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ABSTRACT
We develop robust inference methods for studying linear dependence between the jumps of discretely
observed processes at high frequency. Unlike classical linear regressions, jump regressions are determined
by a small number of jumps occurring over a fixed time interval and the rest of the components of the
processes around the jump times. The latter are the continuous martingale parts of the processes as well
as observation noise. By sampling more frequently the role of these components, which are hidden in the
observed price, shrinks asymptotically. The robustness of our inference procedure is with respect to outliers,
which are of particular importance in the current setting of relatively small number of jump observations.
This is achieved by using nonsmooth loss functions (like L1) in the estimation. Unlike classical robust meth-
ods, the limit of the objective function here remains nonsmooth. The proposed method is also robust to
measurement error in the observed processes, which is achieved by locally smoothing the high-frequency
increments. In anempirical application tofinancial data,we illustrate theusefulnessof the robust techniques
by contrasting the behavior of robust and ordinary least regression (OLS)-type jump regressions in periods
including disruptions of the financial markets such as so-called “flash crashes.”Supplementary materials for
this article are available online.

1. Introduction

When major events occur in the economy, asset prices often
respond with abrupt large moves. These price moves are typ-
ically modeled as jumps in continuous-time semimartingale
models (Merton 1975; Cont and Tankov 2003). Understanding
the dependence between asset prices at times of market jumps
sheds light on howfirmvalues respond tomarket-wide informa-
tion, which is of interest both for researchers and practitioners;
see, for example, Savor and Wilson (2014) and Bollerslev, Li,
and Todorov (2016). More generally, jumps in semimartin-
gales are used to model spike-like, or “bursty,” phenomena
in engineering and neuroscience; see, for example, chap. 10
of Rao (1999). The goal of the current article is to develop
robust inference techniques for regressions that connect jumps
in multivariate semimartingales observed at high frequency.
High-frequency data are well suited for studying jumps because
they give a microscopic view of the process’s dynamics around
jump-inducing events. Robustness is needed to guard against
both potential outliers and measurement errors.

The statistical setup here differs in critical dimensions from
that of the classical linear regression model. The asymptotic
behavior of the estimator is driven by the local behavior of the
observed process at a finite number of jump times. The observed
high-frequency increments around the jumps also contain the
nonjump components of the price, that is, the drift, the con-
tinuous martingale part, and possibly observation error. The
drift component of the process is dominated at high frequen-
cies by the continuous martingale part. The latter component
around the jump times is approximately a sum of conditionally

CONTACT George Tauchen george.tauchen@gmail.com Department of Economics, Duke University, Durham, NC .
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

Gaussian-independent random variables with conditional vari-
ances proportional to the length of the interval and the levels of
the stochastic volatility of the process before and after the jump
times. By samplingmore frequently, this component of the price
around the jump times shrinks asymptotically. When observa-
tion error is present, the precision does not increase aswe sample
more frequently. Nonetheless, smoothing techniques explained
belowwill make it behave asymptotically similarly to the contin-
uousmartingale component of the price. Our setting thus shares
similarities to one with a signal and asymptotically shrinking
noise (e.g., sec. VII.4 in Ibragimov and Has’minskii 1981).

In this article, we pursue robustness for the jump regres-
sion in two dimensions. The first is robustness in the sense of
Huber (Huber and Ronchetti 2009). The initial analysis con-
siders a general class of extremum estimators using possibly
nonquadratic and nonsmooth loss functions. This framework
accommodates, among others, the L1-type estimators analogous
to the least absolute deviation (LAD) and quantile regression
estimators (Koenker and Bassett 1978) of the classical setting;
the results extend those of Li, Todorov, and Tauchen (2014) for
the least-square jump regressions. In view of the different sta-
tistical setup, the asymptotic theory for robust estimators in the
jump regression setting is notably different from that of classical
extremum estimation. In the classical case, the sample objective
function need not be smooth but the limiting objective func-
tion is smooth. In contrast, here both the sample and the lim-
iting objective functions are nonsmooth, because the kinks in
the loss function are not “smoothed away” when the losses are
aggregated over a fixed number of temporally separate jumps

©  American Statistical Association
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over a fixed sample span. Therefore, unlike the classical setting,
the limiting objective function is not locally quadratic, and the
asymptotic properties of the proposed extremumestimator need
to be gleaned indirectly from the asymptotic behavior of the lim-
iting objective function. We derive a feasible inference proce-
dure in our setting, which is very easy to implement.

The second sense of robustness is with respect to the observa-
tion error in high-frequency data. It is well known that the stan-
dard semimartingalemodel is inadequate formodeling financial
asset returns sampled at very high frequency. This is because at
such frequencies market microstructure frictions are no longer
negligible (Roll 1984; Hansen and Lunde 2006). Such frictions
are typically treated as measurement errors statistically, and
referred to as “microstructure noise.” A large literature has been
developed in the noisy setting for estimating integrated vari-
ance and covariances for the diffusive price component (Zhang,
Mykland, and Aït-Sahalia 2005; Barndorff-Nielsen et al. 2008;
Jacod et al. 2009; Aït-Sahalia, Fan, and Xiu 2010). Noise-robust
inference concerning jumps is restricted to the estimation of
power variations (Jacod, Podolskij, and Vetter 2010; Li 2013).

In Section 3, we further extend the extremum estimation the-
ory to a setting where the observations are contaminated with
noise. We adopt the preaveraging approach of Jacod, Podolskij,
andVetter (2010) and locally smooth the data before conducting
the robust jump regressions. That is, we form blocks of asymp-
totically increasing number of observations but with shrinking
time span over which we average the data, and then we use
these averages to detect the jumps and conduct the robust jump
regressions. The local smoothing reduces the effect of the noise
around the jump times to the second order.

