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a b s t r a c t

Power posteriors have become popular in estimating the marginal likelihood of a
Bayesian model. A power posterior is referred to as the posterior distribution that is
proportional to the likelihood raised to a power b ∈ [0, 1]. Important power-posterior-
based algorithms include thermodynamic integration (TI) of Friel and Pettitt (2008)
and steppingstone sampling (SS) of Xie et al. (2011). In this paper, it is shown that
the Bernstein–von Mises (BvM) theorem holds for power posteriors under regularity
conditions. Due to the BvM theorem, power posteriors, when adjusted by the square
root of the auxiliary constant, have the same limit distribution as the original posterior
distribution, facilitating the implementation of the modified TI and SS methods via
importance sampling. Unlike the TI and SS methods that require repeated sampling from
the power posteriors, the modified methods only need the original posterior output
and hence, are computationally more efficient. Moreover, they completely avoid the
coding efforts associated with sampling from the power posteriors. Primitive conditions,
under which the TI and modified TI algorithms can produce consistent estimators of the
marginal likelihood, are provided. The numerical efficiency of the proposed methods is
illustrated using two models.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A highly important statistical decision faced by practitioners is the model comparison. In the Bayesian paradigm,
the Bayes factors (BFs) are arguably the most widely used Bayesian statistic for comparing models (Kass and Raftery,
1995; Young and Pettit, 1996). BFs have received many applications in practice. For example, since they are derived
from the probabilities of the null hypothesis and the alternative hypothesis conditional on the data (i.e., the two marginal
likelihoods), it is a natural tool for Bayesian hypothesis testing. Furthermore, it is tipped as a statistic to avoid the so-called
p-hacking problem (Harvey, 2017; Brodeur et al., 2020). This is not surprising because BFs are not based on the argument
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of repeated sampling. Moreover, BFs can be used to choose weights in model averaging and forecast combinations (Sala-i
Martin et al., 2004; Moral-Benito, 2013).

The calculation of BFs generally requires the calculation of the marginal likelihood values of competing models.
Marginal likelihood conducts integrations over the entire parameter space. In practice, the integrations can impose serious
computational challenges. In the Bayesian literature, various approaches have been proposed to compute the marginal
likelihood. Some excellent reviews are found in DiCiccio et al. (1997) and Han and Carlin (2001).

In this paper, we plan to improve some existing power-posterior-based methods to estimate the marginal likelihood
based on posterior output. A power posterior is referred to as the posterior distribution that is proportional to the
likelihood raised to a power b ∈ [0, 1]. Existing algorithms include thermodynamic integration (TI) of Friel and Pettitt
(2008) and steppingstone sampling (SS) of Xie et al. (2011). Compared with other posterior-output-based approaches, the
power-posterior-based approaches require very little tuning, are easy to implement, and lead to small Monte Carlo errors.

However, there are several drawbacks to the existing power-posterior-based approaches. First and foremost, the
sampling cost is very high. To implement the existing power-posterior-based methods, one needs MCMC output at grid
points over the interval [0, 1], denoted by {bs}Ss=0 where S + 1 is the number of grid points.1 Hence, MCMC sampling
has to be repeated for S + 1 times, greatly increasing the computational cost when S is moderate or large. Second, to
calculate the Monte Carlo standard error (MCSE) of the marginal likelihood estimate, independent MCMC chains, at all
grid points, have to be obtained. As a result, the computational cost would inevitably increase sharply. Third, for many
standard models with regular distributions, the power posteriors may lead to non-standard distributions, so that standard
Bayesian software such as WinBUGS (Spiegelhalter et al., 2003) is difficult to use. As a result, extra coding efforts are
needed to draw random samples from power posteriors. Finally, it is not known when the algorithms provide consistent
estimators of the marginal likelihood.

To overcome these disadvantages in the existing power-posterior-based approaches, the present paper develops new
approaches to estimate the marginal likelihood. The theoretical underpinning of the proposed approaches is the Bernstein–
von Mises (BvM) theorem that we manage to develop for the power posteriors. Due to the BvM theorem, we show that
the power posteriors, when adjusted by the square root of the grid points, have the same asymptotic normal distribution
as the original posterior distribution. This property suggests that we can use the original posterior distribution, adjusted
by a simple linear transformation, to design importance sampling techniques to estimate the marginal likelihood.

Using the self-normalized importance sampling technique, we propose the modified TI and SS algorithms. The new
algorithms avoid the need to make random draws from the power posterior at any grid point. Therefore, new methods
significantly reduce computational costs. Furthermore, the coding efforts to draw random samples from the power
posteriors are completely avoided, and hence, our methods are easy to implement using popular Bayesian software. It
is important to note that since our approach is based on importance sampling, we do not need the sample size to go to
infinity. Under a set of primitive conditions, we show that the modified TI algorithm (as well as the TI algorithm) can
provide consistent estimators of the marginal likelihood.2

The rest of the paper is organized as follows. Section 2 reviews the TI and SS algorithms. Section 3 introduces our new
methods. Section 4 establishes the BvM theorem for the power posterior and obtains consistency of the TI and modified TI
methods. In Section 5, we compare the performance of the proposed methods with that of the original TI and SS algorithms
using two examples. Section 6 concludes the paper. The appendix collects the proof of theoretical results in the paper.
An online appendix contains the detailed proof of Theorem 4.1 and the proof of four lemmas that are useful to prove
Theorems 4.2–4.3.

We use the following notations throughout the paper: O, o, Op, op,
p

→,
d

→,
L2
→, ∼, and a := b, to denote the same order,

the smaller order, the same order in probability, the smaller order in probability, convergence in probability, convergence
in distribution, convergence in mean square, asymptotic equivalence, and defining a as b, respectively. We denote P(A)
the probability of event A and p(·) a probability density function. We denote ∥A∥ the Euclidean norm of a vector A, vec(B)
the vec operator that stacks the columns of matrix B, ⊗ the Kronecker product, ∇k

x f (x) the kth derivative of f with respect
to x. Let p(θ) and p(θ|y) denote the prior density and the posterior density, respectively, where θ is the parameter in the
original model and y is the observed data. To distinguish the parameter in the original posterior and that in the power
posterior, we let θb denote the parameter in the model whose likelihood function is p (y|θb)

b and hence, p (θb|y, b) is the
corresponding (power) posterior density. Let pA (θb|y, b) denote approximate power posterior density. Furthermore, we
let θ0,(j), θ1,(j), θb,(j), θtr

b,(j) denote random samples from p(θ), p(θ|y), p (θb|y, b), pA (θb|y, b), respectively.3 Let E0(X), Eθ|y(X),
Eθb|y,b(X) and EA(X) (or Var0(X), Varθ|y(X), Varθb|y,b(X) and VarA(X)) denote the expectation (or variance) of X with respect
to p(θ), p(θ|y), p (θb|y, b), pA (θb|y, b), respectively. Finally, we use Iq to denote the q-dimensional identity matrix.

1 The TI and SS methods are mainly implemented together with MCMC output due to the popularity and versatility of MCMC. However, the TI
and SS methods (and hence our modified methods) are applicable to other samplers.
2 A similar set of conditions can be specified, under which the modified SS algorithm (as well as the SS algorithm) can provide consistent

estimators of the marginal likelihood. To keep the paper at a reasonable length, we omit this development.
3 Without loss of generality and being consistent with the common practice, we assume random draws from the prior are independent and

identically distributed (iid) while random draws from the posterior and power posterior are stationary and ergodic. The theory developed in this
paper remains valid when random draws from the prior are stationary and ergodic while the random draws from the posterior and power posterior
are iid.
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2. Review of marginal likelihood estimation based on power posteriors

Let y be data, p(y|θ) be the likelihood function of a model that depends on the set of parameters θ ∈ Θ , where Θ is the
parameter space. Let p(θ) be the density function for a proper prior distribution. The posterior distribution of parameters
is given by

p (θ|y) =
p(y|θ)p(θ)

m(y)
, where m(y) =

∫
Θ

p(y|θ)p(θ)dθ. (1)

The normalization constant m(y) is called the marginal likelihood, and our purpose is to estimate it given the data y and
the model. Moreover, let b be an auxiliary constant from the interval [0, 1], p (θb|y, b) be the power posterior density
function, and m(y|b) be the corresponding power marginal likelihood. Friel and Pettitt (2008) define the power posterior
as:

p (θb|y, b) =
p (y|θb)

b p (θb)

m(y|b)
, where m(y|b) =

∫
Θ

p (y|θb)
b p (θb) dθb. (2)

In other words, the statistical model corresponding to the power posterior essentially raises the original likelihood function
to power b, that is, p (y|θb)

b.
Below we first provide a brief review of the TI algorithm of Friel and Pettitt (2008) and the SS algorithm of Xie et al.

(2011) and then discuss their properties.

2.1. TI algorithm

When b = 0 or 1, Friel and Pettitt (2008) note that

m(y|1) =

∫
Θ

p (y|θb) p (θb) dθb = m(y) and m(y|0) =

∫
Θ

p (θb) dθb = 1, (3)

The first derivative of lnm(y|b) is

U(b) :=
∂ lnm(y|b)

∂b
=

1
m(y|b)

∂m(y|b)
∂b

=

∫
Θ

∂ ln p (y|θb)
b

∂b
p (y|θb)

b p (θb)

m(y|b)
dθb (4)

=

∫
Θ

ln p (y|θb)
p (y|θb)

b p (θb)

m(y|b)
dθb =

∫
Θ

ln p (y|θb) p (θb|y, b) dθb = Eθb|y,b ln p (y|θb) .

Based on (3) and (4), one can recover the integral from the first-order derivative as

lnm(y) = lnm(y|1) − lnm(y|0) =

∫ 1

0
U(b)db =

∫ 1

0
Eθb|y,b ln p (y|θb) db. (5)

Eq. (5) suggests an approach to estimation of the log marginal likelihood via the power posteriors as shown in Friel and
Pettitt (2008).

In general, the integral
∫ 1
0 U(b)db does not have an analytical solution. Friel and Pettitt (2008) propose to numerically

approximate it using the trapezoidal rule. In particular, based on the grid {bs = (s/S)c}Ss=0 with c ≥ 1, lnm(y) is
approximated by

S−1∑
s=0

(bs+1 − bs)
U(bs+1) + U(bs)

2
. (6)

Furthermore, since U(bs) = Eθbs |y,bs ln p
(
y|θbs

)
does not have an analytical expression, it can be estimated by

Û(bs) :=
1
J

J∑
j=1

ln p
(
y|θbs,(j)

)
, (7)

where
{
θbs,(j)

}J
j=1 are effective random draws from the power posterior p

(
θbs |y, bs

)
. Combining (6) and (7), one may

estimate the log marginal likelihood by

l̂nmTI (y) :=

S−1∑
s=0

(bs+1 − bs)
Û(bs+1) + Û(bs)

2
. (8)

In the literature, this approach is referred to as the TI algorithm.
As indicated in Eq. (8), the TI algorithm estimates the log marginal likelihood rather than the marginal likelihood to

ensure computational stability. The TI algorithm can be summarized as follows.

3



Y. Li, N. Wang and J. Yu Journal of Econometrics xxx (xxxx) xxx

TI Algorithm

1. Choose grid points
{
bs = (s/S)c

}S
s=0 with c ≥ 1.

2. For each bs, draw J random samples
{
θbs,(j)

}J
j=1 (such as MCMC samples) from the power posterior p

(
θbs |y, bs

)
.

