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a b s t r a c t

Wedevelop an efficientmixed-scale estimator for jump regressions using high-frequency asset returns. A
fine time scale is used to accurately identify the locations of large rare jumps in the explanatory variables
such as the price of themarket portfolio. A coarse scale is then used in the estimation in order to attenuate
the effect of trading frictions in the dependent variable such as the prices of potentially less liquid assets.
The proposed estimator has a non-standard asymptotic distribution that cannot be made asymptotically
pivotal via studentization. We propose a novel bootstrap procedure for feasible inference and justify
its asymptotic validity. We show that the bootstrap provides an automatic higher-order asymptotic
approximation by accounting for the sampling variation in estimates of nuisance quantities that are
used in efficient estimation. The Monte Carlo analysis indicates good finite-sample performance of the
general specification test and confidence intervals based on the bootstrap. We apply the method to a
high-frequency panel of Dow stock prices together with the market index defined by the S&P 500 index
futures over the period 2007–2014. We document remarkable temporal stability in the way that stocks
react to market jumps. However, this relationship for many of the stocks in the sample is significantly
noisier and more unstable during sector-specific jump events.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The availability of high-frequency data has led to new ways
of estimating an asset’s exposures to systematic risks such as the
aggregate stock market return in the standard CAPM. The high-
frequency estimation approach (Andersen et al., 2003; Barndorff-
Nielsen and Shephard, 2004a; Andersen et al., 2006; Mykland and
Zhang, 2009) uses realized variation measures to infer beta over
a fixed period of time, usually a day or a month, and then tracks
these estimates over non-overlapping sample periods.More recent
practice is to conduct estimation using jump-robust measures of
variation and covariation (Todorov and Bollerslev, 2010; Gobbi
and Mancini, 2012). All of the above mentioned beta measures
(with orwithout truncation)mainly pertain to the locally Gaussian
diffusive moves in the market, because the large number of small
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diffusive moves are known to account for a major part of the
market variation. Economically speaking, these smallmoves in part
reflect the market’s gradual price discovery process of distilling
minor news on fundamentals from noise trading (Kyle, 1985)
which can lead to a situation with low signal to noise ratio and
temporal instability.1 Li et al. (2017), on the other hand, suggest an
opposite approach that mainly uses abrupt and locally large jump
moves to generate an effectivemeasure of beta.2,3 Suchmoves are
typically related to important market-wide shocks which include,
but are not limited to, macro announcements, geopolitical events
and natural disasters. [See Chapter 8 of Hasbrouck (2015) formore
discussion.]

The use of large rare jumps in a regression setting requires new
ways of thinking about regression and inference. On the one hand,
in any given fixed span of time, there are only a finite number of
jumps. This means that the number of informative observations

1 Indeed, Kalnina (2013) and Reiss et al. (2015) document that spot betas remain
constant only over very short periods of time, usually a week or, at best, a month.
2 Jump betas have been first introduced in Todorov and Bollerslev

(2010). Todorov and Bollerslev (2010) use higher order power variations to
identify the jump betas from the high-frequency data. This approach, unlike Li et
al. (2017), makes use of all of the high-frequency increments. Of course, the role of
the increments without jumps vanishes asymptotically in the higher order power
variations.
3 Theoretically, the betas at jump and non-jump times do not need to coincide.

http://dx.doi.org/10.1016/j.jeconom.2017.08.017
0304-4076/© 2017 Elsevier B.V. All rights reserved.
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in a jump regression is finite and does not increase to infinity
asymptotically.4 Therefore, the common intuition underlying the
law of large numbers does not apply here. On the other hand,
we recognize that the jumps are of fixed size regardless of the
sampling frequency, whereas the diffusive moves are on the or-
der ∆

1/2
n , where ∆n is the sampling interval which goes to zero

asymptotically. The diffusive moves in the vicinity of jumps can be
viewed as measurement errors induced by discrete sampling, and
they play the role of random disturbances in classical regressions.
The magnitude of such measurement error shrink at the paramet-
ric rate with well-behaved asymptotic properties, which can be
further used for studying the asymptotics of our estimators. In the
same vein, the correct specification of a linear jump regression
model amounts to a perfect fitting (i.e., R2

= 1) of the dependent
jumps in the continuous-time limit. This test can be carried out
by examining whether the observed R2 is statistically significantly
below unity.

This paper develops a new mixed-scale strategy for jump re-
gressions, which addresses a natural asymmetry between the ex-
planatory and dependent variables seen in applications.5 On the
one hand, the explanatory variables are often returns of highly
liquid assets such as market index futures. We sample these vari-
ables at a fine scale (1-minute in our application), which greatly
improves the accuracy of jump detection. On the other hand, the
dependent variables are typically returns of less liquid assets such
as individual stocks, which are subject to a slower price discovery
process for incorporating large bits of new information. Realisti-
cally speaking, due to the trading mechanisms on the exchanges,
a jump typically cannot be observed instantly. Rather, it is often
realized through a sequence of transactions. See Barndorff-Nielsen
et al. (2009) for a discussion of what they term ‘‘gradual jumps.’’ It
is therefore prudent to sample the asset prices for the dependent
variables at a coarse scale when estimating the jump regression
model, at the cost of statistical efficiency. The mixed-scale ap-
proach provides a flexible way of using data that play distinct
roles in the jump regression. The fact that the jump detection step
and the jump regression step are performed under two (possibly)
distinct scales also leads to novel asymptotic results (cf. Li et al.
(2017)). In addition, we present all theory here in a multivariate
setting so as to facilitate applications tomulti-factor models of risk
exposure.

We further extend the analysis of Li et al. (2017) by providing
a refined inference for the mixed-scale jump regression which is
beneficial, particularly when sampling at coarser frequencies. We
first derive a higher-order asymptotic approximation for the jump
regression estimates. This expansion accounts for the error in the
volatility estimation around the jump times (which is of higher
order). We then propose a bootstrap method which we show is
asymptotically valid. The bootstrap provides a conceptually dif-
ferent alternative to the higher-order asymptotic expansion. The
latter is based on direct higher-order asymptotic approximations
while the current bootstrap method is aimed at approximating
the finite sample distribution of the estimator using simulated
data. Our motivation for using the bootstrap is that the asymptotic
distribution of the estimator of jump beta is non-standard because
volatility may co-jump at the jump times of the explanatory vari-
able(s); see, for example, Jacod and Todorov (2010), Todorov and
Tauchen (2011) and Bandi and Renó (2016). In fact, the limiting

4 Even if the asset price process has infinitely active jumps, the number of jumps
that have sizes greater than any fixed level remains finite.
5 Ourmixed-scale strategy is designed to improve the accuracy of jumpdetection

for a subvector of a multivariate semimartingale process, so the goal here is to
reduce the misclassification (i.e., jump or non-jump) error. This is fundamentally
different from the multi-scale method of Zhang et al. (2005), which conducts a
jackknife bias-correction using realized variances computed at subsamples with
different frequencies in the estimation of integrated volatility.

distribution of the estimator is not Gaussian even conditional on
the underlying information set. The asymptotic covariance matrix
alone is thereby insufficient for asymptotically valid inference;
in particular, the conventional t-statistic is not asymptotically
pivotal. We therefore propose a bootstrap method that is very
simple to implement. The user only needs to repeatedly compute
the estimator in a bootstrap sample that consists of small sub-
samples within local windows of the detected jump times. The
bootstrap sample size is much smaller than the original sample
size, resulting in a significant reduction in computational time.
The same bootstrap sample can also be used to compute critical
values for the specification test. The bootstrap procedure achieves
a higher-order refinement over the asymptotic approximations to
the usual order. Our bootstrap refinement is atypical because it
does not concern Edgeworth expansions for asymptotically pivotal
statistics; instead, here, the refinement accounts for the higher-
order sampling variability in the weights of the efficient regres-
sion procedure. Monte Carlo evidence shows good finite-sample
performance of the bootstrap.

The bootstrap has been first introduced to the high-frequency
literature by Gonçalves and Meddahi (2009) in the context of
estimating integrated volatility. Since we focus on the inference
about jumps, which is well known to be very different from the
inference about volatility, the proposed bootstrap method and the
associated asymptotic theory deviate significantly frompriorwork.
To the best of our knowledge, the current paper is the first to
study the bootstrap inference for jumps using high-frequency data.
Although the bootstrapmethod is presented in the context of jump
regressions, it can be readily extended to many other contexts
concerning jumps as well.

We apply the mixed-scale jump regression method to a high-
frequency one-minute panel of Dow stock prices together with
the S&P 500 E-mini futures price for the market index over the
period 2007–2014. We start with concrete examples of how in-
dividual asset prices react, either promptly or gradually, to news
events generating market jumps, so as to illustrate the empirical
relevance of the mixed-scale approach. We further provide evi-
dence that using a coarse scale of 3–5 min around jump times is
sufficiently conservative in the jump regression step for these blue-
chip stocks; our evidence also indicates that using the fine scale
is still appropriate for tasks like estimating local volatility which
depend on price increments away from the problematic intervals
with gradual jumps. We then proceed to conduct stock-by-stock
tests of the key hypothesis that R2

= 1.6 A striking finding is that
by sampling the data on a slightly coarse scale in the regression
step, the null hypothesis is rejected much less frequently. This
reduction cannot be fully explained by pure statistical reasons.
Instead, it reaffirms the usefulness of the mixed-scale approach
in the testing context. Using the efficient estimator, we document
how the market jump risk exposure varies across stocks and over
time. Lastly, we study the sensitivity of various stocks to market
risk at alternative jump times defined by sector-specific jumps
in the nine industry ETFs for the S&P 500 composite index. For
many of the stocks in our sample, we find the relationship between
individual stocks and the market to be significantly noisier and
more unstable at the sector-specific jump times than it is at the
market-wide jump times.

The rest of the paper is organized as follows. Section 2 describes
the econometric framework and Section 3 presents the main theo-
rems. Section 4 contains the Monte Carlo evaluation and Section 5
shows the empirical results. Section 6 concludes. All proofs are
given in Appendix.

6 Earlier work by Roll (1987) has documented relatively low R2-s of time
series regressions of stocks’ returns on their systematic risk exposures, even after
excluding days with firm-specific news (and hence more idiosyncratic noise).
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2. The setting for mixed-scale jump regressions

We describe the formal high-frequency asymptotic setting in
Section 2.1 and the mixed-scale jump regression setting in Sec-
tion 2.2 . The following notation is used in the sequel. We denote
the transpose of a matrix A by A⊤ and denote its (j, k) component
by Ajk. All vectors are column vectors. For notational simplicity,
we write (a, b) in place of (a⊤, b⊤)⊤. For two vectors a and b, we
write a ≤ b if the inequality holds component-wise. The Euclidean
norm of a linear space is denoted by ∥ · ∥. The cardinality of a
(possibly random) set P is denoted by |P|. The largest smaller
integer function is ⌊·⌋. For two sequences of positive real numbers
an and bn, we write an ≍ bn if bn/c ≤ an ≤ cbn for some constant
c ≥ 1 and all n. All limits are for n → ∞. We use

P
−→ and

L-s
−→ to

denote convergence in probability and stable convergence in law,
respectively.

