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A Consistent Specification Test for

Dynamic Quantile Models*

Peter Horvath� Jia Li� Zhipeng Liao§ Andrew J. Patton¶
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Abstract

Correct specification of a conditional quantile model implies that a particular con-

ditional moment is equal to zero. We nonparametrically estimate the conditional

moment function via series regression and test whether it is identically zero using uni-

form functional inference. Our approach is theoretically justified via a strong Gaussian

approximation for statistics of growing dimensions in a general time series setting. We

propose a novel bootstrap method in this nonstandard context and show that it sig-

nificantly outperforms the benchmark asymptotic approximation in finite samples,

especially for tail quantiles such as Value-at-Risk (VaR). We use the proposed new

test to study the VaR and CoVaR (Adrian and Brunnermeier (2016)) of a collection

of US financial institutions.
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1 Introduction

Quantile models allow the researcher to learn about the location of a given variable, when

the probability level of the quantile is near one half, or about the tails of the variable,

when the probability level is near zero or one. In the former case, quantiles represent a

robust alternative to the mean, reducing the sensitivity to a few large observations. In the

latter case, quantiles are used to measure the risk of a variable. Given their many uses,

the literature on quantile models, which began with Koenker and Basset (1978), is now

voluminous; see Koenker (2005) and Komunjer (2013) for recent reviews. Quantiles that lie

in the tails of profit and loss distributions are usually given the moniker “Value-at-Risk”

(VaR). This risk measure is at the center of the Basel accords (Basel Committee (2010)) on

banking supervision, which guide regulatory policies in 28 countries or jurisdictions around

the world. Moreover, trading desks and regulators monitor daily risk exposures using VaR,

and it has become a mainstay of the risk management industry; see McNeil, Frey, and

Embrechts (2015) for example. The results presented in this paper apply to all dynamic

quantile models, but they are particularly relevant for dynamic VaR models.

The use of parametric models for conditional quantiles naturally leads to a need for

specification tests for these models, as a misspecified model can lead to erroneous policy

decisions or suboptimal predictions. Denoting the variable of interest Yt+1 and the informa-

tion set Ft, the conditional q-quantile of Yt+1 given Ft, henceforth denoted as ft, satisfies

P (Yt+1 ≤ ft|Ft) = q, which is equivalent to the conditional moment restriction:

E
[
1{Yt+1≤ft} − q|Ft

]
= 0.

In applications, researchers are often interested in some specific conditioning variable Xt,

which may be a vector, in the information set. For any Xt adapted to Ft, the above equation

implies:

E
[
1{Yt+1≤ft} − q|Xt = x

]
= 0, for all x ∈ X , (1.1)
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where X is the support of Xt. A consistent specification test can be obtained by estimat-

ing the conditional expectation function on the left-hand side of equation (1.1) and testing

whether it is identically zero. This inference problem is nontrivial because it concerns the

global, instead of local, behavior of the conditional expectation function. In a recent pa-

per, Li and Liao (2020) propose a uniform nonparametric inference method based on series

regression for general time-series data. Under this approach, one can estimate the condi-

tional moment function by regressing 1{Yt+1≤ft} − q on an asymptotically growing number

of approximating functions of Xt. Because of the growing dimension, the asymptotic prob-

lem is non-Donsker, that is, the functional estimator does not admit a functional central

limit theorem. The approach of Li and Liao (2020) instead relies on a strong Gaussian

approximation theory which can be used to characterize the asymptotic properties of the

test statistic; also see Chernozhukov, Lee, and Rosen (2013) and Belloni, Chernozhukov,

Chetverikov, and Kato (2015) for applications of the strong approximation technique in

microeconometric contexts.

Two theoretical extensions of existing work are required for the analysis in this paper.

Firstly, the inference procedure proposed by Li and Liao (2020) is directly based on an

asymptotic Gaussian approximation. However in a realistically calibrated Monte Carlo

experiment, see Section 3, we find that such an asymptotic approximation works well only for

quantiles near the middle of the distribution, while it suffers from substantial size distortion

for quantiles in the tails. As VaR-type applications often involve probability levels of 95% or

above, this is problematic. We overcome this issue by proposing a novel bootstrap method

for computing the critical values for our test statistic, and we establish its asymptotic

validity. This bootstrap theory is nonstandard because it concerns uniform inference on

the nonparametric series estimator, which appears to be new in time-series analysis; in

particular, the non-Donsker issue in the original problem also manifests in the “bootstrap

world.” The proposed bootstrap procedure is easy to implement, and our Monte Carlo

analysis shows that the bootstrap has satisfactory size control in realistic scenarios.

The second theoretical extension required for our analysis pertains to the presence of

generated variables. Firstly, note that the variable 1{Yt+1≤ft} − q in the conditional mo-

ment restriction (1.1) depends in a non-differentiable way on estimated parameters through

the conditional quantile ft. To address this, we provide sufficient conditions under which

the preliminary estimation error is asymptotically negligible for our nonparametric testing
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problem. Intuitively, the estimated parameters typically converge at a parametric rate, and

hence, the resulting error is negligible compared with the statistical noise in our uniform

nonparametric inference. Although the intuition is straightforward, the formal theoretical

justification is nontrivial due to the technical interaction between the nonsmoothness of

the indicator function and the growing dimension of the series regressors. We carry out

the theoretical analysis by developing a bracketing-based chaining argument in the growing-

dimensional time-series setting, which is new to the literature and notably more complicated

than the theory presented in Li and Liao (2020) for smooth transformations.1 In addition,

we allow the conditioning variable Xt to be a generated variable (e.g., volatility estimates

from GARCH models, or the quantile estimate itself), which is not considered in Li and

Liao (2020), either. This latter problem is distinct from the presence of estimation error in

ft because the generated Xt variable enters into a growing number of regressors in the series

estimation.

The third contribution of this paper, beyond the theoretical contributions described

above, is our empirical analysis of the well-known CoVaR originally proposed by Adrian

and Brunnermeier (2016). CoVaR is a measure of the systemic risk of a firm, obtained

via quantile regressions of returns on a firm and a market index. We apply the proposed

new test to the models presented in Adrian and Brunnermeier (2016) and draw two main

conclusions. Firstly, we find that the conditional quantile specification for the market loss is

broadly supported by our tests, while the specification for individual firms’ losses appears to

have room for improvement. Secondly, we find that the critical covariate in the CoVaR spec-

ification is the market volatility measure; the remaining six covariates considered by Adrian

and Brunnermeier (2016) do not appear to affect the results of our model specification tests.

Given their widespread use, numerous methods for testing conditional quantile restric-

tions in dynamic models have been proposed in the literature; see Komunjer (2013) for a

summary. Specifically, Christoffersen (1998) notes that if the quantile model is correct, then

the indicator variable 1{Yt+1≤ft} is i.i.d. Bernoulli with success probability q. He proposes a

test of this implication against the alternative that the indicator follows a first-order Markov

process. Engle and Manganelli (2004) instead use a linear regression to test whether the

indicator variable is predictable using Ft-measurable instruments. Both of these approaches

1Our analysis is also distinct from prior work in microeconometric settings, because the latter often relies

on symmetrization-based empirical process theory that is specific to the i.i.d. setting.
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have power against specific parametric alternatives, and can be thought of as testing a fixed

number of unconditional moments implied by the conditional moment restriction (1.1). Our

nonparametric method complements these parametric approaches by permitting the detec-

tion of a priori unknown forms of model misspecification. It is also possible to carry out a

nonparametric test using Bierens’s test; see, for example, Bierens (1982, 1990), Bierens and

Ploberger (1997), Bierens and Ginther (2001), and Escanciano and Velasco (2010). Our test

is distinct from the Bierens test because we directly examine the conditional expectation

function estimated by series regression, whereas the Bierens test examines the (Donsker-

type) empirical process of a continuum of instrumented unconditional moments. These

two approaches are generally deemed complementary to each other; see, for example, the

discussion in Chernozhukov, Lee, and Rosen (2013).

The rest of the paper is organized as follows. Section 2 describes our specification test

and establishes its theoretical properties. Section 3 reports the finite-sample properties of

the test via Monte Carlo experiments. Section 4 provides an empirical illustration of the

proposed method. Section 5 concludes. The Appendix contains all proofs, with technical

lemmas collected in the Online Supplemental Appendix.