We show that our robust jump regression techniques have
very good finite sample properties on simulated data frommod-
els calibrated to real financial data. In an empirical application,
we study the reaction of Microsoft to big market jumps over
the period 2007–2014. We find strong dependence between the
Microsoft stock and the market at the time of market jumps.
We examine the sensitivity of the robust jump regression with
respect to two episodes in the data, which are associated with
potential market disruptions known as “flash crashes.” We show
that the robust jump regression estimates have very little sensi-
tivity toward these events. This is unlike the least-square esti-
mates based on the detected jumps, which are very sensitive to
the inclusion of these two episodes in the estimation.

This article is organized as follows. Section 2 describes the
baseline results in the setting without observation noise, which
are extended to the noisy setting in Section 3. Section 4 con-
tains aMonte Carlo evaluation and Section 5 provides an empir-
ical example. Section 6 concludes. Technical assumptions are
collected in the appendix. The online supplement contains all
proofs, as well as MATLAB codes that are used in our numeri-
cal work.

2. The CaseWithout Noise

In this section, we present the jump regression theory in the set-
ting without noise. This theory extends that in Li, Todorov, and
Tauchen (2014) toward a setting with general (possibly nons-
mooth) loss functions, and serves as the baseline framework for
the noise-robust theory that we further develop in Section 3.

2.1. TheModel

We consider two càdlàg (i.e., right continuous with left limit)
adapted semimartingale processes Y and Z defined on a fil-
tered probability space (�,F , (Ft )t≥0,P), which, respectively,
take values in R and R

d−1. Let X ≡ (Y,Z). The jump of the
d-dimensional process X at time t is denoted by �Xt ≡ Xt −
Xt−, where Xt− ≡ lims↑t Xs.

The jump regression concerns the following population rela-
tionship between jumps ofY and Z:

�Yτ = β∗��Zτ , τ ∈ T , (1)

where τ is a jump time of the process Z, T is a collection of
such times, and � denotes matrix transposition. We refer to the
coefficient β∗ ∈ R

d−1 as the jump beta, which is the parameter
of interest in our statistical analysis. Li, Todorov, and Tauchen
(2014) provided empirical evidence that this simple model pro-
vides an adequate approximation for stock market data.

The model restriction (1) can be understood as a type of
orthogonality condition. Indeed, if we define the residual pro-
cess as

U ∗
t = Yt − β∗�Zt , (2)

model (1) amounts to saying thatU ∗ does not jump at the same
time as Z. We remark that this model does not impose any
restriction on the diffusive components ofX nor on the idiosyn-
cratic jumps of Y (i.e., jumps that occur outside of the times in
T ).

The inference for β∗ is complicated by the fact that the
jumps are not directly observable from data, where the pro-
cessX is only sampled on the discrete time grid In ≡ {i�n : i =
0, . . . , �T/�n	} and �·	 denotes the floor function. We account
for the sampling uncertainty in an infill asymptotic settingwhere
the time span [0,T ] is fixed and the sampling interval �n → 0
asymptotically. This setup is applicable in situations where, for
the available sampling frequency, the volatility remains approxi-
mately constant over the sampling interval and one can identify
with good accuracy the jumps from the large increments of X
(the cost of coarser sampling frequency is that the small jumps
cannot be separated from the diffusive component of X).

We denote the increments of X by �n
i X ≡ Xi�n − X(i−1)�n .

The returns that contain jumps are collected by

J ∗
n ≡ {i : τ ∈ ((i − 1) �n, i�n] for some τ ∈ T } . (3)

The sample counterpart of (1) is then given by

�n
i Y = β∗��n

i Z + �n
i U

∗, i ∈ J ∗
n . (4)

The error term �n
i U ∗ contains the diffusive moves of the asset

prices and plays the role of random disturbances in the jump
regression. In contrast to the population relationship (1), (4)
depicts a noisy relationship for the data, just like in classical
regression settings.

That noted, we clarify some important differences between
the jump regression and the classical regression from the outset.
First, we note that (4) only concerns jump returns, which form
a small and unobserved subset of all high-frequency returns.
Second, the cardinality of the set J ∗

n is bounded by the num-
ber of jumps and, hence, does not diverge even in large sam-
ples because the time span is fixed. Consequently, the intuition
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underlying the law of large numbers in classical asymptotic set-
tings does not apply here. Instead, the asymptotic justification
for jump regressions is based on the fact that the error terms
�n

i U ∗ are asymptotically small because the diffusive pricemoves
shrink at high frequencies.

2.2. The Estimator and Its Implementation

To estimate β∗ in (4), we first uncover the (unobservable) set
J ∗
n . We use a standard thresholding method (Mancini 2001).

To this end, we pick a sequence of truncation threshold un =
(uj,n)1≤ j≤d−1, such that for all 1 ≤ j ≤ d − 1,

uj,n � ��
n , � ∈ (0, 1/2) . (5)

The thresholding estimator for J ∗
n is then given by

Jn ≡ In \ {
i : −un ≤ �n

i Z ≤ un
}
. (6)

The rate condition (5) ensures the separation between the small
diffusive increments (which are of order �

1/2
n ) and the jumps.

Theoretically, any truncation threshold that satisfies (5) will
work (including the same one for j = 1, . . . , d). In practice,
however, it is important to set uj,n in an adaptive way, which
takes into account the fact that the diffusive volatility changes
over time (intuitively, what constitutes a big or small in magni-
tudemove for the diffusive component ofZ depends on the level
of its volatility). That is, we recommend using different thresh-
olds over the sample period that track the diffusive volatility path
(for which we form estimates), so that at each point uj,n repre-
sents several local standard deviations of the diffusive compo-
nent. For this reason,we also recommend to use separate trunca-
tion thresholds for the different components of Z to account for
their possibly different levels of diffusive volatility at any point
in time. We refer to Section 4 for implementation details.

We estimate the unknown parameter β∗ using

β̂n ≡ argmin
b

∑
i∈Jn

ρ
(
�n

i Y − b��n
i Z

)
, (7)

where the loss function ρ(·) is convex. The least-square estima-
tor of Li, Todorov, and Tauchen (2014) corresponds to the spe-
cial case with ρ(u) = u2.

