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Liang Jianga, Xiaohu Wangb,c, and Jun Yud

aFanhai International School of Finance, Fudan University, Shanghai, China; bSchool of Economics, Fudan
University, Shanghai, China; cShanghai Institute of International Finance and Economics, Shanghai, China;
dSchool of Economics and Lee Kong Chian School of Business, Singapore Management University, Singapore

ABSTRACT
This article obtains the exact distribution of the maximum likelihood esti-
mator of structural break point in the Ornstein–Uhlenbeck process when a
continuous record is available. The exact distribution is asymmetric, tri-
modal, dependent on the initial condition. These three properties are also
found in the finite sample distribution of the least squares (LS) estimator
of structural break point in autoregressive (AR) models. Motivated by these
observations, the article then develops an in-fill asymptotic theory for the
LS estimator of structural break point in the AR(1) coefficient. The in-fill
asymptotic distribution is also asymmetric, tri-modal, dependent on the ini-
tial condition, and delivers excellent approximations to the finite sample
distribution. Unlike the long-span asymptotic theory, which depends on
the underlying AR roots and hence is tailor-made but is only available in a
rather limited number of cases, the in-fill asymptotic theory is continuous
in the underlying roots. Monte Carlo studies show that the in-fill asymp-
totic theory performs better than the long-span asymptotic theory for
cases where the long-span theory is available and performs very well for
cases where no long-span theory is available. The article also proposes to
use the highest density region to construct confidence intervals for struc-
tural break point.

KEYWORDS
Asymmetry; exact
distribution; highest density
region; long-span
asymptotics; in-fill
asymptotics; trimodality

JEL CLASSIFICATION
C11; C46

1. Introduction

Autoregressive (AR) models with a structural break in the AR(1) coefficient have been used
extensively to describe economic time series; see for example Mankiw and Miron (1986), Mankiw
et al. (1987), Phillips et al. (2011), Phillips and Yu (2011), Homm and Breitung (2012), and
Phillips et al. (2015a, 2015b). The structural break point is often linked to a significant economic
event or an important economic policy. Not surprisingly, making statistical inference about the
structural break point has received a great deal of attention from both econometricians and
empirical economists when they are confronted with economic time series.

Existing asymptotic theory assumes that the time spans, before and after the structural break point,
both go to infinity; see Chong (2001), Pang et al. (2014) and Liang et al. (2018) for the development
of these asymptotic distributions. Unfortunately, the resulting long-span asymptotic theory makes stat-
istical inference about the structural break point very complicated for a number of reasons.

First, depending on the values of the AR(1) coefficients before and after the break point, the
process in each regime can have a stationary, or a mildly stationary, or a local-to-unit, or a unit,
or a mildly explosive, or an explosive root. The asymptotic theory developed in the literature was
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tailor-made to accommodate different combinations of two roots, but so far only covers a very
small number of cases. In many empirically interesting examples, including that considered in
Phillips et al. (2011), Phillips and Yu (2011), Homm and Breitung (2012), Phillips et al. (2015a),
and Phillips and Shi (2018), no asymptotic theory is available.

Second, to aggravate the matter, the derived asymptotic distribution often does not perform
well in finite samples, even when both roots are much less than 1 (say 0.5 and 0.38, as will be
shown in Fig. 1 below). It is discontinuous in the underlying AR(1) parameters as one or two
roots pass the unity. In particular, the long-span asymptotic distribution and, sometimes even,
the rate of convergence depend on how one classifies the two AR roots, although no guidance is
given about the classification.1 Moreover, the long-span asymptotic distribution does not depend
on the initial condition. However, the finite sample distribution of break point estimator is always
continuous in the underlying AR parameters. That is, keeping one of the AR parameters fixed,
changing the value of the other AR parameter by a small amount only leads to a small change in
the finite sample distribution of break point estimator. Furthermore, the finite sample distribution
of break point estimator depends on the initial condition. These two facts explain why the long-
span asymptotic theory can perform poorly in finite samples. Evidence from the simulations
reported later strongly suggests that in many empirically relevant cases the long-span asymptotic
theory is inadequate.

The discontinuity in the long-span limiting distributions is also found in the AR(1) model
without break. In a recent attempt, Phillips and Magdalinos (2007) developed the long-span limit-
ing distributions when the root is moderately deviated from unity. They show that the rate of
convergence in their asymptotic theory provides a link between stationary and local-to-unit-root
autoregressions. However, the limiting distribution itself remains discontinuous as the root passes
through the unity.2
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Figure 1. The pdf of the finite sample distribution of Tðb2�b1Þ2
1�b21

ðŝLS, T � s0Þ when T ¼ 200, b1 ¼ 0:5,b2 ¼ 0:38, r ¼ 1 and s0 ¼
0:5 in Model (1) and the pdf of argmaxu2ð�1,1ÞfWðuÞ � 1

2 jujg::

1For example, if the AR(1) coefficient is 0.9, should it be classified as a stationary, or a mildly stationary, or a local-to-unit
root? Different classification leads to different asymptotic distribution.
2This feature motivated Sims (1988) and Sims and Uhlig (1991) to use the Bayesian posterior distribution to make statistical
inference about the AR parameter although Phillips (1991) showed that ignorance priors lead to the Bayesian posterior
distributions which are much closer to the long-span limiting distributions.
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Interestingly, when a continuous record of observations is available, continuous time models
can provide the exact distribution of persistency parameter, as shown in Phillips (1987a, 1987b).
The exact distribution is continuous in the persistency parameter, regardless of its sign and value.
This feature motivated Phillips (1987a) to establish the in-fill asymptotic distribution for the
AR(1) parameter in discrete time models. It also motivates Yu (2014) and Zhou and Yu (2015) to
establish the in-fill asymptotic distribution for the persistency parameter in continuous time mod-
els. Not surprisingly, these in-fill asymptotic distributions are continuous in the underlying
parameters and dependent on the initial condition. Furthermore, it motivates Jiang, Wang and
Yu (2018, JWY hereafter) to develop the in-fill asymptotic distribution in the estimation of struc-
tural break point in mean.

In this article, we develop an in-fill asymptotic distribution of break point estimator in time
series models with a break in the AR(1) coefficient. The in-fill asymptotic distribution is continu-
ous in the two underlying AR parameters. Moreover, it depends explicitly on the initial condition.
We make several contributions to the literature on structural breaks.

First, we show that when there is a continuous record of observations for the
Ornstein–Uhlenbeck (OU) process with an unknown break point, we can derive the exact distri-
bution of maximum likelihood (ML) estimator of break point via the Girsanov theorem. The
exact distribution is applicable to all values for two persistency parameters. It is continuous in
two persistency parameters, regardless of their signs and values, and is dependent on the ini-
tial condition.

Second, we show that the exact distribution is always asymmetric about the true break point,
regardless of the location of the true break point. Moreover, the distribution in general has three
modes, one at the true value, two at the boundary points. The asymmetry and the trimodality
have also been reported in JWY (2018) in a model with a break in mean. However, our exact dis-
tribution remains asymmetric even when the break is in the middle of the sample. This feature is
not shared by the exact distribution of JWY.

Third, motivated by the exact distributional theory, we propose an AR model with a break in
the AR coefficient and derive the in-fill asymptotic distribution for the break point. Our model
converges to the OU process with a break as the sampling interval shrinks. To develop our in-fill
theory, we do not need to restrict any of the AR coefficients to be less than one, or equal to one,
or greater than one. Furthermore, our model enables us to compare the magnitude of the break
size and the initial condition with those assumed in the literature. The break size in our model
has a smaller order of magnitude than those in the literature while the initial condition has a
larger order than those in the literature. It is this smaller break size that allows us to develop a
new asymptotic theory. It is this larger initial condition that brings the prominence of the initial
condition into the asymptotic distribution.

Fourth, we extend our limit theory to a more general time series model where the AR(1) coef-
ficient has a break but the error term is weakly dependent. The assumption of an independent
error term has been imposed in the literature to develop the long-span asymptotic theory. Since
the assumption can be too strong for empirical work, it is important to relax the assumption.

Finally, we carry out extensive simulation studies, checking the performance of the in-fill
asymptotic distribution against the long-span counterpart developed in the literature for cases
where the long-span theory is available. Our results show that our unified in-fill asymptotic distri-
bution always performs better than the long-span counterpart although the later was tailor-made
to accommodate different kinds of regime shift. We also investigate the performance of the in-fill
asymptotic distribution for cases where the long-span theory is not available. Our results show
that our in-fill asymptotic distribution continues to perform well.

There are several drawbacks in our in-fill asymptotic theory, however. First, under the in-fill
asymptotic scheme, our estimator of break point is inconsistent. However, our estimator is the
same as that under the long-span scheme. Hence, our in-fill scheme can be understood as a
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vehicle of obtaining a better approximation than the long-span scheme. Second, the asymptotic
distribution is not pivotal. Third, the distribution is nonstandard and the density function is not
available analytically. Hence, simulations are needed to obtain moments and quantiles. Fourth,
while the features of asymmetry and trimodality in the in-fill distribution are shared by the finite
sample distribution, they make the construction of confidence intervals more difficult.

The rest of the article is organized as follows. Section 2 reviews the literature on AR(1) models
with a break. Special focus is paid to the assumptions about the two AR(1) coefficients as well as
to the assumptions about the break size. Section 3 develops the exact distribution of the ML esti-
mator of break point in the OU process with a break. Section 4 develops the in-fill asymptotic
theory for the LS estimator of the break point in the AR(1) model with a break. Section 5 devel-
ops the in-fill asymptotic theory for the LS estimator of the break point in a general time series
model. In Section 6, we provide simulation results and check the finite sample performance of
the in-fill theory. In Section 7, we propose to use the highest density region to construct confi-
dence intervals for the break point. Section 8 concludes. Appendix A gives a detailed literature
review and Appendix B collects all the proofs of the theoretical result.

2. A literature review and motivations

The literature on the structural break model is too extensive to review. Among the contributions
in the literature, Bai et al. (1998), Bai (2000), Chong (2001), Pang et al. (2014) and Liang et al.
(2018) focused on the AR(1) model with a break in the root. Under different assumptions on the
AR(1) coefficients, the long-span asymptotic theory has been developed in these papers for the
least squares (LS) estimator of the break point. The LS estimator is the focus of our article
although other estimation methods have been also considered in the literature; see, for example,
Harvey et al. (2020).

The model considered in these papers is

yt ¼ b1yt�1 þ et if t � k0
b2yt�1 þ et if t > k0

, t ¼ 1, 2, :::,T,

�
(1)

where T denotes the sample size, et is a sequence of independent and identically distributed
(i.i.d.) random variables. Let k denote the break point parameter with the true value k0. The con-
dition 1 � k0 < T is assumed to ensure that one break happens. The fractional break point par-
ameter is defined as s ¼ k=T with the true value s0 ¼ k0=T: Clearly s0 2 ð0, 1Þ: The break size is
captured by b2 � b1: The order of the initial condition y0 will be assumed later.