2.1. The formal setup

We proceed with the formal setup. Let Y and Z be defined on
a filtered probability space

(
Ω,F, (Ft )t≥0,P

)
which take values in

R and Rdz , respectively. Throughout the paper, all processes are
assumed to be càdlàg (i.e., right continuouswith left limit) adapted.
Let X ≡ (Y , Z) and d ≡ dz + 1. The d-dimensional process X is
observed at discrete times i∆n, for i ∈ {0, . . . , ⌊T/∆n⌋}, within
the fixed time interval [0, T ], where the sampling interval ∆n → 0
asymptotically. We denote the increments of X by

∆n
i X ≡ Xi∆n − X(i−1)∆n , i ∈ In ≡ {1, . . . , ⌊T/∆n⌋} . (2.1)

Our basic assumption is that X is a d-dimensional Itô semi-
martingale (see, e.g., Jacod and Protter (2012), Section 2.1.4) of the
form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xt = X c
t + Jt ,

X c
t = X0 +

∫ t

0
bsds +

∫ t

0
σsdWs (continuous component),

Jt =

∫ t

0

∫
R

δ (s, u) µ (ds, du) (jump component),

(2.2)

where the drift bt takes value in Rd; the volatility process σt
takes value in Md, the space of d -dimensional positive definite
matrices;W is a d-dimensional standard Brownian motion; δ(·) ≡

(δY (·), δZ (·)) : Ω × R+ × R ↦→ Rd is a predictable function; µ

is a Poisson random measure on R+ × R with its compensator
ν (dt, du) = dt ⊗ λ (du) for some measure λ on R. The jump of
X at time t is denoted by

∆Xt ≡ Xt − Xt−, where Xt− ≡ lim
s↑t

Xs. (2.3)

We denote the spot covariance matrix of X at time t by ct ≡ σtσ
⊤
t .

Our basic regularity condition for X is the following.

Assumption 1. (a) The process (bt )t≥0 is locally bounded; (b) ct is
nonsingular for t ∈ [0, T ] almost surely; (c) ν ([0, T ] × R) < ∞.

The only nontrivial restriction in Assumption 1 is the assump-
tion of finite-activity jumps in X . This assumption is used mainly
to simplify our technical exposition because our empirical fo-
cus in this paper are the big jumps. Technically speaking, this
means that we can drop Assumption 1(c) and focus on jumps
with size bounded away from zero. Doing so automatically verifies
the finite-activity assumption, but with very little effect on the
empirical investigation in the current paper.

2.2. Mixed-Scale jump regressions

The jump regression is based on the following (population)
relationship between the jumps of Y and Z:

∆Yτ = β∗⊤g (∆Zτ ) , τ ∈ T , (2.4)

where g(·) : Rdz ↦→ Rq is a deterministic function, τ is a jump time
of the process Z , and T collects these jump times. We stress that
the restriction (2.4) is only postulated at the jump times of Z . In
particular, we allow Y to have idiosyncratic jumps, i.e., jumps that
do not occur at the same times as those of Z . Therefore, in general
(provided g(0) = 0) we have

∆Yt = β∗⊤g (∆Zt) + ∆ϵt , ∆Zt∆ϵt = 0, t ∈ [0, T ], (2.5)

with ϵt capturing the idiosyncratic jump risk in the asset Y . We
note that this type of model for the jump parts of assets naturally
arises in economies in which the market-wide pricing kernel is
specified as a function of systematic factors (containing jumps) and
the cash flows of the assets contain in addition idiosyncratic jump
shocks in the sense of Merton (1976). We refer to Li et al. (2017)
for more discussion of our jump model.

We refer to the coefficient β∗ as the jump beta, which is the
parameter of interest in our econometric analysis. As in Li et
al. (2017), we are mainly interested in the linear specification
g(∆Zτ ) = ∆Zτ because it turns out to deliver quite good fitting in
practice. That being said, the general form (2.4) is also of economic
interest. For example, with g(∆Zτ ) =

(
∆Zτ1{∆Zτ >0}, ∆Zτ1{∆Zτ <0}

)
,

(2.4) conveniently allows for asymmetric response of Y with re-
spect to positive and negative jumps in Z . Assumption 2, below,
ensures the identification of the jump beta. It also imposes some
mild smoothness condition on g(·) that facilitates the asymptotic
analysis.

Assumption 2. (a) The matrix
∑

τ∈T g (∆Zτ ) g(∆Zτ )
⊤ is nonsin-

gular almost surely.
(b) For each t , the measure defined by A ↦→ λ({u : δZ (t, u) ∈

A \ {0}}) is atomless. Moreover, g(·) is twice continuously differen-
tiable almost everywhere.

In finite samples, neither the times nor themagnitudes of jumps
are directly observable. Empirically, we need to use discretely
sampled data ∆n

i X =
(
∆n

i Y , ∆n
i Z
)
to make statistical inference

based on model (2.4). Since (2.4) only concerns the jump moves
of the asset prices, it is conceptually natural to first select ob-
served returns that contain jumps. We do so using a thresholding
method (Mancini, 2001) as follows. We consider a sequence of
thresholds (un)n≥1 ⊂ Rdz such that

uj,n ≍ ∆ϖ
n , for some ϖ ∈ (0, 1/2) and all 1 ≤ j ≤ dz .

We then collect the jump returns using

Jn ≡ In \
{
i : −un ≤ ∆n

i Z ≤ un
}
. (2.6)

Time-invariant choice for un, although asymptotically valid, leads
to very bad results in practice as it does not account for the
time-varying diffusive spot covariance matrix ct . Hence, a sensible
choice for un should take into account the variation of ct in an
adaptive, data-drivenway.We refer to our application in Sections 4
and 5 for the details of such a way of constructing un using the
bipower variation estimator of Barndorff-Nielsen and Shephard
(2004b).

Under Assumption 1, it can be shown that Jn consistently
locates the sampling intervals that contain jumps.7 That is,

P
(
Jn = J ∗

n

)
→ 1, where J ∗

n ≡ {i : τ ∈ ((i − 1) ∆n, i∆n]

for some τ ∈ T } . (2.7)

7 See, for example, Proposition 1 of Li et al. (2017).
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Parallel to (2.4), the jump regression equation is then given by

∆n
i Y = β∗⊤g

(
∆n

i Z
)
+ εn

i , i ∈ Jn, (2.8)

with the error term εn
i being implicitly defined by (2.8).

Despite the apparent similarity between the jump regression
Eq. (2.8) and the classical regression, there are fundamental differ-
ences. We first observe that (2.8) only concerns a finite number of
large jump returns even asymptotically (recall (2.7)). This means,
the intuition underlying the classical law of large numbers and
the central limit theorem does not apply here. The reason is that
the finite number of error terms

(
εn
i

)
i∈Jn

would not ‘‘average
out.’’ However, we observe that these error terms are actually
asymptotically small. Indeed, under (2.4), we have for each i ∈ J ∗

n ,

εn
i = ∆n

i Y
c
− β∗⊤

(
g
(
∆Zτ + ∆n

i Z
c)

− g (∆Zτ )
)
,

where τ is the unique (which holds true at high frequency) jump
time that occurs in ((i − 1) ∆n, i∆n]. Since the diffusive moves(
∆n

i Y
c, ∆n

i Z
c
)
are of orderOp(∆

1/2
n ), so is εn

i . In addition, these small
error terms have well-behaved asymptotic properties, which we
use to derive the asymptotic property of our inference procedures.

In empiricalwork, the use of high-frequency data is confounded
by various trading frictions thatmake the transaction price deviate
from the efficient price, with the latter being typically the object of
interest. The deviation of the observed from efficient (fundamen-
tal) price is commonly referred to as microstructure noise. Typical
sources of microstructure noise are bid–ask bounces and rounding
error. A standard assumption in the literature is to assume that the
noise is centered at zero and it has some form of weak dependence
across observation times. There is a large body of work dealing
withmicrostructure noise of this type, see e.g., chapter 16 of Jacod
and Protter (2012) and the many references therein. The earlier
literature has ‘‘dealt’’ with the potential presence of noise by sam-
pling sparsely, with the idea being that at the coarser frequencies
the importance of the noise in relative terms is rather small and
can be ignored. Subsequent work has developed formal statistical
methods for dealing with the microstructure noise. Although the
methods differ, they are all based on averaging the noise in some
way. In other words, the existing methods all rely on weak de-
pendence of the noise at observation times and apply law of large
numbers to purge the high frequency based measures from it.

There is another type ofmicrostructure noise,which stems from
staleness and infrequent trading. Mainly, for assets which are not
very liquid, the price can be relatively slow to react to news. In
particular, when there is a big jump on the stock market, less
liquid individual assets can be slow to react and adjust fully to
the new (latent) efficient price level that corresponds to the new
information. There can be various sources for this type of price
staleness. One typical example is the presence of stale limit orders
in the limit order book which get ‘‘hit’’ as the price is adjusting
to the new equilibrium level. The staleness in prices causes a
phenomenon referred to by Barndorff-Nielsen et al. (2009) as
gradual jumps. Obviously, this type of noise is very difficult to deal
with formally as by its very nature it has a lot of dependence across
observation times and also it depends very strongly on the actual
fundamental price. Hence, local averaging type procedureswill not
work for it. Also, it is clear that this type of trading friction has a
rather nontrivial impact on the analysis of jumps since, by their
very nature, jumps are rare events.

In this paper we are mainly concerned with the second type of
noise, i.e., the one that is due to staleness.8 To mitigate its impact,
we will sample sparsely. The proper sampling scheme of course
depends on the asset of interest as staleness and liquidity are asset

8 For the frequencies we use in our empirical work, the first type of noise has
relatively small impact, see Section 5 for further details.

specific. For example, in our applications, we take Y to be the price
of a blue-chip stock and Z to be the price of a futures contract on a
major market index, with Z expected to be more liquid than Y .

The difference in liquidity of the left- and the right-hand side
assets aroundmarket jump times creates an interesting tradeoff in
the choice of the sampling scheme. On the one hand, sampling at
high frequency (e.g., 1min) greatly increases the accuracy for jump
detection and, hence, reduces jump-misclassification bias in finite
samples. On the other hand, sampling at such frequency is unlikely
to be conservative enough for mitigating the microstructure effect
of gradual jumps in Y . Indeed, as we shall illustrate with concrete
examples in Section 5, individual stocks may take longer time than
the market to fully incorporate new information that leads to a
visible jump in the market index. See Barndorff-Nielsen et al.
(2009) for additional discussions on this type of gradual jumps.

We propose to break the tension between these two conflicting
effects using a mixed-scale jump regression procedure: we main-
tain the jump detection (2.6) at the fine sampling scale ∆n, but
implement the jump regression at a (possibly) coarser scale k∆n for
some k ≥ 1. By doing so, we maintain high precision in detecting
market jumps and reduce the concern of ‘‘breaking’’ gradual jumps.
More precisely, we denote ∆n

i,kX = (∆n
i,kY , ∆n

i,kZ), where

∆n
i,kX = X(i−1+k)∆n − X(i−1)∆n .

Themixed-scale jump regression is then given by, with εn
i,k implic-

itly defined below,

∆n
i,kY = β∗⊤g

(
∆n

i,kZ
)
+ εn

i,k, i ∈ Jn. (2.9)

Clearly, (2.8) is a special case of (2.9) with k = 1. The fact that the
jump detection and the jump regression are performed at different
sampling scales leads to notable differences between the inference
procedures proposed below and those in the single-scale setting
of Li et al. (2017) , mainly because of the presence of volatility-
price co-jumps. We now turn to the details.

3. Asymptotic theory

3.1. The efficient estimation of jump beta

In this subsection, we describe a class ofmixed-scale estimators
for the jump beta and derive their asymptotic properties. In view
of (2.9), a natural estimator of β∗ is the mixed-scale ordinary least
squares (OLS) estimator given by

β̂n ≡

(∑
i∈Jn

g
(
∆n

i,kZ
)
g
(
∆n

i,kZ
)⊤)−1 (∑

i∈Jn

g
(
∆n

i,kZ
)
∆n

i,kY

)
.

However, since the error terms (εn
i,k)i∈Jn can exhibit arbitrary het-

eroskedasticity due to both time-varying volatility and jump size,
the mixed-scale OLS estimator is not efficient. Following Li et al.
(2017), we consider efficient estimation using a semiparametric
two-step weighted estimator.

