚 ≥ 2 bidders, the winning bidder is selected randomly, and each highest bidder has probability 1

𝑚 to win.
If no bid is submitted at stage one, then this information is revealed to each bidder before stage two, and the
object remains unsold. The other object is offered using an auction with reserve price 𝑟2.4

We assume that each bidder is risk neutral, has no time discount, and has unit demand so that no bidder
wants to buy more than one object. All else being equal, bidders are therefore indifferent between getting the
object at either stage. Moreover, unit demand implies that the winner of the first object does not join the second
auction. Last, we assume that each bidder 𝑖 has value 𝑋𝑖 for the object and each 𝑋𝑖 is independent and identically
distributed (i.i.d. henceforth) on the non-negative support [𝑥, ̄𝑥], with cumulative distribution function (c.d.f.
henceforth) 𝐹 and density 𝑓 ≡ 𝐹′ > 0 that is continuous in [𝑥, ̄𝑥]. We write 𝑥𝑖 to denote a realization of 𝑋𝑖, which
is privately observed by bidder 𝑖.

We are interested in analyzing sequential sealed bid first-price (𝐹) and second-price (𝑆) auctions when the
reserve prices are descending, that is when 𝑥 ≤ 𝑟2 < 𝑟1 ≤ ̄𝑥. 5 A bidding strategy in auction 𝐴 = 𝐹, 𝑆 for bidder 𝑖
consists of a pair of functions (𝑏(1)

𝐴,𝑖, 𝑏
(2)
𝐴,𝑖) which specify bidder 𝑖’s bid in stage one, 𝑏(1)

𝐴,𝑖, as a function of 𝑖’s value
𝑥𝑖, and bidder 𝑖’s bid in stage two, 𝑏(2)

𝐴,𝑖 (conditional on 𝑖 not winning in stage one), as a function of 𝑖’s value
𝑥𝑖 and of any other information that bidder 𝑖 has obtained at stage one. Since bidders are symmetric ex ante,
we restrict the analysis to strategies that do not depend on the bidders’ identities. Therefore, a strategy will be
indicated as a pair (𝑏(1)

𝐴 , 𝑏(2)
𝐴 ).6

We are interested in equilibria which satisfy the definition of Perfect Bayesian Equilibrium, that is: (i) the
stage two beliefs are obtained from the stage one bidding functions using Bayes’ rule whenever possible (other-
wise beliefs are unrestricted); (ii) at both stage one and stage two, each bidder’s strategy is sequentially rational
given the bidder’s beliefs; in particular, following any outcome of the stage one auction, the strategies for the
stage two auction form an equilibrium, given the beliefs.

As it will appear repeatedly, we recall from (for example) Krishna (2010) a feature of a single stage first-price
auction with 𝑘 ≥ 2 bidders and reserve price 𝑟2, where each bidder’s beliefs about the highest value among the
other 𝑘 − 1 bidders are given by a c.d.f. 𝐺 with density 𝑔.7 The equilibrium bidding function 𝛽 satisfies

𝛽(𝑟2) = 𝑟2 and 𝛽′(𝑥) = (𝑥 − 𝛽(𝑥)) 𝑔(𝑥)
𝐺(𝑥) for 𝑥 > 𝑟2 (1)

Under the specific assumption that values are i.i.d. random variables each with c.d.f. 𝐹 and support [𝑥, 𝑥],
it follows that 𝐺(𝑥) = 𝐹𝑘−1(𝑥) and 𝑔(𝑥)

𝐺(𝑥) = (𝑘−1)𝑓 (𝑥)
𝐹(𝑥) . Therefore, from (1) we obtain the following equilibrium

bidding function:

𝛽𝑘,𝑟2(𝑥) = 𝑥 −
𝑥

∫
𝑟2

𝐹𝑘−1(𝑠)
𝐹𝑘−1(𝑥)

𝑑𝑠 =
𝑥

∫
𝑥

max{𝑟2, 𝑠}𝑑𝐹𝑘−1(𝑠)
𝐹𝑘−1(𝑥)

for 𝑥 ≥ 𝑟2 (2)

In this equilibrium, the expected payoff of a bidder with type 𝑥 ≥ 𝑟2 is

𝑣𝑘(𝑥) =
𝑥

∫
𝑟2

𝐹𝑘−1(𝑠)𝑑𝑠 (3)

As it is well known,8 𝑣𝑘(𝑥) is also the expected payoff of a bidder with type 𝑥 in a single stage second-price
auction with the same information structure described above – assuming bidders play the unique undominated
equilibrium.
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In the next two sections we identify equilibria of sequential auctions. We begin from second-price auctions,
as they are simpler.

3 Second-Price Auctions

We start the analysis by working backwards. Thus, we look at the equilibrium bid in the second stage auction,
for all the active bidders. This is actually straightforward, since in a one-shot second-price auction each bidder
has a (weakly) dominant strategy: to bid his value, regardless of the information obtained at stage one. Hence,
we introduce 𝑏(2)

𝑆 = 𝑏(2)∗
𝑆 as follows:

𝑏(2)∗
𝑆 (𝑥) =

⎧{
⎨{⎩

no bid if 𝑥 ∈ [𝑥, 𝑟2)
𝑥 if 𝑥 ∈ [𝑟2, ̄𝑥]

� (4)

Conversely, the equilibrium bidding function at stage one is not as straightforward, and depends on the
relationship between 𝑟1 and 𝑟2.

In order to carry out our analysis, we need some additional notation. Given a candidate equilibrium
(𝑏(1)

𝑆 , 𝑏(2)∗
𝑆 ), for each 𝑥 and 𝑦 in [𝑥, ̄𝑥] we use 𝑢𝑆(𝑥, 𝑦) to denote the payoff of a bidder with value 𝑥 if in stage

one he bids as a bidder with value 𝑦 does according to 𝑏(1)
𝑆 , given that the other bidders follow (𝑏(1)

𝑆 , 𝑏(2)∗
𝑆 ). For

𝑥 ≥ 𝑟2, we can write

𝑢𝑆(𝑥, 𝑦) = 𝑝(𝑦)(𝑥 − 𝑡(𝑦)) + (1 − 𝑝(𝑦))
𝑥

∫
𝑟2

𝐺𝑏(1)
𝑆 (𝑦)(𝑠)𝑑𝑠 (5)

where 𝑝(𝑦) denotes the probability to win at stage one with the bid 𝑏(1)
𝑆 (𝑦); 𝑡(𝑦) denotes the bidder’s expected

payment at stage one, conditional on winning at stage one with the bid 𝑏(1)
𝑆 (𝑦); and 𝐺𝑏(1)

𝑆 (𝑦) denotes the expected
c.d.f., conditional on losing after bidding 𝑏(1)

𝑆 (𝑦), about the highest value among the other bidders who lost at
stage one.

In order to make sense of (5), notice that the first term indicates the expected payoff from winning the
stage one auction times the probability of winning it, while the second term indicates the expected payoff
from participating in the second auction times the probability of losing the stage one auction. In particular,
for a bidder with value 𝑥 ∈ [𝑟2, ̄𝑥] the payoff in stage two, conditional on losing in stage one, is given by
∫𝑥

𝑥 (𝑥 − max{𝑟2, 𝑠})𝑑𝐺𝑏(1)
𝑆 (𝑦)(𝑠). This reduces to ∫𝑥

𝑟2
𝐺𝑏(1)

𝑆 (𝑦)(𝑠)𝑑𝑠 after applying integration by parts.
It is straightforward to derive 𝐺𝑏(1)

𝑆 (𝑦) when 𝑏(1)
𝑆 is strictly increasing, but not if 𝑏(1)

𝑆 is constant over an interval.
This complicates the analysis substantially, as we will see below.

3.1 Ascending Reserve Prices

The case with (weakly) ascending reserve prices is solved by GTX. The following is an adaptation of their result
which allows for 𝑟1 > 𝑥 (GTX assume that [𝑥, ̄𝑥] = [0, 1] and 𝑟1 = 0).

Proposition 1 (Proposition 2 in GTX)
Suppose that two objects are offered through sequential second-price auctions with (weakly) ascending reserve prices

𝑟1, 𝑟2 such that 𝑥 ≤ 𝑟1 ≤ 𝑟2 ≤ ̄𝑥. Then, there exists an equilibrium in which

𝑏(1)
𝑆 (𝑥) =

⎧{{
⎨{{⎩

𝑛𝑜 𝑏𝑖𝑑 𝑖𝑓 𝑥 ∈ [𝑥, 𝑟1)
𝑥 𝑖𝑓 𝑥 ∈ [𝑟1, 𝑟2)
𝛽𝑛−1,𝑟2(𝑥) 𝑖𝑓 𝑥 ∈ [𝑟2, ̄𝑥]

� (6)

and 𝑏(2)
𝑆 (𝑥) = 𝑏(2)∗

𝑆 (𝑥) from (4).

The rationale behind the equilibrium bidding function (6) is as follows. A bidder whose value is between 𝑟1
and 𝑟2 only participates in the first auction; from his perspective he is joining a one shot second-price auction.
As a result, it is still weakly dominant for him to bid his own value. A bidder with value above 𝑟2 has two
attempts at getting the object; at the second (and last) he will bid his own value. In the first stage, he bids the
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expected payment he would make if he were to lose the first auction and win the second. This corresponds
to the equilibrium bid in a one shot first-price auction with reserve price 𝑟2 and 𝑛 − 1 bidders.9Krishna (2010)
illustrates this result for sequential auctions with no reserve prices, so that the main difference in (6) comes
from bidders with values below 𝑟2.

3.2 Descending Reserve Prices

In the equilibrium of Proposition 1, where we have that 𝑟1 ≤ 𝑟2, each bidder participates in the auction at stage
𝑗 if (and only if) his value is at least 𝑟𝑗, for 𝑗 = 1, 2. Conversely, when 𝑟1 > 𝑟2, not all bidders with value at least 𝑟1
bid at stage one since it could be more profitable to try to win the second stage auction at a lower reserve price.
For instance, a bidder with type 𝑥 = 𝑟1 does not bid in the stage one auction because he cannot make a positive
payoff in that auction, but has a positive payoff from participating in the stage two auction.10 The greater 𝑟1 is
with respect to 𝑟2, the stronger this effect for types in (𝑟1, ̄𝑥].

This suggests that the equilibrium analysis is more complicated with descending reserve prices. In fact,
no equilibrium with a strictly increasing stage one bidding function exists (see GTX or Subsubsection 3.2.2).
Nevertheless, we identify an equilibrium in which the stage one bidding function is partially flat, and its features
depend on the magnitude of 𝑟1 relative to 𝑟2. Our main result is reported in the following proposition.

Proposition 2
Suppose that the two objects are offered through sequential second-price auctions with descending reserve prices, that

is 𝑥 ≤ 𝑟2 < 𝑟1 ≤ ̄𝑥. Let

̄𝑟1 ≡ ̄𝑥 − 𝑣𝑛( ̄𝑥)

There exists a unique ̃𝑟1 ∈ (𝑟2, ̄𝑟1) such that we have an equilibrium in which each bidder bids according to 𝑏(2)∗
𝑆 in

stage two and:

i. if 𝑟1 ∈ (𝑟2, ̃𝑟1), each bidder adopts the stage one bidding function

̃𝑏(1)
𝑆 (𝑥) =

⎧{{
⎨{{⎩

no bid if 𝑥 ∈ [𝑥, 𝛾)
𝑟1 if 𝑥 ∈ [𝛾, 𝜆]
𝛽𝑛−1,𝑟2(𝑥) if 𝑥 ∈ (𝜆, ̄𝑥]

� (7)

where 𝛾, 𝜆 are uniquely determined by suitable indifference conditions (see eqs. (16)-(17) below);

ii. if 𝑟1 ∈ [ ̃𝑟1, ̄𝑟1), each bidder adopts the stage one bidding function

̂𝑏(1)
𝑆 (𝑥) =

⎧{
⎨{⎩

no bid if 𝑥 ∈ [𝑥, 𝛾)
𝑟1 if 𝑥 ∈ [𝛾, ̄𝑥]

� (8)

where 𝛾 (different from 𝛾 in case (i)) is uniquely determined by a suitable indifference condition (see eq. (14) below);

iii. if 𝑟1 ∈ [ ̄𝑟1, ̄𝑥], no bidder bids at stage one.

Proposition 2 shows that some pooling in the stage one equilibrium bidding function arises. To the best of
our knowledge, this is a novel feature of an equilibrium bidding function in standard symmetric auctions. In
order to understand the logic behind this result we discuss each case separately, starting from the last. It may also
be convenient to refer to the black curves in Figure 1, Subsection 3.3 as they offer a graphical representation of
the stage one equilibrium bidding functions described by Proposition 2(i)-(ii) for uniformly distributed values.

3.2.1 Case (iii): Large𝑟1𝑟1𝑟1

If 𝑟1 ≥ ̄𝑟1, no bidder wants to bid at stage one because bidding at stage one is less profitable than competing at
stage two, where the reserve price is considerably lower. In more detail, given that no other bidder bids in stage
one, each type 𝑥 ≥ 𝑟2 earns the payoff (i) 𝑣𝑛(𝑥) if he does not bid at stage one; (ii) 𝑥 − 𝑟1 if he bids 𝑟1 at stage
one. The first option is superior to the second as the inequality 𝑣𝑛(𝑥) ≥ 𝑥 − 𝑟1 holds for each 𝑥 ∈ [𝑟2, ̄𝑥], when
𝑟1 ≥ ̄𝑟1.11
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3.2.2 Case (ii): Intermediate𝑟1𝑟1𝑟1

When 𝑟2 < 𝑟1 < ̄𝑟1, it may be natural to inquire into the existence of an equilibrium (𝑏(1)
𝑆 , 𝑏(2)∗

𝑆 ) with a cutoff
𝛾, such that only bidders with value greater than or equal to 𝛾 participate in stage one, and adopt a strictly
increasing bidding function. However, such an equilibrium does not exist. First, notice that type 𝛾 must be
indifferent between bidding 𝑏(1)

𝑆 (𝛾) and not bidding. It turns out that this indifference is determined under
the circumstance that type 𝛾 has the highest value, and it boils down to 𝛽𝑛,𝑟2(𝛾) = 𝑟1. Second, if 𝑏(1)

𝑆 is strictly
increasing in (𝛾, ̄𝑥] then 𝑏(1)

𝑆 (𝑥) is equal to type 𝑥’s expected payment in the stage two auction, conditional on
winning at stage two (as for ascending reserve prices). That is, 𝑏(1)

𝑆 (𝑥) = 𝛽𝑛−1,𝑟2(𝑥) for 𝑥 > 𝛾. Hence, for 𝑥
slightly greater than 𝛾 we find 𝛽𝑛−1,𝑟2(𝑥) < 𝛽𝑛,𝑟2(𝛾), or 𝑏(1)

𝑆 (𝑥) < 𝑟1; that is, types slightly above 𝛾 bid less than
𝑟1 which is a contradiction.

We may obtain an intuitive explanation of this result if we compare the tradeoffs faced by a bidder of type
𝛾 and a bidder of type 𝑥 marginally bigger than 𝛾. The former needs to choose between bidding or not in stage
one. As we noticed, the indifference condition is based on being the type with the largest value. Therefore,
if he chooses not to bid he will face all 𝑛 − 1 other bidders in stage two. The type marginally bigger than 𝛾,
instead faces a tradeoff between bidding slightly more or slightly less. If he loses at stage one, he will face 𝑛 − 2
opponents at stage two, because someone must have won stage one. This indicates that the stage two auction is
seen as more competitive by type 𝛾 than by type 𝑥 slightly bigger than 𝛾, and this explains why type 𝑥 would
bid less in the first auction.

The argument above suggests that with 𝑟1 < ̄𝑟1 some pooling at the reserve price 𝑟1 occurs in equilibrium;
that is, types slightly greater than 𝛾 bid 𝑟1 just like type 𝛾. Indeed, this occurs in (7) and (8). When 𝑟1 is smaller
(but not much smaller) than ̄𝑟1, the stage one equilibrium bidding function is ̂𝑏(1)

𝑆 in which pooling involves
type 𝛾 and all types bigger than 𝛾. Some features of this equilibrium are worth emphasizing:

First, any two types in [𝛾, ̄𝑥] have the same probability to win in stage one. Therefore, the stage two be-
liefs of a losing bidder about the highest value among the other bidders who did not win at stage one are not
straightforward.

Second, type 𝛾 is obtained from the indifference condition between bidding 𝑟1 and not participating in the
stage one auction. Therefore, each type above 𝛾 prefers to bid 𝑟1 rather than not to bid, and each type below 𝛾
prefers not to bid rather than to bid 𝑟1.

Third, no type of bidder wants to bid more than 𝑟1 at stage one, despite the fact that by doing so he wins the
object for sure.

Consistent with our previous notation, we use ̂𝑢𝑆(𝑥, 𝑦) to denote the payoff of a bidder with value 𝑥 if he
bids ̂𝑏(1)

𝑆 (𝑦) in stage one (i.e., if he bids as a bidder with value 𝑦 does according to ̂𝑏(1)
𝑆 ), given that every other

bidder follows the strategy ( ̂𝑏(1)
𝑆 , 𝑏(2)∗

𝑆 ). Hence, ̂𝑢𝑆(𝑥, 𝑥) is the payoff of a bidder with value 𝑥 from not bidding
at stage one (like type 𝑥 does); and ̂𝑢𝑆(𝑥, 𝛾) is the payoff from bidding 𝑟1 at stage one (like type 𝛾 does). Last, we
write ̂𝐺 to denote the c.d.f. representing the stage two beliefs of a losing bidder about the highest value among
the other bidders who did not win at stage one.12 We remark that ̂𝐺 depends on the stage one winning bid and
the bidder’s stage one bid.

