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Reading the Candlesticks: An OK Estimator for Volatility
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Abstract

Academic research on nonparametric “spot” volatility inference often relies on high-quality

transaction data that are not available to an average investor. Most investors, however, have

free access to intraday candlestick charts through their online trading applications. Based on

such data, we propose an Optimal candlesticK (OK) estimator for the spot volatility at a given

time point. Under a standard infill asymptotic setting for Itô semimartingale price process, we

show that the OK estimator is asymptotically unbiased and has minimal asymptotic variance

within a class of linear estimators. In addition, its estimation error can be coupled by a Brow-

nian functional, whose distribution is pivotal and known in finite-sample. Optimal confidence

intervals can be constructed using the highest density interval of the (nonstandard) coupling

distribution. Our theoretical and numerical results suggest that the proposed candlestick-based

estimator is much more accurate than the conventional spot volatility estimator based on high-

frequency returns. An empirical illustration is provided, which documents the intraday spot

volatility dynamics of various assets during the Fed Chairman’s recent congressional testimony.
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1 Introduction

Realized volatility measures computed using high-frequency asset returns have been extensively

studied and applied in econometrics and statistics. Following the pioneer work of Andersen and

Bollerslev (1998), Barndorff-Nielsen and Shephard (2002), and Andersen, Bollerslev, Diebold, and

Labys (2003), a large literature in econometrics has emerged to study integrated volatility over

a fixed period of time, typically a trading day. As high-quality asset price data become increas-

ingly more available at higher frequencies, researchers have also rekindled their interest on the

nonparametric estimation and inference for the spot volatility at a given time point (see Foster

and Nelson (1996) and Comte and Renault (1998) for early contributions), which is particularly

useful for studying news-induced volatility shocks such as those triggered by macroeconomic news

announcements (Bollerslev, Li, and Xue (2018), Nakamura and Steinsson (2018)).1 The classical

spot volatility estimator is constructed as a localized version of the realized variance, but con-

ducting reliable spot inference is more challenging, fundamentally because of the scarcity of local

information, which may lead to finite-sample distortions in conventional asymptotic approxima-

tions. Hence, the spot inference naturally demands “better” high-frequency data, typically in the

form of asset price returns sampled at higher frequencies.2

Despite the aforementioned impressive methodological advance, it might have been difficult for

an average investor to benefit directly from this academic development. We recognize the lack

of data as a major obstacle. Indeed, published papers in this area often rely on intraday high-

frequency returns data obtained from commercial databases (e.g., the TAQ database) through

institutional subscriptions, which is simply beyond the reach of an average investor. We also note

that the majority of academic research has focused on the U.S. market, benefiting from its highly

developed data service infrastructure. It is conceivable that the data-related obstacle may be more

severe in less developed financial markets outside the U.S.3

Set against this background, our goal in this paper is to develop an easy-to-implement infer-

ence method for spot volatility based on high-frequency data that are readily accessible to retail

investors. We observe that most, if not all, online trading applications display “candlestick” charts

for asset prices, with each candlestick containing the open, close, high, and low prices within a

1Also see Kristensen (2010), Chapter 13.3 of Jacod and Protter (2012), and Bollerslev, Li, and Liao (2021) for

some recent innovations and additional references.
2Price data sampled at “ultra” high frequency (e.g., tick-by-tick data) are often deemed to be contaminated by

microstructure noise. To mitigate the effect of noise, researchers often sparsely sample the data at a much lower

frequency, typically on the level of a few minutes. For more comprehensive discussions, see, for example, Zhang,

Mykland, and Aı̈t-Sahalia (2005), Bandi and Russell (2008), and the recent paper by Li and Linton (2020).
3A useful publicly available source of information on high-frequency volatility measures is the Realized Library

of Oxford-Man Institute of Quantitative Finance, which offers the general public daily updates of realized volatility

measures for 31 market indices.
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Figure 1: The figure illustrates the generic form of candlesticks. In the bullish (resp. bearish)

case, the close price is higher (resp. lower) than the open price during the trading session.

short trading session.4 For instance, the Robinhood mobile app, which is a popular trading ap-

plication among retail investors, updates the candlesticks for stocks and ETFs listed in the U.S.

market every 10 minutes. As a concrete illustration, we plot two candlesticks (bullish and bearish)

in Figure 1. Each candlestick contains a vertical rectangle box (i.e., real-body) determined by the

open and close prices during the trading period (say, 10 minutes), with its color signifying the

direction of the price movement; the upper and lower ends of the candlestick indicate the highest

and lowest prices within that period, respectively.

We propose an estimator for the spot volatility at a given time point based on the associated

candlestick, and study its asymptotic property under a standard Itô semimartingale price model

(which features stochastic drift and volatility, intraday seasonality, leverage effect, and price and

volatility jumps) using infill asymptotics.5 In its basic form, the proposed estimator is constructed

as a linear combination of the high-low range and the absolute open-close return, which is more

precisely given by
0.811× (High− Low)− 0.369× |Close−Open|

(Duration of the Trading Session)1/2
.6 (1.1)

Here, the specific numerical weights are chosen to achieve a type of optimality, that is, the resulting

estimator is asymptotically unbiased and attains the minimal asymptotic variance within a class

of linear estimators. We refer to this estimator as the Optimal candlesticK (OK) estimator.

4The candlestick chart has been commonly used in asset markets over the world for centuries; see Nison (2001).
5See Chapter 2 of Jacod and Protter (2012) for a comprehensive discussion on the Itô semimartingale model.
6The volatility estimate computed using the dollar-denominated prices is also in dollar unit, which may be

transformed into relative terms by using the open price as a normalization. Almost equivalently, one may compute

the volatility estimate in percentage terms using log-transformed prices.
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Since the OK estimator is based on a single candlestick observation, one evidently cannot use

the conventional law of large numbers or central limit theorem to derive its asymptotic property.

Our asymptotic analysis instead relies on an “approximate finite-sample” approach in the same

spirit as Bollerslev, Li, and Liao (2021). The underlying idea is simple: Within each “short”

trading session, the Itô semimartingale price process can be approximated by a Brownian motion

scaled by a constant volatility. Guided by this intuition, we show that the estimation error of

the OK estimator may be strongly approximated, or “coupled,” by a certain Brownian functional,

whose (nonstandard) distribution is known in finite-sample. This result can then be used to

construct confidence intervals (CI) for the spot volatility. In fact, we can optimize the CI (in

terms of minimal length) by using the highest density interval (HDI) of the distribution of the

coupling variable as the critical value. Our theory suggests that the resulting candlestick-based

CI is much more efficient than the conventional CI based only on high-frequency returns. Our

numerical findings from both simulated and real data also support this theoretical claim.

We stress that the OK estimator and the associated optimal CI are very easy to compute

and, importantly, they only rely on readily accessible data. Our proposal thus offers the average

investor an “affordable” option, both in terms of computational feasibility and data availability,

for conducting reliable inference on spot volatility in real time. This exactly fulfills our main goal

mentioned above. To guide practical applications, we provide an empirical illustration in Section 4

and show that the OK estimator can indeed provide economically sensible spot volatility estimates

with adequate precision for a variety of different assets (bond, equity, gold, and cryptocurrency).

We also note that, although we intentionally “tilt” our main discussion towards practicality, the

underlying econometric idea can be extended in many directions for more complicated econometric

settings. For example, when candlesticks are available at higher frequencies, we may aggregate

them within a short window to further improve the estimation efficiency. Moreover, following

the influential work of Barndorff-Nielsen and Shephard (2004), we may also consider a bipower

version of the OK estimator by simultaneously using adjacent candlesticks, which may make the

estimator more robust with respect to price jumps. Additional ideas and more detailed discussions

are provided in Section 2.3.

Finally, we clarify the relation between the present paper and prior work in the literature. Our

work is inspired by the classical papers of Parkinson (1980) and Garman and Klass (1980). Based

on the probabilistic result of Feller (1951), Parkinson (1980) develops an estimator for asset return

variance by aggregating a large number of observations of the high-low price range, and makes

the important observation regarding the efficiency gain from using range data. Modeling the price

process as a scaled Brownian motion, Garman and Klass (1980) construct a more efficient unbiased

estimator for variance by exploiting the information of the entire candlestick. In contrast to this

4
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prior work, we directly focus on the estimation of volatility (rather than variance), and conduct an

infill asymptotic analysis under the far more general Itô semimartingale model. More importantly,

we develop valid optimal CIs for the spot volatility whereas Parkinson (1980) and Garman and

Klass (1980) only focus on estimation.