To construct the weights, we first nonparametrically estimate
the spot covariance matrices before and after each detected jump.
To this end, we pick an integer sequence kn of block sizes such that

kn → ∞ and kn∆n → 0. (3.1)

We also pick aRd-valued sequence u′
n of truncation thresholds that

satisfies

u′

j,n ≍ ∆−ϖ
n , for some ϖ ∈ (0, 1/2) and all 1 ≤ j ≤ d.

We then set the index set of the diffusive returns to be

Cn =
{
i ∈ In : −u′

n ≤ ∆n
i X ≤ u′

n

}
. (3.2)
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For each i ∈ Jn, we estimate the pre-jump and the post-jump spot
covariance matrices using⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ĉn,i− ≡

∑kn−1
j=0 (∆n

i−kn+jX)(∆
n
i−kn+jX)

⊤1{i−kn+j∈Cn}

∆n
∑kn−1

j=0 1{i−kn+j∈Cn}

,

ĉn,i+ ≡

∑kn−1
j=0 (∆n

i+k+jX)(∆
n
i+k+jX)

⊤1{i+k+j∈Cn}

∆n
∑kn−1

j=0 1{i+k+j∈Cn}

.

(3.3)

We note that these spot covariance estimates are constructed
using returns sampled at the ‘‘fine’’ scale which, in our empirical
analysis in Section 5, is set to be 1 minute. At such frequency,
the microstructure noise due to bid–ask bounces and rounding
has a negligible impact on volatility estimation for liquid stocks
(we provide empirical evidence for that in the empirical section).
That being said, one may also estimate spot volatilities at coarser
sampling intervals to further guard against microstructure noise
but at the cost of higher sampling variability in finite samples. This
results in notational changes only in the theory that follows and
we omit the details for brevity.

We consider a weight function w : Md × Md × Rdz × Rq
↦→

(0, ∞) such that w (c−, c+, z, β) is continuously differentiable at
β = β∗, all c−, c+ ∈ Md and almost every z ∈ Rdz . To simplify
notation, we denote

ŵn,i = w

(
ĉn,i−, ĉn,i+, ∆n

i,kZ, β̂n

)
.

The mixed-scaled WLS estimator is then given by

β̂n (w) ≡

(∑
i∈Jn

ŵn,ig
(
∆n

i,kZ
)
g
(
∆n

i,kZ
)⊤)−1

×

(∑
i∈Jn

ŵn,ig
(
∆n

i,kZ
)
∆n

i,kY

)
. (3.4)

In order to describe the asymptotic behavior of β̂n (w), we
introduce some auxiliary random variables. Let (τp)p≥1 denote
the successive jump times of Z . We consider random variables(
κp, ξp−, ξp+

)
p≥1 that are mutually independent and are indepen-

dent of F such that κp is uniformly distributed on [0, 1] and the
variables

(
ξp−, ξp+

)
are d-dimensional standard normal. We then

denote, for p ≥ 1,⎧⎪⎨⎪⎩
ςp ≡

(
1, −β∗⊤∂g

(
∆Zτp

)) (√
κpστp−ξp−

+
√
k − κpστpξp+

)
,

wp ≡ w
(
cτp−, cτp , ∆Zτp , β

∗
)
.

(3.5)

Finally, we set

Ξ (w) ≡

∑
p∈P

wpg
(
∆Zτp

)
g
(
∆Zτp

)⊤
,

Λ (w) ≡

∑
p∈P

wpg
(
∆Zτp

)
ςp.

Theorem 1, below, describes the stable convergence in law of
β̂n (w).

Theorem 1. Under Assumptions 1 and 2, ∆−1/2
n (β̂n (w) − β∗)

L-s
−→

Ξ(w)−1Λ (w).

Theorem 1 shows that β̂n (w) is a∆
−1/2
n -consistent estimator of

the jump beta, with F -conditional asymptotic covariance matrix
given by

Σ (w)

≡ Ξ(w)−1

(∑
p∈P

w2
pE
[
ς2
p |F

]
g
(
∆Zτp

)
g
(
∆Zτp

)⊤)
Ξ(w)−1,

where

E
[
ς2
p |F

]
=
(
1, −β∗⊤∂g

(
∆Zτp

)) (1
2
cτp− +

(
k −

1
2

)
cτp

)
×
(
1, −β∗⊤∂g

(
∆Zτp

))⊤
.

It is easy to see that Σ (w) can be minimized using the weight
function

w (c−, c+, z, β)

≡
1(

1, −β⊤∂g (z)
) ( 1

2 c− +
(
k −

1
2

)
c+
) (

1, −β⊤∂g (z)
)⊤ .

We refer to the associated estimator as the optimally weighted
estimator. By construction, it is more efficient than an unweighted
estimator. Moreover, Li et al. (2017) establish the semiparametric
efficiency bound for estimating the jump beta in the case without
volatility-price cojumps. In this case, the optimally weighted esti-
mator defined above attains the efficiency bound computed for the
coarsely sampled data. The reason for using the coarser frequency
in the analysis of the semiparametric efficiency of the jump beta
estimation is that the limiting distribution of the jump regression
coefficient is determined only by the high-frequency increments
containing the jumps. However, recall that these increments are
aggregated to a coarser scale in order to guard against the grad-
ual jump phenomenon. In this regard, we should stress that the
frequency used for jump detection as well as for the estimation of
volatility has no bearing on the efficiency statement. The reason is
that the error coming from the jump detection as well as volatility
measurement is of higher order in the jump regression.

3.2. Higher-order refinement and bootstrap inference

We now develop refined inference for the jump regression
estimate ofβ∗.We first derive a higher-order asymptotic result and
then propose a bootstrap procedure which we show achieves the
asymptotic refinement.

To motivate, we observe that while the weighted estimator
β̂n (w) depends on the spot covariance estimates

(
ĉn,i−, ĉn,i+

)
, the

sampling variability of the latter is not reflected in the asymp-
totic distribution described by Theorem 1 . The reason is that
the local volatility estimates enter only the weights and their
sampling errors are annihilated in the second-order asymptotics.
In finite samples, the sampling variability of the spot covariance
estimates may still have some effect, because the latter enjoy only
a nonparametric convergence rate. To account for such effects,
we need a refined characterization of the asymptotic behavior of
the weighted estimator which we now provide. For the analysis
herewe need the following additional assumption for the volatility
process.

Assumption 3. The process σt is also an Itô semimartingale of the
form

σt = σ0 +

∫ t

0
b̃sds +

∫ t

0
σ̃sdWs

+

∫ t

0

∫
R

δ̃ (s, u) 1{∥δ̃(s,u)∥>1}µ (ds, du)

+

∫ t

0

∫
R

δ̃ (s, u) 1{∥δ̃(s,u)∥≤1} (µ − ν) (ds, du) ,

where the processes b̃t and σ̃t are locally bounded and for a
sequence of stopping times (Tm)m≥1 increasing to infinity and a
sequence (J̃m)m≥1 of λ -integrable bounded functions, ∥δ̃ (t, u) ∥

2
∧

1 ≤ J̃m (u) for all t ≤ Tm and u ∈ R.
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Assumption 3 is needed for characterizing the stable conver-
gence of the spot covariance estimates. This assumption is fairly
unrestrictive and is satisfied by many models in finance. In partic-
ular, it allows for ‘‘leverage effect,’’ that is, the Brownian motions
W and W̃ can be correlated. Moreover, Assumption 3 allows for
volatility jumps, and it does not restrict their activity and depen-
dence with the price jumps. However, this assumption does rule
out certain long-memory volatility models driven by a fractional
Brownian motion (see Comte and Renault (1996)).

We also need some additional notation. We consider d ×

d random matrices
(
ζp−, ζp+

)
p≥1 which, conditional on F , are

centered Gaussian, mutually independent and independent of(
κp, ξp−, ξp+

)
p≥1 , with conditional covariances given by{

E[ζ
jk
p−ζ lm

p−|F] = c jlτp−c
km
τp−

+ c jmτp−c
kl
τp−

,

E[ζ
jk
p+ζ lm

p+|F] = c jlτpc
km
τp

+ c jmτp c
kl
τp

,
1 ≤ j, k, l,m ≤ d.

We denote the first differential of w by dw (c−, c+, z, b) =

ẇ(c−, c+, z, b; dc−, dc+, dz, db) and then set, for p ≥ 1,

w̃p ≡ ẇ
(
cτp−, cτp , ∆Zτp , β

∗
; ζp−, ζp+, 0, 0

)
.

Finally, for notational simplicity, we set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ (w) ≡

∑
p∈P

wpg
(
∆Zτp

)
g
(
∆Zτp

)⊤
,

Λ (w) ≡

∑
p∈P

wpg
(
∆Zτp

)
ςp,

Ξ̃ (w) ≡

∑
p∈P

w̃pg
(
∆Zτp

)
g
(
∆Zτp

)⊤
,

Λ̃ (w) ≡

∑
p∈P

w̃pg
(
∆Zτp

)
ςp.

The higher-order asymptotic expansion for ∆
−1/2
n (β̂n (w) − β∗)

is given in the following theorem.

Theorem 2. Suppose Assumptions 1–3, and kn ≍ ∆−a
n for some

a ∈ (0, 1/2).
(a) We can decompose

∆−1/2
n

(
β̂n (w) − β∗

)
= Ln (w) + k−1/2

n Hn (w) + op(k−1/2
n ), (3.6)

such that

(Ln (w) ,Hn (w))
L-s
−→ (L (w) ,H (w)) ,

where{
L (w) ≡ Ξ(w)−1Λ (w) ,

H (w) ≡ Ξ(w)−1Λ̃ (w) − Ξ(w)−1Ξ̃ (w) Ξ(w)−1Λ (w) .

(b) If, in addition, there are no price-volatility cojumps and W is
independent of (σ , J), then supx|P(Ln (w) ≤ x|σ , J) − P(L (w) ≤

x|σ , J)| = Op(∆
1/2
n ).

The leading term Ln (w) in (3.6) is what drives the convergence
in Theorem 1. The higher-order term k−1/2

n Hn (w) is Op(k
−1/2
n ) and

hence is asymptotically dominated byLn (w). The limiting variable
Hn (w) involves not only

(
ςp
)
p≥1 but also

(
w̃p
)
p≥1, where the latter

sequence captures the sampling variability in the weights due to
the spot variance estimates. Part (b) of Theorem 2 further shows
that the conditional law of the leading term converges at a (fast)
parametric rate under the uniform metric.

Because of the higher-order asymptotic effect played by ĉn,i± in
the efficient beta estimation, the user has a lot of freedom in setting
the block size kn. Indeed, as seen from Theorem 2, we need only
kn ≍ ∆−a

n with a in the wide range of (0, 1/2). This is unlike the
block-based volatility estimators, see e.g., Jacod and Rosenbaum

(2013), where one has significantly less freedom in choosing kn.
Having the refined asymptotic result in Theorem 2 helps since if kn
is relatively small, the higher-order term k−1/2

n Hn (w) might have
nontrivial finite sample effect.

