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EFFICIENT ESTIMATION OF

INTEGRATED VOLATILITY

FUNCTIONALS UNDER GENERAL

VOLATILITY DYNAMICS*

JIA LI

Duke University

YUNXIAO LIU

University of North Carolina at Chapel Hill

We provide an asymptotic theory for the estimation of a general class of smooth

nonlinear integrated volatility functionals. Such functionals are broadly useful for

measuring financial risk and estimating economic models using high-frequency

transaction data. The theory is valid under general volatility dynamics, which

accommodates both Itô semimartingales (e.g., jump-diffusions) and long-memory

processes (e.g., fractional Brownian motions). We establish the semiparametric

efficiency bound under a nonstandard nonergodic setting with infill asymptotics,

and show that the proposed estimator attains this efficiency bound. These results on

efficient estimation are further extended to a setting with irregularly sampled data.

1. INTRODUCTION

A central problem in financial econometrics is the estimation of asset price

volatility (Engle, 2004), which is greatly facilitated by using high-frequency

data (Merton, 1980). A large literature has been devoted to estimating integrated

volatility functionals using such data. Earlier work focused on the integrated

covariance matrix (see Andersen and Bollerslev, 1998; Andersen et al., 2001;

Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2001, 2002a, 2002b,

2004a; Mancini, 2001, among others). The recent literature has shown great

interest in the estimation of general nonlinear volatility functionals (see, e.g.,

Kristensen, 2010; Jacod and Rosenbaum, 2013; Renault, Sarisoy, and Werker,

2017) for two broad reasons: these functionals not only provide a battery of ex post

risk measures (Mykland and Zhang, 2006, 2009; Todorov and Tauchen, 2012; Aït-

Sahalia and Xiu, 2019; Kalnina and Xiu, 2017), but also play the role of moment

conditions that are analogous to the classical Generalized Method of Moments
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ESTIMATION OF INTEGRATED VOLATILITY FUNCTIONALS 665

(GMM) for estimating economic models (Li, Todorov, and Tauchen, 2016; Li and

Xiu, 2016).

Regarding the basic problem with integrated covariance, the inference theory

has been developed for essentially unrestricted volatility dynamics. 1 However,

the analysis is notably more complicated, and less well understood, for general

nonlinear volatility functionals. The early contributions of Barndorff-Nielsen

and Shephard (2003) and Jacod (2008) proposed estimators that are formed as

sums of nonlinear transforms of normalized returns. This approach implicitly

imposes tight restrictions on the type of nonlinear functionals to be estimated,

and the resulting estimator is not efficient. A more general approach is to first

nonparametrically recover the spot covariance process (Foster and Nelson, 1996;

Comte and Renault, 1998), and then construct a plug-in estimator for the integrated

volatility functional. Along this line, Kristensen (2010) first derived the asymptotic

distribution of a plug-in estimator under the assumption that the volatility process

has differentiable paths; this early contribution thus, unfortunately, ruled out

typical stochastic volatility models.2 Jacod and Rosenbaum (2013) considered a

more general case in which the spot volatility process is an Itô semimartingale.3

They showed that the “raw” plug-in estimator carries a non-negligible high-

order bias and proposed a feasible bias correction. The bias-corrected estimator

is asymptotically mixed normal and attains the semiparametric efficiency bound

derived in some specific settings considered by Clément, Delattre, and Gloter

(2013) and Renault et al. (2017).

The aforementioned prior work, however, routinely imposes a strong restriction

on the volatility dynamics, namely, the volatility process is assumed to be an Itô

semimartingale; see, in particular, Jacod (2008) and Jacod and Rosenbaum (2013).

Unlike the price process, which is necessarily a semimartingale under no-arbitrage

(Delbaen and Schachermayer, 1994; Harrison and Kreps, 1979), economic theory

is silent about whether the volatility should be a semimartingale. As a matter

of fact, the semimartingale assumption on volatility rules out long-memory type

dynamics. This restriction is thus undesirable from an econometric point of view,

given the long tradition in time-series econometrics for studying long-memory

dynamics (Granger, 1980; Geweke and Porter-Hudak, 1983). Furthermore, long-

memory features in asset price volatility have been documented and analyzed

by Ding, Granger, and Engle (1993), Baillie, Bollerslev, and Mikkelsen (1996),

Andersen and Bollerslev (1997), Comte and Renault (1998), and Andersen et al.

(2001) in the early literature; also see the recent analysis of McCloskey and

Perron (2013) based on a robust method. As demonstrated theoretically byGranger

(1980) and Comte and Renault (1996), long-memory properties arise naturally

1See, for example, Thm. 5.4.2 in Jacod and Protter (2012).

2As is standard in classical nonparametric analysis, the differentiability assumption allows one to use high-order

kernels to reduce the asymptotic magnitude of bias due to the temporal (and stochastic) variation of volatility.

3Li, Todorov, and Tauchen (2017) extended the theory of Jacod and Rosenbaum (2013) to a more general class of

functionals.
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from the aggregation of heterogeneous micro series. In the same vein, Andersen

and Bollerslev (1997) proposed a model with heterogeneous information arrivals,

which was used to explain long-memory in asset price volatility.

Set against this background, we study the estimation of nonlinear volatility

functionals in a general setting where the volatility contains (possibly) two

additive components: one component is a general Itô semimartingale and the

other exhibits long-memory. We refer to this model as the long-memory Itô

semimartingale (LMIS) volatility model. Like the standard Itô semimartingale

model, the LMIS model includes both a continuous local martingale component

driven by a Brownian motion and a discontinuous component with arbitrary jump

activity. With the long-memory component, the LMIS model also accommodates

fractional Brownianmotions (fBM) and, more generally, stochastic (Wiener and/or

Skorokhod) integrals driven by fBMs and other multifractal processes used in

financial risk management.

The main contribution of this paper is to develop an estimation theory for

nonlinear integrated volatility functionals under the LMIS model, and to study

the associated semiparametric efficiency. We first derive the asymptotic property

of the estimator of Jacod and Rosenbaum (2013) in the general LMIS setting.

Compared to prior work, the notable challenge here is that the volatility increment

is no longer (only) dominated by the martingale-difference component, which

thus requires a quite different (and more complicated) proof. Second, we derive

the efficiency bound for the LMIS volatility model and show that the Jacod–

Rosenbaum estimator attains this bound, and hence, is semiparametrically efficient

for a large class of volatility models that is markedly more general than previously

considered. Since our setting does not satisfy the local asymptotic normality

(LAN) property, we cannot directly follow classical work on efficient estimation

(see, e.g., Bickel et al., 1998). Instead, we implement Stein’s insight (Stein, 1956)

by constructing a class of parametric submodels. We show that the submodels

satisfy the local asymptotic mixed normality (LAMN) property and then use

the conditional convolution theorem (Jeganathan, 1982, 1983) to characterize the

worst-case efficiency bound. Finally, the general version of our theoretical results

are actually derived in the case when the high-frequency data are irregularly

sampled. As a matter of fact, we propose a modification of the Jacod–Rosenbaum

estimator so as to accommodate irregular sampling, which sets the current paper

further apart from existing econometric work on general integrated volatility

functionals.

Our result on the efficiency bound is novel and generalizes the recent work of

Clément et al. (2013) and Renault et al. (2017) in important dimensions. Clément

et al. (2013) considered a conditionalMarkov setting inwhich the volatility process

is a continuous Itô process, and used a Malliavin calculus approach to derive the

LAMN property. Their setting is restrictive since it excludes both long-memory

dynamics and volatility jumps. Renault et al. (2017) used an alternative approach

and studied a conditional LAN setting that allows for finite-variational volatility

jumps and long-memory dynamics. Our approach is more similar to Renault et al.
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(2017) in spirit, but we establish semiparametric efficiency bound that is explicitly

applicable (rather than under high-level conditions) for the general LMIS volatility

models under possibly irregular sampling.4

To the best of our knowledge, the current paper is the first one that provides an

asymptotic theory for estimating nonlinear volatility functionals under the general

LMIS volatility dynamics; moreover, we also address the issue of semiparametric

efficiency in this general setting. Since most (if not all) volatility models in

economics and finance are special cases of LMIS, the current paper provides

a more complete understanding for the efficient estimation and inference of

nonlinear volatility functionals.

This paper is organized as follows. We present the setting in Section 2. The

baseline theory under regular sampling is presented in Section 3, and the extension

to the case with irregular sampling is in Section 4. Section 5 presents simulation

results. Section 6 concludes. All proofs are in the Appendix.

2. THE SETTING

2.1. Integrated Volatility Functionals and the LMIS Volatility Model

We start with describing the setting. Let
(
�,F,(Ft)t≥0,P

)
be a complete filtered

probability space. All processes are assumed to be càdlàg and adapted. The d-

dimensional (logarithmic) price process X is a semimartingale with the form

Xt =

∫ t

0

bsds+

∫ t

0

σsdWs+ Jt, (2.1)

where b is the drift process taking values in R
d, σ is the stochastic co-volatility

matrix process taking values inRd×d,W is a d-dimensional Brownian motion, and

J is a jump process. Let ct ≡ σtσ
⊤
t denote the spot covariance matrix process,

which takes values inMd, the space of d×d positive semidefinite matrices.5

In our baseline setting studied in Section 3, the data consist of high-frequency

observations of X that are sampled on a regular time grid {i1n : 0 ≤ i ≤ [T/1n]}

for a fixed time span [0,T], where the sampling interval1n → 0 asymptotically as

n→ ∞. Below, we denote the ith return of X by

1n
i X = Xi1n −X(i−1)1n .

We use this baseline setting to first describe results under the LMIS volatil-

ity dynamics. An extension with irregular sampling is further developed in

Section 4. We need some standard regularity conditions on X.

4We also note that Renault et al. (2017) only propose “nearly” efficient estimators. The notion of near efficiency

is formalized via a sequential asymptotic embedding, in which the sample size and the bandwidth do not change

simultaneously, but only sequentially. In contrast, our asymptotic theory is derived in a joint asymptotic setting in

which the bandwidth changes together with sample size.

5The process of interest is ct instead of σt . We do not assume the latter to be positive semidefinite. More generally,

we may allow W to be a d′-dimensional Brownian motion, with σt taking values in the space of d×d′ matrices for

some d′ > d.
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Assumption H. Let r ∈ [0,1) be a constant. The process X is an Itô semi-

martingale given by (2.1) with Jt (ω) =
∫ t
0

∫
R
δ (ω,s,z)µ(ds,dz), where µ is a

Poisson random measure on R+ ×R with compensator ν (dt,dz) = dt⊗ λ(dz)

for some σ -finite measure λ(·) on R, and δ : �×R+ ×R 7→ R
d is a predictable

function. There are a sequence of non-negative bounded λ-integrable functions

Jm (·) on R and a sequence of stopping times (Tm)m≥1 increasing to ∞ , such that

‖δ (ω,t,z)‖r ∧1 ≤ Jm (z) for all (ω,t,z) with t ≤ Tm (ω). �

We are interested in estimating integrated volatility functionals of the form

S (g)≡

∫ T

0

g(cs)ds, (2.2)

for some three-time continuously differentiable transform g : Md 7→ R.6 Many

ex post risk measures of volatility can be written either as S(g) or as a further

nonlinear transform of such quantities, such as the integrated covariance matrix

(Barndorff-Nielsen and Shephard, 2004a), diffusive return beta (Mykland and

Zhang, 2009), correlation/leverage effect (Kalnina and Xiu, 2017), idiosyncratic

variance ( Mykland and Zhang, 2006), volatility Laplace transform (Todorov and

Tauchen, 2012), variance betas ( Li et al., 2016), eigenvalues (Aït-Sahalia and Xiu,

2019), among others. Moreover, general forms of S (g) also serve as integrated

moment conditions in specification tests and estimation problems in economic

models (Li and Xiu, 2016).

Jacod and Rosenbaum (2013) propose an efficient estimator for integrated

volatility functionals of the form (2.2). However, their asymptotic theory requires

that the function g(·) and its derivatives have polynomial growth (see their Thm.

3.1), which can be restrictive for many applications. Li et al. (2017) and Li and Xiu

(2016) provided a spatial localization argument to relax the polynomial growth

condition, with the help of a mild sample path regularity on the spot covariance

process stated in the following assumption. Below, for a compact setK ⊂Md and

a constant η > 0, we denote the “η-enlargement” of K by

Kη ≡ {M ∈ Md : inf
A∈K

||M−A||< η}.

Assumption C. There exist a localizing sequence of stopping times (Tm)m≥1

and a sequence of convex compact subsets Km ⊆ Md such that ct ∈ Km for t ≤ Tm
and g ∈ C3(Kη

m) , with the latter denoting the space of three-time continuously

differentiable functions on Kη
m for some η > 0. 7 �

6We assume that g(·) is scalar-valued only for notational simplicity, because all results can be extended trivially for

vector-valued g(·) by using the Cramér–Wold device.

7To illustrate how Assumption C allows us to relax the polynomial growth condition, consider an example with

g(x) = log(x) and d = 1. In this case, g(·) does not have polynomial growth in that the log function is explosive

near 0. On the other hand, if ct and 1/ct are locally bounded, then there exists a sequence of stopping times (Tm)m≥1

increasing to infinity, such that ct ∈ [1/m,m] for t≤ Tm. Assumption C is satisfied forKm = [1/m,m], because the log

function is C3 on (1/m−η,m+η) for η sufficiently small. See Sect. 4.4.1 of Jacod and Protter (2012) for additional

details on localization.
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As discussed in the Introduction, we aim to study the efficient estimation of

S (g) in a setting that accommodates both Itô semimartingale and long-memory

type dynamics in the volatility. We consider the LMIS model given as follows

σt ≡ σ1,t +σ2,t, (2.3)

where σ1,t and σ2,t are, respectively, the Itô semimartingale and the long-memory

components that satisfy the following assumptions.

Assumption IS. The process
(
σ1,t
)
t≥0

is an Itô semimartingale of the form

σ1,t = σ1,0 +

∫ t

0

b(σ1)s ds+

∫ t

0

σ (σ1)s dWs+M
(σ1)
t

+

∫ t

0

∫

R

δ(σ1)(s,z)1{||δ(σ1)(s,z)||>1}µ(ds,dz),

where b(σ1) is (d×d)-dimensional; σ (σ1) is (d×d×d)-dimensional; M(σ1) is a

local martingale that is orthogonal to W with bounded jumps and its predictable

quadratic variation process has the form 〈M(σ1),M(σ1)〉t =
∫ t
0
qsds for some locally

bounded process q; µ is Poisson random measure with compensator ν (ds,dz) =

ds⊗λ(dz) for some σ -finite measure λ(·) onR; δ(σ1) is aRd×d-valued predictable

function such that for a sequence (Jm)m≥1 of nonnegative λ-integrable functions

Jm on R, ||δ(σ1)(ω,t,z)||2 ∧1 ≤ Jm(z) for all t ≤ Tm and z ∈ R, where (Tm)m≥1 is a

sequence of stopping times that increases to infinity.8 �

Assumption LM. For some constant ǫ ∈ (0,1/2], a sequence (Tm)m≥1 of

stopping times that increases to infinity and a sequence (Km)m≥1 of positive

constants, the following holds: for all t,s ∈ [0,T], E[||σ2,t∧Tm − σ2,s∧Tm ||2] ≤

Km |t− s|1+2ǫ . �

Assumption IS is the “standard” assumption on volatility in the study of nonlin-

ear volatility functionals; see, for example, Jacod (2008) and Jacod andRosenbaum

(2013). This assumption accommodates typical jump-diffusion volatility models.9

Importantly, it allows for volatility jumps with arbitrary activity. The jumps

conveniently capture the “abrupt moves” of volatility in the short-run, which is

well known to be empirically important.10

Assumption LM imposes the regularity that the long-memory component σ2
needs to satisfy, namely, σ2 is locally (1/2 + ǫ)-Hölder continuous under the

L2-norm. By Kolmogorov’s continuity theorem, σ2 necessarily has continuous

8TheM
(σ1)
t process may contain a continuous local martingale driven by Brownianmotions that are independent ofW.