From a technical point of view, our paper is more closely related to the high-frequency econo-

metrics literature on volatility inference; see the many papers cited above, and Andersen and

Bollerslev (2018) and Jacod and Protter (2012) for a more complete list of references.7 We high-

light an important distinction between our method and the existing ones. In essentially all prior

studies, the integrated variance and spot volatility are estimated by aggregating a “large” number

of return or range observations. The consistency of the estimator can be claimed by invoking

a law of large numbers, and the asymptotic Gaussian-based inference can be justified using a

central limit theorem. In sharp contrast, we consider estimators formed using a fixed number

of candlesticks, which better mimics the finite-sample environment for spot inference. Unlike

conventional work, we do not pursue a consistency claim, but instead focus on the estimator’s

“approximate finite-sample” properties. Specifically, we show that the estimator is asymptotically

unbiased with a well-defined sense of optimality, and its asymptotic distribution is captured by a

nonstandard coupling variable, resulting in CIs that are quite distinct from conventional asymp-

totic Gaussian-based CIs. Our coupling-based approach is in the same spirit as Bollerslev, Li, and

Liao (2021). However, that prior work only focuses on estimators formed using high-frequency

returns. By exploiting the richer information from candlesticks in an optimal way, our estimator

and CI substantially outperform those proposed by Bollerslev, Li, and Liao (2021). This efficiency

improvement is crucial for our practical goal, that is, to provide an average investor with a reliable

inference method in a data-scarce environment. In our empirical illustration, we show that in

the benchmark scenario with 10-minute data, spot volatility estimates based only on returns are

simply too noisy to be economically meaningful, whereas the OK volatility estimates are much

more accurate and interpretable with respect to the underlying news flow.

The remainder of the paper is organized as follows. Section 2 presents our inference procedure

and the corresponding asymptotic theory. Section 3 reports the finite-sample performance of the

proposed method in a Monte Carlo experiment. An empirical illustration is provided in Section 4.

Section 5 concludes. The Appendix collects all proofs.

7A paper worth highlighting is Christensen and Podolskij (2007), which establishes the infill asymptotic property

of Parkinson’s estimator as an estimator of integrated variance.

5

Electronic copy available at: https://ssrn.com/abstract=3838231



2 Candlestick-based inference for spot volatility

Section 2.1 introduces the theoretical setting and briefly reviews some existing methods for spot

volatility inference. Section 2.2 describes a basic version of our candlestick-based inference pro-

cedure and establishes its theoretical validity. Further extensions are discussed in Section 2.3. In

Section 2.4, we consider an efficiency comparison between the proposed method and commonly

used benchmarks in a thought experiment. Below, all limits are for n→∞.

2.1 The setting and background

Suppose that the (log) price process P is an Itô semimartingale defined on a filtered probability

space (Ω,F , (Ft)t≥0,P) written as

Pt = P0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt, (2.1)

where b is the drift process, σ is the stochastic volatility process, W is a standard Brownian motion,

and J is a pure-jump process driven by a Poisson random measure. Our econometric interest is

on the estimation and inference for the spot volatility σt at a given time point t. The method can

be trivially extended to the joint inference for a finite collection of time points.

The classical nonparametric estimator for spot volatility, which is first proposed by Foster and

Nelson (1996), can be constructed based on a localized version of the realized variance (Barndorff-

Nielsen and Shephard (2002), Andersen, Bollerslev, Diebold, and Labys (2003)). Under the

classical theory, we assume that the price process P is observed on a high-frequency time grid

0,∆n, 2∆n . . . over a fixed time interval [0, T ], where the sampling interval ∆n → 0 asymptotically.

Let ri ≡ Pi∆n − P(i−1)∆n
denote the ith return. To conduct spot estimation, the user may choose

a bandwidth sequence kn and divide the returns into non-overlapping blocks, with the ith block

containing
{
r(i−1)kn+j : 1 ≤ j ≤ kn

}
. For any t ∈ [(i− 1) kn∆n, ikn∆n], the estimator for the spot

variance σ2
t is given by

v̂t (kn) ≡ 1

kn∆n

kn∑
j=1

r2
(i−1)kn+j . (2.2)

Under mild regularity conditions, the conventional theory suggests that v̂t (kn) is a consistent

estimator of σ2
t , provided that the bandwidth sequence satisfies kn →∞ and kn∆n → 0.8 The two

8It is useful to note that the spot variance estimator at any fixed time is robust to the presence of Poisson-type

price jumps, even without using the multipower (Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen,

Shephard, and Winkel (2006)) or truncation (Mancini (2001)) techniques. These more advanced techniques are

needed to achieve jump-robustness in the analysis of integrated variance over a non-degenerate time span. In

contrast, the spot estimation concerns a shrinking estimation window, during which jumps occur with asymptotically

negligible probability. This phenomenon is well understood in the literature on spot estimation; see, for example,

Theorem 13.3.3 in Jacod and Protter (2012).
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conditions on the tuning sequence play distinct roles in the asymptotic theory, which are intuitively

easy to understand: The kn →∞ condition permits the use of a law of large numbers to establish

consistency, and the kn∆n → 0 condition ensures that the [(i− 1) kn∆n, ikn∆n] estimation window

“collapses” to the time point t, so as to give the local average estimator a nonparametric “spot”

interpretation. Under additional restrictions, one may push the asymptotic analysis one step

further to get the following feasible central limit theorem (see Theorem 2 in Foster and Nelson

(1996) for an early contribution and Theorem 13.3.3 in Jacod and Protter (2012) for a more general

result):

k
1/2
n

(
v̂t (kn)− σ2

t

)
√

2v̂t (kn)

d→ N (0, 1) . (2.3)

By the delta method, an analogous result for the spot volatility σt also holds in the form of

k
1/2
n

(√
v̂t (kn)− σt

)
√
v̂t (kn) /2

d→ N (0, 1) .

Consequently, for α ∈ (0, 1), a two-sided 1 − α level confidence interval (CI) for σt may be con-

structed as

CIG1−α ≡
[
BG
α−
√
v̂t (kn), BG

α+

√
v̂t (kn)

]
, (2.4)

where BG
α± = 1 ± z1−α/2/

√
2kn and z1−α/2 is the 1 − α/2 quantile of the N (0, 1) distribution.

Below, we refer to CIG1−α as the Gaussian CI.

Since the Gaussian CI is based on an asymptotic normal approximation (which requires kn →
∞), it may suffer from nontrivial size distortion when kn is relatively small (e.g., kn ≤ 10).

Meanwhile, it would be unwise to naively use a large kn, because that will increase the bias

stemming from the difference between the local average of the spot variance process and its spot

value. Choosing the “proper” kn to achieve good finite-sample coverage is a difficult practical

matter. To the best of our knowledge, the existing literature does not offer a satisfactory answer

to this question.

In a recent paper, Bollerslev, Li, and Liao (2021) propose an alternative “fixed-k” inference

method for spot volatility. They treat the window size kn as a fixed constant k in the asymptotic

analysis, and suggest using a relatively small value of k in practice. When k is small, the bias

becomes less of an issue. However, without the power of the law of large numbers, the spot

estimator v̂t (k) is no longer consistent and the standard asymptotic Gaussian-based inference

cannot be justified using a central limit theorem. Nevertheless, Bollerslev, Li, and Liao (2021)

show that feasible inference for σt can still be conducted based on a coupling result:

√
v̂t (k)

σt
=

√√√√1

k

k∑
j=1

(
W(i−1)k+j −W(i−1)k+j−1

∆
1/2
n

)2

+ op(1). (2.5)

7
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Importantly, the leading term on the right-hand side of (2.5), which strongly approximates the

multiplicative estimation error
√
v̂t (k)/σt, has the same finite-sample distribution as the square-

root of a scaled chi-squared random variable with degree of freedom k. One can then exploit this

distributional knowledge to construct CIs for σt as follows. Let χ̄2
k denote a generic copy of the

scaled chi-squared variable with degree of freedom k. For α ∈ (0, 1), let BF
α− and BF

α+ be two

constants such that P(BF
α− ≤ (χ̄2

k)
−1/2 ≤ BF

α+) = 1 − α. The corresponding fixed-k CI for σt at

confidence level 1− α may be constructed as

CIF1−α ≡
[
BF
α−
√
v̂t (k), BF

α+

√
v̂t (k)

]
. (2.6)

This CI is not only asymptotically valid, but also finite-sample exact in the “limiting” model with

the price process P being a scaled Brownian motion. In their simulation study, Bollerslev, Li, and

Liao (2021) show that the fixed-k CI controls size more reliably than the Gaussian CI, and the

former attains close-to-exact finite-sample coverage when k is small.

Although the Gaussian and fixed-k inference methods, especially the former, are well known in

the high-frequency econometrics literature, we recognize that in practice they may not be easily

applied by an average investor who is computationally constrained and/or does not have the access

to the requisite high-frequency returns data.9 Our first goal in this paper is to offer such investor

an (extremely) easy-to-implement inference method based on readily accessible data. We observe

that most, if not all, online trading applications update candlestick charts of asset prices at the

10-minute or higher frequencies in real time. To fix ideas, we denote the time interval associated

with the ith candlestick by In,i ≡ [(i− 1) ∆n, i∆n], with ∆n being its duration (e.g., 10 minutes).

