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VOLATILITY COUPLING

By Jean Jacod and Jia Li and Zhipeng Liao

Sorbonne Université, Duke University and UCLA

This paper provides a strong approximation, or coupling, the-
ory for spot volatility estimators formed using high-frequency data.
We show that the t-statistic process associated with the nonpara-
metric spot volatility estimator can be strongly approximated by a
growing-dimensional vector of independent variables defined as func-
tions of Brownian increments. We use this coupling theory to study
the uniform inference for the volatility process in an infill asymptotic
setting. Specifically, we propose uniform confidence bands for spot
volatility, beta, idiosyncratic variance processes, and their nonlinear
transforms. The theory is also applied to address an open question
concerning the inference of monotone nonsmooth integrated volatility
functionals such as the occupation time and its quantiles.

1. Introduction. During the past two decades, a large literature in
time-series analysis has been devoted to estimating the volatility (i.e., dif-
fusion coefficient) of continuous-time Itô semimartingale processes using
high-frequency data ([1], [15]). The inference theory is well understood in
two scenarios. One concerns the nonparametric estimation of the stochastic
volatility at a fixed time point (see, e.g., [13] and [11]), that is, the “spot”
volatility. The other pertains to a semiparametric setting for estimating in-
tegrated volatility functionals (see, e.g., [2], [3], [4], [26], and [28]). A more
recent literature shows that these two problems are tightly related in that
the nonparametric spot volatility estimator can be used to construct semi-
parametrically efficient estimators of general (smooth) integrated volatility
functionals; see, for example, [18], [16], [27], [23], and [21].

An open question, however, is how to make uniform nonparametric infer-
ence for the spot volatility process in a general nonstationary setting. The
difficulty for making uniform inference is well understood: The estimation
errors of the spot estimators at any two distinct time points are asymptoti-
cally independent, and hence, the collection of these estimators cannot admit
a functional central limit theorem in the sense of weak convergence or sta-
ble convergence in law (see p. 394 in [15] for a detailed discussion). In other
words, the uniform inference for the entire volatility process is a non-Donsker
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2 JEAN JACOD, JIA LI, AND ZHIPENG LIAO

problem. In an earlier contribution, [12] proposes a uniform confidence band
for the volatility process based on an extreme-value approximation for Gaus-
sian processes in a setting with stationary volatility, following the classical
approach of [6] and [17]. Meanwhile, non-Donsker problems also arise from
other statistical contexts, such as the recent literature on the uniform in-
ference in nonparametric and/or high-dimensional settings (see, e.g., [10],
[5], [29], and [19]). The key insight from the latter literature is that, in the
absence of functional central limit theorems, one can still strongly approx-
imate the nonparametric functional estimator using variables with known
finite-sample distributions (typically Gaussian with consistently estimable
covariance). The classical device for obtaining the strong approximation is
through Yurinskii’s coupling.

Set against this background, our contribution in this paper is to estab-
lish a uniform inference theory for the spot volatility process, through the
development of a new coupling result for the spot volatility estimators.
Specifically, we show that the t-statistic process associated with the spot
volatility estimator can be strongly approximated by a growing-dimensional
vector of independent normalized chi-squared variables. The sup-t statistic
can then be strongly approximated by the maximum of these approximat-
ing variables. The distribution of the latter is known in finite sample, which
permits the feasible computation of critical values and the corresponding
uniform confidence bands, without relying on further Gaussian or extreme-
value approximations employed in prior work. We also allow for important
empirical features such as essentially unrestricted nonstationarity in volatil-
ity, and jumps in the price and volatility processes, which are not considered
in [12]. Moreover, we extend the theory to a multivariate setting for con-
structing uniform confidence bands for the beta and idiosyncratic variance
processes, which is a new result in the literature.

As a by-product, we show that the uniform confidence band for the spot
volatility process can be further used to construct (joint) confidence sets for
monotone functionals of the volatility process. One example is the volatil-
ity occupation time ([14], [20]), defined as the time spent by the volatility
process below a specific level, which is the “realized” analogue of the cumu-
lative distribution function. The inference for this seemingly basic quantity,
however, is an open question in the literature to date because it corresponds
to integrated volatility functionals with nonsmooth test functions. In con-
trast, central limit theorems for integrated volatility functionals are available
in the current literature for test functions that are three-time continuously
differentiable as shown by [16] among others. Moreover, volatility quantiles
inverted from the occupation time are also monotone functionals of the
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volatility process, for which our theory provides feasible inference. Our cou-
pling result may shed light on a broader range of high-frequency inference
problems involving growing dimensions, uniform inference, and nonsmooth
test functions, which may be studied in future research.

Below, we present the theory in Section 2 and a simulation study in
Section 3. All proofs are contained in Section 4. The following notation will
be used. We denote byMd the set of all d×d matrices and byM+

d the subset
of all symmetric positive semi-definite elements of Md. The d-dimensional
identity matrix is denoted by Id. The notation ‖x‖ is the Euclidean norm
if x ∈ Rd, and the operator norm if x ∈ Md. For a matrix A, we use Ajk,
A>, tr (A) to denote its (j, k) element, transpose, and trace, respectively.
For a function f :Md 7→ R, we denote ∂jkf (A) = ∂f (A) /∂Ajk and collect
all partial derivatives using ∂f (·) = [∂jkf (·)]1≤j,k≤d. For two real sequences
an and bn, we write an � bn if an/C ≤ bn ≤ Can for some finite constant
C ≥ 1.

2. Theory. Section 2.1 describes the setting. Section 2.2 shows our
main result for coupling the spot covariance estimator. Further extensions
regarding the uniform inference for the stochastic beta and idiosyncratic
variance processes are provided in Section 2.3. In Section 2.4, we apply the
uniform inference theory to construct confidence sets for monotone function-
als of the volatility process.

2.1. The setting. Suppose that the vector process X is a d-dimensional
Itô semimartingale defined on a filtered probability space (Ω,F , (Ft)t≥0,P)
that can be written as

(2.1) Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt,

where the drift process b and the stochastic volatility matrix process σ are
optional, taking values in Rd and Md, respectively, W is a d-dimensional
standard Brownian motion, and J is a pure jump process driven by a homo-
geneous Poisson random measure on R+×R. In particular, Jt =

∑
s≤t ∆Xs,

where ∆Xs is the jump size of X at time s. In financial applications, X
plays the role of a vector of asset prices, which are routinely modeled as
semimartingales.