It may also contain compensated “small” volatility jumps in the form of a purely discontinuous local martingale. We

remind the reader that two local martingales are called orthogonal if their product is a local martingale (or equivalently,

their predictable covariation process is identically zero). A local martingale is called purely discontinuous if it is

orthogonal to all continuous local martingales. See Def. I.4.11 and Prop. I.4.15 in Jacod and Shiryaev (2003) for

additional details.

9See, Singleton (2006) and Shepard (2005) and the many references therein.

10See, for example, Duffie, Pan, and Singleton (2000), Eraker, Johannes, and Polson (2003), Eraker (2004), Broadie,

Chernov, and Johannes (2007), Todorov, Tauchen, and Grynkiv (2011), among others.
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paths. This component is “smoother” than the Brownian component in the Itô

semimartingale σ1, which is locally (1/2)-Hölder continuous under the L2 -norm;

but the latter also enjoys the martingale property, which can compensate its lack

of smoothness in our asymptotic analysis. We note that the index ǫ is related to

the memory parameter in long-memory models. For example, if σ2 is an fBM with

Hurst index H > 1/2 (which corresponds to the case with long memory), then

Assumption LM is verified for ǫ = H− 1/2. In view of the connection between

the fBM and traditional long-memory time series (see, e.g., Geweke and Porter-

Hudak, 1983, Comte and Renault, 1996), ǫ can be further related to the memory

parameter for fractionally integrated processes in discrete time models like those

considered by Granger (1980) and Baillie et al. (1996). The scope of Assumption

LM is actually far beyond the fBM; the somewhat technical discussion on general

classes of examples is given in Section 2.2.

Finally, we note that Assumptions IS and LM both allow for unrestricted

nonstationarity and dependence between the volatility and the price processes. In

particular, we allow for leverage effect and price-volatility co-jumps. Overall, the

LMIS model is quite general and is satisfied by almost all models in economics

and finance.

2.2. Additional Examples of Long-Memory Type Volatility Dynamics

In this subsection, we discuss various examples that satisfy Assumption LM,

with the leading one being the fractional stochastic volatility model introduced

by Comte and Renault (1996, 1998). More generally, we show that Assumption

LM is verified for stochastic (Wiener and/or Skorohod) integrals with respect to

the fBM or other multifractal processes and it is also preserved under smooth

transformations. Since Assumption LM can be verified component-by-component,

here, we suppose that the process σ2 is scalar-valued without loss of generality. The

examples below can also be extended to even larger classes through a standard

localization technique, because Assumption LM only requires some regularities

up to a localizing sequence of stopping times. Below, WH denotes an fBM with

Hurst index H > 1/2 and ‖·‖2 denotes the L2 norm.

Example 1 (Wiener Integrals).

Analogous to volatility modeling based on Itô calculus, a natural way of building

general stochastic volatility models from the fBM is via stochastic integration; see

Comte and Renault (1996, 1998) for early contributions in economics and finance.

Since the fBM is not a semimartingale when H 6= 1/2 , the classical integration

theory for semimartingales cannot be directly applied to the fBM. That being

said, when the integrand f is deterministic and satisfies certain conditions, we can

define Wiener integrals denoted by σ2,t =
∫ t
0
f (s)dWH

s . This stochastic integral is

constructed as an isometry from (H, ‖·‖H) to the L2 space, where

‖f‖H ≡

(∫ T

0

∫ T

0

f (u) f (v) |u− v|2H−2 dudv

)1/2
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andH = {f : ‖f‖H <∞}. If the function f is bounded on bounded sets (e.g., when

t 7→ f (t) is càdlàg), we can use the isometry to verify ‖σ2,t − σ2,s‖2 ≤ K‖WH
t −

WH
s ‖2. That is, σ2,t inherits the same Hölder continuity from the driving fBM, as

required by Assumption LM.

Example 2 (Hermite Processes).

The fBM is a special case of Hermite processes of order one. A higher-order

Hermite process is not Gaussian, but shares the same covariance function as the

fBM. As a result, a Hermite process with Hurst index H also verifies Assumption

LM for ǫ = H − 1/2. In addition, Wiener integrals with respect to Hermite

processes can be defined using the same isometry as described in Example 1 and,

hence, inherits the same Hölder continuity from the driving Hermite process.

Example 3 (Skorokhod Integrals).

An undesirable limitation of Wiener integrals considered in Example 1 is that

the integrand f needs to be deterministic or, more generally, independent of

the driving fBM. In the more general case with dependent integrand, one can

define σ2,t =
∫ t
0
f (s)dWH

s as a Skorokhod integral using Malliavin calculus,

which has become the cornerstone of the stochastic integration theory for fBM.11

Under the mild conditions (which can be further weakened by localization) that

supt∈[0,T]E |f (t)| < ∞ and supt∈[0,T]E
[∫ T

0
|Dsf (t)|

2 ds
]
< ∞, where D denotes

the (Malliavin) derivative operator associated withWH , it can be shown12

∥∥σ2,t −σ2,s
∥∥
2
≤ KH |t− s|H ,

for some constant KH that only depends on the Hurst index H. Assumption LM is

verified for ǫ = H−1/2.

Finally, we note that Assumption LM is preserved under smooth transforma-

tions. That is, if σ̃2,t satisfies Assumption LM for some stopping times (T̃m)m≥1

and constants (K̃m)m≥1, then σ2,t = h(σ̃2,t) also satisfies this assumption for any

continuously differentiable function h(·). To see this, we note that we can choose

a localizing sequence of stopping times (T ′
m) such that σ̃2,t is bounded for t ≤

T ′
m (because σ̃2,t is continuous and, hence, locally bounded under Assumption

LM). By the mean-value theorem, ‖σ2,t − σ2,s‖ ≤ K′
m‖σ̃2,t − σ̃2,s‖ for t,s ≤ T ′

m,

where K′
m ≡ supt≤T∧T ′

m

∥∥∂h
(
σ̃2,t
)
/∂σ̃2,t

∥∥ is finite. From here, it is easy to see that

Assumption LM holds for σ2,t with respect to stopping times Tm = T̃m ∧T ′
m and

constants Km = K̃mK
′
m. It is interesting to note that this permanence property holds

because we only require the Hölder continuity to hold up to a localizing sequence

11The Skorokhod integral is defined by considering the fBM as an isonormal Gaussian process and evaluating the

associated divergence operator on the integrand. See Nualart (2005) for a comprehensive review about Malliavin

calculus.

12This estimate follows from the calculations in the proof of Thm. 5 in Alòs and Nualart (2003) and our uniform

bound on the moments of f and Df .
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of stopping times; this highlights the usefulness of using this weaker requirement

in our setting.

The permanence property discussed above can be used to extend the above

examples to even larger classes. A basic, but important, example concerns log

volatility models as follows. If σ2,t = exp
(
σ̃2,t
)
and the log-volatility process σ̃2,t

verifies Assumption LM (e.g., σ̃2,t is generated from the examples above), then

σ2,t also satisfies Assumption LM. In the same vein, we provide a more involved

example concerning the solution of fBM-driven stochastic differential equations.

Example 4 (Ornstein–Uhlenbeck (OU) Process).

Comte and Renault (1996, 1998) modeled the log-volatility process σ̃2,t =

log
(
σ2,t
)
as an OU process driven by the fBM. That is, σ̃2,t = e−κt(ξ +

γ
∫ t
0
eκsdWH

s ), where ξ is the initial value and the parameters (κ,γ ) control the

mean reversion and “volatility-of-volatility,” respectively. Note that the process

σ2,t is a smooth transformation of the processes e−κt and
∫ t
0
eκsdWH

s . Since these

processes verify Assumption LM (recall Example 1), σ2,t also satisfies Assumption

LM in view of the aforementioned permanence property.

3. MAIN RESULTS UNDER REGULAR SAMPLING

3.1. The Estimation of Integrated Volatility Functionals

In this section, we consider the baseline setting with regular sampling. We now

describe the Jacod–Rosenbaum estimator for the integrated volatility functional

(2.2) and derive its asymptotic properties under the LMIS volatility model. The

estimator is constructed in two steps. In the first step, we nonparametrically recover

the spot covariance process. To this end, we choose an integer sequence kn of

bandwidths and a sequence un of truncation thresholds such that

kn ≍1−γ
n and un ≍1̟

n (3.1)

for some constants γ ∈ (0,1) and ̟ ∈ (0,1/2). These tuning parameters will be

further restricted in our asymptotic result below. The spot covariance matrix at

time i1n is then given by

ĉi1n ≡
1

kn1n

kn∑

j=1

(
1n
i+jX

)(
1n
i+jX

)⊤
1{||1ni+jX||≤un}. (3.2)

We note that un determines the truncation threshold for eliminating jumps in X

(Mancini, 2001). If X is continuous, then there is no need to truncate when forming

ĉi1n (by taking un = ∞).

In the second step, we construct the estimator for S(g) as

Sn(g)≡1n

[T/1n]−kn∑

i=0

(
g(ĉi1n)−

1

kn
Bg
(
ĉi1n

))
, (3.3)
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where the correction function Bg associated with g is given by

Bg(c)≡
1

2

d∑

j,k,l,m=1

∂2jk,lmg(c)(c
jlckm+ cjmckl),

with cjk denoting the (j,k) element of c and ∂2jk,lmg(c) denoting the second-order

partial derivative of g with respect to cjk and clm. We note that the estimator

Sn(g) is formed as a bias-corrected version of the (raw) “plug-in” estimator

1n

∑[T/1n]−kn
i=0 g(ĉi1n). The correction term is introduced to eliminate a high-order

nonlinearity bias term that arises from the statistical error in the spot volatility

estimation.

The estimator Sn (g) was first proposed by Jacod and Rosenbaum (2013) for

C3 (i.e., three-time continuously differentiable) g(·) functions.13 These authors

assume that the volatility process σ is an Itô semimartingale and derive a central

limit theorem for it. The theory of Jacod and Rosenbaum (2013) requires some

growth condition on the transformation g(·) that is restrictive in applications;

for example, it excludes basic quantities like beta, correlation, or idiosyncratic

variance. Such restriction is relaxed in Li et al. (2017) and Li and Xiu (2016) by

using a uniform approximation result of spot volatility and a spatial localization

argument; the resulting theory is applicable to essentially all C3 functions. We

further extend these latter papers by allowing for the general LMIS volatility

dynamics.

Theorem 1, presents the asymptotic distribution of Sn (g). We denote by ∂g(c)

the d×dmatrix whose (j,k) element is ∂jkg(c) and denote the matrix trace function

by Tr[ · ].

THEOREM 1. Suppose Assumptions H, C, IS and LM, and (3.1) holds with

r

2
∨
1

3
< γ <

1

2
∧

2ǫ

1+2ǫ
,

1−γ

2− r
≤̟ <

1

2
. (3.4)

Then, the sequence of variables 1
−1/2
n (Sn(g)−S(g)) converges stably in law to a

mixed centered Gaussian distribution with F-conditional variance V (g) given by

V(g)≡ 2

∫ T

0

Tr[cs∂g(cs)cs∂g(cs)]ds. (3.5)

Comments. (i) Theorem 1 extends the results in Jacod and Rosenbaum
(2013), Li et al. (2017), and Li and Xiu (2016) by establishing the
asymptotic distribution of Sn (g) under the LMIS volatility dynamics.
In particular, in the absence of the long-memory component σ2 (hence,

13Constructing the estimator clearly requires g(·) to be at least twice continuously differentiable. The C3 condition

is used in the proof to control the approximation error of a second-order Taylor expansion. Technically speaking, one

might relax this condition slightly by assuming that g(·) belongs to the Hölder class with index less than 3.
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the lack of Assumption LM), Theorem 1 coincides with those in prior
work.14

(ii) The “cost” of including the long-memory component is that we need an
additional upper bound for the divergence rate of the local window size
kn, that is, γ < 2ǫ/(1+2ǫ). This restriction is weaker when ǫ is larger,
which corresponds to the case with “longer” memory. In the extreme
case with ǫ= 1/2 (i.e., σ2 has locally Lipschitz path under the L2-norm),
this restriction is absent, because σ2 then behaves essentially like a drift
term. In this case, γ < 1/2 amounts to a standard “undersmoothing”

condition, in view of the well-known fact that the optimal 1
−1/4
n -

rate of convergence for the spot covariance estimation is attained with

kn ≍1
−1/2
n .

(iii) The condition (3.4) implicitly imposes a restriction on ǫ, that is, ǫ > 1/4.
In other words, σ2 is Hölder-continuous under the L2-norm with an
index at least 3/4, which shows an apparent discrepancy relative to
the (1/2)-Hölder continuity of the Itô semimartingale component. This
“gap” arises as a compensation for the lack of martingale property in the
long-memory component, whereas the martingale property is heavily
exploited in previous work based on the Itô semimartingale volatility
dynamics.15 Although our proofs rely on the ǫ > 1/4 condition, it
is unclear whether it is necessary for the central limit theorem to
hold. Further relaxation of this condition may be interesting for future
research.

3.2. The Semiparametric Efficiency Bound

In this subsection, we establish the semiparametric efficiency bound for estimat-

ing S (g) and show that the Jacod–Rosenbaum estimator attains this bound.16

The result here is derived under regular sampling to highlight the key ideas,

and will be extended in Section 4 to further accommodate a type of irregular

sampling.

In contrast to the classical literature on efficient estimation (see, e.g., Bickel

et al., 1998), our setting is more complicated in that the likelihood ratio generally

14It is instructive to recall the intuition concerning the restrictions on the local window kn. Jacod and Rosenbaum

(2013) require γ > 1/3 to eliminate a third-order nonlinearity bias, and impose the γ < 1/2 undersmoothing condition

to eliminate biases from boundary effect, Brownian movements in volatility, and volatility jumps. Li et al. (2017) and

Li and Xiu (2016) relax the polynomial growth restriction by using a uniform approximation result for the spot

estimator, which requires the additional condition γ > r/2. Note that the latter condition is trivially satisfied when X

is continuous or its jumps are finitely active (corresponding to r = 0).