2 A consistent specification test for dynamic quantile

models

2.1 The setting and motivating examples

Consider a univariate time series (Yt)t≥0 adapted to a filtration (Ft)t≥0. We focus on

the conditional q-quantile of Yt+1 given Ft-information for some q ∈ (0, 1), denoted as

Qq (Yt+1|Ft). Our econometric goal is to nonparametrically test whether a candidate model

for Qq (Yt+1|Ft) is correctly specified. Arguably the most prominent application of condi-

tional quantile models is estimating VaR and related quantities (e.g., expected shortfall). In

that context, Yt is the loss of an asset portfolio and the conditional quantile Qq (Yt+1|Ft) is

the one-period-ahead VaR at confidence level q. Below, we focus our discussion on the VaR

for ease of exposition, while noting that our theory is applicable for any generic conditional

quantile model.
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The candidate VaR model involves a process ft (θ), where θ is a finite-dimensional param-

eter taking values in Rdθ , such that for a given θ the model reports ft(θ) as the Ft-conditional

q-quantile. The VaR model is completed by the empirical researcher’s choice of an estimator

θ̂n, yielding ft(θ̂n) as the estimated VaR. We call the candidate VaR model, summarized by

the pair (ft(·), θ̂n) correctly specified if

Qq (Yt+1|Ft) = ft (θ?) , for all t ≥ 1, (2.1)

where θ? is the probability limit of θ̂n.2 To anticipate results below, we note that we are

agnostic about how θ̂n is constructed: for example, it may be computed via quantile re-

gressions, GMM, maximum likelihood, factor models, or even Bayesian methods. Instead,

we only assume that θ̂n approaches the limit θ? in large samples with n1/2-rate of conver-

gence. In our asymptotic analysis, this formalizes the notion that the estimation of this

finite-dimensional parameter is “relatively easy” in that it converges at the parametric rate.

The following two examples further clarify the empirical context.

Example 1 (GARCH VaR). VaR estimation is often based on volatility models such as

GARCH. For example, in a Gaussian GARCH(1,1) model, asset return Yt and its volatility

vt follow

Yt+1 = vt+1εt+1, v2
t+1 = ω + βv2

t + γY 2
t , εt ∼ i.i.d. N (0, 1) .

We collect the model parameters by setting θ = (ω, β, γ). Given θ, the volatility can be

computed subsequently, which we denote by vt+1 (θ). The conditional q-quantile is given by

ft (θ) = zqvt+1 (θ), where zq is the q-quantile of the standard normal distribution. �

Example 2 (CoVaR). Adrian and Brunnermeier (2016) propose a CoVaR model to mea-

sure systematic risk of financial institutions. The key component is a linear conditional

quantile model of the market portfolio’s loss given the loss of a financial firm and other

macroeconomic states, which is given by

Qq(Y
market
t+1 |Ct, Y firm

t+1 ) = α + β>Ct + γY firm
t+1 ,

2Note that the VaR component of a given model can be correctly specified in the sense of equation (2.1)

even if the complete model is misspecified. For example, a researcher may construct a fully parametric model

that misspecifies some part of the joint distribution of the data, but is correct for the conditional quantile. In

this scenario, if θ̂n is the maximum likelihood estimator, then θ? is the corresponding pseudo-true parameter

from quasi-maximum likelihood estimation (see Komunjer (2005)).
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where Y market
t+1 and Y firm

t+1 are the losses of the market portfolio and the firm, respectively,

and Ct collects risk-relevant covariates such as the TED spread and market volatility. It

is useful to note that, in this example, the conditioning information set Ft contains not

only the predetermined macroeconomic states (i.e., Ct) but also the contemporaneous firm

asset loss (i.e., Y firm
t+1 ), although the information set Ft is indexed by t under our notational

convention.3 �

2.2 Testing VaR implied conditional moment restrictions

The conditional quantile restriction (2.1) can be equivalently written as a conditional mo-

ment restriction as follows:

E
[
Z?
t+1|Ft

]
= 0, where Z?

t+1 ≡ 1{Yt+1≤ft(θ?)} − q. (2.2)

To make further progress, we consider a finite-dimensional Ft-adapted “instrument” process

X?
t taking values in a compact set X . Equation (2.2) then implies

h (x) = 0, for all x ∈ X , (2.3)

where h (x) = E[Z?
t+1|X?

t = x] denotes the conditional expectation function of Z?
t+1 given

X?
t . We note that Z?

t+1 is not directly observable because it depends on the pseudo-true

parameter θ?. As suggested by our notation, we also allow X?
t to (possibly) depend on θ?.

We propose a nonparametric test that takes (2.3) as the null hypothesis. Note that (2.3)

is generally an implication of (2.2), because the σ-field spanned by X?
t is a subset of Ft. But

there is an interesting exception: if the dynamic model is Markovian with state variable X?
t ,

as is often assumed in economic models, then these two conditions coincide.

Looking at the condition (2.3), we see clearly that the testing problem is functional

in nature, because it concerns the global, instead of local, behavior of the h (·) function.

In other words, the inference must be uniform across all x ∈ X . The difficulty of doing

so stems from the fact that it is a non-Donsker problem (for which the conventional weak-

convergence-based inference is not applicable). In a recent paper, Li and Liao (2020) develop

3This convention is adopted to emphasize the fact that the dependent variable, say Y market
t+1 , can enter

Ft only through its lagged values, that is, Y market
s for s ≤ t. Otherwise, if Ft were also spanned by Y market

t+1 ,

the conditional quantile model would be degenerate.
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a Yurinskii-type strong approximation to address this issue in a general time series context.4

Under their approach, we can nonparametrically regress Z?
t+1 on the conditioning variable

X?
t using the series method, and then invoke the strong approximation theory to show

that the nonparametric estimation error function can be approximated, or “coupled,” by

a diverging sequence of Gaussian processes. The Gaussian approximation then permits

feasible uniform inference.

The problem of evaluating conditional quantile models leads to two complications that

are not considered in Li and Liao (2020). Firstly, the variables
(
Z?
t+1, X

?
t

)
depend on θ?,

which needs to be replaced by θ̂n in a feasible procedure. The technical challenge here is that

Z?
t+1 depends on θ? in a nonsmooth way because of the presence of the indicator function;

this issue is further complicated by the fact that the nonparametric series regression involves

a growing number of series approximation functions.

Secondly, the finite-sample performance of the strong Gaussian coupling is found to be

poor for quantiles in the tails (details are presented in the next section). VaR and related

quantities, like CoVaR, invariably focus on quantiles with q ≥ 0.95, and so an alternative

inference procedure is needed. We propose a novel bootstrap procedure to compute critical

values, and justify its theoretical validity in the current nonstandard (non-Donsker) context

for uniform functional inference.

2.3 The test and its asymptotic properties

We now provide details on our test and prove its asymptotic validity, namely that it controls

size under the null hypothesis and is consistent against fixed alternatives. We first define

the test statistic. To capture more explicitly how the (Z?
t+1, X

?
t ) variables are related to the

pseudo-true parameter θ?, we introduce two functions, Zt+1 (θ) and Xt (θ), such that

Z?
t+1 = Zt+1(θ?), X?

t = Xt (θ?) . (2.4)

4Yurinskii coupling has also been used by Chernozhukov, Lee, and Rosen (2013) and Belloni, Cher-

nozhukov, Chetverikov, and Kato (2015) for constructing uniform inference in a microeconometric context

with i.i.d. data.
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Note that Zt+1 (θ) = 1{Yt+1≤ft(θ)} − q, while the form of Xt (θ) depends on the specific

application. As mentioned above, we assume that θ̂n is a n1/2-consistent estimator for θ?.5

The feasible analogues of the quantities in (2.4) are then given by

Ẑt+1 ≡ Zt+1(θ̂n), X̂t ≡ Xt(θ̂n).

We nonparametrically regress Ẑt+1 on X̂t using the series method. To do so, we con-

sider mn approximating basis functions P (x) = (p1 (x) , . . . , pmn (x))>. By convention, we

assume that the constant term is always included by setting p1 (·) = 1. The nonparametric

interpretation of the series estimation relies on taking mn → ∞ so that the conditional

expectation function h (·) can be approximated sufficiently well by a linear combination of

the approximating functions. Commonly-used basis functions include polynomials, Fourier

series, splines, and wavelets; see Chen (2007) for additional details.

We conduct least-squares regression of Ẑt+1 on P (X̂t) and obtain the regression coefficient

as

b̂n ≡

(
n∑
t=1

P (X̂t)P (X̂t)
>

)−1( n∑
t=1

P (X̂t)Ẑt+1

)
.

The estimator of the conditional expectation function h (·) is ĥn (·) ≡ P (·)> b̂n. The associ-

ated standard error function is estimated by

σ̂n (·) ≡ (P (·)> Σ̂nP (·))1/2,

where, with ût ≡ Ẑt+1 − ĥn(X̂t), we set

Q̂n ≡ n−1

n∑
t=1

P (X̂t)P (X̂t)
>, Ân ≡ n−1

n∑
t=1

û2
tP (X̂t)P (X̂t)

>, Σ̂n ≡ Q̂−1
n ÂnQ̂

−1
n .

5For in-sample specification tests, the θ̂n estimator is typically estimated using the full sample with size

n. This framework also accommodates (pseudo) “out-of-sample” test when θ̂n is estimated using a fixed

window provided that the size of the estimation sample is nondegenerate relative to n. If the estimation is

performed under a recursive or rolling scheme, we would have a more complicated situation with a sequence

of estimators, say (θ̂n,t)1≤t≤n. In that case, we need to strengthen the rate requirement to a uniform version,

that is, max1≤t≤n ‖θ̂n,t − θ?‖ = Op(n−1/2). This condition may be justified using a functional central limit

theorem for the estimator process θ̂n,bn ·c for the recursive setting, as well as the rolling setting provided

that the rolling window size is nondegenerate with respect to n. If the rolling window is of fixed size as

considered in Giacomini and White (2006), one may follow that prior work and treat the estimates for θ as

an observed sequence, and the issue of estimation error becomes irrelevant for the asymptotic inference.
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Finally, we define the “sup-t” test statistic, T̂n, as

T̂n ≡ sup
x∈X

n1/2
∣∣∣ĥn (x)

∣∣∣
σ̂n (x)

.