The open, close, high, and low prices during this trading period can be expressed as, respectively,

Oi ≡ P(i−1)∆n
, Ci ≡ Pi∆n , Hi ≡ sup

t∈In,i

Pt, Li ≡ inf
t∈In,i

Pt.

The open-close return and the high-low range are then denoted by

ri ≡ Ci −Oi, wi ≡ Hi − Li.

We start by considering a class of linear estimators for σt that take the following form:

σ̂t (λ) ≡ λ1 |ri|+ λ2wi

∆
1/2
n

, t ∈ In,i, (2.7)

9Published papers often rely on the TAQ database, which can only be obtained by researchers in relatively

resourceful institutions. Even the TAQ database has a very limited scope, as it mainly covers the U.S. equity

market. To obtain the other types of high-frequency data (e.g., bond, commodity futures, exchange rates, options,

and international financial assets), one often has to resort to much more costly commercial databases such as Tick

Data. Computationally more sophisticated investors may use application programming interface to automate data

acquisition, but these investors are excluded from our definition of the “average” investor.

8
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where the constant λ = (λ1, λ2) will be chosen according to certain optimality requirement as

detailed in Section 2.2, below. We then construct asymptotically valid CIs for σt using the optimal

estimator. At first glance, it might be surprising that valid feasible inference can be carried out

in the present setting, because the σ̂t (λ) estimator uses only “one observation,” precluding the

traditional law of large numbers and central limit theorems from playing any role. Our inference is

indeed justified using a different approach, which is in the same spirit as the coupling approach first

proposed by Bollerslev, Li, and Liao (2021). In fact, with λ1 = 1 and λ2 = 0, σ̂t (λ) = ∆
−1/2
n |ri|

coincides with
√
v̂t(1), and Bollerslev et al.’s fixed-k method can be directly used to construct CIs.

In its more general form (2.7), the σ̂t (λ) estimator also exploits the information from the high-low

range wi, and the estimator’s coupling variable will take a more complicated form as a Brownian

functional with a nonstandard distribution as we will show below.

Our estimator is clearly inspired by the classical estimators of Parkinson (1980) and Garman

and Klass (1980). When the log price is modeled as a Brownian motion scaled by constant volatility,

Parkinson’s (1980) range-based estimator is unbiased for the variance. Under the same setting,

Garman and Klass (1980) propose an improved unbiased estimator for the variance by optimally

exploiting information from the candlestick. Garman and Klass also propose a “more practical”

version of their optimal estimator which is popular among traders and is given by

v̂GKt ≡ 0.5w2
i − (2 log 2− 1)r2

i

∆n
. (2.8)

Unlike this prior work, we focus on the (asymptotically) unbiased estimation of volatility rather

than variance, which may be more directly useful in certain applications.10 We also note two

important theoretical differences between our analysis and those two papers. Firstly, we analyze

our estimator under the Itô semimartingale model (2.1) under an infill asymptotic setting, which

is more general than the baseline Brownian motion model. Secondly and more importantly, we

construct asymptotically valid (and optimal) CIs for the spot volatility, whereas the aforemen-

tioned work only focuses on estimation. Our inference is formally justified by the aforementioned

approximate finite-sample approach that involves a nonstandard limiting distribution. We now

turn to the details.

2.2 Inference on spot volatility via candlesticks

In this subsection, we establish the asymptotic property of the σ̂t (λ) estimator defined in (2.7)

and then propose CIs for the spot volatility. Readers who are mainly interested in applications

may skip the theoretical discussion and jump directly to the last paragraph of this subsection for

practical guidance. We start by introducing some regularity conditions.

10By Jensen’s inequality, the square-root of an unbiased estimator of the variance is guaranteed to underestimate

the volatility on average.

9
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Assumption 1. Suppose that the price process P has the form (2.1) and there exists a sequence

(Tm)m≥1 of stopping times increasing to infinity and a sequence (Km)m≥1 of constants such that the

following conditions hold for each m ≥ 1: (i) for all t ∈ [0, Tm], |bt|+|σt|+|σt|−1+Ft(R\{0}) ≤ Km,

where Ft denotes the spot Lévy measure of J ; (ii) for some constant κ > 0, E[|σt∧Tm − σs∧Tm |2] ≤
Km|t− s|2κ for all t, s ∈ [0, T ].

Assumption 1 entails relatively mild regularity conditions that allow for leverage effect, intraday

periodicity, and price and volatility jumps. Condition (i), in particular, imposes local boundedness

on various processes, while condition (ii) states that the volatility process is locally κ-Hölder

continuous under the L2 norm. Note that the Hölder index κ is allowed to be arbitrarily small,

and we do not need to know its value for the conduct of inference. When κ = 1/2, condition

(ii) can be readily verified if σ is an Itô semimartingale or a long-memory process driven by a

fractional Brownian motion (see, e.g., Comte and Renault (1998)). In particular, this condition

accommodates essentially unrestricted volatility jumps driven by a (possibly compensated) Poisson

random measure. Condition (ii) even allows the volatility to have “rough” paths, corresponding

to κ ∈ (0, 1/2).

Theorem 1, below, establishes a coupling result for the spot volatility estimator σ̂t (λ).

Theorem 1. Suppose that Assumption 1 holds. Then, for each i ≥ 1 and t ∈ In,i,

σ̂t (λ)

σt
= λ1ζ1,i + λ2ζ2,i + op(1), (2.9)

where ζ1,i ≡ ∆
−1/2
n

∣∣Wi∆n −W(i−1)∆n

∣∣ and ζ2,i ≡ ∆
−1/2
n sups,t∈In,i

|Ws −Wt|.

Theorem 1 shows that the multiplicative estimation error σ̂t (λ) /σt can be strongly approxi-

mated, or “coupled,” by λ1ζ1,i+λ2ζ2,i. Since the coupling variable is non-degenerate for any λ 6= 0,

σ̂t (λ) is not a consistent estimator for σt, which is hardly surprising in the present “small-sample”

scenario. Nevertheless, the distribution of the coupling variable is known in finite-sample, which

permits the construction of feasible inference. To see this more clearly, let W̃ be a generic copy of

the standard Brownian motion on [0, 1], and set ξ1 ≡ |W̃1−W̃0| and ξ2 ≡ sups,t∈[0,1] |W̃s−W̃t|. By

the scaling property of the Brownian motion, we see that λ1ζ1,i + λ2ζ2,i has the same distribution

as ξ (λ) ≡ λ1ξ1 + λ2ξ2, which can be easily computed via Monte Carlo simulation.

We may apply Theorem 1 to construct CIs for σt as follows. By the continuous mapping

theorem, (2.9) implies that
σt

σ̂t (λ)

d→ 1

ξ (λ)
. (2.10)

For α ∈ (0, 1), we can pick constants BC
α− (λ) and BC

α+ (λ) such that

P
(
BC
α−(λ) ≤ ξ (λ)−1 ≤ BC

α+ (λ)
)

= 1− α. (2.11)
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The convergence in (2.10) then implies that

CIC1−α (λ) ≡
[
BC
α− (λ) σ̂t (λ) , BC

α+ (λ) σ̂t (λ)
]

(2.12)

is a CI for σt with asymptotic level 1 − α, that is, P
(
σt ∈ CIC1−α (λ)

)
→ 1 − α. We refer to

CIC1−α (λ) as a candlestick CI.

The candlestick CI is asymptotically valid for any choice of λ 6= 0. But the arbitrariness in λ is

clearly undesirable in practice. Following classical statistical principles, we pin down λ = (λ1, λ2)

so that (i) the candlestick estimator is asymptotically unbiased and (ii) its asymptotic variance

is minimized within the class of linear estimators defined by (2.7). In view of Theorem 1, this

amounts to setting λ as

λ∗ = argmin
λ

V ar (ξ (λ)) , s.t. E [ξ (λ)] = 1. (2.13)

Denoting µ1 ≡ E[ξ1] and µ2 ≡ E[ξ2], the solution to this minimization problem can be written in

explicit form as

λ∗1 = − 1

µ1

Cov
(
ξ1
µ1
− ξ2

µ2
, ξ2µ2

)
V ar

(
ξ1
µ1
− ξ2

µ2

) ≈ −0.369, λ∗2 =
1

µ2

Cov
(
ξ1
µ1
− ξ2

µ2
, ξ1µ1

)
V ar

(
ξ1
µ1
− ξ2

µ2

) ≈ 0.811.11 (2.14)

We refer to the resulting estimator, σ̂t (λ∗), as the Optimal candlesticK (OK) estimator, which

is what we have recommended (recall (1.1)) in the Introduction. It is interesting to note that the

OK estimator assigns a nontrivial negative weight on |ri|, although the absolute return is quite

commonly used as a proxy of volatility in empirical work. A useful practical implication is: if

two candlesticks have the same length (measured by the high-low range), the one with a shorter

real-body (i.e., smaller absolute open-close return) actually indicates a higher level of volatility,

and vice versa.