15Specifically, a key source of bias in the nonparametric volatility estimation is the temporal variation of stochastic

volatility. Although increments of the (Brownian) martingale volatility component are individually “large,” they are

serially uncorrelated, and hence, become small after time-aggregation.

16We consider the efficiency bound to be “semiparametric” in that the integrated volatility functional is finite-

dimensional. The efficiency problem under consideration is the same as Renault et al. (2017), although these authors

refer to their bound as “nonparametric.”
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does not satisfy the LAN property. Indeed, the asymptotic variances of estimators

and information matrices depend on the realization of the volatility path, and

hence, are random. For this reason, we cannot directly apply classical results in

the literature on efficient estimation. Following Stein’s insight (Stein, 1956), we

start with the first principle by constructing a class of parametric submodels and

compute the lower efficiency bound among them.

A similar approach has been adopted in the recent work of Clément et al. (2013)

and Renault et al. (2017). Clément et al. (2013) considered a conditional Markov

model for the volatility dynamics, but they rule out both long-memory behavior and

volatility jumps, which are of great economic and econometric interest. Renault,

Sarisoy, and Werker (2017) studied a conditional (pathwise) LAN setting that

allows for long-memory volatility dynamics and finite-variational jumps. Their

theory requires that volatility paths have locally bounded variance (see their

Def. 1).

However, none of the aforementioned efficiency results can be directly invoked

to cover our LMIS volatility model. For this reason, we now establish the efficiency

bound in this general setting. Our approach is similar to that of Renault et al. (2017)

but with a notable difference, theoretically speaking. That is, instead of targeting a

conditional LAN property, we only establish a LAMN property for the likelihood

ratios. The LAMN property is weaker than the conditional LAN property, but it is

sufficient for establishing the efficiency bound.

Turning to the details, we start by constructing a class of parametric submodels

with a one-dimensional parameter a ∈ (−1,1) whose true value is 0. Let DSd
denote the space of càdlàg functions on [0,T] that take values in the space of

d× d symmetric real-valued matrices; let Id denote the d-dimensional identity

matrix. For each h ∈DSd, we consider a parametric submodel for the observations(
1n
i X
)
1≤i≤[T/1n]

in which the processes (bt)t≥0 and (Jt)t≥0 are observed and the

spot covariance matrix is parametrized as

c(a,h)t =

(
Id +

1

2
actht

)
ct

(
Id +

1

2
actht

)⊤

, (3.6)

where we remind the reader that a is the only unknown parameter in the submodel.

Two remarks on these submodels are in order. First, the “sandwich-form”

parametrization (3.6) is designed to automatically ensure that the spot covariance

matrix c(a,h)t is indeed positive semidefinite, without additional restrictions on

the parameter space. Second, we only need to perturb the volatility path in certain

“directions” of the form ctht for ht symmetrically valued. This apparent restriction

is actually without loss of generality, because it turns out that this restricted class

already contains the least favorable model. We hence impose this restriction a

priori so as to eliminate unnecessary analytical complications.

Unfortunately, we need to make some nontrivial restrictions in order to derive

the LAMN property, which are similar to Renault et al. (2017).
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AssumptionLAMN. (i) The Brownianmotion (Wt)0≤t≤T is independent ofG =

σ((bt,ct,Jt)0≤t≤T); (ii) (λmin (ct)
−1)t≥0 is locally bounded, where λmin (·) denotes

the smallest eigenvalue. �

Assumption LAMN is restrictive because its condition (i) rules out the so-

called leverage effect.17 That said, we stress that we only need this restriction for

computing the efficiency bound, while the limit theorems regarding our estimators

are proved without this restriction. Under this condition, we can write the log

likelihood ratio for each submodel indexed by h ∈ DSd as

Ln(a1
1/2
n ,h)≡ log

dPn(a1
1/2
n ,h)

dP0
n

,

where Pn (a,h) is the G-conditional distribution of
(
1n
i X
)
1≤i≤[T/1n]

under the

model (3.6), and P0
n is the true conditional distribution.

18

We shall show that, for each h ∈ DSd, the corresponding submodel satisfies the

LAMN property at a = 0. That is, for a sequence ξn of random variables and G-

measurable (random) information Ŵ(h), we have




Ln(a1
1/2
n ,h)= aξn (h)−

a2

2
Ŵ(h)+op(1),

(ξn (h),Ŵ (h))
L

−→ (ξ (h),Ŵ (h)),

(3.7)

where, conditionally on G, the limiting variable ξ (h) is centered Gaussian with

varianceŴ(h) and
L

−→ denotes the convergence in law. Given the LAMNproperty,

we can use the conditional convolution theorem ( Jeganathan, 1982, 1983) to

show that the lower efficiency bound for estimating the unknown parameter a in

the submodel for a given h is Ŵ(h)−1, and hence, the corresponding bound for

estimating S (g)=
∫ T
0
g(c(a,h)s)ds is

6(h)≡

(
∂

∂a

[∫ T

0

g(c(a,h)s)ds

]∣∣∣∣
a=0

)2
/

Ŵ(h)

=

(∫ T

0

Tr[cs∂g(cs)cshs]ds

)2
/

Ŵ(h) . (3.8)

From here, we further compute the lower efficiency bound by searching for the

least favorable submodel. Theorem 2, states our main efficiency result in the case

with regular sampling.

17We note that a certain type of leverage effect can be accommodated by Clément et al. (2013), at the cost of ruling

out jumps and long-memory in volatility. Extending Clément et al. (2013) to the more general setting with LMIS

volatility would be interesting, but is also mathematically very challenging, because the approach of Clément et al.

(2013) relies heavily on technical tools from Malliavin calculus. We leave this question to future research.

18Note that the likelihood ratio only depends on the G-conditional distributions because the marginal distribution of

(b,c,J) is canceled in the likelihood ratio.

https://doi.org/10.1017/S0266466620000274 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466620000274


ESTIMATION OF INTEGRATED VOLATILITY FUNCTIONALS 677

THEOREM 2. Under Assumptions H, IS, LM, and LAMN, the following state-

ments hold:

(a) for each h ∈ DSd, the LAMN property (3.7) is satisfied at a= 0 with the
information given by

Ŵ(h)=
1

2

∫ T

0

Tr[cshscshs]ds; (3.9)

(b) the lower efficiency bound for estimating S (g) among all submodels
indexed by h ∈ DSd, that is, suph∈DSd6(h), coincides with V (g) given
by ( 3.5);

(c) the supremum in suph∈DSd6(h) is attained at h∗ = ∂g(c) for every
sample path.

Comments. (i) Part (a) shows that each submodel (indexed by h) satisfies
the LAMN property with random information given by (3.9). By the
conditional convolution theorem, this result justifies 6(h) (recall (3.8))
as the efficiency bound for estimating S (g) in the submodel.19

(ii) Part (b) computes the worst-case efficiency bound among all h ∈ DSd.
Since the bound suph∈DSd6(h) is based on a specific class of submod-
els, it is possible that it is smaller than the true efficiency bound. We
rule out this possibility by verifying that it is sharp; indeed, this bound
coincides with the F -conditional asymptotic variance of Sn (g) given
in Theorem 1. Since Sn (g) does not depend on the information in the
parametric submodel (including the information contained in G), we
conclude, a fortiori , that suph∈DSd6(h)= V (g) is indeed the efficiency
bound and Sn (g) is semiparametrically efficient.

(iii) Part (c) sheds light on the least favorable model. From the definitions
of 6(h) and V (g), it is easy to see that 6(h∗)= V (g). Hence, the least
favorable model is chosen “in a random fashion,” in that it depends on
the realization of the volatility path. This phenomenon has also been
recognized in Renault et al. (2017).

(iv) Finally, we remark on the relationship between Theorem 2 and its coun-
terpart in Renault et al. (2017) (see Thm. 3.2 there) from a theoretical
viewpoint. The key difference between these results is that we derive a
convergence of the G-conditional law of ξn(h) in a weak sense, while
Renault et al. (2017) derive a convergence in a strong sense. More
precisely, in the proof of the LAMN property, we show that

ρ (LG [ξn (h)],LG [ξ (h)])
P

−→ 0, (3.10)

19More precisely, the conditional convolution theorem shows that 6(h) is the efficiency bound in the submodel for

any regular estimator. The regularity of the Sn(g) estimator follows from Lem. 1 of Li et al. (2017).
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where ρ (·,·) denotes Prohorov’s metric (for the weak convergence
of measures) and LG [ · ] denotes the G-conditional law. It is known
that (3.10) implies the G-stable convergence in law of ξn (h) towards
ξ (h), which in turn implies the convergence in (3.7).20 In contrast, the
pathwise argument underlying the conditional LAN setting of Renault
et al. (2017) leads to

ρ (LG [ξn (h)],LG [ξ (h)])
a.s.
−→ 0. (3.11)

Given that (3.10) is much weaker than (3.11), it is not surprising that
we can allow for a more general class of volatility models than Renault
et al. (2017) without resorting to high-level assumptions that might be
difficult to verify.

4. EXTENSION: THE CASE WITH IRREGULAR SAMPLING

In this section, we show that the results above (i.e., Theorems 1 and 2) are robust

with respect to a type of irregular sampling. To proceed, we first need to adapt the

Jacod–Rosenbaum estimator to the case with irregular sampling, and then establish

its asymptotic distribution and semiparametric efficiency under the general LMIS

volatility dynamics. This section presents our theoretical results in themost general

form, which further sets our study apart from prior work (cf. Jacod and Rosenbaum

(2013)).

We start with describing the irregular sampling scheme. We suppose that X is

sampled at random times 0 = t (n,0) < t (n,1) < · · · within the fixed time span

[0,T].21 The return and the time span for the ith sampling interval are now given

by, respectively,

1n
i X ≡ Xt(n,i)−Xt(n,i−1), 1n,i ≡ t (n,i)− t (n,i−1) .

The number of returns observed before time t is denoted by Nn,t ≡
∑

i≥1 1{t(n,i)≤t}.

Below, we denote byHt the smallest filtration that contains Ft and with respect to

which {t (n,i) : i≥ 1} are stopping times.We also denote by T the σ -field generated

by these sampling times. We impose the following regularity condition on the

sampling scheme, which is inspired by the recent work of Jacod et al. (2017, 2019).

Under irregular sampling,1n no longer denotes “the” sampling duration, but only

serves as an asymptotic device, which can be understood as an average measure of

sampling durations.

20See, for example, Prop. 5 of Barndorff-Nielsen et al. (2008).

21We implicitly assume that individual assets are sampled at the same times. Hence, with nonsynchronous data, we

need to sample the data sparsely so as to “align” the sampling times and mitigate the Epps effect in the estimation

of the spot covariance matrix. Note that sparse sampling is also needed here to mitigate the effect of microstructure

noise. The issues with noise and asynchronicity are more relevant for studying ultra high frequency data, which is

beyond the scope of the current paper. See Zhang, Mykland, and Aït-Sahalia (2005) and Zhang (2011) for additional

discussions on these issues.
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Assumption IR. For a strictly positive continuous adapted process 3 and a

sequence (Tm)m≥1 of stopping times increasing to infinity, the following conditions

hold: (i) for each i ≥ 1 , 1n,i is, conditionally on Ht(n,i−1) , independent of FT ;

(ii) in restriction to the set {t (n,i−1) < Tm},
∣∣E
[
1n,i3t(n,i−1)|Ht(n,i−1)

]
−1n

∣∣ ≤
Km,11nκn and E[1

q

n,i|Ht(n,i−1)] ≤ Km,q1
q
n for all q > 0, where (Km,q)m≥1,q>0 are

constants and the sequence κn = o(1); (iii) Nn,T = Op

(
1−1
n

)
. �

This assumption accommodates time-changed regular sampling and Poisson-

type sampling; see the examples in Jacod, Li, and Zheng (2017) for additional

details. The process 3 in Assumption IR can be interpreted as the sampling

intensity. Indeed, it can be shown that 1nN
n
t

P
−→

∫ t
0
3sds locally uniformly in t.

Note that we can scale both 1n and 3 by the same multiplicative factor, which

does not affect the applicability of the asymptotic result. Assumption IR allows

the sampling intensity 3 to be dependent on the underlying processes. That said,

condition (i) imposes a type of exogeneity on the sampling time; namely, given the

current information, the next sampling time is independent of the future behavior

of the underlying processes. Condition (ii) amounts to saying that1n,i is expected

to be approximately inversely proportional to the sampling intensity 3t(n,i−1).

The estimator Sn(g) in (3.3) can be naturally adapted with respect to the irregular

sampling scheme as follows:

S′
n(g)≡

Nn,T−kn∑

i=0

(
g(ĉt(n,i))−

1

kn
Bg
(
ĉt(n,i)

))
1n,i+1, (4.1)

where the spot covariance matrix at time t (n,i) is now estimated by

ĉt(n,i) ≡
1

kn

kn∑

j=1

(
1n
i+jX

)(
1n
i+jX

)⊤

1n
i+j

1{||1ni+jX||≤un,i+j}, (4.2)

with the tuning parameters satisfying

kn ≍1−γ
n , un,i ≍1̟

n,i. (4.3)

Theorems 3 and 4, extend results in the previous section to the settingwith irregular

sampling. For these results to hold, we need to modify Assumptions LM and

LAMN so as to accommodate random sampling times:

Assumption LM’. For some constant ǫ ∈ (0,1/2], a sequence (Tm)m≥1 of stop-

ping times that increases to infinity and a sequence (Km)m≥1 of positive constants,

the following holds: for t,s ∈ [0,T], E[
∥∥σ2,t∧Tm −σ2,s∧Tm

∥∥2 |T ] ≤ Km |t− s|1+2ǫ .

�

Assumption LAMN’. Assumption LAMN holds with G given by the σ -field

generated by (b,c,J) and T . �
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THEOREM 3. Suppose Assumptions H, C, IS, IR, LM′ and the tuning

parameters in (4.3) satisfy (3.4). Then, the sequence of variables 1
−1/2
n (S′

n(g)−

S(g)) converges stably in law to a mixed centered Gaussian distribution with

F-conditional variance V ′ (g) given by

V ′(g)≡ 2

∫ T

0

(Tr[cs∂g(cs)cs∂g(cs)]/3s)ds. (4.4)

THEOREM 4. Under Assumptions H, IS, IR, LM′, and LAMN′, the following

statements hold:

(a) for each h ∈ DSd, the LAMN property (3.7) is satisfied at a= 0 with the
information given by

Ŵ(h)=
1

2

∫ T

0

Tr[cshscshs]3sds; (4.5)

(b) the lower efficiency bound for estimating S (g) among all submodels
indexed by h ∈ DSd, that is, suph∈DSd6(h), coincides with V

′ (g) given
by (4.4);

(c) the supremum in suph∈DSd6(h) is attained at h
∗ = ∂g(c)/3 for every

sample path.

Comments. (i) Theorem 3 establishes the asymptotic distribution of
the estimator given by (4.1). Under irregular sampling, the asymp-
totic variance of this estimator depends inversely on the sampling
intensity 3.