The LS estimator of k takes the form of

k̂LS,T ¼ arg min
k¼1, :::,T�1

S2k
� �

, (2)

where

S2k ¼
Xk
t¼1

yt � b̂1ðkÞyt�1

� �2
þ

XT
t¼kþ1

yt � b̂2ðkÞyt�1

� �2
,

with b̂1ðkÞ ¼
Pk

t¼1 ytyt�1=
Pk

t¼1 y
2
t�1 and b̂2ðkÞ ¼

PT
t¼kþ1 ytyt�1=

PT
t¼kþ1 y

2
t�1 being the LS esti-

mates of b1 and b2 for any fixed k. The corresponding estimator of s is ŝLS,T ¼ k̂LS,T=T:
As it is well-known in the literature, there are seven possible cases for the root of an AR

model, and the asymptotic properties of the AR model crucially depend on which case its root is
in. Let c> 0 be a positive constant, a 2 ð0, 1Þ, and b denote the AR root. When b is a constant
and with modulus smaller than one (i.e. jbj < 1) the AR model is a stationary process. When
b ¼ 1� c

Ta , it becomes a mildly stationary process. When b ¼ 1� c
T , it is a left-side local-to-

unity process. When b¼ 1, it is a random walk. When b ¼ 1þ c
T , it is a right-side local-to-unity
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process. When b ¼ 1þ c
Ta , it is a mildly explosive process. When b > 1 is a constant, it is an

explosive process. Under different settings of the AR roots before and after the break (b1 and b2,
respectively), Chong (2001), Pang et al. (2014) and Liang et al. (2018) established the consistency
of ŝLS,T and derived the long-span asymptotic distributions of ŝLS,T � s0 as T ! 1: In Table 1
we give a brief summary of the developed long-span asymptotic distributions and the rate of con-
vergence together with the assumptions on AR roots, the order of break size and the initial value.
Both the break size and the initial condition are expressed in the power order to facilitate the
comparison and discussion, where e is an arbitrarily small positive number. A detailed review of
the long-span asymptotics is in Appendix A.

Several observations can be made from Table 1 which motivates the article. First, except for
the seven cases reported in Table 1, the long-span asymptotic theory remains unknown for many
cases that are interesting from practical viewpoints. For example, the AR process changes from a
random walk to a mildly explosive process, a case widely studied in the bubble testing literature.
Another two interesting cases include changes from a mildly explosive process to a random walk
or to a stationary process which are classified as “disturbing” and “smooth” crisis events in the
literature (Huang et al., 2010; Phillips and Shi, 2018; Rosser, 2000).

Second, Table 1 shows that the long-span asymptotic theory is discontinuous in b1 and b2 when
one of them passes the unity. Both the expression of limiting distribution and the rate of conver-
gence crucially depend on the distance and the direction of the AR roots away from unity. On the
other hand, the finite sample distribution is always continuous in the underlying AR roots. This fea-
ture of discontinuity causes a great deal of difficulties in making statistical inference about the break
point in practice. This is because users typically do not know ex ante the values of b1 and b2.
Consequently, they do not have any clue about how far and in which direction b1 and b2 are away
from unity. Furthermore, even if the values of the AR roots on both sides of the break are known ex
ante, it is still unclear which asymptotic distribution reported in Table 1 should to used. For
example, if it is known for sure that the AR root changes its value from 0.5 to 0.9, should we use the
large sample theory reported in the second row of Table 1 where the AR(1) model changes from a
stationary process to another stationary process, or should we use the large sample theory reported
in the fifth row of Table 1 where the AR(1) model changes from a stationary process to a local-to-
unity process? Clearly these two asymptotic distributions have different expressions. Later we will
report the evidence of large discrepancy between some of the long-span distributions.

Third, all the long-span asymptotic distributions reported in Table 1 are invariant to the value
of initial condition y0. However, it is well-known in the nonstationary time series literature that
the finite sample distribution of the LS estimate of AR root can be very sensitive to the value of

Table 1. The long-span asymptotic distributions of ŝLS, T � s0 under different settings of the AR roots before and after
the break.

b1 b2 jb2 � b1j y0 Rate Limiting distribution

jb1j < 1 jb2j < 1 ðT�0:5, T�eÞ Opð1Þ Tðb2�b1Þ2
1�b21

arg max
u2ð�1,1Þ

n
WðuÞ � juj

2

o
jb1j < 1 1 ðT�1, T�eÞ Opð1Þ Tð1� b1Þ arg max

u2ð�1,1Þ

nW�
a ðuÞ
R1

� juj
2

o
1 jb2j < 1 ðT�0:75, T�0:5Þ Opð1Þ T2ðb2 � 1Þ2 arg max

u2ð�1,1Þ

n WðuÞ
W3ðs0Þ �

juj
2

o
jb1j < 1 16 c

T ðT�1, T�eÞ op
ffiffiffi
T

p� 	
Tðb2 � b1Þ arg max

u2ð�1,1Þ

nW�
b ðuÞ
R1

� juj
2

o
16 c

T jb2j < 1 ðT�0:75, T�0:5Þ op
ffiffiffi
T

p� 	
T2ðb2 � b1Þ2 arg max

u2ð�1,1Þ

n e�cð1�s0ÞWðuÞ
GðW1, c, s0Þ � juj

2

o
1� c

Ta 1 ðT�1, T�eÞ op T
a
2ð Þ cT

Ta arg max
u2ð�1,1Þ

nW�
c ðuÞ
Rc

� juj
2

o
1 1� c

Ta ðT�0:75, T�0:5Þ op T
a
2ð Þ c2T2

T2a arg max
u2ð�1,1Þ

n WðuÞ
W1ðs0Þ �

juj
2

o
W(u) is a two-sided Brownian motion, whose definition and the meanings of other notations are introduced in Appendix A.
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y0; see, for example, Evans and Savin (1981) for simulation evidence and Phillips (1987a) for ana-
lytical evidence in unit root models, Phillips (1987b) for evidence in local-to-unit root models,
and Wang and Yu (2016) in mildly explosive models. Hence, it is reasonable to expect that the
finite sample distribution of k̂LS,T as defined in (1) should also depend on the value of y0, espe-
cially for the case when the AR root on either side of the break is close to or mildly greater than
one. The simulation results that will be reported in Section 6 confirm this expectation.

Fourth, the property of finite sample bias in the estimation of break point has not been dis-
cussed in the literature with the only exception in JWY (2018). Given that bias exists in the esti-
mation of AR(1) coefficients, we expect the bias to exist in the estimation of break point. In fact,
there are two sources for the bias. The first one lies in the asymmetry of the two time spans. As
long as s0 6¼ 1=2, the time spans and hence the numbers of observations are not equivalent in
the two regimes. The second source lies in the fact that the variance of the AR process changes
after the break happens. However, as shown by the red broken line in Fig. 1, the long-span
asymptotic distribution reported in the second row of Table 1 is symmetric about zero, suggesting
no bias in ŝLS,T : The long-span asymptotic scheme requires the two time spans diverge to infin-
ity, and hence the asymmetry in the sample information in the two regimes disappears in
the limit.

Finally, except for the asymptotic distribution in the second row of Table 1 where the density
function was derived analytically in Yao (1987), the density function of any other distribution in
Table 1 does not have a closed-form expression. Simulation methods are required to obtain the
densities and quantiles. Unfortunately, the interval to find the argmax is always ð�1,1Þ in these
distributions, rendering simulation methods computationally expensive. This is because, to well
approximate the true argmax, one must numerically calculate the argmax over an sufficiently
wide interval and choose a very fine grid, leading to a very large number of grid points and a
high computational cost.

Besides the five observations discussed above, it is also worthwhile to point out that the devel-
oped long-span asymptotic distributions may not perform well in finite samples in many empiric-
ally relevant cases. For example, consider the case where the AR root switches from a stationary
root to another. The blue line in Fig. 1 plots the finite sample density of ŝLS,T , centered at the

true value and normalized by the convergence rate, i.e., Tðb2�b1Þ2
1�b21

ðŝLS,T � s0Þ, when s0 ¼ 1=2,

T¼ 200, the AR root changes from b1 ¼ 0:5 to b2 ¼ 0:38:3 The finite sample distribution is
obtained from simulated data with 100,000 replications. The red broken line in Fig. 1 plots the
density of the long-span asymptotic distribution. In spite that a parameter setting is chosen to
favor the long-span asymptotic theory, the long-span asymptotic distribution and the finite sam-
ple distribution are far from each other. In two aspects the finite sample distribution is remark-

ably different from the long-span asymptotic distribution argmaxu2ð�1,1Þ WðuÞ � juj
2

n o� �
.4

First, the finite sample distribution is asymmetric, indicating a downward bias in the estimate of
the break point, whereas the long-span asymptotic distribution is symmetric. Second, the finite
sample distribution has three modes with one at the origin and others at the two boundary points
of the support, whereas the long-span asymptotic distribution has a unique mode. The trimodal-
ity has important implications for statistical inference. For example, the confidence interval may
contain two or three disjoined intervals. The asymmetry and trimodality in finite sample distribu-
tion can also be found in Figure 7(c) of Chong (2001).

3This parameter setting is chosen to favor the long-span asymptotic theory reported in the second row of Table 1 for two
reasons. The first is that the two AR(1) coefficients are much smaller than one. The second is that the break size is
moderately large.
4See Yao (1987) and Bai (1994) for further properties about arg max

u2ð�1,1Þ
WðuÞ � juj

2

� 

:
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The five concerns about the long-span asymptotic distributions reported in Table 1 and the
large discrepancy between the long-span asymptotic distribution and the finite sample distribu-
tion motivate us to introduce an alternative asymptotic theory to approximate the finite sample
distribution of break point.

3. A continuous time model

In this section we study a continuous time OU process with a break in the drift function:

dxðtÞ ¼ � jþ d1 t>s0½ �
� 	

xðtÞdt þ rdBðtÞ, (3)

where t 2 ½0, 1�, 5 1½t>s0� is an indicator function, j, d and s0 are constants with s0 2 ð0, 1Þ being
the break point and d being the break size, the constant r measures the noise level, and B(t)
denotes a standard Brownian motion. The initial condition is assumed to be xð0Þ ¼ Opð1Þ: The
time span is s0 in the first regime while it is 1� s0 in the second regime. We assume that a con-
tinuous record of observations, xðtÞ� �

for t 2 ½0, 1�, is available.
There are four reasons for studying a continuous time model. First, it provides a natural

choice to study the effect of the difference in the two time spans. As is well-known in the con-
tinuous time literature, properties of estimators of persistency parameter depend crucially on the
time span; see, for example, Tang and Chen (2009) and Yu (2012). As a result, we expect proper-
ties of estimators of break point depend crucially on the difference in the time spans. Second, as
it becomes clear later, the exact distribution of the ML estimator of the break point ŝML defined
in (4) is a continuous function of both persistency parameters. This property sheds light on how
we will address the discontinuity problem of the long-span asymptotic distributions reported in
Table 1. Third, explicit effect of the initial condition can be found in the exact distribution of
ŝML: Finally, the continuous time model provides a benchmark for us to set up a discrete time
AR model with a break in AR roots under which the in-fill asymptotic scheme is considered.