3. For each bs, calculate Û(bs) based on Eq. (7).
4. The log marginal likelihood is estimated by Eq. (8).

2.2. SS algorithm

Xie et al. (2011) propose another algorithm to estimate the marginal likelihood based on the power posteriors. The
basic idea is to explore the following identity:

m(y) =
m(y|b = 1)
m(y|b = 0)

=

S−1∏
s=0

m (y|bs+1)

m (y|bs)
=

S−1∏
s=0

r (bs) , (9)

where

r (bs) =
m (y|bs+1)

m (y|bs)
=

∫
Θ p

(
y|θbs+1

)bs+1 p
(
θbs+1

)
dθbs+1

m (y|bs)
(10)

=

∫
Θ

p
(
y|θbs+1

)bs+1

p
(
y|θbs+1

)bs p
(
y|θbs+1

)bs p (θbs+1

)∫
Θ p

(
y|θbs+1

)bs p (θbs+1

)
dθbs+1

dθbs+1

=

∫
Θ

p
(
y|θbs

)bs+1−bs p
(
θbs |y, bs

)
dθbs =

∫
Θ

exp
[
(bs+1 − bs) ln p

(
y|θbs

)]
p
(
θbs |y, bs

)
dθbs

= Eθbs |y,bsexp
[
(bs+1 − bs) ln p

(
y|θbs

)]
. (11)

In general Eθbs |y,bsexp
[
(bs+1 − bs) ln p

(
y|θbs

)]
does not have an analytical expression. It can be estimated by

r̂ (bs) :=
1
J

J∑
j=1

exp
[
(bs+1 − bs) ln p

(
y|θbs,(j)

)]
, (12)

where
{
θbs,(j)

}J
j=1 are effective random samples from the power posterior p

(
θbs |y, bs

)
. Unfortunately, the right-hand side

of Eq. (12) can easily explode with the exponential term. A numerically more stable estimate of
Eθbs |y,bsexp

[
(bs+1 − bs) ln p(y|θbs )

]
is

r̂ (bs) =
1
J

J∑
j=1

exp
{
(bs+1 − bs)

(
ln p

(
y|θbs,(j)

)
− Lbs

)
+ (bs+1 − bs)Lbs

}
= exp

[
(bs+1 − bs)Lbs

]⎧⎨⎩1
J

J∑
j=1

exp
[
(bs+1 − bs)

(
ln p

(
y|θbs,(j)

)
− Lbs

)]⎫⎬⎭ , (13)

where Lbs = maxj∈{1,...,J}
{
ln p

(
y|θbs,(j)

)}
. To estimate the log marginal likelihood, Xie et al. (2011) propose to use

S−1∑
s=0

ln r̂ (bs) =

S−1∑
s=0

ln

⎛⎝1
J

J∑
j=1

exp
[
(bs+1 − bs)

(
ln p

(
y|θbs,(j)

)
− Lbs

)]⎞⎠
+

S−1∑
s=0

[
(bs+1 − bs)Lbs

]
. (14)

The SS algorithm can be summarized as follows.
SS Algorithm

1. Choose grid points
{
bs = (s/S)c

}S
s=0 with c ≥ 1.

2. For each bs, draw J random samples
{
θbs,(j)

}J
j=1 (such as MCMC samples) from the power posterior p

(
θbs |y, bs

)
.

3. For each bs, calculate r̂ (bs) based on Eq. (13).
4. The log marginal likelihood is estimated by Eq. (14).

4
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2.3. Discussion of two algorithms

It is clear that both algorithms require repeated sampling from the power posteriors corresponding to all grid points{
bs = (s/S)c

}S
s=0. When MCMC sampling is time-consuming, obtaining MCMC samples for S + 1 times will make the two

algorithms even more time-consuming.
There are two sources of errors in the TI algorithm: (i) the estimation error when using the sample mean to estimate

the population mean; (ii) the discretization error associated with the numerical integration based on the grid points{
bs = (s/S)c

}S
s=0. One can reduce the estimation error by increasing the number of MCMC samples (i.e., J) for each power

posterior. To reduce the discretization error, a simple solution is to increase the number of grid points (i.e., S). Annis et al.
(2019) suggest using 30–35 or more grid points. Unfortunately, a larger S leads to a higher computational cost. Moreover,
it is unclear how to choose c. As pointed in Annis et al. (2019), currently, there is no known solution to the choice of the
grid points.

An interesting feature in the SS algorithm is that although
∏S−1

s=0 r̂ (bs) is an unbiased estimate of m(y),
∑S−1

s=0 ln r̂ (bs)
is a biased estimate of lnm(y) due to the Jensen inequality. While the bias reduces as the number of grid points increases,
a larger S leads to higher computational cost.

The TI algorithm estimates the marginal likelihood on the log scale, while the SS algorithm estimates the marginal
likelihood on the exponential scale. Hence, the TI algorithm may enjoy better computational stability. However, the SS
algorithm is not subject to the discretization error associated with numerical integration.

Both algorithms require obtaining MCMC samples for S + 1 times. As these MCMC samples are independent, the task
can be parallelized but may nonetheless be computationally expensive.

Sampling from the power posteriors, which almost always correspond to non-standard distributions, cannot be done
by simply revising the code that samples from the original posterior. Extra coding efforts are required. For example,
the Student t distribution is often represented as a normal-gamma mixture distribution, facilitating Gibbs sampling.
Unfortunately, in the power likelihood, this normal-gammamixture representation is not available anymore, making Gibbs
sampling more difficult. Furthermore, in popular Bayesian software, such as WinBUGS, it may not be possible to use built-
in functions to obtain MCMC samples from non-standard distributions. Hence, researchers must first derive expressions
for model-specific power posteriors and then write a new code to draw MCMC samples from the power posteriors. This
extra coding effort often poses a challenge to applied researchers.

Last but not least, although both algorithms can provide reliable estimates to the marginal likelihood as shown in
Annis et al. (2019), the literature has not established conditions under which the estimators are consistent.

3. New approaches

To overcome the aforementioned disadvantages in the existing TI and SS algorithms, we now develop new approaches
to the estimation of the marginal likelihood based on the power posteriors.

3.1. BvM theorem for the original posterior and power posteriors

In this subsection, we first review the standard BvM theorem for the original posterior and then present the BvM
theorem for the power posterior without proving it. Let p (y|θ) be a parametric model for the observed data y = {yt}nt=0.
The set of q parameters in the model is θ ∈ Θ ⊆ Rq. For 0 ≤ t ≤ n, we denote yt = (y0, y1, . . . , yt ), lt (θ) =

ln p
(
yt |θ

)
− ln p

(
yt−1

|θ
)
the conditional log-likelihood for the tth observation for any 1 ≤ t ≤ n. and l(j)t (θ) the jth

derivative of lt (θ). Hence, the log-likelihood function Ln(θ) (= ln p(y|θ) conditional on the initial observation) and its kth
order derivative can be expressed as

Ln(θ) = ln p(y|θ) =

n∑
t=1

lt (θ) + ln p
(
y0|θ

)
=

n∑
t=1

lt (θ),

L(k)
n (θ) = ∇

k
θ ln p(y|θ) =

n∑
t=1

l(k)t (θ).

where ln p
(
y0|θ

)
is assumed to be zero without loss of generality.

Let θ0 be the pseudo true value that minimizes the Kullback–Leibler loss between the data generating process (DGP)
and the candidate model, that is,

θ0
= argmin

θ∈Θ

∫
ln

p0(y)
p(y|θ)

p0(y)dy, (15)

where p0(y) is the density of the DGP. Let P0 denote the probability distribution corresponding to p0. Note that we do not
require p0(y) and p(y|θ) to be the same or even p(y|θ) to be a good model in the sense of Li et al. (2020). In other words,
model misspecification is allowed.

5
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Let θ̂ and θ̂b be the maximum likelihood (ML) estimate of parameters corresponding to the original model whose
likelihood function is p (y|θ) and the model whose likelihood function is p (y|θb)

b, respectively. It is easy to show that,

θ̂b = arg min
θb∈Θ

ln
(
p (y|θb)

b)
= arg min

θb∈Θ
b ln p (y|θb) = argmin

θ∈Θ
ln p (y|θ) = θ̂. (16)

Furthermore, let

Σn =
(
−L(2)

n

(̂
θ
))−1

=
(
−L(2)

n

(̂
θb
))−1

. (17)

According to the standard BvM, as n → ∞, Σ
−

1
2

n
(
θ − θ̂

)
|y converges in total variation to N

(
0, Iq

)
in P0-probability, where

θ has density p(θ|y). With a slight but important adjustment, as shown in Theorem 4.1, the BvM theorem applies to the

power posterior. In particular, for any b ∈ (0, 1], as n → ∞,
√
bΣ

−
1
2

n
(
θb − θ̂

)
|y, b converges in total variation to N

(
0, Iq

)
in P0-probability, where θb has density p(θb|y, b).

This new BvM theorem motivates us to propose the following linear transformation and obtain an approximation to
the power posterior via

θb =
1

√
b

(
θ − θ̄

)
+ θ̄, (18)

where θ has density p(θ|y), θ̄ =
∫
Θ θp(θ|y)dθ is the posterior mean of θ. Eq. (18) implies that θ =

√
b
(
θb − θ̄

)
+ θ̄.

We denote the probability density function of θb conditional on y and b defined in Eq. (18) as pA (θb|y, b), and call it
approximate power posterior density. By the change-of-variable technique, pA (θb|y, b) can be expressed as:

pA (θb|y, b) = p(θ|y)
⏐⏐⏐⏐ ∂θ

∂θb

⏐⏐⏐⏐ = p(θ|y)b
q
2 . (19)

where θ =
√
b
(
θb − θ̄

)
+ θ̄. According to the new BvM theorem, pA (θb|y, b) converges to the same normal distribution

as p (θb|y, b). Hence, when n is moderate or large, pA (θb|y, b) provides a good approximation to p (θb|y, b) and random
samples from pA (θb|y, b) serve as good approximations to those from p (θb|y, b). We are now in the position to apply the
BvM theorem to modify the TI and SS algorithms.

3.2. TI-LWY algorithm

Based on the linear transformation given in Eq. (18), we are now in the position to design our TI-LWY algorithm to
avoid many repeated MCMC sampling from a sequence of power posteriors as in TI algorithm.

Before we do that, a trivial but important step is needed, that is, a reparameterization step. In practice, it is often the
case that the parameters have certain boundaries. For instance, the precision parameter, defined as the inverse of variance
parameter, h = 1/σ 2, is naturally restricted to be positive. Therefore, applying the linear transformation in Eq. (18) to h
may obtain a hb being negative and hence not well-defined. Therefore, to avoid the possible boundary issues in the linear
transformation in Eq. (18), we need to do a reparameterization to θ first. Let φ = g−1(θ) be the reparameterization of θ,
where g−1(·) : Θ → Φ is some one-to-one mapping function from θ to φ, where Φ = g−1(Θ) is the parameter space of
φ. Let pφ(φ), pφ(y|φ), pφ(φ|y), pφ

(
φb|y, b

)
, pAφ

(
φb|y, b

)
, mφ(y), mφ(y|b) denote the prior density function, the likelihood

function, the posterior distribution, the power posterior distribution, the approximate power posterior distribution, the
marginal likelihood function, and the power marginal likelihood function after reparameterization, respectively. The
reparameterization aims to ensure that, the linear transformation based on parameter φ does not suffer from the boundary
problem, that is, φb =

1
√
b

(
φ − φ̄

)
+ φ̄, satisfy φb ∈ Φ for any b ∈ (0, 1].

An easy way to conduct such a reparameterization is to map the original parameter space Θ to a complete space, for
instance, the whole real number space. Again, taking the precision parameter h as an example, the reparameterization
could be g−1(h) = ln h ∈ R. For more example illustrations, see Remark 4.6 in Section 4.2.

Now, suppose
{
θ1,(j)

}J
j=1 are random samples from the original posterior p (θ|y). Based on the reparameterization

φ1,(j) = g−1
(
θ1,(j)

)
, we obtain

{
φ1,(j)

}J
j=1 random samples from the posterior pφ(φ|y).4 For any b ∈ (0, 1], by the linear

transformation

φtr
b,(j) =

1
√
b

(
φ1,(j) − φ̄J

)
+ φ̄J , where φ̄J =

1
J

J∑
j=1

φ1,(j), (20)

we obtain
{
φtr
b,(j)

}J
j=1

, which are random samples from pAφ

(
φb|y, b

)
.