(ii) Theorem 4 shows that the parametric submodels satisfy the LAMN
property, and the lower efficiency bound among them coincides with
the asymptotic variance of our estimator. Hence, the estimator given by
(4.1) is semiparametrically efficient.

(iii) Renault et al. (2017) first established the efficiency bound in the scalar
case (see (3.18) there), which is the same as ours; we have extended
the validity of this bound for the general LMIS volatility dynamics
using a different theoretical approach. In addition, we show that this
efficiency bound is sharp, as it is attained by the estimator S′

n (g). This
result verifies the conjecture of Renault et al. (2017), which is based
on a “near efficiency” statement in a sequential asymptotic embedding.
Our asymptotic result, in contrast, is derived in the usual asymptotic
setting where tuning parameters change simultaneously with the sample
size. Importantly, we note that our estimator is different from that
in Renault et al. (2017), which is based on the kernel estimator of
Kristensen (2010). The latter estimator does not involve bias-correction
and requires the volatility process to have differentiable paths. Our bias-
corrected estimator is valid for the general LMIS stochastic volatility
dynamics without the (restrictive) differentiability assumption.
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5. MONTE CARLO EXPERIMENTS

In this section, we examine the finite-sample performance of the asymptotic theory

in Monte Carlo experiments. We simulate the log price process X and its volatility

process σ according to the following:

dXt = σtdWt +dJXt , σt = σ1,t +σ2,t,

where the jump component JX is simulated as a compensated compound Poisson

process withN (−0.01,0.022) distributed jump size and intensity λ= 36 per year.

The Itô semimartingale volatility component σ1,t is generated by

σ1,t = exp(−1.6+Ft), dFt = −5Ftdt+2dW̃t +dJFt .

Here, W̃ is another standard Brownian motion satisfying E[dWtdW̃t] = −0.75dt,

which captures the so-called “leverage effect.” The volatility jump process JF is

simulated as a compound Poisson process with the same jump arrivals as JX , but

with jump sizes exponentially distributed with mean 0.3, and hence, features price-

volatility co-jumps. The long-memory volatility component σ2 is simulated from

the fractional stochastic volatility model studied by Comte and Renault (1998) as

follows (see eqn. (2.1) of that paper):

σ2,t = exp(−2.5+κt), dκt = −κtdt+0.5dWǫ
t , (5.1)

where Wǫ is a fractional Brownian motion with Hurst index ǫ+1/2. To examine

the effect of the memory parameter ǫ on the estimator’s performance, we consider

ǫ ∈ {0.1,0.25,0.3,0.4}. Note that our theory relies on the (sufficient) condition

ǫ > 1/4. But it is nevertheless interesting to examine the finite-sample behavior of

the estimator when this condition does not hold (i.e., when ǫ = 0.1 or 0.25).

We consider two sampling frequencies: 1n = 1 or 5 min. To examine the

robustness of the estimator with respect to the choice of local window size kn, we

consider kn ∈ {40,80,120} in the 1-min case, and kn ∈ {15,30,45} in the 5-min case.

Note that in both cases, the largest value of kn is three times of the smallest value,

which provides a fairly large perturbation for the purpose of checking robustness.

Following Bollerslev and Todorov (2011), we set the truncation threshold un on

each day t adaptively as

un = 3.5×
√
BVt ×1

0.49
n ,

where BVt is the day-t bipower variation (Barndorff-Nielsen and Shephard,

2004b). The sample span is fixed at T = 21 days and the total number of Monte

Carlo trials is 1,000.

We consider the estimation of integrated quarticity
∫ t
0
σ 4
t ds, which corresponds

to g(c)= c2. In this case, the bias-corrected estimator Sn (g) has the form

Sn (g)=

(
1−

2

kn

)
1n

[T/1n]−kn∑

i=0

ĉ2i1n .
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Table 1. Monte Carlo results.

Bias RMSE 90% 95% Bias RMSE 90% 95%

Panel A:1n= 1 min

ǫ = 0.1 ǫ = 0.25

kn = 40 −0.89 3.50 93.1 96.0 −0.79 3.16 92.9 97.3

kn = 80 −0.81 3.50 90.8 95.4 −0.68 3.16 91.0 96.0

kn = 120 −0.89 3.51 89.9 94.5 −0.73 3.17 89.1 95.3

ǫ = 0.3 ǫ = 0.4

kn = 40 −0.90 3.17 92.5 95.9 −0.45 3.29 93.1 96.8

kn = 80 −0.80 3.13 90.7 94.2 −0.38 3.29 91.0 95.8

kn = 120 −0.84 3.14 89.6 93.8 −0.45 3.29 89.7 95.2

Panel B:1n= 5 min

ǫ = 0.1 ǫ = 0.25

kn = 15 −2.36 8.20 94.2 96.9 −1.53 7.39 96.6 98.3

kn = 30 −1.14 7.96 91.7 95.1 −0.45 7.11 93.2 96.9

kn = 45 −1.07 7.89 89.9 93.7 −0.41 7.01 91.3 95.9

ǫ = 0.3 ǫ = 0.4

kn = 15 −2.83 7.39 94.5 97.0 −1.95 7.37 95.3 97.6

kn = 30 −1.70 7.20 91.7 94.9 −0.84 7.29 91.8 95.9

kn = 45 −1.69 7.19 89.5 94.0 −0.80 7.18 90.7 94.8

Note: This table summarizes the performance of the S∗
n estimator for integrated quarticity in the Monte

Carlo simulation. Panel A (resp. B) reports results for sampling frequency 1n = 1 min (resp. 5 min).
We consider different values of the memory parameter ǫ and local window size kn. Bias and root
mean-square-error (RSME) are in percentages, normalized by the true value of the estimand in each
Monte Carlo trial. The columns labeled 90% and 95% report the coverage rates of the corresponding
confidence intervals in percentages.

Following the suggestion from Jacod and Rosenbaum (2013), we further imple-

ment a finite-sample adjustment for the boundary effect by using

S∗
n = Sn (g)+

kn1n

2

(
ĉ20 + ĉ2[T/1n]−kn

)
. (5.2)

Note that the boundary-effect adjustment is of order Op(kn1n) = op(1
1/2
n ), and

hence, S∗
n has the same asymptotic behavior as that of Sn (g). We focus on S∗

n in the

subsequent numerical work. The asymptotic variance of this estimator is 8
∫ T
0
σ 8
s ds,

which can be consistently estimated by 81n

∑[T/1n]−kn
i=0 ĉ4i1n .

Table 1 presents the simulation results. Panel A of the table reports the results

for 1-min sampling, including the bias, root mean-square-error (RMSE), and

coverage rates of 90% and 95% level confidence intervals. In all cases, the biases

(in relative percentage term with respect to the true value) are close to zero,
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with their magnitudes being less than 1%. From the RMSE column, we also

see that the estimator is reasonably accurate. In addition, the coverage rates of

the confidence intervals are close to their nominal levels. We are particularly

interested in whether the estimator’s performance is robust to the choice of kn,

and the findings seem satisfactory. It is also interesting to note that, although our

theory requires “sufficiently long memory (i.e., ǫ > 1/4),” the estimator and the

associated confidence interval performwell when ǫ= 0.1. That said, we do observe

notably larger RMSEs in this case than the other cases with smoother long-memory

components. The results in the case with 5-min sampling are qualitatively similar,

but with larger bias and RMSE, which are expected for the smaller sample size.

6. CONCLUDING REMARKS

This paper establishes the stable convergence in law for the Jacod–Rosenbaum

estimator of integrated volatility functionals under the general LMIS setting in

which the stochastic volatility process contains both Itô semimartingale and long-

memory components, whereas existing results only accommodate the former.

Under additional sufficient conditions for the LAMN property, we show that the

estimator attains the semiparametric efficiency bound under the LMIS volatility

model. More general results under random sampling are also developed. For future

work, our techniques may be used to extend related theories on integrated volatility

functionals (e.g., alternative bias-correction methods, bootstrap inference, and

empirical-process theory for a continuum of integrated functionals) to the setting

with general LMIS volatility dynamics. Establishing the semiparametric efficiency

bound under less restrictive conditions is also an important open question for the

study of efficiency in the infill high-frequency setting.
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APPENDIX

In this appendix, we prove the results in the main text. Since the results with regular

sampling (Theorems 1 and 2) are special cases of those under irregular sampling, with

1n,i =1n and 3t = 1 identically, we only need to prove Theorems 3 and 4.

A.1 Notation and Preliminary Estimates

We start by introducing and recalling some notations. For a generic matrix A, we denote by

Aij its (i,j) element. Recall thatHt is the smallest filtration containingFt and with respect to

which each t (n,i) is a stopping time, and that T is the σ -field generated by {t (n,i) : i≥ 0}.

As shown by Lem. A.1 of Jacod et al. (2017), the semimartingale structure of X and σ1
are preserved with respect to the extension from (Ft) to (Ht). We also consider a filtration

H′
t(n,i)

that is generated by Ht(n,i) and the variable 1n,i+1. For notational simplicity, we

write E
n
i [ · ], E

′n
i [ · ], ET [ · ] and

∑
i in place of E[ · |Ht(n,i)], E[ · |H

′
t(n,i)

], E[ · |T ] and
∑Nn,T−kn

i=0 , respectively. Below, we useK to denote a generic constant that may change from

line to line; we sometimes emphasize the dependence of this constant on some parameter q

by writing Kq.

By a standard localization procedure (see Sect. 4.4.1 in Jacod and Protter, 2012), we can

strengthen Assumptions H, C, IS, IR, LM′, and LAMN′ without loss of generality by further

assuming the following for all m ≥ 1: (i) Tm = ∞; (ii) Jm(·) = J1(·); (iii) Km = K1 and

Km,q = K1,q for all q> 0; (iv)Km =K1; (v) the processes b, σ1, σ2, b
(σ1), σ (σ1), q,3 and

3−1 are bounded; (vi) λmin (ct) is bounded away from 0 in Assumption LAMN′. In the

proofs, below, it is understood that the strong versions of these assumptions are invoked.

We further introduce some quantities that are useful in the proofs. We denote the

continuous part of X by

X′
t ≡

∫ t

0
bsds+

∫ t

0
σsdWs,

and complement the definition in (4.2) with

ĉ′t(n,i) ≡
1

kn

kn∑

j=1

1ni+jX
′1ni+jX

′⊤

1n,i+j
.

We then set




αn,i ≡
1ni X

′1ni X
′⊤

1n,i
− ct(n,i−1),

c̃n,i ≡ ĉ′t(n,i)− ct(n,i) =
1

kn

kn∑

j=1

(αn,i+j+ (ct(n,i+j−1)− ct(n,i))).

(A.1)

For any process Z, we define ηt,s(Z)≡ supv∈(0,s] ||Zt+v−Zt||
2 and

ηni,j(Z)≡
√
E
n
i−1

[
ηt(n,i−1),t(n,i+j−1)−t(n,i−1)(Z)

]
, ηni (Z)≡ ηni,kn

(Z),

η′n
i,j(Z)≡

√
E

′n
i−1

[
ηt(n,i−1),t(n,i+j−1)−t(n,i−1)(Z)

]
.
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Define the spot covariation of the continuous martingale parts of X and σ1 and that for X

and c1, respectively, as

(
c
(X,σ1)
t

)ijk
=

d∑

l=1

σ ilt

(
σ
(σ1)
t

)jkl
,

(
c
(X,c1)
t

)ijk
=

d∑

l=1

σ ilt

(
σ
(c1)
t

)jkl
.

Note that both c(X,σ1) and c(X,c1) are càdlàg adapted. Below, we often use the following

elementary identity for the increment of the process c: for s> t (the order of the two times

is crucial),

cs− ct = c1,s− c1,t+ c2,s− c2,t

+
(
σ2,s−σ2,t

)
σ⊤
1,s+σ1,s

(
σ2,s−σ2,t

)⊤

+
(
σ1,s−σ1,t

)
σ⊤
2,t+σ2,t

(
σ1,s−σ1,t

)⊤
,

(A.2)

where cj,t = σj,tσ
⊤
j,t for j = 1,2. We now collect some preliminary estimates that are used

in the sequel.

LEMMA 1. Under (the strengthened versions of) Assumptions H, C, IS, IR, LM′, the

following inequalities hold for p≥ 0:

(a) for each i≥ 0, u≥ 1, and q≥ 0,

E
n
i−1

[∥∥σ1,t(n,i+u−1)−σ1,t(n,i−1)

∥∥q1p
n,i

]
≤ Kp,q(u1n)

(q∧2)/21p
n,

E
n
i−1

[∥∥αn,i
∥∥q]≤ Kq,

E

[∥∥σ2,t(n,i+u−1)−σ2,t(n,i−1)

∥∥q1p
n,i

]
≤ Kp,q (u1n)

(q∧2)(1/2+ǫ)1p
n,

E

[∥∥ct(n,i+u−1)− ct(n,i−1)

∥∥q1p
n,i

]
≤ Kp,q(u1n)

(q∧2)/21p
n;

(b) we have

∥∥E′n
i−1

[
αn,i

]∥∥≤ K1n,i+1
1/2
n,i η

′n
i,1(b)+KE′n

i−1

[
1−1
n,i

∫ t(n,i)

t(n,i−1)

||σ2,s−σ2,t(n,i−1)||ds

]
;

(c) for any q≥ 1, 1 ≤ u≤ kn,

E

[∥∥E′n
i+u−1

[
αn,i+u

]∥∥q1p
n,i+1

]
≤ Kp,q1

(q/2)+p
n +Kp,q1

(q∧2)(1/2+ǫ)+p
n ,

E

∣∣∣E′n
i+u−1[α

lm
n,i+u]1n,i+1

∣∣∣≤ K13/2
n

(
11/2
n +E

[
ηni+1 (b)

]
+1ǫn

)
;

(d) for any q≥ 1,

E

[∥∥c̃n,i
∥∥q1p

n,i+1

]
≤ Kp,q1

p
n(k

−q/2
n + (kn1n)

(q∧2)/2);

(e) for any u≥ 1,

E

∣∣∣E′n
i+u−1

[(
α
jk
n,i+uα

lm
n,i+u− (c

jl
t(n,i+u−1)c

km
t(n,i+u−1)+ c

jm
t(n,i+u−1)c

kl
t(n,i+u−1))

)
1
p
n,i+1

]∣∣∣

≤ Kp1
(1/2)+p
n .
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Proof. (a) When u= 1 and q= 2, the first assertion holds because

E
n
i−1

[∥∥σ1,t(n,i)−σ1,t(n,i−1)

∥∥21p
n,i

]

= KEni−1

[
E

′n
i−1

[∥∥σ1,t(n,i)−σ1,t(n,i−1)

∥∥2
]
1
p
n,i

]

≤ KEni−1

[
1

1+p
n,i

]
≤ Kp1

1+p
n ,

(A.3)

where the first equality is by repeated conditioning; the first inequality is obtained

by using a standard estimate for Itô semimartingales, recognizing that 1n,i is

independent of FT conditional onHt(n,i−1); the second inequality is by Assumption

IR. When u> 1, we observe

E
n
i−1

[∥∥σ1,t(n,i+u−1)−σ1,t(n,i−1)

∥∥21p
n,i

]

≤ KEni−1

[
1
p
n,iE

n
i

[∥∥σ1,t(n,i+u−1)−σ1,t(n,i)
∥∥2
]]

+KEni−1

[∥∥σ1,t(n,i)−σ1,t(n,i−1)

∥∥21p
n,i

]

≤ Ku11+p
n ,

(A.4)

where the first inequality is by the Cr inequality and repeated conditioning; the sec-

ond inequality is derived by using the Itô semimartingale property of σ1, Assumption

IR and (A.3). Hence, the first assertion holds for q= 2. When q 6= 2, note that since

σ1 is bounded,

E
n
i−1

[∥∥σ1,t(n,i+u−1)−σ1,t(n,i−1)

∥∥q1p
n,i

]

≤ KqE
n
i−1

[∥∥σ1,t(n,i+u−1)−σ1,t(n,i−1)

∥∥q∧21p
n,i

]
.