When a continuous record is available over an interval, no matter how short the interval is,
the diffusion parameter can be estimated by the quadratic variation without estimation error (see,
for example, Phillips and Yu, 2009). Therefore, if there is a break in r, recursive calculation of
the quadratic variation can perfectly recover the break point in r. A break in mean can also be
allowed in the model. In fact, the model considered in JWY (2018) allows for a structural break
in mean. However, it is difficult for a continuous-time model to have a deterministic trend. Thus,
it is not easy, if not impossible, to consider a break in the trend in our setup.

Assume that all parameters except for s0 are known. For any s 2 ð0, 1Þ, the exact log-likeli-
hood of Model (3) can then be obtained via the Girsanov Theorem as

logLðsÞ ¼ log
dPs
dPB

¼ 1
r2

�
ð1
0
ðjþ d1 t>s½ �ÞxðtÞdxðtÞ � 1

2

ð1
0

jþ d1 t>s½ �
� 	2x2ðtÞdt

( )
,

where Ps is the probability measure corresponding to Model (3) with s0 replaced by s, and PB is
the probability measure corresponding to B(t). This leads to the ML estimator of s0 as

ŝML ¼ arg max
s2ð0, 1Þ

logLðsÞ: (4)

It is difficult to find the pdf and the cdf of ŝML by analytical methods or numerical methods. To
facilitate the approximation of the density function via simulations and to better examine proper-
ties of the density, Theorem 3.1 gives an equivalent representation of ŝML:

5A different length of time interval, such as ½0,N�, may be assumed without qualitatively changing the results derived in the
present paper. Tao et al. (2019) also consider a continuous time OU process with random coefficients where the randomness
is generated by a Brownian motion.
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Theorem 3.1. Consider Model (3) with a continuous record being available. The ML estimator ŝML

defined in (4) has the exact distribution as

ŝML ¼d arg max
s2ð0, 1Þ

d ~J s0ðsÞ
� �2 � sþ 2jþ dð Þ

ðs
0

~J s0ðrÞ
� �2

dr

� 

, (5)

where ~J s0ðrÞ, for r 2 0, 1½ �, is a Gaussian process defined by

d~J s0ðrÞ ¼ � jþ d1 r>s0½ �
� 	

~J s0ðrÞdr þ dBðrÞ, (6)

with the initial condition ~J s0ð0Þ ¼ xð0Þ=r, and B(r) is a standard Brownian motion which is the
same as in (3).6

Remark 3.1. The exact distribution given in (5) depends on j and d which describe the drift
function of the OU process in (3). As ~J s0ðrÞ is a continuous function of j and d, the exact distri-
bution given in (5) should also be continuous in j and d. While it would be useful to have an
analytical proof of continuity of the exact distribution in j and d, without knowing the pdf of
ŝML in closed-form, such a proof is not easy to obtain. Moreover, the exact distribution explicitly
depends on xð0Þ=r through the process : The feature is the same as that of the LS estimator of
persistency parameter in a continuous time model obtained in Phillips (1987a).

Remark 3.2. From the exact distribution (5), an alternative expression can be derived:

ŝML � s0 ¼d arg max
u2ð�s0, 1�s0Þ

d ~J s0ðs0 þ uÞ� �2 � u� 2jþ dð Þ Ð s0
s0þu

~J s0ðrÞ
� �2

dr
n o

for u � 0

d ~J s0ðs0 þ uÞ� �2 � uþ 2jþ dð Þ Ð s0þu
s0

~J s0ðrÞ
� �2

dr
n o

for u > 0

8><
>: (7)

It is easier to understand why ŝML is asymmetrically distributed around the true value s0 and the
bias in ŝML from (7). One reason is that the interval ð�s0, 1� s0Þ is not symmetric about zero as
long as s0 6¼ 1=2: This asymmetry comes from the fact that the two time spans are different in
the model. The second reason is that the two objective functions in the argmax are different in
(7). The asymmetry in the objective functions comes from the asymmetry of ~J s0ðrÞ before and
after the break. The second reason suggests that the bias in ŝML is still expected even
when s0 ¼ 1=2:

Remark 3.3. To understand why ŝML has three modes, denote

Z1ðuÞ ¼ d ~J s0ðs0 þ uÞ� �2 � u� 2jþ dð Þ
ðs0
s0þu

~J s0ðrÞ
� �2

dr

( )
for u � 0,

Z2ðuÞ ¼ d ~J s0ðs0 þ uÞ� �2 � uþ 2jþ dð Þ
ðs0þu

s0

~J s0ðrÞ
� �2

dr

( )
for u > 0:

It is easy to show that ~J s0ðs0 þ uÞ � N 0, 1�e�2jðs0þuÞ
2j

� �
for u 2 ð�s0, 0� and that ~J s0ðrÞ �

N 0, 1�e�2jr

2j

� �
for r 2 s0 þ u, s0½ � with u 2 ð�s0, 0�: Hence,

6Note that d is in the limiting distribution which cannot be got rid of as the sign of d can be important to the shape of the
distribution of ŝML:
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E Z1ðuÞð Þ ¼ d
1� e�2j s0þuð Þ

2j
� u� 2jþ dð Þ

ðs0
s0þu

1� e�2jr

2j
dr

( )

¼ d
1þ ud
2j

� e�2js0

2j
� de�2js0 1� e�2juð Þ

2jð Þ2
( )

:

Taking the derivative of EðZ1ðuÞÞ with respect to u, we have

@E Z1ðuÞð Þ
@u

¼ d2

2j
1� e�2j s0þuð Þð Þ > 0 for u 2 ð�s0, 0�,

suggesting that on average Z1ðuÞ has the unique maximum at the origin. Similarly, EðZ2ðuÞÞ has
a supremum at the origin. This property is similar to that of EðWðuÞ � juj=2Þ, as explained in
JWY (2018). That the expectation of the objection function in (7) is maximized at the origin
explains why the origin is a mode in ŝML � s0: If the interval to find the argmax is ð�1,1Þ, we
would not expect any other mode in ŝML, as in the long-span asymptotic distributions. However,
the interval for the argmax in (7) is bounded by �s0 and 1� s0: In an argument similar to that
in JWY (2018), there are two modes at the boundary points in the distribution of ŝML:

In Fig. 2, we plot the density of ŝML � s0 given in (7) with j¼ 138, d ¼ �20, r¼ 1, s0 ¼
0:3, 0:5, 0:7, respectively. The blue solid line corresponds to the density when xð0Þ ¼ 0:2, and the
black broken line corresponds to the density when xð0Þ ¼ 1: The densities are obtained from
100,000 replications.

The simulation results in Fig. 2 support the remarks made above. First, the density is sensitive
to xð0Þ=r: Second, all the densities are asymmetric, indicating that ŝML is a biased estimator even
when s0 ¼ 1=2: Moreover, as s0 varies, both the level and the direction of asymmetry of density
may change. Third, trimodality is found in the density for all cases with 0ð¼ ŝML � s0Þ being one
mode and the two boundary points being the other two.

4. A discrete time model and in-fill asymptotic distribution

Motivated by the findings in the continuous time model, in this section we propose a discrete
time model that is closely related to the continuous OU process (3). The discrete time model has
the form of
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Figure 2. Densities of ŝML � s0 given in Eq. (7) when j ¼ 138, d ¼ �20, r ¼ 1 and s0 ¼ 0:3, 0:5, 0:7, respectively. Solid lines
are densities for xð0Þ ¼ 0:2; broken lines are densities for xð0Þ ¼ 1:
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xt ¼ b11 t�k0½ � þ b21 t>k0½ �
� 	

xt�1 þ
ffiffiffi
h

p
et , et �i:i:d:ð0, r2Þ, x0 ¼ Opð1Þ, (8)

where b1 ¼ exp �j=Tf g and b2 ¼ exp �ðjþ dÞ=T� �
are the AR roots before and after the

break, k0 denotes the break point, t ¼ 1, :::,T with T being the sample size, and h ¼ 1=T:7 The
fractional break point is defined as s0 ¼ k0=T:

If s0=h ¼ Ts0 ¼ k0 is an integer, the exact discretization of Model (3) over the interval ½0, 1�
with the sampling interval h is given by

xth ¼ b11 th�s0½ � þ b21 th>s0½ �
� 	

x t�1ð Þh þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e

�2 jþd1 th>s0½ �ð Þh
2 jþ d1 th>s0½ �
� 	

vuut et , et �i:i:d:Nð0, r2Þ, (9)

where t ¼ 1, :::,T and x0 ¼ xð0Þ ¼ Opð1Þ: The proposed discrete time model in (8) is nearly the
same as the exact discretization given in (9) with two small differences. First, in Model (8) we
relax the normality assumption on the errors. This generalization is important as in many empir-
ical applications, the normality assumption is too strong. Second, the variances of the errors are
different. However, since

1� exp �2jhf g
2j

¼ hþ O h2ð Þ and 1� exp �2ðjþ dÞh� �
2ðjþ dÞ ¼ hþ O h2ð Þ,

if h ! 0, the two sets of the variance are asymptotically the same.
The LS estimator of the break point in Model (8) takes the form of

k̂LS ¼ arg min
k¼1, :::,T�1

Xk
t¼1

xt � b̂1ðkÞxt�1

� �2

þ
XT
t¼kþ1

xt � b̂2ðkÞxt�1

� �2

(10)

where b̂1ðkÞ ¼
Pk

t¼1 xtxt�1=
Pk

t¼1 x
2
t�1 and b̂2ðkÞ ¼

PT
t¼kþ1 xtxt�1=

PT
t¼kþ1 x

2
t�1 are the LS estima-

tors of b1 and b2, respectively. The LS estimator of the fractional break point is defined as

ŝLS ¼ k̂LS=T: (11)

Based on k̂LS, one can define

ĵLS ¼ � T ln b̂1 k̂LS
� 	� �

, d̂LS ¼ T ln b̂2 k̂LS
� 	� �

� T ln b̂1 k̂LS
� 	� �

: (12)

Let the residuals be êtf gTt¼1: Then one can estimate r by

r̂LS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXT
t¼1

ê2t

vuut : (13)

The connection between the proposed discrete time model (8) and the exact discrete time model
(9) and hence the continuous OU process (3) motivates us to study the in-fill asymptotic theory.
In particular, if we allow h ! 0 (which increases the sample size T), the discrete observations
form a continuous record in the limit and the proposed discrete time model (8) converges to the
continuous OU process (3). Therefore, it is expected that, the in-fill asymptotic distribution will
converge to the exact distribution developed under the assumption of a continuous record.

Before reporting the in-fill asymptotic distribution of ŝLS, it is worth comparing the proposed
discrete time model (8) with the discrete time models considered in the literature. While the
order of errors is Op

ffiffiffi
h

p� 	
in our model, it is Opð1Þ in the models considered in the literature. To

facilitate such a comparison, we divide both sides of Model (8) by
ffiffiffi
h

p
and denote yt ¼ xt=

ffiffiffi
h

p
:

Then, we have

7An implicit assumption we make here is that 1=h is an integer.
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yt ¼ b11 t�k0½ � þ b21 t>k0½ �
� 	

yt�1 þ et , et �i:i:d:ð0, r2Þ, y0 ¼ x0=
ffiffiffi
h

p
¼ Op T1=2ð Þ: (14)

Model (14) is almost the same as the model in (1) except for three important differences. First,
the initial condition of yt in (14) diverges at the rate of T1=2 as T ! 1, whereas the initial con-
dition in Model (1) is set to be opðT1=2Þ as shown in Table 1. This difference explains why the
in-fill asymptotic distribution of ŝLS explicitly depends on the initial value x0.

