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Abstract

An asymptotic distribution is derived for the least squares (LS) estimate of a first-
order autoregression with a mildly explosive root and anti-persistent errors. While the
sample moments depend on the Hurst parameter asymptotically, the Cauchy limiting
distribution theory remains valid for the LS estimates in the model without intercept
and a model with an asymptotically negligible intercept. Monte Carlo studies are
designed to check the precision of the Cauchy distribution in finite samples. An
empirical study based on the monthly NASDAQ index highlights the usefulness of the
model and the new limiting distribution.

JEL classification: C22
Keywords: Anti-persistence, unit root, mildly explosive, sequential limit theory, bub-
ble, fractional integration

1 Introduction

The autoregressive (AR) model with an explosive root was first studied in White (1958)

and Anderson (1959) where the following process was considered:

yt = ρyt−1 + ut, ρ > 1, t = 1, 2, ..., n. (1)

∗We would like to thank two referees for thoughtful comments and Jia Li for helpful discussions. Yiu Lim
Lui, School of Economics, Singapore Management University, 90 Stamford Rd, Singapore 178903, Email:
yl.lui.2015@phdecons.smu.edu.sg. Weilin Xiao, School of Management, Zhejiang University, Hangzhou,
310058, China. Email: wlxiao@zju.edu.cn. Jun Yu, School of Economics and Lee Kong Chian School
of Business, Singapore Management University, 90 Stamford Rd, Singapore 178903. Email for Jun Yu:
yujun@smu.edu.sg. URL: http://www.mysmu.edu/faculty/yujun/. Xiao gratefully acknowledges the fi-
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and Social Sciences of Ministry of Education Planning Fund of China (No. 17YJA630114). Yu thanks the
Singapore Ministry of Education for Academic Research Fund under grant number MOE2013-T3-1-009.
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Figure 1: Time series plot of four logarithmic stock market indices (left axis) and their
residuals obtained from the fitted AR(1) model with and without intercept by LS (right
axis).

Under the assumptions of independent and identically distributed (iid) Gaussian errors

(i.e. ut
iid∼ N(0, σ2)) and the zero initial condition (i.e. y0 = 0), White (1958) and Anderson

(1959) showed that the least squares (LS) estimate of ρ (denoted by ρ̂) has the following

Cauchy limiting distribution:

ρn

ρ2 − 1
(ρ̂− ρ)

as→ C, as n→∞, (2)

where as→ denotes the convergence almost surely and C is a standard Cauchy variate.

It is noteworthy that the above limit theory is not obtained from an invariance prin-

ciple because the distributional assumption ut
iid∼ N(0, σ2) cannot be relaxed. To relax

the assumption of Gaussian errors, and, in the meantime, to allow for a non-zero ini-

tial condition, Phillips and Magdalinos (2007a) (PM hereafter) and Phillips, Magdalinos

and Giraitis (2010) (PMG hereafter) considered two variations which are analogous to

Model (1). PM designed a mildly explosive AR model by letting ρ = ρn = 1+c/nα, c > 0,
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α ∈ (0, 1), while PMG introduced a mildly explosive model by letting ρ = ρm,n = 1+cm/n,

c > 0. Under some suitable assumptions but without the requirements of Gaussian errors

and the zero initial condition, PM and PMG obtained the limit theory which is analogous

to (2):

ρnn
ρ2
n − 1

(ρ̂− ρn) ⇒ C, as n→∞; (PM)

ρnm,n
ρ2
m,n − 1

(
ρ̂− ρm,n

)
⇒ C, as n→∞ followed by m→∞. (PMG)

The pivotalness of the Cauchy distribution suggests that it is easy to test a hypothesis

about the AR coeffi cient. Not surprisingly, it has been used in the literature to test the

presence of rational bubbles in asset prices; see Phillips, Wu and Yu (2011). Moreover, con-

siderable efforts have been made in the literature to explore the explosive-type AR models

with dependent errors. The errors could be weakly dependent as in Phillips and Magdali-

nos (2007b), or strongly dependent as in Magdalinos (2012), or could involve conditional

heteroskedasticity as in Arvanitis and Magdalinos (2018). These generalizations are im-

portant as the explosive-type model with dependent errors can potentially better describe

the movement of real data than the pure explosive AR(1) model. A number of related

studies in the literature allow for m-dependent errors (Pedersen and Schütte, 2017), errors

with deterministic time-varying volatilities (Harvey, Leybourne and Zu, 2019a, 2019b).