The first part of our analysis is to establish a strong approximation for the sup-t statistic

T̂n using the supremum of a Gaussian process. In the infeasible case with θ? known, such an

approximation could be obtained by directly using the theory of Li and Liao (2020). The

key complication here is to analyze the effect of replacing θ? with the estimator θ̂n. We aim

to provide sufficient conditions under which such an effect is asymptotically negligible. The

theoretical message is easy to understand. Intuitively, the estimation error of the finite-

dimensional estimator θ̂n is relatively small (as it converges at the parametric n1/2-rate)

compared with the statistical noise in the second-stage nonparametric inference with slower

rate of convergence. This theory justifies a least-squares procedure that is very easy to

implement, and sets a useful benchmark for further refinement in future work.

The technical formalization of this simple intuition turns out to be nontrivial. The

main source of complication is that Z?
t+1 depends on θ? in a nonsmooth manner. In prior

literature on M-estimation and GMM, the standard approach for addressing the lack of

smoothness relies on the concept of stochastic equicontinuity from empirical process theory.

Under stochastic equicontinuity, the nonsmooth sample moment function can be effectively

replaced with its limiting version, which is typically smooth (i.e., twice differentiable); see,

for example, Andrews (1994) and van der Vaart (1998).

This “off-the-shelf” empirical-process approach, however, is insufficient for our analysis.

The reason is that our nonparametric series estimation involves a growing number of re-

gressors (i.e., mn → ∞). Consequently, the behavior of the regression coefficient b̂n relies

on a growing number of moments that are nonsmooth in the θ parameter. While the usual

stochastic equicontinuity argument can be used to deal with a fixed number of nonsmooth

sample moments, it does not guarantee a uniform approximation when the dimension grows

to infinity, which is exactly the technical challenge here. To address this issue, we start

from first principles and use a bracketing-based chaining argument to characterize the local

modulus of continuity of a growing-dimensional empirical process for time series data.6 This

6In microeconometric settings with i.i.d. data, empirical-process arguments are mostly based on sym-

metrization. Symmetrization relies crucially on the independence assumption, and is not applicable in our

time-series setting.
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analysis appears to be new to the literature, and should be generally useful in future work

involving nonsmoothness and growing dimensions in time series econometrics.

We now introduce the regularity conditions for our asymptotic theory. Since θ̂n is as-

sumed to be a n1/2-consistent estimator of θ?, our analysis regarding the plug-in effect

concentrates on n−1/2-neighborhoods of θ? of the form

Bn(R) ≡ {θ ∈ Θ : n1/2 ‖θ − θ?‖ ≤ R}, for R > 0.

That is, Bn (R) is a closed ball centered at θ? with radius Rn−1/2. We denote by Ft+1|t(·)
the Ft-conditional distribution function of Yt+1, and write the Ft-conditional expectation of

Zt+1 (θ) as

Z̄t+1 (θ) ≡ E
[
1{Yt+1≤ft(θ)} − q|Ft

]
= Ft+1|t (ft (θ))− q.

In addition, let ∂θZ̄t+1 (·) denote the gradient of Z̄t+1 (·) with respect to θ, and further set

g(x) ≡ E
[
∂θZ̄t+1 (θ?) |X?

t = x
]
, ηt ≡ ∂θZ̄t+1 (θ?)− g (X?

t ) .

Assumption 1. (i) θ̂n − θ? = Op(n
−1/2); (ii) there exist some Ft-measurable variables

(Lt, LX,t) such that, for all y1, y2 ∈ R,∣∣Ft+1|t (y1)− Ft+1|t (y2)
∣∣ ≤ Lt |y1 − y2| ,

and, for any R > 0 and all θ1, θ2 ∈ Bn (R),

|ft (θ1)− ft (θ2)| ≤ Lt ‖θ1 − θ2‖ , ‖Xt(θ1)−Xt(θ2)‖ ≤ LX,t ‖θ1 − θ2‖ .

(iii) Z̄t (·) is continuously differentiable at θ? and, for some Ft-measurable variable L̄t,∣∣∣Z̄t (θ)− Z̄t (θ?)− ∂θZ̄t (θ?)> (θ − θ?)
∣∣∣ ≤ L̄t ‖θ − θ?‖2

for any θ ∈ Bn(R); (iv) Lt, LX,t, and LtLX,t are Lp-bounded for some p > 2dθ, and

∂θZ̄t (θ?) and L̄t are L2-bounded; (v) g (·) is a continuously differentiable function and, for

each j ∈ {1, . . . , dθ}, there exists γj,n ∈ Rmn such that

sup
x∈X

∣∣∣gj(x)− P (x)> γj,n

∣∣∣ = o
(
(log n)−1/2

)
;

(vi) for each j ∈ {1, . . . , dθ}, the largest eigenvalue of the matrix V ar(n−1/2
∑n

t=1 P (X?
t )ηj,t)

is bounded; (vii) supx∈X ‖P (x)‖−1 = o((log n)−1/2).
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Assumption 1 collects regularity conditions that we use to control the effect of plugging

in the θ̂n estimator. We make a few remarks on the roles that these conditions play in

our theory. Condition (i) imposes, as mentioned above, the n1/2-consistency of θ̂n; this is

quite natural for parametric (e.g., the maximum likelihood) or semiparametric (e.g., least-

squares, quantile regression, GMM, etc.) estimators typically used in practice. Conditions

(ii)-(iv) impose smoothness conditions on Ft+1|t (·), ft (·), and Xt (·) over local neighborhoods

around θ?. Based on an empirical-process type argument, we can exploit the smoothness

in Ft+1|t (·) and Z̄t+1 (θ) to bypass the issue of nonsmoothness in Zt+1 (·). Also note that

in some applications the instrument X?
t does not depend on θ?, so we can take LX,t =

0. Conditions (v) and (vi) impose additional regularities on ∂θZ̄t+1 (θ?), which in turn

measures the sensitivity of the second-stage regression with respect to the estimation error

in θ̂n. These conditions are relatively mild. Finally, condition (vii) states that the growing-

dimensional vector ‖P (x)‖ diverges no slower than (log n)1/2, which partly reflects the slower

(nonparametric) rate of convergence of the series estimator.

We also need regularity conditions for making uniform series inference in the (simpler)

infeasible setting, which requires some additional notation. The regression residual in the

infeasible case is given by

u?t ≡ Z?
t+1 − E

[
Z?
t+1|X?

t

]
= Z?

t+1 − h (X?
t ) .

We then set

Qn ≡ n−1

n∑
t=1

E
[
P (X?

t )P (X?
t )>
]
, Q̂?

n ≡ n−1

n∑
t=1

P (X?
t )P (X?

t )>,

An ≡ n−1
∑
t

E
[
(u?t )

2P (X?
t )P (X?

t )>
]
, Â?n ≡ n−1

n∑
t=1

(u?t )
2P (X?

t )P (X?
t )>.

Note that Q̂?
n and Â?n are the infeasible sample analogues of Qn and An, respectively. Below,

for any ε > 0, we denote X ⊕ε = {x+ u : x ∈ X , ‖u‖ ≤ ε}, that is, an ε-enlargement of X .7

We use ‖ · ‖S to denote the matrix spectral norm.

Assumption 2. We have (i) the function h (x) ≡ E[Z?
t+1|X?

t = x] is continuously differen-

tiable; (ii) there exist a sequence b?n of mn-dimensional vectors and real sequences ζ0,n and

7We adopt the direct sum notation because X ⊕ε is in fact the direct sum of X and a closed ball centered

at zero with radius ε.
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ζ1,n, such that (recalling the constant p > 2 from Assumption 1)
supx∈X⊕εn

∣∣∣h (x)− P (x)> b?n

∣∣∣ = O
(
n−1/2

)
,

max1≤l≤mn supx∈X⊕εn |∂jpl(x)| ≤ ζj,n, j ∈ {0, 1},
for all εn � n1/p−1/2,

and ζ0,nmnn
−1/4 + ζ0,nζ1,nmnn

−1/2 = o(1/ log n); (iii) the eigenvalues of Qn and An are

bounded from above and away from zero and An = V ar(n−1/2
∑n

t=1 P (X?
t )u?t ) has bounded

eigenvalues; (iv) ‖Q̂?
n−Qn‖S = Op (δQ,n), ‖Â?n−An‖S = Op (δA,n), and m

1/2
n

(
δQ,n + δA,n

)
=

op (1/ log n); (v) log(ζLn ) = O(log n), where ζLn ≡ supx1,x2∈X ‖P (x1)− P (x2)‖ / ‖x1 − x2‖.