Second, in Model (14), b1 ¼ exp �j=Tf g ! 1 and b2 ¼ exp �ðjþ dÞ=T� � ! 1 as T ! 1:
Whereas, for model in (1), b1 and b2 are allowed to be further away from one. It looks as if the
in-fill asymptotic theory for Model (14) only works for the case where the AR roots in both
regimes are in a small vicinity of unity. However, our simulation results show that the in-fill the-
ory works well even when b1 and\or b2 are distant from unity in finite samples.

The third difference lies in the order of break size. The break size is b2 � b1 ¼ OðT�1Þ in
Model (14) while it is OðT�aÞ with 0 < a < 1 in Model (1); see Table 1. Clearly under the in-fill
scheme we assume a smaller break size. Interestingly, in the context of time series regression with
a break in the slope coefficient, the break size is usually set to OðT�aÞ with 0 < a < 1=2; see, for
example, Bai (1994, 1997). Elliott and M€uller (2007) argued that such a break size may be empir-
ically too large. They introduced a regression model with the break size reducing to zero at the
rate of OðT�1=2Þ: JWY (2018) provided evidence that, when the break size is OðT�1=2Þ,
the asymptotic distribution is closer to the finite sample distribution.8 The present article extends
the argument of Elliott and M€uller to the AR models. The smaller break size is important to pro-
duce asymmetry and trimodality in our asymptotic distribution and to explain why our asymp-
totic distribution performs better than the asymptotic distributions summarized in Table 1.

Theorem 4.1. Consider the discrete time model in (8). When T ! 1 with a fixed s0, the in-fill
asymptotic distribution of the estimator ŝLS ¼ k̂LS=T with k̂LS defined in (10) is

ŝLS ) argmax
s2 0, 1ð Þ

~J s0ðsÞ
� �2 � ~J s0ð0Þ

� �2 � s
n o2

Ð s
0

~J s0ðrÞ
� �2

dr
þ

~J s0ð1Þ
� �2 � ~J s0ðsÞ

� �2 � 1� s½ �
n o2

Ð 1
s

~J s0ðrÞ
� �2

dr
(15)

where ~J s0ðrÞ, for r 2 0, 1½ �, is the Gaussian process defined in (6) with the initial condition
~J s0ð0Þ ¼ x0=r, and ) denotes weak convergence.

Remark 4.1. When deriving the exact distribution for Model (3), we assumed that two persist-
ency parameters are known. In Model (8), both b1 and b2 are assumed unknown and are esti-
mated. That explains why the in-fill asymptotic distribution in (15) is different from the exact
distribution in (5). If b1 and b2 in (8) are known, then the corresponding in-fill asymptotic distri-
bution will be the same as the exact distribution in (5).

Remark 4.2. Through the Gaussian process ~J s0ðrÞ, the in-fill asymptotic distribution given in
(15) explicitly depends on the initial condition x0=r: Moreover, it also depends on the persistency
parameters j and d. Since ~J s0ðrÞ is continuous in j and d, the in-fill asymptotic distribution in
(15) should also be continuous in j and d. The feature is the same as that of the LS estimator of
AR(1) parameter obtained in Phillips (1987a) in unit root models.

Remark 4.3. Let s ¼ s0 þ u: An equivalent representation of the in-fill asymptotic distribution is:

8To calculate the power of tests for structural break, Sowell (1996) considered a sequence of local alternatives which shrink to
the null hypothesis at the rate of OðT�1=2Þ:
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ŝLS � s0 ) arg max
u2 �s0, 1�s0ð Þ

~J s0ðsÞ
� �2 � ~J s0ð0Þ

� �2 � s
n o2

Ð s
0

~J s0ðrÞ
� �2

dr
þ

~J s0ð1Þ
� �2 � ~J s0ðsÞ

� �2 � 1� s½ �
n o2

Ð 1
s

~J s0ðrÞ
� �2

dr
:

As in the exact distribution, both the asymmetry in ð�s0, 1� s0Þ and the asymmetry in ~J s0ðrÞ at
different sides of s0 contribute to the asymmetry of the in-fill asymptotic distribution. Hence, the
in-fill distribution is asymmetric for all s0 even when s0 ¼ 1=2, suggesting that ŝLS is gener-
ally biased.

Remark 4.4. Although it is much harder to obtain the expectation of the objective function in
this case, we still expect trimodality in ŝLS � s0 for the same reason as before, namely, the origin
is the unique maximum of the expectation of the objective function and the maximization is
done over a finite interval ð�s0, 1� s0Þ, not the infinite interval ð�1,1Þ: The conjecture of
asymmetry and trimodality will be confirmed in simulations, which also show that the in-fill
asymptotic distribution performs very well in approximating the finite sample distributions.

5. A general model

In this section we extend the in-fill asymptotic theory to a general discrete-time model with
weakly dependent errors9:

xt ¼ b11 t�k0½ � þ b21 t>k0½ �
� 	

xt�1 þ ut , x0 ¼ Opð1Þ, (16)

where b1 ¼ exp �j=Tf g, b2 ¼ exp �ðjþ dÞ=T� �
, T is the sample size, and

ut ¼
X1
j¼0

cjet�j with et �i:i:d: 0,r2hð Þ and h ¼ 1=T:

It is assumed that c0 ¼ 1 and
P1

j¼0 j cj


 

 < 1: Define cðjÞ � Eðutut�jÞ for j ¼ 0,61,62, :::, and

Cð1Þ � P1
j¼0 cj: Note that the long-run variance of ut goes to zero as h ! 0 since

k2 �
X1
j¼�1

cðjÞ ¼ Cð1Þ½ �2r2h ¼ O T�1ð Þ ! 0 as T ! 1:

It is also clear that Model (16) reduces to Model (8) if cj ¼ 0 for j � 1: Clearly an AR(p) model
with a structural break occurring in the AR(1) coefficient is a special case of Model (16). No
long-span asymptotic theory has been derived in the literature regardless of the value of b1
and b2:

To estimate the break point, the LS estimator defined in (10) is used. Note that k̂LS is also the
LS estimator of the break point for the process yt ¼ xt=

ffiffiffi
h

p
which evolves as

yt ¼ b11 t�k0½ � þ b21 t>k0½ �
� 	

yt�1 þ u�t , with y0 ¼ x0=
ffiffiffi
h

p
¼ Op T1=2ð Þ, (17)

where

u�t ¼
utffiffiffi
h

p ¼
X1
j¼0

cjet�j and et ¼ etffiffiffi
h

p �i:i:d: 0,r2ð Þ:

9This specification extends Model (1) of Phillips (1987b) by allowing for a structural break.
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Define c�ðjÞ � Eðu�t u�t�jÞ ¼ cðjÞ=h for j ¼ 0,61,62, :::: The long-run variance of u�t is

k�ð Þ2 �
X1
j¼�1

c�ðjÞ ¼ k2=h ¼ Cð1Þ½ �2r2:

If cj ¼ 0 for j � 1, Model (17) will reduce to Model (14).

Theorem 5.1. Consider the general discrete-time model with weakly dependent errors defined in
(16). When T ! 1 with a fixed s0 ¼ k0=T, the in-fill asymptotic distribution of ŝLS ¼ k̂LS=T with
k̂LS defined in (10) is

ŝLS ) argmax
s2 0, 1ð Þ

~J s0ðsÞ
� �2 � ~J s0ð0Þ

� �2 � /s
n o2

Ð s
0

~J s0ðrÞ
� �2

dr
þ

~J s0ð1Þ
� �2 � ~J s0ðsÞ

� �2 � / 1� s½ �
n o2

Ð 1
s

~J s0ðrÞ
� �2

dr
(18)

where / ¼ c�ð0Þ= Cð1Þr½ �2 and ~J sðrÞ is the Gaussian process defined in (6) with the initial
value ~J s0ð0Þ ¼ x0= Cð1Þr½ �:
Remark 5.1. Note that c�ð0Þ � E ðu�t Þ2

h i
¼ P1

j¼0 c
2
j r

2: Therefore, / ¼ P1
j¼0 c

2
j = Cð1Þ½ �2 which is

independent of r2: However, the in-fill asymptotic distribution given in (18) explicitly depends
on x0 and r through the initial value of ~J s0ð0Þ ¼ x0= Cð1Þr½ �: Moreover, if cj ¼ 0 for j �
1, Cð1Þ½ �2 ¼ c20 ¼

P1
j¼0 c

2
j and / ¼ 1: Then, the in-fill asymptotic distribution given in (18)

becomes the same as the one given in (15) for the model with i.i.d. errors. Hence, we expect the
in-fill asymptotic distribution in (18) to be asymmetric and trimodal.

6. Monte Carlo results

In this section, we first design two Monte Carlo experiments for cases where long-span asymp-
totic distributions have been developed in the literature so that their performance in fitting finite
sample distributions can be compared to that of the in-fill asymptotic distributions derived in the
article. In both cases, 100,000 sample paths are generated from Model (14) with r ¼ 1,
et �i:i:d:Nð0, 1Þ, T¼ 200 (i.e. h¼ 1/200), x0 ¼ 1 and s0 ¼ 0:3, 0:5, 0:7:10

To obtain the density of the in-fill distribution by simulation, we first generate ~J s0ðrÞ with r 2
0, 1½ � from its exact discretization at a very fine grid; then plug ~J s0ðrÞ and other parameters into
the in-fill distribution given in Theorem 4.1 to obtain the argmax over ½0:1�: This is one random
draw from the in-fill distribution. We repeat the exercise 100,000 times to obtain a sufficiently
large number of i.i.d. draws from the in-fill distribution. To obtain the density of the long-span
distribution, we adopt the same procedure. For example, for case 1 in Table 1, we first generate
W(u) with u 2 �C,C½ � at a very fine grid, where C is a large constant; then obtain the argmax of
WðuÞ � juj

2 over �C,C½ �: In both cases, the grid size is set at 0.001.
In the first experiment, we set j¼ 138 and d¼ 55, which makes the AR roots in Model (14)

on different sides of the break to be b1 ¼ 0:5 and b2 ¼ 0:38: To use the long-span asymptotic
distribution, we assume that the AR process switches from a stationary root to a different station-
ary root. This assumption seems to be weak and should favor the long-span asymptotic distribu-
tion because b1 and b2 are much smaller than one. The long-span asymptotic distribution for
this case has been developed as in (A.1) in Appendix A. Figure 3 plots the three densities, corre-
sponding to the long-span distribution, the in-fill distribution, and the finite-sample distribution.