The process X is observed at discrete times i∆n for i = 0, 1, . . . , n within
the time interval [0, T ] with ∆n = T/n. We consider an infill asymptotic
setting with the sample span T fixed and the sampling interval ∆n → 0
asymptotically. The ith increment of X is denoted by

∆n
i X ≡ Xi∆n −X(i−1)∆n

, i ∈ {1, . . . , n}.
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We are interested in the uniform inference concerning the spot covariance
process ct ≡ σtσ>t . To construct the spot estimator, we divide the sample into
mn nonoverlapping blocks. Specifically, we partition {1, . . . , n} = ∪mn

j=1In,j ,
with In,j collecting the indices of kn,j consecutive increments in the jth
block. Correspondingly, we partition the sample span [0, T ] = ∪mn

j=1Tn,j ,
where with t (n, j) ≡ (min In,j − 1) ∆n,

Tn,j ≡
{

[t (n, j) , t (n, j + 1)) if 1 ≤ j < mn,
[t (n,mn) , T ] if j = mn.

Allowing the local window size kn,j to vary across blocks is convenient for
applications, without introducing additional technical difficulty.

To obtain jump-robust volatility estimates, we adopt a standard trunca-
tion technique ([24]) using a sequence of truncation threshold un satisfying
un � ∆$

n for some $ ∈ (0, 1/2). The spot covariance estimator for the jth
block is then defined as

(2.2) ĉn,j ≡
1

kn,j∆n

∑
i∈In,j

∆n
i X∆n

i X
>1{‖∆n

i X‖≤un}.

The collection of blockwise estimators (ĉn,j)1≤j≤mn serve as the functional
estimator for the process (ct)t∈[0,T ]. To reflect this idea more clearly in our
notation, we identify (ĉn,j)1≤j≤mn with a t-indexed functional estimator
(ĉn,t)t∈[0,T ] by setting

ĉn,t ≡ ĉn,j , for t ∈ Tn,j and j ∈ {1, . . . ,mn}.

2.2. Uniform strong approximations for spot covariance estimators. In
this subsection, we present our key coupling result for the spot covariance
estimator, and describe how to construct uniform confidence band for the
stochastic volatility process. We need a few regularity conditions.

Assumption 1. Suppose that X has the form (2.1) and there exists
a sequence (Tm)m≥1 of stopping times increasing to infinity such that the
following conditions hold for each m ≥ 1:

(i) for some constant r ∈ (0, 1/2), ‖bt‖+‖σt‖+
∫

(‖x‖r∧1)Ft (dx) ≤ Km,
for all t ∈ [0, Tm] and some constant Km, where Ft denotes the spot Lévy
measure of J ;

(ii) for each p > 0, E[supt,s∈Tn,j
‖σt∧Tm − σs∧Tm‖

p] ≤ Km,p |t− s|p/2 for
all 1 ≤ j ≤ mn and some constant Km,p.

Assumption 1 imposes some regularity conditions on the underlying pro-
cesses, which allow for essentially unrestricted nonstationarity and persis-
tence in the price and volatility dynamics, as well as important empirical
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features such as intraday volatility seasonality and leverage effect (e.g., neg-
atively correlated price and volatility shocks). Specifically, condition (i) im-
poses local boundedness on various processes plus a degree of jump activity
less than 1/2 for J , and condition (ii) imposes some smoothness on the
stochastic volatility process σt. These conditions are stronger than those
needed for conducting pointwise inference for spot volatility (cf. Chapter
13.3 in [15]), which is our “cost” to pay for making uniform inference. The
main restriction is condition (ii), which in particular requires the paths of
the volatility process to be Hölder continuous with any index strictly smaller
than 1/2 on each subinterval Tn,j . This condition holds if the volatility pro-
cess behaves as a continuous Itô semimartingale or long-memory process
within each subinterval, and it is allowed to jump on the boundary time
points between the Tn,j subintervals. The (piecewise) continuity condition
is necessary for making uniform inference on the volatility process because,
otherwise, the volatility process cannot even be uniformly consistently esti-
mated (see Remark 1 of [21] and additional discussions therein). In economic
and financial applications, this setting accommodates an important type of
jumps triggered by macroeconomic announcements, for which we can use
announcement times to divide the nearby estimation windows. Consistently
estimable jump times (see, e.g., Proposition 1 of [22]) can be used for the
same purpose.

In applications, we are often interested in certain nonlinear transforma-
tions of the spot covariance matrix, say f (ct), for some smooth function
f : M+

d 7→ R. In the univariate case, one may be interested in the log
volatility by taking f (c) = log (c). An important financial example in the
multivariate cases is “beta,” which corresponds to f (c) = c12/c11, so that
f (ct) is the spot beta of asset 2 with respect to asset 1. We impose the
following condition on the f (·) function.

Assumption 2. There exists a sequence (Tm)m≥1 of stopping times in-
creasing to infinity and a sequence (Km)m≥1 of convex compact subsets of
M+

d such that ct takes values in Km for all t ∈ [0, Tm] and f is twice con-
tinuously differentiable on Kηm ≡ {x ∈ Md : infy∈Km ‖x− y‖ < η} for some
η > 0.

Assumption 2 is easy to verify. For example, if f (·) = log (·), this condition
can be verified provided that the ct process is locally bounded from above
and away from zero, with Km = [1/m,m]. We also note that the stopping
times (Tm)m≥1 can be taken as the same ones in Assumption 1 without
loss of generality, because the (component-wise) minimum of two localizing
sequences of stopping times is also a localizing sequence.
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We are now ready to state our key result for the strong approximation of
the functional estimator of the spot covariance process.

Theorem 1. Suppose that (i) Assumption 1 holds and (ii) kn,j � ∆−ρn
uniformly for all j ∈ {1, . . .mn} and un � ∆$

n such that ρ ∈ (r, 1/2) and $ ∈
((1− ρ/2) / (2− r) , 1/2). The following statements hold for some constant

ε > 0: (a) With Un,j ≡ k
−1/2
n,j

∑
i∈In,j

(
∆n
iW∆n

iW
>/∆n − Id

)
for each 1 ≤

j ≤ mn, we have

(2.3) max
1≤j≤mn

sup
t∈Tn,j

∥∥∥k1/2
n,j (ĉn,t − ct)− σt(n,j)Un,jσ>t(n,j)

∥∥∥ = op (∆ε
n) ;

(b) If Assumption 2 holds in addition, we further have

max
1≤j≤mn

sup
t∈Tn,j

∣∣k1/2
n,j (f (ĉn,t)− f (ct))

− tr
[
∂f
(
ct(n,j)

)
σt(n,j)Un,jσ

>
t(n,j)

]∣∣ = op (∆ε
n) .

Part (a) of Theorem 1 shows that, uniformly over all estimation blocks,

the normalized estimation errors (i.e., k
1/2
n,j (ĉn,t − ct)) can be approximated

by (σt(n,j)Un,jσ
>
t(n,j))1≤j≤mn . Part (b) provides a similar result for f (ĉn,t).

Theorem 1 is the foundation of all our uniform inference procedures dis-
cussed below, for which the knowledge that the strong approximation occurs
at some polynomial rate (captured by op(∆

ε
n)) is enough.