We now introduce a bootstrap algorithm and show that (see
Theorem 3 below) it provides the higher-order approximation
described in Theorem 2. With a mild adjustment, the same boot-
strap sample can also be used to compute critical values for the
specification test developed in Section 3.3. The bootstrap was
first introduced to the high-frequency setting by Gonçalves and
Meddahi (2009) and Dovonon et al. (2013) for making inference
for integrated variance and covariance matrices; also see Hounyo
(2013) and Dovonon et al. (2014). We apply here the bootstrap to
make inference for jumps, which is therefore very different from
prior work that concerns volatility inference.9

Algorithm 1 (Bootstrapping β̂n(w)). Step 1. In each bootstrap sam-
ple, we generate a d -dimensional standard Brownian motion W ∗

and random times
(
τ ∗

i

)
i∈Jn

which are mutually independent and
independent of the data, such that each τ ∗

i is drawnuniformly from
[(i − 1)∆n, i∆n].10 Set the diffusive return for each i ∈ Jn as

∆n
i,kX

∗c
≡

(
∆n

i,kY
∗c

∆n
i,kZ

∗c

)
= ĉ1/2n,i−(W

∗

τ∗
i

− W ∗

(i−1)∆n
)

+ ĉ1/2n,i+(W
∗

(i−1+k)∆n
− W ∗

τ∗
i
). (3.7)

Step 2. Set∆n
i,kZ

∗
= ∆n

i,kZ+∆n
i,kZ

∗c and∆n
i,kY

∗
= β̂n(w)⊤g(∆n

i,kZ)+
∆n

i,kY
∗c for i ∈ Jn. Compute β̂∗

n as the OLS estimator by regressing
∆n

i,kY
∗ on g(∆n

i,kZ
∗) in the subsample i ∈ Jn.

Step 3. For each i ∈ Jn, set

∆n
i−kn+jX

∗c
= ĉ1/2n,i−∆n

i−kn+jW
∗, ∆n

i+k+jX
∗c

= ĉ1/2n,i+∆n
i+k+jW

∗,

0 ≤ j ≤ kn − 1, (3.8)

and compute (ĉ∗

n,i−, ĉ∗

n,i+) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ĉ∗

n,i− ≡
1

kn∆n

kn−1∑
j=0

(
∆n

i−kn+jX
∗c) (∆n

i−kn+jX
∗c)⊤,

ĉ∗

n,i+ ≡
1

kn∆n

kn−1∑
j=0

(
∆n

i+k+jX
∗c) (∆n

i+k+jX
∗c)⊤.

(3.9)

Step 4. Compute β̂∗
n (w) in the bootstrap sample using (3.4)

with
(
∆n

i,kY , ∆n
i,kZ, ŵn,i

)
i∈Jn

replaced by (∆n
i,kY

∗, ∆n
i,kZ

∗, ŵ∗

n,i)i∈Jn ,
where ŵ∗

n,i ≡ w(ĉ∗

n,i−, ĉ∗

n,i+, ∆n
i,kZ

∗, β̂∗
n ).

In summary, Algorithm 1 suggests computing β̂∗
n (w) in the

same way as β̂n(w) using the bootstrap sample. One exception is
that the computation of the spot covariances (see (3.9)) does not
require truncation, because we only use the diffusive returns in
the bootstrap. It is important to observe that the spot covariance
matrices and the weights are also resampled so as to capture their
sampling variability in the higher-order asymptotics.

Theorem 3, below, describes the convergence in probability of
the F-conditional law of the bootstrap estimator β̂∗

n (w). For a
sequence of random variables An, we write An

L|F
−→ A if the F-

conditional law of An converges in probability to that of A under
any metric for the weak convergence of probability measures.11

9 Dovonon et al. (2014) consider an application of the bootstrap for approximat-
ing the null asymptotic distribution of jump tests, whichmainly concerns the jump-
robust inference for the integrated variance, rather than the jump process itself.
10 We note that the Gaussian increments of W ∗ are only needed within two-
sided kn-windows around the jump returns. This fact is useful for reducing the
computational cost in practice.
11 We note that An

L|F
−→ A amounts to the convergence of F-conditional law in a

weak sense, namely the convergence is in probability for measure-valued random
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Theorem 3. Suppose the same conditions as in Theorem 2. Then we
can decompose

∆−1/2
n

(
β̂∗

n (w) − β̂n (w)

)
= L∗

n (w) + k−1/2
n H∗

n (w)

+ op(k−1/2
n ), (3.10)

such that(
L∗

n (w) ,H∗

n (w)
) L|F

−→ (L (w) ,H (w)) ,

where (L (w) ,H (w)) are defined as in Theorem 2.

Theorem 3 justifies using the F-conditional distribution of
∆

−1/2
n (β̂∗

n (w)− β̂n (w)) to approximate theF -conditional limiting
distribution of∆−1/2

n (β̂n (w)−β∗). Importantly, the approximation
not only captures the leading termL (w), but also the higher-order
term k−1/2

n H (w).12 We further note that both L (w) andH (w) are
F-conditionally symmetric. Therefore, the basic bootstrap and the
percentile bootstrap (see, e.g., Davison and Hinkley (1997)) can
both be used for constructing bootstrap confidence intervals.

To summarize, refined inference for the jump regression coeffi-
cients can be done either by the use of the higher order asymptotic
result in Theorem 2 or the bootstrap procedure based on the result
of Theorem3.Weprovide no asymptotic justification for preferring
one over the other. In both methods the higher order asymptotic
effect from the estimation of volatility around the jump times is
accounted for. In addition, both methods ignore errors in the jump
regressionwhich are of even higher order (than the error due to the
estimation of volatility), like the errors in detecting the locations of
the jump times as well as the error due to the time variation in the
volatility in the local blocks around the jump times. The difference
between the inference based on the higher order asymptotic result
and the bootstrap method is that the latter is based on mimicking
the finite sample distribution of the regression estimator assuming
jumps are located correctly and the volatility does not vary over the
local blocks. The inference based on the higher order asymptotic
result, on the other hand, is based on asymptotic expansion of
the regression estimator in the above simplified setting (i.e., when
assuming jumps are located correctly and volatility is constant
over the local windows around the jump times). In that sense,
the difference between the two methods of refined inference for
the jump regression is similar to the difference between inference
based on asymptotic theory and bootstrap in classical settings, see
e.g., Section 2 of Horowitz (2001).13 Finally, on the practical side
the bootstrap is conceptually simple to grasp in the sense that the
econometrician only needs to repeatedly compute themixed-scale
OLS or WLS estimator in the bootstrap samples.

3.3. Specification testing and its bootstrap implementation

Weproceedwith a specification test for (2.4), which generalizes
the test of Li et al. (2017) to a multivariate mixed-scale setting.

elements. This convergence is weaker than the almost sure convergence of the F-
conditional law of An towards that of A, but is stronger than the stable convergence
in law.
12 It is useful to note that the spot volatility estimates ĉn,i± in Algorithm 1 can be
taken differently from those used in the estimation of β̂n(w). In particular, if these
spot volatility estimates attain the optimal ∆

−1/4
n rate, then it can be shown that

the F-conditional distribution L∗
n(w) converges to that of L(w) under the uniform

metric with rate ∆
−1/4
n .

13 The type of refinement offered by the bootstrap is nevertheless nonstandard
and theoretically interesting because our bootstrap is not applied to an asymp-
totically pivotal statistic, see Section 3.2 of Horowitz (2001) for a review of
standard results on the asymptotic refinement of the bootstrap for asymptotically
pivotal statistics. Instead, here, the refinement accounts for a higher-order sampling
variability from the nonparametrically constructedweights (due to spot covariance
estimation) that are used for efficient estimation.

Since (2.4) is no longer assumed to be correct, we introduce the
pseudo-true parameter

β̄ ≡

(∑
τ∈T

g (∆Zτ ) g(∆Zτ )
⊤

)−1 (∑
τ∈T

g (∆Zτ ) ∆Yτ

)
.

Clearly, β̄ coincideswithβ∗ whenever ((2.4) ) is correctly specified,
but β̄ remains well-defined even undermisspecification. Formally,
the testing problem is to decide in which of the following two sets
the observed sample path falls14:⎧⎪⎨⎪⎩

Ω0 ≡
{
∆Yτ = β̄⊤g (∆Zτ ) for all τ ∈ T

}
∩ {|P| > q} ,

(Null Hypothesis)
Ωa ≡

{
∆Yτ ̸= β̄⊤g (∆Zτ ) some τ ∈ T

}
∩ {|P| > q} ,

(Alternative Hypothesis).

(3.11)

Wenote that the event {|P| > q} rules out the degenerate situation
where (2.4) holds trivially (recall that q is the dimension of g (·)).
Like in the classical setting, this condition says that β∗ is overiden-
tified, so that a specification test is possible.

We carry out the test by examiningwhether the sum of squared
residuals (SSR) of a linear regression is ‘‘close enough’’ to zero. The
SSR statistic is given by

SSRn ≡

∑
i∈Jn

(
∆n

i,kY − g
(
∆n

i,kZ
)⊤

β̂n

)2
. (3.12)

We reject the null hypothesis that (2.4) is correctly specified at
significance level α ∈ (0, 1) if SSRn is greater than a critical value
cvα

n that is described in Algorithm 2 below. In practice, it may be
useful to report the test in terms of the R2 of the regression (2.9),
that is,

R2
n ≡ 1 −

SSRn∑
i∈Jn

∆n
i,kY 2 .

We reject the null hypothesis when 1 − R2
n is greater than

cvα
n /
∑

i∈Jn
(∆n

i,kY )
2.

Algorithm2 (Bootstrapping Critical Values for the Specification Test).
Step 1. Generate (∆n

i,kX
∗c)i∈Jn as in step 1 of Algorithm 1.

Step 2. Set ∆n
i,kZ

∗
= ∆n

i,kZ + ∆n
i,kZ

∗c and ∆n
i,kY

∗
= β̂⊤

n g(∆n
i,kZ) +

∆n
i,kY

∗c for i ∈ Jn.
Step 3. Set cvα

n to be the (1 − α)-quantile of SSR∗
n of the bootstrap

sample, where SSR∗
n is the SSR obtained from regressing ∆n

i,kY
∗ on

g(∆n
i,kZ

∗). □

Theorem 4. Under Assumptions 1 and 2, the following statements
hold.

(a) In restriction to Ω0, ∆−1
n SSRn converges stably in law to∑

p∈P

ς2
p −

(∑
p∈P

g
(
∆Zτp

)
ςp

)⊤(∑
p∈P

g
(
∆Zτp

)
g
(
∆Zτp

)⊤)−1

×

(∑
p∈P

g
(
∆Zτp

)
ςp

)
.

In restriction to Ωa, SSRn converges in probability to∑
p∈P

∆Y 2
τp

−

(∑
p∈P

g
(
∆Zτp

)
∆Yτp

)⊤(∑
p∈P

g
(
∆Zτp

)
g
(
∆Zτp

)⊤)−1

×

(∑
p∈P

g
(
∆Zτp

)
∆Yτp

)
.

14 Specifying hypotheses in terms of random events is unlike the classical setting
of hypothesis testing (e.g., Lehmann and Romano (2005)), but is standard in the
study of high frequency data; see Jacod and Protter (2012), and references and
discussions therein.
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(b) The test associated with the critical region {SSRn > cvα
n } has

asymptotic level α under the null hypothesis and asymptotic power
one under the alternative hypothesis, that is,

P
(
SSRn > cvα

n |Ω0
)

→ α, P
(
SSRn > cvα

n |Ωa
)

→ 1.

4. Simulation results

We now examine the asymptotic theory above in simulations
that mimic our empirical setting in Section 5. We set the sample
span T = 1 year, or equivalently, 250 trading days. Each day
contains m = 400 high-frequency returns, roughly corresponding
to 1-minute sampling. Each Monte Carlo sample contains n =

100,000 returns, which are expressed in annualized percentage
terms. We set the fine scale ∆n = 1/n and implement the mixed-
scale jump regression at the coarse scale k∆n , for k = 3, 5 and
10. While our main focus is on results with mixed scales, we also
report results for k = 1 as a benchmark. There are 2000 Monte
Carlo trials.