We now describe how ̂𝑢𝑆(𝑥, 𝑥) and ̂𝑢𝑆(𝑥, 𝛾) are derived as well as how 𝛾 is determined. In order to shorten
the notation, we write Γ to indicate 𝐹(𝛾).

3.2.2.1 Derivation of ̂𝑢𝑆(𝑥, 𝑥)
Consider a bidder who has not bid at stage one and learns that there has been no bid by any bidder. In light of
(8) he must conclude that none of the 𝑛 − 1 other bidders has a value bigger than 𝛾. This event has probability
Γ𝑛−1 from his ex ante point of view. Thus, his beliefs are given by the c.d.f. ̂𝐺(⋅|no,no) such that

̂𝐺(𝑠|no, no) =
⎧{
⎨{⎩

𝐹𝑛−1(𝑠)
Γ𝑛−1 if 𝑠 ∈ [𝑥, 𝛾]

1 if 𝑠 ∈ (𝛾, ̄𝑥]
� (9)

Given 𝑠 ≤ 𝛾, the unconditional probability that the largest value of all the other 𝑛 − 1 bidders is less than or
equal to 𝑠 is 𝐹𝑛−1(𝑠). Therefore, the conditional probability is given by the line at the top in (9). The expression
at the bottom naturally follows upon learning that all the other 𝑛 − 1 bidders have a type smaller than 𝛾.

On the other hand, if a bidder has not bid at stage one but learns that the winning bid has been 𝑟1, he must
conclude that at least one of the other 𝑛− 1 bidders has a type bigger than 𝛾. This event has probability 1−Γ𝑛−1

from his ex ante point of view. Thus, his beliefs are given by the c.d.f. ̂𝐺(⋅|no, 𝑟1) such that

̂𝐺(𝑠|no, 𝑟1) =
⎧{
⎨{⎩

(𝑛−1)(1−Γ)
1−Γ𝑛−1 𝐹𝑛−2(𝑠) if 𝑠 ∈ [𝑥, 𝛾]
1−Γ

1−Γ𝑛−1
𝐹𝑛−1(𝑠)−Γ𝑛−1

𝐹(𝑠)−Γ if 𝑠 ∈ (𝛾, ̄𝑥]
� (10)
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Given 𝑠 ≤ 𝛾, we obtain the expression at the top of (10) when exactly one of the other 𝑛 − 1 bidders has a
value bigger than 𝛾, while the remaining have values no greater than 𝑠. The unconditional probability of this
event is (𝑛 − 1)(1−Γ)𝐹𝑛−2(𝑠) and therefore the conditional probability is as described. To derive the expression
at the bottom of (10) we need to consider all the cases in which at least two of the other bidders have values
bigger than 𝛾. We leave the details of the derivation to the proof of Proposition 2 in the Appendix.

At the time of choosing to make no bid, the bidder’s expected c.d.f. for the highest value among the other
losing bidders is ̂𝐺no such that

̂𝐺no(𝑠) = Γ𝑛−1 ̂𝐺(𝑠|no, no) + (1 − Γ𝑛−1) ̂𝐺(𝑠|no, 𝑟1)

Therefore, in view of (5) the payoff of type 𝑥 ≥ 𝑟2 from not bidding at stage one is

̂𝑢𝑆(𝑥, 𝑥) =
𝑥

∫
𝑟2

̂𝐺no(𝑠)𝑑𝑠 (11)

3.2.2.2 Derivation of ̂𝑢𝑆(𝑥, 𝛾)and𝛾.
Let ̂𝑝(𝛾) denote the probability to win at stage one for a bidder bidding 𝑟1. Hence 1− ̂𝑝(𝛾) is the probability

to lose at stage one. In eq. (55) in the Appendix we show that ̂𝑝(𝛾) = (1/𝑛) ∑𝑛−1
𝑖=0 Γ𝑖. In case the bidder loses, his

beliefs are given by

̂𝐺(𝑠|𝑟1, 𝑟1) =
⎧{
⎨{⎩

(𝑛−1)(1−Γ)
2(1−�̂�(𝛾)) 𝐹𝑛−2(𝑠) if 𝑠 ∈ [𝑥, 𝛾]
1−Γ
𝑛

(𝑛−1)𝐹𝑛(𝑠)−𝑛Γ𝐹𝑛−1(𝑠)+Γ𝑛

(1−�̂�(𝛾))(𝐹(𝑠)−Γ)2 if 𝑠 ∈ (𝛾, ̄𝑥]
� (12)

The derivation of eq. (12) relies on a logic similar to that applied to derive eq. (10). For 𝑠 ≤ 𝛾, we obtain the
expression at the top of eq. (12) when one of the other 𝑛 − 1 bidders has a type bigger than 𝛾, while each of
the remaining has a type no greater than 𝑠. In this context our bidder loses with probability 1/2, and therefore
the unconditional probability is given by 1

2(𝑛 − 1)(1 − Γ)𝐹𝑛−2(𝑠). To derive the expression at the bottom we
need to consider all the cases in which at least two other bidders have a value bigger than 𝛾. The details of the
derivation are in the proof of Proposition 2 in the Appendix. We conclude that the payoff of a type 𝑥 ≥ 𝑟2 from
bidding 𝑟1 is

̂𝑢𝑆(𝑥, 𝛾) = ̂𝑝(𝛾)(𝑥 − 𝑟1) + (1 − ̂𝑝(𝛾))
𝑥

∫
𝑟2

̂𝐺(𝑠|𝑟1, 𝑟1)𝑑𝑠 (13)

After defining ̂𝑢𝑆(𝑥, 𝑥) and ̂𝑢𝑆(𝑥, 𝛾), we identify 𝛾 in ̂𝑏(1)
𝑆 as the unique solution to the equation

̂𝑢𝑆(𝛾, 𝑥) = ̂𝑢𝑆(𝛾, 𝛾) (14)

that is, type 𝛾 is indifferent between bidding 𝑟1 at stage one and not bidding. In the proof of Proposition 2
we show that there indeed exists a unique solution to eq. (14) in the interval (𝑟2, ̄𝑥).

3.2.2.3 On bidding more than 𝑟1.
As stated earlier, no type of bidder prefers to bid more than 𝑟1. In particular, for a type bigger than 𝛾, this means
that winning the object for sure at the price of 𝑟1 gives a lower expected utility than winning it at the price of
𝑟1, with probability ̂𝑝(𝛾); and joining the second stage with probability 1 − ̂𝑝(𝛾). Formally:

𝑥 − 𝑟1 < ̂𝑝(𝛾)(𝑥 − 𝑟1) + (1 − ̂𝑝(𝛾))
𝑥

∫
𝑟2

̂𝐺(𝑠|𝑟1, 𝑟1)𝑑𝑠 (15)

To see why, remark that if a bidder with value 𝑥 ≥ 𝛾 bids more than 𝑟1, he improves his stage one payoff
by (1 − ̂𝑝(𝛾))(𝑥 − 𝑟1) and reduces his stage two payoff by (1 − ̂𝑝(𝛾)) ∫𝑥

𝑟2
̂𝐺(𝑠|𝑟1, 𝑟1)𝑑𝑠. We obtain that the payoff

from winning at stage one, 𝑥 − 𝑟1, is smaller than the expected payoff conditional on losing, ∫𝑥
𝑟2

̂𝐺(𝑠|𝑟1, 𝑟1)𝑑𝑠. In
other words, and interestingly enough, bidders prefer to participate in the stage one auction and lose it rather
than win it. This may not be intuitive, but it is simple to see when 𝑟1 is slightly smaller than ̄𝑟1. To fix the ideas,
consider type ̄𝑥; although our argument applies to each type in (𝛾, ̄𝑥]. Since 𝑟1 is close to ̄𝑟1, it follows that ̄𝑥 − 𝑟1
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is close to ̄𝑥 − ̄𝑟1. That is, when bidding more than 𝑟1 a bidder with value ̄𝑥 earns a payoff of about 𝑣𝑛( ̄𝑥), the
expected payoff of type ̄𝑥 in a second-price auction with 𝑛 − 1 opponents. Moreover, when 𝑟1 is close to ̄𝑟1, 𝛾
is close to ̄𝑥 and this implies that ̂𝐺(𝑠|𝑟1, 𝑟1) is close to 𝐹𝑛−2(𝑠), for each 𝑠 ∈ [𝑟2, ̄𝑥]. As a result, type ̄𝑥’s payoff
conditional on losing at stage one is approximately equal to ∫ ̄𝑥

𝑟2
𝐹𝑛−2(𝑠)𝑑𝑠 = 𝑣𝑛−1( ̄𝑥); his expected payoff in a

second-price auction with 𝑛 − 2 opponents. That is, losing after bidding 𝑟1 makes him join a less competitive
auction, and this is better for him since 𝑣𝑛−1( ̄𝑥) > 𝑣𝑛( ̄𝑥).

Remark that this argument does not imply that type ̄𝑥 prefers not to bid at stage one. If he does not bid,
he will likely face 𝑛 − 1 opponents at stage two because 𝛾 close to ̄𝑥 makes it unlikely that there is a winner at
stage one. However, if he bids 𝑟1 at stage one and loses then necessarily there has been a winner at stage one;
therefore the stage two auction is with 𝑛 − 2 other bidders. After bidding 𝑟1 in stage one, learning he has lost
the stage one auction is good news for him. Therefore, there is a significant difference between losing from not
bidding and losing after bidding 𝑟1.

3.2.3 Case (i): Small𝑟1𝑟1𝑟1

When 𝑟1 is close to 𝑟2, ̂𝑏(1)
𝑆 cannot be part of an equilibrium because high types prefer to bid above 𝑟1 in the

stage one auction, as inequality (15) is reversed. Following the same logic as before, we just need to show that
𝑥 − 𝑟1 > ∫𝑥

𝑟2
̂𝐺(𝑠|𝑟1, 𝑟1)𝑑𝑠; that is, winning and paying 𝑟1 is better than losing. For 𝑟1 close to 𝑟2, the payoff from

winning at stage one is close to 𝑥 − 𝑟2 = ∫𝑥
𝑟2
1𝑑𝑠 > ∫𝑥

𝑟2
̂𝐺(𝑠|𝑟1, 𝑟1)𝑑𝑠. This explains why ̃𝑏(1)

𝑆 in (7) prescribes that
some types offer 𝑟1, while other types offer more than 𝑟1.

Therefore, two cutoffs appear in ̃𝑏(1)
𝑆 : 𝛾 and 𝜆, such that 𝛾 is different from the one that appears in ̂𝑏(1)

𝑆 in (8),
and 𝜆 is greater than 𝛾. For each 𝑥 and 𝑦 in [𝑥, ̄𝑥] we use ̃𝑢𝑆(𝑥, 𝑦) to denote the payoff of a bidder with value 𝑥
if he bids ̃𝑏(1)

𝑆 (𝑦) in stage one, given that all the other bidders follow the strategy ( ̃𝑏(1)
𝑆 , 𝑏(2)∗

𝑆 ). (The tilde symbol
– rather than the hat symbol – indicates the case of small 𝑟1.)

The values of 𝛾 and 𝜆 are given by the unique solution of the following equations:

̃𝑢𝑆(𝛾, 𝑥) = ̃𝑢𝑆(𝛾, 𝛾) (16)

̃𝑢𝑆(𝜆, 𝛾) = lim
𝑦↓𝜆

̃𝑢𝑆(𝜆, 𝑦) (17)

Equation (16) is analogous to eq. (14) as it states that type 𝛾 is indifferent between not bidding, and bidding
𝑟1. Equation (17) states that type 𝜆 is indifferent between bidding 𝑟1, and bidding just above 𝛽𝑛−1,𝑟2(𝜆), which
is greater than 𝑟1. Hence ̃𝑏(1)

𝑆 is discontinuous at 𝑥 = 𝜆 (see Figure 1a).13

Remark If we study the effect of increasing the number of bidders, we can see that for a large 𝑛, ̃𝑟1 approaches
̄𝑥 and, therefore, the equilibrium described by Proposition 2(i) arises (unless 𝑟1 is very close to ̄𝑥). Moreover, 𝛾

and 𝜆 approach 𝑟1 so that almost every type of bidder with value above 𝑟1 bids more than 𝑟1 in the stage one
auction. The logic for this result is simple: given 𝑟1 > 𝑟2, a bidder with value greater than 𝑟1 may not want to
bid at stage one because he prefers to compete under the more favorable terms of stage two. However, when 𝑛
is large, the intensity of the competition in both stages is mainly determined by the number of bidders rather
than by reserve prices. Therefore, it is unprofitable for a bidder not to bid at stage one unless his value is very
close to 𝑟1.

3.3 Example with Uniformly Distributed Values

In this subsection we examine a specific example in which values are uniformly distributed on [0, 1] and 𝑟2 = 0;
in this context we compare the equilibrium bids under increasing and decreasing reserve prices. Given our
assumptions, for small 𝑟1 the eqs. (16)-(17) reduce to

1
𝑛 ⋅ 𝜆𝑛 − 𝛾𝑛

𝜆 − 𝛾 (𝛾 − 𝑟1) −
1
2

𝛾𝑛−1𝜆 + 𝑛 − 2
2𝑛 𝛾𝑛 = 0 (18)

−
𝑛 − 2
2

𝛾𝑛−1 − (𝑛 − 1)𝜆𝑛 − 𝑛𝜆𝑛−1𝛾 + 𝛾𝑛

(𝜆 − 𝛾)2 (𝜆 − 𝑟1) + 𝜆𝜆𝑛−1 − 𝛾𝑛−1

𝜆 − 𝛾 = 0 (19)

For 𝑛 = 3, this system of equations can be solved analytically: the solution is 𝛾 = (1+ √3
3 )𝑟1, 𝜆 = (1+ 2√3

3 )𝑟1.
For larger 𝑛, analytical solutions are difficult or impossible to obtain, but inspection of eqs. (18)-(19) reveals that
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the solution is homogeneous of degree one in 𝑟1; that is, 𝛾 = 𝑐𝛾𝑟1 and 𝜆 = 𝑐𝜆𝑟1 for suitable coefficients 𝑐𝛾 and
𝑐𝜆 with 𝑐𝜆 > 𝑐𝛾 > 1. Therefore 𝜆 < 1 if (and only if) 𝑟1 < 1

𝑐𝜆
, hence ̃𝑟1 = 1

𝑐𝜆
. Finally, we have that ̄𝑟1 = 𝑛−1

𝑛 .
Table 1 reports numerical estimates of 𝑐𝛾 , 𝑐𝜆, ̃𝑟1, and ̄𝑟1 for several values of 𝑛. In this way, we can tell for

which range of values of 𝑟1 each of the cases in Proposition 2 applies, and which types of bidder bid 𝑟1. Moreover,
Table 1 allows us to visualize the convergence results we have mentioned at the end of the previous subsection.

Table 1: Numerical estimates of the cutoff values when bidders’ values are uniformly distributed in the unit interval, 𝑟2 =
0 and 𝑟1 ∈ (0, 1]

𝑛 3 5 10 15 20 30 50 75
𝑐𝛾 1.577350 1.257289 1.111677 1.071574 1.052689 1.034499 1.020411 1.013514
𝑐𝜆 2.154700 1.365022 1.131076 1.079438 1.056924 1.036304 1.021040 1.013790

̃𝑟1 0.464102 0.732589 0.884114 0.926408 0.946142 0.964968 0.979393 0.986398
̄𝑟1 0.666667 0.800000 0.900000 0.933333 0.950000 0.966667 0.980000 0.986667

For intermediate values of 𝑟1, Proposition 2(ii) applies and 𝛾 is obtained by solving (18) given 𝜆 = 1. Figure 1
reports the equilibrium bidding functions for the first stage under ascending (𝑟1 = 0 and 𝑟2 = 𝑟) and descending
(𝑟1 = 𝑟 and 𝑟2 = 0) reserve prices with five bidders, and 𝑟 ∈ {0.5, 0.75}. The equilibrium bidding function for
the case of ascending reserve prices is given by 𝑏(1)

𝑆 in (6) and is plotted in grey. When 𝑟1 = 0.5, the equilibrium
bidding function for the case of descending reserve prices is given by ̃𝑏(1)

𝑆 in (7) with 𝛾 = 1.257289
2 and 𝜆 = 1.365022

2 ,
and is plotted in black in Figure 1a. When 𝑟1 = 0.75, the equilibrium bidding function for descending reserve
prices is given by ̂𝑏(1)

𝑆 in eq. (8) with 𝛾 = 0.942, and is plotted in black in Figure 1b.

Figure 1: Equilibrium bidding functions in the first of two sequential second-price auctions when reserve prices are 0 and
0.5 (top) or 0 and 0.75 (bottom). There are five bidders with values independently drawn from a uniform distribution in
the unit interval.
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4 First-Price Auctions

This section establishes a revenue equivalence result – given decreasing reserve prices – between sequential
first-price auctions and sequential second-price auctions. Precisely, we prove that if the objects are offered
through two sequential first-price auctions with 𝑟1 > 𝑟2, there then exists an equilibrium which generates
the same outcome (in terms of allocation of the objects and of bidders’ expected payments) as the equilibrium
described by Proposition 2 for sequential second-price auctions. GTX prove a similar equivalence result for
the case of 𝑟1 ≤ 𝑟2. Combined, these results establish revenue equivalence between sequential first-price and
second-price auctions for all 𝑟1 ⋛ 𝑟2.

