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Associated with the Increments of a

Brownian Semimartingale*

Jia Li1 and Dacheng Xiu2

1Department of Economics, Duke University, Box 90097, Durham, NC, 27708, jl410@duke.edu and
2Booth School of Business, University of Chicago Chicago, IL, 60637,

dacheng.xiu@chicagobooth.edu

We thank the Editors’ invitation for the opportunity of contributing to this special issue as

a celebration of Professor Jean Jacod’s seminal work originally written in 1994 (Jacod,

1994). This paper established general limit theorems for integrated volatility functionals,

and provided theoretical tools that eventually changed the landscape of theoretical research

concerning high-frequency data. This impact is also largely due to Professor Jacod’s contin-

uous contribution to a broad variety of challenging issues in the area of high-frequency

financial econometrics, including volatility estimation, jumps, and microstructure noise, as

well as a large body of mathematical results collected in Jacod and Shiryaev (2003), Jacod

and Protter (2012), and Aı̈t-Sahalia and Jacod (2014).

Professor Jacod’s work has deeply influenced generations of researchers. We are grateful

for having learnt and for continuing to learn from him. Perhaps the best way of celebrating

the original contribution of Jacod (1994) is to review the progress in the past 20 years on

integrated volatility estimation, to which results of this paper are directly applicable; and to

discuss how this paper has influenced our thinking about econometric inference of stochas-

tic volatility in general.

We thus organize our discussion as follows. Section 1 reviews the baseline problem of

estimating integrated volatility. We discuss in Section 2 the efficient estimation of general

integrated volatility functionals, and show in Section 3 how these functionals can be used

to form integrated moment conditions for estimating asset pricing and market microstruc-

ture models. Section 4 contains some concluding remarks.

1 Integrated Volatility Estimation

The increasing availability of transaction-level data presents a unique opportunity and yet

substantial challenges in risk measurement and management—an important agenda of the

field of financial econometrics. Exploring this intraday dataset is certainly worthwhile, as it
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brings in feasible solutions to some problems that would otherwise be difficult to address

with daily data. First, daily returns disguise informative intraday fluctuations. One striking

example is the IBM stock on October 10, 2008, which ended slightly above 1% after hav-

ing had a 10% rollercoaster ride within that day. Second, for stocks that are newly offered

to the public, historical records are simply unavailable. Third, standard assumptions on sta-

tionarity, dependence, and heteroscedasticity in classic time series are neither essential nor

relevant for intraday data. All these features make high-frequency data particularly attrac-

tive for measuring realizations of volatilities that are crucial for risk management in prac-

tice and empirical research in economics and finance.

The baseline model for volatility estimation assumes that the logarithm of the efficient

price process Xt follows a continuous Itô semimartingale defined on some filtered probabil-

ity space X;F ; F tð Þ; Pð Þ, which satisfies

Xt ¼ X0 þ
ðt

0

lsdsþ
ðt

0

rsdWs; (1.1)

where lt is the drift, rt is the stochastic volatility process, and W is a Brownian motion. A

simple measure of volatility is the quadratic variation of Xt, namely,

ðT

0

csds, where ct ¼ r2
t

is the instantaneous (i.e., spot) variance and fXiDn
gi�1 is a sequence of observations

sampled regularly.

The most popular estimator, realized volatility, introduced to econometrics by Andersen

et al. (2003) is simply the sum of squared returns:

RVn ¼
XT=Dn½ �

i¼1

Dn
i X

� �2
;

where Dn
i X ¼ XiDn

�X i�1ð ÞDn
. To demonstrate the statistical properties of this estimator, it

requires asymptotic analysis of the sum of squared increments of semimartingales. Jacod

(1994) is the earliest work that formulates rigorously a theoretical foundation of this prob-

lem. More specifically, Theorem 6.1 of the paper immediately implies the following central

limit result:

ffiffiffiffiffiffi
Dn

p
RVn �

ðT

0

csds

� �
!L�s ffiffiffi

2
p ðT

0

csdBs;

where !L�s
denotes stable convergence in law, and Bs is a Brownian motion defined on an

extension of the original probability space. To conduct inference, the same theorem yields a

consistent estimator of the asymptotic variance:

2

3

XT=Dn½ �

i¼1

Dn
i X

� �4!p 2

ðT

0

c2
s ds:

The realized volatility estimator, despite being simple, efficient, and tuning-free, is not

robust to the microstructure noise, so that it can only be applied to relatively liquid stocks

subsampled sparsely (say, every 5 min), at which frequencies the noise seems to disappear.