We consider a data generating process that allows for important
features such as leverage effect and price-volatility co-jumps. For
independent Brownian motionsW1,t , W2,t , B1,t and B2,t , we set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d log
(
V ∗

1,t

)
= −λNµFdt + 0.5

(
dB1,t + JV ,tdNt

)
,

V ∗

1,0 = V̄1,

log
(
V ∗

2,t

)
= log

(
V̄2 − β2

C V̄1
)
+ B2,t ,

V1,t = TODtV ∗

1,t , V2,t = TODtV ∗

2,t ,

dZt =
√
V1,t

(
ρdB1,t +

√
1 − ρ2dW1,t

)
+ ϕZ,tdNt ,

dYt = βC
√
V1,t

(
ρdB1,t +

√
1 − ρ2dW1,t

)
+
√
V2,tdW2,t + ϕY ,tdNt ,

(4.1)

where TODt is a daily periodic function that captures the time-of-
day effect in volatility.15 The jump regression relationship is given
by

ϕY ,t = βJϕZ,t , (4.2)

and the parameters are, in annualized terms,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V̄1 = 182, V̄2 = 262, ρ = −0.7, βC = 0.89, βJ = 1,

JV ,t
i.i.d.
∼ Exponential (µF ) , µF = 0.1,

ϕZ,t |V1,t
i.i.d.
∼ N

(
0,

φ2V1,t

n

)
, φ = 7.5, 10, or 12.5,

Nt is a Poisson process with intensity λN = 20.

(4.3)

These parameters are calibrated to match some key features of
the data used in Section 5. In particular, the signal-to-noise ratio
parameter φ controls the relative size of price jumps with respect
to that of the (local) 1-minute diffusive returns, which is about 10.3
in our empirical sample. The jump intensity λN is calibrated so that
the average number of detected jumps in the simulation is close to
what we observe in the data, which is about 10.6 jumps per year.
Whenφ = 7.5, 10 and 12.5, the average number of detected jumps
in the simulation are 8.7, 11.9 and 14.2, respectively.

In order to examine the power of the specification test, we also
implement the test under the following alternative model:

ϕY ,t = βJϕZ,t −
γ

φ
√
V̄1/n

ϕ2
Z,t1{ϕZ,t<0},

15 The time-of-day effect is calibrated using the data in our empirical study by
averaging across days for each fixed sampling interval within a day.

where the normalization via the average jump size φ
√
V̄1/nmakes

the interpretation of the parameter γ comparable across simula-
tions.We note that the correctly specifiedmodel (4.2) corresponds
to γ = 0. We generate misspecified models by setting γ = 1 or 2.

Tuning parameters are chosen as follows. We set kn = 60,
corresponding to a one-hour local window for spot covariance
estimation. For each trading day t ∈ {1, . . . , 250}, the truncation
thresholds for Z are chosen adaptively as

un,t = 7m−0.49
√
BVt , u′

n,t = 4m−0.49
√
BVt .

Here, BVt is a slightly modified version of the bipower variation
estimator of Barndorff-Nielsen and Shephard (2004b):

BVt ≡
m

m − 4

∑
i

⏐⏐∆n
i Z
⏐⏐ ⏐⏐∆n

i+1Z
⏐⏐ ,

where the sum is over all returns in day t but with the largest 3
summands excluded.16 The truncation threshold for Y is computed
similarly. Finally, we use the procedure detailed in the supplemen-
tal material of Todorov and Tauchen (2012) to adjust for the time-
of-day effect.

In Table 1, we report the finite-sample rejection rates of the
specification test described in Theorem 4. Under the null hypoth-
esis (i.e., γ = 0), we see that the rejection rates are fairly close to
the nominal levels of the test across various jump sizes and mixed
scales. Under the alternative model (i.e., γ = 1 or 2), the rejection
rates are well above the nominal level. Not surprisingly, the finite-
sample power decreases as we use coarser scale (i.e. larger k), but
it is interesting to note that the drop of power from k = 1 to k = 3
is not severe. As φ and γ increase, the rejection rates approach one.

In Table 2, we report some summary statistics for the mixed-
scale OLS and WLS estimators of the jump beta. We see that the
WLS estimator is always more accurate than the OLS estimator
as measured by the root mean squared error (RMSE). Moreover,
the coverage rates of confidence intervals (CI) constructed using
Algorithm 1 and the percentile bootstrap are generally very close
to thenominal levels, regardless of the sampling scale and the jump
size. Coverage results based on the basic bootstrap are very similar
to the percentile bootstrap and, hence, are omitted for brevity.

5. Empirical application

We use the developed tools to study the systematic jump risk
in the stocks comprising the Dow Jones Industrial Average Index
as of December 2014, except Visa Inc. (V) is replaced by Bank
of America (BAC) to make a balanced panel covering the period
January 3, 2007 to December 12, 2014. The proxy for the market
is the front-month E-mini S&P 500 index futures contract, which
is among the most liquid instruments in the world.17 In some
of our analysis we also make use of the ETFs on the nine indus-
try portfolios comprising the S&P 500 index. We remove market
holidays and half trading days. We also remove the two ‘‘Flash
Crashes’’ (May 6, 2010 and April 23, 2013) because the dramatic
market fluctuations in these days are known to be due to market
malfunctioning. The resultant sample contains 1982 trading days.
The intraday observations are sampled at 1-minute frequency from
9:35 to 15:55 EST; the prices at the first and the last 5 min are
discarded to guard against possible adverse microstructure effects
at market open and close. Finally, the truncation and the window
size for the local volatility estimation are set as in the Monte Carlo.

16 In empirical applications, there may be large consecutive returns with similar
magnitude but opposite signs (i.e., bouncebacks). The bipower variation estimator
is sensitive to such issues. Removing the largest three summands is a simple but
effective finite-sample robustification in this respect.
17 Hasbrouck (2003) estimates that 90% of U.S. equity price formation takes place
in the E-mini market futures market.
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Table 1
Monte Carlo rejection rates of specification tests.

γ = 0 γ = 1 γ = 2

1% 5% 10% 1% 5% 10% 1% 5% 10%

φ = 7.5 k = 1 1.2 4.3 9.8 90.1 93.5 95.2 96.6 97.7 98.5
k = 3 1.5 5.3 9.7 75.9 83.5 87.0 92.3 94.5 95.8
k = 5 1.3 5.0 10.2 64.3 74.6 79.8 87.9 91.5 93.9
k = 10 1.3 5.1 9.7 46.1 59.9 67.3 75.3 82.8 87.2

φ = 10 k = 1 0.9 5.1 10.0 96.0 97.9 98.6 99.1 99.4 99.4
k = 3 1.5 5.5 9.8 86.9 91.8 93.7 97.5 98.4 98.8
k = 5 1.3 5.9 10.9 80.1 87.0 89.8 94.8 96.9 97.7
k = 10 1.5 6.3 10.4 64.1 75.3 80.3 87.1 92.3 94.3

φ = 12.5 k = 1 1.3 5.5 10.4 98.2 99.1 99.3 99.2 99.4 99.6
k = 3 1.4 5.6 10.4 93.3 95.5 96.8 97.8 98.3 98.8
k = 5 1.6 5.7 10.1 87.6 92.1 94.3 96.4 97.5 98.0
k = 10 1.4 5.8 10.6 74.2 83.6 86.7 91.6 94.4 96.1

Note: We report the Monte Carlo rejection rates of the specification test at significance level 1%, 5% and 10%. We report
results under the null hypothesis (γ = 0) and the alternative hypothesis (γ = 1, 2) for various mixed scales (k = 1, 3,
5 and 10) as well as various relative jump sizes (φ = 7.5, 10 and 12.5). The inference is based on 1000 bootstrap draws.
Each experiment has 2000 Monte Carlo trials.

Table 2
Summary of estimation and coverage results.

Mixed-Scale OLS Mixed-Scale WLS

RMSE 99% CI 95% CI 90% CI RMSE 99% CI 95% CI 90% CI

φ = 7.5 k = 1 0.063 98.5 93.7 88.1 0.057 98.9 94.4 88.7
k = 3 0.111 98.2 92.9 88.4 0.101 98.3 92.7 88.8
k = 5 0.143 98.6 94.6 88.7 0.129 98.5 94.0 88.7
k = 10 0.194 98.5 94.9 89.3 0.182 98.6 93.9 88.9

φ = 10 k = 1 0.045 98.7 94.1 88.3 0.039 98.5 94.6 89.2
k = 3 0.075 98.7 94.2 88.8 0.065 98.5 94.6 89.5
k = 5 0.097 98.0 93.5 88.6 0.084 99.0 95.0 88.4
k = 10 0.131 98.9 95.1 91.0 0.116 98.9 95.6 90.4

φ = 12.5 k = 1 0.034 98.8 94.6 88.6 0.029 98.9 94.8 89.3
k = 3 0.062 98.7 93.0 87.9 0.051 98.7 94.8 89.2
k = 5 0.080 98.2 94.0 88.2 0.067 98.6 94.0 89.0
k = 10 0.110 98.5 93.0 88.2 0.095 98.8 93.6 88.3

Note: We report the root mean squared error (RMSE) and the Monte Carlo coverage rates of confidence intervals (CI) at
levels 99%, 95% and 90%. We report results for various mixed scales (k = 1, 3, 5 and 10) and relative jump sizes (φ = 7.5,
10 and 12.5) for both mixed-scale OLS andWLS estimators. The CIs are constructed using Algorithm 1 and the percentile
bootstrap based on 1000 bootstrap draws. Each experiment has 2000 Monte Carlo trials.

For this choice of the truncation (corresponding to a move slightly
higher than 7 standard deviations), we detect a total of 85 market
jumps in our sample.

To gauge the importance of microstructure noise that is weakly
dependent on time, we compare the average value of realized
volatility at 1-minute (our sampling frequency) and the coarser
sampling frequency of 5-minutes. In presence of weakly depen-
dent noise, the realized volatility should be higher for the higher
sampling frequency due to this type of noise. For our data set, the
median value of the ratio of 1-minute realized volatility over 5-
minute realized volatility is 1.08. This indicates a relativelymodest
impact of the noise at the frequency we use here for the local
volatility estimation around the jump times.

We start our empirical analysis with illustrating how stocks
react to market jumps using four representative market jumps
in our sample (two positive and two negative). In Fig. 1, we plot
the prices of the market and a set of selected stocks before and
after the market jump event. The top left panel shows the behav-
ior around the market jump on September 18, 2013 which was
associated with the (positive) surprise by the Fed of not tapering
its QE programs. In this case, both the market and the BA stock
reacted within the same minute and fully adjusted to their new
higher levels. A similar example, but in the opposite direction, is
illustrated on the top right panel of the figure. This panel plots
the market and AXP prices around the market jump on August 5,
2014. There were growing fears on this day associated with the

impact of geopolitical risks on the economy along with concerns
among investors that the Fed might raise interest rates sooner
than expected in the wake of signs that the economy is gaining
strength. In this example, like the previous one, both the market
and the stock adjust to their lower level within the minute. Our
third example of a market jump is of October 1, 2008 in the midst
of the recent financial crisis. In this case, the CVX stock appeared
to take more than one minute to fully incorporate the positive
market jump, a seemingly delayed reaction which could be driven
by market microstructure issues (e.g., stale limit orders). Another
example of this type is the reaction of theWMT stock to themarket
jump on February 23, 2010 which is displayed on the bottom right
panel of Fig. 1. Thismarket jumpwas associatedwith a surprisingly
weak consumer confidence index reflecting the pessimism among
investors for the strength of the economic recovery. While the
market reacted within the minute of the release of the negative
consumer confidence data, the WMT stock took at least 2 min to
fully incorporate the bad news.

Overall, the above four examples suggest that, in general, the
stocks in our sample react quickly to the news triggering the
market jumps. However, in some instances staleness and lower
liquidity can confound the reaction of stocks to the market jumps.
These market microstructure related issues, however, seem to be
fairly short-lived. To verify that this is indeed the case, in Table 3,
we report the jump beta estimates for all the stocks in the sample
using aggregation of 3 and 5 minutes for the beta estimation
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(a) BA: Sep/18/2013.