We focus on symmetric strategy profiles and use (𝑏(1)
𝐹 , 𝑏(2)

𝐹 ) to denote each bidder’s bidding functions at stage
one and two. A significant difference with respect to sequential second-price auctions is that with sequential
first-price auctions, no dominant bid exists at stage two. A bidder’s equilibrium behavior at stage two depends
on his beliefs about the values of the other losing bidders at stage one, which in turn depend on his stage one bid
𝔟, and the stage one winning bid 𝔟𝑤. Therefore, the analysis of sequential first-price auctions requires extra care.
This is mainly true for the case of decreasing reserve prices, because when 𝑟1 ≤ 𝑟2 there exists an equilibrium
in which 𝑏(1)

𝐹 is strictly increasing (for 𝑥 ≥ 𝑟1), and this generates beliefs which are relatively simple to manage:
see GTX. We use the notation 𝑏(2)

𝐹 (𝑥|𝔟, 𝔟𝑤), and for example, 𝑏(2)
𝐹 (𝑥|no, 𝑟1) is the bid of type 𝑥 at stage two given

that he has not bid at stage one (𝔟 = no), and given that the winning bid at stage one has been 𝑟1 (𝔟𝑤 = 𝑟1). With
𝔟𝑤 =no we represent the case in which no bid has been submitted at stage one.

4.1 Descending Reserve Prices

In this subsection (and in the Appendix), for each of the three cases considered in Proposition 2, we identify an
equilibrium for sequential first-price auctions which is equivalent to the equilibrium described by Proposition
2 for sequential second-price auctions.

4.1.1 Intermediate𝑟1𝑟1𝑟1

Consider 𝑟1 > 𝑟2 such that 𝑟1 is in the interval [ ̃𝑟1, ̄𝑟1), for which Proposition 2(ii) identifies ( ̂𝑏(1)
𝑆 , 𝑏(2)∗

𝑆 ) where
̂𝑏(1)
𝑆 is from (8) and 𝑏(2)∗

𝑆 is from (4). For sequential first-price auctions, we find an equilibrium given by the
functions ( ̂𝑏(1)

𝐹 , ̂𝑏(2)
𝐹 ) below; in which 𝛾 is the unique solution to eq. (14) as in Proposition 2(ii), and ̂𝐺(⋅|no, 𝑟1)

and ̂𝐺(⋅|𝑟1, 𝑟1) are given by (10), (12), respectively:

̂𝑏(1)
𝐹 (𝑥) =

⎧{
⎨{⎩

no bid if 𝑥 ∈ [𝑥, 𝛾)
𝑟1 if 𝑥 ∈ [𝛾, ̄𝑥]

� (20)

̂𝑏(2)
𝐹 (𝑥|no, no) =

⎧{{
⎨{{⎩

no bid if 𝑥 ∈ [𝑥, 𝑟2)
𝛽𝑛,𝑟2(𝑥) if 𝑥 ∈ [𝑟2, 𝛾)
𝛽𝑛,𝑟2(𝛾) if 𝑥 ∈ [𝛾, ̄𝑥]

� (21)

̂𝑏(2)
𝐹 (𝑥|no, 𝑟1) =

⎧{{
⎨{{⎩

no bid if 𝑥 ∈ [𝑥, 𝑟2)
𝛽𝑛−1,𝑟2(𝑥) if 𝑥 ∈ [𝑟2, 𝛾)

̂𝑏(2)
𝐹 ( ̂𝑦(𝑥)|𝑟1, 𝑟1) such that ̂𝑦(𝑥) is in

arg max𝑦∈[𝛾,𝑥](𝑥 − ̂𝑏(2)
𝐹 (𝑦|𝑟1, 𝑟1)) ̂𝐺(𝑦|no, 𝑟1) if 𝑥 ∈ [𝛾, ̄𝑥]

� (22)

̂𝑏(2)
𝐹 (𝑥|𝑟1, 𝑟1) =

⎧{{
⎨{{⎩

no bid if 𝑥 ∈ [𝑥, 𝑟2)
𝛽𝑛−1,𝑟2(𝑥) if 𝑥 ∈ [𝑟2, 𝛾)
𝛽𝑛−1,𝑟2 (𝛾)�̂�(𝛾|𝑟1,𝑟1)+∫𝑥

𝛾 𝑠�̂�(𝑠|𝑟1,𝑟1)𝑑𝑠
�̂�(𝑥|𝑟1,𝑟1)

if 𝑥 ∈ [𝛾, ̄𝑥]
� (23)

̂𝑏(2)
𝐹 (𝑥|𝔟, 𝔟𝑤) =

⎧{
⎨{⎩

no bid if 𝑥 ∈ [𝑥, 𝑟2)
𝛽𝑛−1,𝑟2(𝑥) if 𝑥 ∈ [𝑟2, ̄𝑥]

� for each 𝔟𝑤 > 𝑟1, 𝔟𝑤 ≥ 𝔟 (24)
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It is important to notice that (i) ̂𝑏(1)
𝐹 coincides with ̂𝑏(1)

𝑆 ; (ii) ̂𝑏(2)
𝐹 (⋅|no, no) and ̂𝑏(2)

𝐹 (⋅|no, 𝑟1) are both strictly
increasing in the interval [𝑟2, 𝛾); (iii) ̂𝑏(2)

𝐹 (⋅|𝑟1, 𝑟1) is strictly increasing in [𝛾, ̄𝑥]. Therefore, eqs. (20)–(24) generate
the same allocation of the two objects as the equilibrium described by Proposition 2(ii) for sequential second-
price auctions. Since in both cases each bidder with type 𝑥 has payoff equal to zero, the Revenue Equivalence
Theorem implies that each type of bidder and the seller have the same payoff in both cases.

In the rest of this subsection (and in the Appendix) we explain why ( ̂𝑏(1)
𝐹 , ̂𝑏(2)

𝐹 ) plus suitable beliefs constitute
an equilibrium. The first step is to notice that the beliefs at stage two of each losing bidder are the same as for
sequential second-price auctions; given by (9), (10), and (12) since ̂𝑏(1)

𝐹 coincides with ̂𝑏(1)
𝑆 . Given these beliefs, we

show that (21)–(24) are sequentially rational.14 Notice that (21)–(24) cover all the possible stage one outcomes.

4.1.1.1 Stage two: The case of 𝔟𝑤 =no.
Consider ̂𝑏(2)

𝐹 (⋅|no,no) in (21). Each bidder’s beliefs are given by ̂𝐺(⋅|no,no) in (9), and �̂�(𝑠|no,no)
�̂�(𝑠|no,no)

= (𝑛−1)𝑓 (𝑠)/𝐹(𝑠)
for 𝑠 ∈ (𝑟2, 𝛾). Therefore, (1) reveals that the equilibrium bid for type 𝑥 ∈ [𝑟2, 𝛾) is equal to 𝛽𝑛,𝑟2(𝑥), as specified
by ̂𝑏(2)

𝐹 (⋅|no,no). Moreover, ̂𝑏(2)
𝐹 (⋅|no,no) also needs to specify a bid at stage two for each type 𝑥 ∈ [𝛾, ̄𝑥], given

𝔟𝑤 = 𝑛𝑜.15 In this case type 𝑥 expects that all the other bidders have a value in [𝑥, 𝛾), and then it is optimal for
him to bid 𝛽𝑛,𝑟2(𝛾); the minimum bid that guarantees a win. This is what (21) prescribes for 𝑥 ∈ [𝛾, ̄𝑥].

4.1.1.2 Stage two: The case of 𝔟𝑤 = 𝑟1.
This case is more involved, since a losing bidder’s beliefs and bidding at stage two depend on his bid at stage
one, which could have been no, or 𝑟1. In particular, a type who has not won at stage one expects an opponent
of type 𝑥 to bid ̂𝑏(2)

𝐹 (𝑥|no, 𝑟1) if 𝑥 ∈ [𝑟2, 𝛾), and to bid ̂𝑏(2)
𝐹 (𝑥|𝑟1, 𝑟1) if 𝑥 ∈ [𝛾, ̄𝑥]. Then assume momentarily that

the function

̂𝑏(2)
𝐹,𝑟1(𝑥) =

⎧{
⎨{⎩

̂𝑏(2)
𝐹 (𝑥|no, 𝑟1) if 𝑥 ∈ [𝑟2, 𝛾)
̂𝑏(2)
𝐹 (𝑥|𝑟1, 𝑟1) if 𝑥 ∈ [𝛾, ̄𝑥]

� (25)

is strictly increasing and notice that the beliefs of a losing bidder are: ̂𝐺(⋅|no, 𝑟1) in eq. (10) if the bidder has
not bid at stage one (according to ̂𝑏(1)

𝐹 , these are the types in [𝑟2, 𝛾), neglecting the types in [𝑥, 𝑟2)); and ̂𝐺(⋅|𝑟1, 𝑟1)
in eq. (12) if the bidder has bid 𝑟1 at stage one (according to ̂𝑏(1)

𝐹 , these are the types in [𝛾, ̄𝑥]). Then solving

𝑏(𝑟2) = 𝑟2 and 𝑏′(𝑥) = (𝑥 − 𝑏(𝑥)) ̂𝑔(𝑥|no, 𝑟1)
̂𝐺(𝑥|no, 𝑟1)

for 𝑥 ∈ (𝑟2, 𝛾)

yields ̂𝑏(2)
𝐹 (𝑥|no, 𝑟1) = 𝛽𝑛−1,𝑟2(𝑥) for 𝑥 ∈ [𝑟2, 𝛾), consistently with (22). Likewise, solving

𝑏(𝛾) = 𝛽𝑛−1,𝑟2(𝛾) and 𝑏′(𝑥) = (𝑥 − 𝑏(𝑥)) ̂𝑔(𝑥|𝑟1, 𝑟1)
̂𝐺(𝑥|𝑟1, 𝑟1)

for 𝑥 ∈ (𝛾, ̄𝑥]

yields ̂𝑏(2)
𝐹 (𝑥|𝑟1, 𝑟1) = 𝛽𝑛−1,𝑟2 (𝛾)�̂�(𝛾|𝑟1,𝑟1)+∫𝑥

𝛾 𝑠�̂�(𝑠|𝑟1,𝑟1)𝑑𝑠
�̂�(𝑥|𝑟1,𝑟1)

for 𝑥 ∈ [𝛾, ̄𝑥], as in (23). Hence the resulting function
̂𝑏(2)
𝐹,𝑟1 in (25) is indeed strictly increasing.16

4.1.1.3 Stage two: The case in which𝔟𝑤 > 𝑟1.
The equilibrium strategies also include (24), which covers the off-the-equilibrium case in which the stage

one winning bid is greater than 𝑟1. Then we suppose that the beliefs of each losing bidder are equal to the initial
beliefs. Therefore, the stage two auction is an ordinary first-price auction with 𝑛 − 1 bidders and reserve price
𝑟2, for which (24) is the equilibrium bidding function.

4.1.1.4 Stage one.
After examining stage two, we move to stage one and evaluate the total expected payoff (over two stages)

for each bidder. Let ̂𝑢𝐹(𝑥, 𝑦) denote the payoff of a bidder with value 𝑥 if he bids ̂𝑏(1)
𝐹 (𝑦) in stage one, as type 𝑦

is supposed to do. Then consider a type 𝑥 ∈ [𝑟2, 𝛾) who expects that all the other bidders follow (20). We prove
that it is optimal for him not to bid at stage one, consistent with (20). His payoff from not bidding at stage one
is

̂𝑢𝐹(𝑥, 𝑥 ) = Γ𝑛−1 (𝑥 − ̂𝑏(2)
𝐹 (𝑥|no, no)) ̂𝐺(
𝑥

𝑥|no, no) + (1 − Γ𝑛−1) (𝑥 − ̂𝑏(2)
𝐹 (𝑥|no, 𝑟1)) ̂𝐺(𝑥|no, 𝑟1)
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which coincides with ̂𝑢𝑆(𝑥, 𝑥) = 𝑣𝑛(𝑥)+(𝑛−1)(1−Γ)𝑣𝑛−1(𝑥) as it is obtained from (11). Moreover, his payoff
from bidding 𝑟1 is

̂𝑢𝐹(𝑥, 𝛾) = ̂𝑝(𝛾)(𝑥 − 𝑟1) + (1 − ̂𝑝(𝛾))(𝑥 − ̂𝑏(2)
𝐹 (𝑥|𝑟1, 𝑟1)) ̂𝐺(𝑥|𝑟1, 𝑟1)

in which ̂𝑝(𝛾) is the probability to win at stage one with a bid 𝑟1, introduced in Section 3 just before (12).
Using (13) we see that ̂𝑢𝐹(𝑥, 𝛾) = ̂𝑢𝑆(𝑥, 𝛾) = ̂𝑝(𝛾)(𝑥 − 𝑟1) + 𝑛−1

2 (1 − Γ)𝑣𝑛−1(𝑥). We know from Proposition
2(ii) that ̂𝑢𝑆(𝑥, 𝑥) ≥ max{ ̂𝑢𝑆(𝑥, 𝛾), 𝑥 − 𝑟1} for each 𝑥 ∈ [𝑟2, 𝛾), hence ̂𝑢𝐹(𝑥, 𝑥) ≥ max{ ̂𝑢𝐹(𝑥, 𝛾), 𝑥 − 𝑟1} for each
𝑥 ∈ [𝑟2, 𝛾). That is, not bidding at stage one is a best reply for each type in [𝑟2, 𝛾). The argument regarding
types in [𝛾, ̄𝑥] is in the proof of Proposition 3(ii).

4.1.2 Small𝑟1𝑟1𝑟1, or Large𝑟1𝑟1𝑟1

When 𝑟1 ∈ (𝑟2, ̃𝑟1) we identify an equilibrium which is equivalent to the equilibrium of Proposition 2(i) for
sequential second-price auctions. The analysis is more complicated than for the case of 𝑟1 ∈ [ ̃𝑟1, ̄𝑟1), as the
equilibrium bidding function at stage one is partially flat and then strictly increasing for 𝑥 close to ̄𝑥. Therefore,
we have reported this part in the proof of Proposition 3(i).

When 𝑟1 ∈ [ ̄𝑟1, ̄𝑥] we identify the following equilibrium, which is equivalent to the equilibrium of Proposi-
tion 2(iii) for sequential second-price auctions:

̄𝑏(1)
𝐹 (𝑥) = no bid for each 𝑥 ∈ [𝑥, ̄𝑥] (26)

�̄�(2)
𝐹 (𝑥|no, no) =

⎧{
⎨{⎩

no bid if 𝑥 ∈ [𝑥, 𝑟2)
𝛽𝑛,𝑟2(𝑥) if 𝑥 ∈ [𝑟2, ̄𝑥]

� (27)

̄𝑏(2)
𝐹 (𝑥|𝔟, 𝔟𝑤) = ̂𝑏(2)

𝐹 (𝑥|𝔟, 𝔟𝑤) for each 𝔟𝑤 ≥ 𝑟1, 𝔟𝑤 ≥ 𝔟 (28)

Given (26), when 𝔟𝑤 = 𝑛𝑜 the beliefs of each bidder at stage two coincide with the initial beliefs, and therefore
an ordinary first-price auction with 𝑛 bidders and reserve price 𝑟2 is held, for which (27) is the equilibrium
bidding function. In case some bids have been submitted at stage one (an off-the-equilibrium event), we can
argue as for ̂𝑏(2)

𝐹 in (24).
Moving to stage one, for each bidder it is a best reply not to bid if he expects the other bidders to follow

(26)–(27). If a type 𝑥 bids at stage one, his payoff is not larger than 𝑥 − 𝑟1, which is smaller than the payoff 𝑣𝑛(𝑥)
he obtains from not bidding at stage one, since 𝑟1 ≥ ̄𝑟1.

Proposition 3
Suppose that the two objects are offered through sequential first-price auctions with descending reserve prices, that is

𝑥 ≤ 𝑟2 < 𝑟1 ≤ ̄𝑥. Let ̃𝑟1, ̄𝑟1 be defined as in Proposition 2. Then

i. if 𝑟1 ∈ (𝑟2, ̃𝑟1), there exists an equilibrium which generates the same outcome as the equilibrium described by Propo-
sition 2(i) for sequential second-price auctions;

ii. if 𝑟1 ∈ [ ̃𝑟1, ̄𝑟1), there exists an equilibrium in which each bidder follows the strategy ̂𝑏(1)
𝐹 , ̂𝑏(2)

𝐹 in (20)–(24);

iii. if 𝑟1 ∈ [ ̄𝑟1, ̄𝑥], there exists an equilibrium in which each bidder follows the strategy ̄𝑏(1)
𝐹 , ̄𝑏(2)

𝐹 in (26)–(28).