To the best of our knowledge, no limit theory has been developed to cover any explosive-

type AR model with anti-persistent errors. The goal of this paper is to fill the gaps in

the context of the explosive-type AR model of PMG. Why are the gaps are important?

To see the empirical relevance of an explosive model with anti-persistent errors, Figure

1 presents time series plots of four logarithmic stock market indices (left axis) and the

residuals obtained from the fitted AR(1) model with and without intercept (right axis).

In particular, we consider four monthly indices over different sampling periods, namely

FTSE 100 Index from January 2003 to October 2007, Hang Seng Index from May 1989 to

June 1997, NASDAQ Composite Index from January 1990 to December 1999, and Nikkei

225 Index from August 1982 to November 1989. The sampling periods are selected as these

markets experienced exuberance over the respective periods, as it can be seen from the solid

black lines in Figure 1. After fitting the AR(1) model with and without intercept to each

time series by LS, we obtain two residual series with and without intercept and plot them
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in the blue and red dotted lines in Figure 1. These plots show that there is strong anti-

persistence in the residuals.1 When we apply the local Whittle (LW) method of Robinson

(1994) to estimate the memory parameter d in the residuals, we find that the estimated d

is always in the range (−0.5, 0) in all cases. The estimated d is reported in Figure 1 with

d̂a and d̂b corresponding to the model without and with intercept, respectively. These

exercises strongly suggest that the explosive-type AR model with anti-persistent errors

is not only of theoretical interest but also of empirical realism, making important the

development of limit theory for an explosive-type AR model with anti-persistent errors.

The paper is organized as follows. Section 2 briefly reviews several forms of serially

dependent error processes and mildly explosive AR models. Section 3 studies the mildly

explosive AR model of PMG but with anti-persistent errors and develops the limiting

distribution for the LS estimate of the AR coeffi cient under a sequential limit. Simulation

studies are carried out in Section 4 to check the precision of the limiting distribution in

finite samples. Section 5 provides an empirical study of a rational bubble in the NASDAQ

index. Proofs of the main results in the paper are given in the Appendix.

We use the following notations throughout the paper:
p→, as→,⇒, a∼, d= and iid∼ de-

note convergence in probability, convergence almost surely, weak convergence, asymptotic

equivalence, equivalence in distribution, and iid, respectively.

2 Literature Reviews

2.1 A review of serially correlated errors

Although our paper focuses on anti-persistent errors, to facilitate discussion and com-

parison, we first review the concepts of weakly dependent errors and strongly dependent

errors. Suppose that the error process admits a Wold-decomposition such that

ut =

∞∑
j=0

cjεt−j , c0 = 1, εt
iid∼ (0, σ2), (3)

where {cj}∞j=0 are real coeffi cients. Denote ψ(k) the kth order autocovariance function of

ut, that is, ψ(k) := E (utut−k).

Weakly dependent errors require
∑∞

j=0 |cj | < ∞ and
∑∞

j=0 cj 6= 0. These conditions

imply that
∑∞

k=−∞ |ψ(k)| ∈ (0,∞) and
∑∞

k=−∞ ψ(k) 6= 0. For strongly dependent errors,

1A detailed discussion on anti-persistence is provided in the next section where we also relate anti-
persistence to the memory parameter d.
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it is assumed that cj in (3) has a slow decay rate, such as cj ∼ j−1+d with d ∈ (0, 0.5) when

j is large. This leads to a violation of the summability condition of the linear coeffi cients

and the autocovariance function as
∑∞

j=0 cj =∞ and
∑∞

k=−∞ |ψ(k)| =∞.