(b) AXP: Aug/05/2014.

(c) CVX: Oct/01/2008.

(d) WMT: Feb/23/2010.

Fig. 1. Market jump events and stock reaction. Circle and diamond dots correspond
to cumulative (over the day) 1-minute log-returns onmarket and stock respectively.
The connected dots correspond to the minute interval in which a market jump is
detected.

(and using the whole sample). In the absence of confounding
market microstructure effects, the two beta estimates should not
be statistically different from each other. The results of the table
show that this is largely the case. Indeed, the two beta estimates
are fairly close with the median difference between the 5-minute
and 3-minute estimates being only 0.01. The largest difference
of 0.14 in our data set is for the DD stock, and this difference is
onlymarginally statistically significant. Given this evidence, for the
results that follow we will focus attention on the beta estimates
based on threeminute aggregation of returns following themarket
jump.

Table 3
Full sample WLS beta estimates.

Ticker β 95% CI β 95% CI
k = 3 k = 5

AXP 1.15 [1.08; 1.20] 1.17 [1.09; 1.22]
BA 0.99 [0.92; 1.03] 1.02 [0.94; 1.07]
BAC 1.36 [1.27; 1.43] 1.36 [1.25; 1.44]
CAT 1.06 [0.99; 1.11] 1.08 [1.00; 1.13]
CSCO 0.84 [0.77; 0.90] 0.89 [0.82; 0.97]
CVX 0.99 [0.94; 1.03] 0.98 [0.92; 1.02]
DD 1.09 [1.03; 1.14] 1.23 [1.15; 1.27]
DIS 0.97 [0.92; 1.01] 0.98 [0.91; 1.02]
GE 1.16 [1.09; 1.21] 1.17 [1.08; 1.23]
GS 1.20 [1.12; 1.25] 1.21 [1.11; 1.27]
HD 1.05 [0.98; 1.09] 1.07 [0.99; 1.12]
IBM 0.81 [0.76; 0.84] 0.81 [0.75; 0.84]
INTC 0.88 [0.81; 0.94] 0.93 [0.85; 0.99]
JNJ 0.67 [0.62; 0.70] 0.67 [0.62; 0.70]
JPM 1.31 [1.24; 1.37] 1.29 [1.20; 1.34]
KO 0.70 [0.65; 0.74] 0.66 [0.60; 0.70]
MCD 0.51 [0.47; 0.54] 0.50 [0.46; 0.54]
MMM 1.00 [0.95; 1.03] 1.04 [0.97; 1.07]
MRK 0.94 [0.87; 0.97] 0.91 [0.84; 0.95]
MSFT 0.81 [0.75; 0.85] 0.81 [0.75; 0.87]
NKE 0.78 [0.72; 0.83] 0.82 [0.75; 0.87]
PFE 0.87 [0.80; 0.92] 0.88 [0.80; 0.94]
PG 0.68 [0.63; 0.71] 0.65 [0.59; 0.68]
T 0.84 [0.78; 0.88] 0.82 [0.75; 0.86]
TRV 0.94 [0.88; 0.97] 0.86 [0.79; 0.90]
UNH 0.86 [0.80; 0.91] 0.92 [0.84; 0.97]
UTX 1.02 [0.96; 1.05] 1.04 [0.97; 1.08]
VZ 0.72 [0.67; 0.76] 0.71 [0.65; 0.76]
WMT 0.64 [0.59; 0.67] 0.62 [0.57; 0.66]
XOM 0.98 [0.93; 1.02] 0.97 [0.91; 1.01]

Note: We report the efficient k-mixed-scale (k = 3 or 5) WLS estimates and their
95% confidence intervals (CI) of the 30 Dow stocks over the full sample. The CIs are
from the percentile bootstrap using 1000 draws.

In Fig. 2, we present scatter plots of stock jumps versus market
jumps along with the fit implied by a constant market jump beta
model for the whole sample. Overall, we see a very good fit. Most
of the jump observations are fairly close to the fit implied by the
constant jump beta model. Nevertheless, for some of the stocks,
particularly those in the financial sector (bottom row), we see
somewhat non-trivial deviations from the linear jump regression
model. Of course, this can be merely due to the temporal variation
in betas. In terms of levels, the jump betas of the stocks in the
banking industry are systematically above one, while those of the
consumer and healthcare sectors like MCD, WMT, JNJ and PG, are
significantly below one.

Given the overwhelming prior evidence on time variation in
market betas, we next present results from testing for constancy of
market jump betas over periods of years. The results are reported
in the top panel of Table 4. We conduct the test over different
aggregation frequencies ranging from oneminute (no aggregation)
to ten minutes. Naturally, more aggregation leads to diminishing
power of detecting the variation in jump betas. This is consistent
with our Monte Carlo results reported in the previous section.
However, the drop of rejection rates going from one to three
minutes evident fromTable 4 is too big to be solely explainedby the
statistical effect of losing power when aggregating returns for the
jump beta estimation. Instead, the relatively high rejection rates of
the test for one minute aggregation are likely due to market mi-
crostructure effects like the ones illustrated on the bottom panels
of Fig. 1. At the three minute aggregation level, the rejection rates
of the test are relatively low except for years 2007, 2008 and 2013.
Some of these rejections can be still due to microstructure issues.
However, some of the rejections probably reflect genuine variation
of market jump betas, particularly during the period of the recent
global financial crisis.
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Fig. 2. Scatter of stock versus market returns at market jump times of the full sample.

Table 4
Specification testing results for 30 DJIA stocks.

2007 2008 2009 2010 2011 2012 2013 2014
Cross-Sectional rejection rate

k = 1 0.80 0.77 0.77 0.50 0.50 0.93 0.70 0.77
k = 3 0.50 0.43 0.07 0.17 0.10 0.40 0.33 0.17
k = 5 0.27 0.03 0.00 0.10 0.17 0.40 0.10 0.10
k = 10 0.17 0.10 0.10 0.00 0.00 0.17 0.07 0.03

Cross-Sectional median of R2

k = 1 0.90 0.90 0.93 0.93 0.97 0.90 0.96 0.91
k = 3 0.86 0.80 0.87 0.92 0.95 0.88 0.95 0.86
k = 5 0.83 0.75 0.87 0.93 0.91 0.88 0.97 0.85
k = 10 0.82 0.81 0.93 0.86 0.87 0.82 0.97 0.81

Note: On the top panel, we report the cross-sectional rejection rate of the specification test at 1% significance level for
the k-mixed samples year-by-year. On the bottom panel, we report the cross-sectional median of the R2s of the 30 stocks
for the k-mixed samples.

To further gauge the performance of the year-by-year linear
jump regression model, the second panel of Table 4 reports the
R2 of the model fit at the market jump events. As seen from the
table, the R2 numbers are generally very high. For example, the
time series average of R2 at one- and three-minute aggregation
are 0.93 and 0.89 respectively. As expected from theory, when
increasing aggregation from one minute to ten minutes, the R2

drops because the volatility of the diffusive aggregated increments
around the jumps increases. Nevertheless, we see that with the
exception of year 2008, the loss of R2 going from one-minute to
three-minute aggregation is quite moderate. Comparing the two
panels of Table 4, we notice that there is no direct correspondence
between the rejection rates and the magnitude of the R2 of the
linear jump regression. For example, focusing at the three-minute
aggregation results, we can see that year 2007 is associated with
the highest rejection rate of the linear jump regression model
and yet has relatively high R2. On the other hand, year 2008 is
associated with high rejection rate and has the lowest R2 in the
sample (using again the three-minute aggregation results). This
difference can be explained with the different magnitude of the
volatility around the jumpevent: it is relatively higher in 2008 than
in 2007 and, as a result, the inference in the latter is sharper than
the former.

To better assess the time variation in market jump betas, we
plot next yearly jump betas in Fig. 3. There are some clearly
distinguishable time-series patterns evident from the figure. For
example, the market jump betas of stocks in the financial sector,
such as AXP, BAC and JPM, increase in the first two years in our
sample and gradually decrease afterwards. On the other hand,
stocks such as INTC and WMT exhibit very little time variation.

The analysis so far has been based at the market jump times.
We next investigate how stocks react to other systematic jump
events. In particular, we focus attention on jump events in the
nine industries comprising the S&P 500 index (our proxy for the
market index) which are not detected as market jump events. In
a market jump model in which the jumps in stocks are of two
types, idiosyncratic and market, aggregate portfolios, such as the
nine industry portfolios, should contain only jumps at the times
when the market jumps (as the idiosyncratic jumps get diversified
away). However, some systematic jump events can have much
bigger impact on a particular industry sector than on the market
as a whole and, hence, the magnitude of an industry jump can be
much bigger than that of the market co-jump. In such instances,
given our discrete setting and high truncation level, we can fail to
detect such jump events on themarket level but still find them in a
particular industry sector portfolio. Hence, we label jump events in
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Fig. 3. Time series of yearly jump betas, 2007–2014. The dots correspond to the yearlyWLS beta estimates and the shaded areas correspond to the associated 95% confidence
intervals.

Table 5
R2 of the market factor for two types of jumps.

R2 of Market-wide jumps

AXP 0.81 HD 0.92 NKE 0.84
BA 0.75 IBM 0.84 PFE 0.84
BAC 0.81 INTC 0.87 PG 0.74
CAT 0.77 JNJ 0.73 T 0.87
CSCO 0.82 JPM 0.70 TRV 0.78
CVX 0.90 KO 0.83 UNH 0.71
DD 0.84 MCD 0.72 UTX 0.85
DIS 0.89 MMM 0.81 VZ 0.85
GE 0.84 MRK 0.81 WMT 0.87
GS 0.72 MSFT 0.84 XOM 0.85

R2 of Sector-specific jumps

AXP 0.45 HD 0.35 NKE 0.39
BA 0.33 IBM 0.22 PFE 0.46
BAC 0.75 INTC 0.48 PG 0.61
CAT 0.46 JNJ 0.50 T 0.53
CSCO 0.72 JPM 0.83 TRV 0.42
CVX 0.29 KO 0.31 UNH 0.21
DD 0.32 MCD 0.68 UTX 0.52
DIS 0.49 MMM 0.62 VZ 0.58
GE 0.46 MRK 0.32 WMT 0.29
GS 0.45 MSFT 0.78 XOM 0.33

an industry sector, which are not detected as market jump times,
as sector-specific jumps. These jumps have relatively much bigger
importance for the particular sector than for the market.

To study the reaction of stocks to sector-specific jump events,
we first associate with each of the stocks in our analysis the
industry sector it belongs to.18 In Table 5 we report the R2 for a
linear jump regressionmodel of the stock jump against themarket
jump at the sector-specific jump events for each of the stocks
based on the whole sample. For comparison we also report the
corresponding R2 for the linear market jump model at the market
jump times. The results present a rather mixed picture for the
performance of the linearmarket jumpmodel at the sector-specific

18 The stocks in our study are all part of the S&P 500 index during the sample
period. We, therefore, use the industry classification that is used to split the stocks
in the S&P 500 index into nine industry portfolio ETFs.

jump events. For some stocks such as BAC, JPM,MCD andMSFT, the
performance of the linear regression at the sector-specific jump
events in terms of R2 is comparable to its performance at the
market jump events. However, for stocks like CVX, IBM, WMT and
XOM, the R2 of the regression at the sector-specific jump times is
very low. Some of the loss of fit when comparing the performance
of the linear jump model at market-wide jump events and sector-
specific jump events can be due to the ‘‘signal’’ being smaller,
that is, the market jump size at the sector-specific jump events
being smaller in absolute value. This, however, cannot be the sole
explanation, since as explained above, for some of the stocks in
our sample the drop in R2 is quite small. Another reason for the
worsening fit at the sector-specific jump events can be due to
larger ‘‘noise’’, i.e., the diffusive volatility around the sector-specific
jump events can be much bigger than around market-wide jump
events for some of the stocks. Yet a third reason can be that the
linearmarket jumpmodel does not hold at the sector-specific jump
events.