We note that the coupling error in Theorem 1 stems from three sources:
the drift component of X, the time-variation in volatility, and the “resid-
ual” error from the jump truncation. [12] proposes an alternative strong
approximation with Gaussian coupling variables (see Proposition 2 there).
In general, both coupling results hold only approximately. However, in the
baseline model with bt = Jt = 0 identically and volatility being block-
wise constant, our “approximation” in (2.3) is actually exact, whereas [12]’s
Gaussian coupling still carries a non-zero approximation error. Hence, in
this “weak” sense, the former is more precise than the latter.

The uniform inference across all estimation blocks involves some addi-
tional complication. While the Ft(n,j)-conditional distribution of the vari-

able σt(n,j)Un,jσ
>
t(n,j) is known, we generally cannot characterize the joint

distribution of (σt(n,j)Un,jσ
>
t(n,j))1≤j≤mn , because the σt(n,k) variables are

heterogeneous in our nonstationary setting and may be dependent on Un,j
for j < k when volatility loads on past Brownian price shocks. We ad-
dress this issue by uniformly pivotalizing the spot estimators. This can be
generically achieved in the univariate setting (i.e., d = 1) as described in
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Theorem 2 below. The situation becomes more intricate in the multivariate
case, which is deferred to Section 2.3.

Theorem 2. Suppose that the conditions of Theorem 1 hold with d = 1,
and the process ∂f (ct) ct is locally bounded away from zero. Then, for some
ε > 0,

(2.4) max
1≤j≤mn

sup
t∈Tn,j

|Sn,t − Un,j | = op (∆ε
n) ,

where the t-statistic process Sn,t is defined by

Sn,t ≡
k

1/2
n,j (f (ĉn,t)− f (ct))

∂f (ĉn,t) ĉn,t
, for t ∈ Tn,j and j ∈ {1, . . . ,mn},

under the convention that Sn,t = 0 when ∂f (ĉn,t) ĉn,t = 0.

Theorem 2 establishes the uniform strong approximation of the t-statistic
process Sn,t associated with the estimation of the f (ct) process. The Sn,t
process is asymptotically uniformly pivotal in the sense that the joint distri-
bution of the coupling variables (Un,j)1≤j≤mn

is free of unknown nuisance.

Indeed, they are mutually independent and each scaled variable k
1/2
n,j Un,j =∑

i∈In,j
((∆n

iW )2 /∆n − 1) has a centered chi-squared distribution with de-
gree of freedom kn,j .

The strong approximation in (2.4) for the t-statistic process can be used
to construct uniform inference for the f (ct) process. Specifically, we consider
the sup-t statistic given by

S∗n ≡ sup
t∈[0,T ]

∣∣Sn,t∣∣.
Theorem 2 implies that

S∗n − max
1≤j≤mn

|Un,j | = op (∆ε
n) .

This approximation naturally suggests that quantiles of max1≤i≤mn |Un,j |,
which are known in finite samples, can be used as critical values for the sup-t
statistic.

This intuition, however, needs to be formalized theoretically with care.
The relevant technicality is that max1≤i≤mn |Un,j | is the maximum of a
growing number of variables, and its quantiles are generally divergent as
n→∞. This is unlike the conventional (low-dimensional) statistical setting
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in which critical values defined as quantiles of the limiting distribution are
finite. This issue is addressed in our proofs by using an anti-concentration
inequality for divergent random sequences. Theorem 3, below, describes the
uniform confidence band for the f (ct) process, and justifies its asymptotic
validity.

Theorem 3. Suppose that the conditions in Theorem 2 hold. For any
α ∈ (0, 1/2), with κ∗n being the 1− α quantile of max1≤j≤mn |Un,j |, we have
P(S∗n ≤ κ∗n) → 1 − α. Consequently, the confidence band defined by Bn,t ≡
[B−n,t, B

+
n,t],

B±n,t ≡ f (ĉn,t)± k−1/2
n,j κ∗n∂f (ĉn,t) ĉn,t, for t ∈ Tn,j and j ∈ {1, . . . ,mn},

satisfies P (f (ct) ∈ Bn,t for all t ∈ [0, T ])→ 1− α.

Theorem 3 shows that (Bn,t)t∈[0,T ] forms an asymptotically valid uniform
confidence band with nominal level 1−α. A particularly interesting example
is f (c) = log(c), which corresponds to ∂f (c) c = 1. In this case, there is no
need to estimate the standard error and the uniform confidence band is given

by [log (ĉn,t)− k−1/2
n,j κ∗n, log (ĉn,t) + k

−1/2
n,j κ∗n] when t ∈ Tn,j , which is equally

sized over time. We recommend using this confidence band in practice.
We close this subsection with some remarks on related work. The growing-

dimensional strong approximation has been used in recent work on high-
dimensional and/or uniform nonparametric inference; see, for example, [10],
[8], [5], [29], and [19]. To our knowledge, the present paper is the first one that
uses this type of technique in the nonstationary nonergodic high-frequency
setting. It is also interesting to note that the aforementioned papers are all
based on strong Gaussian approximation (e.g., implied by Yurinskii’s cou-
pling), whereas our coupling variables, (Un,j)1≤j≤mn , are normalized chi-
squared. The known finite-sample distribution of these variables allows us
to compute critical values without resorting to the additional Gaussian ap-
proximation. The uniform inference for spot volatility has been studied in
[12]. Following the insight of [6] and [17], [12] proposes a uniform confidence
band based on an extreme-value theory (without pivotalizing the estimator).
In contrast, we do not rely on the extreme-value theory to approximate the
distribution of the sup-t statistic. In addition, [12]’s theory rules out jumps
in X and the volatility process, and requires the volatility process to be
stationary (see Theorem 2 there). Stationarity would rule out a basic model
with time-varying deterministic volatility, or more generally, the well-known
U-shaped intraday pattern in volatility. Our theory is established in a more
general setting without these restrictions.
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2.3. Uniform inference for spot beta and idiosyncratic variance. In this
subsection, we discuss how to feasibly conduct uniform inference for the
f(ct) process in the multivariate case (i.e., d > 1). As discussed in the
previous subsection, we need to uniformly pivotalize the estimator f (ĉn,t),
which can be easily done in the univariate case as shown in Theorem 2. In
the multivariate case, we need the following condition on the transform f (·).

Assumption 3. (i) There exists 1 ≤ k∗ ≤ l∗ ≤ d such that, for all
1 ≤ k ≤ l ≤ d,

(2.5)
d∑

i,j=1

∂ijf (ct) (σik,tσjl,t + σil,tσjk,t) = 0 when (k, l) 6= (k∗, l∗).

(ii) The process F (ct) ≡
∑d

i,j,k,l=1 ∂ijf (ct)σik,tσjl,t is locally bounded away
from zero.