Equipped with the optimal weights, we need to further select the BC
α± (λ∗) constants in order

to compute the CIs described in (2.12). Note that the width of the CI is determined by BC
α+(λ∗)−

BC
α−(λ∗). Therefore, to obtain the shortest CI that satisfies the coverage restriction (2.11), we

can simply set
[
BC
α−(λ∗), BC

α+(λ∗)
]

as the highest density interval (HDI) of the random variable

ξ(λ∗)−1. To visualize this construction, we plot in Figure 2 the probability density function of

ξ(λ∗)−1 along with its 90% HDI. For comparison, we also plot the distribution and the 90% HDI

of ξ (λ)−1 with (λ1, λ2) being
(
µ−1

1 , 0
)

(resp.
(
0, µ−1

2

)
), which corresponds to the asymptotically

unbiased estimator formed using only the absolute open-close return (resp. the high-low range).

Looking at the left panel of Figure 2, we see that the distribution of ξ(λ∗)−1 is much tighter

11The numerical values of λ∗
1 and λ∗

2 are obtained by computing the moments using 100 million simulated paths

of W̃ on the unit interval [0, 1], which is discretized with mesh size 10−7 in each simulation.
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Figure 2: The figure plots the probability density function of the ξ(λ)−1 variable evaluated at the

optimal weight λ∗ and the associated 90% highest density interval (HDI). For comparison, the

density and associated 90% HDI are also plotted for λ = (µ−1
1 , 0) (resp. λ = (0, µ−1

2 )) on the left

(resp. right) panel, corresponding to the “degenerate” candlestick estimator that only depends on

the open-close return (resp. high-low range).

than that of ξ
(
µ−1

1 , 0
)−1

and, in particular, the former’s 90% HDI is considerably shorter than

the latter’s. This suggests that CIs constructed using the OK estimator are much more accurate

than those based only on the absolute return. Similarly, the right panel of the figure also reveals

the superiority of the OK estimator relative to the estimator solely based on the high-low range,

although the contrast is not as striking as what we see on the left panel.

To facilitate applications, we tabulate in Table 1 the aforementioned HDI-based critical values

BC
α± (λ∗) associated with the OK estimator for various confidence levels. Since we consider a

“data-scarce” environment, we include some lower-than-conventional confidence levels which may

be relevant for investors who seek sharper (but more “aggressive”) inference. For simplicity, we

refer to the resulting CI as the optimal candlestick confidence interval (OKCI). In addition, to

gauge more precisely the statistical efficiency of the CI, we report the width BC
α+ (λ∗)−BC

α− (λ∗).

We also report the analogous quantities for the open-close and the high-low estimators (i.e., those

corresponding to λ = (µ−1
1 , 0) and (0, µ−1

2 )). From the table, we see that the OKCI is always

tighter than the other two alternatives across all confidence levels. Specifically, at the 90% level,

the OKCI is 6.150/0.849 ≈ 7.24 (resp. 0.979/0.849 ≈ 1.15) times as efficient as the CI based on

the open-close return (resp. high-low range).

We summarize the above theoretical discussion more concisely as a “user’s guide.” We recom-

12
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Table 1: Critical Values for Candlestick Confidence Intervals

Optimal Open-Close High-Low

Level Lower Upper Width Lower Upper Width Lower Upper Width

50% 0.793 1.135 0.341 0.337 1.234 0.897 0.792 1.202 0.411

60% 0.762 1.189 0.427 0.307 1.561 1.255 0.749 1.260 0.511

70% 0.727 1.255 0.528 0.279 2.102 1.824 0.704 1.331 0.627

80% 0.688 1.343 0.656 0.249 3.173 2.924 0.654 1.424 0.770

90% 0.636 1.485 0.849 0.216 6.366 6.150 0.587 1.565 0.979

Note: The table reports the critical values of alternative candlestick confidence intervals

(CIs) for the spot volatility. The confidence level 1−α ranges from 50% to 90%. The optimal,

open-close, and high-low CIs correspond to λ being λ∗, (µ−1
1 , 0), and (0, µ−1

2 ), respectively.

For each case, we report the lower bound BC
α−(λ) and the upper bound BC

α+(λ) computed

as the highest density interval (HDI) of the distribution of ξ(λ)−1, along with the width of

the HDI. The numerical values are computed by simulation using 100 million Monte Carlo

draws, for which the Brownian motion W̃ on the unit interval is simulated under a Euler

scheme with mesh size 10−7.

mend estimating the spot volatility using the OK estimator12

σ̂∗t ≡ σ̂t (λ∗) =
0.811wi − 0.369 |ri|√

∆n
, (2.15)

and gauging its sampling variability using the 90%-level OKCI

CI∗90% ≡ [0.636 σ̂∗t , 1.485 σ̂∗t ] , (2.16)

where the critical values are obtained from Table 1. At this confidence level, the OKCI provides

a reasonable balance between statistical confidence and precision.13 The OK estimator and the

OKCI are obviously very easy to compute. In fact, the calculation can be carried out manually on

12In the U.S. stock market, each regular trading day contains 390 minutes. If each candlestick spans a 10-minute

trading session, the user should set ∆n = 10/390 = 1/39 to obtain volatility estimates quoted in daily terms.

The length of a trading day and the duration of the candlestick may vary across different markets and trading

applications, so the value of ∆n should be adjusted accordingly. If the user takes the duration of the candlestick

(e.g., 10 minutes) as the unit of time, they can simply set ∆n = 1.
13If the practitioner is willing to trade some statistical confidence for a sharper CI, they may use, for example, the

50% OKCI given by [0.793 σ̂∗
t , 1.135 σ̂∗

t ].
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Table 2: Critical Values for Optimal Confidence Intervals based on k Candlesticks

k = 3 k = 5 k = 10

Lower Upper Width Lower Upper Width Lower Upper Width

50% 0.892 1.087 0.195 0.917 1.069 0.151 0.944 1.051 0.107

60% 0.870 1.114 0.244 0.900 1.089 0.189 0.931 1.064 0.133

70% 0.846 1.147 0.301 0.882 1.114 0.233 0.917 1.081 0.164

80% 0.818 1.191 0.373 0.858 1.146 0.288 0.899 1.103 0.203

90% 0.779 1.259 0.480 0.826 1.197 0.370 0.875 1.136 0.261

Note: The table reports the critical values for optimal confidence intervals based on the

k-candlestick estimator defined in (2.17). At confidence level 1 − α, the critical values are

given by the highest density interval of the distribution of k/
∑k

j=1 (λ∗1ζ1,i+j + λ∗2ζ2,i+j).

The numerical values are computed by simulation under the same scheme as in Table 1.

a basic calculator within a couple of minutes. Our method may thus enable an ordinary investor

to make inference on spot volatility in real time as the candlestick chart updates in their trading

application; see Section 4 for a concrete empirical demonstration. This baseline estimator may be

further improved in various ways, to which we now turn.

2.3 Extensions

The OK estimator proposed in Section 2.2 concerns the inference for spot volatility using a single

candlestick. This basic method is most relevant in a data-scarce environment in which the user

only has coarsely sampled candlesticks, say, for example, at the 10-minute frequency. We have

intentionally focused on this scenario so far due to its simplicity and practicality. Needless to

say, the underlying econometric idea may be extended to many different and more complicated

settings. In this subsection, we discuss a few possibilities, which may be mixed and matched, in

order to guide future research in this direction.

Firstly, we note that the single-candlestick estimator (2.7) can be easily improved when higher-

frequency candlesticks are available. For example, if a researcher has access to 1-minute can-

dlesticks, they may construct a local average version of the candlestick volatility estimator for a

14
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10-minute estimation window by using, with ∆n = 1 minute and k = 10,

σ̂t (k, λ) ≡ 1

k

k∑
j=1

λ1 |ri+j |+ λ2wi+j

∆
1/2
n

, for t ∈ [(i− 1) k∆n, ik∆n] . (2.17)

This construction exactly parallels the conventional return-based spot variance estimator (2.2).

By harnessing higher-frequency candlestick data (if they are available), the new k-candlestick

estimator displayed above will evidently be more efficient than that based on a single 10-minute

candlestick.14 Treating the bandwidth k as a fixed constant (as in Bollerslev, Li, and Liao (2021)),

we can easily extend Theorem 1 to establish an analogous coupling result for σ̂t (k, λ), namely,

σ̂t (k, λ)

σt
=

1

k

k∑
j=1

(λ1ζ1,i+j + λ2ζ2,i+j) + op(1).