Anti-persistent errors are remarkably different from weakly dependent errors and strongly

dependent errors. First, they are different from strongly dependent errors as cj has a fast

decay rate for anti-persistent errors, such as cj ∼ j−1+d with d ∈ (−0.5, 0) when j is large.

Second, they are different from weakly dependent errors in the sense that
∑∞

j=0 cj = 0 and∑∞
k=−∞ ψ(k) = 0. Moreover, for any k 6= 0, ψ(k) has a negative sign (see Proposition 3.2.1

(3) in Giraitis, Koul, and Surgailis (2012)), giving rise to the name of anti-persistence.

These properties make the interpretation of corresponding stochastic integrals different

from that when the errors are weakly dependent or strongly dependent. From the theo-

retical viewpoint, therefore, it is important to develop the limit theory for anti-persistent

errors.

We now formally introduce the definition of anti-persistence.

Assumption 1 (AP) Under (3) and let γ be a constant. Assume cj
a∼ γj−1+d for j →∞

with d ∈ (−0.5, 0),
∑∞

j=0 cj = 0 and
∑∞

k=−∞ ψ(k) = 0.

Assumption AP is general enough to include stationary ARFIMA(p, d, q) processes

where ut = (1 − L)−dφ(L)−1θ(L)εt =
∑∞

j=0 cjεt−j , φ(L) = 1 −
∑p

j=0 φjL
j , θ(L) =

1 +
∑p

j=0 θjL
j and L is the lag operator. We can show that cj can be asymptotically ap-

proximated by θ(1)
φ(1)Γ(d)j

−1+d, where Γ(·) is a gamma function. When d ∈ (−0.5, 0), the sta-

tionary ARFIMA process has the zero-sum for the linear coeffi cients, that is,
∑∞

j=0 cj = 0.

It is well-known that ut corresponds to a fractional Brownian motion (fBM) with the Hurst

parameter H = 1/2 + d; see Giraitis, Koul and Surgailis (2012). When H = 0.5, an fBM

becomes the standard Brownian motion. When H ∈ (0, 0.5) which corresponds to the case

of interest in the present paper, an fBM has a rough sample path and is anti-persistent.

When H ∈ (0.5, 1), an fBM has a smooth sample path in the sense that it is 1/2 − ε-

Hölder continuous for any ε > 0. The empirical relevance of anti-persistent processes in

financial time series was recently documented in Gatheral, Jaisson, and Rosenbaum (2018)

and Wang, Xiao, and Yu (2019). The empirical relevance of anti-persistent errors in an

explosive model was shown earlier in Figure 1. Assuming a continuous record of obser-

vations is available, Xiao and Yu (2019a, 2019b) recently developed the limit theory for
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the persistence parameter in the fractional Vasicek model which corresponds to the AR

coeffi cient in the discrete-time representation.

2.2 A mildly explosive model

PMG considered the following mildly explosive model:

yt =
(

1 +
cm

n

)
yt−1 + ut, c > 0, ut

iid∼ (0, σ2), y0 = Op(1). (4)

As suggested in PMG, one way of thinking of the model specification is that the total

number of observations (n) is partitioned into m blocks with K samples so that n =

m×K. Thus, the chronological time for yt becomes t = bKjc+ k, for k ∈ {1, ...,K} and

j ∈ {0, 1, ...m − 1}. This model is closely related to the model proposed in Park (2003)

where it was assumed that c = −1 < 0.