10Simulation studies for cases where et follow other distributions, such as the t distribution, have also been carried out. It is
found that all the findings under the normality as explained below are robust to the distribution assumption. To save space,
we decide not to report the results.
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As it can be seen clearly, the densities of the long-span distributions are remarkably different
with those of the finite sample distributions. There are two key characteristics in the finite sample
distributions which are missing in the long-span distributions. First, the finite sample distribu-
tions are asymmetric about 0 even when s0 ¼ 1=2: Second, the finite sample distributions have
trimodality in general. One mode is at the origin and the other two are at the two boundary
points. On the other hand, the densities of the in-fill distributions given in Theorem 4.1 well cap-
ture the two key characteristics, and hence, provide much better approximations to the finite
sample distributions.

In the second experiment, we set j¼ 21 and d ¼ �21, implying b1 ¼ 0:9 and b2 ¼ 1:
Depending on whether the AR root b1 ¼ 0:9 is treated as a stationary root or a mildly stationary
root, there are two different long-span asymptotic distributions that can be used. If it is treated as
a stationary root, then the long-span asymptotic distribution is the one developed in (A.2). If it is
treated as a mildly stationary root, then the long-span asymptotic distribution is the one devel-
oped in (A.6). Unfortunately, the literature provides no guidance about which one should be
used in practice. Figure 4 plots both long-span asymptotic distributions, together with the den-
sities of the finite sample distributions and in-fill asymptotic distributions given in Theorem
4.1.11 Several features can be found. First, there is a big gap between the two long-span asymp-
totic distributions, making the choice of a long-span theory critical. Second and more import-
antly, both long-span asymptotic distributions are remarkably different from the finite sample
distributions. Third, our in-fill asymptotic distributions very well approximate the finite sample
distributions.

It is worth pointing out that the shape of finite sample distribution depends on break size. If
we increase the break size in simulations, the two modes at the boundary points would become
less pronounced. However, as argued by Elliott and M€uller (2007), small breaks are important for
two reasons. First, breaks that are small in a statistical sense could be a very large one in an eco-
nomic sense. Second, a small break size is prevalent in economic applications. This is particularly
true for time series which can be well fitted by AR models. For example, what commonly seen in
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Figure 3. Densities of Tðb2�b1Þ2
1�b21

ðŝLS � s0Þ when b1 ¼ 0:5, b2 ¼ 0:38 with x0=r ¼ 1: Solid lines are finite sample distributions when

T¼ 200; dot-dashed lines are in-fill densities from Theorem 4.1; and dashed lines are long-span limiting distributions given in (A.1).

11The rates of convergency for the two long-span asymptotic distributions are different. Therefore, we draw densities of ŝLS �
s0 here. When plotting the long-span densities of (25), we set c¼ 1 and Ta ¼ 20:
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practice is some time series changing from a near unit root process to a unit root process and
vice versa. The case of changing from a very stationary process to a unit root process is rare.

The level of trimodality could also be reduced if the break point is estimated strictly inside the
sample by truncating the first and last ends of the sample. This method is sometimes used in
practice. However, as long as the break size is small, trimodality may still be observed with two
modes at the truncation points. More importantly, the finite sample distribution remains seriously
asymmetric. As a result, the in-fill asymptotic distribution continues providing better approxima-
tions than the long-span asymptotic distribution.

We now design three more experiments to investigate the performance of in-fill asymptotic
distributions in approximating finite sample distributions when no long-span theory is available.
In the third experiment, we set j¼ 0 and d ¼ �6, implying b1 ¼ 1 and b2 ¼ 1:03: This case is
closely related to the literature of bubble testing where the break point is often referred to as the
bubble origination date; see, for example, Phillips et al. (2011), Phillips and Yu (2011), and
Phillips et al. (2015a, 2015b). In the fourth experiment, we set j ¼ �6 and d¼ 6, implying b1 ¼
1:03 and b2 ¼ 1: In the fifth experiment we set j ¼ �6 and d¼ 12, implying b1 ¼ 1:03 and b2 ¼
0:97: The break point in these two experiments is often referred to as the bubble termination
date; see, for example, Phillips and Shi (2018), and Harvey et al. (2020).

The densities of the finite sample distributions and the in-fill distributions for these three
experiments are plotted in three panels of Fig. 5. Several observations can be found. First, com-
paring with those in Figs. 3 and 4, the estimates of the break date ŝLS become more concentrated
around the true value s0. This is because an explosive AR process is involved in either side of the
break.12 Second, the trimodality almost disappears. Third, the asymmetry remains, especially in
the upper panel. In the other panels, if we draw densities over the interval (–0.2, 0.2), the asym-
metry can be easily seen. Fourth, in all cases, the in-fill asymptotic distributions provide excellent
approximations to the finite sample distributions.

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3
τ0 = 0.3

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3 τ0 = 0.5

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5
τ0 = 0.7

Figure 4. The pdf of ŝLS � s0 when b1 ¼ 0:9, b2 ¼ 1 with x0=r ¼ 1: Solid lines are finite sample distributions when T¼ 200;
dot-dashed lines are in-fill densities from Theorem 4.1; dashed lines are long-span limiting distributions given in (A.2); and dot-
ted lines are long-span limiting distributions given in (A.6).

12This finding is reasonable as an explosive process is very different from a unit root process or a stationary process and an
explosive process increases at an exponential rate. Hence, once an explosive process appears in one side of the break, the
break is easier to identify even when the break size is small.
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We now turn our attention to the bias of ŝLS, which might be a serious problem given the
findings from the Monte Carlo simulations. Considering that our in-fill distribution is closer to
the finite sample distribution than the long-span distribution, it is expected that the bias implied
by the in-fill theory should be closer to the true bias. To confirm this conjecture, we design an
experiment where the AR root in Model (14) switches from a stationary root (b1 ¼ 0.5) to
another stationary root (b2 ¼ 0.45, 0.55, 0.61, 0.74, or 0.83) with s0 ¼ 0:3, 0:5, 0:7, x0=r ¼ 0:2,
T¼ 200. Table 2 reports the true bias, the bias implied by the in-fill distribution and the bias
implied by the long-span distribution. Several conclusions can be drawn. First, the LS estimate
suffers from severe bias problem in nearly all cases. For example, when b1 ¼ 0:5,b2 ¼ 0:55, s0 ¼
0:3, the bias is 0.2675 which is about 90% of the true value. Furthermore, the LS estimate is
biased even when s0 ¼ 0:5: When b1 ¼ 0:5,b2 ¼ 0:61, s0 ¼ 0:5 (the same design that gives rise to
Fig. 1), the bias is 0.0933 which is about 20% of the true value. Second, there is no bias according
to the long-span distribution. This is not surprising because the long-span distribution, corre-
sponding to the case where the AR process switches from a stationary one to another stationary
one, is symmetric about s0 as shown in (A.1) in Appendix A. Third, the in-fill asymptotic distri-
bution approximates the true bias well in most cases considered.

In another experiment, we allow the model to switch from a unit root (b1 ¼ 1) to an explosive
root (b2 ¼ 1.01, 1.02, 1.03, 1.04, or 1.05) with s0 ¼ 0:3, 0:5, 0:7, x0=r ¼ 0:2, T¼ 200. In this case,
the long-span asymptotic theory is not available. Table 3 reports the true bias and the bias
implied by the in-fill distribution. Some remarks can be made. First, the LS estimator still suffers
from severe bias problem in all cases. For example, when b1 ¼ 1,b2 ¼ 1:02, s0 ¼ 0:3, the bias is
0.2445 which is about 80% of the true value. Given the importance of this estimator for bubble
detection (see, for example, Phillips et al., 2011), the bias reported here must have serious empir-
ical implications. Second, the in-fill asymptotic distribution can approximate the true bias well in
all cases considered.

We now shift our attention to the impact of the initial condition. While the long-span distri-
bution is independent of the initial condition, both the finite sample distribution and the in-fill
distribution depend on the initial condition. We have already shown that the in-fill distribution
provides excellent approximations to the finite sample distribution and that the bias implied by
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Figure 5. Densities of ŝLS � s0 when ðb1 ¼ 1,b2 ¼ 1:03Þ, ðb1 ¼ 1:03,b2 ¼ 1Þ, and ðb1 ¼ 1:03,b2 ¼ 0:97Þ are in the upper,
middle and lower panel respectively. Solid lines are finite sample distributions when T¼ 200; dot-dashed lines are in-fill densities
from Theorem 4.1.
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the in-fill distribution is very close to the true bias in all cases. To examine the impact of the ini-
tial condition, we focus on the bias implied by the in-fill distribution. In particular, we plot the
bias function (i.e., EðŝLS � s0Þ as a function of s0) implied by the in-fill asymptotics for Model
(14) and examine the sensitivity of the function to the initial condition.

Figures 6 and 7 plot the bias function when x0 ¼ 0:2, 0:4, 0:6, 0:8, 1 and r ¼ 1: Figure 6 corre-
sponds to the case where b1 ¼ 0:9, b2 ¼ 1; Fig. 7 to b1 ¼ 1, b2 ¼ 1:03: Several conclusions can
be drawn. First, the initial condition can have a significant impact on the magnitude of bias.
Specifically, when x0=r gets bigger, the bias becomes smaller generally. This result corroborates
the result obtained in Perron (1991, Fig. 4) in the context of AR(1) model without break. Second,
it seems there exists a value of s0 (which depends on the values of b1 and b2), at which the bias
may not be zero but becomes insensitive of the initial condition.

7. Constructing confidence intervals

Constructing statistical confidence inferences about s based on the in-fill asymptotic theory is
challenging since the limiting distribution is non-pivotal, nonstandard, and has the features of
asymmetry and trimodality. Clearly, a confidence interval which is symmetric around the median
cannot be the optimal choice. One possible solution is to use the highest density region (HDR)
implied by the in-fill asymptotic distribution.

Let f(x) be the density function of a random variable X. The 100ð1� aÞ% HDR is defined as

RðfaÞ ¼ fx : f ðxÞ � fag,
where fa is the largest constant such that PrðX 2 RðfaÞÞ � 1� a: The HDR is designed to contain
points with relatively high density in f(x) and is considered as the most credible region.
Moreover, the HDR gives the shortest confidence interval on the density for any fixed confi-
dence level.

If f(x) is symmetric about a unique mode, the HDR contains a single interval with endpoints a
and b that are symmetric about the mode. In this case, f ðaÞ ¼ f ðbÞ: Whereas, if f(x) is asymmet-
ric, the HDR is asymmetric about the mode. It skews to the side with a fatter tail. Moreover, if
f(x) has multiple modes, the HDR may consist of several disjoint intervals. As shown in
Hyndman (1996), the HDR is especially useful when f(x) displays asymmetry and multimodality,
and therefore, is suitable for the developed in-fill asymptotic distribution.