Since the (ζ1,i, ζi,2) variables are independent across i, it is also easy to see that λ∗ determined by

(2.14) is still the optimal choice for minimizing the asymptotic variance of σ̂t (k, λ) while main-

taining asymptotic unbiasedness, and the aggregation leads to a k-fold reduction of the asymp-

totic variance. Moreover, the distribution of the coupling variable is known in finite-sample,

and we can use the 1 − α level HDI of the distribution of k/
∑k

j=1 (λ∗1ζ1,i+j + λ∗2ζ2,i+j), denoted[
BC
α− (k, λ∗) , BC

α+ (k, λ∗)
]
, to construct the optimal CI given by

CI∗1−α (k) ≡
[
BC
α− (k, λ∗) σ̂t (k, λ∗) , BC

α+ (k, λ∗) σ̂t (k, λ∗)
]
.

We tabulate the BC
α± (k, λ∗) critical values in Table 2 for various confidence levels and k values.

As expected, when k increases, the OKCIs become tighter approximately along the k−1/2 scale.15

For example, at the 90% confidence level, the length of the 10-candlestick CI is 0.261/0.849 ≈ 31%

of that of the single-candlestick CI.

Secondly, we note that the result in Theorem 1 can be used to construct a formal test for

detecting “large” volatility jumps. Consider two time points s and t in two distinct trading

sessions In,i and In,j , respectively. We may test the null hypothesis H0 : σt = σs against a one-

sided alternative Ha : σt > σs using the test statistic log(σ̂∗t /σ̂
∗
s) = log(σ̂∗t ) − log(σ̂∗s), where the

log transformation is employed to “symmetrize” the roles of the two volatility estimators in the

test statistic. Under the null hypothesis, Theorem 1 and the continuous mapping theorem16 imply

that

log (σ̂∗t )− log (σ̂∗s) = log

(
λ∗1ζ1,j + λ∗2ζ2,j

λ∗1ζ1,i + λ∗2ζ2,i

)
+ op(1).

14Since the estimators span the same estimation window, they are subject to essentially the same level of non-

parametric bias.
15The reduction in the width of CI is consistent with the k-fold reduction in the asymptotic variance. But these

two effects are not exactly the same because the OKCIs are not based on the asymptotic Gaussian approximation.
16Since the OK estimators are not consistent for the spot volatility, the delta method cannot be applied to derive

the asymptotic distributions of their nonlinear transformations.
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For a significance level α ∈ (0, 1), the 1 − α quantile of the coupling variable log
(
λ∗1ζ1,j+λ∗2ζ2,j
λ∗1ζ1,i+λ

∗
2ζ2,i

)
,

which is known in finite-sample, may be used as the critical value, and we reject the null hypothesis

when log (σ̂∗t ) − log (σ̂∗s) is greater than the critical value. A two-sided test may be constructed

similarly. Since the coupling variable is nondegenerate, this test is not consistent against fixed,

but “small,” derivation from the null. This is not surprising given the asymptotically “fixed”

amount of information being exploited. That said, the test has valid asymptotic size control and

is asymptotically unbiased (i.e., it has nontrivial asymptotic power under the alternative). It

can be used to detect “large” moves in volatility across different time points, for example, around

important macroeconomic news announcements as studied in Lucca and Moench (2015), Bollerslev,

Li, and Xue (2018), and Nakamura and Steinsson (2018), among others. The power of the test

may be further improved by aggregating multiple higher-frequency candlesticks.

Thirdly, our coupling-based inference can be readily adapted to construct valid inference for

the other types of estimators. For example, if one aims to make inference directly on the spot

variance σ2
t , a good candidate estimator is the Garman–Klass estimator defined in (2.8). Using a

similar argument as Theorem 1, we can show that the Garman–Klass estimator is an asymptotically

unbiased estimator for σ2
t and it admits the following coupling:

v̂GKt
σ2
t

= 0.5ζ2
2,i − (2 log 2− 1)ζ2

1,i + op(1).

CIs for σ2
t may be constructed as

[
BGK
α− v̂

GK
t , BGK

α+ v̂GKt
]
, whose length can be minimized by taking[

BGK
α− , B

GK
α+

]
as the HDI of the distribution of (0.5ζ2

2,i − (2 log 2− 1)ζ2
1,i)
−1.

Finally, we note that all aforementioned procedures may be generalized to a bipower (or mul-

tipower) version in the spirit of Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen,

Shephard, and Winkel (2006). In an influential paper, Barndorff-Nielsen and Shephard (2004)

propose the bipower method to elegantly achieve jump-robust estimation of the integrated vari-

ance. Although the candlestick-based spot estimators are robust to Poisson-type jumps (because

with probability approaching 1, [t−∆n, t+ ∆n] does not contain any jump for each fixed t), it

is conceivable that using the bipower construction can further improve the estimator’s robustness

with respect to jumps. Specifically, we may consider a bipower extension of our single-candlestick

estimator (2.7) as

σ̂Bipowert (λ) =
λ1 |ri|1/2 |ri+1|1/2 + λ2w

1/2
i w

1/2
i+1

∆
1/2
n

.

Similar to Theorem 1, it can be shown that

σ̂Bipowert (λ)

σt
=
λ1 |ζ1,i|1/2 |ζ1,i+1|1/2 + λ2 |ζ2,i|1/2 |ζ2,i+1|1/2

∆
1/2
n

+ op(1).

The constants λ1 and λ2 can then be determined to achieve certain optimality requirement (e.g.,

unbiasedness and minimal variance). As mentioned above, the advantage of the bipower version is
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that it will be more robust with respect to price jumps. But there is no free lunch. The bipower

version also implicitly requires the volatility to be “nearly” identical across the two consecutive

candlesticks on In,i and In,i+1 time intervals. From a finite-sample point of view, the latter re-

quirement is more plausible for higher-frequency data (say, 1 minute), but might be somewhat

restrictive on a longer time scale (say, 10 minutes) especially when news flows quickly in the mar-

ket. A comprehensive investigation on the bipower/multipower extension may be an interesting

topic for a separate research, but is beyond the scope of the present paper.

The above list of possible extensions is by no means exhaustive. We do not investigate them

in full details in order to remain focused on our main goal, namely, developing a simple practical

method for spot volatility inference that can be adopted by an average, perhaps computationally

constrained, investor. Further extensions are left for future research.

2.4 Efficiency comparison in a thought experiment

So far, we have shown how to optimally exploit information from candlesticks for volatility in-

ference, which may allow a retail investor to make reasonably sharp inference on spot volatility

using easy-to-access data. But the retail investor is apparently at a disadvantage compared to an

institutional researcher who has access to “professional grade” data, such as those commonly seen

in the recent high-frequency econometrics literature. One may naturally wonder: How severe is

this disadvantage?

We shed some light on this question by considering a thought experiment. Imagine two market

observers, a “retail trader” and an “econometrician,” who are both interested in making inference

for an asset’s spot volatility over a 10-minute trading session.17 The retail trader observes a 10-

minute candlestick from their mobile trading app and conducts inference using the OKCI. The

econometrician, on the other hand, has access to returns data at the 1-minute frequency. Like

Bollerslev, Li, and Liao (2021), the econometrician may compute CIs for the spot volatility using

either the conventional asymptotic Gaussian-based method or the fixed-k method, setting the

bandwidth kn = 10; recall the discussion in Section 2.1. Since the econometrician employs higher-

frequency data and uses state-of-the-art econometric methods from the existing literature, it is

natural to expect that they will produce a tighter CI than the retail trader. However, following

our proposal, the retail trader exploits the additional information in the candlestick, which may

compensate their disadvantage from using lower-frequency data. We analyze whether, and to

which extent, the econometrician can draw a sharper inference than the retail trader.

We perform the comparison as follows. From (2.4), (2.6), and (2.12), we observe that the

17The trader may be interested in the spot volatility for several reasons, such as gauging the prevailing liquidity

(say using a volatility-volume ratio), accessing the risk of getting a margin call, or making decisions on vega-related

option trading.
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Table 3: Critical Values in Thought Experiment

Candlestick (10 min) Gaussian (1 min ×10) Fixed-k (1 min ×10)

Lower Upper Width Lower Upper Width Lower Upper Width

50% 0.793 1.135 0.341 0.849 1.151 0.302 0.822 1.126 0.304

60% 0.762 1.189 0.427 0.812 1.188 0.376 0.794 1.176 0.382

70% 0.727 1.255 0.528 0.768 1.232 0.464 0.762 1.239 0.476

80% 0.688 1.343 0.656 0.713 1.287 0.573 0.727 1.326 0.600

90% 0.636 1.485 0.849 0.632 1.368 0.736 0.679 1.476 0.797

Note: The table reports the critical values of alternative confidence intervals (CI) for the

spot volatility. The left panel reports BC
α±(λ∗) for the optimal candlestick CI based on a

single 10-minute candlestick. The middle (resp. right) panel reports the BG
α± (resp. BF

α±)

critical values for the Gaussian (resp. fixed-k) CI based on kn = 10 returns sampled at the

1-minute frequency.