The conditions in Assumption 2 are fairly standard for analyzing the series estimation.

A few remarks are in order. Condition (ii) introduces the population analogue b?n for the

regression coefficient b̂n. The existence of b?n is ensured by well-known approximation theory

(see, e.g., Chen (2007) and many references therein), and the precision of the approximation

may be stated explicitly in terms of the smoothness of the h (·) function and the dimension-

ality of X?
t . We note that the uniform bound conditions are stated over εn-enlargements

of X , which is slightly stronger than a more conventional condition stated over X . This

modification is needed here because the generated variables X̂t may take values outside X
(but they still fall in X ⊕ εn with high probability under maintained assumptions). If the

instrument X?
t does not depend on θ?, or the generated variable X̂t is restricted to take

values in X , we no longer need the enlargement, which amounts to setting εn = 0. The only

high-level requirement is condition (iv), which imposes rates of convergence for the infeasible

estimators Q̂?
n and Â?n under matrix spectral norm. These conditions can be verified using,

for example, Lemma 2.1 of Chen and Christensen (2015).

Assumption 3. Under the null hypothesis, there exists a sequence ξn of mn-dimensional

standard Gaussian random vectors such that

sup
x∈X

∣∣∣∣∣n−1/2P (x)>Q−1
n

∑n
t=1 P (X?

t )Z?
t+1

σn (x)

∣∣∣∣∣ = sup
x∈X

∣∣∣∣∣P (x)>Σ
1/2
n ξn

σn (x)

∣∣∣∣∣+ op

(
(log n)−1/2

)
, (2.5)

where Σn ≡ Q−1
n AnQ

−1
n and σn (x) ≡ (P (x)>ΣnP (x))1/2.

Assumption 3 is the key element for uniform inference and is clearly high-level in nature.

This condition essentially states that the infeasible sup-t statistic on the left-hand side of

11



(2.5) can be strongly approximated by the supremum of the centered Gaussian process on

the right-hand side of that equation. For our test, we need only that this condition holds

under the null hypothesis. This high-level condition may be verified as a special case of the

strong approximation theory developed by Li and Liao (2020) for general time-series data.

More specifically, we observe that under Assumption 2(iii), Assumption 3 holds if∥∥∥∥∥
n∑
t=1

n−1/2P (X?
t )Z?

t+1 − A1/2
n ξn

∥∥∥∥∥ = op

(
(log n)−1/2

)
. (2.6)

Since n−1/2P (X?
t )Z?

t+1 forms a martingale difference array under the null hypothesis, we

can use the Yurinskii-type coupling result in Li and Liao (2020) (see their Theorem 1) to

verify (2.6) under the primitive conditions provided in that paper.8

We are now ready to state the asymptotic property of the sup-t statistic T̂n under the

null hypothesis.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold. Then under the null hypothesis

there exists a sequence ξn of mn-dimensional standard normal random variables such that

T̂n − T̃n = op

(
(log n)−1/2

)
,

where

T̃n = sup
x∈X

∣∣∣P (x)>Σ
1/2
n ξn

∣∣∣
σn (x)

.

Theorem 1 shows that the sup-t statistic T̂n can be strongly approximated by the supre-

mum of a Gaussian process P (·)>Σ
1/2
n ξn/σn (·), for which the sampling variability is fully

captured by the Gaussian vector ξn with growing dimension.9 Based on this result, a natural

way of computing the critical value for the sup-t statistic is to estimate the quantile of the

approximating variable T̃n by simulating the Gaussian process, with Σn and σn (·) replaced

8See Assumption 1 in Li and Liao (2020), as well as Assumption B2 and Lemma B1 in the Supplemental

Appendix of that paper for additional technical discussions.
9The strong approximation error T̂n − T̃n is shown to be op((log n)−1/2), which is slightly stronger

than a “usual” op(1) statement. This stronger statement is needed in the present setting because the

probability density of the sup-Gaussian approximating variable T̃n is divergent, but it can be bounded at

rate (log (mn))1/2 ≤ (log n)
1/2

. As a result, the op((log n)−1/2) approximation error only leads to an o(1)

error in coverage probability, which is needed in our size analysis.
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by their estimators Σ̂n and σ̂n (·), respectively. This approach is shown to be asymptoti-

cally valid in Li and Liao (2020). However, as we will show in our Monte Carlo experiments

in the next section, this approach suffers from nontrivial size distortion at relatively high

quantiles (e.g., q ≥ 0.95), which makes it effectively inapplicable for VaR applications. We

thus propose an alternative approach using bootstrap, described in Algorithm 1 below.

Algorithm 1 (Bootstrap critical value)

Step 1. Resample (Ẑ∗t+1, X̂
∗
t )1≤t≤n as an i.i.d. sample with replacement from (Ẑt+1, X̂t)1≤t≤n.

Step 2. Compute T̂ ∗n in the same way as T̂n, with (Ẑt+1, X̂t)1≤t≤n replaced by (Ẑ∗t+1, X̂
∗
t )1≤t≤n.

Step 3. Repeat steps 1–2 for a large number of times. At significance level α, set the critical

value cvn,α as the 1−α quantile of T̂ ∗n in the Monte Carlo sample. Reject the null hypothesis

(i.e., h (x) = 0 for all x ∈ X ) if T̂n > cvn,α. �

Algorithm 1 resembles a “textbook” i.i.d. bootstrap. To compute the critical value,

one performs i.i.d. resampling and then repeatedly computes the test statistic. It is useful

to note that the θ̂n estimator does not need to be re-computed for the bootstrap samples

because its plug-in error is asymptotically negligible for the nonparametric test. Since the

sup-t statistic is not asymptotically pivotal, we do not expect the bootstrap to deliver a

formal theoretical refinement. Instead, we only advocate the bootstrap as a practical and

theoretically justified way to conduct feasible inference, which turns out to outperform the

asymptotic Gaussian-based method in the applications of interest in this paper.

The validity of the i.i.d. bootstrap in the time series setting of this paper follows from

the fact that, under the null hypothesis, the sampling variability in the test statistic is driven

by a martingale difference sequence (namely P (X?
t )u?t ). In this case the i.i.d. bootstrap is

sufficient to approximate its finite-sample distribution under the null. To construct a uniform

confidence band for h (·) under the alternative, one would have to capture autocovariances

by using, for example, a block bootstrap, but in the testing context of this paper this is not

necessary, because to prove the test’s consistency it suffices to simply control the asymptotic

magnitude of the critical value.

Theorem 2 establishes the asymptotic property of the bootstrapped test statistic, and

further shows the size and power properties of the resulting test.

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold. Then, (a) under the null hypoth-

esis there exists a sequence ξ∗n of mn-dimensional standard normal random variables such

13



that

T̂ ∗n − T̃ ∗n = op

(
(log n)−1/2

)
,

where

T̃ ∗n ≡ sup
x∈X

∣∣∣P (x)>Σ
1/2
n ξ∗n

∣∣∣
σn (x)

.

(b) for α ∈ (0, 1/2), the test described in Algorithm 1 has asymptotic level α under the null

hypothesis (i.e., h (x) = 0 for all x ∈ X ) and has asymptotic power 1 under the alternative

hypothesis (i.e., h (x) 6= 0 for some x ∈ X ).

3 Simulations

We now examine the finite-sample properties of the proposed test in a Monte Carlo experi-

ment for GARCH-based VaR models. We consider two data generating processes (DGPs),

each with sample size n = 2, 000. Under the first DGP, we generate a time series (Yt)1≤t≤n

of daily losses from a Gaussian GARCH(1,1) process:

DGP-N:


Yt = vtεt, εt ∼ i.i.d. N (0, 1),

v2
t = ω + βv2

t−1 + γY 2
t−1,

with parameters ω = 0.05, β = 0.9, and γ = 0.05. Our second DGP is taken from Bontemps

(2019), who uses a Student’s t EGARCH process:

DGP-A:


Yt = vtzt, zt ∼ i.i.d. t(0, 1, 4),

log(v2
t ) = ω + γ (|zt−1| − E [|zt−1|]) + δzt−1 + β log(v2

t−1),

with parameters ω = 0.0001, γ = 0.3, δ = −0.8, and β = 0.9.

In both cases, the quantile model is a Gaussian GARCH(1,1), estimated via (quasi)

maximum likelihood. The VaR of Yt+1 at confidence level q is obtained as:

ft(θ̂n) = Φ−1 (q)

√
ω̂n + β̂nv̂

2
t + γ̂nY

2
t ,
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where Φ (·) is the cumulative distribution function of a standard normal distribution. Under

DGP-N this model is correct and the null hypothesis is true. Under DGP-A this model is

misspecified and the null hypothesis is false. We can thus examine the test’s size and power

properties using these two DGPs. Below, we consider VaRs for q ∈ {0.75, 0.9, 0.95, 0.99}
and fix the significance level of the test at α = 5%.

We use (Yt, v̂t) as the (feasible) conditioning variable in the nonparametric regression.

