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Abstract. In this article, we introduce a command, xtnpsreg, that implements a
uniform nonparametric inference procedure for possibly unbalanced panel datasets
with general forms of spatio-temporal dependence. We demonstrate how to apply
this command in several use cases, including (i) the nonparametric estimation of
conditional mean function and its marginal response; (ii) the construction of uni-
form confidence bands for these nonparametric functional parameters; (iii) specifi-
cation tests for parametric model restrictions; and (iv) the estimation and uniform
inference for functional coefficients in semi-nonparametric models.

Keywords: st????, xtnpsreg, series estimation, spatio-temporal dependence, uni-
form confidence band.

1 Introduction

Nonparametric regression methods provide a flexible way to study the relationship be-
tween variables. A popular approach is the series regression, which allows the user to
approximate the unknown function with a “large” set of basis functions such as poly-
nomials, splines, wavelet, etc. Conventional econometric theory (see, e.g., Andrews
(1991) and Newey (1997)) allows one to conduct pointwise inference that is specific to
the function’s value at a given point. This may be unsatisfactory in practice because
applied researchers are often interested in making inferential statements on the con-
ditional mean function as a whole. The latter more demanding task requires uniform
inference methods such as those developed by Belloni et al. (2015) and Li and Liao
(2020) respectively for i.i.d. and serially dependent time-series data.

Meanwhile, panel datasets are widely used in various areas of empirical research. It
is clearly of applied interest to conduct the aforementioned functional inference in the
panel-data setting. An immediate benefit is that, by harnessing the richer information
from both cross-sectional and time-series dimensions, one may obtain more accurate
nonparametric estimates and draw sharper inference. This is a relevant consideration
as the practical application of nonparametric methods is often hindered by a small
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2 Uniform nonparametric inference for spatially dependent panel data

sample size.

Much care is needed for performing reliable inference for panels, because this type
of data often exhibits spatio-temporal dependence, namely, the observations may be
mutually dependent on both cross-sectional and time-series dimensions, which has been
emphasized by Bertrand et al. (2004) and Petersen (2009), among others. Not account-
ing for such dependence tends to result in an understatement of the sampling variability,
leading the empiricist to mistakenly interpret “noise” as “signal.”

A popular approach for dealing with spatio-temporal dependence is proposed by
Driscoll and Kraay (1998) in the context of generalized method of moments. Driscoll–
Kraay standard errors are robust to general forms of weak dependence in the time-series
dimension and arbitrarily strong spatial dependence in the cross-sectional dimension.
The underlying econometric theory requires “large T” asymptotics but does not restrict
the dimensionality of the cross section. In Stata, xtscc implements Driscoll–Kraay
standard errors for linear panel regressions. It is worth noting that in the degenerate
case where the “panel” only contains a single time series, the Driscoll–Kraay standard
error coincides with the classical Newey–West standard error (Newey and West (1987));
see [TS] newey.

In this paper, we propose a new command, xtnpsreg, which implements a panel
(xt) nonparametric (np) series regression (sreg) and provides valid uniform functional
inference that is robust to general forms of spatio-temporal dependence as considered
in Driscoll and Kraay (1998). The underlying technical justification is detailed in a
companion paper Li et al. (2021). The xtnpsreg command may be regarded as the
nonparametric/functional version of xtscc. It is also related to the tssreg command
developed by Li et al. (2020), which performs a similar task under the time-series setting.
Roughly speaking, xtnpsreg extends tssreg in the same way as xtscc extends newey.

As we shall demonstrate in detail below, xtnpsreg may be conveniently used to carry
out several types of nonparametric inferential tasks, including (i) the nonparametric es-
timation of a conditional mean function and its marginal response (i.e., the derivative
function); (ii) the construction of uniform confidence bands for these functional param-
eters; (iii) nonparametric specification tests for parametric model restrictions; and (iv)
the estimation and uniform inference for functional coefficients in semi-nonparametric
models.