Nonetheless, 5-min is a somewhat ad hoc choice not applicable for all assets with transac-

tion records. Asserting the absence of noise at certain pre-specified frequency typically
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results in at least a substantial cost of efficiency, if not a loss of consistency. To test for the

existence of the noise, Andersen et al. (2003) advocate the use of volatility signature plots;

Aı̈t-Sahalia and Xiu (2016) formalize this procedure and propose Hausman tests; Liu,

Patton, and Sheppard (2015) suggest the use of a ranking method of Patton (2011).

Modeling the microstructure noise is the next step toward a solution to this problem.

Motivated from the Roll (1984) model, the observed price can be decomposed as the efficient

price plus noise. Earlier work along this line of research include Zhou (1996); Aı̈t-Sahalia,

Mykland, and Zhang (2005); Hansen and Lunde (2006); and Bandi and Russell (2008), which

seek the optimal sampling frequency that trades off the bias and variance of the estimators.

The first consistent estimator is proposed by Zhang, Mykland, and Aı̈t-Sahalia (2005), which

is robust to the i.i.d. white microstructure noise, despite a low n1=6 convergence rate. Zhang

(2006) later proposes an efficient multi-scale extension that has the optimal n1=4 rate.

Barndorff-Nielsen et al. (2008) propose a general class of realized kernel estimators that nest

the two estimators above. Their kernel estimators, however, suffer from a border bias that

requires an additional jittering step.

Jacod et al. (2009) and Jacod, Podolskij, and Vetter (2010) propose a pre-averaging esti-

mator, that is effectively a bias-corrected realized volatility using returns that are averaged

over a sequence of blocks. This new estimation strategy is simple, intuitive, and more

importantly, sufficiently flexible that leads to estimators of other functionals of volatility.

In particular, the pre-averaging approach has become the standard for estimating integrated

quarticity, namely,

ðT

0

c2
s ds, which appears again in the asymptotic variance of the noisy case.

Aı̈t-Sahalia, Mykland, and Zhang (2005) and Xiu (2010) propose a likelihood-based

estimator, which is optimal under constant volatility. Gloter and Jacod (2001) prove the

local asymptotic normality in this case, so that the minimal asymptotic variance achievable

is indeed given by 8ar3=T; where a is the standard error of the i.i.d. noise U. Reiß (2011)

later on provides the minimax efficiency bound in the general stochastic volatility case.

The aforementioned papers effectively assume an i.i.d. microstructure noise when develop-

ing the theoretical properties of the proposed estimators. In practice, however, there is ample

evidence of noise autocorrelations beyond the first lag, dating back to as early as

Niederhoffer and Osborne (1966), and more recent work by Hasbrouck and Ho (1987) and

Brogaard, Hendershott, and Riordan (2014). There are few exceptions in the literature that

discuss general dependent noises. Jacod, Li, and Zheng (2017b) provide nonparametric esti-

mators of the serial correlations and moments of the microstructure noise. Building on that,

Jacod, Li, and Zheng (2017a) propose a pre-averaging estimator of volatility that is robust to

dependent noises. Similarly, Varneskov (2016) proposes a flat-top realized kernel. Both esti-

mators depend on three tuning parameters. By contrast, Da and Xiu (2017) develop an exten-

sion of the likelihood estimator, which is tuning-free barring order selection. Related work

that discusses general noise processes also include Aı̈t-Sahalia, Mykland, and Zhang (2005);

Aı̈t-Sahalia, Mykland, and Zhang (2011); Kalnina and Linton (2008); Bandi and Russell

(2008); Hautsch and Podolskij (2013); Bibinger et al. (2015); and Li, Liu, and Xiu (2017).

Professor Jacod has developed many other refinements to the theory of volatility estima-

tion, including the robustness to jumps, and robustness to irregular sampling schemes, etc.