Following the TI algorithm, we now show how to apply the linear transformation and the importance sampling
technique to obviate the need to sample from the power posteriors.

4 The reparameterization is to ensure that the linear transformation in Eq. (18) is well-defined. See Remark 4.6 in Section 4.2 for details about
this reparameterization.
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Then, from Eq. (4), with the reparameterization, we have

U(b) =

∫
Φ
ln pφ

(
y|φb

)
pφ

(
φb|y, b

)
dφb

=

∫
Φ
ln pφ

(
y|φb

) pφ

(
φb|y, b

)
pAφ

(
φb|y, b

)pAφ

(
φb|y, b

)
dφb

=

∫
Φ
ln pφ

(
y|φb

)
wφ

(
φb
)
pAφ

(
φb|y, b

)
dφb,

where

wφ

(
φb
)

=
pφ

(
φb|y, b

)
pAφ

(
φb|y, b

) =
pφ

(
y|φb

)b pφ

(
φb
)
/mφ(y|b)

b
q
2 pφ(y|φ)pφ(φ)/mφ(y)

(21)

=
pφ

(
y|φb

)b pφ

(
φb
)

pφ(y|φ)pφ(φ)
mφ(y)

b
q
2 mφ(y|b)

.

where φb has density pAφ

(
φb|y, b

)
, and φ =

√
b
(
φb − φ̄

)
+ φ̄. We can estimate U(b) using either the ordinary importance

sampler or the self-normalized importance sampler, defined, respectively, by5

Ûw(b) =
1
J

J∑
j=1

ln pφ

(
y|φtr

b,(j)

)
wφ

(
φtr
b,(j)

)
,

ÛLWY (b) =

J∑
j=1

ln pφ

(
y|φtr

b,(j)

)
Ŵφ

(
φtr
b,(j)

)
, (22)

where

Ŵφ

(
φtr
b,(j)

)
=

wφ

(
φtr
b,(j)

)∑J
j=1 wφ

(
φtr
b,(j)

) (23)

=
pφ

(
y|φtr

b,(j)

)b pφ

(
φtr
b,(j)

)
/
[
pφ

(
y|φ1,(j)

)
pφ

(
φ1,(j)

)]∑J
j=1 pφ

(
y|φtr

b,(j)

)b pφ

(
φtr
b,(j)

)
/
[
pφ

(
y|φ1,(j)

)
pφ

(
φ1,(j)

)]
=

exp
{
b ln pφ

(
y|φtr

b,(j)

)
− ln pφ

(
y|φ1,(j)

)
+ ln pφ

(
φtr
b,(j)

)
− ln pφ

(
φ1,(j)

)}∑J
j=1 exp

{
b ln pφ

(
y|φtr

b,(j)

)
− ln pφ

(
y|φ1,(j)

)
+ ln pφ

(
φtr
b,(j)

)
− ln pφ

(
φ1,(j)

)} .

Remark 3.1. It is important to note that the BvM theorem is only used to find a reasonable proposal distribution for
importance sampling. There is no need for the proposal distribution to be very close to the normal distribution, and hence,
n does not need to go to infinity for our methods to consistently estimate the marginal likelihood. As pointed out by a
referee, our idea bears some resemblance to bootstrap where the asymptotic normality is used to justify bootstrap, but
bootstrap samples do not come from the normal distribution.

Remark 3.2. While we do not use the normal distribution for importance sampling, as suggested by a referee, the BvM
theorem suggests that the normal distribution can also be used as a proposal distribution. This alternative importance
sampler requires additional sampling from the normal distribution, whereas in the proposed methods, we only need the
random samples from the original posterior.

Remark 3.3. In practice, with a finite n, when the auxiliary constant b is very small, for example, when b ≤ 1/n, the power
posterior may be far away from the normal distribution.6 In this case, the prior distribution provides a good approximation
to the power posterior p (θb|y, b) and hence, can be used as the proposal distribution. Let

{
θ0,(j)

}J0
j=1 be random samples

(usually iid) from prior p(θ). Note that

U(b) =

∫
Θ

ln p (y|θ) w0b (θ) p (θ) dθ,

5 While Ûw(b) is an unbiased estimator of U(b), it is infeasible because of an unknown constant involved. Although ÛLWY (b) is a slightly biased
estimator of U(b), it is consistent as we will show in the appendix.
6 We can prove that the BvM theorem shown in next section remains valid when b is made to be dependent on n such that n× b ∼ O(nα) with

α > 0.
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where

w0b (θ) =
p (θ|y, b)
p (θ)

=

p(y|θ)bp(θ)
m(y|b)

p (θ)
=

p (y|θ)b

m(y|b)
. (24)

where θ has density p(θ). We can estimate U(b) using either the ordinary importance sampler or the self-normalized
importance sampler, defined, respectively, by

Ûw(b) =
1
J0

J0∑
j=1

ln p
(
y|θ0,(j)

)
w0b

(
θ0,(j)

)
,

ÛLWY (b) =

J0∑
j=1

ln p
(
y|θ0,(j)

)
Ŵ0b

(
θ0,(j)

)
, (25)

where

Ŵ0b
(
θ0,(j)

)
=

w0b
(
θ0,(j)

)∑J0
j=1 w0b

(
θ0,(j)

) =
p
(
y|θ0,(j)

)b∑J0
j=1 p

(
y|θ0,(j)

)b =
exp

{
b ln p

(
y|θ0,(j)

)}∑J0
j=1 exp

{
b ln p

(
y|θ0,(j)

)} . (26)

In practice, when the sample size n is moderate or large, 1/n is small and there are very few grid points in [0, 1
n ].

In this paper, we denote the new algorithm the TI-LWY algorithm, which is summarized as follows:
TI-LWY Algorithm

1. Choose grid points
{
bs = (s/S)c

}S
s=0 with c ≥ 1.

2. Draw J0 samples
{
θ0,(j)

}J0
j=1 from the prior p(θ) and compute ÛLWY (0) = Û(0) =

1
J0

∑J0
j=1 ln p

(
y|θ0,(j)

)
.

3. When 0 < bs ≤ 1/n, compute ÛLWY (bs) from Eq. (25).
4. Draw J samples

{
θ1,(j)

}J
j=1 from the posterior p(θ|y).

5. Based on the reparameterization φ1,(j) = g−1
(
θ1,(j)

)
, obtain J samples

{
φ1,(j)

}J
j=1 from the original posterior

distribution pφ(φ|y).
6. When bs > 1/n, we get

φtr
bs,(j) =

1
√
bs

(
φ1,(j) − φ̄J

)
+ φ̄J , where φ̄J =

1
J

J∑
j=1

φ1,(j).

For each bs > 1/n, compute ÛLWY (bs) by Eqs. (22).
7. The log marginal likelihood is estimated by

l̂nmTI−LWY (y) :=

S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) + ÛLWY (bs)

2
. (27)

Remark 3.4. In practice, when computing the weights in Eqs. (23) and (26), to ensure computational stability, we suggest
demeaning the log-likelihood shown in the exponential term first.

Remark 3.5. Based on the simple linear transformation in step 6, the TI-LWY algorithm only requires the availability
of
{
θ1,(j)

}J
j=1 which are effective random samples generated from the original posterior distribution p(θ|y). There is no

need to draw MCMC samples from the power posteriors. Hence, our method significantly reduces the computational cost.
Moreover, coding efforts associated with drawing MCMC samples from the power posteriors are completely avoided.

Remark 3.6. An important difference between the TI algorithm and the TI-LWY algorithm is that the latter is based on the
importance sampling approach where the proposal distribution is developed based on the BvM theorem. When the sample
size is very small such that the posterior distribution is very far away from the normal distribution, the TI algorithm is
still a good choice. However, TI-LWY can reduce a lot of computational efforts when the sample size is moderate or large.

Remark 3.7. Hoehna et al. (2017) explain how to use parallel computing to implement the TI algorithm. One can also
use parallel computing to implement the TI-LWY algorithm. This is because, while our method does not require MCMC
sampling from the power posteriors, we need to evaluate the likelihood function and obtain the importance weights at
each grid point. These calculations can be parallelized too. In the examples discussed below, we only report the CPU time
without resorting to parallel computing. If parallel computing is used, the computing time of both algorithms can be
reduced, but the relative computational cost would remain the same.
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3.3. SS-LWY algorithm

Based on Eq. (11), with the reparameterization, we have

r(bs) =

∫
Φ
exp

[
(bs+1 − bs) ln pφ

(
y|φbs

)]
pφ

(
φbs |y, bs

)
dφbs

=

∫
Φ
exp

[
(bs+1 − bs) ln pφ

(
y|φbs

)] pφ

(
φbs |y, bs

)
pAφ

(
φbs |y, bs

)pAφ

(
φbs |y, bs

)
dφbs

=

∫
Φ
exp

[
(bs+1 − bs) ln pφ

(
y|φbs

)]
wφ

(
φbs

)
pAφ

(
φbs |y, bs

)
dφbs ,

where wφ

(
φbs

)
is the same as in Eq. (21).

Let
{
θ1,(j), φ1,(j), φ

tr
bs,(j)

}J
j=1

be draws as defined in Section 3.2. We can estimate r (bs) using the self-normalized
importance sampler defined by

r̂LWY (bs) =

J∑
j=1

exp
[
(bs+1 − bs)

(
ln pφ

(
y|φtr

bs,(j)

)
− L

tr
bs

)
+ (bs+1 − bs)L

tr
bs

]
Ŵφ

(
φtr
bs,(j)

)
= exp

[
(bs+1 − bs) L

tr
bs

] J∑
j=1

exp
[
(bs+1 − bs)

(
ln pφ

(
y|φtr

bs,(j)

)
− L

tr
bs

)]
Ŵφ

(
φtr
bs,(j)

)
, (28)

where L
tr
bs = maxj∈{1,...,J}

{
ln pφ

(
y|φtr

bs,(j)

)}
and

{
Ŵφ

(
φtr
bs,(j)

)}J
j=1

are the same as in Eq. (23).

Remark 3.8. Similar to the TI algorithm, when bs is very small, we suggest using the prior distribution as the proposal
distribution. For bs ∈ [0, 1/n], using notations in Remark 3.3, we have

r(bs) =

∫
Θ

exp [(bs+1 − bs) ln p (y|θ)]w0bs (θ) p (θ) dθ.

where w0bs (θ) is the same as defined in Eq. (24). We can estimate r (bs) using the self-normalized importance sampler
defined by

r̂LWY (bs) =

J0∑
j=1

exp
[
(bs+1 − bs) ln p

(
y|θ0,(j)

)]
Ŵ0bs

(
θ0,(j)

)
(29)

= exp
[
(bs+1 − bs)L0

] J0∑
j=1

exp
[
(bs+1 − bs)

(
ln p

(
y|θ0,(j)

)
− L0

)]
Ŵ0bs

(
θ0,(j)

)
,

where L0 = maxj∈{1,...,J0}

{
ln p

(
y|θ0,(j)

)}
.

In this paper, we denote the new algorithm the SS-LWY algorithm, which is summarized as follows:
SS-LWY Algorithm

1. Choose grid points
{
bs = (s/S)c

}S
s=0 with c ≥ 1.

2. When 0 ≤ bs ≤ 1/n, draw J0 samples
{
θ0,(j)

}J0
j=1 from the prior distribution p(θ) and compute r̂LWY (bs) by Eq. (29).

3. Draw J samples
{
θ1,(j)

}J
j=1 from the posterior distribution p(θ|y).