The remainder of this article is organized as follows. Section 2 provides some heuris-
tics on the econometric/statistical theory underlying the proposed procedure. Section 3
documents the functionalities of the xtnpsreg command. Section 4 demonstrates how
to use the new command to accomplish various nonparametric inferential tasks in an
empirical example using data from the Federal Reserve Bank of Philadelphia Survey of
Professional Forecasters.
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2 Heuristics for the econometric procedure

In this section, we describe the econometric setting for the nonparametric regression
problem, and provide some heuristics for the uniform functional inference procedure.
For simplicity, we focus on the case with balanced panel in this discussion, while noting
that unbalanced panels are accommodated by xtnpsreg as well.

2.1 Uniform functional inference for the conditional mean function

The baseline setting for the xtnpsreg command is the following nonparametric panel
regression model:

Yit = g(Xit) + εit, E[εit|Xit] = 0, (1)

for 1 ≤ i ≤ N and 1 ≤ t ≤ T . We assume that T → ∞ but do not impose any
restriction on N , that is, N may be fixed or grow to infinity. The object of interest is the
conditional mean function g(·) that is implicitly defined as g(x) = E[Yit|Xit = x]. We
focus on a single-equation setting with the dependent variable (depvar) Yit being scalar-
valued. In the current version of xtnpsreg, we also require the conditioning variable
(condvar) Xit to be univariate. There are two reasons for this design choice. First,
although multivariate conditioning is permitted in theory, the resulting nonparametric
estimate tends to be imprecise because of the well-known “curse of dimensionality” in
nonparametric analysis. For this reason, it advisable to single out a key explanatory
variable Xit and allow it to enter the model nonparametrically. Second, the univariate
conditioning also greatly simplifies the graphical presentation of the functional estimate
and its confidence band, which is desirable for empirical discussions.

The main output of xtnpsreg consists of a nonparametric estimate for the condi-
tional mean function g(·) and an associated uniform confidence band at a user-specified
confidence level 1− α. To be precise, the uniform confidence band is given by a pair of
functional estimates [L(·), U(·)] such that

P(L(x) ≤ g(x) ≤ U(x) for all x ∈ X )→ 1− α, as T →∞. (2)

In other words, the uniform confidence band covers the true conditional mean function
simultaneously over the entire region X with approximately 1 − α probability in large
samples. By default, X is set to be the observed support of the conditioning variable.
In certain applications, the user may want to take X as a subset of the observed support
(so that the uniform nonparametric inference concentrates on a particular subregion of
the conditioning space), which is allowed as an option.

The implementation of the statistical procedure proceeds as follows:

Step 1 (Nonparametric Estimation). The nonparametric estimator for g(·) is con-
structed by running a series regression. Specifically, let P (Xit) = (p1(Xit), . . . , pm(Xit))

>

denote a m-dimensional vector of approximating functions of Xit. Regressing Yit on
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P (Xit) yields the regression coefficient

b̂ =
( T∑
t=1

N∑
i=1

P (Xit)P (Xit)
>
)−1( T∑

t=1

N∑
i=1

P (Xit)Yit

)
, (3)

and the resulting nonparametric estimator for g(·) is given by

ĝ(·) = P (·)>b̂. (4)

The current version of xtnpsreg employs Legendre polynomials to form the approxi-
mating functions P (Xit). Recall that the kth-order Legendre polynomial is given by
1

2kk!
dk

dxk (x2 − 1)k. An important property of the Legendre polynomials is that they are
orthogonal on the [−1, 1] interval with respect to the uniform distribution. This orthog-
onality property helps mitigate the multicollinearity among series terms, and hence,
improves the numerical stability of the estimation procedure. Other types of orthog-
onal series basis may be adopted to serve the same purpose as well, and it might be
interesting to incorporate them in a future version of xtnpsreg.

To better exploit the orthogonality property of Legendre polynomials, it is advisable
to perform a preliminary transformation on the conditioning variable Xit so as to make
it approximately uniformly distributed on the [−1, 1] interval. One way to achieve this
is to consider some cumulative distribution function (CDF), say F (·), and transform
Xit via x 7→ 2F (x) − 1. If F (·) is the CDF of Xit, the transformed variable will be
exactly uniformly distributed on [−1, 1]. In practice, setting F (·) as any reasonable
approximation for the CDF of Xit can still achieve this goal to some extent, which
will generally improve the numerical stability. By default, xtnpsreg employs the CDF
of a normal distribution (calibrated to data) to carry out the transformation, which
is an adequate choice provided that the distribution of the conditioning variable Xit

roughly mimics a normal distribution. This default transformation may be disabled via
the method(none) option, which allows the user to customize the transformation of the
conditioning variable onto the [−1, 1] interval on their own.