It is easy to see that as n→∞ with fixed m, Model (4) is a local-to-unity model with

the noncentrality parameter cm and hence, the standard local-to-unity asymptotic theory

is applicable. That is,

n(ρ̂− ρn,m)⇒
∫ 1

0
Jcm(s)dW (s)/

∫ 1

0
J2
cm(s)ds,

where Jcm(s) =
∫ s

0 e
cm(s−r)dW (r) and W (·) denotes a standard Brownian motion.

However, since c > 0, if one assumes n → ∞ followed by m → ∞, Model (4) is akin

to a mildly explosive AR model of PM whose root is in a larger neighborhood of unity

than a local-to-unit-root. The second asymptotic (m→∞) creates a departure from the

local-to-unit-root region; see Park (2003) and PMG for detailed discussions. With this

sequential asymptotic scheme, we have

1

2c

n

m
ecm

(
ρ̂− ρn,m

)
⇒

e−cm
∫ 1

0 Jcm(s)dW (s)

2ce−2cm
∫ 1

0 J
2
cm(s)ds

, as n→∞ with fixed m

=
e−cm

∫m
0 J̃c(s)dW̃ (s)

2ce−2cm
∫m

0 J̃2
c (s)ds

⇒ C, as m→∞, (5)

where W̃ (t) =
√
mW (t/m) and J̃c(t) =

∫ t
0 e

c(t−s)dW̃ (s). To see the link between this

sequential asymptotic result in (5) and the asymptotic results in (2) and (PM), note that

ecm = exp
(
cm
n

)n a∼ ρnn,m and ρ2
n,m − 1

a∼ 2cmn .
2

2Although the limiting distribution in PM is the same as that in PMG, the techniques used to develop
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3 Mildly Explosive Model with Anti-persistent Errors

We now extend the model of PMG to the following model:

yt = µn + ρyt−1 + ut, t = 1, ..., n, (6)

where y0 = op(n
1/2+d), µn = µ/nϑ, ρ = ρn,m =

(
1 + cm

n

)
, ϑ > 1/2 − d, and ut satisfies

Assumption AP.

Model (6) is different from Model (4) in two aspects. First, instead of assuming an

iid error process, we allow for anti-persistent errors in Model (6). Second, when µ 6= 0,

a non-zero intercept µn, which is asymptotically negligible, enters the model. Similar to

Phillips, Shi and Yu (2014), we impose a restriction on ϑ so that the localized drift µn

cannot dominate the random component introduced by ut. However, if µ = 0, then µn = 0

and the intercept vanishes.

In this section, we aim to develop the limiting distribution for the centered LS estimate

with and without intercept. To be more precise, we define the LS estimate without inter-

cept by ρ̂a and the LS estimate with intercept by ρ̂b. Thus, we can express the centered

LS estimates as

ρ̂a − ρ =

∑n
t=1 yt−1ut∑n
t=1 y

2
t−1

, (7)

and

ρ̂b − ρ =

∑n
t=1 yt−1ut − 1

n

∑n
t=1 yt−1

∑n
t=1 ut∑n

t=1 y
2
t−1 − 1

n (
∑n

t=1 yt−1)2 . (8)

Before we develop the asymptotic theory, we first review the functional central limit

theorem due to Giraitis, Koul, Surgailis (2012) which extends Donsker’s theorem.

Lemma 3.1 (Corollary 4.4.1 in Giraitis, Koul and Surgailis (2012)) Let ut be as

in (3). Assume cj
a∼ γj−1+d as j → ∞ with γ being a constant and d ∈ (−0.5, 0),

E|εt|p <∞ with p > (0.5 + d)−1 and
∑∞

j=0 cj = 0. Then, as n→∞,

n−H
bnrc∑
t=1

ut ⇒ ςBH(r), (9)

in D[0, 1] with the uniform metric, where ς =
√
σ2γ2 B(d,1−2d)

d(1+2d) with B(x, y) = Γ(x)Γ(y)
Γ(x+y) ,

H = 1
2 + d, BH(r) is an fBM with the Hurst parameter H.

the limiting distribution are different in these two studies. PM uses a Lindeberg-Feller CLT while PMG
uses the local-to-unit-root theory together with the martingale convergence theorem. Our proof follows
that of PMG, but there are technical diffi culties that we need to deal with in our proof.
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An fBM with the Hurst parameter H ∈ (0, 1) is a Gaussian process with zero mean

and the following covariance,

E(BH(r)BH(s)) =
1

2

(
|r|2H + |s|2H − |r − s|2H

)
.