Assumption 3 ensures that the approximating variable described in The-
orem 1 loads on a single source of randomness, meaning that we can rewrite
it as

(2.6) tr[∂f
(
ct(n,j)

)
σt(n,j)Un,jσ

>
t(n,j)] = F

(
ct(n,j)

)
U∗n,j ,

where U∗n,j is the (k∗, l∗) element of Un,j . Importantly, the coupling variable
only depends on the scalar-valued random variable U∗n,j instead of the Un,j
matrix itself. It is then clear that uniform pivotalization can be attained via
the t-statistic defined by

(2.7) Sn,t ≡
k

1/2
n,j (f (ĉn,t)− f (ct))

F (ĉn,t)
, for t ∈ Tn,j and j ∈ {1, . . . ,mn}.

The seemingly peculiar restriction (2.5) is in fact valid for several im-
portant transformations. We illustrate this concretely with the following
examples.

Example 1 (Beta and Idiosyncratic Variance). Consider a bivariate
setting with the diffusive shocks represented by

(2.8) dXc
t = σtdWt =

(
v

1/2
t 0

βtv
1/2
t ς

1/2
t

)(
dW1,t

dW2,t

)
,

where Xc denotes the continuous martingale part of X. In a financial con-
text, denoting X = (M,Y ), we can interpret vt as the spot variance of the
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market portfolio M , βt as the beta of asset price Y with respect to the mar-
ket, and ςt as the idiosyncratic variance of Y . The matrix-valued process σt
is informationally equivalent to (vt, βt, ςt). The latter scalar-valued processes
are respectively associated with the following transformations:

fv (ct) = vt = c11,t, fβ (ct) = βt =
c12,t

c11,t
, fς (ct) = ςt = c22,t −

c2
12,t

c11,t
,

and the corresponding F (·) functions in Assumption 3 are given by Fv (ct) ≡
vt, Fβ (ct) ≡

√
ςt/vt, and Fς (ct) ≡ ςt. By elementary calculation, it is easy

to see that fv, fβ, and fς satisfy Assumption 3(i) for (k∗, l∗) being (1, 1),
(1, 2), and (2, 2), and the normalized coupling variable (recall (2.6)) can be
written explicitly as

(2.9) U∗n,j =


k
−1/2
n,j

∑
i∈In,j

(
(∆n

i W1)
2

∆n
− 1

)
when f = fv,

k
−1/2
n,j

∑
i∈In,j

(∆n
i W1)(∆n

i W2)
∆n

when f = fβ,

k
−1/2
n,j

∑
i∈In,j

(
(∆n

i W2)
2

∆n
− 1

)
when f = fς .

�

The setting of Example 1 can be viewed equivalently as a continuous-time
regression:

(2.10) dY c
t = βtdM

c
t + dεt,

with dM c
t = v

1/2
t dW1,t and dεt = ς

1/2
t dW2,t. In particular, the independence

between W1 and W2 ensures the orthogonality in the martingale sense be-
tween M c and ε, which in turn permits the identification of βt.

The univariate regression may be extended to the case with multiple re-
gressors. To fix ideas, consider an additional regressor process Z in the fol-
lowing model:

(2.11) dY c
t = β1,tdM

c
t + β2,tdZ

c
t + dεt,

under the orthogonality condition that 〈M c, ε〉 = 0 and 〈Zc, ε〉 = 0, where
〈·, ·〉 denotes the angle bracket of local martingales. Obviously, if M c is also
orthogonal to Zc (i.e., Z is “market neutral”), we can conduct analysis for
β1,t as in the univariate setting (2.10) by rewriting the model as dY c

t =
β1,tdM

c
t + dε̃t with dε̃t = β2,tdZ

c
t + dεt.
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The situation becomes more complicated when Zc is not orthogonal to
M c. In this case, we consider the following decomposition of Zc:

(2.12) dZct = γtdM
c
t + dZ̃t,

such that M c and Z̃ are orthogonal in the martingale sense. Plugging (2.12)
into (2.11), we can rewrite the latter as

dY c
t = β̄1,tdM

c
t + β2,tdZ̃t + dεt, where β̄1,t = β1,t + β2,tγt.

In this alternative model, the regressor processes M c and Z̃ are orthogonal,
with β̄1,t capturing the “total” effect of the dM c

t shock on dY c
t . The betas

can be identified as

β̄1,t =
d〈Y c,M c〉t
d〈M c,M c〉t

, β2,t =
d〈Y c, Z̃〉t
d〈Z̃, Z̃〉t

.

As discussed in the previous paragraph, the analysis for β̄1,t is the same as
the univariate regression in Example 1. The nontrivial part is the analysis for
β2,t, because the residual process Z̃ is not directly observed. That being said,
we can still identify β2,t from the spot covariance matrix of X = (M,Z, Y ).
Indeed, we have γt = c12,t/c11,t,

d〈Y c, Z̃〉t = d 〈Y c, Zc〉t − γtd 〈Y
c,M c〉t =

(
c23,t −

c12,t

c11,t
c13,t

)
dt,

d〈Z̃, Z̃〉t =

(
c22,t −

c2
12,t

c11,t

)
dt,

yielding

β2,t = fβ2 (ct) ≡
c11,tc23,t − c12,tc13,t

c11,tc22,t − c2
12,t

.

By direct calculation, we can verify that the function fβ2 (·) satisfies As-
sumption 3 with (k∗, l∗) = (2, 3), corresponding to Fβ2 (ct) ≡

√
ςt/ς̃t, where

ς̃t ≡ c22,t −
c2

12,t

c11,t
, ςt ≡ c33,t −

c2
13,t

c11,t
− β2

2,tς̃t,

which are the spot variance processes of Z̃ and ε, respectively.

Example 2 (Permanence). Assumption 3 satisfies a permanence property
with respect to smooth transformations in the following sense. Suppose that
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g :M+
d 7→ R satisfies Assumption 3 withG (ct) ≡

∑d
i,j,k,l=1 ∂ijg (ct)σik,tσjl,t.

Consider a continuously differentiable function h and define f = h ◦ g. Since
∂ijf (ct) = ∂h (g (ct)) ∂ijg (ct), it is easy to see that f satisfies condition (i)
as well. Condition (ii) can be verified if the process F (ct) = ∂h (g (ct))G (ct)
is locally bounded away from zero. �

Theorem 4, below, extends the results in Theorems 2 and 3 to a multi-
variate case under Assumption 3. Recall that the sup-t statistic is denoted
by S∗n = supt∈[0,T ] |Sn,t|.