Step 2 (Critical Value). The second step is to compute a critical value for a “func-
tional t-statistic” that is defined as

τ̂ = sup
x∈X

T 1/2|ĝ(x)− g(x)|
σ̂(x)

, (5)

where σ̂(x) is the estimated standard error for ĝ(x). Note that τ̂ is simply the supremum
of the pointwise t-statistics evaluated at different points over the conditioning space X .
The σ̂(x) estimate is computed as

σ̂(x) =

√
P (x)>Q̂−1ÂQ̂−1P (x), (6)

where

Q̂ =
1

NT

N∑
i=1

T∑
t=1

P (Xit)P (Xit)
>, (7)
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and Â is a “clustered” Newey–West estimator for the long-run variance-covariance ma-
trix for the score vector P (Xit)εit with the form (denoting ε̂it = Yit − ĝ(Xit))

Â =

Mn∑
s=−Mn

|Mn + 1− s|
Mn + 1

Γ̂s, where

Γ̂s =
1

T

min{T−s,T}∑
t=max{1,1−s}

(
1

N

N∑
i=1

P (Xit)ε̂it

)(
1

N

N∑
i=1

P (Xit+s)ε̂it+s

)>
.

(8)

The user may specify the bandwidth parameter Mn via the lag option in xtnpsreg as
in [TS] newey. We also note that the Â estimator is constructed in the same spirit
as Driscoll and Kraay (1998) and it is robust with respect to general forms of spatio-
temporal dependence.

The critical value of interest is an estimate for the 1−α quantile of the sup-t statistic
τ̂ . Li et al. (2021) show theoretically that the distribution of τ̂ can be approximated in
large sample by the conditional (given data) distribution of

τ̂∗ = sup
x∈X

|P (x)>(Q̂−1ÂQ̂−1)1/2N ∗m|
σ̂(x)

, (9)

where N ∗m is a generic m-dimensional standard normal random vector (which has the
same dimensionality as P (Xit)). To compute the critical value, we thus draw N ∗m from
the standard normal distribution many times, and for each draw, compute τ̂∗ over a
discretized mesh of X ; we then set the critical value cv1−α as the 1−α empirical quantile
of the simulated τ̂∗.

In empirical applications, applied researchers are often interested in testing whether
the conditioning variable may have any effect on the dependent variable, which in the
present nonparametric setting amounts to testing the null hypothesis

H0 : g(x) ≡ E[Yit|Xit = x] = 0, for all x ∈ X . (10)

We reject the null hypothesis at significance level α if the sup-t statistic τ̂ (evaluated
at g(·) = 0) exceeds the critical value cv1−α. The test statistic, critical value, and the
corresponding p-value are the default output of xtnpsreg.

Step 3 (Uniform Confidence Band). Finally, the 1 − α level two-sided uniform
confidence band for g(·) is then given by

CB1−α(·) = [ĝ(·)− cv1−αT−1/2σ̂(·), ĝ(·) + cv1−αT
−1/2σ̂(·)]. (11)

The nonparametric functional estimate together with this confidence band can be dis-
played by activating the plot option; also see the plotu option for an alternative.

2.2 Marginal response

In linear regression models, the marginal effect of an explanatory variable on the depen-
dent variable is completely summarized by its regression coefficient. For nonparametric
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regressions, the marginal response is captured by the derivative of the conditional mean
function, denoted ∂g(·). By calling the marginal option, xtnpsreg computes a non-
parametric functional estimate for ∂g(·) along with its 1− α uniform confidence band.
The implementation is carried out in the background as follows:

Step 1. Compute b̂, Q̂, and Â as in Section 2.1. Set

∂ĝ(·) = ∂P (·)>b̂, σ̃(x) =

√
∂P (x)>(Q̂−1ÂQ̂−1)∂P (x). (12)

Step 2. Draw N ∗m from the m-dimensional standard normal distribution many times,
and for each draw, compute

τ̂ ′∗ = sup
x∈X

|∂P (x)>(Q̂−1ÂQ̂−1)1/2N ∗m|
σ̃(x)

, (13)

where the supremum can be computed on a discretized mesh of X . Set the critical value
cv′1−α as the 1− α empirical quantile of the simulated τ̂ ′∗.