4. Based on the reparameterization φ1,(j) = g−1
(
θ1,(j)

)
, obtain samples

{
φ1,(j)

}J
j=1 from the posterior distribution

pφ(φ|y).
5. When bs > 1/n, obtain

φtr
bs,(j) =

1
√
bs

(
φ1,(j) − φ̄J

)
+ φ̄J , where φ̄J =

1
J

J∑
j=1

φ1,(j).

For each bs > 1/n, compute r̂LWY (bs) by Eq. (28).
6. The log-marginal likelihood is estimated by

S−1∑
s=0

ln r̂LWY (bs). (30)
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4. Asymptotic properties

In this section, we give a set of primitive assumptions. Under these assumptions, we obtain the BvM theorem for
the power posteriors. As in the BvM literature (Schervish, 2012), our framework is probabilistic in nature, that is, under
repeated sampling with a fixed pseudo true parameter value. We then give a set of primitive conditions. Under these
conditions, we show the consistency of the TI and the modified TI algorithms. Following the conventional practice in the
Bayesian large sample literature (Chen, 1985; Kass et al., 1990), we assume the data y with a finite and fixed n is given.
Hence, the approach is non-probabilistic in nature.

4.1. BvM for power posteriors

Assumption 1: The pseudo-true value θ0 is the interior point of some compact set Θ .
Assumption 2: {yt}∞t=1 satisfies the strong mixing condition with the mixing coefficient α (m) = O

(
m

−2r
r−2 −ε

)
for some

ε > 0 and r > 2.
Assumption 3: For all t , lt (θ) is three-times differentiable on Θ almost surely.
Assumption 4: For j = 0, 1, 2, for any θ, θ′

∈ Θ ,
l(j)t (θ) − l(j)t

(
θ′
) ≤ c jt

(
yt
) θ − θ′

 holds with probability 1,

where c jt
(
yt
)
is a positive random variable with supt E

c jt (yt) < ∞ and 1
n

∑n
t=1

(
c jt
(
yt
)
− E

(
c jt
(
yt
))) P0

→ 0 where

l(0)t (θ) = lt (θ), where P0 is the probability with respect to the DGP P0.
Assumption 5: For j = 0, 1, 2, there exists a function Mt (yt ) such that for all θ ∈ Θ , l(j)t (θ) exists, supθ∈Θ

l(j)t (θ)

 ⩽

Mt (yt ), and supt E
Mt (yt )

r+δ
≤ M < ∞ for some δ > 0, where r is the same as that in Assumption 2.

Assumption 6:
{
l(j)t (θ)

}
is L2-near epoch dependent with respect to {yt} of size −1 when j = 0, 1, and size −

1
2 when

j = 2 uniformly on Θ .
Assumption 7: For δ > 0, let N0 (δ) be the open ball of radius δ around θ0. If N0 (δ) ⊆ Θ , there exists some K (δ) > 0

such that

lim
n→∞

P0

(
sup

θ∈Θ\N0(δ)

λn
[
Ln (θ) − Ln

(
θ0)] < −K (δ)

)
= 1,

where λn is the smallest eigenvalue of nΣ n =

[
−

1
nL

(2)
n
(̂
θ
)]−1

and P0 is the probability with respect to the DGP P0.
Assumption 8: For any ϵ > 0, there exists δ(ϵ) > 0 such that

lim
n→∞

P0

(
sup

θ∈N0(δ(ϵ)),∥r0∥=1

⏐⏐1 + r′0Σ
1/2
n L(2)

n (θ)Σ 1/2
n r0

⏐⏐ < ϵ

)
= 1.

where r0 is a q-dimensional vector.
Assumption 9: The sequence of matrices E

[
−

1
nL

(2)
n
(
θ0)] is uniformly positive definite in n.

Assumption 10: The prior density p(θ) is continuous on the set Θ and 0 < p
(
θ0) < +∞.

Remark 4.1. These assumptions are general regularity conditions and are easy to verify. Assumption 1 is the compactness
condition and allows for model misspecification. Assumption 2 implies weak dependence in yt . Assumption 3 is the
continuity condition. Assumption 4 is the Lipschitz condition for lt to ensure the uniform law of large numbers for
dependent and heterogeneous stochastic processes. Assumption 5 is the dominance condition for lt . Assumption 6
implies weak dependence in lt . Assumption 7 is the identification condition. Assumption 8 is the smoothness condition.
Assumption 9 is the standard condition for the information matrix. Assumption 10 is the standard condition for the prior
distribution. These assumptions are imposed on developing the BvM theorem under repeated sampling with a fixed
pseudo true θ0. We need to point out other similar sets of regularity conditions are also available in the literature for
developing the BvM theorem, especially in the iid case. One can refer to the textbook treatments of this subject matter
in Gelman et al. (2004, Appendix B) and Schervish (2012, section 7.4.2) and many references therein.

Remark 4.2. Schervish (2012) presents the BvM theorem based on convergence in total variation for correctly specified
models with iid data. Liu et al. (2021) relaxed the iid assumption by allowing for weak dependence. Kleijn and van der
Vaart (2012) and Müller (2013) extend the BvM theorem to misspecified models with iid data and weakly dependent data,
respectively. For iid data, Gelman et al. (2004) present a version of the BvM theorem based on convergence in distribution.
In our context, let zn = Σ−1/2

n

(
θ − θ̂

)
where θ has density p(θ|y) and An =

{
zn : θ̂ + Σ 1/2

n zn∈ Θ
}
be the support space

of zn. Let B ⊑ An be a Borel set. Then, according to the standard BvM theorem, for any ε > 0,

lim
n→∞

P0

(
sup
B⊑An

(|Pr (zn ∈ B|y) − Ψ (B)| > ε)

)
= 0. (31)
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where Ψ (B) stands for the probability that an Nq(0, Iq) vector lies in B. The following theorem shows that the BvM theorem
is also applicable to the power posteriors.

Theorem 4.1. Suppose Assumptions 1–10 hold. For any auxiliary constant b ∈ (0, 1] that does not depend on n, let
znb =

(
b−1Σ n

)−1/2 (
θb − θ̂

)
where θb has density p (θb|y, b) and Anb =

{
znb : θ̂ +

(
b−1Σ n

)1/2 znb∈ Θ

}
be the support space

of znb. Let B ⊑ Anb be a Borel set. Then, for any ε > 0,

lim
n→∞

P0

(
sup
B⊑Anb

(|Pr (znb ∈ B|y, b) − Ψ (B)| > ε)

)
= 0. (32)

Remark 4.3. Since convergence in total variation implies convergence in distribution (Chapter 2 of van der Vaart (2000)),
according to Theorem 4.1, we expect the distribution of znb is close to that of Nq(0, Iq) for modest and large n. This limit
theory is the motivation for us to find a good proposal distribution for importance sampling when estimating the marginal
likelihood.

4.2. Consistency of the TI algorithm and TI-LWY algorithms

The marginal likelihood m(y), and hence, lnm(y), when they are conditional on the data y, are not random. Note that
from Lemma 7.1 in the online supplement,

0 ≤ ln p(y|̂θ) − lnm(y) ≤ ln
[
ln p

(
y|̂θ
)
− U(0)

]
.

This implies that lnm(y) = O(n). Therefore, when n → +∞, lnm(y) goes to ∞. Clearly, it is only meaningful to construct
a consistent estimator of lnm(y) when it is fixed and finite. That is why we further assume n is fixed and finite so
that lnm(y), when it is conditional on y, is also fixed and finite. In this sense, our framework is the same as in Chen
(1985), which is not a probabilistic sampling-theory asymptotic approach. Following Chen (1985) and Kass et al. (1990),
we introduce the following regularity conditions.

Condition 1. Θ is a compact subset of Rq.

Condition 2. For all t , lt (θ) is six-times differentiable on Θ .

Condition 3. For j = 0, 1, 2, for any θ, θ′
∈ Θ ,

l(j)t (θ) − l(j)t
(
θ′
) ≤ c jt

(
yt
) θ − θ′

, where c jt
(
yt
)
is a positive constant

with supt c
j
t
(
yt
)

< ∞, and limn→∞
1
n

∑n
t=1 c

j
t
(
yt
)

< ∞.

Condition 4. For j = 0, 1, 2, there exists a function Mt (yt ) > 0 such that for all θ ∈ Θ , l(j)t (θ) exists, supθ∈Θ

l(j)t (θ)

 ⩽

Mt (yt ), and supt Mt (yt ) ≤ M < ∞.

Condition 5. For δ > 0, let N (a, δ) be the open ball of radius δ around a. If N
(̂
θ, ε

)
⊆ Θ , then

lim sup
n→∞

sup
θ∈Θ\N (̂θ,ε)

1
n

n∑
t=1

[
lt (θ) − lt

(̂
θ
)]

< 0.

Condition 6. −H̄n
(̂
θ
)
is positive definite for all n, and the smallest eigenvalue of −H̄n

(̂
θ
)
, denoted by λ

−H̄n(̂θ), is greater
than ε > 0, where H̄n (̂θ) =

1
n

∑n
t=1 l

(2)
t
(̂
θ
)
.

Condition 7. The prior density p(θ) is four-times continuously differentiable and 0 < p
(̂
θ
)

< +∞.

Condition 8. θ has finite 16th moment under the prior p(θ). For any i, j ∈ {1, . . . , q},
∫
Θ

[
1
nL

(2)
n,ij (θa)

]8
p(θ)dθ < +∞

where θa = aθ + (1 − a)̂θ for any a ∈ (0, 1], L(2)
n,ij (θa) is the (i, j)th element of L(2)

n (θa) and
∫
Θ |ln p(θ)| p(θ)dθ < +∞.

Remark 4.4. The conditions are different from the assumptions used to develop the BvM theorem in Section 4.1. A key
difference is that since the posterior and the marginal likelihood are now conditional on y, they are no longer random.
That is why we remove Assumptions 2 and 6 and modify Assumptions 4, 5, 7, 9, 10 by Condition 3, 4, 5, 6, 7, respectively.

Remark 4.5. Combining with Condition 7, Conditions 1–6 are sufficient for the conditions specified in Chen (1985) and
Kass et al. (1990). In particular, Conditions 1–2 imply condition (P1) of Chen (1985), which ensures the existence of MLE.

11



Y. Li, N. Wang and J. Yu Journal of Econometrics xxx (xxxx) xxx

Condition 6 implies condition (P2) and the steepness condition (C1) of Chen (1985). Condition 3 implies the smoothness
condition (C2) of Chen (1985) and condition (ii) of Kass et al. (1990). Condition 4 is similar to condition (i) of Kass et al.
(1990). Condition 5 implies the concentration condition (C3) of Chen (1985) and condition (iii’) of Kass et al. (1990).
Conditions 7–8 put restrictions on the prior distribution.

Theorem 4.2. For
{
bs = (s/S)c

}S
s=0 with any c ≥ 1, under Conditions 1–8, when the data y is given with a fixed and finite

n, as S, J → +∞,

l̂nmTI (y) = lnm(y) + op(1), (33)

where p in op(1) is understood as the probability measure corresponding to the joint power posterior p
(
θbs |y, bs

)
with{

bs = (s/S)c
}S
s=0.

To avoid the boundary problem for the linear transformation defined in Eq. (18), we impose the following condition.

Condition 9. The linear transformation in Eq. (18) is well-defined in the sense that θb(= 1
√
b

(
θ − θ̄

)
+ θ̄) ∈ Θ for any

b ∈ [0, 1]. Otherwise, there exists a one-to-one mapping between θ ∈ Θ and the new parameter φ ∈ Φ = g−1(Θ) such
that φ = g−1(θ), φb =

1
√
b

(
φ − φ̄

)
+ φ̄ with φ̄ =

∫
Φ φpφ(φ|y)dφ and φb ∈ Φ for any b ∈ [0, 1].