For reason of space, we do not discuss these important contributions here, but refer the

readers to Jacod and Protter (2012) and Aı̈t-Sahalia and Jacod (2014) for more details.
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2 Efficient Estimation of Integrated Volatility Functionals

Besides estimating volatility, Jacod (1994) considered general estimators formed as the

Riemann sum of nonlinear transformations of normalized returns, namely,

Vn gð Þ � Dn

XT=Dn½ �

i¼1

g
Dn

i Xffiffiffiffiffiffi
Dn

p
� �

: (2.1)

Heuristically, because of the approximate local Gaussianity of Brownian martingales, the

normalized returns Dn
i X=

ffiffiffiffiffiffi
Dn

p� �
i�1

form approximately an i.n.i.d. array with marginal dis-

tribution N 0; c i�1ð ÞDn

� �
. Under this heuristic, one can see that

Vn gð Þ!P
ðT

0

q cs; gð Þds; (2.2)

where the mapping c7!q c; gð Þ is defined as the expectation of g N 0; cð Þð Þ.
The limiting variable in Equation (2.2) forms an integrated volatility functional for the

nonlinear transform c 7!q c; gð Þ. One class of example is with g xð Þ ¼ jxjp which corresponds

to q c; gð Þ ¼ mpcp=2 for some constant mp. The resulting functionals are integrated volatility

polynomials. Another example is considered by Todorov and Tauchen (2012) with

g xð Þ ¼ cos
ffiffiffiffiffiffi
2u
p

x
� �

. The associated estimator Vn gð Þ is the real part of the empirical charac-

teristic function of the high-frequency returns. Its limit is given by

ðT

0

exp �ucsð Þds, that is,

the Laplace transform of the volatility path.

The estimator Vn gð Þ, however, puts implicit restrictions on the type of integrated volatil-

ity functionals that can be estimated. Indeed, the nonlinear transform needs to have the

form q �; gð Þ. A further question is whether estimators can be constructed for general inte-

grated volatility functionals with the form

S hð Þ ¼
ðT

0

h csð Þds

for a large class of test functions h �ð Þ.
A natural approach is to consider a plug-in estimator by replacing the latent volatility

path with a nonparametric estimator for it. One of such nonparametric estimator can be

formed by “localizing” the RV estimator over a “short (i.e., asymptotically shrinking)”

time window. More generally, one can consider kernel-based nonparametric estimators for

the spot volatility process (Kristensen, 2010). With ĉs denoting the estimator of cs, the

plug-in estimator is formed as

Ŝ hð Þ ¼
ðT

0

h ĉsð Þds:

Under mild regularity conditions, Ŝ hð Þ is a consistent estimator for S(h).

In order to make inference, we need central limit theorems for characterizing the asymptotic

distributions of these estimators. This higher-order calculation depends crucially on assumptions

on the smoothness of the volatility process. It is instructive to put some additional structures on
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the plug-in estimator. To fix idea, suppose that the nonparametric estimator ĉs is piece-wise

constant on local windows of length knDn. Then, Ŝ hð Þ can be written as a Riemann sum

Ŝ hð Þ ¼ knDn

XT= knDnð Þ½ �

i¼0

h ĉiDn
ð Þ: (2.3)

By a second-order expansion,

Ŝ hð Þ � knDn

XT=knDn½ �

i¼0

h ciDn
ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Leading term

þ knDn

XT=knDn½ �

i¼0

@h ciDn
ð Þ ĉiDn

� ciDn
ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Central limit theorem term

þ knDn

2

XT=knDn½ �

i¼0

@2h ciDn
ð Þ ĉiDn

� ciDn
ð Þ2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nonlinearity bias term

:

Kristensen (2010) considers a setting in which the volatility process has smooth (at least dif-

ferentiable) sample paths. When the volatility path is smooth, it can be recovered at a rela-

tively fast rate of convergence via kernel-based estimators. By properly choosing the

bandwidth parameter in the spot volatility estimation, the nonlinearity bias term can be

made asymptotically negligible. A central limit theorem for Ŝn hð Þ is then driven by the sam-

pling error in the spot volatility estimation through the second term on the right hand of

the above display.

However, volatility paths in typical stochastic volatility models are generally not very

smooth. For example, in Heston’s model the volatility path is non-differentiable because it

is driven by a Brownian motion. More generally, volatility can also “jump” in response to

major news arrivals, rendering its paths discontinuous. These realistic features of stochastic

volatility set a n1=4 upper bound for the rate of convergence of the spot volatility estimator.

As a result, the nonlinearity bias term is of (sharp) order Op n�1=2
� �

and, hence, is no longer

negligible for deriving a central limit theorem.