Clearly, if H = 1/2, BH(t) becomes the standard Brownian motion W (t). Unlike W (t),

BH(t) is not a semi-martingale if H 6= 1/2. Therefore, we cannot interpret the stochastic

integral with respect to fBM as an Itô integral. In this paper, we interpret the stochastic

integral with respect to fBM as a Young integral when we study the asymptotic theory for

the error process under Assumption AP, where the mathematical techniques are related

to those used in EI Machkouri, Es-Sebaiy and Ouknine (2016) and Xiao and Yu (2019a,

2019b). This interpretation is in contrast to PMG where J̃c(t) =
∫ t

0 e
c(t−s)dW̃ (s) is viewed

as an Itô integral. Moreover, we need a different asymptotic theory to obtain a sequential

limit. The following lemma obtains the asymptotic behavior of the sample moments.

Lemma 3.2 In Model (6) with {ut} satisfying Assumption AP, we assume E|εt|p < ∞

with p > (0.5 + d)−1. As n → ∞ with m fixed, we have the local-to-unit-root asymptotic

results:

1. 1
n1/2+d

ybnrc ⇒ ςJHcm(r);

2. 1
n3/2+d

∑n
t=1 yt ⇒ ς

∫ 1
0 J

H
cm(r)dr;

3. 1
n2+2d

∑n
t=1 y

2
t ⇒ ς2

∫ 1
0 (JHcm(r))2dr;

4. 1
n1+2d

∑n
t=1 yt−1ut + 1

n1+2d
1
2

∑n
t=1 u

2
t ⇒ ς2

[
cmZ(1)

∫ 1
0 e

cmsdBH(s) +R(1)
]
,

where

ς =

√
σ2γ2

B(d, 1− 2d)

d(1 + 2d)
,

JHcm(r) =

∫ r

0
ecm(r−s)dBH(s), Z(1) =

∫ 1

0
e−cmsBH(s)ds,

R(1) =
1

2

[
BH(1)

]2 − cm ∫ 1

0
(BH(s))2ds+ (cm)2

∫ 1

0

∫ s

0
ecm(r−s)BH(r)BH(s)drds.

Since BH(s) is not a semi-martingale, in the present paper, we treat JHcm(r) as a Young

integral. For details about the Young integral, see (A.1) in El Machkouri, Es-Sebaiy and

Ouknine (2016).
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Remark 3.1 The results in Lemma 3.2 are closely related to Lemma 1 in Phillips (1987),

which can be used to show that for Model (6) with weakly dependent errors, when n→∞

with m fixed,
1

n1/2
ybnrc ⇒ σJcm(r),

1

n3/2

n∑
t=1

yt ⇒ σ

∫ 1

0
Jcm(r)dr,

1

n2

n∑
t=1

y2
t ⇒ σ2

∫ 1

0
(Jcm(r))2dr,

1

n

n∑
t=1

yt−1ut ⇒
1

2

[
σ2Jcm(1)2 − 2cmσ2

∫ 1

0
(Jcm(r))2dr − E(u2

t )

]
,

where Jcm(r) =
∫ r

0 e
(r−s)cmdW (s).