To construct the basis functions, we first use a rank-transformation to rescale Yt and

v̂t onto the [−1, 1] interval, and denote the transformed variables as Y ′t and v̂′t, respec-

tively; we then set X̂t = (Y ′t , v̂
′
t).

10 We use mn = 6 series terms, with the form P (X̂t) =

(1, Y ′t , v̂
′
t, Y

′
t v̂
′
t, LP2 (Y ′t ) , LP2 (v̂′t))

>, where LP2 (·) denotes the second-order Legendre poly-

nomial, which is employed to reduce the multicollinearity among the series terms.

Below, we examine the finite-sample performance of the specification test via 10,000

Monte Carlo trials. The critical value of the test is computed in two ways: the first is based

on the asymptotic Gaussian approximation (Theorem 1), and the second is based on the

bootstrap procedure (Theorem 2) with 1,000 resamples.

Table 1 reports the finite-sample rejection frequencies for the two tests. The left panel

reports results under the null hypothesis. When q = 0.75, we see that both the asymp-

totic Gaussian approximation and the bootstrap method control size well. However, as q

increases, the Gaussian approximation leads to nontrivial over-rejections. For example, the

test rejects 33.6% of the time when q = 0.99. In contrast, the rejection rates of the boot-

10The use of rank-transformation may be formally justified as follows. Let FY (·) and Fv (·) denote the

cumulative distribution functions of Yt and vt, respectively, and then let X?
t collect the transformed variables

2FY (Yt) − 1 and 2Fv (vt) − 1, which take values in [−1, 1]. The rank-transformed variables Y ′t and v̂′t can

be written analogously as 2F̂Y (Yt) − 1 and 2F̂v (v̂t) − 1, where F̂Y (·) and F̂v (·) are the sample analogues

of FY (·) and Fv (·), respectively. Therefore, the difference between X̂t and X?
t stems from replacing θ? ≡

(FY (·) , Fv (·) , ω, β, γ) with its estimator θ̂n. Note that a Donsker theorem for weakly dependent data

implies that cumulative distribution functions can be estimated at the n1/2-rate of convergence under the

uniform metric (see, e.g., Theorem 1 of Dehling, Durieu, and Volny (2009), Theorem 3.1 of Dedecker, Rio,

and Merlevède (2014), and Chapter 7 of Rio (2017)). Hence, although θ̂n contains a functional component,

it is still a n1/2-consistent estimator for θ?. The theory developed above can be easily generalized to

accommodate this slightly more general “plug-in,” by replacing the Euclidean distance on θ with a generic

metric.
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Table 1: Finite-sample Rejection Rates for GARCH-VaR Models

Null hypothesis Alternative hypothesis

75% 90% 95% 99% 75% 90% 95% 99%

Gaussian 0.047 0.056 0.082 0.336 1.000 1.000 0.999 0.995

Bootstrap 0.038 0.032 0.031 0.034 0.980 0.974 0.969 0.728

Note: This table reports the rejection frequencies of the specification tests at the 5%

significance level for the GARCH-based VaR model with probability levels ranging

from 75% to 99%. The critical values are computed either based on the asymptotic

Gaussian approximation or the bootstrap. The left and right panels are for the null

hypothesis (i.e., DGP-N) and the alternative hypothesis (i.e., DGP-A), respectively.

strap method are generally close to the 5% nominal level across all settings, although the

test appears to be somewhat conservative.11

The right panel of Table 1 reports the rejection rates of the tests under the alternative

hypothesis. Both tests exhibit nontrivial power to detect the model misspecification. As

expected, power is lower at higher quantiles, reflecting the reduction in information available

to detect model misspecification as we move deeper into the tail. The rejection rates of the

test based on the asymptotic Gaussian approximation are greater than those based on the

bootstrap, suggesting higher power, but given the former’s size distortion at high quantiles,

that test is not always reliable.

11The size distortion resulted from the Gaussian-based critical value does not arise from the plug-in

estimation error in θ̂n. In simulation results not presented here, we also considered the infeasible setting

with known θ?, and found that the Gaussian-based test’s rejection rate is at 35.1% (resp. 10.9%) when

q = 99% (resp. 95%). More generally, the rejection rates in the infeasible setting are very similar to those

in the feasible setting presented here.
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4 Empirical application

In an influential paper, Adrian and Brunnermeier (2016) propose a measure of a firm’s

systemic risk known as “CoVaR” based on how the market portfolio’s VaR differs according

to whether the firm’s return is at a normal level or a “stressed” level. To define this measure,

let Y market
t and Y

(i)
t be the losses of the market and firm i on week t respectively (measured

simply as the negative of their returns that week). For some probability level q, such as 0.95

or 0.99, the firm’s q-VaR is obtained by fitting the following linear quantile regression:

Qq(Y
(i)
t+1|Ct) = α(i)

q + β(i)>
q Ct, (4.1)

where Ct is a collection of covariates described below. The market portfolio’s q-VaR is

modeled similarly, but with an additional covariate, namely the contemporaneous loss of

firm i:

Qq(Y
market
t+1 |Ct, Y (i)

t+1) = α̃(i)
q + β̃

(i)>
q Ct + γ̃(i)

q Y
(i)
t+1. (4.2)

To facilitate the definition of CoVaR, it is helpful to define the following function:

ψ(i)
q (c, y) ≡ Qq(Y

market
t+1 |Ct = c, Y

(i)
t+1 = y), (4.3)

which is the model-implied q-quantile of the market portfolio when the covariates Ct take

value c and the loss of firm i equals y. The CoVaR of firm i is then defined as

CoV aR(i)
q ≡ ψ(i)

q

(
Ct, Qq(Y

(i)
t+1|Ct)

)
− ψ(i)

q

(
Ct, Q0.5(Y

(i)
t+1|Ct)

)
. (4.4)

In words, CoV aR
(i)
q measures the change in the VaR of the market portfolio when firm i’s

loss moves (hypothetically) from its conditional median to its conditional q-quantile. If the

market’s VaR changes markedly when the the loss of firm i moves to its q-quantile, then the

market VaR is sensitive to the losses of firm i and that firm is said to have high systemic

risk. If the market’s VaR is insensitive to the losses of firm i, then that firm has little impact

on the market and is said to have low systematic risk.

The estimation of CoVaR thus relies on two building blocks: (4.1) exclusively pertains

to the conditional quantile of firm i’s loss, while (4.2) captures the relationship between

the market’s VaR and the firm. For simplicity, we refer to (4.1) and (4.2) as the VaR

and CoVaR specification, respectively, although the CoVaR risk measure is computed using

equation (4.4). Since both components of the CoVaR measure are conditional quantile
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models, we can apply the proposed test to examine the empirical specifications proposed by

Adrian and Brunnermeier (2016).

Our empirical analysis uses the same data as Adrian and Brunnermeier (2016).12 The

dataset contains all publicly traded US commercial banks, broker-dealers, insurance com-

panies, and real estate companies for the period from January 1971 to June 2013, a total

of 1823 firms and 2209 weeks. The covariates Ct are the weekly real estate sector return

(Housing), the weekly market return of the S&P 500 index (MktRet), short-term TED

spread (TED), change in the credit spread (Credit), change in three-month yield (Yld3M),

change in the slope of the yield curve (TERM), and equity volatility (MktSD). We refer to

Adrian and Brunnermeier (2016) for a more detailed description of these variables.

To conduct the model specification test, we need to select a conditioning variable Xt

known at time t. Motivated by the recent literature on the impact of economic uncertainty,

we use a variety of uncertainty measures including the economic policy uncertainty index

proposed by Baker, Bloom, and Davis (2016) and the financial and macro uncertainty

indexes proposed by Jurado, Ludvigson, and Ng (2015).13 These uncertainty measures are

moderately correlated: the correlation between economic policy uncertainty and financial

(resp. macro) uncertainty is 0.32 (resp. 0.20), and the correlation between financial and

macro uncertainty indexes is 0.59. Below, we use each of these indexes separately as a

conditioning variable in our specification test. As in our simulation study, we use the rank-

transformation to rescale Xt to have support [−1, 1] and set the basis functions as mth-order

Legendre polynomials (resulting in m+1 series terms).14 Critical values are computed from

1,000 bootstrap replications using Algorithm 1 from Section 2, at significance level α = 5%.

Table 2 presents the results of the bootstrap-based specification tests for q = 95% or

99%, for the three different economic uncertainty measures. To gauge the sensitivity of the

test outcome to the choice of the number of series terms in the nonparametric estimation, we

12This data is available from the American Economic Review website: https://www.aeaweb.org/articles?

id=10.1257/aer.20120555.
13The economic policy uncertainty index is available at https://www.policyuncertainty.com, and the

financial and macro uncertainty indexes are available at https://www.sydneyludvigson.com/macro-and-

financial-uncertainty-indexes.
14Recall that the rank-transform of a variable Xt is obtained as 2F̂X(Xt)− 1, where F̂X is the empirical

CDF of Xt. Further recall that the kth Legendre polynomial can be obtained as ∂k(x2 − 1)k/∂xk/(2kk!).
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present results for m ∈ {6, . . . , 10}. We conduct specification tests for each firm separately,

and summarize the results by reporting the rejection rates averaged over the cross-section.