Remark 4.6. In practice, it is fairly easy to find such a reparameterization to satisfy Condition 9. For example, the
degrees of freedom parameter v in the Student t distribution is constrained to be larger than 2. Then, we can use the
reparameterization φ = ln(v − 2) ∈ R such that any linear transformation of φ lies in R. In this case, g(φ) = exp(φ) + 2
and g−1(v) = ln(v − 2). For another example, the correlation coefficient δ is constrained to be in [−1, 1]. Then we can
use the reparameterization φ = tan

(
π
2 δ
)

∈ R. In this case, g(φ) =
2
π
arctan(φ) and g−1(δ) = tan

(
π
2 δ
)
.

According to Remark 4.6, if θb =
1

√
b

(
θ − θ̄

)
+ θ̄ /∈ Θ , a reparameterization can be made to φ to satisfy Condition 9.

For the convenience of proof, we simply assume that the linear transformation in Eq. (18) is well-defined so that θb ∈ Θ
for any b ∈ [0, 1].

Theorem 4.3. For
{
bs = (s/S)c

}S
s=0 with any c ≥ 1, under Conditions 1–9, when the data y is given with a fixed and finite n,

as S, J0, J → +∞,

l̂nmTI−LWY (y) = lnm(y) + op(1),

where p in op(1) is understood as the probability measure corresponding to the joint posterior p(θ|y) and prior p(θ).

Remark 4.7. Regarding the SS algorithm, no proof of consistency is available in the literature. To save space, we do not
provide the proof of its consistency, nor the proof of the consistency of the modified SS-LWY algorithm in the present
paper. While these proofs require additional efforts, the key idea is similar to the proofs for the TI and modified TI
algorithm developed here. In particular, we need to show that the approximation error introduced by the importance
sampler converges to zero in probability. We leave the detailed and complete treatment in a future study.

5. Examples

In this section, we use two examples to evaluate and compare the performance of the proposed algorithms and the
original TI and SS algorithms, including estimation performance and computational efficiency.7

In the first example, we consider a multivariate linear regression model with Gaussian errors for which the marginal
likelihood is available in closed-form. Based on the closed-form expression, we can accurately evaluate and compare the
performance of candidate algorithms. We repeat all estimation procedures 100 times to calculate the mean (or bias) and
the MCSE of the marginal likelihood. To further illustrate the computational advantage of the newly proposed algorithm,
we also investigate the multivariate linear regression model with Student t errors. The t distribution complicates the
likelihood function as well as the power posterior sampling. It allows us to highlight the computational efficiency of the
proposed algorithm relative to the TI and SS algorithms. To illustrate potential extra coding efforts required by the TI and
SS algorithms, we use WinBUGS to draw MCMC samples in this example. The TI-LWY and SS-LWY algorithms are easily
implementable in WinBUGS without extra coding or sampling efforts from the power posteriors. Whereas, the TI and
SS algorithms require users to code the likelihood density corresponding to the power posterior using the “zeros trick”
technique (Chapter 9 in Spiegelhalter et al. (2003)) in WinBUGS. Compared with using existing distributions in WinBUGS,
the “zeros trick” technique greatly slows down the sampling speed. In the second example, we consider several copula

7 Computational efficiency for the TI, TI-LWY algorithms is measured based on the CPU time on a common desktop with Intel(R) Core(TM)
i7-6700 CPU @3.40 GHz. Computational efficiency for the SS, SS-LWY algorithms is measured based on the CPU time on another common desktop
with Intel(R) Core(TM) i7-7500 CPU @ 2.70 GHz.
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Table 1
Bias and MCSE (in parenthesis) of estimates of log marginal likelihood in M1 .

c = 1 c = 3

TI TI-LWY TI TI-LWY

S = 20 −495.25(4.12) −495.25(4.14) −2.15(0.03) −2.14(0.17)
S = 40 −244.04(2.06) −244.04(2.09) −0.59(0.01) −0.58(0.22)
S = 100 −94.37(0.82) −94.37(0.86) −0.08(0.01) −0.07(0.17)

SS SS-LWY SS SS-LWY

S = 20 −0.54(1.19) −0.54(1.19) 0.00(0.02) 0.01(0.13)
S = 40 −0.10(0.50) −0.10(0.51) 0.00(0.02) 0.02(0.19)
S = 100 −0.03(0.16) −0.02(0.17) 0.00(0.01) 0.02(0.16)

models. Most copula models do not lead to standard distributions, making it difficult to use WinBUGS to obtain MCMC
samples. In this paper, we use the “mcmc” package in R to obtain MCMC samples. To use this package, one only needs to
specify the posterior density directly. As a result, no extra coding effort is required to implement the TI and SS algorithms
as one can conveniently raise the original likelihood to any power b ∈ (0, 1]. However, as reported below, the TI and SS
algorithms are much slower to implement than the proposed algorithms.

5.1. Linear regression models

In the first example, we use a linear regression model with multiple explanatory variables to illustrate the effectiveness
of the proposed approaches. The data contains the sale price of 546 houses sold in Windsor, Canada in 1987. For more
details about the data, one can refer to Koop (2003). We are interested in factors that can influence house prices. There
are four explanatory variables, including the size, the number of bedrooms, the number of bathrooms, and the number
of stories. The following two linear models are considered:

M1 : yi = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + εi, εi ∼ N(0, σ 2), i = 1, 2, . . . , n.
M2 : yi = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + εi, εi ∼ t(0, σ 2, v), i = 1, 2, . . . , n.

For M1, we use the same priors as in Koop (2003), that is, β ∼ N(β0, h−1V0), h :=
1

σ2 ∼ Γ (s, r), where
β0, V0 are the prior mean vector and the prior variance of β , h is inverse of the error variance with s, r being the
scale parameter and the rate parameter of a Gamma distribution. Furthermore, following Koop (2003), we set β0 =[

0, 10, 5000, 104, 104
]′, V0 = diag

(
2.4, 6 × 10−7, 0.15, 0.6, 0.6

)
, s = 2.5, r = 6.25 × 107. In

both models, h is the precision parameter which has to be greater than zero. To ensure Condition 9, we use the
reparameterization φ(h) = ln(h) ∈ R.

Note that for M1 the marginal likelihood is available analytically and hence, can be calculated without any error. The
true marginal likelihood value is around -6151. Moreover, the power posterior has a closed-form expression, which is
always the normal-gamma distribution at any grid point. Therefore, it is easy to draw from the power posteriors directly.

In M2, v is the degrees of freedom parameter with v > 2 in the t distribution. To ensure Condition 9, we use the
reparameterization φ(v) = ln(v − 2) ∈ R. We assign the same prior distribution for h as in M1. We choose the prior
distribution for v − 2 to be an exponential distribution, that is, v − 2 ∼ Exp(0.05). The power posteriors do not have
closed-form expressions for M2.

We generate the MCMC output from the original posterior for M2 using WinBUGS. We also generate the MCMC output
from the power posterior for M2 by using the “zeros trick” technique and defining the power posterior distribution
corresponding to each grid point as a new distribution in WinBUGS. For each chain, we draw 100,000 samples in total,
with the first 40,000 samples discarded and the next 60,000 kept as effective samples. We take one sample from every
three samples to reduce the dependence of the chain so that J = J0 = 20,000. We then estimate the log marginal likelihood
using the four algorithms, namely, the TI and SS algorithm and the two proposed algorithms.

For the choice of other tuning parameters, namely c and S, we follow Friel and Pettitt (2008). As U(bs) involves a higher
level of non-linearity as bs is closer to zero, to calculate

∫ 1
0 U(b)db, a fine grid is needed near zero. With c > 1, more grid

points are assigned in the region near zero.
Table 1 reports the bias and the MCSEs of the estimates of the log marginal likelihood from the four algorithms when

c = 1, 3, and S = 20, 40, 100 in M1. Table 2 reports the log marginal likelihood estimates from the four algorithms
when c = 3, and S = 20, 40, 100 in M2. We cannot obtain the bias in M2 as the true value of the marginal likelihood is
unknown in M2.

We can see from Table 1 that both TI and TI-LWY provide good approximations to the true value when S is moderate
and c = 3. The MCSEs always take small values, reinforcing the finding in Friel and Pettitt (2008). When c = 1, the quality
of the approximations is much worse, confirming the suggestion that a fine grid should be used in the regions near zero.
This is the reason why we only choose c = 3 for the rest of the paper.

Both SS and SS-LWY provide good estimates to the true value for the two values of c . This is because the SS and
SS-LWY algorithms do not involve discretization errors, so that they are less sensitive to c than TI and TI-LWY. However,
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Table 2
Estimates of log marginal likelihood for M2 with c = 3.

TI TI-LWY SS SS-LWY

S = 20 −6514 −6518 −6513 −6517
S = 40 −6513 −6518 −6513 −6518
S = 100 −6513 −6517 −6513 −6517

Table 3
CPU time (in minutes or in hours) in linear regression models.

M1 M2

TI TI-LWY TI TI-LWY

S = 20 19.71 min 20.31 min 3.81 h 0.35 h
S = 40 40.25 min 39.21 min 9.12 h 0.84 h
S = 100 108.96 min 93.49 min 22.80 h 1.91 h

SS SS-LWY SS SS-LWY

S = 20 28.45 min 28.30 min 4.69 h 0.65 h
S = 40 56.39 min 55.76 min 9.96 h 1.03 h
S = 100 142.42 min 133.96 min 25.96 h 2.29 h

SS essentially does importance sampling for p
(
θbs+1|y, bs+1

)
using a slightly more diffuse distribution p

(
θbs |y, bs

)
as the

proposal distribution. Note that the power posterior distributions vary more significantly across small values of bs. The
closer the proposal distribution to the target distribution, the better the performance of importance sampling. Therefore,
for the SS algorithm, c > 1 is still preferred. As we can see from Table 1, the estimates by the SS and SS-LWY algorithms
under c = 3 have a smaller bias and a smaller MCSE than those under c = 1.

For all values of S and c and both models, the two proposed algorithms always provide estimates as good as the
corresponding TI and SS algorithms. And based on the log marginal likelihood values of M1 and M2, one can obtain the
BFs. It is evident that M1 fits the data better than M2.

In Table 3 we report the CPU time for estimating the log marginal likelihood of M1 (100 times) and M2 (once). Since
M1 has a closed-form expression for the power posteriors, not surprisingly, there is not much computational gain in using
the two proposed algorithms relative to the TI and SS algorithms as drawing from the power posteriors is easy. However,
there is a substantial gain in the two proposed algorithms in terms of the computational cost relative to the TI and SS
algorithms in M2. While not reported, the two proposed algorithms save even more of the CPU time if both methods are
used to compute MCSEs in M2 than the TI and SS algorithms.

5.2. Copula models

In this subsection, following Hurn et al. (2020), we consider several copula models for stock returns. Unlike Hurn
et al. (2020), where the copula models are estimated using ML, we estimate competing models using MCMC. For each
competing model, we use the four algorithms to estimate the log marginal likelihood and then obtain the BFs to make a
pair-wise comparison of nested and nonnested models. A comparison of nonnested models in the Bayesian paradigm is
easier than in the frequentist paradigm.

Let r1t and r2t be daily log returns at time t . Assume

r1t = µ1 + σ1z1t ,
r2t = µ2 + σ2z2t ,

where µi, σi are the mean and the standard deviation of rit for i = 1, 2. The joint distribution of returns is modeled by a
copula function, that is,

F (r1t , r2t ) = C(F1(r1t ), F2(r2t ); δ),

where Fi(·) is the marginal distribution for rit and C(·; δ) is the copula function with parameter δ. Different assumptions
about the marginal distribution of zit and the copula function are made below, leading to different models. All competing
models are fit to daily log returns on the S&P 100 and S&P 600 Indices for the period 17 August 1995 to 28 December
2018.8

We use the “mcmc” package in R to obtain the MCMC output. It requires users to provide the kernel of the likelihood
function and the prior. Recall that

p(θb|y, b) ∝ p (y|θb)
b p(θb).