Our main motivation for deviating from the benchmark
least-square setting is due to a concern of robustness in the sense
ofHuber andRonchetti (2009). Robustness is of particular inter-
est in the jump regression setting because the number of large
market moves is typically small within a given sample period;
consequently, an outlying observation may be overly influen-
tial in the least-square estimation. Such outliers can be due to
“flash crashes” in financial markets, which we investigate empir-
ically in Section 5, andmore generally can result from some rare
liquidity-related issues on financial markets, see, for example,
Barndorff-Nielsen et al. (2009). We are particularly interested
in the LAD estimation that corresponds to ρ(u) = |u|, where
the nonsmoothness of the objective function poses a nontrivial
complication for the statistical inference. The extremum estima-
tion theory, below, is thus distinct from prior work in a nontriv-
ial way.

We assume that ρ(·) satisfies the following assumption,
which allows for Lq loss functions, q ≥ 1, as well as asymmetric

loss functions used in regression quantiles (Koenker and Bassett
1978).

Assumption 1. (a) ρ(·) is a convex function on R; (b) for some
q ∈ [1, 2], ρ(au) = aqρ(u) for all a > 0 and u ∈ R.

The proposed estimation procedure is very simple to imple-
ment. The least-square estimator admits a closed-form solution.
The LAD estimator can be computed using standard software
for quantile regressions.More generally, since ρ(·) is convex, the
estimator can be computed efficiently using convex minimiza-
tion software over observations indexed by the (typically small)
set Jn.

2.3. Discussion on Regularity Conditions

We now briefly discuss the regularity conditions on X. The for-
mal statement of these conditions is deferred to the appendix.
We assume that X is a d-dimensional Itô semimartingale of the
form

Xt =
∫ t

0
bsds +

∫ t

0
σsdWs + Jt , (8)

where b is the drift, σ denotes stochastic volatility,W is a mul-
tivariate standard Brownian motion, and J is a pure-jump pro-
cess with finite activity. The spot covariance matrix of X at time
t is denoted by ct ≡ σtσ

�
t . We need some mild pathwise reg-

ularity conditions for these processes; see Assumption 2 in the
Appendix.

Clearly, the identification of β∗ requires that the collection
of jump vectors (�Zτ )τ∈T has full rank, so it is necessary that
the number of jumps is not less than the number of regressors.
We remind the reader that we are interested in uncovering path-
wise properties of the studied processes as is typical in the infill
asymptotic setting. Therefore, we confine our analysis to the
event�0 ≡ {|T | ≥ d − 1}, where |T | denotes the cardinality of
T . When Z is scalar-valued, the identification condition auto-
matically holds in �0. In the multivariate setting (i.e., d > 2),
the full rank condition is satisfied almost surely when the jump
sizes have a continuous distribution, as stated in Assumption 3
in the Appendix.

One caveat is that the full rank condition in the multivari-
ate setting can break down when the jumps in the vector pro-
cess Z have a low-dimensional linear factor structure. In this
case, redundant regressors should be removed as in conven-
tional regression analysis.

2.4. The Asymptotic Distribution of β̂n

We observe from (7) that β̂n is the solution to a convex min-
imization problem. Therefore, we can adapt a convexity argu-
ment (Knight 1989; Pollard 1991; Davis, Knight, and Liu 1992;
Geyer 1996) to deduce the asymptotic distribution of β̂n from
the finite-dimensional convergence of the objective function. To
do so, we reparameterize the problem (7) via h = �

−1/2
n (b −

β∗) and consider the localized objective function

Mn (h) ≡ �
−q/2
n

∑
i∈Jn

ρ
(
�n

i Y − (
β∗ + �1/2

n h
)�

�n
i Z

)
. (9)

Note thatMn(·) is minimized by ĥn ≡ �
−1/2
n (β̂n − β∗).
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We need some notations for describing the asymptotic
distribution of Mn(·) and, subsequently, that of ĥn . We
denote the successive jump times of the process Z by (τp)p≥1
and collect them using the set P ≡{p ≥ 1 : τp ∈ [0,T ]}. Let
(κp, ξp−, ξp+)p≥1 be mutually independent random variables
that are also independent of F , such that κp is uniformly dis-
tributed on [0, 1] and the variables (ξp−, ξp+) are standard nor-
mal. We denote the spot variance of the residual processU ∗

t by
	t ≡ (1,−β∗�)ct (1,−β∗�)�. We then set

ςp ≡
√

κp	τp−ξp− +
√

(1 − κp)	τpξp+. (10)

The variable ςp represents the asymptotic distribution of the
residual term �n

i U ∗ for the unique i such that τp ∈ ((i −
1)�n, i�n]. Finally, we set

M(h) ≡
∑
p∈P

ρ
(
ςp − h��Zτp

)
. (11)

The main result of this section is the following theorem,
where L-s−→ denotes stable convergence in law; see Jacod and
Shiryaev (2003) for additional details about stable convergence.

Theorem 1. Under Assumptions 1–3,

(Mn (hk))1≤k≤k̄
L-s−→ (M(hk))1≤k≤k̄, (12)

for any hk ∈ R, 1 ≤ k ≤ k̄, and k̄ ≥ 1. Consequently, if M(·)
has a unique minimum almost surely in restriction to �0, then
ĥn

L-s−→ ĥ ≡ argminh M(h).

We remark on an important nonstandard feature of Theorem
1.When ρ(·) is nonsmooth, the limit objective functionM(·) is
also nonsmooth. For example,M(h) = ∑

p∈P |ςp − h��Zτp | in
the LAD estimation, where the kink of the absolute value func-
tion is not “smoothed away” in the sum over a fixed number
of jumps. This is unlike the classical LAD regression and quan-
tile regressions, where the limit function would be smooth and
locally quadratic. Here, the asymptotic distribution of ĥn is char-
acterized as the exact distribution of the regressionmedian from
regressing the mixed Gaussian variables (ςp)p∈P on the jump
sizes (�Zτp )p∈P . This distribution is nonstandard and gener-
ally not mixed Gaussian. That noted, feasible inference is easily
implemented as shown in Section 2.5.