The first assertion for a general choice of q can be obtained by first applying (A.4)

with p replaced with 2p/(q∧ 2) and then using Jensen’s inequality. The second

assertion of part (a) can be proved in a very similar (actually simpler) way.

Turning to the third assertion, we note that,

ET

[∥∥σ2,t(n,i+u−1)−σ2,t(n,i−1)

∥∥2
]

≤ K (t (n,i+u−1)− t (n,i−1))1+2ǫ

≤ K



u−1∑

j=1

1n,i+j




1+2ǫ

+K11+2ǫ
n,i

≤ K (u−1)2ǫ
u−1∑

j=1

11+2ǫ
n,i+j +K11+2ǫ

n,i ,
(A.5)

where the first inequality is by Assumption LM′, the second inequality is by the Cr
inequality and the third inequality is by Hölder’s inequality. Therefore,

E

[∥∥σ2,t(n,i+u−1)−σ2,t(n,i−1)

∥∥21p
n,i

]

≤ K (u−1)2ǫ E



u−1∑

j=1

E
n
i+j−1

[
11+2ǫ
n,i+j

]
1
p
n,i


+KE

[
1

1+2ǫ+p
n,i

]

≤ Kp
(
(u−1)1+2ǫ +1

)
1

1+2ǫ+p
n

≤ Kp (u1n)
1+2ǫ1p

n,

where the first inequality follows from (A.5) and repeated conditioning; the second

inequality is by Assumption IR; the third inequality is obvious. This finishes the
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proof of the third assertion of part (a) when q = 2. By the boundedness of σ2 and

Jensen’s inequality, we can further prove the case with a general q. The fourth

assertion follows readily from the first and the third assertions.

(b) By Itô’s formula, α
jm
n,i ≡ (1n

i X
′j1n

i X
′m)/1n,i− c

jm
t(n,i−1) = A

jm
n,i+B

jm
n,i+Rn,i, where

A
jm
n,i ≡ b

j
t(n,i−1)1

−1
n,i

∫ t(n,i)

t(n,i−1)

(X′m
s −X′m

t(n,i−1))ds

+bmt(n,i−1)1
−1
n,i

∫ t(n,i)

t(n,i−1)

(X′j
s −X

′j
t(n,i−1))ds

+1−1
n,i

∫ t(n,i)

t(n,i−1)

(X′m
s −X′m

t(n,i−1))(b
j
s−b

j
t(n,i−1))ds

+1−1
n,i

∫ t(n,i)

t(n,i−1)

(X′j
s −X

′j
t(n,i−1))(b

m
s −bmt(n,i−1))ds,

(A.6)

Bn,i ≡ 1−1
n,i

∫ t(n,i)
t(n,i−1)

(cs − ct(n,i−1))ds and the remaining term Rn,i is a martingale

component that satisfies E′n
i−1[Rn,i] = 0 (the latter can be derived under Assumption

IR).

Since 1n,i is independent of FT conditional on Ht(n,i−1), we deduce that

∣∣∣∣∣E
′n
i−1

[
1−1
n,i

∫ t(n,i)

t(n,i−1)

(X′m
s −X′m

t(n,i−1))ds

]∣∣∣∣∣≤ K1n,i (A.7)

by using the fact that X′ is an Itô semimartingale. In addition, we observe that

∣∣∣∣∣E
′n
i−1

[
1−1
n,i

∫ t(n,i)

t(n,i−1)

(X′m
s −X′m

t(n,i−1))(b
j
s−b

j
t(n,i−1))ds

]∣∣∣∣∣

≤

(
E

′n
i−1

[
1−1
n,i

∫ t(n,i)

t(n,i−1)

(X′m
s −X′m

t(n,i−1))
2ds

])1/2

×

(
E

′n
i−1

[
1−1
n,i

∫ t(n,i)

t(n,i−1)

(bjs−b
j
t(n,i−1))

2ds

])1/2

≤ K1
1/2
n,i η

′n
i,1(b),

(A.8)

where the first inequality is by the Cauchy–Schwarz inequality; the second inequality

holds because of Assumption IR, the standard estimate E
′n
i−1[(X

′m
s −X′m

t(n,i−1))
2] ≤

K(s− t (n,i−1)) and the definition of η′n
i,1 (b). From (A.6), (A.7 ), and (A.8), we

deduce that
∥∥E′n

i−1

[
An,i

]∥∥≤ K1
1/2
n,i η

′n
i,1(b)+K1n,i.

To show the assertion of part (b), it remains to show that

∥∥E′n
i−1[Bn,i]

∥∥≤ K1n,i+KE′n
i−1

[
1−1
n,i

∫ t(n,i)

t(n,i−1)

||σ2,s−σ2,t(n,i−1)||ds

]
. (A.9)
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In view of (A.2), we can decompose Bn,i =
∑6

k=1Bk,n,i where




B1,n,i ≡1−1
n,i

∫ t(n,i)

t(n,i−1)

(c1,s− c1,t(n,i−1))ds, B2,n,i ≡1−1
n,i

∫ t(n,i)

t(n,i−1)

(c2,s− c2,t(n,i−1))ds,

B3,n,i ≡1−1
n,i

∫ t(n,i)

t(n,i−1)

(σ2,s−σ2,t(n,i−1))σ
⊤
1,sds, B4,n,i ≡ B⊤

3,n,i,

B5,n,i ≡1−1
n,i

∫ t(n,i)

t(n,i−1)

(σ1,s−σ1,t(n,i−1))σ
⊤
2,t(n,i−1)ds, B6,n,i ≡ B⊤

5,n,i.

Since the process c1 is an Itô semimartingale, ‖E′n
i−1[B1,n,i]‖ ≤K1n,i by an argument

that is similar to (A.7). Similarly, noting that σ2,t(n,i−1) is bounded and Ht(n,i−1) -

measurable, we deduce ‖E′n
i−1[(B5,n,i+B6,n,i)]‖ ≤ K1n,i. In addition, we note that

‖c2,s− c2,t(n,i−1)‖ ≤ K‖σ2,s−σ2,t(n,i−1)‖, which further implies

∥∥E′n
i−1[B2,n,i]

∥∥≤ KE′n
i−1

[
1−1
n,i

∫ t(n,i)

t(n,i−1)

||σ2,s−σ2,t(n,i−1)||ds

]
.

Similarly, we can show that ‖E′n
i−1[Bk,n,i]‖ is bounded by the majorant side of the

above display for k = 3 and 4. Combining the above estimates, we obtain (A.9 ) as

wanted.

(c) Note that η′n
i,1(b) is uniformly bounded. By part (b), the Cr inequality and Jensen’s

inequality,

∥∥E′n
i+u−1

[
αn,i+u

]∥∥q ≤ Kq1
q/2
n,i+u

+KqE
′n
i+u−1

[
1−1
n,i+u

∫ t(n,i+u)

t(n,i+u−1)

||σ2,s−σ2,t(n,i+u−1)||
qds

]
.

Hence,

E

[∥∥E′n
i+u−1[αn,i+u]

∥∥q1p
n,i+1

]

≤ Kp,q1
(q/2)+p
n +KqE

[
1
p
n,i+11

−1
n,i+u

∫ t(n,i+u)

t(n,i+u−1)

||σ2,s−σ2,t(n,i+u−1)||
qds

]

≤ Kp,q1
(q/2)+p
n +Kp,q1

(q∧2)(1/2+ǫ)+p
n ,

where the second inequality is derived using arguments similar to the proof of the

third inequality of part (a).

The second claim can be proved as follows:

E

∣∣∣E′n
i+u−1[α

lm
n,i+u]1n,i+1

∣∣∣
≤ K12

n+KE
[
1

1/2
n,i+u1n,i+1η

′n
i+u,1 (b)

]

+KE

[
1n,i+11

−1
n,i+u

∫ t(n,i+u)

t(n,i+u−1)

||σ2,s−σ2,t(n,i+u−1)||ds

]

≤ K12
n+K13/2

n E

[√
E
n
i

[(
η′n
i+u,1 (b)

)2]
]

+K13/2+ǫ
n

≤ K12
n+K13/2

n E
[
ηni+1 (b)

]
+K13/2+ǫ

n ,

where the first inequality is by Lemma 1(b) and Assumption IR; the second

inequality is by the Cauchy–Schwarz inequality and Assumption LM′; the last

inequality follows from the definition of ηni+1 (b).
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(d) From the definition of c̃n,i in (A.1), we deduce

E

[∥∥c̃n,i
∥∥q1p

n,i+1

]
≤ KqE



∥∥∥∥∥∥
1

kn

kn∑

j=1

(ct(n,i+j−1)− ct(n,i))

∥∥∥∥∥∥

q

1
p
n,i+1




+KqE



∥∥∥∥∥∥
1

kn

kn∑

j=1

αn,i+j

∥∥∥∥∥∥

q

1
p
n,i+1


 . (A.10)

The first term on the right-hand side of (A.10) can be bounded by

KqE


 1

kn

kn∑

j=1

∥∥(ct(n,i+j−1)− ct(n,i)
∥∥q1p

n,i+1


 (A.11)

by Jensen’s inequality. By Lemma 1(a) and the triangle inequality, this term can be

further bounded by Kp,q (kn1n)
(q∧2)/21

p
n.

Turning to the second term on the right-hand side of (A.10), we first note that

E



∥∥∥∥∥∥
1

kn

kn∑

j=1

αn,i+j

∥∥∥∥∥∥

q

1
p
n,i+1


≤ KqE

[∥∥A1,n,i
∥∥q1p

n,i+1

]
+KqE

[∥∥A2,n,i
∥∥q1p

n,i+1

]
,

(A.12)

where

A1,n,i ≡
1

kn

kn∑

j=1

(
αn,i+j−E

′n
i+j−1

[
αn,i+j

])
, A2,n,i ≡

1

kn

kn∑

j=1

E
′n
i+j−1

[
αn,i+j

]
.

Since A1,n,i is an average of martingale differences, by the Burkholder–Davis–

Gundy inequality, Jensen’s inequality, and the estimate E[‖αn,i+j‖
2q] ≤ Kq (see

Lemma 1(a)), we deduce E[‖A1,n,i‖
2q] ≤ Kqk

−q
n . Then, by the Cauchy–Schwarz

inequality and Assumption IR,

E

[∥∥A1,n,i
∥∥q1p

n,i+1

]
≤ Kp,qk

−q/2
n 1p

n.

Furthermore, by Jensen’s inequality and part (c) (with the latter applied with p= 0),

E

[∥∥A2,n,i
∥∥q1p

n,i+1

]
≤ Kqk

−1
n

kn∑

j=1

E

[∥∥∥E′n
i+j−1

[
αn,i+j

]∥∥∥
q
1
p
n,i+1

]

≤ Kp,q1
p
n

(
1q/2
n +1(1/2+ǫ)(q∧2)n

)
≤ Kp,q1

p
n (kn1n)

(q∧2)/2 .

The assertion of part (d) then readily follows from these estimates.
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(e) Recall that αn,i =
(
1n
i X

′1n
i X

′⊤
)
/1n,i − ct(n,i−1). Some straightforward algebra

yields

α
jk
n,iα

lm
n,i−

(
c
jl
t(n,i−1)c

km
t(n,i−1)+ c

jm
t(n,i−1)c

kl
t(n,i−1)

)

=1n
i X

′j1n
i X

′k1n
i X

′l1n
i X

′m/12
n,i

−
(
c
jk
t(n,i−1)c

lm
t(n,i−1)+ c

jl
t(n,i−1)c

km
t(n,i−1)+ c

jm
t(n,i−1)c

kl
t(n,i−1)

)

−α
jk
n,ic

lm
t(n,i−1)−α

lm
n,ic

jk
t(n,i−1).

Following steps similar to Lem. 4.1 of Jacod and Rosenbaum (2013) and using

Lemma 1(a), we deduce that

E

∣∣∣E′n
i−1[(1

n
i X

′j1n
i X

′k1n
i X

′l1n
i X

′m/12
n,i− (c

jk
t(n,i−1)c

lm
t(n,i−1)

+c
jl
t(n,i−1)c

km
t(n,i−1)+ c

jm
t(n,i−1)c

kl
t(n,i−1)))1

p
n,i−u+1]

∣∣∣≤ K1(1/2)+pn .

By part (c) with q= 1,

E

∣∣∣E′n
i−1

[(
α
jk
n,ic

lm
t(n,i−1)+α

lm
n,ic

jk
t(n,i−1)

)
1
p
n,i−u+1

]∣∣∣≤ Kp1
(1/2)+p
n .

The assertion of part (e) then readily follows these estimates.

A.2 Proofs of Theorem 1 and Theorem 3

We now prove Theorems 1 and 3. Since the former is a special case of the latter (with

1n,i =1n and 3t = 1 identically), we only need to prove the latter. The proof relies on a

technical calculation, which we single out as Lemma 2. This lemma generalizes Lem. 4.3 of

Jacod and Rosenbaum, 2013 in the current setting with general LMIS volatility dynamics

and irregular sampling.

LEMMA 2. Under the conditions of Theorem 3(a),

E

∣∣∣∣E
n
i

[(
c̃
jk
n,ic̃

lm
n,i−

1

kn

(
c
jl
t(n,i)

ckmt(n,i)+ c
jm
t(n,i)

cklt(n,i)

))
1n,i+1

]∣∣∣∣
≤ K1

3/2
n

(
k
−1/2
n + kn1

1/2
n + k

1/2+ǫ
n 1ǫn+E

[
ηni+1

])
,

where ηni ≡ ηni (b)+η
n
i (c

(X,c1))+ηni (c
(X,σ1)).