Step 3. Report the 1 − α level two-sided uniform confidence band for ∂g(·) as [ĝ(·) −
cv′1−αT

−1/2σ̃(·), ĝ(·) + cv′1−αT
−1/2σ̃(·)].

2.3 Functional coefficient model

The aforementioned nonparametric uniform inference method can also be adapted to
study linear regression models with functional coefficients. Specifically, consider the
following specification

Yit = c+ β(Xit)Uit + εit, E[εit|Xit, Uit] = 0, (14)

where c is the intercept, Uit is a scalar-valued “base” explanatory variable (basevar),
and β(·) is its functional coefficient modeled nonparametrically as a function of the
conditioning variable Xit. The inferential target is the function β(·).

Note that the baseline setting described in Section 2.1 may be considered as a special
case of (14) with Uit = 1 and g(x) = c+ β(x). The user may signify this more general
functional coefficient setting by turning on the funccoef option in xtnpsreg. In this
situation, the functional inference will concentrate on the functional coefficient β(·)
without adding the intercept term c.

2.4 Semi-nonparametric model with linear control variables

For the settings discussed above, xtnpsreg also allows additional control variables to
enter the model linearly. The generalized versions of the baseline nonparametric re-
gression model (1) and the functional coefficient model (14) are given by, respectively,

Yit = g(Xit) + Z>it γ + εit, (15)
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and

Yit = c+ β(Xit)Uit + Z>it γ + εit, (16)

where Zit is a vector of control variables (controlvar). Under these settings, the focal
point of the functional inference remains to be g(·) and β(·), respectively.

3 The xtnpsreg command

This section documents the syntax and functionalities of the xtnpsreg command. The
command requires the moremata package, which may be installed in command line
via ssc install moremata. The user also needs to declare the panel-data structure
beforehand via xts panelvar timevar.

3.1 Syntax

The Stata syntax of the xtnpsreg command is as follows:

xtnpsreg depvar condvar
[
basevar

] [
controlvar

] [
if
] [

in
] [

, lag(#) m(#)

method(transtype) confidencelevel(#) ngrid(#) mc(#) triml(#)

trimr(#) plot plotu scatter(#) funccoef marginal table excel
]

where depvar corresponds to the dependent variable Yit, condvar denotes the nonpara-
metric conditioning variable Xit, basevar is the univariate “base” explanatory variable
Uit in the functional coefficient model described in Section 2.3, and controlvar contains
a vector Zit of linear control variables described in Section 2.4.

3.2 Options

lag(#) specifies the number of lags for computing the Newey–West estimator of the
long-run variance-covariance matrix. The default is given by the integer part of
0.75T 1/3, where T is the number of time periods.

m(#) specifies the number of Legendre polynomial terms used in the series estimation.
The default is m(6).

method(transtype) specifies the transformation implemented on the conditioning vari-
able. The main purpose of doing so is to make the regressors approximately or-
thogonal, which generally improves the numerical stability of the series regression,
especially when a large number of series terms are included. The approximating
functions are Legendre polynomials of the transformed variable. The current ver-
sion supports the following transformation methods, with method(normal) set to be
the default.

• none: no transformation;



8 Uniform nonparametric inference for spatially dependent panel data

• normal: normal transformation x 7→ 2Φ[(x − x)/σ] − 1, where x and σ are the
sample mean and standard deviation of x, and Φ is the cumulative distribution
function of the standard normal distribution.

confidencelevel(#) specifies the confidence level (in percentage) of the uniform con-
fidence band. The default is confidencelevel(90).

ngrid(#) specifies the number of grid points used for discretizing the support of the
transformed conditioning variable. The default is ngrid(1000).

mc(#) specifies the number of Monte Carlo simulations used to compute the critical
value. The default is mc(5000).

triml(#) sets the left limit of the conditioning region X to be the # empirical quantile
of condvar. The default is triml(0).

trimr(#) sets the right limit of the conditioning region X to be the 1 −# empirical
quantile of condvar. The default is trimr(0).