4.2 Example with Uniformly Distributed Values – Continued

Figure 2 reports the plots of the equilibrium bidding functions in the first stage with sequential first-price
auctions when values are uniformly distributed, there are five bidders, one item has no reserve price and the
other has a reserve price 𝑟 ∈ {0.5, 0.75}. The stage one equilibrium bidding function for the sequential first-price
auctions with ascending reserve prices (where 𝑟1 = 0 and 𝑟2 = 𝑟 > 0) is obtained by GTX, and is given by

𝑏(1)
𝐹 (𝑥) =

⎧{
⎨{⎩

4
5𝑥 if 𝑥 ⩽ 𝑟
3
5𝑥 + 𝑟4

𝑥3 − 4
5

𝑟5
𝑥4 if 𝑥 ∈ (𝑟, 1]

�

It is plotted in grey in Figure 2. When 𝑟1 = 0.5, r2 = 0, the stage one equilibrium bidding function is given by
̃𝑏(1)
𝐹 in (57) and is plotted in black in Figure 2a with 𝜆 = 1.257289

2 and 𝛾 = 1.365022
2 . When 𝑟1 = 0.75, r2 = 0 the stage
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one equilibrium bidding function is given by ̂𝑏(1)
𝐹 in eq. (20) with 𝛾 = 0.942 and is plotted in black in Figure

2b. The cutoff values 𝜆 and 𝛾 are the same as for sequential second-price auctions (see Figures 1(a) and 1(b)) in
view of Proposition 3.

Figure 2: Equilibrium bidding function in the first of two sequential first-price auctions when reserve prices are 0 and 0.5
(top) or 0 and 0.75 (bottom). There are five bidders with values independently drawn from a uniform distribution in the
unit interval.

5 The Optimal Order Problem

In this section we use Proposition 2 to relook at an optimal order problem introduced by GTX. Specifically, we
assume that values are randomly drawn from the unit interval and there are two different sellers, each of whom
owns one of the two objects that are auctioned. One seller has value zero for her object, and the other seller has
a commonly known value 𝑟 ∈ (0, 1) for her object. We assume that the objects are offered through sequential
second-price auctions, such that at each stage the reserve price coincides with the seller’s value for the object
auctioned at that stage.17 Our results are unaffected if sequential first-price auctions are adopted, given the
revenue equivalence established in Section 4.

An auctioneer chooses the object to put on sale first in order to maximize the sum of each seller’s expected
profit, 𝜋 = 𝜋0 + 𝜋𝑟. Here, 𝜋0 is just the expected revenue from the sale of the object that has no reserve price,
while 𝜋𝑟 is the difference between the expected revenue from the object with reserve price 𝑟 and the reserve
price times the probability of making the sale.18

Essentially, the auctioneer chooses between 𝑟1 = 0, 𝑟2 = 𝑟, and 𝑟1 = 𝑟, 𝑟2 = 0. When 𝑟1 = 0, 𝑟2 = 𝑟,
the object with zero reserve price is auctioned first – that is reserve prices are increasing – and we use irp to
denote this case. We use drp to denote the case of decreasing reserve prices, such that 𝑟1 = 𝑟, 𝑟2 = 0. Therefore,
𝜋IRP = 𝜋0

IRP + 𝜋𝑟
IRP will indicate the sellers’ total profits given irp, and 𝜋DRP = 𝜋𝑟

DRP + 𝜋0
DRP will indicate the

sellers’ total profits given drp.19
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With respect to this optimal order problem, GTX only study the case of 𝑟 > ̄𝑟1 because they do not identify
equilibria under drpwhen 𝑟 < ̄𝑟1. Proposition 4(i) below slightly generalizes their results. In addition, we exploit
Propositions 1 and 2 to obtain some results about the optimal order when 𝑟 < ̄𝑟1.

Proposition 4
Suppose 𝑥 = 0, 𝑥 = 1 and for only one unit we have a positive reserve price 𝑟 ∈ (0, 1). The following holds:

i. If 𝑟 is close to 1, then 𝜋IRP < 𝜋DRP. Moreover, if 𝜋IRP ≤ 𝜋DRP holds when 𝑟 = ̄𝑟1, then 𝜋IRP < 𝜋DRP holds for
each𝑟 ∈ ( ̄𝑟1, 1).

ii. If 𝑟 is close to 0, then𝜋IRP > 𝜋DRP.

Proposition 4 allows us to conclude that 𝜋IRP < 𝜋DRP when 𝑟 is close to 1, whereas 𝜋IRP > 𝜋DRP when 𝑟 is
close to 0. At the end of this section we show a sharper comparison, made under the assumption of uniformly
distributed values.

In order to better understand Proposition 4, we start from the following result:

𝜋𝑟
IRP > 𝜋𝑟

DRP for each 𝑟 ∈ (0, 1) (29)

that is, for each 𝑟 the profit from the object with reserve price 𝑟 is higher under irp. This property holds because
drp discourage bidders’ participation at stage one more than irp do at stage two. Under drp, a bidder knows
that if he loses at stage one he will compete at stage two in a more favorable auction with 𝑟2 = 0 < 𝑟1 = 𝑟; under
irp, at stage two each bidder has his last opportunity to win an object. This generates higher bidding from a
larger set of bidders under irp.

On the other hand, we find that the comparison between 𝜋0
IRP and 𝜋0

DRP depends on the value of 𝑟: when
𝑟 is close to 1, 𝜋0

DRP > 𝜋0
IRP by a magnitude that outweighs eq. (29), therefore 𝜋DRP > 𝜋IRP if 𝑟 is close to

1 (Proposition 4(i)). When, instead, 𝑟 is close to 0, 𝜋0
IRP > 𝜋0

DRP and this reinforces the effect from eq. (29):
therefore 𝜋IRP > 𝜋DRP if 𝑟 is close to 0 (Proposition 4(ii)).

In order to see why the sign of 𝜋0
IRP −𝜋0

DRP depends on 𝑟, consider first 𝑟 close to 1. Then 𝜋0
DRP is equal to the

expectation of the second highest value because with drp, Proposition 2(iii) applies and each bidder (does not
bid at stage one and) bids his own value at stage two. With irp, 𝜋0

IRP would be equal to the expectation of the
second highest value if each bidder was bidding his own value at stage one (this occurs if 𝑟 = 1). However, we
know from Proposition 1 that each bidder with value greater than 𝑟2 = 𝑟 bids less than his true value. Therefore,
we have that 𝜋0

DRP > 𝜋0
IRP when 𝑟 is close to 1, and it turns out that this effect dominates the effect described

by eq. (29). For the case of 𝑟 close to zero, observe that 𝜋0
IRP = 𝜋0

DRP if 𝑟 = 0, and a small 𝑟 > 0 increases both
𝜋0

IRP and 𝜋0
DRP. Precisely, it increases 𝜋0

IRP because under irp it makes less attractive for bidders to bid in stage
two, thus promoting more aggressive bidding in stage one. A small 𝑟 > 0 also increases 𝜋0

DRP, but under drp
the revenue in stage two increases only for a small set of types, and by a small amount. As a consequence we
obtain 𝜋0

IRP > 𝜋0
DRP for a small 𝑟.

Example Under the assumption of uniform distribution of values, we can obtain more specific results.
Specifically, if 𝑛 = 3, 𝜋IRP > 𝜋DRP for 𝑟 < 0.641, and 𝜋IRP < 𝜋DRP for 𝑟 > 0.641. If 𝑛 ≥ 4, then 𝜋IRP > 𝜋DRP for
𝑟 ≤ min{ 5𝑛−12

5𝑛−5 , ̃𝑟1}, and 𝜋IRP < 𝜋DRP for 𝑟 ≥ ̄𝑟1. In particular, as 𝑛 tends to infinity we have that min{ 5𝑛−12
5𝑛−5 , ̃𝑟1}

approaches 1 and therefore, for large 𝑛, irp provide bigger profits at all 𝑟 except those very close to 1.

6 Conclusions

In this paper, we prove the existence of (and we completely characterize) an equilibrium for two sequential first-
price or second-price auctions, given any pair of decreasing reserve prices. Decreasing reserve prices induce
a few types of bidders to skip the stage one auction because it is more profitable to compete in stage two.
Although this implies that the stage one bidding function cannot be strictly increasing for the types that are
active at stage one, we show that allowing for a (partially) flat bidding function restores existence. This comes
at the cost of complicating the beliefs for bidders who do not win the first auction. Finally, as the number of
bidders increases without bound, the flat portion of the bidding function tends to disappear.

It is natural to ask whether – and how – our equilibrium generalizes to sequential auctions with more than
two objects. While we think that several of our insights hold beyond the two-good setting, things get compli-
cated as soon as the number of objects for sale increases beyond two. As an instance of the first point, consider
the case of three goods and reserve prices such that 𝑟1 > 𝑟2 > 𝑟3, with 𝑟1 large relative to 𝑟2, 𝑟3; no type of bid-
der participates in the stage one auction, and in stages two and three bidders bid as described by Proposition
2 or Proposition 3. However, and this addresses the second point, if 𝑟1 is not too large some types of bidder
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will participate in the stage one auction, possibly according to a partially flat bidding function. This generates
beliefs in stage two which may be different among different bidders (like ̂𝐺(⋅|no, 𝑟1) and ̂𝐺(⋅|𝑟1, 𝑟1) in (10) and
(12) for instance), which make it complicated to apply the logic of Proposition 2 to the remaining two stages.
Tackling this issue is part of our research agenda.

Appendix

A Proof of Proposition 2

Remember that for each 𝑥 and 𝑦 in [𝑥, ̄𝑥] we use ̃𝑢𝑆(𝑥, 𝑦) to denote the payoff of a bidder with value 𝑥 if he bids
̃𝑏(1)
𝑆 (𝑦) in stage one, given that all the other bidders follow the strategy ( ̃𝑏(1)

𝑆 , 𝑏(2)∗
𝑆 ). For instance, ̃𝑢𝑆(𝑥, 𝑥) is the

payoff of type 𝑥 from not bidding in stage one; ̃𝑢𝑆(𝑥, 𝛾), or ̃𝑢𝑆(𝑥, 𝜆), is his payoff from bidding 𝑟1 in stage one.

Proof of Proposition 2(i)

We prove that there exists a unique ̃𝑟1 ∈ (𝑟2, ̄𝑟1) such that if 𝑟1 ∈ (𝑟2, ̃𝑟1), then there exists a unique solution to
eqs. (16)-(17) and there exists an equilibrium in which each bidder bids according to the strategy ( ̃𝑏(1)

𝑆 , 𝑏(2)∗
𝑆 ).

Although some details of the proof are cumbersome, its logic is simple. We employ several steps to obtain
this result. First, we determine the payoff for each bidder type from not bidding, bidding 𝑟1, or bidding 𝛽𝑛−1,𝑟2(𝑦)
for some 𝑦 ∈ [𝜆, ̄𝑥]. To this purpose, we need to use (5). Hence, we need to derive a bidder’s beliefs in case he
loses, as a function of his stage one bid. Second, we show that the system of (16)-(17) has a unique solution.
Last, we show (in the Supplementary Material) that the bidding function we obtain is strictly increasing in the
interval [𝜆, ̄𝑥], and that no profitable deviation exists for any type of bidder.

Step 1: Derivation of ̃𝑢𝑆(𝑥, 𝑥)̃𝑢𝑆(𝑥, 𝑥)̃𝑢𝑆(𝑥, 𝑥), ̃𝑢𝑆(𝑥, 𝛾)̃𝑢𝑆(𝑥, 𝛾)̃𝑢𝑆(𝑥, 𝛾) and ̃𝑢𝑆(𝑥, 𝑦)̃𝑢𝑆(𝑥, 𝑦)̃𝑢𝑆(𝑥, 𝑦)

We start by illustrating how ̃𝑢𝑆(𝑥, 𝑥), ̃𝑢𝑆(𝑥, 𝛾) and ̃𝑢𝑆(𝑥, 𝑦) are derived. To this end, we need to determine the
updated beliefs for a bidder who lost at stage one – because he did not participate in the auction, bid 𝑟1, or he
bid 𝛽𝑛−1,𝑟2(𝑦). These beliefs are conditional on the information the bidder learns at stage one: his bid at stage
one (which we denote with 𝔟) and the winning bid at stage one (which we denote with 𝔟𝑤). In order to shorten
the notation, we set Γ ≡ 𝐹(𝛾) and Λ ≡ 𝐹(𝜆).

Step 1.1: Updated Beliefs for a Bidder who has not Bid at Stage One, and ̃𝑢𝑆(𝑥, 𝑥)̃𝑢𝑆(𝑥, 𝑥)̃𝑢𝑆(𝑥, 𝑥).
Consider a bidder with type 𝑥 who has made no bid at stage one. Here we describe his beliefs upon learning

𝔟𝑤, and his expected payoff ̃𝑢𝑆(𝑥, 𝑥) from (5).

– In case there has been no bid by any bidder, an event with probability Γ𝑛−1 from the bidder’s ex ante point
of view, his beliefs are given by the c.d.f. ̃𝐺(⋅|no,no) such that

̃𝐺(𝑠|no, no) =
⎧{
⎨{⎩

𝐹𝑛−1(𝑠)
Γ𝑛−1 if 𝑠 ∈ [𝑥, 𝛾)

1 if 𝑠 ∈ [𝛾, ̄𝑥]
� (30)

– In case 𝔟𝑤 = 𝑟1, an event with probability Λ𝑛−1 − Γ𝑛−1 from the bidder’s ex ante point of view, his beliefs are
given by the c.d.f. ̃𝐺(⋅|no, 𝑟1) such that

̃𝐺(𝑠|no, 𝑟1) =
⎧{{
⎨{{⎩

(𝑛−1)(Λ−Γ)
Λ𝑛−1−Γ𝑛−1 𝐹𝑛−2(𝑠) if 𝑠 ∈ [𝑥, 𝛾)

Λ−Γ
Λ𝑛−1−Γ𝑛−1

𝐹𝑛−1(𝑠)−Γ𝑛−1

𝐹(𝑠)−Γ if 𝑠 ∈ [𝛾, 𝜆]
1 if 𝑠 ∈ (𝜆, ̄𝑥]

� (31)

About the derivation of ̃𝐺(𝑠|no, 𝑟1), consider the point of view of, say, bidder 1; the following probabilities
refer to the 𝑛 − 1 bidders different from 1. For 𝑠 ∈ [𝑥, 𝛾), ̃𝐺(𝑠|no, 𝑟1) is obtained from the probability that
one of the other bidders has value in [𝛾, 𝜆] and each other bidder has value smaller than 𝑠. This probability
is equal to (𝑛 − 1)(Λ − Γ)𝐹𝑛−2(𝑠).
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For 𝑠 ∈ [𝛾, 𝜆], ̃𝐺(𝑠|no, 𝑟1) is obtained from the probability that at least one of the other bidders has value in
[𝛾, 𝜆], none of them has value bigger than 𝜆, and each of the non winning bidders with value 𝑥 ∈ [𝛾, 𝜆] is
such that 𝑥 ≤ 𝑠. Such a probability is given by20

(𝑛 − 1)(Λ − Γ)
𝑛−2
∑
𝑗=0

𝐶𝑛−2,𝑗

𝑗 + 1
Γ𝑛−2−𝑗(𝐹(𝑠) − Γ)𝑗 (32)

Specifically, Λ− Γ is the probability that a bidder (the winner) has value in [𝛾, 𝜆] and we have 𝑛 − 1 possible
ways of picking a winner. If there are 𝑗 other bidders (from the remaining 𝑛 − 2) whose value is greater than
𝛾, we need each of them to have value less than 𝑠, and 1

𝑗+1 is the probability that our initially selected bidder
wins. Remark that

𝐶𝑛−2,𝑗

𝑗 + 1
Γ𝑛−2−𝑗(𝐹(𝑠) − Γ)𝑗 =

𝐶𝑛−1,𝑗+1

(𝑛 − 1)(𝐹(𝑠) − Γ)Γ
𝑛−2−𝑗(𝐹(𝑠) − Γ)𝑗+1 (33)

for 𝑗 = 0, 1, ..., 𝑛 − 2. The right hand side of (33) is equal to 𝐶𝑛−1,ℎ
(𝑛−1)(𝐹(𝑠)−Γ)Γ

𝑛−1−ℎ(𝐹(𝑠) − Γ)ℎ, for ℎ = 1, 2, ..., 𝑛 − 1
(with ℎ = 𝑗 + 1). Hence (32) is equal to

(𝑛 − 1)(Λ − Γ)
𝑛−1
∑
ℎ=1

𝐶𝑛−1,ℎ
(𝑛 − 1)(𝐹(𝑠) − Γ)Γ

𝑛−1−ℎ(𝐹(𝑠) − Γ)ℎ =
Λ − Γ

𝐹(𝑠) − Γ
(𝐹𝑛−1(𝑠) − Γ𝑛−1)

– In case 𝔟𝑤 = ̃𝑏(1)
𝑆 (𝑧) for some 𝑧 ∈ (𝜆, ̄𝑥], an event with probability 1−Λ𝑛−1 from the bidder’s ex ante point of

view, his beliefs are given by the c.d.f. with value 𝐹𝑛−2(𝑠)/𝐹𝑛−2(𝑧) if 𝑠 ∈ [𝑥, 𝑧), with value 1 if 𝑠 ∈ [𝑧, ̄𝑥]. This
c.d.f. applies for each stage one bid 𝔟 ≤ ̃𝑏(1)

𝑆 (𝑧) as long as the winning bid has been ̃𝑏(1)
𝑆 (𝑧) for some 𝑧 ∈ (𝜆, ̄𝑥];

hence we define ̃𝐺(𝑠|𝔟, ̃𝑏(1)
𝑆 (𝑧)) such that

̃𝐺(𝑠|𝔟, ̃𝑏(1)
𝑆 (𝑧)) =

⎧{
⎨{⎩

𝐹𝑛−2(𝑠)
𝐹𝑛−2(𝑧) if 𝑠 ∈ [𝑥, 𝑧)
1 if 𝑠 ∈ [𝑧, ̄𝑥]

� for each 𝔟 ≤ ̃𝑏(1)
𝑆 (𝑧) (34)

When he decides to make no bid, the bidder’s expected beliefs are represented by the c.d.f. ̃𝐺no such that

̃𝐺no(𝑠) = Γ𝑛−1 ̃𝐺(𝑠|no, no) + (Λ𝑛−1 − Γ𝑛−1) ̃𝐺(𝑠|no, 𝑟1) + ∫ ̄𝑥
𝜆

̃𝐺(𝑠|no, ̃𝑏(1)
𝑆 (𝑧))𝑑𝐹𝑛−1(𝑧)

=
⎧{{
⎨{{⎩

𝐹𝑛−1(𝑠) + (𝑛 − 1)(1 − Γ)𝐹𝑛−2(𝑠) if 𝑠 ∈ [𝑥, 𝛾)
Γ𝑛−1 + (Λ−Γ)(𝐹𝑛−1(𝑠)−Γ𝑛−1)

𝐹(𝑠)−Γ + (𝑛 − 1)(1 − Λ)𝐹𝑛−2(𝑠) if 𝑠 ∈ [𝛾, 𝜆]
(𝑛 − 1)𝐹𝑛−2(𝑠) − (𝑛 − 2)𝐹𝑛−1(𝑠) if 𝑠 ∈ (𝜆, ̄𝑥]

�

using eqs. (30), (31) and (34). Hence the payoff of a type 𝑥 from not bidding at stage one is

̃𝑢𝑆(𝑥, 𝑥) =
𝑥

∫
𝑟2

̃𝐺no(𝑠)𝑑𝑠 (35)

Step 1.2: Updated Beliefs for a Bidder who has Bid 𝑟1𝑟1𝑟1 at Stage one but has not Won at Stage one, and
̃𝑢𝑆(𝑥, 𝛾)̃𝑢𝑆(𝑥, 𝛾)̃𝑢𝑆(𝑥, 𝛾).