Theorem 4. Under the conditions of Theorem 1 and Assumption 3,
the following statements hold: (a) We have S∗n− sup1≤j≤mn

|U∗n,j | = op (∆ε
n)

for some ε > 0, where U∗n,j is the (k∗, l∗) element of Un,j; (b) For any
α ∈ (0, 1/2), with κ∗n being the 1− α quantile of max1≤j≤mn |U∗n,j |, we have
P (S∗n ≤ κ∗n) → 1 − α. Consequently, the confidence band defined by Bn,t ≡
[B−n,t, B

+
n,t],

B±n,t ≡ f (ĉn,t)± k−1/2
n,j κ∗nF (ĉn,t) , for t ∈ Tn,j and j ∈ {1, . . . ,mn},

satisfies P (f (ct) ∈ Bn,t for all t ∈ [0, T ])→ 1− α.

To guide application, we note that the critical value κ∗n is known in finite
samples and can be computed via Monte Carlo simulation. We illustrate this
point with the running example.

Example 1 (Continued). We can simulate independent standard normal
variables N1,i and N2,i and construct an identical copy (in distribution) of
U∗n,j as

Ũ∗n,j ≡


k
−1/2
n,j

∑
i∈In,j

(
N 2

1,i − 1
)

when f = fv,

k
−1/2
n,j

∑
i∈In,j

N1,iN2,i when f = fβ,

k
−1/2
n,j

∑
i∈In,j

(
N 2

2,i − 1
)

when f = fς .

The critical value κ∗n can then be computed as the 1 − α quantile of the
variable max1≤j≤mn |Ũ∗n,j | from a large number of simulations. �

2.4. Inference for monotone functionals of volatility. The uniform confi-
dence band studied above may be used to conduct other types of inference.
An interesting application concerns monotone functionals. Let H denote the
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space of real-valued Borel measurable functions on [0, T ]. We call a func-
tional F : H 7→ R increasing if f(·) ≤ g(·) implies F (f) ≤ F (g), and use M
to collect all increasing functionals. By monotonicity,

lim inf
n→∞

P
(
F
(
B−n
)
≤ F (f (c)) ≤ F

(
B+
n

)
for all F ∈M

)
≥ lim

n→∞
P
(
B−n,t ≤ f (ct) ≤ B+

n,t for all t ∈ [0, T ]
)

= 1− α,(2.13)

where the convergence follows from Theorem 4. That is, [F (B−n ) ,F (B+
n )]

forms a confidence interval for the functional F (f (c)) with asymptotic cov-
erage rate at least 1− α.

This simple implication addresses an open question regarding the high-
frequency inference for occupation times ([20]); see [14] and [25] for addi-
tional background. Recall that the occupation time for the f (ct) process is
defined as follows:

Fx (f (c)) =

∫ T

0
1{f(cs)≤x}ds, for x ∈ R,

which measures the amount of time when the f (ct) process is below a cer-
tain value x over the time interval [0, T ]. Obviously, the occupation time
is the “realized” analogue of the cumulative distribution function x 7→
P (f (ct) ≤ x). Correspondingly, we can define the occupational quantile of
the f (ct) process as the functional inverse of the occupation time, that is,

Qq (f (c)) = inf{x ∈ R : Fx (f (c)) ≥ qT} for q ∈ (0, 1) .

The occupation time and quantile functionals capture the full “distribu-
tional” feature of the underlying process.

[20] first study the volatility occupation time by establishing consistency
and rate of convergence results. The related inference problem, however,
remains to be an open question. Many recent papers study the inference
for integrated volatility functionals of the form

∫ T
0 g (cs) ds for some smooth

(more precisely, three-time continuously differentiable) function g (·); see, for
example, [18], [16], [23], and [21]. However, those theories are not applicable
here because the occupation time corresponds to a nonsmooth test function
of the form 1{f(·)≤x}. Using our uniform inference theory, we instead exploit
the fact that Fx and Qq are monotone functionals. In fact, −Fx and Qq

belong to M for all x ∈ R and q ∈ (0, 1), so we can conduct feasible inference
on the basis of (2.13). This result is summarized in the following corollary.

Corollary 1. Under the conditions of Theorem 4, we have

lim inf
n→∞

P (Ω1,n ∩ Ω2,n) ≥ 1− α,
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where

Ω1,n ≡ {Fx
(
B+
n

)
≤ Fx (f (c)) ≤ Fx

(
B−n
)

for all x ∈ R},
Ω2,n ≡ {Qq(B

−
n ) ≤ Qq (f (c)) ≤ Qq(B

+
n ) for all q ∈ (0, 1)}.

This corollary shows that [Fx (B+
n ) ,Fx (B−n )]x∈R provides a uniform con-

fidence band for the occupation time function x 7→ Fx(f (c)). In addition,
[Qq(B

−
n ),Qq(B

+
n )]q∈(0,1) provides a uniform confidence band for the occu-

pation quantile function q 7→ Qq(f (c)). These confidence bands are valid
simultaneously, but they may be conservative. Specifically in the context
of Example 1, this result can be used to make inference about the occupa-
tion times and occupation quantiles of spot variance, beta, and idiosyncratic
variance.

3. Simulations. In this section, we examine the finite-sample perfor-
mance of the proposed inference method in a Monte Carlo experiment. Since
the pointwise inference of spot volatility has been well studied in the litera-
ture, we focus on the uniform inference for the volatility process. Below, we
fix the sample span to be T = 1 day.

We simulate the log price process from dXt = σtdWt. To simulate the
volatility process, we follow [7] and generate two volatility factors, V1,t and
V2,t, from the following model:

dV1,t = 0.0128(0.4068− V1,t)dt+ 0.0954
√
V1,t

(
ρdWt +

√
1− ρ2dB1,t

)
,

dV2,t = 0.6930(0.4068− V2,t)dt+ 0.7023
√
V2,t

(
ρdWt +

√
1− ρ2dB2,t

)
,

where B1 and B2 are independent standard Brownian motions that are also
independent of W . The ρ = −0.7 parameter captures the well-documented
negative correlation between price and volatility shocks (i.e., the “leverage”
effect). The V1 volatility factor is highly persistent with a half-life of 2.5
months, while the V2 volatility factor is quickly mean-reverting with a half-
life of only one day. We simulate the continuous-time processes using an
Euler scheme on a 1-second mesh, and the observed returns actually used
in the calculations are sampled at ∆n = 1 minute intervals. There are 390
returns within the trading day.

We then consider two models for the volatility process, with σ2
t = 2V1,t

and σ2
t = V1,t + V2,t, which will be referred to as the one-factor and two-

factor models, respectively. Under the one-factor model, the sample path
of the “slow” volatility factor is relatively smooth, and hence, results in a
relatively small nonparametric estimation bias. The two-factor model, on
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the other hand, presents a nontrivial challenge to spot volatility estimation,
in that the volatility process can vary considerably within a day.