Remark 3.2 For Model (6) with strongly dependent errors, the first three claims in

Lemma 3.2 remain valid, while for the last claim, we have

1

n1+2d

n∑
t=1

yt−1ut ⇒ ς2

[
cmZ(1)

∫ 1

0
ecmsdBH(s) +R(1)

]
.

where the term 1
n1+2d

1
2

∑n
t=1 u

2
t asymptotically vanishes as n→∞. This difference makes

the development of the limiting distribution in the mildly explosive model with anti-persistent

errors more diffi cult. In particular, when n → ∞ with m fixed, the centered LS involves

an additional term where 1
n1+2d

1
2

∑n
t=1 u

2
t appears in the numerator. Additional rate con-

dition is needed to make sure this additional term vanishes asymptotically, as shown in

the following theorem.

Theorem 3.1 Let c > 0 in Model (6), under the same set of assumptions as in Lemma

3.2, if n→∞ followed by m→∞ with m = δ lnn and δ > −2d
c , we have

1

2c

n

m
ecm

(
ρ̂j − ρ

)
⇒ C ,

ρn

ρ2 − 1

(
ρ̂j − ρ

)
⇒ C , j ∈ {a, b} . (10)

Theorem 3.1 suggests that the centered LS estimates ρ̂a and ρ̂b in Model (6) have the

Cauchy limiting distribution upon the correct normalization. Since the Cauchy distrib-

ution is pivotal and ρ can be consistently estimated by either ρ̂a or ρ̂b, the limit theory

provides a convenient way for hypothesis testing for ρ.
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Remark 3.3 The rate condition m = δ lnn with δ > −2d
c suggests that m cannot go to

infinity too slowly relative to n. This condition ensures that 1
n1+2d

1
2

∑n
t=1 u

2
t is dominated

by 1
n1+2d

∑n
t=1 yt−1ut as m→∞.

Remark 3.4 As in Phillips, Wu and Yu (2011), Theorem 3.1 suggests that a confidence

interval (CI) for ρ can be constructed as{
ρ̂j ±

ρ̂2
j − 1

ρ̂nj
Ca

}
, j ∈ {a, b} , (11)

where Ca is the critical value for the two-tailed test with the significance level α and

C0.1 = 6.315, C0.05 = 12.7, C0.01 = 63.65674.

Remark 3.5 The Cauchy limiting distribution also holds when we have weakly/strongly

dependent errors in Model (4). For example, suppose ut is weakly dependent with
∑∞

j=0 |cj | <

∞, and
∑∞

j=0 cj 6= 0, y0 = op(n
1/2) and E|εt|β+ε < ∞ for some β > 2 and ε > 0. With

the sequential asymptotic, we have

1

2c

n

m
ecm (ρ̂a − ρ) ⇒

e−cm
∫ 1

0 Jcm(s)dW (s) + e−cm 1
2

(
1− υ

λ2

)
2ce−2cm

∫ 1
0 J

2
cm(s)ds

, as n→∞ with fixed m

=
e−cm

∫m
0 J̃c(s)dW̃ (s)

2ce−2cm
∫m

0 J̃2
c (s)ds

+Op(e
−cm)

⇒ C, as m→∞. (12)

The first convergence follows from Theorem 1 of Phillips (1987), where υ = σ2
∑∞

j=0 c
2
j and

λ = σ
∑∞

j=0 cj. The second convergence follows from the martingale convergence theorem.

Remark 3.6 Suppose that ρn = 1 + c/nα with α ∈ (0, 1), c > 0, and ut = εt
iid∼ N(0, σ2).

According to Theorem 4.3 of PM (2007a),

ρ−nn /nα
n∑
t=1

yt−1ut ⇒ ω0η0, ρ−2n
n /n2α

n∑
t=1

y2
t−1 ⇒ η2

0,

where ω0 and η0 are independent N(0, σ2/2c) random variables. In our model, we have

ρ = ρn,m = 1 + cm/n and anti-persistent errors. Under the sequential asymptotic scheme,

we have

e−cm

m

1

n1+2d

1

ζ2

n∑
t=1

yt−1ut ⇒ ωdηd, 2ce−2cm 1

n2+2d

1

ζ2

n∑
t=1

y2
t−1 ⇒ η2

d, (13)

where ωd and ηd are independent N(0, HΓ(2H)/2c) random variables. We complement

the results of PM and PMG to the model with anti-persistent errors.
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Remark 3.7 When ut is strongly dependent, using the similar arguments in proving Theo-

rem 3.1, we can obtain the results of (10) and (13). In this case, the assumption m = δ lnn

with δ > −2d
c , which is used to eliminate

1
n1+2d

1
2

∑n
t=1 u

2
t as m→∞, is not needed.