8 We have extended the sample period of the same returns used in Hurn et al. (2020) to that from 17 August 1995 to 28 December 2018.
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Table 4
Posterior means and posterior standard errors of parameters for the Gaussian copula normal marginals
model.
Parameters µ1 h1 µ2 h2 δ

posterior mean 0.0265 0.7058 0.0367 0.5478 0.8422
posterior sd 0.0163 0.0132 0.0186 0.0102 0.0038

Table 5
Estimates of log-marginal likelihood for the Gaussian copula normal marginals model with c = 3.

TI TI-LWY SS SS-LWY

S = 20 −15726 −15729 −15722 −15720
S = 40 −15720 −15721 −15720 −15719
S = 100 −15717 −15718 −15718 −15719

Table 6
CPU time for the four algorithms for the Gaussian copula normal marginals model.

TI TI-LWY SS SS-LWY

S = 20 3.80 min 0.54 min 4.85 min 0.71 min
S = 40 8.95 min 0.89 min 8.93 min 1.19 min
S = 100 19.11 min 2.15 min 21.81 min 2.88 min

The kernel of the target functions for the model corresponding to the power posterior, in the log form, is

b ln p (y|θb) + ln p (θb) .

For each b, we iterate 100,000 times in total, and the first half of the chain is discarded as burn-in. For the remaining
50,000 samples, we keep one out of every five samples to reduce the dependence of the chain so that J = J0 = 10,000.

5.2.1. Gaussian copula normal marginals
In this model we assume z1t , z2t ∼ N(0, 1) and C(·; δ) to be the Gaussian copula function. This is equivalent to assuming

(r1t , r2t )′ follows a bivariate normal distribution with the correlation coefficient δ ∈ [−1, 1]. The log-likelihood function
at time t is:

ln Lt = − ln 2π −
1
2
ln
(
1 − δ2

h1h2

)
−

z21t + z22t − 2δz1tz2t
2(1 − δ2)

,

where hi = 1/σ 2
i is the precision parameter, and zit = (rit − µi)h

1/2
i for i = 1, 2. The parameters of interest are

θ =
(

µ1 h1 µ2 h2 δ
)′.

To do Bayesian analysis, we assign the following prior distributions on parameters,

µi ∼ N(0, 25), hi ∼ Γ (0.1, 1), i = 1, 2, and δ ∼ U[−1, 1].

To validate Condition 9, we use the reparameterization φ(hi) = ln(hi) ∈ R and φ(δ) = tan
(

π
2 δ
)

∈ R when implementing
the two proposed algorithms.

The posterior means and posterior standard errors of these parameters are reported in Table 4. These estimates are
reasonable. For example, the posterior mean of δ is 0.8422, suggesting that there is a strong linear relationship between
the two daily returns. However, the Gaussian copula implies that there is no tail dependence between the two daily
returns. The estimates of the marginal likelihood by the four algorithms are reported in Table 5 while the CPU time is
reported in Table 6. It is clear that all four methods provide reliable estimates. However, the proposed algorithms are
much cheaper to implement computationally, using about only 10% of the CPU time.

5.2.2. Gaussian copula t marginals
In this model we assume z1t , z2t ∼ t(0, 1, v) and C(·; δ) to be the Gaussian copula function. The log-likelihood function

at time t is:

ln Lt = −
1
2
ln(1 − δ2) −

q21t + q22t − 2δq1tq2t
2(1 − δ2)

+
1
2
(q21t + q22t ) + ln

(
h1/2
1 f (z1t; v)h1/2

2 f (z2t; v)
)

,

where δ ∈ [−1, 1], qit = Φ−1(F (zit; v)), zit = (rit − µi)h
1/2
i , F (zit; v), f (zit ) are the CDF and PDF of the t distribution with v

degrees of freedom (v > 2), and Φ−1(·) is the quantile function of the standard normal distribution. The Gaussian copula t
marginals model nests the Gaussian copula normal marginals model. If v → ∞, the two models are the same. To validate
Condition 9, we use the reparameterization φ(hi) = ln(hi) ∈ R, φ(v) = ln(v −2) ∈ R, φ(δ) = tan

(
π
2 δ
)

∈ R. Since v should
be larger than 2 and δ ∈ [−1, 1], we use an exponential prior distribution for v − 2 and a uniform prior for δ, that is,
v − 2 ∼ Exp(1), δ ∼ U[−1, 1].
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Table 7
Posterior means and posterior standard errors of parameters for the Gaussian copula t marginals model.
Parameters µ1 h1 µ2 h2 δ v

Posterior mean 0.0490 1.5492 0.0618 1.0860 0.8236 3.8831
Posterior sd 0.0116 0.0401 0.0139 0.0271 0.0042 0.0957

Table 8
Estimates of log marginal likelihood for the Gaussian copula t marginals model with c = 3.

TI TI-LWY SS SS-LWY

S = 20 −14879 −14887 −14876 −14879
S = 40 −14879 −14881 −14880 −14879
S = 100 −14880 −14879 −14880 −14877

Table 9
CPU time for the four algorithms for the Gaussian copula t marginals model.

TI TI-LWY SS SS-LWY

S = 20 6.73 h 0.91 h 6.72 h 1.09 h
S = 40 12.88 h 1.54 h 13.52 h 1.77 h
S = 100 32.75 h 3.33 h 34.38 h 3.96 h

Table 10
Posterior means and posterior standard errors of parameters for the t copula t marginals model.
Parameters µ1 h1 µ2 h2 δ v η

Posterior mean 0.0558 1.7318 0.0704 1.2037 0.8168 3.3382 3.6102
Posterior sd 0.0115 0.0557 0.0139 0.0364 0.0051 0.1334 0.1413

The likelihood function of this model is more complicated than the Gaussian copula normal marginals model. It requires
a longer CPU time to do posterior sampling. For example, to sample from the posterior distribution, for the Gaussian copula
normal marginals model it only takes 10 s, whereas for the Gaussian copula t marginals model it takes about 17 min.
Consequently, the TI and SS algorithms require more CPU time to estimate the marginal likelihood of the Gaussian copula
t marginals model.

The posterior means and posterior standard errors of the parameters are reported in Table 7. Again, these estimates are
reasonable. For example, the posterior mean of v is 3.8831, suggesting evidence of very heavy tails in the daily returns.
The estimates of the log marginal likelihood by the four algorithms are reported in Table 8 while the CPU time is reported
in Table 9. With moderate S, all methods provide reliable estimates. Comparing the marginal likelihood values in Tables 5
and 8, it is clear that the Gaussian copula t marginals model fits the data much better than the Gaussian copula normal
marginals model. This conclusion is very reasonable given the heavy tails in the daily returns. Moreover, the proposed
algorithms are much cheaper to implement computationally than the TI and SS algorithms, using about only 10% of the
CPU time.

5.2.3. t copula t marginals
In this model we assume z1t , z2t ∼ t(0, 1, v) and C(·; δ, η) to be the t copula function where δ is the correlation

coefficient and η captures the tail dependence. Unlike the Gaussian copula, the t copula allows for tail dependence in
both tails. The log-likelihood function at time t is:

ln Lt = − ln(2π ) −
1
2
ln(1 − δ2) −

η + 2
2

ln
(
1 +

q21t + q22t − 2δq1tq2t
η(1 − δ2)

)
− ln f (q1t; η) − ln f (q2t; η) + ln

(
f (z1t; v)h1/2

1

)
+ ln

(
f (z2t; v)h1/2

2

)
,

where δ ∈ [−1, 1], qit = F−1(F (zit; v); η), zit = (rit − µi)h
1/2
i , i = 1, 2. The t copula t marginals model nests the

Gaussian copula t marginals model. If η → +∞, the two models are the same. To validate Condition 9, we use the
reparameterization φ(hi) = ln(hi) ∈ R, φ(v) = ln(v − 2) ∈ R, φ(η) = ln(η − 2) ∈ R, φ(δ) = tan

(
π
2 δ
)

∈ R. For the prior
distributions, we assume v − 2, η − 2 ∼ Exp(1), δ ∼ U[−1, 1].

The MCMC sampling from the posterior distribution is even more complicated for the t-copula t marginals model. It
requires more CPU time (about 1 h) to draw from the original posterior and the power posteriors for once. The posterior
means and posterior standard errors of the parameters are reported in Table 10. Again, these estimates are reasonable. For
example, the posterior mean of η is 3.6102, suggesting evidence of strong tail dependence between the daily returns. The
estimates of the log marginal likelihood by the four algorithms are reported in Table 11 while the CPU time is reported
in Table 12. All methods provide reliable estimates of the log marginal likelihood. Comparing the log marginal likelihood
values in Tables 8 and 11, it is clear that the t copula t marginals model fits the data much better than the Gaussian
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Table 11
Estimates of log marginal likelihood for the t copula t marginals model with c = 3.

TI TI-LWY SS SS-LWY

S = 20 −14694 −14689 −14689 −14687
S = 40 −14691 −14683 −14690 −14689
S = 100 −14691 −14681 −14692 −14687

Table 12
CPU time for the four algorithms for the t copula t marginals model.

TI TI-LWY SS SS-LWY

S = 20 24.45 h 3.50 h 25.41 h 4.09 h
S = 40 49.72 h 5.78 h 52.49 h 6.28 h
S = 100 120.85 h 12.20 h 127.58 h 13.58 h

Table 13
Posterior means and posterior standard errors of parameters for the Clayton copula t marginals model.
Parameters µ1 h1 µ2 h2 δ v

Posterior mean 0.1638 1.9200 0.1920 1.3491 2.2459 2.5487
Posterior sd 0.0110 0.0590 0.0134 0.0386 0.0447 0.0682

Table 14
Estimates of log marginal likelihood for the Clayton copula t marginals model with c = 3.

TI TI-LWY SS SS-LWY

S = 20 −15279 −15284 −15276 −15277
S = 40 −15280 −15278 −15281 −15276
S = 100 −15280 −15276 −15281 −15275

copula t marginals model. This conclusion is very reasonable because there is not only a strong linear relationship but
also a strong tail dependence between the two daily returns. Moreover, the two proposed algorithms are much cheaper
to implement computationally than the TI and SS algorithms, using only about 10% of the CPU time. Even with S = 20,
the computational burden is a major challenge for the TI and SS algorithms, requiring 24–25 h of CPU time once. Giving
the computational cost, it is impossible to obtain the MCSE using the TI and SS algorithms.

From Table 11, it can be seen that there is a noticeable difference between the log-marginal likelihood values obtained
by TI and TI-LWY. With the concern that the difference may be due to a reasonably small value of J being used, we
increase MCMC iterations to 200,000, and keep the last half of draws (i.e., J = J0 = 100, 000). The log-marginal likelihood
estimate obtained by the proposed TI-LWY algorithm is -14695, -14688, and −14686 for S = 20, 40, 100 respectively.
However, with the increased J , we cannot obtain the estimates of the log-marginal likelihood by the TI algorithm as it is
too time-consuming.