plot produces a plot of the nonparametric functional estimate and its uniform confi-
dence band, in which the transformed conditioning variable is plotted on the hori-
zontal axis.

plotu produces a plot of the nonparametric functional estimate and its uniform confi-
dence band, in which the original conditioning variable is plotted on the horizontal
axis.

scatter(#) adds a scatter plot of the data points, where # is a number between
[0, 100] that specifies the fraction of data points to be plotted.

funccoef signifies that the model of interest is a functional coefficient model with
basevar as the base explanatory variable.

marginal implements the estimation of marginal response function.

table reports the estimated regression coefficients and standard errors in the series
estimation.

excel generates an Excel file that contains the requisite information for plotting the
functional estimate and the associated uniform confidence band.

3.3 Stored results

The xtnpsreg command stores the following results in e():
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Scalars
e(N) number of cross-sectional units
e(T) number of time periods
e(supt) sup-t statistic
e(cv) critical value for the sup-t test
e(df r) residual degrees of freedom

Macros
e(depvar) name of the dependent variable
e(condvar) name of the conditioning variable
e(method) transformation method
e(cmd) xtnpsreg

Matrices
e(b) regression coefficients in series estimation
e(se) standard errors of regression coefficients in series estimation
e(V) variance-covariance matrix of the regression coefficients
e(ygrid) functional estimate
e(xgrid) grid points of the conditioning variable
e(sigma) estimate of standard error function

4 An empirical illustration

In this section, we demonstrate xtnpsreg’s main usage in an example built on the
empirical analysis of Coibion and Gorodnichenko (2015) and Li et al. (2021). The
dataset and implementation code are provided in the online supplement accompanying
this paper.

4.1 Data description and empirical motivation

The spf.dta dataset is constructed from the Survey of Professional Forecasters. It
contains quarterly time series of ex post forecast errors (fe) and ex ante forecast revisions
(fr) averaged among forecasters from 1969 to 2014 for five macroeconomic variables,
including GDP price deflator, real GDP, industrial production, housing starts, and
unemployment rate, over four forecast horizons. We treat the data for each variable-
horizon pair as an individual time series. Merging them yields a panel dataset with
N = 20 and T = 173.

Since the time series of forecast errors and forecast revisions have quite different
scales across variables, we first normalize them separately so that each time series is av-
eraged at zero with unit standard deviation. The resulting normalized forecast error and
forecast revision are stored as fe norm and fr norm. The normalization is implemented
as follows.

. *** Load Data ***

. use "spf.dta", clear

. xtset id_N id_date
panel variable: id_N (strongly balanced)
time variable: id_date, 1 to 173

delta: 1 unit
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.

. *** Data Normalization ***

. by id_N: egen fe_id_mean = mean(fe)

. by id_N: egen fe_id_sd = sd(fe)

. by id_N: gen fe_norm = (fe-fe_id_mean)/fe_id_sd

.

. by id_N: egen fr_id_mean = mean(fr)

. by id_N: egen fr_id_sd = sd(fr)

. by id_N: gen fr_norm = (fr-fr_id_mean)/fr_id_sd

The economic motivation for studying the relationship between ex post forecast er-
ror and ex ante forecast revision is to examine whether the professional forecasters are
collectively rational. Under the rational-expectation hypothesis, the forecast errors are
entirely unanticipated, and so, their conditional expectation given any a priori known
information (including the forecast revision) should be zero. Meanwhile, a large litera-
ture in macroeconomics argues that the full rationality benchmark may break down due
to information stickiness, which in turn implies a positive relationship between forecast
error and forecast revision as shown in Coibion and Gorodnichenko (2015). We may
assess the empirical plausibility of these alternative theoretical predictions by nonpara-
metrically regressing the forecast error on the forecast revision. Below, we demonstrate
how to use the xtnpsreg command to implement the nonparametric estimation and the
related functional inference.

4.2 The basic use case of xtnpsreg

The main, and most basic, use of xtnpsreg is to nonparametrically estimate the con-
ditional mean function and plot the functional estimate together with its uniform con-
fidence band. As a first illustration, we nonparametrically regress the (normalized)
forecast error fe norm on the forecast revision fr norm as follows.