The uniqueness of the minimum of M(·) can be verified in
specific settings. A sufficient condition is the strict convexity
of ρ(·). The LAD case does not verify strict convexity, but the
uniqueness can be verified using finite-sample results for regres-
sion quantiles; see, for example, Theorem 2.1 of Koenker (2005).

2.5. Feasible Inference on the Jump Beta

Since the asymptotic distribution of β̂n shown in Theorem 1 is
generally notF-conditionally Gaussian, estimating consistently
its asymptotic F-conditional covariance matrix is not enough
for constructing confidence sets of β∗. We instead provide a
simulation-based algorithm for approximating this nonstandard
asymptotic distribution.

The first step is to nonparametrically estimate the spot vari-
ance 	t before and after each detected jump. To this end, we
pick an integer sequence mn of block sizes such that mn → ∞
and mn�n → 0. We also pick a real sequence vn of truncation
thresholds, which satisfies vn � ��

n for some� ∈ (0, 1/2). The
truncation is used to conduct jump-robust estimation of the
spot variances. The sample analog of the residualU ∗

t is given by

Ut ≡ Yt − β̂
�
n Zt . For each i ∈ Jn, we estimate the prejump and

the postjump spot variances, respectively, using
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

	̂n,i− ≡
∑mn−1

j=0

∣∣∣�n
i−mn+ jU

∣∣∣2 1{|�n
i−mn+ jU |≤vn}

�n
∑mn−1

j=0 1{|�n
i−mn+ jU |≤vn}

,

	̂n,i+ ≡
∑mn

j=1

∣∣∣�n
i+ jU

∣∣∣2 1{|�n
i+ jU |≤vn}

�n
∑mn

j=1 1{|�n
i+ jU |≤vn}

.

(13)

The asymptotic distribution of ĥn = �
−1/2
n (β̂n − β∗) can be

approximated via simulation as follows. First, we draw a collec-
tion ofmutually independent random variables (κ̃i, ξ̃i−, ξ̃i+)i∈Jn

such that κ̃i is uniformly distributed on the unit interval and ξ̃i±
are standard normal. We set

ς̃n,i ≡
(√

κ̃i	̂n,i−ξ̃i− +
√

(1 − κ̃i) 	̂n,i+ξ̃i+

)

and compute h̃n ≡ argminh
∑

i∈Jn
ρ(ς̃n,i − h��n

i Z). The
Monte Carlo distribution of h̃n is then used to approximate the
asymptotic distribution of ĥn. Theorem 2 provides the formal
justification.

Theorem 2. Under the conditions of Theorem 1, the
F-conditional law of h̃n converges in probability to the
F-conditional law of ĥ under any metric for the weak con-
vergence of probability measures.

Confidence sets of β∗ can be constructed using the sim-
ulated distribution of h̃n. For concreteness, we describe an
example with β∗ being a scalar, which can also be consid-
ered as a component of a vector. For α ∈ (0, 1), a two-sided
1 − α confidence interval (CI) of β∗ can be constructed as
[β̂n − �

1/2
n zn,1−α/2, β̂n − �

1/2
n zn,α/2], where zn,α denotes the α-

quantile of h̃n computed using the simulated sample.

3. The Case with Noise

3.1. The Noisy Setting

We now generalize the above setup to a setting in which
the observations of Xi�n are contaminated with measurement
errors. That is, instead of the process X, we observe a noisy pro-
cess X′ at discrete times given by

X′
i�n

= Xi�n + χ′
i�n

, (14)

where (χ′
i�n

)i≥0 denote the error terms. In financial settings,
these error terms are often referred to as the microstructure
noise and are attributed to market microstructure frictions such
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as the bid-ask bounce (Roll 1984). Parallel to (2), the resid-
ual process in the noisy setting is given by U ′∗

t ≡ Y ′
t − β∗�Z′

t .
Since the sizes of the measurement errors remain constant even
asymptotically, the baseline method in Section 2 is no longer
valid. In the online supplement, we provide an analytical exam-
ple for a precise illustration.

Below, we assume that the error terms (χ′
i�n

)i≥0 are con-
ditionally independent with zero mean given the X process,
while allowing for essentially unrestricted heteroscedasticity;
see Assumption 4 in the Appendix.

3.2. Preaveraging Jump Regressions

We propose a preaveraging method to address the noisy data:
we first locally smooth the noisy returns and then conduct the
jump regression. In this article, a function g : R �→ R+ is called
a weight function if it is supported on [0, 1], continuously dif-
ferentiable with Lipschitz continuous derivative and is strictly
positive on (0, 1). We also consider an integer sequence kn of
smoothing bandwidth. Below, we denote gn( j) = g( j/kn). The
preaveraged returns are weighted moving averages of the noisy
returns given by

X̄′
n,i =

kn−1∑
j=1

gn( j)�n
i+ jX

′, i ∈ I ′
n ≡ {0, . . . , �T/�n	 − kn + 1}.

(15)
The notations Z̄′

n,i and Ȳ ′
n,i are defined similarly.

To guide intuition, we note that X̄′
n,i can be decomposed into

the contributions from jumps, the diffusive component, and the
noise component. The latter two components can be shown to
have order

√
kn�n and 1/

√
kn, respectively. As a result, the rate-

optimal choice of kn is

kn = �θ/�1/2
n 	, for some θ ∈ (0,∞) . (16)

With this choice, the diffusive and the noise components are
balanced at order �

1/4
n . Accordingly, we consider a truncation

sequence u′
n that satisfies u′

j,n � �� ′
n for all 1 ≤ j ≤ d − 1 and

some � ′ ∈ (0, 1/4) and select preaveraged jump returns using
J ′
n ≡ I ′

n \ {i : −u′
n ≤ Z̄′

n,i ≤ u′
n}. The set J ′

n plays the role of an
approximation to

J ′∗
n ≡ {i : τ ∈ (i�n, (i + kn)�n], τ ∈ T }, (17)

which collects the indices of the overlapping preaveraging win-
dows that contain the jump times.