Gaussian, fixed-k, and candlestick CIs are all proportional to their corresponding spot volatility

estimates. We thus compare the CIs’ critical values BG
α±, BF

α±, and BC
α± (λ∗), and use the width

between the upper and lower bounds to gauge their relative efficiency. Table 3 reports these

numbers for various confidence levels. As expected, we find that the OKCI based on a single 10-

minute candlestick is indeed wider than the Gaussian and fixed-k CIs based on ten 1-minute returns.

The conventional Gaussian CI is also tighter than the fixed-k CI. However, the seemingly better

performance of the Gaussian CI should be taken with a grain of salt: As shown in the simulation

study of Bollerslev, Li, and Liao (2021), the Gaussian CI may suffer from nontrivial size distortion

when kn is small. This is quite intuitive, because the asymptotic Gaussian approximation does

not “kick in” sufficiently well when the averaging is done over only ten observations. On the other

hand, Bollerslev, Li, and Liao (2021) show that the fixed-k CIs have almost exact coverage for

small kn’s, and hence, may serve as a more relevant benchmark for our comparison here.

Compared to the fixed-k CI, the proposed OKCI is only moderately less efficient. For example,

at the 90% confidence level, the OKCI is 0.797/0.849 ≈ 94% as tight as the fixed-k CI. This finding

is remarkable, as it suggests that the retail trader, whose candlestick observation is updated at

the (slow) 10-minute frequency, may be able to make formal inference about the spot volatility

at nearly the same statistical accuracy as in many academic research papers (e.g., Bollerslev,
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Li, and Xue (2018), Bollerslev, Li, and Liao (2021)) based on returns data sampled at the 1-

minute frequency. Of course, if one implements the multiple-candlestick estimator σ̂t (k, λ∗) by

aggregating ten 1-minute candlesticks, the width of the resulting 90%-level OKCI is only one third

of that of the fixed-k CI. Overall, these findings further highlight the usefulness of the proposed

candlestick-based method in applied work.

3 Monte Carlo simulations

We examine the finite-sample properties of the proposed inference method in a Monte Carlo ex-

periment. Following Bollerslev and Todorov (2011), we simulate the (log) price process from a

two-factor stochastic volatility model. Specifically, with the unit time interval normalized to “one

day,” we generate the process P according to

dPt = σtdWt, σ2
t = V1,t + V2,t,

dV1,t = 0.0128(0.4068− V1,t)dt+ 0.0954
√
V1,t

(
ρdWt +

√
1− ρ2dB1,t

)
,

dV2,t = 0.6930(0.4068− V2,t)dt+ 0.7023
√
V2,t

(
ρdWt +

√
1− ρ2dB2,t

)
,

where W , B1, and B2 denote independent standard Brownian motions. The ρ = −0.7 parameter

captures the well-documented negative correlation between price and volatility shocks (i.e., the

“leverage” effect). The V1 volatility factor is highly persistent with a half-life of 2.5 months, while

the V2 volatility factor is quickly mean-reverting with a half-life of only one day. For ease of

discussion, we fix V1,0 = V2,0 = 0.5, so that σ0 = 1. We simulate the “continuous-time processes”

using a Euler scheme with mesh size being 10−7 minute. The candlesticks used in the calculations

are then constructed on 10-minute and 1-minute intervals. The estimand σt is sampled at the

mid-point of each 10-minute estimation window.18 All numerical results reported below are based

on 10,000 Monte Carlo replications.

We consider six inference methods in total. The first three are based on a single 10-minute

candlestick. Specifically, we compute three spot volatility estimators:

σ̂∗t =
0.811wi − 0.369 |ri|√

∆n
, σ̂rt =

|ri|
µ1

√
∆n

, σ̂wt =
wi

µ2

√
∆n

,

where σ̂∗t is the recommended OK estimator, and σ̂rt and σ̂wt are asymptotically unbiased estimators

based only on the open-close return and the high-low range, respectively. Using the critical values

reported in Table 1, we further compute their associated 90%-level CIs respectively as

CI∗90% = [0.636 σ̂∗t , 1.485 σ̂∗t ] , CIr90% = [0.216σ̂rt , 6.366σ̂rt ] , CIw90% = [0.587σ̂wt , 1.565σ̂wt ] .

18Recall that Theorem 1 holds for any t ∈ In,i. We have also considered σt sampled at the start, end, and a random

position of the 10-minute estimation window. The results are very similar, and hence, are omitted for brevity.
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Table 4: Simulation Results

Method Bias RMSE Coverage Rate CI Width

Panel A. Methods based on one 10-minute observation

OK 10-min 0.002 0.253 0.896 0.849

Open-Close -0.004 0.755 0.896 6.120

High-Low 0.001 0.300 0.896 0.978

Panel B. Methods based on ten 1-minute observations

OK 1-min 0.001 0.081 0.892 0.261

Gaussian -0.023 0.224 0.861 0.718

Fixed-k -0.023 0.224 0.898 0.777

Note: The table reports the relative biases and root-mean-squared-errors (RMSE) of σ̂∗t (OK

10-min), σ̂rt (Open-Close), σ̂wt (High-Low), σ̂t(10, λ∗) (OK 1-min) and
√
v̂t(kn) (Gaussian

and Fixed-k), and the coverage rates and average widths of their associated 90%-level CIs.

These numbers are calculated based on 10,000 Monte Carlo replications.

The remaining three methods are implemented using ten observations sampled at the 1-minute

frequency. We use 1-minute candlesticks to compute the local average OK estimator σ̂t (k, λ∗) with

k = 10; recall (2.17). The corresponding 90%-level optimal CI is given by

CI∗90% (10) = [0.875 σ̂t (10, λ∗) , 1.136 σ̂t (10, λ∗)] .

Finally, we compute the conventional spot volatility estimator
√
v̂t (kn) using 1-minute returns

and kn = 10. Using the critical values reported in Table 3, we construct the associated Gaussian

and fixed-k CIs as

CIG90% =
[
0.632

√
v̂t (10), 1.368

√
v̂t (10)

]
, CIF90% =

[
0.679

√
v̂t (10), 1.476

√
v̂t (10)

]
.

Table 4 summarizes the finite-sample performance of these spot volatility estimators and CIs.

Specifically, we report the bias and root-mean-squared-error (RMSE) of the spot volatility esti-

mates, both in relative term (i.e., estimation errors are normalized by the true value of σt). We

also report the coverage rates of the 90%-level CIs, along with their widths averaged across all

simulations.
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Looking at Panel A of the table, which reports results based on the “coarse” 10-minute level

data, we see that all three estimators are essentially unbiased, with their relative biases bounded

by 0.4% in magnitude. Their CIs also have virtually exact size control. As expected, the OK

estimator has the smallest RMSE and the OKCI has the shortest width, whereas the estimator

based only on the open-close return is evidently the least accurate.

Panel B reports the performance of the local average OK estimator σ̂t (10, λ∗) and the con-

ventional spot volatility estimator using the “fine” 1-minute level data. Since these estimators are

computed using more observations, they are, not surprisingly, more accurate than those in Panel A.

We note that the “fine” OK estimator formed by aggregating ten 1-minute candlesticks is far more

accurate than the conventional estimator, as evidenced by the former’s smaller bias and RMSE.

The OKCI is also tighter than conventional Gaussian and fixed-k CIs, and remains to exhibit

excellent size control. It is also interesting to note that even the “coarse” OK estimator based on

a single 10-minute candlestick is 0.224/0.253 ≈ 89% as efficient (in terms of RMSE) as the con-

ventional estimator computed using more observations, and the former’s CI is 0.777/0.849 ≈ 92%

as tight as the fixed-k CI.19

In summary, these simulation results are consistent with our theoretical predictions. We see

that the OK estimator based on the 10-minute candlestick has adequate accuracy, and is more

efficient than candlestick-based estimators with suboptimal weights. In addition, the candlestick-

based CIs all have almost exact finite-sample coverage. We also see that the OK method applied to

10-minute level data can achieve roughly 90% of the accuracy of the conventional method applied

to 1-minute level data and, if the OK method is also applied to 1-minute candlestick observations,

its accuracy can be further improved by a factor of three. Overall, these results suggest that the

proposed method can be reliably used for making inference on spot volatility.

4 Empirical illustration

We illustrate the candlestick-based inference method in a case study for a recent event on February

23, 2021, when the Federal Reserve Chairman, Jerome Powell, delivered his semiannual monetary

policy report to the U.S. Congress. The media coverage of this event started at 10:00 EST and the

event lasted for approximately 2.5 hours. Till that day, the 10-year Treasury yield had experienced

an 8-month liftoff from 0.54% in July, 2020, to 1.37%, whereas the short rate was kept at the zero

lower bound. The steepening of the yield curve reflected the market’s expectation for a strong

economic recovery from the COVID-19 pandemic. Meanwhile, the rising 10-year yield also led to

much anxiety in the equity market, in that the higher discount rate might lead to a major correction

19Consistent with the simulation findings of Bollerslev, Li, and Liao (2021), we see that the Gaussian-based CI is

somewhat undersized, whereas the fixed-k CI has almost exact coverage.