. xtnpsreg fe_norm fr_norm, plot

Transformation: sup-t 10% critical value P>|t|

Normal 4.2721 2.5412 0.000

The output table reports the sup-t statistic, critical value, and p-value for testing
the null hypothesis that the conditional mean function is identically zero in a uni-
form sense. The default significance level is α = 10%, which may be changed via the
confidencelevel(#) option (e.g., confidencelevel(95) corresponds to α = 5%).
The table above shows that the sup-t statistic is notably greater than the critical value,
indicating a strong rejection of the null hypothesis. Indeed, the virtually zero p-value
suggests that the null hypothesis is also rejected at, say, the 1% significance level. This
finding implies that the forecasts are not fully rational.

Figure 1 plots the estimated conditional mean function and the associated 90%
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Figure 1: Default output of estimated conditional mean function and the 90% uniform
confidence band.

uniform confidence band. By default, xtnpsreg transforms the conditioning variable
fr norm onto the [−1, 1] via the x 7→ 2Φ(x) − 1 transformation, where Φ denotes the
normal CDF calibrated using the sample mean and variance of the conditioning variable.
The fact that the confidence band does not always cover the zero horizontal line means
that the conditional mean function is statistically different from zero as a whole, which,
needless to say, is consistent with the aforementioned testing result. The plot also
reveals that the conditional mean of the forecast error is an increasing function in the
forecast revision, and so, provides support for theoretical predictions from information-
rigidity models. The requisite information for generating Figure 1 may be exported to
a spreadsheet by calling the excel option.

4.3 Robustness checks with respect to tuning parameters

The proposed nonparametric econometric method mainly involves two tuning parame-
ters. One is the number of series terms m(#). The default specification is m(6), which
corresponds to a fifth-order Legendre polynomial. The other is the bandwidth param-
eter lag(#) stemming from the computation of the Newey–West type standard error,
which is set to be the integer part of 0.75T 1/3 by default. In theory, one should employ
a larger number of series terms for larger samples, and use more lags if the data exhibits
stronger serial dependence on the t dimension. But it is difficult in practice to pin down
these choices “optimally.” It is thus useful to check the robustness of empirical findings
with respect to these choices.
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As a concrete demonstration, we repeat the nonparametric estimation with different
numbers of series terms (4, 6, 8, 10) by modifying the m(#) option as follows.

. xtnpsreg fe_norm fr_norm, m(4) plot

Transformation: sup-t 10% critical value P>|t|

Normal 4.9230 2.3875 0.000

. xtnpsreg fe_norm fr_norm, m(6) plot

Transformation: sup-t 10% critical value P>|t|

Normal 4.2721 2.5358 0.001

. xtnpsreg fe_norm fr_norm, m(8) plot

Transformation: sup-t 10% critical value P>|t|

Normal 5.2039 2.5882 0.000

. xtnpsreg fe_norm fr_norm, m(10) plot

Transformation: sup-t 10% critical value P>|t|

Normal 5.4878 2.6891 0.000

We may also check the effect of the Newey–West lag parameter by modifying the
lag(#) option as follows.

. xtnpsreg fe_norm fr_norm, lag(2) plot

Transformation: sup-t 10% critical value P>|t|

Normal 4.5055 2.5561 0.000

. xtnpsreg fe_norm fr_norm, lag(4) plot

Transformation: sup-t 10% critical value P>|t|

Normal 4.2721 2.5218 0.001

. xtnpsreg fe_norm fr_norm, lag(6) plot

Transformation: sup-t 10% critical value P>|t|

Normal 4.1318 2.5026 0.000

. xtnpsreg fe_norm fr_norm, lag(8) plot

Transformation: sup-t 10% critical value P>|t|

Normal 4.0872 2.5225 0.001

From these tables and the plots in Figures 2 and 3, we see that the empirical results
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Figure 2: Nonparametric estimates with different numbers of series terms.

are fairly robust with respect to different choices of the number of series terms and/or
the number of Newey–West lags.

4.4 Nonparametric inference for marginal response

Besides the conditional mean function g(·) itself, applied researchers may be interested
in estimating the marginal response, defined as the derivative function ∂g(·). The
nonparametric estimate and the associated uniform confidence band can be computed
via xtnpsreg by calling the marginal option as follows.