From Table 2, we see that the 95%-VaR specification (equation (4.1)) is rejected sub-

stantially more frequently than the 5% nominal level: the rejection rate ranges from 15.7%

to 20.6% across different implementations. On the other hand, the 95%-CoVaR specifica-

tion (equation (4.2)) is only rejected approximately at the nominal level, suggesting that

this specification is satisfactory for a representative firm. At the 99%-quantile, the rejection

rates for both VaR and CoVaR models are lower, and are generally close to or below the

nominal level. It is noteworthy that the test results are broadly insensitive to the choice of

series terms and measure for economic uncertainty.

Given that the CoVaR specification is rarely rejected in the test results reported in

Table 2, is it possible to replace it with a more parsimonious model? To shed light on

this question, we consider submodels of equation (4.2) obtained by reducing the number of

covariates in Ct. We test these more parsimonious specifications and report the rejection

rates across firms in Table 3. For brevity, we focus on the economic policy uncertainty

measure as the conditioning variable of the test. As a benchmark, the first two columns

labeled “None” report the rejection frequencies of the submodel that has no covariates from

Ct. This simple specification is rejected for about 30% of the stocks for the 95%-CoVaR.

It is rejected less frequently for the 99%-CoVaR, but the rejection frequency is nevertheless

still markedly higher than the 5% nominal level. These findings are in contrast to those in

Table 2, suggesting that at least some of the covariates are crucial in the CoVaR model.

As the next step, we include each of the covariates one at a time in the CoVaR model

and report the rejection frequencies. The results reveal that, when we control for the equity

volatility (MktSD), the rejection rates fall to around the levels presented in Table 2, which

used the full set of covariates. Meanwhile, controlling for any of the other six covariates

(e.g., Housing, TED, etc.) contributes little to reducing the rejection rates, suggesting

that these additional covariates are individually unimportant. To confirm this conjecture,

we finally consider a CoVaR specification with all covariates included except for MktSD,

with the corresponding rejection rates reported in the last two columns of Table 3, labeled

“All\MktSD.” The rejection rates are similar to those with no covariates, which suggests

that these covariates are not important for the CoVaR specification jointly. Overall, the

results in Table 3 point to equity volatility as the most (and perhaps only) important
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covariate in the CoVaR specification.

5 Conclusion

This paper proposes a new consistent specification test for quantile models in time-series

analysis. Our test is based on a nonparametric, series-based, estimate of a conditional

moment that is known to equal zero when the model is correctly specified. We extend

the uniform nonparametric inference method of Li and Liao (2020) in two directions that

are critical for our empirical application. Firstly, to overcome a size distortion we discover

when the asymptotic Gaussian approximation is directly used in quantile applications near

the tail, we propose a bootstrap method to obtain critical values for our test statistic.

Establishing the validity of the proposed bootstrap method is nonstandard because a “non-

Donsker” feature present in the original problem also manifests in the “bootstrap world.”

Secondly, we deal with the issue that both the dependent variable and the (growing number

of) independent variables in our series regression contain estimated parameters that enter in

a nonsmooth way. We apply the proposed new tests to a detailed analysis of the well-known

CoVaR measure of Adrian and Brunnermeier (2016). We find that their specification for

individual firm VaR is rejected more often than expected given the significance level of the

test, suggesting that this model can be improved either via additional covariates or a more

flexible specification. We also find that just one of the seven covariates used in the CoVaR

specification is important for this model passing our specification tests. This suggests either

that the CoVaR model can be made much more parsimonious, or, perhaps more likely, that

there are other covariates not considered in Adrian and Brunnermeier (2016) that could

improve the explanatory power of the model.

Appendix: Proofs

Throughout the proofs, we use K to denote a generic finite constant that may change

from line to line. For p ≥ 1, let ‖ · ‖p denote the Lp norm for random variables. For

notational simplicity, we write
∑

t in place of
∑n

t=1. The proofs rely on several technical

lemmas, Lemmas S1–S12, which are collected in the Online Supplemental Appendix.
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Table 3: CoVaR Specification with Different Covariates

None Housing MktRet TED Credit

m 95% 99% 95% 99% 95% 99% 95% 99% 95% 99%

6 0.293 0.167 0.346 0.115 0.194 0.159 0.255 0.089 0.246 0.161

7 0.329 0.158 0.351 0.077 0.279 0.139 0.249 0.057 0.292 0.148

8 0.309 0.144 0.340 0.059 0.289 0.147 0.257 0.031 0.276 0.138

9 0.287 0.121 0.325 0.069 0.266 0.150 0.250 0.030 0.267 0.123

10 0.301 0.083 0.324 0.038 0.274 0.127 0.230 0.013 0.267 0.091

Yld3m TERM MktSD All\MktSD

m 95% 99% 95% 99% 95% 99% 95% 99%

6 0.332 0.127 0.335 0.166 0.053 0.013 0.252 0.123

7 0.366 0.114 0.371 0.143 0.052 0.009 0.274 0.109

8 0.375 0.081 0.370 0.125 0.055 0.008 0.278 0.084

9 0.342 0.087 0.354 0.110 0.057 0.004 0.268 0.078

10 0.332 0.059 0.339 0.062 0.052 0.005 0.283 0.049

Note: This table reports the cross-sectional empirical rejection frequencies of the

specification tests for the q-CoVaR model, q ∈ {95%, 99%}, with different subsets

of covariates. The column labels indicate the variable(s) included in Ct for each

submodel. The conditioning variable Xt is the economic policy uncertainty measure.

All tests are implemented at the 5% significance level with Legendre polynomial

basis with order m ∈ {6, . . . , 10}, and are based on bootstrapped critical values with

1,000 resamples.
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Proof of Theorem 1. By Lemma S2 and Lemma S7,∥∥∥Σ̂n − Σn

∥∥∥
S

= op(1). (A.1)

Since the eigenvalues of Qn and An are bounded from above and away from zero, the

eigenvalues of Σn satisfy the same property and, by (A.1), we also have

λ−1
min(Σ̂n) + λmax(Σ̂n) = Op(1). (A.2)

These lemmas also show that, under the null hypothesis,∥∥∥Σ̂n − Σn

∥∥∥
S

= Op(δQ,n + δA,n + ζ0,nm
1/2
n n−1/4 + ζ1,nm

1/2
n n−1/2). (A.3)

By (A.2), (A.3), and Assumptions 2(ii, iv),

sup
x∈X

∣∣∣∣σn(x)

σ̂n(x)
− 1

∣∣∣∣ = sup
x∈X

∣∣∣∣ σ̂2
n(x)− σ2

n(x)

σ̂n(x)(σ̂n(x) + σn(x))

∣∣∣∣
≤ sup

x∈X

∣∣∣∣∣P (x)> (Σ̂n − Σn)P (x)

P (x)> Σ̂nP (x)

∣∣∣∣∣
= Op(δQ,n + δA,n + ζ0,nm

1/2
n n−1/4 + ζ1,nm

1/2
n n−1/2)

= op
(
(log n)−1) . (A.4)

Note that h (·) = 0 and b?n = 0 under the null hypothesis. We can then decompose

n1/2
(
b̂n − b?n

)
= Q̂−1

n

(
n−1/2

∑
t

P (X?
t )u?t

)
+ Q̂−1

n

(
n−1/2

∑
t

(P (X̂t)−P (X?
t ))u?t

)

+Q̂−1
n

(
n−1/2

∑
t

P (X̂t)(Ẑt+1 − Z?
t+1)

)
.

Observe that ĥn (x)− h (x) = P (x)> (̂bn − b?n) + P (x)> b?n − h (x). We thus have

sup
x∈X

∣∣∣∣∣n1/2(ĥn(x)− h(x))

σ̂n(x)
−
P (x)>Q−1

n

(
n−1/2

∑
t P (X?

t )u?t
)

σ̂n(x)

∣∣∣∣∣ ≤
4∑
j=1

sup
x∈X
|Rj,n (x)| , (A.5)
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where

R1,n (x) ≡
P (x)>

(
Q̂−1
n −Q−1

n

) (
n−1/2

∑
t P (X?

t )u?t
)

σ̂n(x)
,

R2,n (x) ≡
P (x)> Q̂−1

n

(
n−1/2

∑
t(P (X̂t)−P (X?

t ))u?t

)
σ̂n(x)

,

R3,n (x) ≡
P (x)> Q̂−1

n

(
n−1/2

∑
t P (X̂t)(Ẑt+1 − Z?

t+1)
)

σ̂n(x)
,

R4,n (x) ≡
n1/2

(
P (x)> b?n − h (x)

)
σ̂n(x)

.

Note that ‖n−1/2
∑

t P (X?
t )u?t‖ = Op(m

1/2
n ). By Lemma S2 and Assumptions 2(ii, iv),

sup
x∈X
|R1,n (x)| = Op

(
m1/2
n

(
δQ,n + ζ1,nm

1/2
n n−1/2

))
= op

(
(log n)−1/2

)
.