For future convenience, we introduce the following function 𝑀, defined for 𝑎 ∈ [0, 1] and 𝑏 ∈ [0, 1]:

𝑀(𝑎, 𝑏) =
⎧{
⎨{⎩

(𝑛−1)𝑎𝑛−𝑛𝑎𝑛−1𝑏+𝑏𝑛

(𝑎−𝑏)2 if 𝑎 ≠ 𝑏
𝑛(𝑛−1)

2 𝑎𝑛−2 if 𝑎 = 𝑏
� (36)

Multiplying (𝑎 − 𝑏)2 by (𝑛 − 1)𝑎𝑛−2 + (𝑛 − 2)𝑎𝑛−3𝑏 + ... + 2𝑎𝑏𝑛−3 + 𝑏𝑛−2 reveals that

𝑀(𝑎, 𝑏) = (𝑛 − 1)𝑎𝑛−2 + (𝑛 − 2)𝑎𝑛−3𝑏 + ... + 2𝑎𝑏𝑛−3 + 𝑏𝑛−2 (37)
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and therefore 𝑀 is strictly increasing both with respect to 𝑎 and with respect to 𝑏.
For a bidder bidding 𝑟1, the probability to win at stage one is

̃𝑝(𝛾) = ∑𝑛−1
𝑗=0

𝐶𝑛−1,𝑗
𝑗+1 Γ𝑛−1−𝑗(Λ − Γ)𝑗 = ∑𝑛−1

𝑗=0
𝐶𝑛,𝑗+1

𝑛(Λ−Γ)Γ
𝑛−1−𝑗(Λ − Γ)𝑗+1

= ∑𝑛
ℎ=1

𝐶𝑛,ℎ
𝑛(Λ−Γ)Γ

𝑛−ℎ(Λ− Γ)ℎ = Λ𝑛−Γ𝑛

𝑛(Λ−Γ) (38)

Let ̃𝑝ℓ denote the probability that another bidder wins at stage one with a bid of 𝑟1. The probability that
another bidder wins at stage one with a bid ̃𝑏(1)

𝑆 (𝑧) for some 𝑧 ∈ (𝜆, ̄𝑥] is 1−Λ𝑛−1. Since ̃𝑝(𝛾)+ ̃𝑝ℓ +1−Λ𝑛−1 = 1,
it follows that ̃𝑝ℓ = Λ𝑛−1 − ̃𝑝(𝛾), that is

̃𝑝ℓ = Λ − Γ
𝑛 𝑀(Λ, Γ) = (𝑛 − 1)(Λ − Γ)

𝑛−2
∑
𝑗=0

𝐶𝑛−2,𝑗

𝑗 + 2
Γ𝑛−2−𝑗 (Λ − Γ)𝑗 (39)

Now consider a bidder who has bid 𝑟1 at stage one but has not won. Then either 𝔟𝑤 = 𝑟1, or 𝔟𝑤 = ̃𝑏(1)
𝑆 (𝑧) for

some 𝑧 ∈ (𝜆, ̄𝑥].

– In case 𝔟𝑤 = 𝑟1 and another bidder has won, an event with probability ̃𝑝ℓ from the bidder’s ex ante point of
view, his beliefs are given by ̃𝐺(⋅|𝑟1, 𝑟1) such that

̃𝐺(𝑠|𝑟1, 𝑟1) =
⎧{{
⎨{{⎩

(𝑛−1)(Λ−Γ)
2�̃�ℓ

𝐹𝑛−2(𝑠) if 𝑠 ∈ [𝑥, 𝛾)
Λ−Γ
𝑛�̃�ℓ

𝑀(𝐹(𝑠), Γ) if 𝑠 ∈ [𝛾, 𝜆]
1 if 𝑠 ∈ (𝜆, ̄𝑥]

� (40)

Considering the point of view of bidder 1, the derivation of ̃𝐺(𝑠|𝑟1, 𝑟1) for 𝑠 ∈ [𝑥, 𝛾) is similar to the derivation
of ̃𝐺(𝑠|no, 𝑟1) for 𝑠 ∈ [𝑥, 𝛾), taking into account that bidder 1 has bid 𝑟1 rather than abstaining from bidding.
For 𝑠 ∈ [𝛾, 𝜆], ̃𝐺(𝑠|𝑟1, 𝑟1) is obtained from the probability that none of the other bidders has value greater
than 𝜆, at least one of them has value in [𝛾, 𝜆] and wins, and each losing bidder with value 𝑥 ∈ [𝛾, 𝜆] is
such that 𝑥 ≤ 𝑠. This probability is equal to

(𝑛 − 1)(Λ − Γ)
𝑛−2
∑
𝑗=0

𝐶𝑛−2,𝑗

𝑗 + 2
Γ𝑛−2−𝑗(𝐹(𝑠) − Γ)𝑗 (41)

From (39) we see that ∑𝑛−2
𝑗=0

𝐶𝑛−2,𝑗
𝑗+2 Γ𝑛−2−𝑗(Λ− Γ)𝑗 = 𝑀(Λ,Γ)

𝑛(𝑛−1) . Hence (41) is equal to

(𝑛 − 1)(Λ − Γ)
𝑛−2
∑
𝑗=0

𝐶𝑛−2,𝑗

𝑗 + 2
Γ𝑛−2−𝑗(𝐹(𝑠) − Γ)𝑗 = Λ − Γ

𝑛 𝑀(𝐹(𝑠), Γ)

– In case 𝔟𝑤 = ̃𝑏(1)
𝑆 (𝑧) for some 𝑧 ∈ (𝜆, ̄𝑥], an event with probability 1−Λ𝑛−1 from the bidder’s ex ante point of

view, his beliefs are given by ̃𝐺(⋅|𝑟1, ̃𝑏(1)
𝑆 (𝑧)) in (34).

When he decides to bid 𝑟1 at stage one, the bidder expects to lose with probability 1− ̃𝑝(𝛾) = ̃𝑝ℓ + 1−Λ𝑛−1,
hence his expected beliefs are represented by the c.d.f. ̃𝐺𝑟1 such that

̃𝐺𝑟1(𝑠) =
̃𝑝ℓ ̃𝐺(𝑠|𝑟1, 𝑟1) + ∫ ̄𝑥

𝜆
̃𝐺(𝑠|𝑟1, ̃𝑏(1)

𝑆 (𝑧))𝑑𝐹𝑛−1(𝑧)
1 − ̃𝑝(𝛾) 𝑛

= 1
1 − ̃𝑝(𝛾)

⎧{{{
⎨{{{⎩

(𝑛 − 1)(2 − Γ − Λ)
2

𝐹𝑛−2(𝑠) if 𝑠 ∈ [𝑥, 𝛾)
Λ − Γ

𝑛 𝑀(𝐹(𝑠), Γ) + (𝑛 − 1)(1 − Λ)𝐹𝑛−2(𝑠) if s ∈ [𝛾, 𝜆]𝑛

(𝑛 − 1)𝐹𝑛−2(𝑠) − (𝑛 − 2)𝐹𝑛−1(𝑠) − ̃𝑝(𝛾) if 𝑠 ∈ (𝜆, ̄𝑥]

�
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using (40) and (34). Hence the payoff of a type 𝑥 from bidding 𝑟1 at stage one is

̃𝑢𝑆(𝑥, 𝛾) = ̃𝑝(𝛾)(𝑥 − 𝑟1) + (1 − ̃𝑝(𝛾))
𝑥

∫
𝑟2

̃𝐺𝑟1(𝑠)𝑑𝑠 (42)

Step 1.3: Updated Beliefs for a Bidder who has Bid ̃𝑏(1)
𝑆 (𝑦)̃𝑏(1)
𝑆 (𝑦)̃𝑏(1)
𝑆 (𝑦), with 𝑦 ∈ (𝜆, ̄𝑥]𝑦 ∈ (𝜆, ̄𝑥]𝑦 ∈ (𝜆, ̄𝑥], at Stage one but has not Won

at Stage one, and ̃𝑢𝑆(𝑥, 𝑦)̃𝑢𝑆(𝑥, 𝑦)̃𝑢𝑆(𝑥, 𝑦).
If a bidder has bid ̃𝑏(1)

𝑆 (𝑦) at stage one and has not won, then 𝔟𝑤 = ̃𝑏(1)
𝑆 (𝑧) for some 𝑧 ≥ 𝑦, and his beliefs are

given by ̃𝐺(⋅| ̃𝑏(1)
𝑆 (𝑦), ̃𝑏(1)

𝑆 (𝑧)) in (34). Hence, the payoff of a type 𝑥 from bidding ̃𝑏(1)
𝑆 (𝑦) at stage one, for 𝑦 ∈ (𝜆, ̄𝑥],

is

̃𝑢𝑆(𝑥, 𝑦) =
𝑦

∫
𝑥

(𝑥 − max{𝑟1, ̃𝑏(1)
𝑆 (𝑧)}) 𝑑𝐹𝑛−1(𝑧) +

̄𝑥

∫
𝑦

𝑥

∫
𝑟2

̃𝐺(𝑠| ̃𝑏(1)
𝑆 (𝑦), ̃𝑏(1)

𝑆 (𝑧))𝑑𝑠𝑑𝐹𝑛−1(𝑧) (43)

and notice that the second term in the right hand side in (43) is equal to

⎧{
⎨{⎩

(𝑛 − 1)(1 − 𝐹(𝑥))𝑣𝑛−1(𝑥) + ∫𝑥
𝑦 ( 𝑣𝑛−1(𝑧)

𝐹𝑛−2(𝑧) + 𝑥 − 𝑧) 𝑑𝐹𝑛−1(𝑧) if 𝑦 < 𝑥
(𝑛 − 1)(1 − 𝐹(𝑦))𝑣𝑛−1(𝑥) if 𝑦 ≥ 𝑥

�

Step 2: Derivation of𝛾𝛾𝛾 and𝜆𝜆𝜆: Existence of a Unique Solution for eqs. (16)-(17), and Definition of ̃𝑟1̃𝑟1̃𝑟1

Using (35), (42), and (43) we find

̃𝑢𝑆(𝛾, 𝑥) = 𝑣𝑛(𝛾) + (𝑛 − 1)(1 − Γ)𝑣𝑛−1(𝛾)

̃𝑢𝑆(𝛾, 𝛾) = ̃𝑝(𝛾)(𝛾 − 𝑟1) +
𝑛 − 1
2

(2 − Γ − Λ)𝑣𝑛−1(𝛾)

̃𝑢𝑆(𝜆, 𝛾) = ̃𝑝(𝛾)(𝜆 − 𝑟1) +
(𝑛 − 1)(Λ − Γ)

2
𝑣𝑛−1(𝛾) +

+
𝜆

∫
𝛾

Λ − Γ
𝑛 𝑀(𝐹(𝑠), Γ)𝑑𝑠 + (𝑛 − 1)(1 − Λ)𝑣𝑛−1(𝜆)

lim
𝑦↓𝜆

̃𝑢𝑆(𝑥, 𝑦) = Λ𝑛−1(𝑥 − 𝑟1) + (𝑛 − 1)(1 − Λ)𝑣𝑛−1(𝑥) ≡ ̃𝑢𝑆(𝑥, 𝜆+) for 𝑥 ≤ 𝜆

Hence eqs. (16) and (17) reduce, after some rearranging, respectively to

𝐴(𝛾, 𝜆) = 0, 𝐵(𝛾, 𝜆) = 0 (44)

with

𝐴(𝛾, 𝜆) = ̃𝑝(𝛾)(𝛾 − 𝑟1) − (𝑛−1)(Λ−Γ)
2 𝑣𝑛−1(𝛾) − 𝑣𝑛(𝛾) (45)

𝐵(𝛾, 𝜆) = 𝑛(𝑛−1)
2 𝑣𝑛−1(𝛾) − 𝑀(Λ, Γ)(𝜆 − 𝑟1) +

𝜆
∫
𝛾

𝑀(𝐹(𝑠), Γ)𝑑𝑠 (46)

Step 2.1: Definition of 𝜆∗𝜆∗𝜆∗.
Define 𝜏(𝜆) = 𝐹𝑛−1(𝜆) (𝜆 − 𝑟1)−𝑣𝑛(𝜆), a strictly increasing function such that 𝜏(𝑟1) < 0 and 𝜏( ̄𝑥) = ̄𝑟1−𝑟1 >

0. Hence there exists 𝜆 in the interval (𝑟1, ̄𝑥), which we denote 𝜆∗, such that 𝜏(𝜆) < 0 for 𝜆 ∈ (𝑟1, 𝜆∗), 𝜏(𝜆∗) = 0,
𝜏(𝜆) > 0 for 𝜆 ∈ (𝜆∗, ̄𝑥].

Step 2.2: If 𝜆 ∈ (𝑟1, 𝜆∗)𝜆 ∈ (𝑟1, 𝜆∗)𝜆 ∈ (𝑟1, 𝜆∗), then There Exists no 𝛾 ∈ (𝑟1, 𝜆]𝛾 ∈ (𝑟1, 𝜆]𝛾 ∈ (𝑟1, 𝜆] such that 𝐴(𝛾, 𝜆) = 0𝐴(𝛾, 𝜆) = 0𝐴(𝛾, 𝜆) = 0; if 𝜆 ∈ [𝜆∗, ̄𝑥]𝜆 ∈ [𝜆∗, ̄𝑥]𝜆 ∈ [𝜆∗, ̄𝑥], then There
Exists a Unique 𝛾 ∈ (𝑟1, 𝜆]𝛾 ∈ (𝑟1, 𝜆]𝛾 ∈ (𝑟1, 𝜆] such that 𝐴(𝛾, 𝜆) = 0𝐴(𝛾, 𝜆) = 0𝐴(𝛾, 𝜆) = 0, Denoted 𝛾𝐴(𝜆)𝛾𝐴(𝜆)𝛾𝐴(𝜆).

Given a function ℎ of two variables, here and in the remainder of the Appendix we write ℎ𝑖 to denote the
partial derivative of ℎ with respect to its 𝑖-th variable, 𝑖 = 1, 2.

First we prove that the function 𝐴 is strictly increasing with respect to 𝛾:

𝐴1(𝛾, 𝜆) = 𝜕 ̃𝑝(𝛾)
𝜕𝛾 (𝛾 − 𝑟1) +

𝑛 − 1
2

𝑓 (𝛾)𝑣𝑛−1(𝛾) + ̃𝑝(𝛾) −
(𝑛 − 1)(Λ − Γ)

2
Γ𝑛−2 − Γ𝑛−1

18
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From the definition of ̃𝑝(𝛾) in (38), we see that

̃𝑝(𝛾) −
(𝑛 − 1)(Λ − Γ)

2
Γ𝑛−2 − Γ𝑛−1 =

𝑛−1
∑
𝑗=2

𝐶𝑛−1,𝑗

𝑗 + 1
Γ𝑛−𝑗−1(Λ − Γ)𝑗 > 0

and, moreover, 𝜕�̃�(𝛾)
𝜕𝛾 (𝛾 − 𝑟1) > 0 and 𝑛−1

2 𝑓 (𝛾)𝑣𝑛−1(𝛾) > 0.
Now we examine the sign of 𝐴(𝑟1, 𝜆) and of 𝐴(𝜆, 𝜆). We have that

𝐴(𝑟1, 𝜆) = −
(𝑛 − 1)(Λ − 𝐹(𝑟1))

2
𝑣𝑛−1(𝑟1) − 𝑣𝑛(𝑟1) < 0

and 𝐴(𝜆, 𝜆) = 𝜏(𝜆). Therefore, if 𝜆 ∈ (𝑟1, 𝜆∗) then 𝐴(𝜆, 𝜆) < 0 and there is no solution to 𝐴(𝛾, 𝜆) = 0 in the
interval (𝑟1, 𝜆]; if 𝜆 ∈ [𝜆∗, ̄𝑥], then there exists (𝐴 is continuous in 𝜆) a unique solution to 𝐴(𝛾, 𝜆) = 0 in the
interval (𝑟1, 𝜆], which we denote 𝛾𝐴(𝜆).