Proof. Step 1. We outline the proof in this step, while leaving some technical estimates

in step 2 and step 3 below. For notational simplicity, we denote ξni ≡ c
jl
t(n,i−1)

ckm
t(n,i−1)

+

c
jm
t(n,i−1)

ckl
t(n,i−1)

and ζ ni,u ≡ αn,i+u+ (ct(n,i+u−1)− ct(n,i)), so we can rewrite

c̃n,i =
1

kn

kn∑

u=1

ζ ni,u.
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We consider the decomposition (c̃
jk
n,ic̃

lm
n,i − k−1

n (c
jl
t(n,i)

ckm
t(n,i)

+ c
jm
t(n,i)

ckl
t(n,i)

))1n,i+1 =

An,i+Bn,i+B′
n,i, where





An,i ≡


 1

k2n

kn∑

u=1

ζ
n,jk
i,u ζ

n,lm
i,u −

1

kn
ξni+1


1n,i+1,

Bn,i ≡
1n,i+1

k2n

kn−1∑

u=1

kn∑

v=u+1

ζ
n,lm
i,u ζ

n,jk
i,v , B′

n,i ≡
1n,i+1

k2n

kn−1∑

u=1

kn∑

v=u+1

ζ
n,jk
i,u ζ

n,lm
i,v .

(A.13)

We first consider An,i. Note that
∣∣∣ζ n,jki,u ζ

n,lm
i,u −α

jk
n,i+uα

lm
n,i+u

∣∣∣≤K
∥∥αn,i+u

∥∥∥∥ct(n,i+u−1)− ct(n,i)
∥∥+K

∥∥ct(n,i+u−1)− ct(n,i)
∥∥2 .

Hence, by the triangle inequality and the estimates in Lemma 1(a),

E

∣∣∣∣∣∣
E
n
i


An,i−


 1

k2n

kn∑

u=1

α
jk
n,i+uα

lm
n,i+u−

1

kn
ξni+1


1n,i+1



∣∣∣∣∣∣

≤
K

k2n

kn∑

u=1

E

[∥∥αn,i+u
∥∥∥∥ct(n,i+u−1)− ct(n,i)

∥∥1n,i+1 +
∥∥ct(n,i+u−1)− ct(n,i)

∥∥21n,i+1

]

≤ K1
3/2
n /k

1/2
n ,

(A.14)

and

E

∣∣∣∣∣∣
E
n
i




 1

k2n

kn∑

u=1

ξni+u−
1

kn
ξni+1


1n,i+1



∣∣∣∣∣∣

≤
1

k2n

kn∑

u=1

E

[∣∣∣ξni+u− ξni+1

∣∣∣1n,i+1

]
≤ K1

3/2
n /k

1/2
n . (A.15)

By the triangle inequality, Lemma 1(e) and the fact that the conditional expectation operator

is a contraction, we have

E

∣∣∣∣∣∣
E
n
i


 1

k2n

kn∑

u=1

(
α
jk
n,i+uα

lm
n,i+u− ξni+u

)
1n,i+1



∣∣∣∣∣∣
≤ K1

3/2
n /kn. (A.16)

From (A.14), (A.15), and (A.16), we deduce

E
∣∣Eni

[
An,i

]∣∣≤ K1
3/2
n /k

1/2
n .

In view of the symmetry between Bn,i and B
′
n,i defined in (A.13), it remains to show that

E
∣∣Eni

[
Bn,i

]∣∣≤ K1
3/2
n

(
kn1

1/2
n + k

1/2+ǫ
n 1ǫn+E

[
ηni+1

])
. (A.17)

To do so, we first decompose, for 1 ≤ u< v≤ kn,

E
n
i

[
ζ
n,lm
i,u ζ

n,jk
i,v 1n,i+1

]
= Z1,n,i+Z2,n,i+Z3,n,i+Z4,n,i, (A.18)
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where




Z1,n,i ≡ E
n
i

[
ζ
n,lm
i,u 1n,i+1

(
E
n
i+u

(
ζ
n,jk
i,v

)
−
(
c
jk
t(n,i+u)− c

jk
t(n,i)

))]
,

Z2,n,i ≡ E
n
i

[
αlmn,i+u

(
c
jk
t(n,i+u)− c

jk
t(n,i+u−1)

)
1n,i+1

]
,

Z3,n,i ≡ E
n
i

[
αlmn,i+u

(
c
jk
t(n,i+u−1)

− c
jk
t(n,i)

)
1n,i+1

]
,

Z4,n,i ≡ E
n
i

[(
clmt(n,i+u−1)− clmt(n,i)

)(
c
jk
t(n,i+u)− c

jk
t(n,i)

)
1n,i+1

]
.

(A.19)

We now provide estimates for the variables in (A.19). In steps 2 and 3, we shall show,

respectively, that

E
∣∣Z1,n,i

∣∣≤ K1
3/2
n

(
E[ηni+1(b)]+ kn1

1/2
n + k

1/2+ǫ
n 1ǫn

)
, (A.20)

E
∣∣Z2,n,i

∣∣≤ K1
3/2
n

(
E[ηni+1(c

(X,c1))]+E[ηni+1(c
(X,σ1))]+1ǫn+1

1/2
n

)
. (A.21)

Next, we observe

E
∣∣Z3,n,i

∣∣= E

∣∣∣Eni
[
(c
jk
t(n,i+u−1)

− c
jk
t(n,i)

)E′n
i+u−1[α

lm
n,i+u]1n,i+1

]∣∣∣

≤ KE

∣∣∣E′n
i+u−1[α

lm
n,i+u]1n,i+1

∣∣∣

≤ K1
3/2
n

(
E[ηni+1(b)]+1

1/2
n +1ǫn

)
,

where the equality is by repeated conditioning; the first inequality holds because c is

bounded; the second inequality follows directly from the second part of Lemma 1(c).

Finally, by the Cauchy–Schwarz inequality and Lemma 1(a), we have E
∣∣Z4,n,i

∣∣≤ Kkn1
2
n.

In view of (A.18 ), by the triangle inequality, these estimates further imply

E

∣∣∣Eni
[
ζ
n,lm
i,u ζ

n,jk
i,v 1n,i+1

]∣∣∣
≤ K1

3/2
n

(
kn1

1/2
n + k

1/2+ǫ
n 1ǫn+E[ηni+1(b)]+E[ηni+1(c

(X,c1))]+E[ηni+1(c
(X,σ1))]

)
,

that is, (A.17) holds. The proof of Lemma 2 will be finished by showing (A.20) and (A.21),

below.

Step 2. We show (A.20) in this step. We start by noting that ζ
n,jk
i,v − (c

jk
t(n,i+u)−c

jk
t(n,i)

)=

α
jk
n,i+v+ (c

jk
t(n,i+v−1)

− c
jk
t(n,i+u)). Hence, by the triangle inequality

∣∣∣Eni+u
[
ζ
n,jk
i,v − (c

jk
t(n,i+u)− c

jk
t(n,i)

)
]∣∣∣

≤
∣∣∣Eni+u

[
α
jk
n,i+v

]∣∣∣+
∣∣∣Eni+u

[
c
jk
t(n,i+v−1)

− c
jk
t(n,i+u)

]∣∣∣ .
(A.22)

In addition, by repeated conditioning and Lemma 1(b),
∣∣∣Eni+u

[
α
jk
n,i+v

]∣∣∣ ≤ E
n
i+u

[∣∣∣E′n
i+v−1

[
α
jk
n,i+v

]∣∣∣
]

≤ KEni+u

[
1
1/2
n,i+vη

′n
i+v,1(b)

]
+K1n

+KEni+u

[
1−1
n,i+v

∫ t(n,i+v)

t(n,i+v−1)
||σ2,s−σ2,t(n,i+v−1)||ds

]
.

(A.23)
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Using an argument that is similar to the proof of (A.9), we further deduce that

∣∣∣Eni+u
[
c
jk
t(n,i+v−1)

− c
jk
t(n,i+u)

]∣∣∣
≤ K

(
kn1n+E

n
i+u

[
||σ2,t(n,i+v−1)−σ2,t(n,i+u)||

])
.

(A.24)

In view of (A.22), (A.23), and (A.24), by repeated conditioning (note that ζ
n,lm
i,u is

Ht(n,i+u)-measurable) and the triangle inequality, we have

∣∣Z1,n,i
∣∣≤ K

(
W1,n,i+W2,n,i+W3,n,i+W4,n,i

)
, (A.25)

where





W1,n,i ≡ E
n
i

[∣∣∣ζ n,lmi,u

∣∣∣1n,i+1E
n
i+u

[
1
1/2
n,i+vη

′n
i+v,1(b)

]]
,

W2,n,i ≡ kn1nE
n
i

[∣∣∣ζ n,lmi,u

∣∣∣1n,i+1

]
,

W3,n,i ≡ E
n
i

[∣∣∣ζ n,lmi,u

∣∣∣1n,i+11
−1
n,i+v

∫ t(n,i+v)

t(n,i+v−1)
||σ2,s−σ2,t(n,i+v−1)||ds

]
,

W4,n,i ≡ E
n
i

[∣∣∣ζ n,lmi,u

∣∣∣1n,i+1||σ2,t(n,i+v−1)−σ2,t(n,i+u)||
]
.

(A.26)

We now proceed to derive bounds for the terms in (A.26), starting withW1,n,i andW2,n,i.

By Lemma 1(a), the Cauchy–Schwarz inequality and Assumption IR,

E
n
i

[∥∥∥ζ ni,u
∥∥∥
2
12
n,i+1

]
≤ K12

n. (A.27)

In addition,

√
E
n
i

[(
E
n
i+u

[
1
1/2
n,i+vη

′n
i+v,1(b)

])2]

≤1
1/2
n

√
E
n
i

[
E
n
i+u

[(
η′n
i+v,1(b)

)2]]
≤1

1/2
n ηni+1 (b),

(A.28)

where the first inequality is by the Cauchy–Schwarz inequality and Assumption IR; the

second inequality is by the tower property and the definition of ηni (b). Then, by (A.27),

(A.28), and the Cauchy–Schwarz inequality,

E
∣∣W1,n,i

∣∣≤ K1
3/2
n E

[
ηni+1 (b)

]
, E

∣∣W2,n,i

∣∣≤ Kkn1
2
n. (A.29)

Moreover,

E
∣∣W3,n,i

∣∣

≤

(
E

[∥∥∥ζ ni,u
∥∥∥
2
12
n,i+1

])1/2

E



(
1−1
n,i+v

∫ t(n,i+v)

t(n,i+v−1)
||σ2,s−σ2,t(n,i+v−1)||ds

)2



1/2

≤ K1n

(
E

[
1−1
n,i+v

∫ t(n,i+v)

t(n,i+v−1)
ET

[
||σ2,s−σ2,t(n,i+v−1)||

2
]
ds

])1/2

≤ K1n

(
E

[
11+2ǫ
n,i+v

])1/2
≤ K1

3/2+ǫ
n ,

(A.30)
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where the first inequality is due to the Cauchy–Schwarz inequality; the second inequality is

by (A.27) and repeated conditioning; the third inequality is obtained by Assumption LM′;

the last inequality is due to Assumption IR. Similarly,

E
∣∣W4,n,i

∣∣≤ K1n (kn1n)
1/2+ǫ . (A.31)

The claim (A.20) then readily follows from (A.25), (A.29), (A.30), and (A.31).

Step 3. In this step, we show (A.21). By repeated conditioning, we deduce

E
∣∣Z2,n,i

∣∣≤ E

∣∣∣Eni+u−1

[
αlmn,i+u

(
c
jk
t(n,i+u)− c

jk
t(n,i+u−1)

)
1n,i+1

]∣∣∣ . (A.32)

In view of (A.2), we can decompose

E
n
i+u−1

[
αlmn,i+u

(
ct(n,i+u)− ct(n,i+u−1)

)
1n,i+1

]
=

6∑

q=1

Dq,n,i, (A.33)

where




D1,n,i ≡ E
n
i+u−1

[
αlmn,i+u

(
c1,t(n,i+u)− c1,t(n,i+u−1)

)
1n,i+1

]
,

D2,n,i ≡ E
n
i+u−1

[
αlmn,i+u

(
c2,t(n,i+u)− c2,t(n,i+u−1)

)
1n,i+1

]
,

D3,n,i ≡ E
n
i+u−1

[
αlmn,i+u

(
σ2,t(n,i+u)−σ2,t(n,i+u−1)

)
σ⊤
1,t(n,i+u)1n,i+1

]
,D4,n,i ≡ D⊤

3,n,i,

D5,n,i ≡ E
n
i+u−1

[
αlmn,i+u

(
σ1,t(n,i+u)−σ1,t(n,i+u−1)

)
1n,i+1

]
σ⊤
2,t(n,i+u−1),D6,n,i≡D⊤

5,n,i.

By the Cauchy–Schwarz inequality and Lemma 1(a), we have

E
[∥∥D2,n,i

∥∥+
∥∥D3,n,i

∥∥+
∥∥D4,n,i

∥∥]≤ K1
3/2+ǫ
n .

As for D1,n,i, we have

E
[∥∥D1,n,i

∥∥]≤ K1
3/2
n

(
1
1/2
n +E

[
ηni+1(c

(X,c1))
])
,

which can be shown using the argument of Lem. 3.2(c) in Jacod and Rosenbaum (2015),

for which we only need (i) the process σ = σ1 +σ2 to be (1/2)-Hölder continuous under

the L2 norm (see Lemma 1(a)), and (ii) the process c1 is an Itô semimartingale. By using

the same argument but with c1 replaced by σ1, we deduce

E
∥∥D5,n,i

∥∥+E
∥∥D6,n,i

∥∥≤ K1
3/2
n

(
1
1/2
n +E

[
ηni+1(c

(X,σ1))
])

.

Combining these estimates with (A.33), we see that

E

∣∣∣Eni+u−1

[
αlmn,i+u

(
c
jk
t(n,i+u)− c

jk
t(n,i+u−1)

)
1n,i+1

]∣∣∣
≤ K1

3/2
n

(
E[ηni+1(c

(X,c1))]+E[ηni+1(c
(X,σ1))]+1ǫn+1

1/2
n

)
.

(A.34)

The claim (A.21) then follows from (A.32) and (A.34).

Proof of Theorem 3. Step 1. In this step, we show that

sup
0≤i≤Nn,T

∥∥ĉt(n,i)− c̄t(n,i)
∥∥= op(1), (A.35)
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where

c̄t(n,i) ≡
1

kn

kn∑

j=1

1

1n,i+j

∫ t(n,i+j)

t(n,i+j−1)
csds

forms a type of average of the process c over [t (n,i),t (n,i+ kn)]. Since Nn,T = Op(1
−1
n ),

it suffices to show sup0≤i≤M/1n

∥∥ĉt(n,i)− c̄t(n,i)
∥∥ = op(1) for any fixed positive constant

M. In addition, by using a polarization argument, we can and shall assume that X is one-

dimensional without loss of generality for proving (A.35).