This complication is addressed in several recent work. Jacod and Rosenbaum (2013)

propose a bias-correction for the “raw” estimator as follows:

Ŝ hð Þ � 1

kn
B̂n hð Þ; (2.4)

where the correction term B̂n hð Þ is given by

B̂n hð Þ ¼ knDn

XT=knDn½ �

i¼1

@2h c i�1ð ÞDn

� �
ĉ2

i�1ð ÞDn
: (2.5)

Jacod and Rosenbaum (2013) show that this correction effectively eliminates the nonlinear-

ity bias and the resulted bias-corrected estimator admits a feasible central limit theorem.
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Compared with the estimator (2.1), the plug-in estimator (2.4) can be used to make

inference for a much larger class of test functions. More precisely, Jacod and Rosenbaum

(2013) allow for a class of test functions that are C3 (i.e., three-time continuously differen-

tiable) with polynomial growth. The latter condition means that the test function h is

bounded by a polynomial function near zero and infinity. This condition is restrictive for

empirical applications but it turns out to be a technical one that can be relaxed by using the

spatial localization argument later developed in Li, Todorov, and Tauchen (2016a).

Inference tools for integrated volatility functionals with general C3 test functions are now

available in the arsenal of financial econometricians. Using these tools, Aı̈t-Sahalia and Xiu

(2015) propose principal component analysis of high-frequency data; Li, Todorov, and

Tauchen (2016b) estimate volatility functional dependencies; and Kalnina and Xiu (2017)

estimate the leverage effect. Whether the class of “admissible” functions can be further

extended is an interesting open question.

Besides accommodating a larger class of test functions, an additional advantage of the

bias-corrected plug-in estimator (2.4) is that it is semiparametrically efficient. In particular,

its asymptotic variance is generally strictly smaller than that of Equation (2.2).

Semiparametric efficiency is the relevant notion of efficiency in this type of settings because

we are interested in estimating a finite-dimensional quantity (i.e., the integrated volatility

functional), without making parametric assumptions on the data generating process. We

refer the readers to Bickel et al. (1998) for general discussions on semiparametric efficiency.

Roughly speaking, the semiparametric efficiency bound depicts the best estimation accu-

racy in the “worst-case” parametric submodel. In some specific settings, Clément, Delattre,

and Gloter (2013) and Renault, Sarisoy, and Werker (2016) have established the semipara-

metric efficiency bound for estimating integrated volatility functionals, which are attained

by the estimator (2.4).

As discussed above, the bias-corrected estimator (2.4) has both broad scope in applica-

tions and high statistical efficiency. That said, the bias correction can be difficult to

calculate in multivariate applications because one needs to calculate a large number of

second-order derivatives (see Equation (2.5)). In a recent work, Li, Liu and Xiu (2017) pro-

pose an alternative way of bias correction using multiscale jackknife. The idea is to form

“raw” estimators using multiple local windows (i.e., kn) for the spot volatility estimation.

Then, by properly forming a linear combination of these raw estimators, the bias terms can

be implicitly eliminated. This jackknife estimator also attains the semiparametric efficiency

bound, but is typically much easier to implement in practice. In addition, Li, Liu and Xiu

(2017) show that the jackknife estimator is able to correct biases resulted from volatility

jumps and volatility-of-volatility, which are not explicitly accounted for by the bias-

correction in Equation (2.4). As a result, the jackknife estimator is valid for a broader range

of choices of bandwidth parameters, which shows a type of robustness. The jackknife esti-

mator shall provide an easy-to-implement alternative for making inference of general inte-

grated volatility functionals.

From the above discussion, we see that much progress on the inference for integrated

volatility functionals has been made since the seminal work of Jacod (1994). This progress

not only deepens our understanding about the statistics in volatility estimation, but also

offers new opportunities for various econometric applications, to which we now turn.
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3 Semiparametric Estimation Based on Integrated Moments

In this section, we discuss an estimation strategy based on integrated moment conditions.

Since the seminal work of Hansen (1982), moment-based estimation has been the standard

tool in various areas of applied econometrics. Nonetheless, the high-frequency economet-

rics literature has been considered “nonstandard.” The fundamental reason is that the

“population” quantities in the high-frequency infill asymptotic setting are sample paths of

economic variables, instead of their joint distributions as in conventional statistical settings.

Apparently, the lack of the concept of “moments” in the high-frequency setting restricts the

use of GMM.