5.2.4. Clayton copula t marginals
In this model we assume z1t , z2t ∼ t(0, 1, v) and C(·; δ) to be the Clayton copula function. The Clayton copula function

is given by:

C(u1, u2; δ) =
(
u−δ
1 + u−δ

2 − 1
)−1/δ

, 0 < δ < ∞,

where δ > 0 captures the degree of left tail dependence of the two marginals. This model does not nest or is not nested
by any model introduced earlier as the Clayton copula only allows for dependence at left tails. The log-likelihood function
at time t is:

ln Lt = ln(1 + δ) − (1 + δ)(ln u1t + ln u2t ) − (2 + 1/δ) ln
(
u−δ
1t + u−δ

2t − 1
)

+ ln(f (z1t; v)h1/2
1 ) + ln(f (z2t; v)h1/2

2 ),

where zit = (rit − µi)h
1/2
i and uit = F (zit; v) for i = 1, 2. To validate Condition 9, we use the reparameterization

φ(hi) = ln(hi) ∈ R, φ(v) = ln(v − 2) ∈ R, φ(δ) = ln δ ∈ R. As for the prior of δ, we assume δ ∼ Γ (1, 1).
The posterior means and posterior standard errors of these parameters are reported in Table 13. Again, these estimates

are reasonable. For example, the posterior mean of δ is 2.246, suggesting evidence of strong dependence in the left tails.
The estimates of the marginal likelihood by the four algorithms are reported in Table 14 while the CPU time is reported
in Table 15. All methods provide reliable estimates. According to the log marginal likelihood value, the Clayton copula
does not fit the data so well. This is because while the Clayton copula allows for the lower tail dependence, it does not
allow for any upper tail dependence. The upper tail dependence is important in our data.
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Table 15
CPU time for the four algorithms for the Clayton copula t marginals model.

TI TI-LWY SS SS-LWY

S = 20 7.16 h 1.05 h 7.41 h 1.20 h
S = 40 13.86 h 1.70 h 14.89 h 1.89 h
S = 100 36.42 h 3.64 h 39.13 h 4.20 h

Comparing the marginal likelihood values of all four models reported in Tables 5, 8, 11 and 14 (some are nested and
some are not), it is clear that the t copula t marginals model fits the data the best and by wide margins, followed by the
Gaussian copula t marginals model, then by the Clayton copula t marginals model, and finally by the Gaussian copula
normal marginals model. Again, the proposed algorithms are much cheaper to implement computationally than the TI
and SS algorithms, using only about 10% of the CPU time.

6. Concluding remarks

In this paper, under some regularity conditions, we establish the BvM theorem for the power posteriors. Due to the BvM
theorem, the power posteriors, when adjusted by the square root of the grid points, converge to the normal distribution,
which is also the limit of the original posterior distribution. This large sample theory, therefore, allows us to improve
the power-posterior-based methods to estimate marginal likelihood by providing a proposal distribution for importance
sampling. Particularly, we apply this idea to the TI approach of Friel and Pettitt (2008) and the SS approach of Xie et al.
(2011). Unlike the standard power posteriors methods that require repeated posterior sampling from the power posteriors,
the new methods only require a posterior output of the original posterior. Hence, they are computationally more efficient.
Moreover, for models where extra coding effort is needed to draw random samples from power posteriors, such coding
effort is completely avoided.

The accuracy of the proposed methods are examined and compared with the standard power-posterior-based methods
in the Gaussian linear regression model where the true value of the marginal likelihood can be obtained. It suggests
that the proposed methods provide reliable estimates of the marginal likelihood. It performs as well as the standard
power-posterior-based methods in terms of both bias and MCSE. A comparison of the computational efficiency of the
proposed methods relative to that of the standard power-posterior-based methods is made using a linear regression
model and several copula models. The comparison suggests that when a model is reasonably complicated, standard
power-posterior-based methods are very time-consuming, and our methods can reduce about 90% of the CPU time of
those methods.

The marginal likelihood is only well-defined under proper priors. Therefore, it is important to note that, as our methods
aim to estimate the marginal likelihood, they cannot be used in connection to improper priors. Moreover, we want to point
out that although this paper tries to improve the existing algorithms for marginal likelihood estimation, our idea can be
used in other cases where power posteriors are used. For example, they can be extended to the sequential Monte Carlo
method of Herbst and Schorfheide (2015) and the striated Metropolis–Hastings algorithm of Waggoner et al. (2016). These
extensions are beyond the scope of this paper.

Although we have shown that the TI and modified TI algorithms provide consistent estimators of the log marginal
likelihood, due to space constraint, we have not shown that the SS and improved SS algorithms yield consistent estimators
of the marginal likelihood. Such a result will be reported in a separate study.

Appendix A

A.1. Proof of Theorem 4.1

The power posterior density of znb, p (znb|y, b), can be decomposed into two parts:

p (znb|y, b) =

⏐⏐b−1Σ n
⏐⏐1/2 p (y|θb)

b p (θb)

m (y|b)

=

[⏐⏐b−1Σ n
⏐⏐1/2 p (y|̂θ)b p (θ0)
m (y|b)

][
p (θb)

p
(
θ0) p (y|θb)

b

p
(
y|̂θ
)b
]

. (34)

To establish the BvM theorem for the power posterior, we need to show the convergence in total variation, that is, for
any ε > 0,

lim
n→∞

P0

(
sup
B⊑Anb

⏐⏐⏐⏐∫
B

[
p (znb|y, b) − (2π)−q/2 exp

(
−

z′

nbznb
2

)]
dznb

⏐⏐⏐⏐>ε

)
= 0, (35)

where B ⊑ Anb is any Borel set.
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Note that, for any B ⊑ Anb,⏐⏐⏐⏐∫
B

[
p (znb|y, b) − (2π)−q/2 exp

(
−

z′

nbznb
2

)]
dznb

⏐⏐⏐⏐
≤

∫
B

⏐⏐⏐⏐p (znb|y, b) − (2π)−q/2 exp
(

−
z′

nbznb
2

)⏐⏐⏐⏐ dznb
≤

∫
Anb

⏐⏐⏐⏐p (znb|y, b) − (2π)−q/2 exp
(

−
z′

nbznb
2

)⏐⏐⏐⏐ dznb.
Hence, Eq. (35) holds if

lim
n→∞

P0

(∫
Anb

⏐⏐⏐⏐p (znb|y, b) − (2π)−q/2 exp
(

−
z′

nbznb
2

)⏐⏐⏐⏐ dznb>ε

)
= 0. (36)

Note that for the integrand in (36), we have⏐⏐⏐⏐p (znb|y, b) − (2π)−q/2 exp
(

−
z′

nbznb
2

)⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐
⏐⏐b−1Σ n

⏐⏐1/2 p (y|̂θ)b p (θ0)
m (y|b)

×
p (θb)

p
(
θ0) p (y|θb)

b

p
(
y|̂θ
)b − (2π)−q/2 exp

(
−

z′

nbznb
2

)⏐⏐⏐⏐⏐
≤

⏐⏐⏐⏐⏐
⏐⏐b−1Σ n

⏐⏐1/2 p (y|̂θ)b p (θ0)
m (y|b)

×
p (θb)

p
(
θ0) p (y|θb)

b

p
(
y|̂θ
)b − (2π)−q/2 p (θb)

p
(
θ0) p (y|θb)

b

p
(
y|̂θ
)b
⏐⏐⏐⏐⏐

+

⏐⏐⏐⏐⏐(2π)−q/2 p (θb)

p
(
θ0) p (y|θb)

b

p
(
y|̂θ
)b − (2π)−q/2 exp

(
−

z′

nbznb
2

)⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐
⏐⏐b−1Σ n

⏐⏐1/2 p (y|̂θ)b p (θ0)
m (y|b)

− (2π)−q/2

⏐⏐⏐⏐⏐× p (θb)

p
(
θ0) p (y|θb)

b

p
(
y|̂θ
)b

+ (2π)−q/2

⏐⏐⏐⏐⏐ p (θb)

p
(
θ0) p (y|θb)

b

p
(
y|̂θ
)b − exp

(
−

z′

nbznb
2

)⏐⏐⏐⏐⏐ . (37)

From (37), we can see that to prove (36), it is sufficient to prove that, for any ε > 0,

lim
n→∞

P0

(⏐⏐⏐⏐⏐
⏐⏐b−1Σ n

⏐⏐1/2 p (y|̂θ)b p (θ0)
m (y|b)

− (2π)−q/2

⏐⏐⏐⏐⏐>ε

)
= 0, (38)

and

lim
n→∞

P0

(∫
Anb

⏐⏐⏐⏐⏐ p (θb)

p
(
θ0) p (y|θb)

b

p
(
y|̂θ
)b − exp

(
−

z′

nbznb
2

)⏐⏐⏐⏐⏐ dznb>ε

)
= 0. (39)

Since the detailed proof of (38) and (39) is too long, we leave it to the online appendix.

A.2. Two lemmas

Before we prove Theorem 4.2, we need to establish two lemmas. All the results in the two lemmas are conditional on
the data y with a fixed and finite n, and hence, non-probabilistic in nature. The proof of the two lemmas is given in the
online appendix.

Lemma A.1. Under Conditions 1–8, when the data y is given with a fixed and finite n, for any b ∈ [0, 1],

|U(b)| < +∞,∫
Θ

[ln p(y|θ)]4 p(θ)dθ < +∞,

1 ≤
p
(
y|̂θ
)b

m(y|b)
≤ exp

[
b U∗(0)

]
< +∞,

where U∗(b) = ln p
(
y|̂θ
)
− U(b).
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Remark A.1. The first part of Lemma A.1 suggests that U(b) is bounded for any b ∈ [0, 1], and hence, lnm (y) is also
bounded. The second part of Lemma A.1 ensures that we can apply a central limit theorem (CLT) to random samples so
that the order of the error in using Û(b) to approximate U(b) can be obtained.

Lemma A.2. Under Conditions 1–8, when the data y is given with a fixed and finite n, as J → +∞, for any b ∈ [0, 1], we
have

sup
b∈[0,1]

Varθb|y,b
[
Û(b)

]
= O(J−1),

where Û(b) is defined in (7). The J random samples are either iid draws from p (θb|y, b) or stationary and ergodic draws from
a Markov chain that has p (θb|y, b) as its stationary probability density.

A.3. Proof of Theorem 4.2

In this proof, we will understand p in op or Op as the probability measure corresponding to the joint power posterior
p
(
θbs |y, bs

)
with

{
bs = (s/S)c

}S
s=0. Note that

S−1∑
s=0

(bs+1 − bs)
Û(bs+1) + Û(bs)

2
− lnm(y)

=

S−1∑
s=0

(bs+1 − bs)
Û(bs+1) − U(bs+1) + Û(bs) − U(bs)

2

+

S−1∑
s=0

(bs+1 − bs)
U(bs) + U(bs+1)

2
− lnm(y). (40)

Hence, it will be sufficient if we can show that, as J → +∞,
S−1∑
s=0

(bs+1 − bs)
Û(bs+1) − U(bs+1) + Û(bs) − U(bs)

2
= op(1), (41)

and that, as S → +∞,
S−1∑
s=0

(bs+1 − bs)
U(bs) + U(bs+1)

2
− lnm(y) = o(1). (42)

First, to prove (41), let M̂1 =
∑S−1

s=0 (bs+1 − bs)
Û(bs+1)−U(bs+1)

2 , M̂2 =
∑S−1

s=0 (bs+1 − bs) Û(bs)−U(bs)
2 , and M̂ =

∑S−1
s=0 (bs+1 −

bs)
Û(bs+1)−U(bs+1)+Û(bs)−U(bs)

2 = M̂1+M̂2. Note that, since Û(b) is an unbiased estimator of U(b) for any b, we have E
(
M̂
)

= 0.
Consequently,

Var
(
M̂
)

= E
(
M̂1 + M̂2

)2
≤ 2E

(
M̂2

1

)
+ 2E

(
M̂2

2

)
.

By the Cauchy–Schwarz inequality, we have

M̂2
1 =

[
S−1∑
s=0

(bs+1 − bs)
Û(bs+1) − U(bs+1)

2

]2

=

[
S−1∑
s=0

(√
bs+1 − bs

Û(bs+1) − U(bs+1)
2

)(√
bs+1 − bs

)]2

≤

[
S−1∑
s=0

(√
bs+1 − bs

Û(bs+1) − U(bs+1)
2

)2
]

S−1∑
s=0

(bs+1 − bs)

=

S−1∑
s=0

(bs+1 − bs)
(
Û(bs+1) − U(bs+1)

2

)2

.