The noise-robust estimator of β∗ can be adapted from (7) by
using preaveraged returns and is defined as

β̂
′
n = argmin

b

1
kn

∑
i∈J ′

n

ρ
(
Ȳ ′
n,i − b�Z̄′

n,i
)
. (18)

Here, the normalizing factor 1/kn is naturally introduced
because each jump time τ is associated with kn consecutive ele-
ments in J ′∗

n .

3.3. Asymptotic Properties of β̂
′
n

We derive the asymptotic distribution of β̂
′
n by using a similar

strategy as in Section 2.4. We consider the reparameterization

h = �
−1/4
n (b − β∗). The associated objective function

M′
n (h) = 1

kn�
q/4
n

∑
i∈J ′

n

ρ
(
Ȳ ′
n,i −

(
β∗ + �1/4

n h
)� Z̄′

n,i

)
(19)

is minimized by ĥ′
n = �

−1/4
n (β̂

′
n − β∗). Similarly as in Theorem

1, we study the asymptotic distribution of ĥ′
n by first establish-

ing the finite-dimensional asymptotic distribution ofM′
n(·) and

then using a convexity argument.
The asymptotic distribution of M′

n(·) is more difficult to
study than that ofMn(·). The key complication is that each jump
is associated with kn overlapping preaveraged returns. These
preaveraged returns are correlated and their number grows
asymptotically. Consequently, we consider R-valued processes
(ζp(s))s∈[0,1] and (ζ ′

p(s))s∈[0,1], which, conditional on F , are
mutually independent centered Gaussian processes with covari-
ance functions given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E
[
ζp(s)ζp(t )|F

] = θ	τp−
∫ 0
−1 g (s + u) g (t + u) du

+θ	τp

∫ 1
0 g (s + u) g (t + u) du,

E
[
ζ ′
p(s)ζ ′

p(t )|F
] = θ−1Aτp−

∫ 0
−1 g

′ (s + u) g′ (t + u) du
+θ−1Aτp

∫ 1
0 g′ (s + u) g′ (t + u) du,

(20)

where the process A is given by At ≡ (1,−β∗�)ata�
t

(1,−β∗�)�, and at is the noise volatility. Roughly speak-
ing, the F-conditional Gaussian processes ζp(·) (respectively,
ζ ′
p(·)) capture the joint asymptotic behavior of the preaveraged
diffusive component (respectively, noise component) of the
residual process Y ′

t − β∗�Z′
t around the jump time τp. We then

set

ςp(s) = ζp(s) + ζ ′
p (s) , s ∈ [0, 1] .

The process ςp(·) plays a similar role as the variable ςp in
Theorem 1.

The stable convergence in law ofM′
n(h) and ĥ′

n are described
by Theorem 3.

Theorem 3. Suppose Assumptions 1–4. Then (M′
n(hk))1≤k≤k̄

L-s−→ (M′(hk))1≤k≤k̄, for any hk ∈ R, 1 ≤ k ≤ k̄ and k̄ ≥ 1,
where

M′(h) ≡
∑
p∈P

∫ 1

0
ρ

(
ςp(s) − h��Zτpg (s)

)
ds. (21)

If M(·) is uniquely minimized by some random variable ĥ′

almost surely in restriction to �0, then ĥ′
n = �

−1/4
n (β̂

′
n −

β∗)
L-s−→ ĥ′.

An interesting special case of Theorem 3 is the least-square
estimator with ρ(u) = u2, which extends prior results in Li,
Todorov, and Tauchen (2014) to the current setting with noise.
In this case, β̂

′
n admits a closed-form solution as the least-square

estimator of Ȳ ′
n,i versus Z̄′

n,i for i ∈ J ′
n. The limiting variable ĥ′
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in Theorem 3 can also be explicitly expressed as

ĥ′ =
⎛
⎝∫ 1

0
g (s)2 ds

∑
p∈P

�Zτp�Z�
τp

⎞
⎠

−1

×
⎛
⎝∑

p∈P
�Zτp

∫ 1

0
g(s)ςp(s)ds

⎞
⎠ .

Since the processes ςp(·), p ≥ 1, are F-conditionally Gaussian,
ĥ′ is also F-conditionally Gaussian. Here, the F-conditional
Gaussianity is obtained under a setting whereZ and σ may jump
at the same time. In contrast, the least-square estimator is not
F-conditionallyGaussianwhen there are co-jumps in the noise-
free setting. Intuitively, the indeterminacy of the exact jump time
within a �n-interval has negligible effect within a preaveraging
window of length kn�n, so the extra layer of mixing from the
uniform variables κp (recall (10)) does not appear in the preav-
eraging setting.

3.4. Feasible Inference in the Noisy Setting

We now describe a feasible inference procedure for β∗ based
on Theorem 3. This procedure adapts that in Section 2.5 to the
preaveraging setting. Since each jump time is associated with
many preaveraged returns in J ′

n, the first step is to group these
returns into clusters accordingly. We partition J ′

n into disjoint
subsets (J ′

n,p)p∈Pn such that, for p, l ∈ Pn with p < l, the ele-
ments in J ′

n,p are less than those in J ′
n,l by at least kn/4. Each

cluster is associated with a jump time. The underlying theoret-
ical intuition is as follows. It can be shown that the preaver-
aged returns that do not contain jumps are not selected by J ′

n
uniformly with probability approaching one. Therefore, the ele-
ments ofJ ′

n are clustered around associated jump times within a
window of length kn�n. Since the jump times are separated by a
fixed amount of time, these clusters are eventually separated by
any time window with shrinking length. In practice, this group-
ing procedure works well because we are mainly interested in
relatively large jumps that are naturally well-separated in time.