To get further insight into the performance of the linear market
jumpmodel at the sector-specific jump events, we display in Fig. 4
scatter plots of the stock jumps against the market jumps at the
sector-specific jump events for four representative (in terms of
R2) stocks. As seen from the figure, the performance of the model
for IBM is very good with the observations being very close to
the linear fit. On the other hand, for GE we notice that the jump
observations aremuchmore dispersed around the linear fit. This is
suggestive of larger diffusive volatility around the sector-specific
jump events for GE which consequently lowers the R2 of the
regression. Similar reasoning can explain the low R2 for XOM. For
this stock, however, we can also notice a few outliers in the lower
left corner of the plotwhich are indicative ofmodel failure, i.e., that
the market jumps cannot solely explain the XOM jumps at the
sector-specific jump events. Finally, the fit for WMT is fairly poor
with no strong association between the stock andmarket jumps at
the sector-specific jump events. This is in sharp contrast with the
performance of the linear jump market model for this stock at the
market jump events.

Overall, we can conclude that for some stocks the linear market
jump model continues to work well at the sector-specific jump
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Fig. 4. Scatter of stock versus market returns at sector-specific jump times.

events. For many of the stocks, however, this is also associated
with increased diffusive volatility around the sector-specific jump
events which makes inference for the market jump beta at these
events much noisier when compared with inference conducted at
the market-wide jump events. Finally, for some of the stocks, the
linear market jumpmodel fails to account for behavior of the stock
market jumps at the sector-specific jump events and other factors
are probably needed.

6. Conclusion

We propose a new mixed-scale jump regression framework
for studying deterministic dependencies among jumps in a mul-
tivariate setting. A fine time scale is used to identify with high
accuracy the times of large rare jumps in the explanatory vari-
able(s). A coarser scale is then used to conduct the estimation in
order to attenuate the effects of trading friction noise. We derive
the asymptotic properties of an efficient estimator of the jump
regression coefficients and a test for its specification. The limit-
ing distributions of the estimator and the test statistic are non-
standard, but a simple bootstrap method is shown to be valid for
feasible inference. We further show that the bootstrap provides a
higher-order refinement that accounts for the sampling variation
in spot covariance estimates which are used to construct the ef-
ficient estimator. In a realistically calibrated Monte Carlo setting,
which features leverage effects and price-volatility co-jumps, we
report good size and power properties of the general specification
test and good coverage properties of the confidence intervals.

The empirical application employs a 1-minute panel of Dow
stock prices together with the front-month E-mini S&P 500 stock
market index futures over the period 2007–2014. The 1-minute
market index is used to locate jump times, and subsequent 3-
minute sampling around the jump times is used to conduct the
jump regression. We find a strong relationship between market
jumps and stock price moves at market jump times. The market
jump betas exhibit remarkable temporal stability and the jump
regressions have very high observed R2s. On the other hand, for
many of the stocks in the sample, the relationship between stock
and market jumps at sector-specific jump times is significantly
noisier, and temporally more unstable, than the tight relationship
seen at market jump times.

Appendix. Proofs

We now prove the theorems in the main text. Throughout this
appendix, we use K to denote a generic positive constant that may
change from line to line;we sometimes emphasize the dependence
of this constant on some parameter q by writing Kq. Below, the
convergence

(
ξn,p
)
p≥1 →

(
ξp
)
p≥1, as n → ∞, is understood

to be under the product topology. We write w.p.a.1 for ‘‘with
probability approaching one.’’ Recall that

(
τp
)
p≥1 are the successive

jump times of Z and P =
{
p ≥ 1 : τp ∈ [0, T ]

}
. We use i (p) to

denote the unique integer such that τp ∈ ((i − 1) ∆n, i∆n].
By a standard localization procedure (see Section 4.4.1 of Jacod

and Protter (2012)), we can respectively strengthen Assumptions 1
and 3 to the following stronger versions without loss of generality.

Assumption 4. We have Assumption 1. The processes Xt , bt and σt
are bounded.

Assumption 5. We have Assumption 3. The processes b̃t and σ̃t
are bounded. Moreover, there exists some bounded λ-integrable
function J̃ such that ∥δ̃(t, u)∥2

≤ J̃ (u) for all t ∈ [0, T ] and u ∈ R.

A.1. Proof of Theorem 1

Proof of Theorem 1. By Proposition 1 of Li et al. (2017),

P
(
Jn = C̄n = J ∗

n

)
→ 1, (A.1)

where C̄n is the complement of Cn. Since the jumps of X have finite
activity, differences between distinct indices in Jn can be bounded
below by 2kn w.p.a.1 and, hence,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ĉn,i(p)− =
1

kn∆n

kn−1∑
j=0

(∆n
i(p)−kn+jX)(∆

n
i(p)−kn+jX)

⊤1{i(p)−kn+j∈Cn},

ĉn,i(p)+ =
1

kn∆n

kn−1∑
j=0

(∆n
i(p)+k+jX)(∆

n
i(p)+k+jX)

⊤1{i(p)+k+j∈Cn}.
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Then, by Theorem 9.3.2 in Jacod and Protter (2012) and
∆n

i(p),kZ −→ ∆Zτp , we derive(
ĉni(p)−, ĉni(p)+, ∆n

i(p),kZ
) P

−→
(
cτp−, cτp , ∆Zτp

)
.

By (A.1), we see that the following holds w.p.a.1,

β̂n (w) − β∗

=

(∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ)g(∆

n
i(p),kZ)

⊤

)−1

×

(∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ)ε

n
i(p),k

)
.

(A.2)

By Assumption 2, g(·) is continuously differentiable at∆Zτp almost
surely. Then, noting that ∆n

i(p),kZ
c

= Op(∆
1/2
n ), we use a second-

order Taylor expansion to deduce

∆−1/2
n εn

i(p),k = ∆−1/2
n

(
∆n

i(p),kY
c
− β∗⊤

(
g(∆Zτp + ∆n

i(p),kZ
c)

− g(∆Zτp )
))

= ∆−1/2
n

(
∆n

i(p),kY
c
− β∗⊤∂g

(
∆Zτp

)
∆n

i(p),kZ
c)

+Op(∆1/2
n ). (A.3)

By a straightforward adaptation of Proposition 4.4.10 of Jacod and
Protter (2012), we have

∆−1/2
n

(
∆n

i(p),kX
c)

p≥1
L-s
−→

(
√

κpστp−ξp− +
√
k − κpστpξp+

)
p≥1

.(A.4)

By (A.3) and (A.4),

∆−1/2
n

(
εn
i(p),k

)
p≥1

L-s
−→

(
ςp
)
p≥1. (A.5)

From (A.2) and (A.5), it is easy to see that β̂n
P

−→ β∗. Hence,
ŵn,i(p)

P
−→ wp for each p ≥ 1. From here, as well as (A.2) and

(A.5), we derive

∆−1/2
n

(
β̂n (w) − β∗

)
L-s
−→ Ξ(w)−1Λ (w)

as asserted. □

A.2. Proof of Theorem 2

Proof of Theorem 2. (a) By Theorem 13.3.3 in Jacod and Protter
(2012), we have(
k1/2n (ĉn,i(p)− − cτp−), k

1/2
n (ĉn,i(p)+ − cτp )

)
p≥1

L-s
−→

(
ζp−, ζp+

)
p≥1.

(A.6)

This convergence indeed holds jointly with (A.5) because ∆n
i,kX

c

and (ĉn,i−, ĉn,i+) involve non-overlapping returns. Let

ε̃n
i(p),k ≡ ∆n

i(p),kY
c
− β∗⊤∂g

(
∆Zτp

)
∆n

i(p),kZ
c .

From (A.3), we see that

∆−1/2
n εn

i(p),k − ∆−1/2
n ε̃n

i(p),k = Op(∆1/2
n ) = op(k−1/2

n ).

Recall that ẇ(·) is the first differential of w(·), that is, as(
c ′
−
, c ′

+
, z ′, b′

)
→ 0,

w
(
c− + c ′

−
, c+ + c ′

+
, z + z ′, b + b′

)
− w (c−, c+, z, b)

= ẇ
(
c−, c+, z, b; c ′

−
, c ′

+
, z ′, b′

)
+ o

(c ′

−

+
c ′

+

+
z ′
+

b′
) .

Recall that w̃p ≡ ẇ
(
cτp−, cτp+, ∆Zτp , β

∗
; ζp−, ζp+, 0, 0

)
. By the

delta method, we derive from (A.5) and (A.6), ∆n
i(p),kZ = ∆Zτp +

Op(∆
1/2
n ) and β̂n = β∗

+ Op(∆
1/2
n ) that(

k1/2n

(
ŵn,i(p) − wp

)
, ∆−1/2

n ε̃n
i(p),k

)
p≥1

L-s
−→

(
w̃p, ςp

)
p≥1. (A.7)

We now note that, w.p.a.1,

∆−1/2
n

(
β̂n (w) − β∗

)
=

(∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ)g(∆

n
i(p),kZ)

⊤

)−1

×

(∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ)∆

−1/2
n εn

i(p),k

)

=

(
Ξ (w) +

∑
p∈P

(
ŵn,i(p) − wp

)
g
(
∆Zτp

)
g
(
∆Zτp

)⊤
+ op(k−1/2

n )
)−1

×

(∑
p∈P

wpg
(
∆Zτp

)
∆−1/2

n ε̃n
i(p),k

+

∑
p∈P

(
ŵn,i(p) − wp

)
g
(
∆Zτp

)
∆−1/2

n ε̃n
i(p),k + op(k−1/2

n )

)
= Ln (w) + k−1/2

n Hn (w) + op(k−1/2
n ),

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ln (w) ≡ Ξ(w)−1
∑
p∈P

wpg
(
∆Zτp

)
∆−1/2

n ε̃n
i(p),k,

Hn (w) ≡ Ξ(w)−1
∑
p∈P

k1/2n

(
ŵn,i(p)

− wp
)
g
(
∆Zτp

)
∆−1/2

n ε̃n
i(p),k

− Ξ(w)−1

(∑
p∈P

k1/2n

(
ŵn,i(p) − wp

)
g
(
∆Zτp

)
g
(
∆Zτp

)⊤)
× Ξ(w)−1

×

(∑
p∈P

wpg
(
∆Zτp

)
∆−1/2

n ε̃n
i(p),k

)
.

(A.8)

From (A.7), we have (Ln (w) ,Hn (w))
L-s
−→ (L (w) ,H (w)) as

asserted.
(b) Under the independence assumption, conditionally on

(σ , J), ∆
−1/2
n ε̃n

i(p),k are independent centered Gaussian with
conditional variance (1, −β∗⊤∂g

(
∆Zτp

)
)c̄n,p(1, −β∗⊤∂g

(
∆Zτp

)
)⊤,

where

c̄n,p ≡
1

k∆n

∫ (i(p)−1+k)∆n

(i(p)−1)∆n

csds.

Since there is no price-volatility cojump, conditionally on
(σ , J), the ςp variables are independent centered Gaussian with
conditional variance (1, −β∗⊤∂g

(
∆Zτp

)
)cτp (1, −β∗⊤∂g

(
∆Zτp

)
)⊤.

Therefore,

sup
x

|P(Ln (w) ≤ x|σ , J) − P(L (w) ≤ x|σ , J)|

≤ Op(1)
∑
p∈P

c̄n,p − cτp
 .