Hence,

E
(
M̂2

1

)
≤ E

[
S−1∑
s=0

(bs+1 − bs)
(
Û(bs+1) − U(bs+1)

2

)2
]
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=

S−1∑
s=0

(bs+1 − bs) E
(
Û(bs+1) − U(bs+1)

2

)2

≤ sup
bs+1∈[0,1]

E
(
Û(bs+1) − U(bs+1)

2

)2 S−1∑
s=0

(bs+1 − bs)

= sup
bs+1∈[0,1]

E
(
Û(bs+1) − U(bs+1)

2

)2

= O(J−1),

where the last step is based on Lemma A.2. Similarly, we can show that E
(
M̂2

2

)
= O(J−1). Combining them, we have,

Var
(
M̂
)

= E
(
M̂2
)

= O(J−1). Since E
(
M̂
)

= 0, we have M̂
L2
→ 0 as J → +∞, which implies M̂ = op(1). This completes the

proof of (41).
Second, to prove Eq. (42), apply the trapezoidal rule to the integral of U(b) over the interval [bs, bs+1], we have∫ bs+1

bs
U(b)db ≈

bs+1 − bs
2

(U(bs) + U(bs+1)).

The local approximation error is,

bs+1 − bs
2

(U(bs) + U(bs+1)) −

∫ bs+1

bs
U(b)db =

∫ bs+1

bs

(
b −

bs+1 + bs
2

)
U ′(b)db,

by integration by parts. Hence, the global approximation error is⏐⏐⏐⏐⏐
S−1∑
s=0

∫ bs+1

bs

(
b −

bs+1 + bs
2

)
U ′(b)db

⏐⏐⏐⏐⏐
≤

S−1∑
s=0

∫ bs+1

bs

⏐⏐⏐⏐(b −
bs+1 + bs

2

)
U ′(b)

⏐⏐⏐⏐ db
≤

S−1∑
s=0

∫ bs+1

bs

bs+1 − bs
2

U ′(b)db

=

S−1∑
s=0

(bs+1 − bs)
2

(U(bs+1) − U(bs))

≤
maxs{bs+1 − bs}

2

S−1∑
s=0

[U(bs+1) − U(bs)]

= O(S−1) [U(1) − U(0)] = O(S−1) → 0, as S → +∞,

where the second last step is due to maxs{bs+1 − bs} = O(S−1) and U(1) − U(0) being finite by Lemma A.1. Hence, (42)
also holds. Based on Eqs. (41) and (42), Theorem 4.2 is proved.

A.4. Two more lemmas

Before we prove Theorem 4.3, we need to establish two more lemmas. The proof of these two lemmas is given in the
online appendix.

Lemma A.3. Under Conditions 1–9, for any b ∈ ( 1n , 1], there exists a positive integer number n∗, such that when n ≥ n∗,∫
Θ

[
p (θb|y, b)
pA (θb|y, b)

]2
pA (θb|y, b) dθb < +∞,

∫
Θ

[
p (θb|y, b)
pA (θb|y, b)

]3
pA (θb|y, b) dθb < +∞, (43)

where p (θb|y, b), pA (θb|y, b) are defined in (2), (19) respectively.

Lemma A.4. Suppose the data y is given with a fixed and finite n and Conditions 1–9 hold. As J0 → +∞, for any b ∈ [0, 1/n],
we have

sup
b∈[0, 1n ]

Var0
[
Ûw(b)

]
= O(J−1

0 ),
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where Ûw(b) is defined in (25). The J0 random samples are iid draws from p(θ). Moreover, as J → +∞, for any b ∈ (1/n, 1],
we have

sup
b∈( 1n ,1]

VarA
[
Ûw(b)

]
= O(J−1),

where Ûw(b) is defined in (22) and VarA is the variance with respect to pA (θb|y, b) defined in (19). The J random samples are
obtained by first making iid draws from posterior distribution p(θ|y) or stationary and ergodic draws from a Markov chain that
has p(θ|y) as its stationary probability density, and then transforming the draws via (18).

A.5. Proof of Theorem 4.3

In this proof, we will understand p in op or Op as the probability measure corresponding to posterior distribution p(θ|y)
when b ∈ ( 1n , 1] and prior distribution p(θ) when b ∈ [0, 1

n ]. Note that

S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) + ÛLWY (bs)

2
− lnm(y)

=

S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) − U(bs+1) + ÛLWY (bs) − U(bs)

2

+

S−1∑
s=0

(bs+1 − bs)
U(bs) + U(bs+1)

2
− lnm(y). (44)

To prove Theorem 4.3, we only need to prove that, as J, J0 → +∞,
S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) − U(bs+1) + ÛLWY (bs) − U(bs)

2
= op(1), (45)

and that, as S → +∞,
S−1∑
s=0

(bs+1 − bs)
U(bs) + U(bs+1)

2
− lnm(y) = o(1). (46)

Note that (46) has been proved in Theorem 4.2. Hence, we only need to prove (45).
To prove (45), note that for b ∈ (0, 1], while Ûw(b) is an unbiased estimator of U(b), ÛLWY (b), as a self-normalized

importance sampler, is generally a biased estimator of U(b). It can be seen that
S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) − U(bs+1) + ÛLWY (bs) − U(bs)

2

=

S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) − Ûw(bs+1) + Ûw(bs+1) − U(bs+1)

2

+

S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs) − Ûw(bs) + Ûw(bs) − U(bs)

2

=

S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) − Ûw(bs+1) + ÛLWY (bs) − Ûw(bs)

2

+

S−1∑
s=0

(bs+1 − bs)
Ûw(bs+1) − U(bs+1) + Ûw(bs) − U(bs)

2
. (47)

Hence, to prove (45), we need to prove
S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) − Ûw(bs+1) + ÛLWY (bs) − Ûw(bs)

2
= op(1), (48)

and
S−1∑
s=0

(bs+1 − bs)
Ûw(bs+1) − U(bs+1) + Ûw(bs) − U(bs)

2
= op(1). (49)
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It is easy to show that
S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) − Ûw(bs+1) + ÛLWY (bs) − Ûw(bs)

2

=

S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs) − Ûw(bs)

2
+

S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) − Ûw(bs+1)

2
.

Hence, we only need to prove that
S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs) − Ûw(bs)

2
= op(1),

S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) − Ûw(bs+1)

2
= op(1).

Let w̄bs =
1
J

∑J
j=1 wbs

(
θtr
bs,(j)

)
when bs ∈ (1/n, 1] or w̄bs =

1
J0

∑J
j=1 w0bs

(
θ0,(j)

)
when bs ∈ [0, 1/n]. Note that

ÛLWY (bs+1) =
1

w̄bs+1
Ûw(bs+1) and E[w̄bs ] = 1 where E is the expectation with respect to pA(θbs |y, bs) when b ∈ ( 1n , 1]

and p(θ) when b ∈ [0, 1
n ].

Hence, we can get⏐⏐⏐⏐⏐
S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) − Ûw(bs+1)

2

⏐⏐⏐⏐⏐
2

=

⏐⏐⏐⏐⏐
S−1∑
s=0

(bs+1 − bs)
1

w̄bs
Ûw(bs+1) − Ûw(bs+1)

2

⏐⏐⏐⏐⏐
2

=

⏐⏐⏐⏐⏐⏐
S−1∑
s=0

(bs+1 − bs)

(
1

w̄bs
− 1

)
Ûw(bs+1)

2

⏐⏐⏐⏐⏐⏐
2

=

⏐⏐⏐⏐⏐⏐
S−1∑
s=0

√
bs+1 − bs

(
1

w̄bs
− 1

)
√
bs+1 − bsÛw(bs+1)

2

⏐⏐⏐⏐⏐⏐
2

≤

[
S−1∑
s=0

(bs+1 − bs)
(

1
w̄bs

− 1
)2
][

S−1∑
s=0

(bs+1 − bs)
(
Ûw(bs+1)

2

)2
]

. (50)

Since bs = (s/S)c with c ≥ 1, we have bs+1 − bs =
( s+1

S

)c
−
( s
S

)c with mins {bs+1 − bs} = b1 − b0 = S−c

and maxs {bs+1 − bs} = O(S−1), s = 1, 2 · · · , S. Furthermore, by the law of large numbers, w̄bs = 1 + op(1) and
Ûw(bs+1) = U(bs+1) + op(1) = Op(1). Hence, we get

S−1∑
s=0

(bs+1 − bs)
(

1
w̄bs

− 1
)2

≤ max
s

{bs+1 − bs}
S−1∑
s=0

(
1

w̄bs
− 1

)2

= O(S−1)Sop(1) = op(1),

S−1∑
s=0

(bs+1 − bs)
(
Ûw(bs+1)

2

)2

≤ max
s

{bs+1 − bs}
S−1∑
s=0

Op(1) = O(S−1)SOp(1) = Op(1).

Based on (50), we have
S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs+1) − Ûw(bs+1)

2
= op(1).

Similarly, we can show that
S−1∑
s=0

(bs+1 − bs)
ÛLWY (bs) − Ûw(bs)

2
= op(1).

This completes the proof of Eq. (48).
We now prove (49). Similar to Theorem 4.2, for any bs ∈ [0, 1], let

M̂w1 =

S−1∑
s=0

(bs+1 − bs)
Ûw(bs+1) − U(bs+1)

2
,

M̂w2 =

S−1∑
s=0

(bs+1 − bs)
Ûw(bs) − U(bs)

2
,

M̂w =

S−1∑
s=0

(bs+1 − bs)
Ûw(bs+1) − U(bs+1) + Û(bs) − U(bs)

2
= M̂w1 + M̂w2.
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Note that, since E
(
M̂w

)
= 0, we have

Var
(
M̂w

)
= E

(
M̂w1 + M̂w2

)2
≤ 2E

(
M̂2

w1

)
+ 2E

(
M̂2

w2

)
. (51)

By the Cauchy–Schwarz inequality, we have

M̂2
w1 =

[
S−1∑
s=0

(bs+1 − bs)
Ûw(bs+1) − U(bs+1)

2

]2

=

[
S−1∑
s=0

(√
bs+1 − bs

Ûw(bs+1) − U(bs+1)
2

)(√
bs+1 − bs

)]2

≤

[
S−1∑
s=0

(√
(bs+1 − bs)

Û(bs+1) − U(bs+1)
2

)2
]

S−1∑
s=0

(bs+1 − bs)

=

S−1∑
s=0

(bs+1 − bs)
(
Ûw(bs+1) − U(bs+1)

2

)2

.

Hence, we can get

E
(
M̂2

w1

)
≤ E

[
S−1∑
s=0

(bs+1 − bs)
(
Ûw(bs+1) − U(bs+1)

2

)2
]

=

S0∑
s=0

(bs+1 − bs) E
(
Ûw(bs+1) − U(bs+1)

2

)2

+

S−1∑
s=S0+1

(bs+1 − bs) E
(
Ûw(bs+1) − U(bs+1)

2

)2

≤ sup
bs+1∈[0, 1n ]

E
(
Ûw(bs+1) − U(bs+1)

2

)2 S0∑
s=0

(bs+1 − bs)

+ sup
bs+1∈( 1n ,1]

E
(
Ûw(bs+1) − U(bs+1)

2

)2 S−1∑
s=S0+1

(bs+1 − bs)

= O(J−1
0 ) + O(J−1).

Similarly, we can show that E
(
M̂2

w2

)
= O(J−1

0 ) + O(J−1). Based on (51), we have Var
(
M̂w

)
= E

(
M̂2

w

)
= O(J−1

0 ) + O(J−1)

= o(1). Since E
(
M̂w

)
= 0, as J0, J → ∞, M̂w

L2
→ 0, which implies M̂w = op(1). This completes the proof of (49). Hence,

Theorem 4.3 is proved.

Appendix B. Supplementary data

Supplementary material related to this article, such as the detailed proof of Theorem 4.1 and Lemmas 7.1–7.4, can be
found online.

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.11.009.
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