. xtnpsreg fe_norm fr_norm, plot marginal

Transformation: sup-t 10% critical value P>|t|

Normal 4.3819 2.5312 0.000

In this table, the sup-t statistic, critical value, and p-value pertain to testing the
null hypothesis that the derivative function ∂g(·) is identically zero. The results sug-
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Figure 3: Nonparametric estimates with different numbers of Newey–West lags.

gest that the marginal response function as a whole is statistically different from zero.
Figure 4 plots the nonparametric estimate of the marginal response and its 90% uni-
form confidence band. From the figure, we see that the estimated marginal response is
nonnegative over the conditioning space, which is consistent with the previous observa-
tion that the conditional mean function of forecast error is increasing in the amount of
forecast revision as predicted by information-rigidity models.

4.5 Specification tests

The uniform nonparametric inference method may also be used to conduct nonpara-
metric specification tests against parametric model restrictions. For instance, we may
formally test whether a linear specification is sufficient to describe the relationship be-
tween forecast error and forecast revision. To do so, we first run an ordinary least squares
regression of forecast error on forecast revision and obtain the residual as follows.

. reg fe_norm fr_norm

Source SS df MS Number of obs = 3,460
F(1, 3458) = 207.14
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Figure 4: Nonparametric estimate and uniform confidence band of the derivative func-
tion.

Model 194.412734 1 194.412734 Prob > F = 0.0000
Residual 3245.58726 3,458 .938573529 R-squared = 0.0565

Adj R-squared = 0.0562
Total 3440 3,459 .994507082 Root MSE = .9688

fe_norm Coef. Std. Err. t P>|t| [95% Conf. Interval]

fr_norm .2377295 .0165179 14.39 0.000 .2053437 .2701154
_cons 4.32e-10 .0164701 0.00 1.000 -.0322921 .0322921

. predict fresidual, residuals

If the linear specification for the conditional mean function is correct, the conditional
expectation of the residual given the conditioning variable should be zero. To test this
formally, we use xtnpsreg to implement the nonparametric regression as follows.

. xtnpsreg fresidual fr_norm

Transformation: sup-t 10% critical value P>|t|

Normal 2.1216 2.5186 0.239

From the table, we see that the null hypothesis of correct specification cannot be re-
jected at the 10% level, which suggests that the linear specification is in fact compatible
with the observed data.
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It is worth noting that the residual obtained from the linear regression are “generated
variables” in that they are noisy approximations for the unobserved disturbance terms.
That noted, it can be shown theoretically (see Li and Liao (2020)) that this approxi-
mation error is asymptotically negligible for the nonparametric specification test. The
intuition is that, in large samples, estimation errors in the linear regression coefficients
shrink to zero at a faster rate than the statistical error in the nonparametric test. This
theoretical intuition works better when the number of series terms is relatively large. It
is thus advisable to check the robustness of the empirical finding by increasing m(#) as
shown in the following implementation.

. xtnpsreg fresidual fr_norm, m(10)

Transformation: sup-t 10% critical value P>|t|

Normal 2.4977 2.7045 0.164

4.6 Semi-nonparametric setting with linear control variables

We next describe how to use xtnpsreg in the partial linear model (15) where a vector Zit
of control variables enters the specification linearly. For this illustration, we randomly
generate two control variables Z1 and Z2, and feed them to xtnpsreg as controlvar. We
also turn on the table option to display the estimated coefficients for all series terms
and control variables.

. gen Z1 = rnormal()

. gen Z2 = rnormal()

. xtnpsreg fe_norm fr_norm Z1 Z2, table

Number of obs = 3460
Newey-West maximum lag = 4

Coef. Std. Err. t P>|t| [95% Conf. Interval]

p_1(fr_norm) -.0101484 .0331531 -0.31 0.760 -.0756074 .0553105
p_2(fr_norm) .279338 .0640112 4.36 0.000 .1529513 .4057247
p_3(fr_norm) .0172467 .027071 0.64 0.525 -.0362035 .070697
p_4(fr_norm) .0059171 .0354302 0.17 0.868 -.0640379 .0758721
p_5(fr_norm) .0398964 .0232038 1.72 0.087 -.0059183 .0857112
p_6(fr_norm) .0157862 .0301797 0.52 0.602 -.0438019 .0753744

Z1 -.0061957 .0149366 -0.41 0.679 -.0356873 .0232958
Z1 .0168962 .0133845 1.26 0.209 -.0095308 .0433232

Transformation: sup-t 10% critical value P>|t|

Normal 4.2755 2.5429 0.000

As expected, the coefficients of Z1 and Z2 are both close to zero and statistically
insignificant, as they are simply irrelevant for the data generating process. Meanwhile,
the sup-t statistic and its critical value remain to be very similar to those seen in Section
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4.2.