Since θ̂n = θ? +Op(n
−1/2), by Assumption 2(ii) and Lemma S5, it is easy to see that

sup
x∈X
|R2,n (x)| ≤ Op

(
ζ1,nm

1/2
n n−1/2

)
= op

(
(log n)−1/2

)
.

By (A.4) and Lemma S8,

sup
x∈X
|R3,n (x)| = op

(
(log n)−1/2

)
.

Finally, we note that

sup
x∈X
|R4,n (x)| ≤ Op (1) sup

x∈X

∥∥∥n1/2
(
P (x)> b?n − h (x)

)∥∥∥
‖P (x)‖

= op

(
(log n)−1/2

)
,

where the inequality follows from (A.2), and the equality follows from Assumptions 1(vii)

and 2. From the estimates above, we see that supx∈X |Rj,n (x)| for each 1 ≤ j ≤ 4. Hence,

by (A.5),

sup
x∈X

∣∣∣∣∣n1/2(ĥn(x)− h(x))

σ̂n(x)
−
P (x)>Q−1

n

(
n−1/2

∑
t P (X?

t )u?t
)

σ̂n(x)

∣∣∣∣∣ = op

(
(log n)−1/2

)
. (A.6)

Let ξn be defined as in Assumption 3. By the concentration property of Gaussian

processes, we have

sup
x∈X

∣∣∣∣∣P (x)>Σ
1/2
n ξn

σn(x)

∣∣∣∣∣ = Op((log n)1/2). (A.7)
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Then, Assumption 3 further implies that

sup
x∈X

∣∣∣∣∣n−1/2P (x)>Q−1
n

∑n
t=1 P (X?

t )u?t
σn (x)

∣∣∣∣∣ = Op((log n)1/2). (A.8)

By (A.4) and (A.8),∣∣∣∣∣sup
x∈X

∣∣∣∣∣n−1/2P (x)>Q−1
n

∑n
t=1 P (X?

t )u?t
σ̂n(x)

∣∣∣∣∣− sup
x∈X

∣∣∣∣∣n−1/2P (x)>Q−1
n

∑n
t=1 P (X?

t )u?t
σn (x)

∣∣∣∣∣
∣∣∣∣∣

≤ sup
x∈X

∣∣∣∣∣n−1/2P (x)>Q−1
n

∑n
t=1 P (X?

t )u?t
σn (x)

∣∣∣∣∣ sup
x∈X

∣∣∣∣σn (x)

σ̂n(x)
− 1

∣∣∣∣ = op

(
(log n)−1/2

)
.(A.9)

Combining (A.6) and (A.9), we deduce

sup
x∈X

∣∣∣∣∣n1/2(ĥn(x)− h(x))

σ̂n(x)

∣∣∣∣∣− sup
x∈X

∣∣∣∣∣n−1/2P (x)>Q−1
n

∑n
t=1 P (X?

t )u?t
σn (x)

∣∣∣∣∣ = op

(
(log n)−1/2

)
.

The assertion of the theorem then readily follows from Assumption 3 and the above approx-

imation. Q.E.D.

Next, we prove Theorem 2 in the main text. We need to explicitly introduce some

notation for various bootstrap quantities:

Q̂∗n = n−1
∑
t

P (X̂∗t )P (X̂∗t )>, b̂∗n =
(
Q̂∗n

)−1
(
n−1

∑
t

P (X̂∗t )Ẑ∗t+1

)
,

û∗t = Ẑ∗t+1 − P (X̂∗t )>b̂∗n, Â∗n = n−1
∑
t

P (X̂∗t )P (X̂∗t )> (û∗t )
2 , Σ̂∗n = (Q̂∗n)−1Â∗n(Q̂∗n)−1.

Proof of Theorem 2. (a) Step 1. We prove the assertion in part (a) in four steps. In

this step we show that

sup
x∈X

∣∣∣∣σn (x)

σ̂∗n (x)
− 1

∣∣∣∣ = op(m
−1/2
n (log n)−1/2). (A.10)

By Lemma S2 and Lemma S9,∥∥∥Q̂∗n −Qn

∥∥∥
S

= Op(δQ,n + ζ1,nm
1/2
n n−1/2 + ζ0,n log(mn)1/2m1/2

n n−1/2). (A.11)

Under Assumptions 2(ii, iv),

m1/2
n

(
δQ,n + δA,n + ζ1,nm

1/2
n n−1/2 + ζ0,nm

1/2
n n−1/4

)
= o

(
(log n)−1/2

)
. (A.12)
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By Lemma S7 and Lemma S11, we see that under the null hypothesis,∥∥∥Â∗n − An∥∥∥
S

= Op(ζ0,nmnn
−1/2) +Op

(
δA,n + ζ1,nm

1/2
n n−1/2 + ζ0,nm

1/2
n n−1/4

)
= Op

(
δA,n + ζ1,nm

1/2
n n−1/2 + ζ0,nm

1/2
n n−1/4

)
.

Combining this estimate with (A.11), we obtain (using (A.12))∥∥∥Σ̂∗n − Σn

∥∥∥
S

= Op

(
δQ,n + δA,n + ζ1,nm

1/2
n n−1/2 + ζ0,nm

1/2
n n−1/4

)
= op

(
m−1/2
n (log n)−1/2

)
. (A.13)

Consequently,

sup
x∈X

∣∣∣∣σn (x)

σ̂∗n (x)
− 1

∣∣∣∣ = sup
x∈X

∣∣∣∣∣P (x)> (Σ̂∗n − Σn)P (x)

σ̂∗n (x) (σ̂∗n (x) + σn (x))

∣∣∣∣∣
≤ sup

x∈X

∣∣∣∣∣P (x)> (Σ̂∗n − Σn)P (x)

σ̂∗n (x)2

∣∣∣∣∣
≤ λ−1

min(Σ̂∗n)
∥∥∥Σ̂∗n − Σn

∥∥∥
S

= op(m
−1/2
n (log n)−1/2) (A.14)

which proves (A.10).

Step 2. Let ω̂∗n ≡ n−1/2
∑

t(P (X̂∗t )Ẑ∗t+1 − E∗[P (X̂∗t )Ẑ∗t+1]). In this step, we show that

n1/2P (x)>(̂b∗n − b̂n)

σ̂∗n (x)
=
P (x)>Q−1

n

σn (x)
ω̂∗n + op((log n)−1/2) (A.15)

uniformly over x ∈ X .

First, by Assumption 2(iii),
‖P (x)‖
σn (x)

= O(1). (A.16)

Then under the null hypothesis, by (A.10) and Lemma S10,

sup
x∈X

∣∣∣∣∣n1/2P (x)>(̂b∗n − b̂n)

σ̂∗n (x)
− n1/2P (x)>(̂b∗n − b̂n)

σn (x)

∣∣∣∣∣
≤

∣∣∣∣∣n1/2P (x)>(̂b∗n − b̂n)

σn (x)

∣∣∣∣∣ sup
x∈X

∣∣∣∣σn (x)

σ̂∗n (x)
− 1

∣∣∣∣
≤
∥∥∥n1/2(̂b∗n − b̂n)

∥∥∥ ‖P (x)‖
σn (x)

sup
x∈X

∣∣∣∣σn (x)

σ̂∗n (x)
− 1

∣∣∣∣ = op((log n)−1/2). (A.17)
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We can further decompose

n1/2P (x)>(̂b∗n − b̂n)

σn (x)
=
P (x)>(Q̂∗n)−1

σn (x)
ω̂∗n +

P (x)>(Q̂∗n)−1

σn (x)
(Q̂n − Q̂∗n)(n1/2b̂n) (A.18)

for any x ∈ X . Under the null hypothesis, Lemma S6 implies that n1/2b̂n = Op(m
1/2
n ). By

Assumption 2(iii), Lemma S2, Lemma S9, and (A.16),∥∥∥P (x)>(Q̂∗n)−1
∥∥∥

σn (x)
= Op(1). (A.19)

Then, by Lemma S9,∥∥∥∥∥P (x)>(Q̂∗n)−1

σn (x)
(Q̂n − Q̂∗n)(n1/2b̂n)

∥∥∥∥∥ = Op

(
ζ0,n(log(mn)mnn

−1)1/2m1/2
n

)
= op((log n)−1/2), (A.20)

where the second line is implied by Assumption 2(ii). By Assumption 2(iii), Lemma S7,

and Lemma S12,

‖ω̂∗n‖ =

∥∥∥∥∥n−1/2
∑
t

(
P (X̂∗t )Ẑ∗t+1 − E∗[P (X̂∗t )Ẑ∗t+1]

)∥∥∥∥∥ = Op(m
1/2
n ) (A.21)

which together with Assumption 2(iii), Lemma S2, Lemma S9, and (A.16) implies that∥∥∥∥∥P (x)>((Q̂∗n)−1 −Q−1
n )

σn (x)
ω̂∗n

∥∥∥∥∥ = Op

(
ζ0,n(log(mn)mnn

−1)1/2m1/2
n

)
= op((log n)−1/2), (A.22)

where the second equality is implied by Assumption 2(ii). The claim in (A.15) follows from

(A.17), (A.18), (A.20), and (A.22).