We implement the uniform confidence band described in Theorem 3 with
f (·) = log (·), as recommended before. Recall that the uniform critical value
(CV), κ∗n, is defined as the 1−α quantile of max1≤j≤mn |Un,j |. For example,
when kn = 30, there are mn = 13 estimation blocks within a day, and
κ∗n ≈ 3.97 (resp. 4.47) when α = 0.1 (resp. 0.05). To highlight the difference
between the uniform CV and the pointwise CV, we also examine the uniform
coverage property of a confidence band based on the pointwise CV, say κ̃∗n,
which is defined as the 1 − α quantile of |Un,j |; recall that the distribution
of Un,j does not depend on j. Not surprisingly, κ̃∗n is generally much smaller
than κ∗n. For example, when kn = 30, κ̃∗n ≈ 2.27 (resp. 2.72) when α = 0.1
(resp. 0.05). Therefore, we expect the pointwise band based on κ̃∗n to have
severe under-coverage. Finally, we implement the uniform confidence band
proposed by [12], which employs a CV based on extreme-value theory.

In each setting, we consider two confidence levels: 90% and 95%. We also
consider a range of block sizes kn ∈ {10, 15, 26, 30}. These block sizes are
chosen so that the 390 observations in each day can be divided into equally
sized blocks. Note that the largest block size is three times larger than the
smallest one, thus providing a meaningful robustness check regarding the
“bandwidth” parameter kn.

Table 1 reports the finite-sample coverage rates of the three versions of
confidence bands (i.e., Uniform, Pointwise, and Extreme-Value), calculated
based on 10,000 Monte Carlo replications. The top panel presents the re-
sults for the one-factor model. From the first two columns, we see that the
coverage rates of the proposed uniform confidence bands are generally close
to the nominal confidence levels. The size control is particularly good in the
“undersmoothing” case with relatively small kn, which mitigates the non-
parametric estimation bias stemming from time-varying volatility. In sharp
contrast, the pointwise confidence band suffers from severe size distortion,
as shown on columns 3 and 4 of the table. This finding is expected and high-
lights concretely the distinction between the uniform and pointwise confi-
dence bands. Looking at the last two columns of the table, we see that the
extreme-value-based confidence band of [12] also bears nontrivial size dis-
tortion. This suggests that the extreme-value asymptotic approximation has
not “kicked in.” This may also reflect the fact that the assumption of sta-
tionary volatility underlying [12]’s theory does not capture well the “realized
heterogeneity” in the volatility path within a relatively short sample.

Finally, we turn to the results with the two-factor volatility dynamics
shown on the bottom panel of Table 1. The performance of all methods de-
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Table 1
Finite-sample Coverage Rates of Confidence Bands

Uniform Pointwise Extreme-Value
kn 90% 95% 90% 95% 90% 95%

Panel A: One-factor Volatility Model
10 89.1 94.9 0.2 2.9 19.1 25.1
15 89.7 95.7 1.7 12.2 33.1 40.6
26 86.8 94.1 9.9 30.6 49.7 58.4
30 86.6 93.7 14.0 36.0 54.5 62.8

Panel B: Two-factor Volatility Model
10 87.5 94.2 0.0 1.9 25.8 31.2
15 86.2 93.6 0.4 5.6 34.8 41.1
26 78.1 89.7 2.2 11.7 43.8 50.5
30 73.8 87.7 2.4 12.6 43.6 50.5

Note: The table reports the uniform coverage rates (in percentages) of three
versions of confidence bands for the spot variance process (ct)t∈[0,1]. The first
version is based on the uniform critical value (CV) described in Theorem 3
for f(·) = log(·). The second version instead uses the pointwise CV. The third
version is the confidence band proposed by [12], which is based on an extreme-
value approximation. We report results for two confidence levels, 90% and 95%,
and various block sizes, kn ∈ {10, 15, 26, 30}. The coverage rates are computed
based on 10,000 Monte Carlo replications.

teriorates under this more challenging data generating process, as it features
much rougher volatility paths. That being said, we still see clearly that the
proposed uniform confidence band outperforms the pointwise band and the
extreme-value-based band, with adequate performance in the undersmooth-
ing case.

4. Proofs. Throughout the proofs, we use K to denote a positive con-
stant that may change from line to line, and write Kp to emphasize its
dependence on some parameter p. For p ≥ 1, we use ‖ · ‖p to denote the
Lp-norm of a random variable. In addition, by a standard localization pro-
cedure, we can strengthen Assumptions 1 and 2 by assuming that they hold
with T1 = ∞ without loss of generality; see Section 4.4.1 in [15] for details
on localization.

Proof of Theorem 1. (a) Fix any constant

ε ∈ (0, (1/2− ρ) ∧ ((2− r)$ + ρ/2− 1)),

which is possible given condition (ii) of the theorem. Denote X ′ = X − J .
For each j ∈ {1, . . . ,mn}, we set ĉ′n,j ≡ k−1

n,j∆
−1
n

∑
i∈In,j

∆n
i X
′∆n

i X
′>. Our
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proof relies on the following decomposition:

(4.1) k
1/2
n,j (ĉn,j − ct)− σt(n,j)Un,jσ>t(n,j) = k

1/2
n,j (ct(n,j) − ct) +Rn,j +R′n,j ,

where

Rn,j ≡ k
1/2
n,j

(
ĉn,j − ĉ′n,j

)
,

R′n,j ≡ k
1/2
n,j

ĉ′n,j − σt(n,j)
 1

kn,j∆n

∑
i∈In,j

∆n
iW∆n

iW
>

σ>t(n,j)

 .

By Assumption 1 and a maximal inequality, we have for any p ≥ 1,∥∥∥∥∥ max
1≤j≤mn

sup
t∈Tn,j

∥∥∥k1/2
n,j (ct(n,j) − ct)

∥∥∥∥∥∥∥∥
p

≤ Kpm
1/p
n ∆1/2−ρ

n .

With p > (1− ρ)/(1/2− ρ− ε), the right-hand side of the above estimate is
o (∆ε

n). Hence,

(4.2) max
1≤j≤mn

sup
t∈Tn,j

∥∥∥k1/2
n,j (ct(n,j) − ct)

∥∥∥ = op (∆ε
n) .

We rewrite Rn,j =
∑

i∈In,j
ζn,i where for each i ∈ In,j ,

ζn,i ≡
1

k
1/2
n,j ∆n

(
∆n
i X∆n

i X
>1{‖∆n

i X‖≤un} −∆n
i X
′∆n

i X
′>
)
.