Step 2.3: There Exists ̃𝑟1 ∈ (𝑟2, ̄𝑟1)̃𝑟1 ∈ (𝑟2, ̄𝑟1)̃𝑟1 ∈ (𝑟2, ̄𝑟1) such that the Equation 𝐵(𝛾𝐴(𝜆), 𝜆) = 0𝐵(𝛾𝐴(𝜆), 𝜆) = 0𝐵(𝛾𝐴(𝜆), 𝜆) = 0 has a Unique Solution in (𝜆∗, ̄𝑥)(𝜆∗, ̄𝑥)(𝜆∗, ̄𝑥)
if 𝑟1 ∈ (𝑟2, ̃𝑟1)𝑟1 ∈ (𝑟2, ̃𝑟1)𝑟1 ∈ (𝑟2, ̃𝑟1); the Equation 𝐵(𝛾𝐴(𝜆), 𝜆) = 0𝐵(𝛾𝐴(𝜆), 𝜆) = 0𝐵(𝛾𝐴(𝜆), 𝜆) = 0 has no Solution in (𝜆∗, ̄𝑥)(𝜆∗, ̄𝑥)(𝜆∗, ̄𝑥) if 𝑟1 ≥ ̃𝑟1𝑟1 ≥ ̃𝑟1𝑟1 ≥ ̃𝑟1.

First we prove that 𝐵(𝛾𝐴(𝜆), 𝜆) is strictly decreasing in 𝜆. Notice that Γ below is actually equal to 𝐹(𝛾𝐴(𝜆)).
We have that

𝑑𝐵(𝛾𝐴(𝜆), 𝜆)
𝑑𝜆 = 𝑓 (𝛾𝐴(𝜆)) ⎛⎜

⎝∫
𝜆

𝛾𝐴

(𝑀2(𝐹(𝑠), Γ)𝑑𝑠 − 𝑀2(Λ, Γ)(𝜆 − 𝑟1)⎞⎟
⎠

𝛾′
𝐴(𝜆) − 𝑀1(Λ, Γ)(𝜆 − 𝑟1)𝑓 (𝜆)

and we prove that 𝑑𝐵(𝛾𝐴(𝜆),𝜆)
𝑑𝜆 < 0. From the previous step we have that

𝛾′
𝐴(𝜆) = −𝐴2(𝛾, 𝜆)

𝐴1(𝛾, 𝜆) = −
𝜕�̃�
𝜕𝜆(𝛾𝐴(𝜆) − 𝑟1) − 𝑛−1

2 𝑣𝑛−1(𝛾𝐴(𝜆))𝑓 (𝜆)
𝜕�̃�
𝜕𝛾 (𝛾𝐴(𝜆) − 𝑟1) + 𝑛−1

2 𝑣𝑛−1(𝛾𝐴(𝜆))𝑓 (𝛾𝐴(𝜆)) + ̃𝑝 − 𝑛−1
2 (Λ − Γ)Γ𝑛−2 − Γ𝑛−1

(47)

From the proof of Step 2.2 we know that the denominator in the right hand side of (47) is positive.
Therefore 𝑑𝐵

𝑑𝜆 has the same sign as

−𝑓 (𝛾𝐴(𝜆)) ( 𝜕 ̃𝑝
𝜕𝜆(𝛾𝐴 − 𝑟1) −

𝑛 − 1
2

𝑣𝑛−1(𝛾𝐴(𝜆))𝑓 (𝜆)) ×

⎛⎜
⎝∫

𝜆

𝛾𝐴(𝜆)
(𝑀2(𝐹(𝑠), Γ)𝑑𝑠 − 𝑀2(Λ, Γ)(𝜆 − 𝑟1)⎞⎟

⎠
+

−𝑀1(Λ, Γ)(𝜆 − 𝑟1)𝑓 (𝜆) ( 𝜕 ̃𝑝
𝜕𝛾 (𝛾𝐴(𝜆) − 𝑟1) +

𝑛 − 1
2

𝑣𝑛−1(𝛾𝐴)𝑓 (𝛾𝐴(𝜆)) + 𝐾) (48)

with 𝐾 = ̃𝑝 − 𝑛−1
2 (Λ − Γ)Γ𝑛−2 − Γ𝑛−1 > 0. Moreover,

𝜕 ̃𝑝
𝜕𝛾 = 𝑀(Γ,Λ)

𝑛 𝑓 (𝛾𝐴(𝜆)),
𝜕 ̃𝑝
𝜕𝜆 = 𝑀(Λ, Γ)

𝑛 𝑓 (𝜆)

hence (48) is smaller than

−𝑓 (𝛾𝐴(𝜆))𝑓 (𝜆) (𝑀(Λ, Γ)
𝑛 (𝛾𝐴 − 𝑟1) −

𝑛 − 1
2

𝑣𝑛−1(𝛾𝐴(𝜆))) ×

⎛⎜
⎝∫

𝜆

𝛾𝐴

(𝑀2(𝐹(𝑠), Γ)𝑑𝑠 − 𝑀2(Λ, Γ)(𝜆 − 𝑟1)⎞⎟
⎠

+

−𝑀1(Λ, Γ)(𝜆 − 𝑟1)𝑓 (𝜆)𝑓 (𝛾𝐴(𝜆)) (𝑀(Γ,Λ)
𝑛 (𝛾𝐴(𝜆) − 𝑟1) +

𝑛 − 1
2

𝑣𝑛−1(𝛾𝐴))

which is equal to −𝑓 (𝛾𝐴(𝜆))𝑓 (𝜆) times

⎡⎢
⎣

𝑛 − 1
2

𝑣𝑛−1(𝛾𝐴(𝜆)) ⎛⎜
⎝

(𝜆 − 𝑟1)𝑀1(Λ, Γ) + (𝜆 − 𝑟1)𝑀2(Λ, Γ) − ∫
𝜆

𝛾𝐴

(𝑀2(𝐹(𝑠), Γ)𝑑𝑠⎞⎟
⎠

� +

�𝛾𝐴(𝜆) − 𝑟1
𝑛

⎛⎜
⎝

𝑀(Λ, Γ) ∫
𝜆

𝛾𝐴

𝑀2(𝐹(𝑠), Γ)𝑑𝑠 + (𝜆 − 𝑟1) [𝑀1(Λ, Γ)𝑀(Γ,Λ) − 𝑀(Λ, Γ)𝑀2(Λ, Γ)]⎞⎟
⎠

⎤⎥
⎦

(49)

We now prove that (49) is negative by showing that the terms inside the square brackets are positive.
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– The inequality 𝛾𝐴(𝜆) > 𝑟1 implies (𝜆 − 𝑟1)𝑀1(Λ, Γ) + (𝜆 − 𝑟1)𝑀2(Λ, Γ) − ∫𝜆
𝛾𝐴(𝜆)(𝑀2(𝐹(𝑠), Γ)𝑑𝑠 > (𝜆 −

𝑟1)𝑀1(Λ, Γ) + ∫𝜆
𝛾𝐴(𝜆) (𝑀2(Λ, Γ) − 𝑀2(𝐹(𝑠), Γ)) 𝑑𝑠, and the right hand side is positive since 𝑀1 > 0 and

𝑀2(𝑎, 𝑏) = ∑𝑛−3
𝑗=0 (𝑛 − 2 − 𝑗)(𝑗 + 1)𝑎𝑛−3−𝑗𝑏𝑗 is strictly increasing in 𝑎.

– The term 𝑀(Λ, Γ) ∫𝜆
𝛾𝐴(𝜆) 𝑀2(𝐹(𝑠), Γ)𝑑𝑠 is positive since 𝑀2 > 0.

– The term 𝑀1(Λ, Γ)𝑀(Γ,Λ) − 𝑀(Λ, Γ)𝑀2(Λ, Γ) is positive. In fact, from (36) we have 𝑀1(𝑎, 𝑏) =
(𝑛−1)(𝑛−2)𝑎𝑛−2𝑏𝑛+𝑛(𝑛−1)𝑎𝑛−2𝑏2−2(𝑛−2)𝑛𝑎𝑛−1𝑏

(𝑎−𝑏)3 , and 𝑀2(𝑎, 𝑏) = (𝑛−2)(𝑎𝑛−𝑏𝑛)+𝑛𝑎𝑏(𝑏𝑛−2−𝑎𝑛−2)
(𝑎−𝑏)3 . Therefore,

𝑀1(Λ, Γ)𝑀(Γ,Λ) − 𝑀(Λ, Γ)𝑀2(Λ, Γ) =
𝑛Λ2𝑛−2Γ
(Λ − Γ)4

(1 − (𝑛 − 1)2𝑘𝑛−2 + 2𝑛(𝑛 − 2)𝑘𝑛−1 − (𝑛 − 1)2𝑘𝑛 + 𝑘2𝑛−2)

with 𝑘 = Γ
Λ ∈ (0, 1). We now define

𝜇(𝑘) = 𝑘2𝑛−2 − (𝑛 − 1)2 𝑘𝑛 + 2𝑛 (𝑛 − 2) 𝑘𝑛−1 − (𝑛 − 1)2 𝑘𝑛−2 + 1 (50)

and show it is positive for each 𝑘 ∈ (0, 1). Remark that 𝜇(1) = 0. We now prove that 𝜇(𝑘) > 0 for each 𝑘 ∈
(0, 1). We find that 𝜇′(𝑘) = 𝑘𝑛−3𝜈(𝑘), with 𝜈(𝑘) = 2(𝑛−1)𝑘𝑛−𝑛 (𝑛 − 1)2 𝑘2+2𝑛(𝑛−1) (𝑛 − 2) 𝑘−(𝑛 − 1)2 (𝑛−2)
and 𝜈(1) = 0. In addition, we have that 𝜈′(𝑘) = 2𝑛(𝑛 − 1) (𝑘𝑛−1 − (𝑛 − 1) 𝑘 + 𝑛 − 2), with 𝜈′(1) = 0, and
𝜈′′(𝑘) = −2𝑛(𝑛 − 1)2(1 − 𝑘𝑛−2) < 0 for each 𝑘 ∈ (0, 1). Hence, 𝜈′ is strictly decreasing and since 𝜈′(1) = 0
we can conclude that 𝜈′(𝑘) > 0 for each 𝑘 ∈ (0, 1). This, in turn, implies that 𝜈 is strictly increasing, and
since 𝜈(1) = 0, we obtain that 𝜈(𝑘) < 0 for each 𝑘 ∈ (0, 1). Therefore 𝜇′(𝑘) < 0 for each 𝑘 ∈ (0, 1), and since
𝜇(1) = 0 we can conclude that 𝜇(𝑘) > 0 for each 𝑘 ∈ (0, 1).

Now we prove that 𝐵(𝛾𝐴(𝜆∗), 𝜆∗) > 0 and then examine the sign of 𝐵(𝛾𝐴( ̄𝑥), ̄𝑥). Given that 𝐵(𝛾𝐴(𝜆), 𝜆) is
a continuous function of 𝜆, if 𝐵(𝛾𝐴( ̄𝑥), ̄𝑥) < 0 then there exists a unique �̃� ∈ (𝜆∗, ̄𝑥) such that 𝐵(𝛾𝐴(�̃�), �̃�) = 0.
Since 𝐴(𝛾𝐴(�̃�), �̃�) = 0, it follows that 𝛾𝐴(�̃�), �̃� is a solution to (44), i.e. to eqs. (16)-(17). We prove that there exists
̃𝑟1 ∈ (𝑟2, ̄𝑟1) such that 𝐵(𝛾𝐴( ̄𝑥), ̄𝑥) < 0 if and only if 𝑟1 ∈ (𝑟2, ̃𝑟1).

Regarding 𝐵(𝛾𝐴(𝜆∗), 𝜆∗), since 𝐴(𝛾𝐴(𝜆∗), 𝜆∗) = 0 = 𝜏(𝜆∗) = 𝐴(𝜆∗, 𝜆∗), we have that 𝛾𝐴(𝜆∗) = 𝜆∗; hence
(37) and (46) imply that

𝐵(𝛾𝐴(𝜆∗), 𝜆∗) = 𝑛(𝑛−1)
2 (𝑣𝑛−1(𝜆∗) − 𝐹𝑛−2(𝜆∗)(𝜆∗ − 𝑟1))

= 𝑛(𝑛−1)
2𝐹(𝜆∗)

𝜆∗

∫
𝑟2

𝐹𝑛−2(𝑠) (𝐹(𝜆∗) − 𝐹(𝑠)) 𝑑𝑠 > 0

where the last equality follows from the definition of 𝜆∗.
Regarding 𝐵(𝛾𝐴( ̄𝑥), ̄𝑥), we have that

𝐵(𝛾𝐴( ̄𝑥), ̄𝑥) =
𝑛(𝑛 − 1)

2
𝑣𝑛−1(𝛾𝐴( ̄𝑥)) − 𝑀(1, 𝐹(𝛾𝐴( ̄𝑥)))( ̄𝑥 − 𝑟1) +

̄𝑥

∫
𝛾𝐴( ̄𝑥)

𝑀(𝐹(𝑠), 𝐹(𝛾𝐴( ̄𝑥)))𝑑𝑠 (51)

We now take into account that 𝛾𝐴( ̄𝑥) is an increasing function of 𝑟1 (𝑑𝛾𝐴( ̄𝑥)
𝑑𝑟1

> 0 since 𝜕𝐴
𝜕𝛾 > 0 and 𝜕𝐴

𝜕𝑟1
< 0), and

we view 𝐵(𝛾𝐴( ̄𝑥), ̄𝑥) as a function ℓ(𝑟1) of 𝑟1 that is defined for 𝑟1 ∈ (𝑟2, ̄𝑟1). As 𝑟1 ↑ ̄𝑟1, we have that 𝛾𝐴( ̄𝑥) → ̄𝑥
and 𝐹(𝛾𝐴( ̄𝑥)) → 1, hence

lim
𝑟↑ ̄𝑟1

ℓ(𝑟1) =
𝑛(𝑛 − 1)

2
𝑣𝑛−1( ̄𝑥) −

𝑛(𝑛 − 1)
2

( ̄𝑥 − ̄𝑟1) =
𝑛(𝑛 − 1)

2
(𝑣𝑛−1( ̄𝑥) − 𝑣𝑛( ̄𝑥)) > 0

As 𝑟1 ↓ 𝑟2, we have that 𝛾𝐴( ̄𝑥) → 𝑟2, hence

lim
𝑟1↓𝑟2

ℓ(𝑟1) =
̄𝑥

∫
𝑟2

(𝑀(𝐹(𝑠), 𝐹(𝑟2)) − 𝑀(1, 𝐹(𝑟2))) 𝑑𝑠 < 0

since 𝐹(𝑠) < 1 for 𝑠 ∈ (𝑟2, ̄𝑥). The continuity of ℓ implies that there exists ̃𝑟1 ∈ (𝑟2, ̄𝑟1) such that ℓ( ̃𝑟1) = 0, and
ℓ(𝑟1) < 0 for 𝑟1 ∈ (𝑟2, ̃𝑟1). The proof that a unique ̃𝑟1 exists such that ℓ( ̃𝑟1) = 0 is long and is reported in Section
C in the Supplementary material.
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DE GRUYTER Landi and Menicucci

Step 3: ̃𝑏(1)
�̃�𝑏(1)
�̃�𝑏(1)
𝑆 is Strictly Increasing in the Interval[𝜆, ̄𝑥][𝜆, ̄𝑥][𝜆, ̄𝑥]

It is immediate to see that ̃𝑏(1)
𝑆 is strictly increasing in (𝜆, ̄𝑥], and we prove that lim𝑥↓𝜆 ̃𝑏(1)

𝑆 (𝑥) > 𝑟1 in Section D
in the Supplementary material.

Step 4: Proof that no Profitable Deviation Exists

Now that ̃𝑏(1)
𝑆 is well defined, we prove that if a bidder expects that each other bidder follows the strategy

( ̃𝑏(1)
𝑆 , 𝑏(2)∗

𝑆 ), then no profitable deviation exists for him. Precisely, we prove that the following inequalities hold:21

for each 𝑥 ∈ [𝛾, 𝜆], ũS(x, 𝛾) ⩾ max{ũS(x, )
𝑥
, ũS(x, y)}, for each y ∈ (𝜆, ̄𝑥] (52)

for each 𝑥 ∈ [𝛾, 𝜆], ũS(x, 𝛾) ⩾ max{ũS(x, )
𝑥
, ũS(x, y)}, for each y ∈ (𝜆, ̄𝑥] (53)

for each 𝑥 ∈ (𝜆, ̄𝑥] and y ∈ (𝜆, ̄𝑥], ũS(x, x) ⩾ max{ ũS(x, x ), ũS(x, 𝛾), ũS(x, y)} (54)

These inequalities are proved in Section D in the Supplementary material.