Step 3. In this step we show that there exists a sequence ξ∗n of standard mn-dimensional

Gaussian vectors such that∣∣∣∣∣∣sup
x∈X

∣∣P (x)>Q−1
n ω̂∗n

∣∣
σn (x)

− sup
x∈X

∣∣∣P (x)>Q−1
n A

1/2
n ξ∗n

∣∣∣
σn (x)

∣∣∣∣∣∣ = op((log n)−1/2). (A.23)

By Assumption 2(iii), Lemma S7, and Lemma S12,

λ−1
min(Ĥ∗n) + λmax(Ĥ∗n) = Op(1). (A.24)
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Denote αn(x) = Q−1
n P (x)/σn (x), and note that supx∈X ‖αn (x) ‖ ≤ Cα for some finite

constant Cα. For given n and x ∈ X , define fn,x(z, v) = zαn(x)>P (v) for any z ∈
{0, 1} and any v ∈X ⊕ εn. We then consider the class of functions Fn = F0

n ∪ (−F0
n), with

F0
n ≡ {fn,x(z, t) : x∈ X}. To prove (A.23), we shall apply Corollary 2.2 in Chernozhukov,

Chetverikov, and Kato (2013) to Fn under the Dn-conditional probability.

Specifically, by the Cauchy–Schwarz inequality,

‖fn,x(z, t)‖ ≤ ζ0,nm
1/2
n sup

x∈X
‖αn(x)‖ ≤ Cαζ0,nm

1/2
n .

In addition, for any x1, x2 ∈ X ,

|fn,x1(z, t)− fn,x2(z, t)| ≤ ζ0,nm
1/2
n ‖αn(x1)− αn(x2)‖ ≤ Kζ0,nm

1/2
n ζLn ‖x1 − x2‖ , (A.25)

where we recall the definition of ζLn from Assumption 2. Therefore, Fn forms a VC-type

class with (constant) envelope F ≡ Cαζ0,nm
1/2
n , and it satisfies the following uniform entropy

condition for some constant A:

sup
Q
N
(
Fn, ‖·‖Q,2 , ε ‖F‖Q,2

)
≤
(
AξLn/ε

)dx
,

where the supremum is taken over all finitely discrete probability measures, and we denote

by N(Fn, ‖·‖Q,2 , ε ‖F‖Q,2) the covering number for Fn under the L2(Q) norm. By (A.24),

we have for any n ≥ 1,

E∗
[∣∣∣αn(x)>

(
P (X̂∗t )Ẑ∗t+1 − E∗

[
P (X̂∗t )Ẑ∗t+1

])∣∣∣2] ≤ Kλmax(Ĥ∗n) = Op(1),

and

E∗
[∣∣∣αn(x)>

(
P (X̂∗t )Ẑ∗t+1 − E∗

[
P (X̂∗t )Ẑ∗t+1

])∣∣∣3]
≤ Kζ0,nm

1/2
n E∗

[∣∣∣αn(x)>
(
P (X̂∗t )Ẑ∗t+1 − E∗

[
P (X̂∗t )Ẑ∗t+1

])∣∣∣2]
= Op(ζ0,nm

1/2
n ).

Thus, applying Corollary 2.2 in Chernozhukov, Chetverikov, and Kato (2013) under the

Dn-conditional probability (with q = ∞, γ = 1/ log n, b = Cαζ0,nm
1/2
n , σ = O(1), and

Kn = O(log n) in their notation) shows that there exists a sequence ξ∗n of mn-dimensional
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standard Gaussian vectors such that∣∣∣∣sup
x∈X

∣∣αn(x)>ω̂∗n
∣∣− sup

x∈X

∣∣∣αn(x)>(Ĥ∗n)1/2ξ∗n

∣∣∣∣∣∣∣
= Op

(
ζ0,nm

1/2
n (log n)3/2n−1/2 + ζ

1/2
0,nm

1/4
n (log n)5/4n−1/4 + ζ

1/3
0,nm

1/6
n log(n)n−1/6

)
= op((log n)−1/2), (A.26)

where the op((log n)−1/2) statement follows from Assumption 2(ii).

Under the null hypothesis, Lemma S7 and Lemma S12 imply that∥∥∥Ĥ∗n − An∥∥∥
S

= Op

(
δA,n + ζ1,nm

1/2
n n−1/2 + ζ0,nm

1/2
n n−1/4

)
+Op

(
ζ0,nmnn

−1/2
)

= Op

(
δA,n + ζ1,nm

1/2
n n−1/2 + ζ0,nm

1/2
n n−1/4

)
. (A.27)

By (A.12) and (A.27),

sup
x∈X

∣∣∣αn(x)>
(

(Ĥ∗n)1/2 − A1/2
n

)
ξ∗n

∣∣∣
= Op

(
m1/2
n (δA,n + ζ1,nm

1/2
n n−1/2 + ζ0,nm

1/2
n n−1/4)

)
= op((log n)−1/2). (A.28)

Together with (A.26), this estimate further implies∣∣∣∣sup
x∈X

∣∣αn(x)>ω̂∗n
∣∣− sup

x∈X

∣∣αn(x)>A1/2
n ξ∗n

∣∣∣∣∣∣ = op((log n)−1/2), (A.29)

as asserted in (A.23).

Step 4. By (A.15) and (A.23), we finish the proof of part (a) as follows:∣∣∣∣∣∣sup
x∈X

∣∣∣n1/2P (x)> (̂b∗n − b̂n)
∣∣∣

σ̂∗n (x)
− sup

x∈X

∣∣∣P (x)>Q−1
n A

1/2
n ξ∗n

∣∣∣
σn (x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣sup
x∈X

∣∣∣n1/2P (x)> (̂b∗n − b̂n)
∣∣∣

σ̂∗n (x)
− sup

x∈X

∣∣P (x)>Q−1
n ω̂∗n

∣∣
σn (x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣sup
x∈X

∣∣P (x)>Q−1
n ω̂∗n

∣∣
σn (x)

− sup
x∈X

∣∣∣P (x)>Q−1
n A

1/2
n ξ∗n

∣∣∣
σn (x)

∣∣∣∣∣∣
= op((log n)−1/2).
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(b) The size property of the test follows from part (a) of Theorem 2. It remains to show

the claimed power property. Observe∣∣∣∣∣sup
x∈X

|n1/2ĥn(x)|
σ̂n(x)

− sup
x∈X

∣∣n1/2h (x)
∣∣

σ̂n(x)

∣∣∣∣∣ ≤ sup
x∈X

n1/2|ĥn(x)− h(x)|
σ̂n(x)

. (A.30)

Note that supx∈X σ̂n(x) ≤ supx∈X ‖P (x)‖λ1/2
max(Σ̂n) = Op(ζ0,nm

1/2
n ). Under the alternative

hypothesis, we have supx∈X |h (x)| > 0. Therefore, supx∈X
∣∣n1/2h (x)

∣∣ /σ̂n(x) diverges to

infinity in probability at a rate that is at least n1/2/(ζ0,nm
1/2
n ). In addition, we observe

sup
x∈X

n1/2|ĥn(x)− h(x)|
σ̂n(x)

≤ Op

(
n1/2

)sup
x∈X

‖P (x)‖
∥∥∥b̂n − b?n∥∥∥

‖P (x)‖
+ sup

x∈X

|P (x)> b?n − h(x)|
‖P (x)‖


= Op(n

1/2δb,n), (A.31)

where the inequality follows from the triangle inequality and the Cauchy–Schwarz inequal-

ity, and the latter rate statement follows from Assumption 2 and Lemma S6 (with δb,n ≡
ζ1,nm

1/2
n n−1/2 + ζ0,nm

1/2
n n−3/4). Under Assumption 2, n1/2δb,n = o(n1/2/(ζ0,nm

1/2
n )). There-

fore, the sup-t statistic supx∈X |n1/2ĥn(x)|/σ̂n(x) also diverges to infinity in probability at a

rate that is at least n1/2/(ζ0,nm
1/2
n ).

From (A.1), Lemma S9, and Lemma S11, it is easy to see that λ−1
min(Σ̂∗n) = Op (1).

Therefore,

sup
x∈X

∣∣∣n1/2P (x)> (̂b∗n − b̂n)
∣∣∣

σ̂∗n (x)
≤ λ

−1/2
min (Σ̂∗n)

∥∥∥n1/2(̂b∗n − b̂n)
∥∥∥

= Op(ζ0,n log(mn)1/2m1/2
n )

= op(n
1/2/(ζ0,nm

1/2
n ))

where the first equality is by Lemma S10, and the second equality holds under the maintained

rate requirement in Assumption 2. In view of the fact that the sup-t statistic diverges to

infinity at rate that is at least n1/2/(ζ0,nm
1/2
n ), we can conclude that the test rejects the

alternative hypothesis with probability approaching 1. Q.E.D.
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