By Itô’s formula,

ĉ′t(n,i)− c̄t(n,i) =
1

kn

kn∑

j=1

2

1n,i+j

∫ t(n,i+j)

t(n,i+j−1)

(
X′
s−X′

t(n,i+j−1)

)
(bsds+σsdWs) . (A.36)

Note that for p≥ 1,

E

[∣∣∣∣∣
1

1n,i+j

∫ t(n,i+j)

t(n,i+j−1)

(
X′
s−X′

t(n,i+j−1)

)
bsds

∣∣∣∣∣

p]

≤ E

[
1

1n,i+j

∫ t(n,i+j)

t(n,i+j−1)

∣∣∣X′
s−X′

t(n,i+j−1)

∣∣∣
p
|bs|

p ds

]

≤ KpE
[
1
p/2
n,i+j

]
≤ Kp1

p/2
n ,

(A.37)

where the first inequality follows from Jensen’s inequality; the second inequality is obtained

by using an argument similar to (A.8); the last inequality is by Assumption IR. Similarly,

E
n
i+j−1

[∣∣∣∣∣
1

1n,i+j

∫ t(n,i+j)

t(n,i+j−1)

(
X′
s−X′

t(n,i+j−1)

)
σsdWs

∣∣∣∣∣

p]
≤ Kp. (A.38)

We further note that

E
n
i+j−1

[
1

1n,i+j

∫ t(n,i+j)

t(n,i+j−1)

(
X′
s−X′

t(n,i+j−1)

)
σsdWs

]

= E
n
i+j−1

[
E

′n
i+j−1

[
1

1n,i+j

∫ t(n,i+j)

t(n,i+j−1)

(
X′
s−X′

t(n,i+j−1)

)
σsdWs

]]

= 0,

where the first equality is by repeated conditioning; the second equality holds because

of the Ht(n,i−1+j)-conditional independence between 1n,i+j and FT . This shows that

1−1
n,i+j

∫ t(n,i+j)
t(n,i+j−1)

(X′
s − X′

t(n,i+j−1)
)σsdWs forms a martingale difference sequence with

respect to Ht(n,i+j). Then, by (A.38) and the Burkholder–Davis–Gundy inequality, we

deduce that

E



∣∣∣∣∣∣
1

kn

kn∑

j=1

1

1n,i+j

∫ t(n,i+j)

t(n,i+j−1)

(
X′
s−X′

t(n,i+j−1)

)
σsdWs

∣∣∣∣∣∣

p
≤ Kpk

−p/2
n . (A.39)

https://doi.org/10.1017/S0266466620000274 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466620000274


698 JIA LI AND YUNXIAO LIU

Combining (A.37) and (A.39), we have, for all p≥ 1 , ‖ĉ′
t(n,i)

− c̄t(n,i)‖p ≤Kpk
−1/2
n , where

‖·‖p denotes the Lp norm. Then, by using a maximal inequality (see, e.g., Lem. 2.2.2 in van

der Vaart and Wellner, 1996), we deduce

∥∥∥∥ max
0≤i≤M/1n

∣∣∣ĉ′t(n,i)− c̄t(n,i)

∣∣∣
∥∥∥∥
p

≤ Kp1
−1/p
n k

−1/2
n .

By taking p sufficiently large, we deduce

sup
0≤i≤M/1n

∣∣∣ĉ′t(n,i)− c̄t(n,i)

∣∣∣= op(1). (A.40)

Next, we note that, for some deterministic sequence φn → 0,

E

[
sup

0≤i≤M/1n

∣∣∣ĉt(n,i)− ĉ′t(n,i)

∣∣∣
]

≤
1

kn

⌈M/1n⌉∑

i=0

E

[
1

1n,i

∣∣∣
(
1ni X

)2
1{∣∣1n

i X
∣∣≤un,i

}−
(
1ni X

′)2∣∣∣
]

≤
1

kn

⌈M/1n⌉∑

i=0

E

[
1

1n,i
E

′n
i−1

[∣∣∣
(
1ni X

)2
1{∣∣1n

i X
∣∣≤un,i

}−
(
1ni X

′)2∣∣∣
]]

≤
1

kn

⌈M/1n⌉∑

i=0

E

[
1
(2−r)̟
n,i φn

]

= o
(
1
(2−r)̟−(1−γ )
n

)
→ 0,

(A.41)

where the first inequality follows from the definitions of ĉt(n,i) and ĉ′
t(n,i)

; the second

inequality is by repeated conditioning; the third inequality is obtained by first recognizing

that1n,i is independent ofFT conditional onHt(n,i−1) and then using Lem. 13.2.6 of Jacod

and Protter, 2012, where φn is implicitly defined; the last line follows from Assumption IR

and the maintained condition on the tuning parameters. Combining (A.40) and (A.41), we

deduce (A.35) as claimed.

Step 2. Given (A.35) and Assumption C, we can appeal to the spatial localization

argument of Li et al., 2017 (see their Thm. 2), so as to assume that g(·) is compactly

supported without loss of generality.

We consider the decomposition 1
−1/2
n (S′

n(g)−S(g))=
∑5

j=1Vj,n, where

V1,n ≡1
−1/2
n

∑

i

(
g(ĉt(n,i))−g(ĉ′t(n,i))−

1

kn

(
Bg(ĉt(n,i))−Bg(ĉ′t(n,i))

))
1n,i+1,

V2,n ≡1
−1/2
n

∑

i

∫ t(n,i+1)

t(n,i)

(
g(ct(n,i))−g(cs)

)
ds−1

−1/2
n

∫ T

t(n,Nn,T−kn+1)
g(cs)ds,

V3,n ≡1
−1/2
n

∑

i

d∑

l,m=1

∂lmg(ct(n,i))
1

kn

kn∑

u=1

(
clmt(n,i+u−1)− clmt(n,i)

)
1n,i+1,

V4,n ≡1
−1/2
n

∑

i


g(ĉ′t(n,i))−g(ct(n,i))−

d∑

l,m=1

∂lmg(ct(n,i))c̃
lm
n,i−

1

kn
Bg(ĉ′t(n,i))


1n,i+1,
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V5,n ≡1
−1/2
n k−1

n

∑

i




d∑

l,m=1

∂lmg(ct(n,i))

kn∑

u=1

αlmn,i+u


1n,i+1.

We prove the assertion of Theorem 3(a) by showing the following:

Vj,n = op(1) for j= 1,2,3,4, (A.42)

V5,n
L-s
−→ MN (0,V ′(g)). (A.43)

In this step, we show (A.42), leaving (A.43) to step 3, below. We note that V1,n = op(1)

can be established by a straightforward adaption of “case j = 1” in (A.17) of Li and Xiu,

2016, upon using a polarization argument and the argument underlying (A.41); we omit the

details for brevity.

We now turn to the term V2,n. Since kn1
1/2
n → 0, it is easy to see that

1
−1/2
n

∫ T

t(n,Nn,T−kn+1)
g(cs)ds= op(1).

By a second-order Taylor expansion and (A.2), we decompose

1
−1/2
n

∑

i

∫ t(n,i+1)

t(n,i)

(
g(cs)−g(ct(n,i))

)
ds=

5∑

k=1

V2,n,k,

where, recalling that ∂g(c) is the d×d matrix with its (l,m) element given by ∂lmg(c), we

set





V2,n,1 ≡1
−1/2
n

∑

i

∫ t(n,i+1)

t(n,i)
Tr
[
∂g(ct(n,i))(c1,s− c1,t(n,i))

]
ds,

V2,n,2 ≡1
−1/2
n

∑

i

∫ t(n,i+1)

t(n,i)
Tr
[
∂g(ct(n,i))(c2,s− c2,t(n,i))

]
ds,

V2,n,3 ≡ 21
−1/2
n

∑

i

∫ t(n,i+1)

t(n,i)
Tr
[
∂g(ct(n,i))(σ2,s−σ2,t(n,i))σ

⊤
1,s

]
ds,

V2,n,4 ≡ 21
−1/2
n

∑

i

∫ t(n,i+1)

t(n,i)
Tr
[
∂g(ct(n,i))

(
σ1,s−σ1,t(n,i)

)
σ⊤
2,t(n,i)

]
ds,

V2,n,5 ≡1
−1/2
n

1

2

∑

i

∫ t(n,i+1)

t(n,i)

d∑

j,k,l,m=1

∂2jk,lmg(ξn,i(s))(c
jk
s − c

jk
t(n,i)

)(clms − clmt(n,i))ds,

for some mean values ξn,i (s) between cs and ct(n,i). It remains to show that V2,n,k = op(1)

for 1 ≤ k ≤ 5. By a standard Riemann approximation result for Itô semimartingales (see,

e.g., Jacod and Protter, 2012, pp.153–154), here applied to the processes σ1 and c1, we can

show that V2,n,k = op(1) for k = 1 and 4, for which we note that the Ht(n,i)-measurability

of ∂g(ct(n,i)) and σ
⊤
2,t(n,i)

is implicitly used. Furthermore, because of the boundedness of

∂g(ct(n,i)) and Assumption LM′, we have V2,n,2 = Op(1
ǫ
n)= op(1); similarly, we deduce

that V2,n,3 is also op(1). Finally, using similar techniques as above, we deduce that V2,n,5 =

Op(1
1/2
n )= op(1). These estimates readily imply ( A.42) for the case j= 2.
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Next, we show V3,n = op(1). In view of (A.2), we can decompose V3,n =
∑4

k=1V3,n,k,

where





V3,n,1 ≡1
−1/2
n

∑

i

k−1
n Tr


∂g(ct(n,i))

kn∑

u=1

(
c1,t(n,i+u−1)− c1,t(n,i)

)

1n,i+1,

V3,n,2 ≡1
−1/2
n

∑

i

k−1
n Tr


∂g(ct(n,i))

kn∑

u=1

(
c2,t(n,i+u−1)− c2,t(n,i)

)

1n,i+1,

V3,n,3 ≡ 21
−1/2
n

∑

i

k−1
n Tr


∂g(ct(n,i))

kn∑

u=1

(
σ2,t(n,i+u−1)−σ2,t(n,i)

)
σ⊤
1,t(n,i+u−1)


1n,i+1,

V3,n,4 ≡ 21
−1/2
n

∑

i

k−1
n Tr


∂g(ct(n,i))

kn∑

u=1

(
σ1,t(n,i+u−1)−σ1,t(n,i)

)
σ⊤
2,t(n,i)


1n,i+1.

We first analyze the termV3,n,1. To simplify notations, we denote the ith summand ofV3,n,1

by χn,i, so that we can write V3,n,1 = 1
−1/2
n

∑
iχn,i. Since c1 is an Itô semimartingale,

we can follow similar steps underlying (A.7) to deduce that |Eni [χn,i]| ≤ Kkn1
2
n and use

Lemma 1(a) to deduceE[χ2n,i]≤Kkn1
3
n. Further note that χn,i isHt(n,i+kn−1)-measurable.

From these facts, we deduce

1
−1/2
n

∑

i

E
n
i

[
χn,i

]
= Op(kn1

1/2
n ), 1

−1/2
n

∑

i

(
χn,i−E

n
i

[
χn,i

])
= Op(kn1

1/2
n ).

Hence, V3,n,1 = op(1). Similarly, we can show that V3,n,4 = op(1) . By Lemma 1(a),

E
∣∣V3,n,2

∣∣≤Kk
1/2+ǫ
n 1ǫn → 0. Hence, V3,n,2 = op(1). Similarly, we can show that V3,n,3 =

op(1). From these estimates, V3,n = op(1) readily follows.

We now show V4,n = op(1). To simplify notations, we denote by ζn,i the ith summand in

V4,n, so that we can rewrite V4,n =1
−1/2
n

∑
i ζn,i. We further decompose ζn,i = ζ ′

n,i+ζ
′′
n,i,

where

ζ ′
n,i ≡

1

2

d∑

j,k,l,m=1

∂2jk,lmg
(
ct(n,i)

)(
c̃
jk
n,ic̃

lm
n,i−

1

kn

(
c
jl
t(n,i)

ckmt(n,i)+ c
jm
t(n,i)

cklt(n,i)

))
1n,i+1,

and ζ ′′
n,i is defined implicitly through this decomposition. Since g is compactly supported

(by spatial localization mentioned above), by using a mean-value expansion, it is easy to

see that |ζ ′′
n,i| ≤ K(

∥∥c̃n,i
∥∥3+k−1

n ‖c̃n,i‖)1n,i+1. By Lemma 1(d), we further have E|ζ ′′
n,i| ≤

K(k
−3/2
n + kn1n)1n and, hence,

1
−1/2
n

∑

i

ζ ′′
n,i = op(1). (A.44)

In addition, by Lemma 2, for any fixed constant M > 0,

E


1−1/2

n

⌈M/1n⌉∑

i=0

∣∣∣Eni
[
ζ ′
n,i

]∣∣∣


≤ K

(
k
−1/2
n + kn1

1/2
n + k

1/2+ǫ
n 1ǫn

)
+1n

⌈M/1n⌉∑

i=0

E

[
ηni+1

]
.
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Since the processes b, c(X,σ1) and c(X,c1) are càdlàg, by Lem. 4.2 of Jacod and Rosenbaum,

2013,

1n

⌈M/1n⌉∑

i=0

E

[
ηni+1

]
→ 0. (A.45)

From here, it follows that (recalling Nn,T = Op

(
1−1
n

)
)

1
−1/2
n

∑

i

∣∣∣Eni
[
ζ ′
n,i

]∣∣∣= op(1). (A.46)

Finally, we note that the sequence ζ ′
n,i −E

n
i [ζ

′
n,i] can only have nonzero autocovariance

up to lag kn. Hence, by the Cauchy–Schwarz inequality and Lemma 1 (d), for any fixed

constant M > 0,

E





1−1/2

n

⌈M/1n⌉∑

i=0

(
ζ ′
n,i−E

n
i

[
ζ ′
n,i

])


2



≤ Kkn1
−1
n

⌈M/1n⌉∑

i=0

E

[(
ζ ′
n,i

)2]
≤ K

(
k−1
n + k2n1n

)
→ 0,

(A.47)

which, together with (A.46), implies 1
−1/2
n

∑
i ζ

′
n,i = op(1). In view of (A.44), we further

deduce V4,n = op(1) as claimed.

Step 3. Finally, we show that V5,n
L-s
−→ MN (0,V ′(g)). We can rewrite

V5,n =1
1/2
n

∑

i

d∑

l,m=1

wlmn,iα
lm
n,i,

where (by convention, we set the summand to zero if i− j /∈ {0, . . . ,Nn,T − kn})

wlmn,i ≡
1

kn

kn∑

j=1

∂lmg(ct(n,i−j))
1n,i+1−j

1n
.

Note that wlmn,iα
lm
n,i is H

′
t(n,i)

-measurable and wlmn,i is H
′
t(n,i−1)

measurable.

We also set

w̃lmn,i ≡ ∂lmg(ct(n,i−1))
1

kn

kn∑

j=1

1n,i+1−j

1n
, w̄lmn,i ≡ ∂lmg(ct(n,i−1))

1

kn

kn∑

j=1

1

3t(n,i−j)
.