By some known estimates (see p. 1476 in [16]),

E
[∥∥∥∆n

i X∆n
i X
>1{‖∆n

i X‖≤un} −∆n
i X
′∆n

i X
′>
∥∥∥] ≤ K∆(2−r)$+1

n ,

which further implies E [‖ζn,i‖] ≤ K∆
(2−r)$+(ρ/2)
n . Note that ‖Rn,j‖ ≤∑[T/∆n]

i=1 ‖ζn,i‖ uniformly in j. Hence,

E
[

max
1≤i≤mn

‖Rn,j‖
]
≤ K∆(2−r)$+(ρ/2)−1

n ,

yielding

(4.3) max
1≤i≤mn

‖Rn,j‖ = Op

(
∆(2−r)$+(ρ/2)−1
n

)
= op (∆ε

n) .
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Finally, we consider R′n,j . Define for each j ∈ {1, . . . ,mn} and each i ∈
In,j ,

ξn,i ≡ ∆n
i X
′ − σt(n,j)∆n

iW =

∫ i∆n

(i−1)∆n

bsds+

∫ i∆n

(i−1)∆n

(
σs − σt(n,j)

)
dWs.

We can then rewrite

R′n,j =
1

k
1/2
n,j ∆n

∑
i∈In,j

(
ξn,iξ

>
n,i + ξn,i

(
σt(n,j)∆

n
iW

)>
+
(
σt(n,j)∆

n
iW

)
ξ>n,i

)
.

By the Burkholder–Davis–Gundy inequality, Hölder’s inequality, and As-
sumption 1, we have for any p ≥ 2,

E

[∥∥∥∥∥
∫ i∆n

(i−1)∆n

(
σs − σt(n,j)

)
dWs

∥∥∥∥∥
p]

≤ KpE

(∫ i∆n

(i−1)∆n

∥∥σs − σt(n,j)∥∥2
ds

)p/2
≤ Kp∆

p/2−1
n E

[∫ i∆n

(i−1)∆n

∥∥σs − σt(n,j)∥∥p ds
]

≤ Kpk
p/2
n,j ∆p

n ≤ Kp∆
p(1−ρ/2)
n .

It is then easy to see that

‖ξn,i‖p ≤

∥∥∥∥∥
∫ i∆n

(i−1)∆n

bsds

∥∥∥∥∥
p

+

∥∥∥∥∥
∫ i∆n

(i−1)∆n

(
σs − σt(n,j)

)
dWs

∥∥∥∥∥
p

≤ Kp∆
1−ρ/2
n .

This estimate further implies that∥∥∥ξn,iξ>n,i∥∥∥
p
≤ Kp∆

2−ρ
n ,

∥∥∥ξn,i (σt(n,j)∆n
iW

)>∥∥∥
p
≤ Kp∆

1−ρ/2
n ∆1/2

n ,

and hence, ‖R′n,j‖p ≤ Kp∆
1/2−ρ
n . By a maximal inequality for p > (1 −

ρ)/(1/2− ρ− ε),

(4.4) max
1≤j≤mn

∥∥R′n,j∥∥ ≤ Kpm
1/p
n ∆1/2−ρ

n = op(∆
ε
n).

The assertion of part (a) then follows from (4.1), (4.2), (4.3), and (4.4).
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(b) Note that max1≤j≤mn ‖σt(n,j)Un,jσ>t(n,j)‖ ≤ K max1≤j≤mn ‖Un,j‖. It is

also easy to see that for any p ≥ 1, max1≤j≤mn ‖Un,j‖p ≤ Kp. Therefore, by
a maximal inequality,

(4.5) E
[

max
1≤j≤mn

∥∥∥σt(n,j)Un,jσ>t(n,j)∥∥∥] ≤ Kpm
1/p
n .

Note that ε < ρ/2, so we can find a (small) constant ι > 0 such that
ρ/2− 2ι > ε. By taking p sufficiently large, we deduce from (4.5) that

max
1≤j≤mn

∥∥∥σt(n,j)Un,jσ>t(n,j)∥∥∥ = Op(∆
−ι
n ).

From this estimate and the result in part (a), we further deduce that

(4.6) max
1≤j≤mn

sup
t∈Tn,j

‖ĉn,j − ct‖ = Op(∆
ρ/2−ι
n ) = op(1).

In particular, we see that {ĉn,j : 1 ≤ j ≤ mn} ⊆ Kη1 for any fixed constant
η > 0 with probability approaching 1. Since f is twice continuously differen-
tiable on the bounded set Kη1 , we can use a mean-value expansion to deduce
that uniformly for 1 ≤ j ≤ mn and t ∈ Tn,j ,∣∣∣k1/2

n,j (f (ĉn,t)− f (ct))− tr[∂f
(
ct(n,j)

)
k

1/2
n,j (ĉn,j − ct)]

∣∣∣
≤ K∆−ρ/2n ‖ĉn,j − ct‖2 = Op(∆

ρ/2−2ι
n ) = op(∆

ε
n),(4.7)

where the rate statements follow from (4.6) and the fact that ρ/2− 2ι > ε.
Since ‖∂f (ct)‖ is bounded, the assertion of part (b) readily follows from
(4.7) and part (a). �

Proof of Theorem 2. Since ∂f (ct) ct is locally bounded away from zero,
with an appeal to localization, we can assume that ∂f (ct) ct ≥ C for some
constant C > 0 without loss of generality. In addition, (4.6) implies that,
for some constant ι > 0 satisfying ρ/2− 2ι > ε,

max
1≤j≤mn

∥∥ĉn,j − ct(n,j)∥∥ = Op(∆
ρ/2−ι
n ) = op(1).

From here, it is easy to see that uniformly for 1 ≤ j ≤ mn,

(4.8) (∂f (ĉn,j) ĉn,j)
−1 = Op(1),

∣∣∣∣∣∂f
(
ct(n,j)

)
ct(n,j)

∂f (ĉn,j) ĉn,j
− 1

∣∣∣∣∣ = Op(∆
ρ/2−ι
n ).
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We then finish the proof by observing

max
1≤j≤mn

sup
t∈Tn,j

∣∣∣∣∣k
1/2
n,j (f (ĉn,j)− f (ct))

∂f (ĉn,j) ĉn,j
− Un,j

∣∣∣∣∣
≤ max

1≤j≤mn

1

|∂f (ĉn,j) ĉn,j |

· max
1≤j≤mn

sup
t∈Tn,j

∣∣∣k1/2
n,j (f (ĉn,j)− f (ct))− ∂f

(
ct(n,j)

)
ct(n,j)Un,j

∣∣∣
+ max

1≤j≤mn

∣∣∣∣∣∂f
(
ct(n,j)

)
ct(n,j)

∂f (ĉn,j) ĉn,j
− 1

∣∣∣∣∣ · max
1≤j≤mn

|Un,j |

= op (∆ε
n) +Op(∆

ρ/2−2ι
n ) = op (∆ε

n) ,

where the first inequality is by the triangle inequality, and the subsequent
rate statement follows from Theorem 1, (4.8), max1≤j≤mn |Un,j | = Op(∆

−ι
n ),

and ρ/2− 2ι > ε. �

Proof of Theorem 3. Step 1. In this step, we construct another cou-
pling variable for max1≤j≤mn |Un,j |. For ease of notation, we denote Ln =
log(∆−1

n ). Let k̄n = max1≤j≤mn kn,j and define an array of random variables

(X̃i,j)1≤i≤k̄n,1≤j≤2mn
as follows: for 1 ≤ j ≤ mn, we set

(4.9) (X̃i,j)1≤i≤kn,j
=

(
k
−1/2
n,j

(
(∆n

l W )2

∆n
− 1

))
l∈In,j

,

and X̃i,j = 0 if kn,j < i ≤ k̄n; we then set X̃i,j = −X̃i,j−mn for mn + 1 ≤
j ≤ 2mn and 1 ≤ i ≤ k̄n. With these definitions, we can rewrite

(4.10) max
1≤j≤mn

|Un,j | = max
1≤j≤2mn

k̄n∑
i=1

X̃i,j .