We argue that this conceptual gap may be reconciled by viewing quantities like the inte-

grated volatility functional as a type of moment. In fact, as discussed in Li, Todorov, and

Tauchen (2013), the integral

ðT

0

h csð Þds is the moment of the function h �ð Þ under the occu-

pation measure induced by the process c over the time interval 0;T½ �. More precisely, the

occupation measure F evaluated on a measurable set B is defined as the amount of time

when the process c stay in the set B, that is,

F Bð Þ ¼
ðT

0

1fcs 2 Bgds:

It is easy to see that

ðT

0

h csð Þds ¼
ð

h xð ÞF dxð Þ:

From this viewpoint, the integrated volatility functional is simply a moment under the occu-

pation measure. As in moment-based estimation problems, integrated volatility functionals

(or occupational moments more generally) can be used to estimate model parameters. In

order to streamline ideas, we start with the simplest example that concerns the estimation

of beta. We consider the following bivariate model of log asset returns:

dYt ¼ btdXt þ dY 0t;

where dXt denotes the diffusive market returns, dYt is the stock return, and d ~Y t is an idio-

syncratic component that is orthogonal to the market returns. The spot beta bt can be iden-

tified from the covariance matrix process as

bt ¼ cXY;t=cXX;t;

where cXX;t (respectively, cXY;t) is the spot variance of X (respectively, covariance between

X and Y), respectively. In empirical asset pricing, it is often implicitly assumed that the beta

is constant over a certain sample period. This amounts to impose a parametric restriction

on the spot covariance matrix ct, namely, for some constant b,

cXY;t � bc XX;t ¼ 0; for all t 2 0;T½ �: (3.1)

While this restriction is unlikely to hold over long samples, it may provide an adequate

description of the relationship between asset returns when the sample span T is relatively

short.
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The model restriction (3.1) apparently concerns stochastic processes. However, we

stress that it can also be understood as an instantaneous conditional moment restriction.

Indeed, the (unobserved) spot covariance matrix ct is exactly the instantaneous second

moment of the return vector dYt;dXtð Þ. Analogously to classic moment-based estimation

problems, we can “instrument” Equation (3.1) so as to obtain unconditional (occupational)

moment conditions. That is, for any process wt, Equation (3.1) implies the following inte-

grated moment condition:

ðT

0

cXY;s � bcXX;s

� �
wsds ¼ 0; (3.2)

which yields

b ¼

ðT

0

cXY;s wsds

ðT

0

cXX;s wsds

: (3.3)

Of course, if the model (3.1) is indeed correctly specified, Equation (3.3) defined with dif-

ferent weights should all coincide with the true beta. However, under misspecification, the

expression in Equation (3.3) should be interpreted as a pseudo-true parameter. Regardless

of whether the model is correctly specified or not, the (pseudo) true parameter is a transfor-

mation of integrated volatility functional. Hence, the limit theory described in the previous

section can be used to make inference for it.

The above framework follows closely the econometric tradition in the GMM literature.

An immediate payoff of this conceptualization is that it offers some econometric discipline

for thinking about the notion of “integrated beta.” For example, if the weight function is

wt ¼ 1, then the pseudo-true beta parameter is

b 1ð Þ ¼

ðT

0

cXY;s ds

ðT

0

cXX;s ds

; (3.4)

which is the integrated beta proposed by Barndorff-Nielsen and Shephard (2004). On the

other hand, if we set the weight wt ¼ c�1
XX;t, then Equation (3.3) becomes

b c�1
XX

� �
¼ 1

T

ðT

0

bsds: (3.5)

The two versions of “integrated betas” defined in Equations (3.4) and (3.5) both have some

intuitive appeal. Econometrically, they can both be interpreted as pseudo-true parameters

in the constant beta model, but associated with different instruments. Generally speaking,

the estimators associated with these pseudo-true parameters are not directly comparable

because they estimate different quantities. That said, it is meaningful to compare their stat-

istical efficiency if the constant beta model indeed holds. In that case, it turns out that the
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above ad hoc choices of weights are not efficient. As shown in Li, Todorov, and Tauchen

(2016a), the optimal weight for estimating the constant beta is

wt ¼ cYY;t � c2
XY;t=cXX;t

� 	�1
;

that is, the inverse of the spot idiosyncratic variance of asset Y. This is reminiscent of

Robinson’s efficient estimation under unknown form of heteroskedasticity (Robinson,

1987). The resulting estimator is not only semiparametrically efficient, but actually adap-

tive with respect to the nonparametric nuisance process cXX.