21

Electronic copy available at: https://ssrn.com/abstract=3838231



on asset valuation. The Federal Reserve’s economic outlook and its stance on monetary policy was

the focal point of the financial market at the time. This event is thus ideal for our illustrative

purpose for two reasons. Firstly, it corresponds to a high-stake economic and policy environment.

Secondly, the intense flow of information together with the market’s considerable attention paid

to it also means that the price and volatility tend to fluctuate substantially, providing us with a

challenging real-data scenario to gauge the practical performance of the proposed method.

We consider five assets from different asset classes including the 10-year Treasury note, a

passive equity ETF for the S&P 500 index (SPY), an active equity ETF of technology stocks

(ARKK), a gold ETF (GLD), and Bitcoin, which we use to represent the bond, equity, commodity,

and cryptocurrency markets. Candlestick data for these assets are obtained from the Bloomberg

Terminal at the 10-minute frequency.20 We focus on the 10-minute data for two reasons. First, this

sampling scheme is sufficiently sparse to guard against complications stemming from microstructure

noise for the different asset classes studied here. Second, the 10-minute frequency also appears to

be the lowest at which the candlestick chart is updated in popular online trading applications, and

hence, allows us to examine how the proposed method will behave in a “worst case” scenario (in

terms of data availability). In the discussion below, we sometimes associate the price and volatility

dynamics with Powell’s testimony, the video recording of which can be found on the website of the

U.S. Senate Committee on Banking, Housing, and Urban Affairs.21 By doing so, we aim to trace

the market and the news flow simultaneously. We do not attempt to formally assert any causal

link between them, as it is impossible to rule out all potential confounding factors.

Since Powell’s testimony was about monetary policy, our primary focus, which was shared

broadly by market participants at that time, is naturally on the 10-year Treasury yield. To set

the stage, we plot the 10-minute candlestick chart for the 10-year Treasury yield on the top panel

of Figure 3. The sample period is from 7:30 to 17:00 EST, and we highlight the time intervals for

the regular trading hours of the equity market (i.e., 9:30 – 16:00) and Powell’s testimony for ease

of discussion. In the bottom panel of the figure, we plot the corresponding OK volatility estimates

along with the 90% OKCIs, as described in (2.15) and (2.16), respectively.

Figure 3 reveals some interesting price and volatility dynamics in the 10-year yield. From the

candlestick chart, we see that the 10-year yield gradually rose from 1.36% to 1.38% during the

two hours before the stock market open, and then fluctuated violently between 9:30 and 10:00,

as evidenced by the three long candlesticks during that half-hour trading session. The volatility

20Similar data are also available in real time to retail investors from various trading platforms (e.g., Charles

Schwab, Fidelity, Interactive Broker, Robinhood, etc.) or public websites such as Yahoo Finance.
21The video is available at https://www.banking.senate.gov/hearings/02/12/2021/the-semiannual-monetary-

policy-report-to-the-congress. The media coverage started at 10:00 AM EST, which corresponds the 14:47 timestamp

in the video.
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Figure 3: The top panel plots the 10-minute candlestick chart for the yield of the 10-year U.S.

Treasury note from 7:30 to 17:00 EST on February 23, 2021. The solid and dashed lines highlight

the regular trading hour and the Fed Chairman Powell’s congressional testimony, respectively. The

bottom panel shows the optimal candlestick volatility estimate (on daily horizon in basis points)

of the yield for each 10-minute trading session, along with the associated 90% confidence interval.

jump at the market open can be seen more clearly from the spot volatility estimates plotted on the

bottom panel, particularly in view of the fact that the volatility actually dipped in the 20-minute

period before 9:30.

Powell’s testimony started at 10:00. The opening statements given by the Committee Chairman

Sherrod Brown (D-OH) and the ranking member Senator Pat Toomey (R-PA) during the first 15

minutes of the testimony reflected the partisan disagreement on a range of policy issues, including

particularly the 1.9-trillion-dollar stimulus plan soon to be voted in the Senate. Interestingly, the

estimated volatility of the 10-year yield also reached its daily maximum of 11 basis points as the

two Senators spoke.

It is instructive to explain how this large volatility estimate is related to the corresponding

candlestick. Looking at the candlestick immediately after the 10:00 timestamp, we see that it not

only has a wide high-low range but also a relatively short real-body (i.e., open and close prices are
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similar); indeed, the most salient feature of this candlestick is its very long upper shadow. Recall

that the OK estimator assigns a negative weight on the absolute open-close return. This explains

why the volatility estimate for the 10:00–10:10 trading session is much higher than those between

9:30 and 10:00, despite the fact that all these candlesticks have similar “sizes.”

The Fed Chairman began his statement at around 10:15. The aforementioned volatility spike

soon reverted to a lower level around 4–5 basis points and appeared to trend down during the

rest of the first hour of the testimony. Meanwhile, the yield also dropped from 1.38% to 1.34%.

These price and volatility movements occurred as Chairman Powell confirmed that the central bank

would continue to be accommodative in various policy dimensions such as the federal funds rate,

inflation target, and asset purchase. Immediately after the first hour, we see, quite interestingly,

a 6-basis-point spike in volatility on the 11:00-11:10 interval. This might be attributed to the

conversation between Senator Mike Rounds (R-SD) and Chairman Powell on whether the Federal

Reserve would extend the temporary change to its supplementary leverage ratio (SLR) for bank

holding companies. During the COVID-19 crisis, the SLR exclusion temporarily allowed banks to

exclude U.S. Treasuries and deposits at the Federal Reserve from the SLR denominator. Without

an extension, banks would have less capacity to own Treasuries, and the resulting selling pressure

might push the long-term Treasury yield even higher. This was an important concern in the bond

market. Chairman Powell responded to Senator Rounds by saying that the Fed was thinking about

this issue and would make a decision “pretty soon.” The unresolved policy uncertainty might have

disappointed the market (in view of Powell’s evidently accommodative tone to the other policy

issues), which may explain the peculiar volatility spike during that 10-minute trading session.22

But this volatility spike is short-lived: The volatility level soon dropped to a lower 2–3 basis points

range for the remaining part of the testimony, and dropped even further afterwards.

Our main goal of discussing the above real-data example is to demonstrate the empirical ap-

plicability of our proposed econometric method for studying asset price volatility. We find the

estimated spot volatility path to be economically sensible, without any obviously erratic behavior

that may be hard to interpret. By carefully going through the contemporaneous economic events,

we also see that the occasional “spikes” in the estimated volatility tend to reflect “features” of

what is happening, rather than “bugs” of the estimator. In addition, we note that the 90% OKCIs

are reasonably tight to make meaningful inferential statements about the ups and downs of the

volatility process. This is remarkable in view of the fact that each CI is only based on a single

10-minute candlestick.

To examine whether the proposed method works well on the other types of assets, we further

22The market’s response turns out to be “rationalizable” with the benefit of hindsight, as the central bank an-

nounced the termination of the SLR exclusion later on March 19, 2021. The official announcement can be found at

https://www.federalreserve.gov/newsevents/pressreleases/bcreg20210319a.htm.
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Figure 4: The figure plots volatility estimates (in daily percentage terms) of various assets on

February 23, 2021, based on the optimal candlestick estimator (left) and the open-close estimator

µ−1
1 |ri|/∆

1/2
n (right) using data sampled at the 10-minute frequency. Confidence intervals are

computed using the critical values in Table 1 at the 90% level.
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compute the OK estimates and the 90% OKCIs for SPY, ARKK, GLD, and Bitcoin, and plot the

results on the left column of Figure 4. For comparison, we also implement the estimator based

only on the open-close return, that is, µ−1
1 |ri|/∆

1/2
n , which we refer to as the open-close estimator

for simplicity. We remind the reader that the open-close estimator is also asymptotically unbiased,

and its CI is asymptotically valid; however, it is far less efficient than the OK estimator as shown in

Table 1. Numerical results for the open-close estimator are plotted on the right column of Figure

4. For ease of comparison, we plot the two methods’ estimates under the same scale.

Looking at the left column of Figure 4, we see that the OK estimator generates sensible volatility

estimates and relatively tight CIs for this broader collection of assets, like what we have seen for the

10-year Treasury yield in Figure 3. To demonstrate more clearly the merit of this optimal estimator,

we compare it with the open-close estimator shown on the right column. The latter serves as a

relevant benchmark because, in empirical work, it is not rare to see the absolute return being used

as a proxy for volatility. The contrast between the two methods is striking. The estimated volatility

paths based on the open-close estimator are clearly quite erratic. Indeed, volatility estimates for

adjacent time intervals often bounce up and down in an apparently “random” fashion, and the CIs

are generally very wide. This is very different from the much smoother estimated volatility path

generated by the optimal estimator, even though smoothness across different time intervals is not

forced upon either estimator as each candlestick is treated on its own in our estimation.