To obtain the HDR based on the in-fill asymptotic distribution, we need to make random
draws from the in-fill asymptotic distribution. Since the in-fill asymptotic distribution depends
on unknown parameters s, j, d, and r, we first calculate ŝLS, ĵLS, d̂LS, and r̂LS based on (11),
(12), and (13). We use ŝLS, ĵLS, d̂LS, and r̂LS to replace s, j, d, and r in the in-fill asymptotic

Table 2. The table shows the finite sample bias of ŝLS , the bias implied by the in-fill asymptotic distribution, and the bias
implied by the long-span asymptotic distribution when the AR(1) process switches from a stationary root to another stationary
root with different break sizes, x0=r ¼ 0:2 and T¼ 200.

b1
b2

s0 0.5 0.45 0.55 0.61 0.74 0.83

0.3 Finite 0.2113 0.2675 0.2648 0.1792 0.1093
0.3 In-fill 0.2871 0.3261 0.2899 0.1590 0.0887
0.3 Long-span 0 0 0 0 0
0.5 Finite 0.0146 0.0745 0.0933 0.0743 0.0491
0.5 In-fill 0.1004 0.1321 0.1235 0.0768 0.0501
0.5 Long-span 0 0 0 0 0
0.7 Finite –0.1777 –0.1245 –0.0840 –0.0235 0.0029
0.7 In-fill –0.0793 –0.0621 –0.0435 0.0044 0.0200
0.7 Long-span 0 0 0 0 0

The number of replications is 10,000.
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distribution given in Theorem 4.1. Then, we can make random draws from the plug-in in-fill
asymptotic distribution. The 100ð1� aÞ% HDR can be computed from the empirical density of
the random draws with the use of the density quantile algorithm of Hyndman (1996).13

The long-span asymptotic distributions developed in the literature also depend on the
unknown parameters s, j, d, and r (or a subset of them in some cases). Constructing confidence
intervals based on various long-span asymptotic distributions also need to plug-in the estimates,
ŝLS, ĵLS, and d̂LS: As the in-fill asymptotic distribution is much closer to the finite sample distri-
bution than any of the long-span asymptotic distributions, the HDR obtained from the plug-in
in-fill asymptotic distribution is expected to be more powerful in finite samples than that based
on the plug-in long-span asymptotic distributions when the long-span asymptotic distributions
are available. In most cases, the long-span asymptotic distributions are unknown and hence, con-
fidence intervals cannot be obtained via the long-span asymptotic distributions. However, it is
not clear if the proposed HDR generates the most powerful confidence interval for hypothesis
testing. This issue needs to be examined carefully, but it is beyond the scope of the pre-
sent article.

8. Conclusions

This article is concerned about the large sample approximation to the finite sample distribution
in the estimation of structural break point in autoregressive models. Based on the Girsanov the-
orem, we obtain the exact distribution of the ML estimator of structural break point in the OU
process when a continuous record is available. We find that the exact distribution is asymmetric
and trimodal. These two properties are also found in the finite sample distribution of the LS esti-
mator of structural break point in AR models.

Unfortunately, the literature on the estimation of structural break point in AR models has
always focused on developing asymptotic theory by assuming the time spans before and after the
break go to infinity. We show that the long-span theory provides poor approximation to the
finite sample distribution in many empirically relevant cases. Moreover, the long-span asymp-
totics developed in the literature are different, depending on the distance and the direction from
the unity for underlying AR(1) coefficients. This discontinuity in the long-span asymptotic distri-
butions makes it difficult to use in practice. Furthermore, the existing limiting theory is developed
for a few cases only, leaving out some empirically interesting cases. Finally, the model considered
in the literature is quite restrictive as the errors are independent.

This article provides a new limiting theory for the break point estimate in the AR(1) model
with independent errors as well as the model with weakly dependent errors. It develops an in-fill

Table 3. The table shows the finite sample bias of ŝLS , the bias implied by the in-fill asymptotic distribution, and the bias
from the long-span asymptotic distribution when the AR(1) process switches from a unit root to mildly explosive root with dif-
ferent break sizes, x0=r ¼ 0:2 and T¼ 200.

b1
b2

s0 1 1.01 1.02 1.03 1.04 1.05

0.3 Finite 0.2247 0.2445 0.2291 0.1751 0.1223
0.3 In-fill 0.2112 0.2355 0.2322 0.1817 0.1297
0.5 Finite 0.0213 0.0588 0.0648 0.0496 0.0369
0.5 In-fill 0.0102 0.0500 0.0660 0.0570 0.0416
0.7 Finite –0.1826 –0.1036 –0.0293 –0.0017 0.0095
0.7 In-fill –0.1940 –0.1158 –0.0349 –0.0008 0.0119

The number of replications is 10,000.

13An open-source package to calculate the HDR from random draws, which is implemented in R, is available at https://pkg.
robjhyndman.com/hdrcde/reference/hdr.html.
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asymptotic theory for the LS estimator of structural break point. The developed in-fill asymptotic
distribution is continuous in the underlying persistency parameters, regardless of their signs and
values. We also show that this distribution is asymmetric and trimodal, and approximates the
finite sample distribution better than the long-span distribution developed in the literature when
the latter is known and provides excellent approximations to the finite sample distribution when
the latter is unknown.

There is a cost to applying the in-fill limiting theory. The asymmetry and trimodality of the
in-fill distribution make the construction of confidence intervals difficult. In the article, we sug-
gest using the HDR to construct confidence intervals.

It is possible to extend the in-fill asymptotic theory to vector autoregressive (VAR) processes.
We can begin with a multivariate diffusion process over the interval 0, 1½ � with one-time struc-
tural break in the drift function as

dXðtÞ ¼ � jþ d1 t>s0½ �
� 	

XðtÞdt þ RdBðtÞ,

where X(t) is an N 	 1 random vector, j, d, and R are three N	N parameter matrices, B(t)
denotes an N -dimensional standard Brownian motion, and s0 is the time point at which the drift
matrix changes. Assume that the process X(t) has discrete-time observations at T equally spaced
points over the interval 0, 1½ � and denote these observations as Xtf g for t ¼ 1, 2, :::,T: The
discrete-time process Xt follows a VAR(1) model with one-time break in the autoregressive
matrix as

Xt ¼ B11 t�k0½ � þ B21 t>k0½ �
� 	

xt�1 þ
ffiffiffi
h

p
X1=2et , et �i:i:d: 0, INð Þ, x0 ¼ Opð1Þ, (19)

where B1 ¼ exp �j=Tf g and B2 ¼ exp �ðjþ dÞ=T� �
are the coefficient matrices before and

after the break, k0 ¼ Ts0 is an integer denoting the break point, h ¼ 1=T, X is an N-dimensional
positive definite matrix, IN is the N-dimensional identity matrix. In the VAR(1) model, the per-
sistency and the cointegrating properties of elements in Xt before and after the break are deter-
mined by the eigenvalues and the ranks of B1 and B2, respectively. As long as B1 6¼ B2, a break
occurs in the model.14 Letting h ¼ 1=T, the in-fill asymptotic distribution of the LS estimator of
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Figure 6. Bias functions implied by the in-fill asymptotic distribution given in Theorem 4.1 when b1 ¼ 0:9 and b2 ¼ 1 with vari-
ous initial conditions.

14In the VAR(1) model, various possibilities of structural breaks appear. For example, shifts among the stationary roots, unit
roots, explosive roots are all possible. Moreover, if the rank of B1 is different from that of B2 and both are less than N, a
change in the number of cointegrating relationships happens.
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the break point ŝLS can be obtained. The in-fill asymptotic distribution should depend on a
multivariate Gaussian process ~J s0ðrÞ that is a function of matrices j and d.

However, the in-fill asymptotic theory of ŝLS for the VAR(1) model is expected to be more
complicated than that in the univariate AR(1) model. There is a variety of possibilities of struc-
tural breaks that may lead to different in-fill asymptotics. For example, consider B1 and B2 that
make Xt to be cointegrated both before and after the break. The change from B1 and B2 may
cause the following three scenarios: (i) no change in the cointegrating relationships and their
numbers, but only changes in the loadings for some cointegrating relationships, (ii) no change in
the number of the cointegrating relationships, but changes in the values of some cointegrating
vectors, and (iii) the change in cointegrating numbers. It is well-known in the literature that the
estimators of cointegrating vectors, cointegrating ranks, and the loadings of cointegrating rela-
tionships have different convergence rates (see, for example, Hansen (2003); Johansen (1988,
1991) Wang (2019)). Hence, it is possible that the three scenarios lead to different in-fill asymp-
totic theories for ŝLS:

Moreover, comparing to univariate models, the implementation of the in-fill asymptotic distri-
bution of ŝLS for the VAR(1) model is also more complicated. The implementation of the in-fill
asymptotic distribution will depend on j and d in the corresponding continuous-time model.
However, the identification and estimation methods for j and d will be different, depending on
whether the VAR process Xt is stationary, pure unit root, or cointegrated (see, for example,
Hansen and Sargent (1983); Kessler and Rahbek (2004); McCrorie (2003, 2009); Phillips (1973)).
The full study of the in-fill asymptotics for VAR models deserves a full-length paper and will be
reported in our future works.
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Appendix A: Detailed literature review

In the following, we review the main results on the long-span asymptotic distributions developed in the literature.
In some cases, the AR roots, b1 and b2, are assumed to be functions of the sample size T. Then, we use b1T and
b2T to replace b1 and b2 accordingly.
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Figure 7. Bias functions implied by the in-fill asymptotic distribution given in Theorem 4.1 when b1 ¼ 1 and b2 ¼ 1:03 with
various initial conditions.
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Chong (2001) first studied Model (1) with b1j j < 1 and b2j j < 1, where the AR(1) coefficient switches from a sta-
tionary root to another stationary root. To derive the long-span asymptotic distribution for the model with a small
break size, Chong (2001) let b2 depend on T, denoted as b2T , and assumed that b2T � b1 ! 0 with

ffiffiffiffi
T

p
b2T � b1j j !

1 as T ! 1: Under the condition that y0 ¼ Opð1Þ, he derived the long-span asymptotic distribution of ŝLS,T as

Tðb2T � b1Þ2
1� b21

ðŝLS,T � s0Þ!d arg max
u2ð�1,1Þ

WðuÞ � 1
2
juj

� 

, (A.1)

where W(u) is a two-sided Brownian motion, defined as WðuÞ ¼ B1ð�uÞ if u � 0 and WðuÞ ¼ B2ðuÞ if u> 0, with
B1 and B2 being two independent Brownian motions. The pdf and the cdf for this limiting distribution have been
derived in Yao (1987).