The above discussion highlights the importance of knowing whether certain parametric

assumption holds or not, because such knowledge dictates how to interpret estimators and

how to construct efficient estimators that fully exploit the information content underlying

the model restrictions. In classic moment-based estimation problems, specification test for

conditional moment equalities can be carried out by examining whether a continuum of

unconditional moment conditions hold or not (Bierens, 1982). The same idea can be imple-

mented in the high-frequency setting. Indeed, it can be shown that the constant beta restric-

tion (3.1) holds if and only if

ðT

0

cXY;s � bcXX;s

� �
w ssð Þds ¼ 0;

for all s in a bounded interval with positive length for some weight function w �ð Þ that is

properly chosen [e.g., w ssð Þ ¼ cos ssð Þ þ sin ssð Þ]. This amounts to making inference for a

continuum of integrated functionals associated with the class of functions

hb;s cð Þ ¼ cXY � bcXXð Þw ssð Þ:

Li, Todorov, and Tauchen (2016b) develop an empirical process theory that extends the

finite-dimensional central limit theory of Jacod and Rosenbaum (2013) and Li, Todorov,

and Tauchen (2016a) so as to address this functional inference problem. The above strategy

for specification testing is clearly not restricted for testing constant beta, but can be applied

to test any parametric restrictions on a multivariate covariance process; see Li, Todorov,

and Tauchen (2016b) for the general discussion.

So far, we have considered applications that concern the spot covariance matrix process

itself. However, economic theory often have implications on the relationship between price

volatility and other economic variables. One example is the classic study of the volume–vol-

atility relationship such as the mixed distribution hypothesis (MDH); see Clark (1973) and

Tauchen and Pitts (1983). Under the MDH, both the volume and return variance are driven

by a latent information flow, which results in a linear volume–variance relationship.

Another example is from option pricing, in which a pricing theory depicts a mapping from

state variables (such as stock price and volatility) to option prices.

These applications can be cast into an econometric model with the form

YiDn
¼ f ZiDn

; ciDn
; hð Þ þ �iDn

;

where YiDn
denotes an economic variable such as volume or option price, the function f

depicts a relationship implied by the economic theory which is known up to the parameter

h, Z is some state variable, and � is a disturbance term (e.g., option pricing error or noise

trading volume). The econometric inference is about making inference for h. Like in the
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GMM, it is natural to construct estimators based on instrumented sample moments. With

an instrument of the form w ZiDn
; ciDn

; hð Þ for some smooth function w �ð Þ, the “raw” sample

moment condition is given by

Gn hð Þ ¼ Dn

XT=Dn½ �

i¼0

YiDn
� f ZiDn

; ĉiDn
; hð Þð Þw ZiDn

; ĉiDn
; hð Þ;

where we have replaced the latent spot covariance matrix process c with its nonparametric

estimate. This sample moment condition is more complicated than the estimator (2.3)

because it also involves the variables YiDn
and ZiDn

, where the former is modeled as a noisy

semimartingale. Moreover, for the same reason discussed in Section 2, we also need to cor-

rect a nonlinearity bias that arises from the estimation of the spot covariance matrix by

using the bias-corrected moment condition given by

G�n � Gn hð Þ � Dn

kn

XT=Dn½ �

i¼0

@2
c YiDn

� f ZiDn
; ĉiDn

; hð Þð Þw ZiDn
; ĉiDn

; hð Þ½ �ĉ2
iDn
:

Based on the bias-corrected moment condition, the parameter h can then be estimated like

in the GMM via the following minimization:

ĥn ¼ argmin
h

G�n hð Þ>WnG�n hð Þ:

In Li and Xiu (2016), we propose the above estimator for h and showed that ĥn is asymp-

totically mixed Gaussian. We also propose a Bierens-type specification test in the spirit of

the constant-beta test discussed above.

4 Concluding Remarks

The important work of Jacod (1994) established the inference theory for a large class of inte-

grated volatility functionals and opened the door for a lot interesting research. Much progress

has been made in the past 20 years. As discussed above, integrated volatility functionals is

not only useful for measuring various aspect of volatility risk, but can also serve as integrated

(or occupational) moment conditions for estimating economic models and testing economic

theory. Empirical applications using these novel tools should shed new light on classic prob-

lems like the volume–volatility relationship, option pricing, or perhaps more excitingly, new

empirical questions about which high-frequency data are informative. Besides the many

opportunities for new empirical research, much theoretical work remains to be done. This

includes the efficient estimation of integrated volatility functionals for noisy high-frequency

data, high-dimensional factor models, semiparametrically efficient estimation in empirical

finance models, and bootstrap inference for such procedures, to name but a few.
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