The erratic behavior of the open-close estimator may be largely explained by its statistical

inefficiency, resulting in very noisy estimates. We also notice another undesirable feature of the

open-close estimator, that is, it often generates implausibly low volatility estimate. For example,

the open-close volatility estimates for SPY on the three 10-minute intervals between 10:20 to 10:50

are 2.049%, 0.055%, and 2.349% per day. In particular, the 10:30–10:40 estimate, 0.055% (or

0.869% in annualized terms), is very close to zero and is much lower than the adjacent ones. It

is obvious that this estimate cannot be reflecting SPY’s actual volatility level at that time. In

contrast, the OK volatility estimates for these three intervals are 1.236%, 1.042%, and 1.677% (or

19.54%, 16.47%, and 26.51% in annualized terms), which are economically much more sensible and

in line with SPY’s typical volatility level.

To better understand the mechanics underlying this particular discrepancy between the open-

close and the OK estimators, we examine the candlestick chart of SPY shown in Figure 5, where we

highlight the 10:30–10:40 trading session for ease of discussion. The “†-shaped” candlestick for that

trading session is indeed visibly distinct from the others: The open and close prices are virtually

identical, whereas the high and low prices are far apart. This is why the open-close volatility

estimate is close to zero, but the OK estimate remains to be large. This example highlights a

“bug,” in a practical sense, of the open-close volatility estimator, that is, it ignores essentially
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Figure 5: The figure plots the candlestick chart of the price of the SPY ETF on February 23, 2021,

during regular trading hours. The arrow highlights a “dragonfly doji” pattern, which generates

quite distinct volatility estimates for the optimal candlestick estimator and the open-close estima-

tor.

all the price variation within the 10-minute trading session. Coincidentally, the cross-shaped

candlestick is called a doji in technical analysis, which literally means “mistake” in Japanese (and

the one highlighted in the figure is dubbed “dragonfly doji”). Although technical analysis is largely

orthogonal to our econometric discussion, we do need to emphasize the practical relevance of the

doji pattern for our candlestick-based volatility inference, in that it tends to generate insensible

volatility estimate based only on the open-close return. The OK estimator, on the other hand, can

better exploit the information from the whole candlestick and deliver more robust and efficient

empirical estimates. The doji pattern is of course not unique to the SPY ETF, but is commonly

seen in real data; for example, the 10-year Treasury yield charted in Figure 3 contains even more

dojis.

In summary, the above illustration highlights the empirical usefulness of the proposed volatility

inference procedure based on the OK estimator. We see that, for a broad variety of assets, our

method can deliver economically sensible volatility estimates with adequate statistical accuracy.

Importantly, the method can be easily implemented based on data available to retail investors in

real time, and hence, may help an ordinary investor better manage risk and make more informed
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investment decisions. We also demonstrate the clear benefit of adopting the OK estimator relative

to a commonly used benchmark based on the absolute return. Here, the take-home message is

clear: replacing the absolute return with the OK estimator for an equally simple but substantially

more accurate volatility proxy.

5 Conclusion

With the goal to help ordinary investors conduct reliable inference on spot volatility, we propose

an easy-to-implement econometric procedure based on readily accessible candlestick data. The

proposed optimal candlestick (OK) volatility estimator is asymptotically unbiased and minimizes

the asymptotic variance within a class of linear estimators. Under an approximate finite-sample

approach, we construct asymptotically valid CIs for the spot volatility based on a nonstandard

limiting distribution. We show that the candlestick-based estimator and CI are much more accu-

rate than those based on high-frequency returns alone, and demonstrate their ability to generate

economically sensible volatility estimates in practically relevant empirical settings. The proposed

inference method is user-friendly, as it can be carried out manually on a basic calculator in real

time. Our proposal may thus offer the average investor an “affordable” way to conduct volatility

inference.

Appendix: Proofs

Proof of Theorem 1. Throughout the proof, we fix some i ≥ 1 and t ∈ In,i, and use K

to denote a generic positive constant. By a standard localization procedure, we can strengthen

Assumption 1 by assuming that the conditions hold with T1 = ∞ without loss of generality; see

Section 4.4.1 in Jacod and Protter (2012) for details on the localization procedure. Finally, we

note that under Assumption 1(i), the probability that the interval In,i contains at least one price

jump is O (∆n). Therefore, with probability approaching 1, In,i does not contain any price jump.

Since our calculation concentrates on this one interval, we can and will assume in the subsequent

analysis that there are no price jumps without loss of generality.

Turning to the proof, we start with introducing some notation and preliminary estimates. We
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rewrite wi = ui − li, where

ui ≡ sup
t∈In,i

(∫ t

(i−1)∆n

bsds+

∫ t

(i−1)∆n

σsdWs

)
,

li ≡ inf
t∈In,i

(∫ t

(i−1)∆n

bsds+

∫ t

(i−1)∆n

σsdWs

)
,

are respectively the upper and lower shadow of the ith candlestick. For ease of notation, we further

denote

u′i ≡ σ(i−1)∆n
sup
t∈In,i

(
Wt −W(i−1)∆n

)
, l′i ≡ σ(i−1)∆n

inf
t∈In,i

(
Wt −W(i−1)∆n

)
,

r′i ≡ σ(i−1)∆n
(Wi∆n −W(i−1)∆n

), w′i ≡ u′i − l′i, σ̂′t (λ) ≡ λ1 |r′i|+ λ2w
′
i

∆
1/2
n

.

It is easy to see that ∣∣∣∣∣
∫ i∆n

(i−1)∆n

bsds

∣∣∣∣∣ ≤
∫ i∆n

(i−1)∆n

|bs| ds = Op(∆n) = op(∆
1/2
n ). (A.1)

Moreover, by the Burkholder–Davis–Gundy inequality (see, e.g., (2.1.34) in Jacod and Protter

(2012)), we have

E

 sup
t∈In,i

∣∣∣∣∣
∫ t

(i−1)∆n

(
σs − σ(i−1)∆n

)
dWs

∣∣∣∣∣
2
 ≤ KE

[∫ i∆n

(i−1)∆n

(
σs − σ(i−1)∆n

)2
ds

]
≤ K∆1+2κ

n ,

where the second inequality follows from E[(σs−σ(i−1)∆n
)2] ≤ K∆2κ

n . This estimate further implies

sup
t∈In,i

∣∣∣∣∣
∫ t

(i−1)∆n

(
σs − σ(i−1)∆n

)
dWs

∣∣∣∣∣ = Op

(
∆1/2+κ
n

)
= op(∆

1/2
n ). (A.2)

By the triangle inequality, (A.1), and (A.2),

∣∣|ri| − |r′i|∣∣ ≤
∣∣∣∣∣
∫ i∆n

(i−1)∆n

bsds

∣∣∣∣∣+

∣∣∣∣∣
∫ i∆n

(i−1)∆n

(
σs − σ(i−1)∆n

)
dWs

∣∣∣∣∣ = op(∆
1/2
n ). (A.3)

In addition, we note that

∣∣ui − u′i∣∣ =

∣∣∣∣∣ sup
t∈In,i

(∫ t

(i−1)∆n

bsds+

∫ t

(i−1)∆n

σsdWs

)
− σ(i−1)∆n

sup
t∈In,i

(
Wt −W(i−1)∆n

)∣∣∣∣∣
≤ sup

t∈In,i

∣∣∣∣∣
∫ t

(i−1)∆n

bsds+

∫ t

(i−1)∆n

(
σs − σ(i−1)∆n

)
dWs

∣∣∣∣∣
≤

∫ i∆n

(i−1)∆n

|bs| ds+ sup
t∈In,i

∣∣∣∣∣
∫ t

(i−1)∆n

(
σs − σ(i−1)∆n

)
dWs

∣∣∣∣∣
= op(∆

1/2
n ),

29

Electronic copy available at: https://ssrn.com/abstract=3838231



where the first three lines are obvious, and the last line follows from (A.1) and (A.2). Similarly,

we can derive |li − l′i| = op(∆
1/2
n ). Since wi = ui − li and w′i = u′i − l′i, we further deduce

wi − w′i = op(∆
1/2
n ). (A.4)

Combining (A.3) and (A.4), we deduce

σ̂t (λ) = σ̂′t (λ) + op(1). (A.5)

From the definition of σ̂′t (λ), we see that

σ̂′t (λ)

σ(i−1)∆n

= λ1ζ1,i + λ2ζ2,i,

where ζ1,i and ζ2,i are defined in Theorem 1. Since the σ process is càdlàg and bounded away from

zero, we have for any t ∈ In,i,
σ(i−1)∆n

σt

P→ 1.

Hence,
σ̂′t (λ)

σt
= λ1ζ1,i + λ2ζ2,i + op(1). (A.6)

The assertion of Theorem 1 then readily follows from (A.5) and (A.6). �
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