For cluster p ∈ Pn, we estimate the associated jump size and
the spot variances 	t and At as follows. The jump size is esti-
mated by

�Ẑn,p =
∑

i∈J ′
n,p
Z̄′
n,i∑�(kn−|J ′

n,p|)/2	+|J ′
n,p|−1

j=�(kn−|J ′
n,p|)/2	 g( j/kn)

. (22)

The denominator in (22) could be replaced by
∑kn

j=1 g( j/kn)
or kn

∫ 1
0 g(u)du without affecting the asymptotics. That being

said, the current version of �Ẑn,p makes a simple finite-sample
adjustment that accounts for the fact that, when a jump occurs
near the boundary of a preaveraging window, the associated
preaveraged return may not be selected by J ′

n.
We observe that 	t and At are the spot variances of the dif-

fusive and the noise components of the residual process U ′∗ ,
respectively.We approximate this residual process byU ′

t = Y ′
t −

β̂
′�
n Z′

t and then apply the spot variance estimators inAït-Sahalia,
Jacod, and Li (2012). We denote g′

n( j) ≡ gn( j) − gn( j − 1) and

Û ′
n,i = ∑kn

j=1 g
′
n( j)2(�n

i+ jU ′)2. We take a sequence of trunca-
tion threshold v ′

n � �� ′
n , � ∈ (0, 1/4), for constructing jump-

robust spot variance estimators. For i ≥ 0, we set

	̂′
n,i =

∑k′
n
j=1

(
Ū ′2
n,i+ j − 1

2Û
′
n,i+ j

)
1{|Ū ′

n,i+ j |≤v ′
n}

�n
∑k′

n
j=1 1{|Ū ′

n,i+ j |≤v ′
n}

∑kn
j=1 gn( j)2

,

Ân,i =
∑k′

n
j=1 Û

′
n,i+ j1{|Ū ′

n,i+ j |≤v ′
n}

2
∑k′

n
j=1 1{|Ū ′

n,i+ j |≤v ′
n}

∑kn
j=1 g′

n( j)2
.

We use 	̂′
n,minJ ′

n,p−k′
n−kn and 	̂′

n,maxJ ′
n,p+kn−1 to estimate 	t

before and after the jump associated with cluster p. Similarly, the
pre and postjump estimators of At are given by Ân,minJ ′

n,p−k′
n−kn

and Ân,maxJ ′
n,p+kn−1.

Algorithm 1 describes a simulation-based method for
approximating the asymptotic distribution of ĥ′

n described in
Theorem 3. Theorem 4 shows its first-order validity. Computer
code for implementing this algorithm is available in the online
supplement to this article.

Algorithm 1.
Step 1. For cluster p, simulate random variables

(r̃′n,p,i){i:|i|≤kn−1} given by

r̃′n,p,i ≡ r̃n,p,i + (χ ′
n,p,i − χ ′

n,p,i−1),

where (r̃n,p,i, χ ′
n,p,i) are F-conditionally independent such

that r̃n,p,i is centered Gaussian with conditional variance
�n	̂

′
n,minJ ′

n,p−k′
n−kn (respectively, �n	̂

′
n,maxJ ′

n,p+kn−1) when i <

0 (respectively, i ≥ 0) and χ ′
n,p,i is centered Gaussian with vari-

ance Ân,minJn,p−k′
n−kn (respectively, Ân,maxJ ′

n,p+kn−1) when i < 0
(respectively, i ≥ 0).

Step 2. Compute h̃′
n as the minimizer of

M̃′
n(h) ≡ 1

kn

∑
p∈Pn

kn−1∑
i=0

ρ

⎛
⎝

⎛
⎝�−1/4

n

kn−1∑
j=1

gn( j)r̃′n,p, j−i

⎞
⎠

− gn (i) h��Ẑn,p

⎞
⎠ .

Step 3. Approximate the F-conditional asymptotic distribu-
tion of ĥ′

n using that of h̃′
n, which can be formed by repeating

Steps 1 and 2 in a large number of simulations. �

Theorem 4. Under the conditions of Theorem 3, the
F-conditional law of h̃′

n converges in probability to the
F-conditional law of ĥ′ under any metric for the weak conver-
gence of probability measures.

4. Monte Carlo Study

Wenow examine the asymptotic theory above in simulation sce-
narios that mimic our empirical setting in Section 5.
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4.1. Setting

We consider two types of jump regression estimators. One is
the least-square estimator. The other is L1-type estimators com-
puted using ρ(u) ≡ u(q − 1{u<0}), q ∈ (0, 1). We refer to the
latter as the quantile jump regression estimators because they
resemble the classical regression quantiles (Koenker and Bassett
1978; Koenker 2005). We conduct experiments in the general
setting with noise. The sample span is T = 1 year, containing
250 trading days. Each day contains m = 4680 high-frequency
returns sampled at every 5 sec. The returns are expressed
in annualized percentage terms. There are 1000 Monte Carlo
trials.

We adopt a data-generating process that accommodates fea-
tures such as leverage effect, price-volatility co-jumps, and het-
eroscedasticity in noise and jump sizes. LetW1,W2,B1, andB2 be
independent Brownianmotions.We generate the efficient prices
according to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d log(V1,t ) = −λNμVdt + σ̃dB1,t + JV,tdNt , V1,0 = V̄1,

log(V2,t ) = log
(
V̄2 − β2

CV̄1
) + B2,t ,

dZt = √
V1,t

(
ρdB1,t +

√
1 − ρ2dW1,t

)
+ ϕZ,tdNt ,

dYt = βC
√
V1,t

(
ρdB1,t +

√
1 − ρ2dW1,t

)
+√

V2,tdW2,t + β∗ϕZ,tdNt ,

(23)
where the parameter of interest is β∗ = 1 and other components
are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V̄1 = 182, V̄2 = 262, ρ = −0.7, σ̃ = 0.5, βC = 0.89,

JV,t
iid∼ Exponential (μV ) , μV = 0.1,

ϕZ,t |V1,t
iid∼ N

(
0, φ2V1,t

)
, φ = 0.055,

Nt is a Poisson process with intensity λN = 20.
(24)

We generate the noise terms for Y and Z, respectively, as
aY,tχY,t and aZ,tχZ,t , where (χY,t , χZ,t )t≥0 are drawn indepen-
dently from the standard normal distribution and the volatility
processes of the noise are given by aY,t = ā

√
β2
CV1,t +V2,t and

aZ,t = ā
√
V1,t . We set ā = 0.0028 so that the magnitude of the

noise is three times the local standard deviation of the diffusive
returns. In other words, the contribution of the noise in the real-
ized variance computed using 5 sec returns is 18 times the con-
tribution of the diffusive component. The simulated returns are
therefore fairly noisy.