From Lemma 1(a) and the Cauchy–Schwarz inequality, it is easy to see

∥∥∥wlmn,i− w̃lmn,i

∥∥∥
2

≤ k−1
n

kn∑

j=1

∥∥∥∥
(
∂lmg(ct(n,i−j))− ∂lmg(ct(n,i−1))

) 1n,i+1−j

1n

∥∥∥∥
2

≤ K (kn1n)
1/2 . (A.48)
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Moreover,

E

[∣∣∣w̃lmn,i− w̄lmn,i

∣∣∣
2
]

= E



∣∣∂lmg(ct(n,i−1))

∣∣2

 1

kn

kn∑

j=1

(
1n,i+1−j

1n
−

1

3t(n,i−j)

)

2



≤ KE





 1

kn

kn∑

j=1

(
1n,i+1−j

1n
−

1

3t(n,i−j)

)

2



≤ KE





 1

kn

kn∑

j=1

(
E
n
i−j

[
1n,i+1−j

1n

]
−

1

3t(n,i−j)

)

2



+KE





 1

kn

kn∑

j=1

(
1n,i+1−j

1n
−E

n
i−j

[
1n,i+1−j

1n

])

2



≤ K
(
κ2n + k−1

n

)
, (A.49)

where the first inequality is by the boundedness of ∂lmg(ct(n,i−1)); the second inequality

is by the Cr-inequality; the last inequality follows from Assumption IR and the fact that

1n,i+1−j/1n−E
n
i−j

[
1n,i+1−j/1n

]
forms a martingale difference sequence.

From (A.48) and (A.49), we deduce

E

[∣∣∣wlmn,i− w̄lmn,i

∣∣∣
2
]

≤ K
(
kn1n+ k−1

n +κ2n

)
. (A.50)

We now proceed to prove the convergence (A.43). We first observe that by the H′
t(n,i−1)

-

measurability of wlmn,i and Lemma 1(b),

E

∣∣∣E′n
i−1

[
wlmn,iα

lm
n,i

]∣∣∣= E

∣∣∣wlmn,iE
′n
i−1

[
αlmn,i

]∣∣∣

≤ E

∣∣∣∣∣w
lm
n,i

(
1n,i+E

′n
i−1

[
1−1
n,i

∫ t(n,i)

t(n,i−1)
||σ2,s−σ2,t(n,i−1)||ds

])∣∣∣∣∣
+E

[
E
n
i−kn

∣∣∣wlmn,i1
1/2
n,i η

′n
i,1 (b)

∣∣∣
]
.

(A.51)

In addition, we note that by Assumptions IR and LM′,

E

[(
wlmn,i

)2]
≤ K, E

n
i−kn

[(
wlmn,i

)2
1n,i

]
≤ K1n,

E



(
1n,i+E

′n
i−1

[
1−1
n,i

∫ t(n,i)

t(n,i−1)
||σ2,s−σ2,t(n,i−1)||ds

])2
≤ K11+2ǫ

n ,

(A.52)

and by the definition of ηni (b),

√
E
n
i−kn

[∣∣∣η′n
i,1 (b)

∣∣∣
2
]

≤ ηni−kn+1 (b) . (A.53)
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By the Cauchy–Schwarz inequality, (A.52) and (A.53), we deduce from (A.51) that

E

∣∣∣E′n
i−1

[
wlmn,iα

lm
n,i

]∣∣∣≤ K1
1/2+ǫ
n +K1

1/2
n E

[
ηni−kn+1 (b)

]
.

Hence,

1
1/2
n

∑

i

d∑

l,m=1

E
′n
i−1

[
wlmn,iα

lm
n,i

]
= op(1).

In the sense of the above estimate, wlmn,iα
lm
n,i forms an array of approximate martingale

differences (w.r.t. the filtration array (H′
t(n,i)

)). We can then follow similar steps as in

Lem. 4.5 of Jacod and Rosenbaum (2013) (by verifying the conditions of Thm. IX.7.28

in Jacod and Shiryaev, 2003) to prove the asserted convergence (A.43). For brevity, we only

emphasize the key difference which concerns the derivation of the asymptotic variance.

Note that by Lemma 1(e),

1n
∑

i

d∑

j,k,l,m=1

E
′n
i−1

[
w
jk
n,iw

lm
n,iα

jk
n,iα

lm
n,i

]

=1n
∑

i

d∑

j,k,l,m=1

w
jk
n,iw

lm
n,iE

′n
i−1

[
α
jk
n,iα

lm
n,i

]

=1n
∑

i

d∑

j,k,l,m=1

w
jk
n,iw

lm
n,i

(
c
jl
t(n,i−1)

ckmt(n,i−1)+ c
jm
t(n,i−1)

cklt(n,i−1)

)
+op(1).

(A.54)

In addition, by the boundedness of c and w̄
jk
n,i, as well as (A.50),

1n
∑

i

d∑

j,k,l,m=1

∣∣∣
(
w
jk
n,iw

lm
n,i− w̄

jk
n,iw̄

lm
n,i

)(
c
jl
t(n,i−1)

ckmt(n,i−1)+ c
jm
t(n,i−1)

cklt(n,i−1)

)∣∣∣

≤ K1n
∑

i

d∑

j,k,l,m=1

∣∣∣
(
w
jk
n,iw

lm
n,i− w̄

jk
n,iw̄

lm
n,i

)∣∣∣

= Op

(
(kn1n)

1/2 + k
−1/2
n +κn

)
= op(1).

Hence, replacing w
jk
n,iw

lm
n,i with w̄

jk
n,iw̄

lm
n,i in (A.54) only leads to an op(1) difference. Since

3 is continuous, we further have

1n
∑

i

d∑

j,k,l,m=1

E
′n
i−1

[
w
jk
n,iw

lm
n,iα

jk
n,iα

lm
n,i

]

=1n
∑

i

d∑

j,k,l,m=1

∂jkg(ct(n,i−1))∂lmg(ct(n,i−1))
(
c
jl
t(n,i−1)

ckm
t(n,i−1)

+ c
jm
t(n,i−1)

ckl
t(n,i−1)

)

32
t(n,i−1)

+op(1)

P
−→

∫ T

0

d∑

j,k,l,m=1

∂jkg(cs)∂lmg(cs)
(
c
jl
s c
km
s + c

jm
s ckls

)
3−1
s ds,
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where the convergence is by Lem. A.2 of Jacod et al., 2017. By some straightforward

algebra, we see that the asymptotic variance identified in the above display coincides with

V ′ (g) defined in Theorem 3. This finishes the proof.

A.3 Proofs of Theorem 2 and Theorem 4

Since Theorem 2 is a special case of Theorem 4, we only need to prove the latter. We shall

use the following lemma, where part (a) is used to derive the asymptotic variance of the score

ξn(h) and part (b) is used to solve the functional maximization problem in the calculation

of lower efficiency bound.

LEMMA 3. (a) Let A be a d×d symmetricmatrix and r be a d -dimensional Gaussian

random variable with zero mean and covariance matrix 6. Then the variance of

r⊤Ar is 2Tr[6A6A].

(b) 〈h,h̃〉DS ≡
∫ T
0 Tr

[
cshscsh̃s

]
3sds defines a semi-inner product for h,h̃ ∈ DSd.

Proof. The assertion in part (a) can be proved by direct calculation. Turning to part (b),

it is easy to see that 〈·,·〉DS is bilinear. By part (a), we see that Tr [cshscshs] is half of the

variance of r⊤hsr for r ∼ N (0,cs) and, hence, is non-negative. Therefore, 〈h,h〉DS ≥ 0

for every h ∈ DSd . This verifies that 〈·,·〉DS is a semi-inner product on the vector space

DSd .

Proof of Theorem 4. (a) Fix some h ∈ DSd . We start by introducing some notation.

From (3.6), we can decompose

c(1
1/2
n a,h)t− ct =1

1/2
n aφ (h)t+1na

2ψ (h)t , (A.55)

where φ (h)t ≡ cthtct and ψ (h)t ≡ cthtcthtct/4. We denote

b̄n,i ≡1−1
n,i

∫ t(n,i)

t(n,i−1)
bsds,

and define c̄n,i and c(1
1/2
n a,h)n,i in the similar way by replacing b with c and c(1

1/2
n a,h),

respectively. We also denote

rn,i ≡1
−1/2
n,i

∫ t(n,i)

t(n,i−1)
σsdWs.

Below, we write
∑

i in place of
∑Nn,T

i=1 for notational simplicity.

With these notations, we can write1ni X=1n,ib̄n,i+1
n
i J+1

1/2
n,i rn,i. Recall that G is the

σ -field generated by (b,J,σ ) and the sampling times. Under Assumption LAMN′, we see

that
(
rn,i

)
i≥1

are G-conditionally independent centered Gaussian with covariance matrix

c(1
1/2
n a,h)n,i under Pn(1

1/2
n a,h). We then see that the log conditional likelihood ratio has
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the following form:

Ln(a1
1/2
n ,h)=

1

2

∑

i

(
logdet

[
c
(
1
1/2
n a,h

)−1

n,i

]
− logdet

[
c̄−1
n,i

])

−
1

2

∑

i

r⊤n,i

(
c
(
1
1/2
n a,h

)−1

n,i
− c̄−1

n,i

)
rn,i.

We further decompose Ln(a1
1/2
n ,h)= aξn (h)+An (a,h)+Bn (a,h) where





ξn (h)≡
1
1/2
n

2

∑

i

Tr
[
c̄−1
n,i φ (h)n,ic̄

−1
n,i

(
rn,ir

⊤
n,i− c̄n,i

)]
,

An (a,h)≡
∑

i

ζ(a,h)n,i, Bn (a,h)≡
∑

i

χ(a,h)n,i,

ζ (a,h)n,i ≡
1

2

(
logdet

[
c
(
1
1/2
n a,h

)−1

n,i

]
− logdet

[
c̄−1
n,i

]

−Tr

[(
c
(
1
1/2
n a,h

)−1

n,i
− c̄−1

n,i

)
c̄n,i

])
,

χ (a,h)n,i ≡ −
1

2
Tr

[(
c
(
1
1/2
n a,h

)−1

n,i
− c̄−1

n,i +1
1/2
n ac̄−1

n,i φ (h)n,ic̄
−1
n,i

)(
rn,ir

⊤
n,i− c̄n,i

)]
.

Clearly, the assertion of part (a) can be proved by showing

ξn (h)
L|G
−→ MN (0,Ŵ (h)), (A.56)

An(a,h)
P

−→ −
1

2
a2Ŵ(h), (A.57)

Bn (a,h)
P

−→ 0, (A.58)

where
L|G
−→ stands for the convergence in probability of G-conditional distributions under

the uniform metric.

We first show (A.56). Note that, conditional on G, ξn (h) is a sum of independent

triangular array with mean zero and bounded fourth moments. Moreover, we observe

E

[
ξn (h)

2
∣∣∣G
]

=
1n

4

∑

i

Var
[
r⊤n,ic̄

−1
n,i φ (h)n,ic̄

−1
n,i rn,i

∣∣∣G
]

=
1n

2

∑

i

Tr
[
φ (h)n,ic̄

−1
n,i φ (h)n,ic̄

−1
n,i

]

=
1n

2

∑

i

Tr
[
φ (h)t(n,i−1) c

−1
t(n,i−1)

φ (h)t(n,i−1) c
−1
t(n,i−1)

]
+op(1)

=
1

2

∫ T

0
Tr
[
φ (h)s c

−1
s φ (h)s c

−1
s

]
3sds+op(1),

(A.59)
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where the first equality follows from the G-conditional independence of the summand; the

second equality follows from Lemma 3; the third equality holds because the processes φ (h)

and c are càdlàg; the last line is by Lem. A.2(a) of Jacod et al., 2017. Since φ (h)t = cthtct by

definition, we further deduceE[ξn (h)
2 |G]=Ŵ(h)+op(1). Hence, for any subsequence, we

can find a further subsequence, along which E[ξn (h)
2 |G] → Ŵ(h) for almost every path.

For each such path, we can use the Lindeberg–Lévy central limit theorem to deduce that

ξn (h) converges in distribution toMN (0,Ŵ (h)) under the G-conditional probability. By a

reverse use of the subsequence argument, we get (A.56).

Next, we show (A.57). We note that the first and the second differentials of logdet (x) are

Tr
[
x−1dx

]
and (−1/2)Tr

[
x−1 dxx−1 dx

]
, respectively. By a second-order Taylor expan-

sion, we have

logdet

[
c
(
1
1/2
n a,h

)−1

n,i

]

= logdet
[
c̄−1
n,i

]
+Tr

[
c̄n,i

(
c
(
1
1/2
n a,h

)−1

n,i
− c̄−1

n,i

)]

−
1

2
Tr

[
c̄n,i

(
c
(
1
1/2
n a,h

)−1

n,i
− c̄−1

n,i

)
c̄n,i

(
c
(
1
1/2
n a,h

)−1

n,i
− c̄−1

n,i

)]
+ηn,i,

where the residual term ηn,i satisfies
∣∣ηn,i

∣∣≤ K1
3/2
n . Hence,

ζ (a,h)n,i = −
1

4
Tr

[
c̄n,i

(
c
(
1
1/2
n a,h

)−1

n,i
− c̄−1

n,i

)
c̄n,i

(
c
(
1
1/2
n a,h

)−1

n,i
− c̄−1

n,i

)]
+

1

2
ηn,i.

Further note that d
(
x−1

)
= −x−1 dxx−1. Then, by a Taylor expansion for the matrix

inverse function, we have the following approximation
∣∣∣∣∣ζ (a,h)n,i+

a21n

4
Tr
[
φ (h)n,ic̄

−1
n,i φ (h)n,ic̄

−1
n,i

]∣∣∣∣∣≤ K1
3/2
n .

Therefore,

An (a,h)= −
a21n

4

∑

i

Tr
[
φ (h)n,ic̄

−1
n,i φ (h)n,ic̄

−1
n,i

]
+Op(1

1/2
n ).

By similar arguments underlying (A.59), we deduce

An (a,h)
P

−→ −
a2

4

∫ T

0
Tr
[
φ (h)s c

−1
s φ (h)s c

−1
s

]
3sds= −

1

2
a2Ŵ(h) .

Finally, we show (A.58). Note that, conditional on G, χ (a,h)n,i forms an independent

array with zero mean. Moreover, by a Taylor expansion,
∥∥∥∥∥c
(
1
1/2
n a,h

)−1

n,i
− c̄−1

n,i +a1
1/2
n c̄−1

n,i φ (h)n,ic̄
−1
n,i

∥∥∥∥∥≤ K1n,

and, hence, E[χ (a,h)2n,i |G] ≤ K12
n. Therefore,

E

[
Bn (a,h)

2
∣∣∣G
]

=
∑

i

E

[
χ (a,h)2n,i

∣∣∣G
]

= Op(1n)= op(1).
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From here, (A.58) readily follows. This finishes the proof of part (a).

(b,c) Recall the definition of the semi-inner product 〈·,·〉DS from Lemma 3. We can

rewrite 6(h) as

6(h)=
2 〈∂g(c)/3,h〉2

DS

〈h,h〉DS
.

By the Cauchy–Schwarz inequality, we deduce that

6(h)≤ 2 〈∂g(c)/3,∂g(c)/3〉DS = 2

∫ T

0
Tr[cs∂g(cs)cs∂g(cs)]3

−1
s ds,

where the inequality becomes an equality if h= ∂g(c)/3.
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