Since the process c is an Itô semimartingale, the majorant side of
the above display is Op(∆

1/2
n ). □

A.3. Proof of Theorem 3

Proof of Theorem 3. We consider the following set of sample
paths

Ωn ≡ {Jn = C̄n = J ∗

n } ∩ {|i − j| > 2kn for any i, j ∈ Jn with i ̸= j} .

From (A.1), it is easy to see that P (Ωn) → 1. Hence, we can restrict
the calculation below on the sample paths in Ωn without loss of
generality.
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Since ĉn,i(p)± = Op(1),{
E
[
∥∆n

i(p),kX
∗c

∥
2
⏐⏐F] = Op(∆n),

E
[
∥g(∆n

i(p),kZ
∗) − g(∆n

i(p),kZ)∥
2
⏐⏐F] = Op(∆n).

(A.9)

Since β̂n − β̂n (w) = Op(∆
1/2
n ) and kn∆n → 0, we further have

k1/2n

(
∆n

i(p),kY
∗
− β̂⊤

n g(∆n
i(p),kZ

∗)
)

= op(1). (A.10)

Note that, w.p.a.1,

k1/2n

(
β̂∗

n − β̂n

)
=

(∑
p∈P

g(∆n
i(p),kZ

∗)g(∆n
i(p),kZ

∗)⊤
)−1

×

(∑
p∈P

g(∆n
i(p),kZ

∗)k1/2n

(
∆n

i(p),kY
∗
− β̂⊤

n g(∆n
i(p),kZ

∗)
))

.

From (A.10), we deduce

k1/2n

(
β̂∗

n − β̂n

)
= op(1). (A.11)

Next, we observe from (3.9) that ĉ∗

n,i(p)±− ĉn,i(p)± are averages of
F -conditionally independent mean-zero variables with stochasti-
cally bounded fourthF-conditionalmoments.We further note that

E
[(

ĉ∗jk
n,i(p)± − ĉ jkn,i(p)±

) (
ĉ∗lm
n,i(p)± − ĉ lmn,i(p)±

)⏐⏐⏐F]
=

1
kn

(
ĉ jln,i(p)±ĉ

km
n,i(p)± + ĉ jmn,i(p)±ĉ

kl
n,i(p)±

)
,

E
[(

ĉ∗jk
n,i(p)± − ĉ jkn,i(p)±

) (
ĉ∗lm
n,i(p)∓ − ĉ lmn,i(p)∓

)⏐⏐⏐F] = 0.

Upon using a subsequence characterization of convergence in
probability and applying Lindeberg’s central limit theorem under
the F -conditional probability, we derive

k1/2n

(
ĉ∗

n,i(p)− − ĉn,i(p)−, ĉ∗

n,i(p)+ − ĉn,i(p)+
)
p≥1

L|F

−→
(
ζp−, ζp+

)
p≥1. (A.12)

By (A.9), (A.11) and (A.12), we use the delta method to deduce

k1/2n

(
ŵ∗

n,i(p) − ŵn,i(p)
)
p≥1

L|F
−→

(
w̃p
)
p≥1. (A.13)

We now set

εn∗
i,k = ∆n

i,kY
∗c

− β̂n(w)⊤
(
g
(
∆n

i,kZ
∗
)
− g

(
∆n

i,kZ
))

,

ε̃n∗
i,k = ∆n

i,kY
∗c

− β̂n(w)⊤∂g
(
∆n

i,kZ
)
∆n

i,kZ
∗c .

Note that εn∗
i,k − ε̃n∗

i,k = Op(∆n). Recall the F-conditional distri-

bution of ∆n
i,kX

∗c from Algorithm 1. Since β̂n (w)
P

−→ β∗ and

∂g(∆n
i(p),kZ)

P
−→ ∂g

(
∆Zτp

)
, we further deduce

∆−1/2
n

(
ε̃n∗
i(p),k

)
p≥1

L|F
−→

(
ςp
)
p≥1. (A.14)

Note that, in restriction toΩn, ĉ∗

n,i(p)± and ε̃n∗
i(p),k areF-conditionally

independent because they do not involve overlapping increments
ofW ∗. Hence, (A.13) and (A.14) hold jointly, yielding(
∆−1/2

n ε̃n∗
i(p),k, k

1/2
n

(
ŵ∗

n,i(p) − ŵn,i(p)
))

p≥1

L|F
−→

(
ςp, w̃p

)
p≥1. (A.15)

For notational simplicity, we denote

Ξn ≡

∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ)g(∆

n
i(p),kZ)

⊤,

Ξ∗

n ≡

∑
p∈P

ŵ∗

n,i(p)g(∆
n
i(p),kZ

∗)g(∆n
i(p),kZ

∗)⊤,

Λ∗

n ≡ ∆−1/2
n

∑
p∈P

ŵ∗

n,i(p)g(∆
n
i(p),kZ

∗)εn∗
i(p),k.

Note that, w.p.a.1,

∆−1/2
n

(
β̂∗

n (w) − β̂n(w)
)

= Ξ∗−1
n Λ∗

n. (A.16)

By ŵ∗

n,i(p) = Op(1) and (A.9), we have

Ξ∗

n = Ξn +

∑
p∈P

(
ŵ∗

n,i(p) − ŵn,i(p)
)
g(∆n

i(p),kZ)g(∆
n
i(p),kZ)

⊤

+ Op(∆1/2
n ).

Therefore,

Ξ∗−1
n = Ξ−1

n − Ξ−1
n Ξ̃∗

n Ξ−1
n + op(k−1/2

n ), (A.17)

where Ξ̃∗
n ≡

∑
p∈P (ŵ∗

n,i(p) − ŵn,i(p))g(∆n
i(p),kZ)g(∆

n
i(p),kZ)

⊤.

We decompose

Λ∗

n =

∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ

∗)∆−1/2
n ε̃n∗

i(p),k

+

∑
p∈P

(
ŵ∗

n,i(p) − ŵn,i(p)
)
g(∆n

i(p),kZ
∗)∆−1/2

n ε̃n∗
i(p),k

+Op(∆1/2
n ). (A.18)

Note that Ξ̃∗
n and the second term on the right-hand side of (A.18)

are both Op(k
−1/2
n ). Therefore, from (A.16), (A.17) and (A.18), we

obtain the decomposition

∆−1/2
n

(
β̂∗

n (w) − β̂n(w)
)

= L∗

n (w) + k−1/2
n H∗

n (w) + op(k−1/2
n ),

where

L∗

n (w) ≡ Ξ−1
n

∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ

∗)∆−1/2
n ε̃n∗

i(p),k,

H∗

n (w) ≡ Ξ−1
n

∑
p∈P

k1/2n

(
ŵ∗

n,i(p) − ŵn,i(p)
)
g(∆n

i(p),kZ
∗)∆−1/2

n ε̃n∗
i(p),k

− Ξ−1
n Ξ̃∗

n Ξ−1
n

(∑
p∈P

ŵn,i(p)g(∆n
i(p),kZ

∗)∆−1/2
n ε̃n∗

i(p),k

)
.

From (A.15), it is easy to deduce
(
L∗

n (w) ,H∗
n (w)

) L|F
−→

(L (w) ,H (w)) as asserted. □

A.4. Proof of Theorem 4

Proof of Theorem 4. (a) Since ∆n
i(p),kX

P
−→ ∆Xτp , it is easy to see

from (2.7) that

SSRn
P

−→

∑
p∈P

∆Y 2
τp

−

(∑
p∈P

g
(
∆Zτp

)
∆Yτp

)⊤

×

(∑
p∈P

g
(
∆Zτp

)
g
(
∆Zτp

)⊤)−1 (∑
p∈P

g
(
∆Zτp

)
∆Yτp

)
.

In particular, the second assertion of part (a) holds. It remains to
show the first assertion of part (a). It is easy to see that

SSRn =

∑
i∈Jn

∆n
i,kY

2
−

(∑
i∈Jn

∆n
i,kYg

(
∆n

i,kZ
))⊤

×

(∑
i∈Jn

g
(
∆n

i,kZ
)
g
(
∆n

i,kZ
)⊤)−1 (∑

i∈Jn

∆n
i,kYg

(
∆n

i,kZ
))

.

(A.19)
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Plug (2.9) into (A.19). After some elementary algebra, we derive

SSRn =

∑
i∈Jn

(
εn
i,k

)2
−

(∑
i∈Jn

εn
i,kg

(
∆n

i,kZ
))⊤

×

(∑
i∈Jn

g
(
∆n

i,kZ
)
g
(
∆n

i,kZ
)⊤)−1 (∑

i∈Jn

εn
i,kg

(
∆n

i,kZ
))

.

(A.20)

By (2.7), (A.20) holds w.p.a.1 with Jn replaced by J ∗
n . By (A.5) and

g(∆n
i(p),kZ)

P
−→ g

(
∆Zτp

)
, we derive the first assertion of part (a).

(b) Similar to (A.19), we have

SSR∗

n =

∑
i∈Jn

∆n
i,kY

∗2
−

(∑
i∈Jn

∆n
i,kY

∗g
(
∆n

i,kZ
∗
))⊤

×

(∑
i∈Jn

g
(
∆n

i,kZ
∗
)
g
(
∆n

i,kZ
∗
)⊤)−1 (∑

i∈Jn

∆n
i,kY

∗g
(
∆n

i,kZ
∗
))

.

We now set

εn∗
i,k ≡ ∆n

i,kY
∗
− β̂⊤

n g
(
∆n

i,kZ
∗
)
.

After some elementary algebra, we can rewrite

SSR∗

n =

∑
i∈Jn

(
εn∗
i,k

)2
−

(∑
i∈Jn

εn∗
i,kg

(
∆n

i,kZ
∗
))⊤

×

(∑
i∈Jn

g
(
∆n

i,kZ
∗
)
g
(
∆n

i,kZ
∗
)⊤)−1 (∑

i∈Jn

εn∗
i,kg

(
∆n

i,kZ
∗
))

.

(A.21)

We further observe εn∗
i,k = ∆n

i,kY
∗c

− β̂⊤
n (g(∆n

i,kZ
∗) − g(∆n

i,kZ)) . It

is easy to show that β̂n
P

−→ β̄ . From the construction of ∆n
i,kX

∗c

described in Algorithm 1, as well as the fact that ĉn,i(p)±
P

−→ cτp±,
we deduce

∆−1/2
n

(
εn∗
i(p),k

)
p≥1

L|F
−→

(
ς̄p
)
p≥1, (A.22)

where ς̄p ≡
(
1, −β̄⊤∂g

(
∆Zτp

))
(√κpστp−ξp− +

√
k − κpστpξp+).

By (A.21) and (A.22), we deduce

∆−1
n SSR∗

n
L|F
−→

∑
p∈P

ς̄2
p −

(∑
p∈P

g
(
∆Zτp

)
ς̄p

)⊤

×

(∑
p∈P

g
(
∆Zτp

)
g
(
∆Zτp

)⊤)−1 (∑
p∈P

g
(
∆Zτp

)
ς̄p

)
.

(A.23)

In restriction to Ω0, the limiting distribution characterized by
(A.23) coincides with the limiting distribution of ∆−1

n SSRn. We
further note that, conditionally on F , this limiting distribution
is atomless with positive density on (0, ∞). Therefore, the F-
conditional (1 − α) -quantile of this limiting distribution can be
consistently estimated by ∆−1

n cvα
n . From here and part (a) of this

theorem, it readily follows that P
(
SSRn > cvα

n |Ω0
)

→ α.
In restriction to Ωa, we see from part (a) that the probability

limit of SSRn is strictly positive. Moreover, the sequence ∆−1
n cvα

n is
still tight because of (A.23). The assertion P

(
SSRn > cvα

n |Ωa
)

→ 1
readily follows. □
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