We note that the (2mn)-dimensional vectors (X̃i,j)1≤j≤2mn are independent

across different i’s. Let (Ỹi,j)1≤i≤k̄n,1≤j≤2mn
be a generic array of centered

Gaussian random vectors, such that E[Ỹi,j Ỹi′,j′ ] = E[X̃i,jX̃i′,j′ ] for all 1 ≤
i, i′ ≤ k̄n and 1 ≤ j, j′ ≤ 2mn.

To construct a coupling variable for max1≤j≤mn |Un,j |, we first need to
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derive bounds for the following sequences:

B1,n ≡ E

 max
1≤j,k≤2mn

∣∣∣∣∣∣
k̄n∑
i=1

(
X̃i,jX̃i,k − E

[
X̃i,jX̃i,k

])∣∣∣∣∣∣
 ,

B2,n ≡ E

 max
1≤j≤2mn

k̄n∑
i=1

∣∣∣X̃i,j

∣∣∣3
 ,

B3,n ≡
k̄n∑
i=1

E
[

max
1≤j≤2mn

∣∣∣X̃i,j

∣∣∣3 · 1{max1≤j≤2mn |X̃i,j|>L−2
n log−1(2mn∨k̄n)}

]
.

We start with B1,n. Note that for any p ≥ 1,

(4.11)
∥∥∥X̃i,jX̃i,k − E

[
X̃i,jX̃i,k

]∥∥∥
p
≤ Kp∆

ρ
n.

Since (X̃i,jX̃i,k − E[X̃i,jX̃i,k])1≤i≤k̄n is a sequence of independent variables,
by the Burkholder–Davis–Gundy inequality, Hölder’s inequality, and (4.11),
we have ∥∥∥∥∥∥

k̄n∑
i=1

(
X̃i,jX̃i,k − E

[
X̃i,jX̃i,k

])∥∥∥∥∥∥
p

≤ Kp∆
ρ/2
n .

Then, by using a maximal inequality, B1,n ≤ Kpm
2/p
n ∆

ρ/2
n . By taking p

sufficiently large, we deduce that for any fixed constant ι > 0,

B1,n = o
(

∆ρ/2−ι
n

)
.

Next, we consider B2,n. It is easy to see that for any p ≥ 1, ‖
∑k̄n

i=1 |X̃i,j |3‖p ≤
Kp∆

ρ/2
n . By another use of maximal inequality, we then deduce that

B2,n = o
(

∆ρ/2−ι
n

)
.

Similarly,

B3,n ≤
k̄n∑
i=1

E
[

max
1≤j≤2mn

∣∣∣X̃i,j

∣∣∣3] = o
(

∆ρ/2−ι
n

)
.

By Corollary 4.1 of [9], there exists a sequence of random variables (Z̃n)n≥1
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such that Z̃n has the same distribution as max1≤j≤2mn

∑k̄n
i=1 Ỹi,j and

P

∣∣∣∣∣∣ max
1≤j≤2mn

k̄n∑
i=1

X̃i,j − Z̃n

∣∣∣∣∣∣ > 16L−2
n


≤ L4

n

{
B1,n + L2

n (B2,n +B3,n)
}

log
(
2mn ∨ k̄n

)
+

log
(
k̄n
)

k̄n
.

Since B1,n, B2,n, and B3,n converge to zero at polynomial rates, it is easy to
see that the majorant side of the above inequality is o(1). In view of (4.10),
we deduce

(4.12) max
1≤j≤mn

|Un,j | − Z̃n = op
(
L−1
n

)
.

Step 2. We prove the assertion of the theorem in this step. Without loss
of generality one can assume |∂f (ct) ct| ≥ C for some constant C > 0, and
hence, in view of (4.6) the probability that Sn,t takes the “dummy” value 0

for at least one t ∈ [0, T ] goes to zero as n→∞, yielding S∗n−Z̃n = op
(
L−1
n

)
by Theorem 2 and (4.12). Therefore, there exists a positive real sequence
δn = o(L−1

n ), such that with probability approaching 1,

(4.13) Z̃n − δn ≤ S∗n ≤ Z̃n + δn.

Let κ̃n(q) denote the q-quantile of Z̃n. Recall that κ∗n is the 1 − α quantile
of max1≤j≤mn |Un,j |. By (4.12) and Lemma A.1 of [5], there exists a positive
real sequence vn = o(1) such that with probability approaching 1,

(4.14) κ̃n(1− α− vn)− δn ≤ κ∗n ≤ κ̃n(1− α+ vn) + δn,

where the δn sequence can be taken as the same one in (4.13) without loss
of generality. Therefore,

P (S∗n ≤ κ∗n) ≤ P
(
Z̃n ≤ κ∗n + δn

)
+ o(1)

≤ P
(
Z̃n ≤ κ̃n (1− α+ vn) + 2δn

)
+ o(1)

≤ P
(
Z̃n ≤ κ̃n (1− α+ vn)

)
+ o(1)

= 1− α+ o(1),(4.15)

where the first inequality is by (4.13), the second inequality is by (4.14), the
third inequality is by the anti-concentration inequality for the maximum of
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Gaussian variables (see, e.g., Lemma 5.3 of [5]), and the last line is by the
definition of κ̃n (·). By a similar argument, we can also show that

(4.16) P (S∗n ≤ κ∗n) ≥ 1− α+ o(1).

The assertions of the theorem then readily follow from (4.15) and (4.16). �

Proof of Theorem 4. In view of equation (2.6), part (a) can be proved
in the same way as Theorem 2 with the function c 7→ ∂f (c) c replaced by
F (·). To prove part (b), we modify (4.9) as

(X̃i,j)1≤i≤kn,j
=

(
k
−1/2
n,j

(
∆n
iWk∗∆

n
iWl∗

∆n
− E

[
∆n
iWk∗∆

n
iWl∗

∆n

]))
i∈In,j

,

and then follow the same proof as in Theorem 3. �
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