Chong (2001) then studied Model (1) with b1j j < 1 and b2 ¼ 1: In this case, the AR(1) model switches from a
stationary root to a unit root. He let b1 ¼ b1T , and assumed that 1� b1T ! 0 with Tð1� b1TÞ ! 1 as T ! 1:
In this case, he proved that the long-span asymptotic distribution of ŝLS,T takes the form of

Tð1� b1TÞðŝLS,T � s0Þ!d arg max
u2ð�1,1Þ

W�
aðuÞ
R1

� 1
2
juj

� 

, (A.2)

where W�
aðuÞ ¼ W1ð�uÞ if u � 0 and

W�
aðuÞ ¼ �W2ðuÞ �

ðu
0

W2ðsÞ
R1

dW2ðsÞ �
ðu
0

W2ðsÞ
2R1

þ 1

� �
W2ðsÞds,

if u> 0 with W1ð
Þ and W2ð
Þ being two independent Brownian motions and R1 ¼
Ð1
0 exp ð�sÞdW1ðsÞ:

Chong (2001) also studied Model (1) with b1 ¼ 1 and b2j j < 1, where the AR model switches from a unit root
to a stationary root. Assuming that b2 ¼ b2T with the condition

ffiffiffiffi
T

p ð1� b2TÞ ! 0 and T3=4ð1� b2TÞ ! 1 as
T ! 1, he derived a long-span asymptotic distribution of ŝLS,T as

T2ðb2T � 1Þ2ðŝLS,T � s0Þ!d arg max
u2ð�1,1Þ

WðuÞ
W3ðs0Þ �

1
2
juj

� 

, (A.3)

where W(u) is a two-sided Brownian motion and W3 is an independent standard Brownian motion.
Pang et al. (2014) studied Model (1) with b1Tj j < 1 and b2T ¼ 16c=T: In this case the AR model switches

from a stationary root to a local-to-unit-root. Under the assumptions that y0 ¼ op
ffiffiffiffi
T

p� 	
, b2T � b1Tj j ! 0 with

Tðb2T � b1TÞ ! 1, they derived an asymptotic distribution of ŝLS,T as

Tðb2T � b1ÞðŝLS,T � s0Þ!d arg max
u2ð�1,1Þ

W�
bðuÞ
R1

� 1
2
juj

� 

, (A.4)

where W�
bðuÞ ¼ W1ð�uÞ if u � 0 and

W�
bðuÞ ¼ �IðW2, c, s0, uÞ �

Ð u
0

IðW2, c, s0, sÞ
R1

dIðW2, c, s0, sÞ

� Ð u
0

IðW2, c, s0, sÞ
2R1

þ 1

� �
IðW2, c, s0, sÞds,

if u> 0 with

IðW2, c, s0, sÞ ¼ W2ðs0 þ sÞ �W2ðs0Þ � c
ðs0þs

s0

e�cðs0þs�rÞ W2ðrÞ �W2ðs0Þð Þds,

and W1 and W2 being two independent Brownian motions and R1 ¼
Ð1
0 exp ð�sÞdW1ðsÞ:

Pang et al. (2014) also studied Model (1) with b1T ¼ 1þ c=T and b2T < 1: In this case the AR model switches
from a local-to-unit-root to a stationary root. Under the assumptions that y0 ¼ op

ffiffiffiffi
T

p� 	
,

ffiffiffiffi
T

p ðb2T � b1TÞ ! 0 with
T3=4ðb2T � b1TÞ ! 1, they proved that ŝLS,T has the long-span asymptotic distribution as

T2ðb2 � b1TÞ2ðŝLS,T � s0Þ!d arg max
u2ð�1,1Þ

WðuÞ
exp cð1� s0Þð ÞGðW1, c, s0Þ �

1
2
juj

� 

, (A.5)
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where W(u) is a two-sided Brownian motion and

GðW1, c, s0Þ ¼ exp �cð1� s0Þð ÞW1ðs0Þ � c
ðs0
0

exp �cð1� sÞð ÞW1ðsÞds:

Liang et al. (2018) studied Model (1) with b1T ¼ 1� c=Ta and b2 ¼ 1 where c is a positive constant and
a 2 ð0, 1Þ:15 In this case the AR model switches from a mildly stationary root to a unit root. Under the assump-
tions that y0 ¼ op

ffiffiffiffiffiffi
Ta

p� 	
, they derived a long-span asymptotic distribution of ŝLS,T as

cT
Ta

ðŝLS,T � s0Þ!d arg max
u2ð�1,1Þ

W�
c ðuÞ
Rc

� 1
2
juj

� 

, (A.6)

where W�
c ðuÞ ¼ W1ð�uÞ when u � 0, and when u> 0

W�
c ðuÞ ¼ �W2ðuÞ �

ðu
0

W2ðsÞ
Rc

dW2ðsÞ �
ðu
0

W2ðsÞ
2Rc

þ 1

� �
W2ðsÞds,

with W1 and W2 being two independent Brownian motions and Rc ¼
ffiffi
c

p Ð1
0 exp ð�csÞdW1ðsÞ:

Liang et al. (2018) also studied Model (1) with b1 ¼ 1 and b2T ¼ 1� c=Ta: In this case the AR model switches
from a unit root to a mildly stationary root. Under the assumptions that y0 ¼ op

ffiffiffiffiffiffi
Ta

p� 	
,

ffiffiffiffi
T

p
=Ta ! 0 and

T3=4=Ta ! 1 as T ! 1, they derived a long-span asymptotic distribution of ŝLS,T as

c2T2

T2a
ðŝLS,T � s0Þ!d arg max

u2ð�1,1Þ
WðuÞ
W1ðs0Þ �

1
2
juj

� 

, (A.7)

where W(u) is a two-sided Brownian motion and W1ð
Þ is an independent standard Brownian motion.

Appendix B: Proofs

Lemma B.1. Consider the process yt defined in (14) with the dynamics

yt ¼ b11 t�k0½ � þ b21 t>k0½ �
� 	

yt�1 þ et , et �i:i:d: 0, r2ð Þ, y0 ¼ x0=
ffiffiffi
h

p
:

When T ¼ 1=h ! 1 with a fixed s0 ¼ k0=T, for any s 2 0, 1½ �,

(a) T�1 PbTsc
t¼1 yt�1et ) r2

Ð s
0
~J s0 ðrÞdBðrÞ;

(b) T�2 PbTsc
t¼1 y2t�1 ) r2

Ð s
0

~J s0 ðrÞ
� �2

dr;

(c) ~J s0ðsÞ
� �2 � ~J s0ð0Þ

� �2 ¼ 2
Ð s
0
~J s0 ðrÞdBðrÞ � 2

Ð s
0 ðjþ d1½r>s0 �Þ ~J s0ðrÞ

� �2
dr þ s;

(d) ~J s0ð1Þ
� �2 � ~J s0 ðsÞ

� �2 ¼ 2
Ð 1
s
~J s0ðrÞdBðrÞ � 2

Ð 1
s ðjþ d1½r>s0 �Þ ~J s0ðrÞ

� �2
dr þ ð1� sÞ,

where bTsc denotes the integer part of Ts,~J s0ðrÞ for r 2 0, 1½ � is a Gaussian process generated by d~J s0 ðrÞ ¼
�ðjþ d1½r>s0 �Þ~J s0ðrÞdr þ dBðrÞ with the initial value ~J s0ð0Þ ¼ x0=r, and B(r) is a standard Brownian motion.

Lemma B.2. Consider the process yt defined in (17) with the dynamics

yt ¼ b11 t�k0½ � þ b21 t>k0½ �
� 	

yt�1 þ u�t , y0 ¼ x0=
ffiffiffi
h

p

where

u�t ¼
X1
j¼0

cjet�j, et �i:i:d: 0, r2ð Þ, c0 ¼ 1 and
X1
j¼0

j cj


 

 < 1:

Define c�ðjÞ � Eðu�t u�t�jÞ for j ¼ 0,61,62, ::: and Cð1Þ ¼ P1
j¼0 cj. When T ¼ 1=h ! 1 with a fixed s0 ¼ k0=T, for

any s 2 0, 1½ �,

(a) T�2 PbTsc
t¼1 y2t�1 ) Cð1Þr½ �2 Ð s0 ~J s0ðrÞ

� �2
dr;

(b) T�1 PbTsc
t¼1 yt�1u�t ) Cð1Þr½ �2 Ð s0 ~J s0 ðrÞdBðrÞ þ ðs=2Þ Cð1Þr½ �2 � c�ð0Þ

� �
;

15Following Phillips and Magdalinos (2007), Liang et al. (2018) used kT instead of Ta with the assumption that kT ! 1
and kT=T ! 0:
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where bTsc denotes the integer part of Ts,~J s0ðrÞ for r 2 0, 1½ � is a Gaussian process generated by d~J s0 ðrÞ ¼
�ðjþ d1½r>s0 �Þ~J s0ðrÞdr þ dBðrÞ with the initial value ~J s0ð0Þ ¼ x0= Cð1Þr½ �, and B(r) is a standard Brownian motion.

Proof of Lemma B.1. When s � s0, the process yt for t ¼ 1, 2, :::, bTsc has no break. Then, the results in (a) and
(b) can be obtained straightforwardly by using the large sample theory for local-to-unity process; see, for example,
Perron (1991). When s > s0, the AR root of yt changes from b1 to b2 at the point t ¼ k0 ¼ Ts0: We can apply the
large sample theory for local-to-unity process separately on different sides of the break to get the result in (a) as

T�1
XbTsc
t¼1

yt�1et ¼ T�1
XbTs0c
t¼1

yt�1et þ T�1
XbTsc

t¼bTs0cþ1

yt�1et

) r2
ðs0
0

~J s0 ðrÞdBðrÞ þ
ðs
s0

~J s0 ðrÞdBðrÞ
( )

¼ r2
ðs
0

~J s0ðrÞdBðrÞ:

Similarly, the result in (b) for s > s0 can be obtained.
The results in (c) and (d) can be derived directly from the diffusion function

d ~J s0ðrÞ
� �2 ¼ 2~J s0 ðrÞd~J s0ðrÞ þ dr

¼ 2~J s0 ðrÞdBðrÞ � 2 jþ d1 r>s0½ �
� 	

~J s0 ðrÞ
� �2

dr þ dr,

where the first equation comes from it is lemma.

Proof of Lemma B.2. When s � s0, the process yt for t ¼ 1, 2, :::, bTsc has no break. Then, (a) and (b) are just
extensions of the results in Phillips (1987b) from the case where x0 ¼ 0 to the case where x0 6¼ 0: These extensions
can be done easily by using the approach proposed in Perron (1991).

When s > s0, the AR root of yt changes from b1 to b2 at the point t ¼ Ts0: Then, the method to prove
Lemma B.1 can be used again to get (a) and (b) in this lemma.