Proof of Proposition 2(ii)

This proof is largely given by the proof of Proposition 2(i), after setting 𝜆 = ̄𝑥, consistently with the remark in
footnote 13. Precisely, ̂𝐺(𝑠|no, 𝑟1) in (10) and ̂𝐺(𝑠|𝑟1, 𝑟1) in (12) can be seen as special cases of eqs. (31) and (40)
with 𝜆 = ̄𝑥 and Λ = 1. Remark that the probability of winning when bidding 𝑟1 is now given by (see (38) with
Λ = 1)

̂𝑝(𝛾) =
𝑛−1
∑
𝑗=0

𝐶𝑛−1,𝑗

𝑗 + 1
Γ𝑛−1−𝑗(1 − Γ)𝑗 = 1 − Γ𝑛

𝑛(1 − Γ) (55)

and in (12), 1− ̂𝑝(𝛾) replaces ̃𝑝ℓ at the denominator because 1− ̂𝑝(𝛾) is a bidder’s probability of losing after
a bid of 𝑟1 given ̂𝑏(1)

𝑆 , the analog of ̃𝑝ℓ.
The proofs that a unique solution to eq. (14) exists and that ̂𝑢𝑆(𝑥, 𝑥) ≥ ̂𝑢𝑆(𝑥, 𝛾) for each 𝑥 ∈ [𝑟2, 𝛾) and

̂𝑢𝑆(𝑥, 𝑥) ≤ ̂𝑢𝑆(𝑥, 𝛾) for each 𝑥 ∈ (𝛾, ̄𝑥] are special cases of Step 2.2 above, and Steps 4.1 and 4.2 in Section D in
the Supplementary material.

Finally, we need to explore the profitability of bidding slightly more than 𝑟1 and to prove that
max{ ̂𝑢𝑆(𝑥, 𝑥), ̂𝑢𝑆(𝑥, 𝛾)} ≥ 𝑥 − 𝑟1 holds for each 𝑥 ∈ [𝑟2, ̄𝑥]. Since ̂𝑢𝑆1(𝑥, 𝑥) < 1 for 𝑥 ∈ [𝑟2, 𝛾) and ̂𝑢𝑆1(𝑥, 𝛾) < 1
for 𝑥 ∈ [𝛾, ̄𝑥], it suffices to prove that ̂𝑢𝑆( ̄𝑥, 𝛾) ≥ ̄𝑥 − 𝑟1. Using (13) and rearranging the inequality we obtain

𝑛(𝑛 − 1)
2

𝑣𝑛−1(𝛾) + ∫
̄𝑥

𝛾
𝑀(𝐹(𝑠), Γ)𝑑𝑠 − 𝑀(1, Γ)( ̄𝑥 − 𝑟1) ≥ 0 (56)

In examining this inequality, we need to take into account that 𝛾 is the unique solution to eq. (14) given 𝑟1.
Since (14) is equivalent to eq. (16) (i.e., to 𝐴(𝛾, 𝜆) = 0 in eq. (44) when 𝜆 = ̄𝑥), it follows that the left hand side of
(56) is a function of 𝑟1 which coincides with ℓ(𝑟1) introduced in Step 2.3 in the proof of Proposition 2(i). From
Step 2.3 we know that ℓ(𝑟1) ≥ 0 if and only if 𝑟1 ∈ [ ̃𝑟1, ̄𝑟1].

Proof of Proposition 2(iii)

The proof of this part (from GTX) has been already presented in subsection 3.2.1.

B Proof for Proposition 3

Proof of Proposition 3(i)

The proof proceeds along these steps. First, we completely describe a strategy profile which we claim constitutes
an equilibrium when 𝑟1 ∈ (𝑟2, ̃𝑟1). That requires to specify the bidding behavior of each type at stage two, given
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any possible outcome at stage one. Then, in Step 1 we show that for each possible stage one outcome the bidding
behavior we have specified is an equilibrium at stage two. This leads us to consider various cases. In Step 2 (in
the Supplementary Material), we show that no stage one deviation is profitable.

Consider 𝑟1 ∈ (𝑟2, ̃𝑟1), and let 𝛾, 𝜆 be the unique solution to eqs. (16)-(17). Here we prove that the following
bidding functions constitute an equilibrium:22

̃𝑏(1)
𝐹 (𝑥) =

⎧{{
⎨{{⎩

no bid if 𝑥 ∈ [𝑥, 𝛾)
𝑟1 if 𝑥 ∈ [𝛾, 𝜆]
∫𝑥

𝑥
max{𝑟1,�̃�(1)

𝑆 (𝑠)}𝑑𝐹𝑛−1(𝑠)
𝐹𝑛−1(𝑥) if 𝑥 ∈ (𝜆, ̄𝑥]

� (57)

̃𝑏(2)
𝐹 (𝑥|no, no) =

⎧{
⎨{⎩

𝛽𝑛,𝑟2(𝑥) if 𝑥 ∈ [𝑟2, 𝛾)
𝛽𝑛,𝑟2(𝛾) if 𝑥 ∈ [𝛾, ̄𝑥]

� (58)

̃𝑏(2)
𝐹 (𝑥|no, 𝑟1) =

⎧{{
⎨{{⎩

𝛽𝑛−1,𝑟2(𝑥) if 𝑥 ∈ [𝑟2, 𝛾)
̃𝑏(2)
𝐹 ( ̃𝑦(𝑥)|𝑟1, 𝑟1) such that ̃𝑦(𝑥) is in

arg max𝑦∈[𝛾,𝜆](𝑥 − ̃𝑏(2)
𝐹 (𝑦|𝑟1, 𝑟1)) ̃𝐺(𝑦|no, 𝑟1)

if 𝑥 ∈ [𝛾, ̄𝑥]
� (59)

̃𝑏(2)
𝐹 (𝑥|𝑟1, 𝑟1) =

⎧{{{
⎨{{{⎩

𝛽𝑛−1,𝑟2(𝑥) if 𝑥 ∈ [𝑟2, 𝛾)
𝛽𝑛−1,𝑟2 (𝛾)�̃�(𝛾|𝑟1,𝑟1)+∫𝑥

𝛾 𝑠�̃�(𝑠|𝑟1,𝑟1)𝑑𝑠
�̃�(𝑥|𝑟1,𝑟1)

if 𝑥 ∈ [𝛾, 𝜆]
𝛽𝑛−1,𝑟2 (𝛾)�̃�(𝛾|𝑟1,𝑟1)+∫𝜆

𝛾 𝑠�̃�(𝑠|𝑟1,𝑟1)𝑑𝑠
�̃�(𝜆|𝑟1,𝑟1)

if 𝑥 ∈ (𝜆, ̄𝑥]

� (60)

̃𝑏(2)
𝐹 (𝑥|𝔟, ̃𝑏(1)

𝐹 (𝑧)) =
⎧{
⎨{⎩

𝛽𝑛−1,𝑟2(𝑥) if 𝑥 ∈ [𝑟2, 𝑧)
𝛽𝑛−1,𝑟2(𝑧) if 𝑥 ∈ [𝑧, ̄𝑥]

� for each 𝑧 ∈ (𝜆, ̄𝑥], 𝔟 ≤ ̃𝑏(1)
𝐹 (𝑧) (61)

̃𝑏(2)
𝐹 (𝑥|𝔟, 𝔟𝑤) = 𝛽𝑛−1,𝑟2(𝑥) if 𝑥 ∈ [𝑟2, ̄𝑥] for each 𝔟𝑤 > ̃𝑏(1)

𝐹 ( ̄𝑥), 𝔟𝑤 ≥ 𝔟 (62)

Remark that, in light of ̃𝑏(1)
𝐹 (𝑥), ̃𝑏(2)

𝐹 (𝑥|no,no) for 𝑥 ∈ [𝛾, 𝑥], ̃𝑏(2)
𝐹 (𝑥|no, 𝑟1) for 𝑥 ∈ [𝛾, 𝑥], ̃𝑏(2)

𝐹 (𝑥|𝑟1, 𝑟1) for
𝑥 ∉ [𝛾, 𝜆], ̃𝑏(2)

𝐹 (𝑥|𝔟, ̃𝑏(1)
𝐹 (𝑧)) for 𝑥 ∈ [𝑧, 𝑥], and ̃𝑏(2)

𝐹 (𝑥|𝔟, 𝔟𝑤) for 𝑥 ∈ [𝑥, 𝑥] relate to off-the-equilibrium play.
Remark also that ̃𝑏(2)

𝐹 (𝑥|𝑟1, 𝑟1) is constant for 𝑥 ∈ (𝜆, 𝑥].

Step 1: Proof for Stage Two

In this first step we prove that for each possible outcome at stage one, the bidding specified by eqs. (58)-(62)
constitutes an equilibrium at stage two. We start by noticing that ̃𝑏(1)

𝐹 generates the same stage two beliefs for
losing bidders as ̃𝑏(1)

𝑆 . Precisely, by comparing (57) with (7), we see that this property is true if 𝔟𝑤 = 𝑛𝑜, or
if 𝔟𝑤 = 𝑟1; in these cases the updated beliefs are given by (30), (31), and (40). But the property is true also if
𝔟𝑤 = ̃𝑏(1)

𝐹 (𝑧) for some 𝑧 ∈ (𝜆, ̄𝑥], as ̃𝑏(1)
𝑆 is strictly increasing in the interval (𝜆, ̄𝑥]: in this case the updated beliefs

are given by the c.d.f.

̃𝐺(𝑠|𝔟, ̃𝑏(1)
𝐹 (𝑧)) =

⎧{
⎨{⎩

𝐹𝑛−2(𝑠)
𝐹𝑛−2(𝑧) if 𝑠 ∈ [𝑥, 𝑧)
1 if 𝑠 ∈ [𝑧, ̄𝑥]

� for each 𝔟 ≤ ̃𝑏(1)
𝐹 (𝑧) (63)

which is essentially equivalent to (34) for each 𝑧 ∈ (𝜆, ̄𝑥], 𝔟 ≤ ̃𝑏(1)
𝐹 (𝑧).

Regarding ̃𝑏(2)
𝐹 (⋅|no,no) in (58), we can argue as for (21), and regarding ̃𝑏(2)

𝐹 (⋅|𝔟, 𝔟𝑤) in (62) we can argue as
for (24).

In order to consider the case in which 𝔟𝑤 = 𝑟1 (the bidding functions (59) and (60)) we first prove a stochastic
dominance relation between ̃𝐺(⋅|𝑟1, 𝑟1) and ̃𝐺(⋅|no, 𝑟1).

Step 1.1: ̃𝐺(⋅|𝑟1, 𝑟1)̃𝐺(⋅|𝑟1, 𝑟1)̃𝐺(⋅|𝑟1, 𝑟1)Dominates ̃𝐺(⋅|no, 𝑟1)̃𝐺(⋅|no, 𝑟1)̃𝐺(⋅|no, 𝑟1)in Terms of the Reverse Hazard Rate.

̃𝑔(𝑠|no, 𝑟1)
̃𝐺(𝑠|no, 𝑟1)

= ̃𝑔(𝑠|𝑟1, 𝑟1)
̃𝐺(𝑠|𝑟1, 𝑟1)

for 𝑠 ∈ [𝑥, 𝛾),
̃𝑔(𝑠|no, 𝑟1)
̃𝐺(𝑠|no, 𝑟1)

< ̃𝑔(𝑠|𝑟1, 𝑟1)
̃𝐺(𝑠|𝑟1, 𝑟1)

for 𝑠 ∈ (𝛾, 𝜆]

22
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It is immediate to verify that �̃�(𝑠|no,𝑟1)
�̃�(𝑠|no,𝑟1)

= �̃�(𝑠|𝑟1,𝑟1)
�̃�(𝑠|𝑟1,𝑟1)

for each 𝑠 ∈ [𝑥, 𝛾). Now consider 𝑠 ∈ (𝛾, 𝜆], and in order

to prove that �̃�(𝑠|no,𝑟1)
�̃�(𝑠|no,𝑟1)

< �̃�(𝑠|𝑟1,𝑟1)
�̃�(𝑠|𝑟1,𝑟1)

, notice that

̃𝑔(𝑠|no, 𝑟1)
̃𝐺(𝑠|no, 𝑟1)

=
𝑓 (𝑠)

𝐹(𝑠) − Γ
(𝑛 − 1)𝐹𝑛−2(𝑠)(𝐹(𝑠) − Γ) − (𝐹𝑛−1(𝑠) − Γ𝑛−1)

𝐹𝑛−1(𝑠) − Γ𝑛−1 ,

̃𝑔(𝑠|𝑟1, 𝑟1)
̃𝐺(𝑠|𝑟1, 𝑟1)

=
𝑓 (𝑠)

𝐹(𝑠) − Γ
𝑛(𝑛 − 1)𝐹𝑛−2(𝑠)(𝐹(𝑠) − Γ)2 − 2[(𝑛 − 1)𝐹𝑛(𝑠) − 𝑛𝐹𝑛−1(𝑠)Γ + Γ𝑛]

(𝑛 − 1)𝐹𝑛(𝑠) − 𝑛𝐹𝑛−1(𝑠)Γ + Γ𝑛

After defining 𝑘 ≡ Γ
𝐹(𝑠) ∈ (0, 1), we can write �̃�(𝑠|𝑟1,𝑟1)

�̃�(𝑠|𝑟1,𝑟1)
− �̃�(𝑠|no,𝑟1)

�̃�(𝑠|no,𝑟1)
as

𝑓 (𝑠)
𝐹(𝑠) − Γ

(𝑛(𝑛 − 1)(1 − 𝑘)2 − 2(𝑛 − 1 − 𝑛𝑘 + 𝑘𝑛)
𝑛 − 1 − 𝑛𝑘 + 𝑘𝑛 − (𝑛 − 1)(1 − 𝑘) − 1 + 𝑘𝑛−1

1 − 𝑘𝑛−1 )

and rearranging the last expression, we see that it has the same sign as

𝑘2𝑛−2 − (𝑛 − 1)2 𝑘𝑛 + 2𝑛 (𝑛 − 2) 𝑘𝑛−1 − (𝑛 − 1)2 𝑘𝑛−2 + 1

Remark that this is equal to 𝜇(𝑘) in (50) that we know is positive for each 𝑘 ∈ (0, 1).
Step 1.2: The Bidding Function ̃𝑏(2)

𝐹 (⋅|no, 𝑟1)̃𝑏(2)
𝐹 (⋅|no, 𝑟1)̃𝑏(2)
𝐹 (⋅|no, 𝑟1).

Consider a bidder of type 𝑥 ≥ 𝑟2 who has submitted no bid at stage one, and has learned that 𝔟𝑤 = 𝑟1. Then
his beliefs on the highest value among the other losing bidders are given by ̃𝐺(𝑠|no, 𝑟1) in (31), and we prove
that it is optimal for him to bid ̃𝑏(2)

𝐹 (𝑥|no, 𝑟1) as specified in (59) if he expects each other losing bidder with value
in [𝑟2, 𝛾) to bid according to ̃𝑏(2)

𝐹 (⋅|no, 𝑟1), and each other losing bidder with value in [𝛾, 𝜆] to bid according to
̃𝑏(2)
𝐹 (⋅|𝑟1, 𝑟1) in (60).23

In detail, we formulate his bidding problem as the problem of selecting optimally 𝑦 ∈ [𝑟2, 𝜆], with the inter-
pretation that choosing 𝑦 ∈ [𝑟2, 𝛾) is equivalent to bidding ̃𝑏(2)

𝐹 (𝑦|no, 𝑟1), and choosing 𝑦 ∈ [𝛾, 𝜆] is equivalent
to bidding ̃𝑏(2)

𝐹 (𝑦|𝑟1, 𝑟1). Therefore, for this type of bidder the stage two payoff is

̃𝑢(2)
𝐹 (𝑥, 𝑦|no, 𝑟1) =

⎧{
⎨{⎩

(𝑥 − ̃𝑏(2)
𝐹 (𝑦|no, 𝑟1)) ̃𝐺(𝑦|no, 𝑟1) if 𝑦 ∈ [𝑟2, 𝛾)

(𝑥 − ̃𝑏(2)
𝐹 (𝑦|𝑟1, 𝑟1)) ̃𝐺(𝑦|no, 𝑟1) if 𝑦 ∈ [𝛾, 𝜆]

�

and

𝜕 ̃𝑢(2)
𝐹 (𝑥, 𝑦|no, 𝑟1)

𝜕𝑦 =
⎧{{
⎨{{⎩

̃𝐺(𝑦|no, 𝑟1)(−𝜕�̃�(2)
𝐹 (𝑦|no,𝑟1)

𝜕𝑦 + (𝑥 − ̃𝑏(2)
𝐹 (𝑦|𝑛𝑜, 𝑟1)) �̃�(𝑦|no,𝑟1)

�̃�(𝑦|no,𝑟1)
) if 𝑦 ∈ [𝑟2, 𝛾)

̃𝐺(𝑦|no, 𝑟1)(−𝜕�̃�(2)
𝐹 (𝑦|𝑟1,𝑟1)

𝜕𝑦 + (𝑥 − ̃𝑏(2)
𝐹 (𝑦|𝑟1, 𝑟1)) �̃�(𝑦|no,𝑟1)

�̃�(𝑦|no,𝑟1)
) if 𝑦 ∈ (𝛾, 𝜆]

�

Then notice that ̃𝑏(2)
𝐹 (⋅|no, 𝑟1) and ̃𝑏(2)

𝐹 (⋅|𝑟1, 𝑟1) satisfy the following differential equations in [𝑟2, 𝛾) and in (𝛾, 𝜆],
respectively:

𝜕 ̃𝑏(2)
𝐹 (𝑦|no, 𝑟1)