We implement the estimation procedures with two preav-
eraging windows, kn ∈ {36, 60}, for checking robustness. We
fix k′

n = 720, while noting that results for k′
n = 960 are very

similar so they are omitted for brevity. The weight function is
g(x) = g0(|2x − 1|)1{0≤x≤1}, where g0(x) = 1 − 3x2 + 2x3. For
each trading day, the truncation threshold is chosen adap-
tively as u′

n = 7
√
BV (Z′), where BV (Z′) is the average of

(π/2)|Z̄′
n,ikn ||Z̄′

n,(i+1)kn | over all i such that the preaveragingwin-
dows associated with Z̄′

n,ikn and Z̄′
n,(i+1)kn are within the same

day. The statistic BV (Z′) is a jump-robust proxy for the standard
deviation of the preaveraged returns, formed using the bipower
construction of Barndorff-Nielsen and Shephard (2004) and
Podolskij and Vetter (2009). We set v ′

n = 4BV (U ′).

Table . Summary of simulation results. We report biases, mean absolute devia-
tions (MAD), root mean squared errors (RMSE), and coverage rates of confidence
intervals (CI) for the least square and the q-quantile jump regression procedure.
Panels A andB report results for kn = 36 and60, respectively. There are Monte
Carlo trials.

CI coverage

Bias MAD RMSE % % %

Panel A. kn = 36
Least squares −. . . . . .
q = 0.10 −. . . . . .
q = 0.25 −. . . . . .
q = 0.50 −. . . . . .
q = 0.75 −. . . . . .
q = 0.90 −. . . . . .

Panel B. kn = 60
Least squares −. . . . . .
q = 0.10 −. . . . . .
q = 0.25 −. . . . . .
q = 0.50 −. . . . . .
q = 0.75 −. . . . . .
q = 0.90 −. . . . . .

4.2. Results

Table 1 reports the simulation results. Panels A and B present
results for kn = 36 and kn = 60, respectively. For each estima-
tor, we report its bias, mean absolute deviation (MAD), and root
mean squared error (RMSE). We also report the coverage rates
of CIs at nominal levels 90%, 95%, and 99%. Here, a level 1 − α

CI is given by [β̂
′
n − �

1/4
n zn,1−α/2, β̂

′
n − �

1/4
n zn,α/2], where zn,α

denotes the α-quantile of h̃
′
n given by Algorithm 1.

From Table 1, we see that the proposed estimators have very
small biases and are fairly accurate. The least-square estimator is
more accurate than the quantile regression estimators, indicat-
ing some tradeoff between efficiency and robustness. However,
we note that the accuracy of the LAD estimator (i.e., q = 0.5)
is similar to that of the least-square estimator. In addition, we
observe that the coverage rates of the CIs are very close to the
associated nominal levels. Overall, the simulation evidence sup-
ports the asymptotic theory.

5. Empirical Application

We now apply the robust jump regression method to study the
sensitivity of the stock price of Microsoft (NASDAQ: MSFT) to
market jumps. The S&P 500 ETF is used as a proxy for the mar-
ket portfolio. The asset prices are sampled at every 5 sec from
January 3, 2007 to September 30, 2014. We discard incomplete

Table . Preaveraging jump beta estimates for MSFT. Confidence intervals (CI) are
computed using  Monte Carlo repetitions from Algorithm .

Least squares LAD

kn ū β̂ ′
n % CI β̂ ′

n % CI

 . . [.; .] . [.; .]
 . . [.; .] . [.; .]
 . . [.; .] . [.; .]
 . . [.; .] . [.; .]
 . . [.; .] . [.; .]
 . . [.; .] . [.; .]
 . . [.; .] . [.; .]
 . . [.; .] . [.; .]
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Figure . Illustrationof thepreaveraging jump regressionswith kn = 36, k′
n = 720, and ū = 7. (a) Scatterplot of the jump size estimates�Ŷn and�Ẑnwithfitted regression

lines using the least-square and the LAD estimates. (b) Quantile jump regression estimates at quantile q ∈ {0.1, 0.2, . . . , 0.9}. The centered estimate is defined as the 50%
confidence bound. The uncentered estimate is given by Equation (). Confidence intervals (CI) are computed using  Monte Carlo repetitions from Algorithm .

trading days and, for now, also discard two well-known days
with major “Flash Crashes” (May 6, 2010 and April 23, 2013).
The resultant sample contains 1931 trading days. We apply the
noise-robust method developed in Section 3, for which tuning
parameters are set similarly as in the simulations. We perform
an additional sensitivity check regarding the choice of the trun-
cation threshold u′

n: we set u′
n = ū

√
BV (Z′) and vary ū from 6

to 7.5. As in prior work, the truncation threshold is also scaled to
account for the deterministic diurnal volatility pattern, but the
details are omitted for brevity.

Table 2 reports the point estimates and 95% CIs from the
least squares and the LAD procedures implemented using vari-
ous tuning schemes. We see that the least-square and the LAD
estimates are generally similar and have good statistical preci-
sion. These estimates appear reasonably insensitive to various
changes in the tuning parameters.