Proof of Theorem 3.1. Note that

ŝML ¼ arg max
s2ð0, 1Þ

logLðsÞ� �

¼ arg max
s2ð0, 1Þ

1
r2

�
ð1
0
ðjþ d1 t>s½ �ÞxðtÞdxðtÞ � 1

2

ð1
0

jþ d1 t>s½ �
� 	2 xðtÞ½ �2dt

( )

¼ arg max
s2ð0, 1Þ

1
r2

�
ð1
0
d1 t>s½ �xðtÞdxðtÞ � 1

2

ð1
0
2jdþ d2ð Þ1 t>s½ � xðtÞ½ �2dt

( )

¼ arg max
s2ð0, 1Þ

� d
r2

ð1
s
xðtÞdxðtÞ þ 1

2

ð1
s
2jþ dð Þ xðtÞ½ �2dt

( )

¼ arg max
s2ð0, 1Þ

� d
r2

ð1
s
xðtÞdxðtÞ � 1

2

ðs
0
2jþ dð Þ xðtÞ½ �2dt

( )

where the third equation is obtained by deleting the terms independent of the choice of s but appearing in the
second equation. Applying It’s lemma to the diffusion process x(t) defined in (3) leads to

d xðtÞ½ �2 ¼ 2xðtÞdxðtÞ þ r2dt:

Hence,

ð1
s
xðtÞdxðtÞ ¼ 1

2

ð1
s
d xðtÞ½ �2 � 1

2

ð1
s
r2dt

¼ 1
2

xð1Þ½ �2 � xðsÞ½ �2
� 	

� 1
2
r2 1� sð Þ:
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We then have

ŝML ¼ arg max
s2ð0, 1Þ

� d
r2

1
2

xð1Þ½ �2 � xðsÞ½ �2
� 	

� 1
2
r2 1� sð Þ � 2jþ d

2

ðs
0
xðtÞ½ �2dt

� 


¼ arg max
s2ð0, 1Þ

� d
r2

� xðsÞ½ �2 þ r2s� 2jþ dð Þ
ðs
0
xðtÞ½ �2dt

� 


¼ arg max
s2ð0, 1Þ

d ~J s0 ðsÞ
� �2 � sþ 2jþ dð Þ

ðs
0

~J s0ðtÞ
� �2

dt

� 


where the second equation is obtained by deleting the terms independent of the choice of s but appearing in the
first equation, and the third equation comes form the relationship of ~J s0 ðtÞ ¼ xðtÞ=r2 which can be obtained from
the definitions of ~J s0 ðtÞ and x(t) as in (6) and (3), respectively.

Proof of Theorem 4.1. First note that k̂LS defined in (10) can be identically represented as

k̂LS ¼ arg min
k¼1, :::,T�1

SðkÞ, withSðkÞ ¼
Xk
t¼1

yt � b̂1ðkÞyt�1

� �2

þ
XT
t¼kþ1

yt � b̂2ðkÞyt�1

� �2

where b̂1ðkÞ ¼
Pk

t¼1 ytyt�1=
Pk

t¼1 y
2
t�1, b̂2ðkÞ ¼

PT
t¼kþ1 ytyt�1=

PT
t¼kþ1 y

2
t�1, and yt ¼ xt=

ffiffiffi
h

p
is defined in (14).

Define the T 	 2 matrix YðkÞ ¼ Y1ðkÞ Y2ðkÞ
� �

with Y1ðkÞ ¼ y0 
 
 
 yk�1 0 
 
 
 0
� �0

and Y2ðkÞ ¼
0 
 
 
 0 yk 
 
 
 yT�1

� �0
: Let Y ¼ y1 
 
 
 yT

� �0
: Then, standard linear regression algebra gives an identical

representation of the sum of squared residuals:

SðkÞ ¼ Y0MY with M ¼ I � Y1ðkÞ Y0
1ðkÞY1ðkÞ

� ��1
Y0
1ðkÞ � Y2ðkÞ Y0

2ðkÞY2ðkÞ
� ��1

Y0
2ðkÞ,

where I is an T	T identity matrix. From Eq. (14), we have

yt ¼ b1yt�1 þ b2 � b1ð Þ1 t>k0½ �yt�1 þ et ¼ b1yt�1 þ gt

where gt � ðb2 � b1Þ1 t>k0½ �yt�1 þ et: Let Y� ¼ y0 
 
 
 yT�1
� �0

and g ¼ g1 
 
 
 gT
� �0

: We then have

Y ¼ Y�b1 þ g:

Therefore,

SðkÞ ¼ Y0MY ¼ Y0M0MY ¼ Y�b1 þ gð Þ0M0M Y�b1 þ gð Þ ¼ g0Mg

¼ g0g� g0Y1ðkÞ Y0
1ðkÞY1ðkÞ

� ��1
Y0
1ðkÞg� g0Y2ðkÞ Y0

2ðkÞY2ðkÞ
� ��1

Y0
2ðkÞg

where the second equation is from M0M ¼ M and the fourth equation is because MY� ¼ 0T	1: Note that

g0g ¼
Xk0
t¼1

g2t þ
XT

t¼k0þ1

g2t ¼
Xk0
t¼1

e2t þ
XT

t¼k0þ1

b2 � b1ð Þyt�1 þ et½ �2,

which is independent of the choice of k, and

g0Y1ðkÞ Y0
1ðkÞY1ðkÞ

� ��1Y0
1ðkÞg ¼

Xk

t¼1
yt�1gt

� �2

Xk

t¼1
y2t�1

g0Y2ðkÞ Y0
2ðkÞY2ðkÞ

� ��1
Y0
2ðkÞg ¼

XT

t¼kþ1
yt�1gt

� �2

XT

t¼kþ1
y2t�1

:

Hence,

k̂LS ¼ arg min
k¼1, :::,T�1

SðkÞ ¼ arg max
k¼1, :::,T�1

Pk
t¼1yt�1gt

� �2

Pk
t¼1y

2
t�1

þ
PT

t¼kþ1yt�1gt

� �2

PT
t¼kþ1y

2
t�1

8<
:

9=
;: (B.1)

The same transformation method has been used in Elliott and M€uller (2007) for a general linear time series regres-
sion with a single break.
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Note that

ŝLS ¼ k̂LS=T ¼ argmax
s2ð0, 1Þ

PbTsc
t¼1

yt�1gt

� �2

PbTsc
t¼1

y2t�1

þ
PT

t¼bTscþ1yt�1gt
� �2

PT
t¼bTscþ1y

2
t�1

8>><
>>:

9>>=
>>;:

When s � s0, we have

T�1
XbTsc
t¼1

yt�1gt ¼ T�1
XbTsc
t¼1

yt�1et ) r2
ðs
0

~J s0 ðrÞdBðrÞ

and

1
T

XT
t¼bTscþ1

yt�1gt ¼
1
T

XbTs0c
t¼bTscþ1

yt�1gt þ
XT

t¼bTs0cþ1

yt�1gt

2
4

3
5

¼ 1
T

XbTs0c
t¼bTscþ1

yt�1et þ b2 � b1ð Þ
XT

t¼bTs0cþ1

y2t�1 þ
XT

t¼bTs0cþ1

yt�1et

2
4

3
5

¼ 1
T

XT
t¼bTscþ1

yt�1et þ T b2 � b1ð Þ 1
T2

XT
t¼bTs0cþ1

y2t�1

) r2
ð1
s

~J s0ðrÞdBðrÞ � dr2
ð1
s0

~J s0ðrÞ
� �2

dr

where the limiting results are obtained from (a) and (b) in Lemma B.1 straightforwardly, from which we can also
get

T�2
XbTsc
t¼1

y2t�1 ) r2
ðs
0

~J s0ðrÞ
� �2

dr and T�2
XT

t¼bTscþ1

y2t�1 ) r2
ð1
s

~J s0ðrÞ
� �2

dr:

Denoting WðsÞ ¼ ðPbTsc
t¼1 yt�1gtÞ2=

PbTsc
t¼1 y2t�1 þ ðPT

t¼bTscþ1 yt�1gtÞ2=
PT

t¼bTscþ1 y
2
t�1, we then have

WðsÞ ) r2

Ð s
0
~J s0 ðrÞdBðrÞ

� �2

Ð s
0

~J s0ðrÞ
� �2

dr
þ

Ð 1
s
~J s0 ðrÞdBðrÞ � d

Ð 1
s0

~J s0 ðrÞ
� �2

dr
� �2

Ð 1
s

~J s0ðrÞ
� �2

dr

8><
>:

9>=
>;:

Based on the results of (c) and (d) in Lemma B.1, we have

Ð s
0
~J s0 ðrÞdBðrÞ

� �2

Ð s
0

~J s0 ðrÞ
� �2

dr
¼

~J s0ðsÞ
� �2 � ~J s0ð0Þ

� �2 � sþ 2j
Ð s
0

~J s0ðrÞ
� �2

dr
� �2

4
Ð s
0

~J s0 ðrÞ
� �2

dr

¼
~J s0ðsÞ
� �2 � ~J s0ð0Þ

� �2 � s
� �2

4
Ð s
0

~J s0 ðrÞ
� �2

dr
þ j2

ðs
0

~J s0 ðrÞ
� �2

dr

þ j ~J s0ðsÞ
� �2 � ~J s0ð0Þ

� �2 � s
� �

and

Ð 1
s
~J s0ðrÞdBðrÞ � d

Ð 1
s0

~J s0ðrÞ
� �2

dr
� �2

Ð 1
s

~J s0 ðrÞ
� �2

dr
¼

~J s0ð1Þ
� �2 � ~J s0ðsÞ

� �2 � 1� sð Þ þ 2j
Ð 1
s

~J s0ðrÞ
� �2

dr
� �2

4
Ð 1
s

~J s0ðrÞ
� �2

dr

¼
~J s0ð1Þ
� �2 � ~J s0ðsÞ

� �2 � 1� sð Þ
� �2

4
Ð 1
s

~J s0ðrÞ
� �2

dr
þ j2

ð1
s

~J s0 ðrÞ
� �2

dr

þ j ~J s0ð1Þ
� �2 � ~J s0ðsÞ

� �2 � 1� sð Þ
� �
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As a result,

WðsÞ
r2

)
~J s0ðsÞ
� �2 � ~J s0ð0Þ

� �2 � s
� �2

4
Ð s
0

~J s0ðrÞ
� �2

dr
þ

~J s0ð1Þ
� �2 � ~J s0 ðsÞ

� �2 � 1� sð Þ
� �2

4
Ð 1
s

~J s0 ðrÞ
� �2

dr

þ j2
ð1
0

~J s0 ðrÞ
� �2

dr þ j ~J s0ð1Þ
� �2 � ~J s0 ð0Þ

� �2 � 1
� �

:

Following the same procedure above, when s > s0, it can be proved that

WðsÞ
r2

)
~J s0ðsÞ
� �2 � ~J s0ð0Þ

� �2 � s
� �2

4
Ð s
0

~J s0ðrÞ
� �2

dr
þ

~J s0ð1Þ
� �2 � ~J s0 ðsÞ

� �2 � 1� sð Þ
� �2

4
Ð 1
s

~J s0 ðrÞ
� �2

dr

þ j2
ð1
0

~J s0 ðrÞ
� �2

dr þ j ~J s0ð1Þ
� �2 � ~J s0 ð0Þ

� �2 � 1
� �

:

Therefore, deleting the common terms shared by the limit of WðsÞ when s > s0 and s � s0 which are independent
of the choice of s leads to the final in-fill asymptotic distribution of ŝLS as

ŝLS ¼ argmax
s2ð0, 1Þ

WðsÞ

) argmax
s2ð0, 1Þ

~J s0 ðsÞ
� �2 � ~J s0ð0Þ

� �2 � s
h i2

Ð s
0

~J s0ðrÞ
� �2

dr
þ

~J s0ð1Þ
� �2 � ~J s0 ðsÞ

� �2 � 1� s½ �
h i2

Ð 1
s

~J s0 ðrÞ
� �2

dr
:

Proof of Theorem 5.1 With the use of the in-fill asymptotics given in Lemma B.2, the same procedure for the
proof of Theorem 4.1 will lead to the result in Theorem 5.1. The details are omitted here.
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