4.7 Uniform inference for functional coefficients

We now demonstrate how to use xtnpsreg to conduct inference in the functional coef-
ficient model (14) and its generalized version (16). In this illustration, the dependent
variable Yit remains to be the forecast error. But we now set the forecast revision as the
base explanatory variable Uit, and its marginal effect is given by the function β(·) of a
new conditioning variable Xit. We take Xit as the log volatility of the U.S. stock mar-
ket portfolio computed as the logarithm of the standard deviation of daily returns (in
percentage) over the preceding month. In this example, Xit happens to be a univariate
time series not depending on i; this is permitted, but not required, by the estimation
procedure.

The time series of the log market volatility is stored as mktvol in the dataset
volatility.dta provided in the online supplemental material. As a preliminary prepa-
ration, we need to convert the univariate volatility series into a panel by merging the
original panel dataset spf.dta with the new one as follows.

. *** Merge data ***

. merge m:1 id_date using volatility

Result # of obs.

not matched 0
matched 3,460 (_merge==3)

The functional coefficient model (14) is estimated by turning on the funccoef option
in xtnpsreg as follows.

. xtnpsreg fe mktvol fr, plot funccoef

Transformation: sup-t 10% critical value P>|t|

Normal 3.6591 2.5624 0.004

It is instructive to clarify the syntax of this command. Here, fe and mktvol are
parsed as depvar and condvar, respectively. With the funccoef option turned on,
the variable that immediately follows condvar (i.e., fr) is parsed as basevar, and the
remaining list of variables, if there is any, is parsed as controlvar. Without turning on
funccoef, xtnpsreg would instead parse all variables following condvar as controlvar
as described in Section 4.6 above. The command above also generates a plot for the
nonparametric estimate of the functional coefficient β(·) and its uniform confidence
band, as shown in Figure 5 below.

As in the baseline setting, xtnpsreg transforms the conditioning variable using the
normal CDF to the [−1, 1] interval because the method(normal) option is active by
default. The functional estimates in Figure 5 are plotted under the transformed scale,
which explains the [−1, 1] domain on the horizontal axis. The user may also obtain



18 Uniform nonparametric inference for spatially dependent panel data

−
2

−
1

0
1

2
β

−1 −.5 0 .5 1
Transformed Log Market Volatility

Conditional Mean Function 90% Confidence Band

Functional Coefficient

Figure 5: Nonparametric estimate and uniform confidence band of the functional coef-
ficient β(·) plotted on the transformed scale using the plot option.
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Figure 6: Nonparametric estimate and uniform confidence band of the functional coef-
ficient β(·) plotted on the original scale using the plotu option.
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plots on the original untransformed scale of condvar by replacing plot with plotu, as
shown in Figure 6.

4.8 Implementation for “large N small T” panels via index swapping

As discussed in Section 2, the proposed method relies on a “large T” setting but does not
restrict the cross-sectional dimension, which may be fixed or divergent. Correspondingly,
the underlying theory also requires that the dependence along the time-series dimension
is weak, whereas the cross-sectional dependence is allowed to be arbitrarily strong.

It is important to note that whether one labels i or t as “individual” or “time” is
completely inconsequential. For all econometric purposes, what matters is that i indexes
the dimension with possibly strong dependence and arbitrary sample size and t indexes
the dimension with weak dependence (with independence being a special case) and large
sample size.

Therefore, by swapping the role of i and t (so that i and t become the time and
cross-sectional indexes, respectively), we may also apply xtnpsreg in short panels with
a large number of independent cross-sectional units. Due to the lack of dependence in
the new t dimension, the Newey–West lag should be set to lag(0). Arbitrarily strong
serial dependence is accommodated as time is now indexed by i.
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