𝜕𝑦 = (𝑦 − ̃𝑏(2)
𝐹 (𝑦|no, 𝑟1)) �̃�(𝑦|no,𝑟1)

�̃�(𝑦|no,𝑟1)
for 𝑦 ∈ [𝑟2, 𝛾) (64)

𝜕 ̃𝑏(2)
𝐹 (𝑦|𝑟1, 𝑟1)

𝜕𝑦 = (𝑦 − ̃𝑏(2)
𝐹 (𝑦|𝑟1, 𝑟1)) �̃�(𝑦|𝑟1,𝑟1)

�̃�(𝑦|𝑟1,𝑟1)
for 𝑦 ∈ (𝛾, 𝜆] (65)

and find that

𝜕�̃�(2)
𝐹 (𝑥,𝑦|no,𝑟1)

𝜕𝑦 =
⎧{
⎨{⎩

(𝑥 − 𝑦) ̃𝑔(𝑦|no, 𝑟1) if 𝑦 ∈ [𝑟2, 𝛾)
̃𝐺(𝑦|no, 𝑟1)(−(𝑦 − ̃𝑏(2)

𝐹 (𝑦|𝑟1, 𝑟1)) �̃�(𝑦|𝑟1,𝑟1)
�̃�(𝑦|𝑟1,𝑟1)

+ (𝑥 − ̃𝑏(2)
𝐹 (𝑦|𝑟1, 𝑟1)) �̃�(𝑦|no,𝑟1)

�̃�(𝑦|no,𝑟1)
) if 𝑦 ∈ (𝛾, 𝜆]

�

Consider a type 𝑥 ∈ [𝑟2, 𝛾). Then 𝜕�̃�(2)
𝐹 (𝑥,𝑦|no,𝑟1)

𝜕𝑦 is positive for 𝑦 ∈ [𝑟2, 𝑥), negative for 𝑦 ∈ (𝑥, 𝛾), and nega-

tive also for 𝑦 ∈ (𝛾, 𝜆] because �̃�(𝑦|𝑟1,𝑟1)
�̃�(𝑦|𝑟1,𝑟1)

> �̃�(𝑦|no,𝑟1)
�̃�(𝑦|no,𝑟1)

for 𝑦 ∈ (𝛾, 𝜆] implies −(𝑦 − ̃𝑏(2)
𝐹 (𝑦|𝑟1, 𝑟1)) �̃�(𝑦|𝑟1,𝑟1)

�̃�(𝑦|𝑟1,𝑟1)
+ (𝑥 −

̃𝑏(2)
𝐹 (𝑦|𝑟1, 𝑟1)) �̃�(𝑦|no,𝑟1)

�̃�(𝑦|no,𝑟1)
< (𝑥 − 𝑦) �̃�(𝑦|no,𝑟1)

�̃�(𝑦|no,𝑟1)
< 0 given 𝑥 < 𝛾 < 𝑦. Hence the optimal 𝑦 is equal to 𝑥, i.e. the optimal

bid is ̃𝑏(2)
𝐹 (𝑥|no, 𝑟1).

23
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Now consider a type 𝑥 ∈ [𝛾, ̄𝑥]. Then 𝜕�̃�(2)
𝐹 (𝑥,𝑦|no,𝑟1)

𝜕𝑦 > 0 for 𝑦 ∈ [𝑟2, 𝛾), hence the optimal 𝑦 is in [𝛾, 𝜆], as

specified by (59). Moreover, we have seen above that 𝜕�̃�(2)
𝐹 (𝑥,𝑦|no,𝑟1)

𝜕𝑦 ≤ (𝑥 − 𝑦) ̃𝑔(𝑦|no, 𝑟1) for 𝑦 ∈ (𝛾, 𝜆], hence for
𝑥 = 𝛾 the optimal 𝑦 is equal to 𝛾.

Step 1.3: The Bidding Function ̃𝑏(2)
𝐹 (⋅|𝑟1, 𝑟1)̃𝑏(2)
𝐹 (⋅|𝑟1, 𝑟1)̃𝑏(2)
𝐹 (⋅|𝑟1, 𝑟1).

Consider a bidder of type 𝑥 ≥ 𝑟2 who has bid 𝑟1 at stage one, and has learned that another bidder has won
at stage one with a bid 𝑟1. Then his beliefs on the highest value among the other losing bidders at stage one
are given by ̃𝐺(𝑠|𝑟1, 𝑟1) in (40) and we prove that it is optimal for him to bid ̃𝑏(2)

𝐹 (𝑥|𝑟1, 𝑟1) as specified in (60) if
he expects each other losing bidder with value in [𝑟2, 𝛾) to bid according to ̃𝑏(2)

𝐹 (⋅|no, 𝑟1) in (59), and each other
losing bidder with value in [𝛾, 𝜆] to bid according to ̃𝑏(2)

𝐹 (⋅|𝑟1, 𝑟1).24

Arguing as in the proof of Step 1.2, we can write the bidder’s payoff at stage two as a function of 𝑦 as follows:

̃𝑢(2)
𝐹 (𝑥, 𝑦|𝑟1, 𝑟1) =

⎧{
⎨{⎩

(𝑥 − ̃𝑏(2)
𝐹 (𝑦|no, 𝑟1)) ̃𝐺(𝑦|𝑟1, 𝑟1) if 𝑦 ∈ [𝑟2, 𝛾)

(𝑥 − ̃𝑏(2)
𝐹 (𝑦|𝑟1, 𝑟1)) ̃𝐺(𝑦|𝑟1, 𝑟1) if 𝑦 ∈ [𝛾, 𝜆]

�

and

𝜕 ̃𝑢(2)
𝐹 (𝑥, 𝑦|𝑟1, 𝑟1)

𝜕𝑦 =
⎧{{
⎨{{⎩

̃𝐺(𝑦|𝑟1, 𝑟1)(−𝜕�̃�(2)
𝐹 (𝑦|no,𝑟1)

𝜕𝑦 + (𝑥 − ̃𝑏(2)
𝐹 (𝑦|no, 𝑟1)) �̃�(𝑦|𝑟1,𝑟1)

�̃�(𝑦|𝑟1,𝑟1)
) if 𝑦 ∈ [𝑟2, 𝛾)

̃𝐺(𝑦|𝑟1, 𝑟1)(−𝜕�̃�(2)
𝐹 (𝑦|𝑟1,𝑟1)

𝜕𝑦 + (𝑥 − ̃𝑏(2)
𝐹 (𝑦|𝑟1, 𝑟1)) �̃�(𝑦|𝑟1,𝑟1)

�̃�(𝑦|𝑟1,𝑟1)
) if 𝑦 ∈ (𝛾, 𝜆]

�

Then we use (64)-(65) plus �̃�(𝑦|no,𝑟1)
�̃�(𝑦|no,𝑟1)

= �̃�(𝑦|𝑟1,𝑟1)
�̃�(𝑦|𝑟1,𝑟1)

for 𝑦 ∈ [𝑟2, 𝛾) to find

𝜕 ̃𝑢(2)
𝐹 (𝑥, 𝑦|𝑟1, 𝑟1)

𝜕𝑦 =
⎧{
⎨{⎩

(𝑥 − 𝑦) ̃𝑔(𝑦|𝑟1, 𝑟1) if 𝑦 ∈ [𝑟2, 𝛾)
(𝑥 − 𝑦) ̃𝑔(𝑦|𝑟1, 𝑟1) if 𝑦 ∈ (𝛾, 𝜆]

�

This reveals that the optimal 𝑦 is equal to 𝑥 for each 𝑥 ∈ [𝑟2, 𝜆]; and it is equal to 𝜆, for each 𝑥 ∈ (𝜆, ̄𝑥]. Hence,
in either case, the optimal bid is ̃𝑏(2)

𝐹 (𝑥|𝑟1, 𝑟1).
Step 1.4: The Bidding Function ̃𝑏(2)

𝐹 (⋅|𝔟, ̃𝑏(1)
𝐹 (𝑧))̃𝑏(2)

𝐹 (⋅|𝔟, ̃𝑏(1)
𝐹 (𝑧))̃𝑏(2)

𝐹 (⋅|𝔟, ̃𝑏(1)
𝐹 (𝑧)).

If 𝔟𝑤 = ̃𝑏(1)
𝐹 (𝑧) for some 𝑧 ∈ (𝜆, ̄𝑥], then the beliefs of each losing bidder are given by the c.d.f. ̃𝐺(⋅|𝔟, ̃𝑏(1)

𝐹 (𝑧))
in (63). Then essentially the argument relative to ̂𝑏(2)

𝐹 (𝑥|no,no) in (21) applies in this case. We find that

̃𝑔(𝑠|𝔟, ̃𝑏(1)
𝐹 (𝑧))

̃𝐺(𝑠|𝔟, ̃𝑏(1)
𝐹 (𝑧))

= (𝑛 − 2)𝑓 (𝑠)
𝐹(𝑠) for 𝑠 ∈ (𝑟2, 𝑧)

hence (1) reveals that the equilibrium bidding function for 𝑥 ∈ [𝑟2, 𝑧) is 𝛽𝑛−1,𝑟2(𝑥), as specified by
̃𝑏(2)
𝐹 (⋅|𝔟, ̃𝑏(1)

𝐹 (𝑧)). Finally, given 𝔟𝑤 = ̃𝑏(1)
𝐹 (𝑧), a type 𝑥 ∈ [𝑧, ̄𝑥] expects each other bidder to have value smaller

than 𝑧, and 𝛽𝑛−1,𝑟2(𝑧) is his payoff maximizing bid, as prescribed by (61).

Step 2: Proof for Stage One

We need to consider the point of view of a bidder at stage one, given (58)-(61), and prove that it is profitable for
him to bid as specified in ̃𝑏(1)

𝐹 in (57), if he expects the other bidders to do so. The proof is in Section G in the
Supplementary material.

Proof of Proposition 3(ii)

The proof is largely given by the proof of Proposition 3(i), after setting 𝜆 = ̄𝑥. Precisely, regarding stage two, in
the main text we have taken care of (21)–(24), with the exception of ̂𝑏(2)

𝐹 (𝑥|no, 𝑟1) and ̂𝑏(2)
𝐹 (𝑥|𝑟1, 𝑟1) given off-the-

equilibrium play at stage one. In particular, ̂𝑏(2)
𝐹 (𝑥|no, 𝑟1) for 𝑥 ∈ [𝛾, ̄𝑥] is the payoff maximizing bid for a type

𝑥 ∈ [𝛾, ̄𝑥] who has not bid at stage one, given the beliefs ̂𝐺(⋅|no, 𝑟1) and given that the opponents bid according
to (25): we find that for such a type it is sub-optimal to bid less than ̂𝑏(2)

𝐹 (𝛾|𝑟1, 𝑟1). Likewise, ̂𝑏(2)
𝐹 (𝑥|𝑟1, 𝑟1) is the

payoff maximizing bid for a type 𝑥 ∈ [𝑟2, 𝛾) who has bid 𝑟1 in stage one. We find that ̂𝑏(2)
𝐹 (𝑥|𝑟1, 𝑟1) = ̂𝑏(2)

𝐹 (𝑥|no, 𝑟1)
(equal to 𝛽𝑛−1,𝑟2(𝑥)) in the interval [𝑟2, 𝛾) because the equality �̂�(𝑠|no,𝑟1)

�̂�(𝑠|no,𝑟1)
= �̂�(𝑠|𝑟1,𝑟1)

�̂�(𝑠|𝑟1,𝑟1)
(equal to (𝑛−2)𝑓 (𝑠)

𝐹(𝑠) ) holds for
𝑠 ∈ [𝑟2, 𝛾). Regarding stage one, we have proved in the main text that ̂𝑢𝐹(𝑥, 𝑥) ≥ max{ ̂𝑢𝐹(𝑥, 𝛾), 𝑥 − 𝑟1} for
each 𝑥 ∈ [𝑟2, 𝛾). We can argue as in Steps 2.2 and 2.4 in the proof of Proposition 3(i) to conclude that for each
𝑥 ∈ [𝛾, ̄𝑥], (i) ̂𝑢𝐹(𝑥, 𝛾) = ̂𝑢𝑆(𝑥, 𝛾), hence ̂𝑢𝐹(𝑥, 𝛾) ≥ 𝑥 − 𝑟1; (ii) ̂𝑢𝐹(𝑥, 𝛾) ≥ ̂𝑢𝐹(𝑥, 𝑥).

24
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DE GRUYTER Landi and Menicucci

Notes
1 A similar phenomenon occurs in McAfee and Vincent (1997), in which the seller of a single object auctions the object multiple times,
until it is sold. At each stage, he chooses a reserve price given his beliefs on the bidders values, as determined by the information that the
object has not been sold in the past. At each given stage, a bidder with value larger than the current reserve price may choose not to bid
but to wait for a successive auction with a lower reserve price.
2 Benoit and Krishna (2001) and Elmaghraby (2003) study related optimal order problems, but they consider heterogeneous objects and
no reserve prices. In addition, Benoit and Krishna (2001) assume common values and financially constrained bidders.
3 Che and Gale (1998) analyze a less restrictive context but the forces at work are the same as in our simplified example.
4 We adopt the same informational structure as GTX. Notice, however, that the results we obtain for sequential second-price auctions
would be the same if each bidder at stage two knew only whether or not he has won the stage one auction.
5 Notice that the stage two reserve price has no effect if 𝑟2 < 𝑥, just like 𝑟2 = 𝑥. The stage one reserve price prevents each bidder from
participating in the stage one auction if 𝑟1 > ̄𝑥, just like 𝑟1 = ̄𝑥.
6 Notice that 𝐹 is used to indicate the c.d.f. for each bidder’s value, and as a subscript to indicate, in Section 4, that 𝑏(1)

𝐹 , 𝑏(2)
𝐹 are bidding

functions for first-price auctions. This choice allows for lighter notation and, we think, does not generate risks of confusion, as it will be
clear from the context what 𝐹 stands for.
7 Here we use 𝑘 rather than 𝑛 because later in the paper we employ the current analysis for both the cases of 𝑘 = 𝑛 and 𝑘 = 𝑛 − 1.
8 In order to simplify the notation we use 𝑣𝑘(𝑥) rather than 𝑣𝑘,𝑟2(𝑥): no ambiguity is possible as 𝑣𝑘(𝑥) refers to the stage two auction,
whose reserve price is 𝑟2. The same principle applies to a few other cases below in which there is no risk of ambiguity.
9 We notice that this result would not hold if bidders were not risk neutral or if there was some time discounting. Risk averse bidders
would then shade their bids less in the first stage to reduce the risk of losing the object when the winning bid is still below their value.
Impatient bidders will also bid more aggressively in the first stage because to them, de facto, an object is more valuable today than tomorrow.
10 Furthermore, given 𝑟1 > 𝑟2, we clearly have a situation where bidders with value smaller than 𝑟2 never bid, since they cannot make a
positive payoff in either stage. For this reason, we will consider only 𝑥 ≥ 𝑟2.
11 The equilibrium for 𝑟1 ≥ ̄𝑟1 is also found by GTX.
12 For brevity, from now on we will refer to them just as beliefs.
13 Notice also that �̂�(1)

𝑆 is a special case of �̃�(1)
𝑆 , obtained when 𝜆 = ̄𝑥, and in such a case we find that eq. (16) is equivalent to eq. (14).

14 This is the main additional complication of first-price auctions with respect to second-price auctions, for which the sequential rationality
of eq. (4) is immediate.
15 This occurs if the bidder did not follow �̂�(1)

𝐹 at stage one, perhaps because he made a mistake or because he chose to deviate from �̂�(1)
𝐹 .

16 In the proof of Proposition 3(ii) we describe how �̂�(2)
𝐹 (𝑥|no, 𝑟1) is determined for 𝑥 ∈ [𝛾, ̄𝑥], and how �̂�(2)

𝐹 (𝑥|𝑟1, 𝑟1) is determined for
𝑥 ∈ [𝑟2, 𝛾); these are bids which follow off-the-equilibrium bids at stage one.
17 For this assumption, GTX offer justifications which rely on both regulations and on competition among auctioneers, who are eager to
attract many bidders.
18 If the auctioneer can choose freely the reserve prices, GTX use the mechanism design approach to show that profits are maximized by
selling the object with lowest value to the seller first, and by properly setting ascending reserve prices.
19 We assume that under irp (under drp) the bidders play as described by Proposition 1 (Proposition 2), but in principle other equilibria
may exist.
20 For any pair of non negative integers 𝑘 ≥ ℎ we write 𝐶𝑘,ℎ to denote 𝑘!

ℎ!(𝑘−ℎ)! .
21 We can neglect bids between 𝑟1 and lim𝑥↓𝜆 �̃�(1)

𝑆 (𝑥), since each bid between 𝑟1 and lim𝑥↓𝜆 �̃�(1)
𝑆 (𝑥) has the same effect as bidding

lim𝑥↓𝜆 �̃�(1)
𝑆 (𝑥). We can also neglect bids strictly greater than �̃�(1)

𝑆 (𝑥) as they cannot increase the probability of winning while potentially
increasing the price to be paid.
22 For the sake of brevity, in each bidding function relative to stage two we consider only 𝑥 ≥ 𝑟2, since each type with value smaller than
𝑟2 does not bid at stage two, regardless of the outcome of stage one.
23 In view of �̃�(⋅|no, 𝑟1), he expects that no losing bidder has value greater than 𝜆.
24 In view of �̃�(⋅|𝑟1, 𝑟1), he expects that no losing bidder has value greater than 𝜆.
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