Figure 1(a) shows a scatterplot for the estimated jump sizes
�Ẑn and �Ŷn along with fitted regression lines. This fig-
ure suggests that the linear model indeed provides a reason-
able fit for the central scatter of the jump pairs. We further
compute quantile jump regression estimators at quantiles q ∈
{0.1, 0.2, . . . , 0.9}. Figure 1(b) plots these estimates (dashed
line) with associated 95% CIs. Note that the simulation-based
CIs are not necessarily centered around the point estimates. For
this reason, we also plot a centered version of the beta estimate
(solid line) that is defined as the 50% confidence bound for the
jump beta. Figure 1(b) suggests a modest increase in the quan-
tile beta estimates across quantiles. Byway of economic interpre-
tation, the residuals of the linear model are the hedging errors
from a portfolio using a proportion, or hedge ratio (beta), of the
market to hedge aggregate jump risk, and the statistical objective
function measures total loss from un-hedged jump variation.
Figure 1(b) indicates that an investor who weighs more heavily
negative losses should use a somewhat smaller hedge ratio.

Finally, we examine the robustness of the least-square and the
LAD estimators against outliers. While this type of comparison
can be easily made via artificial numerical experiments, here we
aim to demonstrate the robustness of the LAD estimator in a
real-data setting.We do so by including the two aforementioned
Flash Crashes into our sample. The idea here is to use these
Flash Crashes as extreme, but realistic, examples to “stress test”
the robustness properties of the proposed estimators.

Table . Robustness assessment of the preaveraging jump beta estimators.

Least squares LAD

Flash crashes? Flash crashes?

kn ū No Yes Difference No Yes Difference

 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .
 . . . . . . .

NOTE: We report the preaveraging least squares and LAD estimates for samples
excluding (respectively, including) the  days with major Flash Crashes (May ,
 and April , ) under the column headed “No (respectively, Yes).” The
difference of the estimates using these two samples is reported in the column
headed “Difference.”

Table 3 reports the least-square and the LAD estimates for
samples with or without the two Flash Crash days. Results from
various tuning schemes are presented. We find that these outly-
ing observations indeed induce substantial downward biases in
the least-square estimates. The bias is most pronounced when
the truncation threshold is high. In contrast, the LAD estima-
tor is remarkably robust against these outliers. This finding reaf-
firms the relevance of our initialmotivation for developing jump
regressions with general loss functions.

6. Conclusion

In this article, we propose robust inference techniques for
studying linear dependence between the jumps of discretely
observed processes, for example, financial prices. The data for
the inference consist of high-frequency observations of the
processes on a fixed time interval with asymptotically shrinking
length between observations. The jumps are hidden in the “big”
increments of the process and the difference between the two
drives the asymptotic behavior of our robust jump regression
estimators. Our inference is based on minimizing the residual
from the model-implied linear relation between the detected
jumps in the data. We allow for nonsmooth loss functions so
as to accommodate leading robust regression methods. Unlike
the classical robust regression, in the current setting the limit
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of the objective function continues to be nonsmooth as the
asymptotics is driven by a finite number of jumps on the given
interval, along with local price increments around these jump
times. To further robustify the analysis against the presence of
measurement error at the observation times, we locally smooth
(preaverage) the discrete observations of the processes around
the detected jump times. We provide easy-to-implement simu-
lation methods for conducting feasible inference and illustrate
their good finite sample behavior in a Monte Carlo study. In an
empirical application, we illustrate the gains from the robust
regression by analyzing the stability of the jump regressions
during periods that include potential market disruptions.

Appendix: Regularity Conditions

In this appendix, we discuss in detail the technical regularity con-
ditions used in our asymptotic theory.

We assume that X is a d-dimensional Itô semimartingale of
the form (8). The drift process b and the volatility process σ are
càdlàg adapted. The jump component of X can be written as Jt =∫ t
0

∫
R

δ(s, u)μ(ds, du), where δ(·) : � × R+ × R �→ R
d is a pre-

dictable function and μ is a Poisson random measure on R+ × R

with its compensator ν(dt, du) = dt ⊗ λ(du) for some measure
λ(·) on R. We assume the following condition.

Assumption 2. (a) The process b is locally bounded; (b) ct is non-
singular for t ∈ [0,T ] almost surely; (c) ν([0,T ] × R) < ∞.

The only nontrivial restriction in Assumption 2 is the assump-
tion of finite-activity jumps in X. This assumption is mainly used
to simplify our technical exposition because the empirical focus of
jump regressions is the big jumps. Technically speaking, this means
that we can drop Assumption 2(c) and focus on jumps with size
bounded away from zero without changing the results in the main
text.

The following condition is sufficient for the identification of the
jump beta in the multivariate setting. Recall that (τp)p≥1 denote the
successive jump times of Z.

Assumption 3. Suppose P(�0) > 0 and, in restriction to �0, the
joint distribution of (�Zτp )p≥1 is absolutely continuous with
respect to the Lebesgue measure.

The conditions on the measurement errors are given by the
following.

Assumption 4. We have χ′
i�n

= ai�nχi�n
such that (i) the R

d×d-
valued process (at )t≥0 is càdlàg adapted and locally bounded; (ii)
the variables (χi�n

)i≥0 are mutually independent and independent
of F such that E[χi�n

] = 0, E[χi�n
χ�
i�n

] = Id , and E[‖χi�n
‖v ] is

finite for all v ≥ 1.

The essential part of Assumption 4 is that the noise terms
(χ′

i�n
)i≥0 areF-conditionally independent with zero mean. For the

results in themain text, we only needχi�n
to have finitemoments up

to a certain order; assuming finite moments for all orders is merely
for technical convenience. Finally, we note that the noise terms are
allowed to be heteroscedastic and serially dependent through the
volatility process (at )t≥0.

Supplementary Materials

The supplementary materials consist of two appendices. Appendix A con-
tains the proofs of the results in the main text. Appendix B provides an
example that illustrates the adverse consequence of mistakenly ignoring
measurement errors in the jump regression setting.
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