4 Monte Carlo Studies

In this section, we design several Monte Carlo experiments to evaluate the precision of the

derived asymptotic distribution in finite samples. In all experiments, we simulate data

from the following data generating process (DGP):

yt = µn + ρyt−1 + ut, t = 1, 2, ..., n, (14)

where ρ =
(
1 + cm

n

)
, y0 = 0, c > 0, µn = µ/nϑ, ut = (1 − L)dεt with εt

iid∼ N(0, 1). We

consider the following parameter settings:

(n,m) ∈ {(100, 10), (500, 15), (1000, 20)},

d ∈ {−0.45,−0.4,−0.3,−0.2,−0.1,−0.01}, (15)

c ∈ {0.5, 1}, µ = 1, ϑ =
1

2
− d+ 0.1.

The number of replications is always set at 10,000.

Under the parameter settings (15), we first obtain the LS estimates ρ̂a and ρ̂b, and

then apply the Cauchy distribution to construct the 95% CI (CIa and CIb) based on (11) for

ρn,m. We calculate the empirical coverage of the true value ρ, i.e.,
1

10000

∑10000
l=1 1

(
ρ

(l)
L ≤ ρ ≤ ρ

(l)
U

)
,

where ρ(l)
L and ρ(l)

U are the two bounds of the CI in the lth replication, and 1(·) is the in-

dicator function.

Tables 1 reports the empirical coverage of 95% CIs for alternative parameter settings

in (15). With n = 100, m = 10 and c = 0.5, there is an obvious over coverage problem

for both CIa and CIb. This problem is less severe as c increases to 1 or as both m and

n increase. Moreover, the CIs have good finite sample performance when c is relatively

large and d is between -0.01 and -0.3. When c = 1, it can be seen that both CIa and CIb

provide the empirical coverage which is close to the nominal coverage 95%. Finally, the

empirical coverage obtained from CIa and CIb are similar.
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Table 1: Empirical coverage of 95% CI of ρ
(n = 100,m = 10) (n = 500,m = 15) (n = 1000,m = 20)
c = 0.5 c = 1 c = 0.5 c = 1 c = 0.5 c = 1

d CIa CIb CIa CIb CIa CIb CIa CIb CIa CIb CIa CIb
−0.45 .995 .995 .928 .92 .905 .889 .923 .917 .915 .905 .922 .917
−0.4 .996 .995 .933 .924 .917 .903 .928 .924 .925 .915 .929 .925
−0.3 .996 .994 .945 .937 .934 .923 .939 .933 .936 .928 .937 .935
−0.2 .995 .995 .948 .943 .949 .939 .944 .941 .944 .937 .947 .942
−0.1 .991 .992 .947 .943 .95 .946 .95 .945 .948 .943 .950 .947
−0.01 .988 .99 .951 .947 .952 .946 .952 .949 .950 .946 .952 .950

5 An Empirical Study

To highlight the usefulness of the proposed model and the derived limiting distribution in

practice, we now conduct an empirical study of a rational bubble based on Model (4) and

the asymptotic theory in Theorem 3.1. The standard no-arbitrage condition suggests that

Pt =
1

1 + rf
Et [Pt+1 +Dt+1] , (16)

where Pt, rf , Dt and Et denote the price of asset, the discount rate, the dividend, and the

expectation based on information at time t, respectively. Equation (16) can be solved by

forward substitutions, giving rise to the following expressions:

Pt = P ft +Bt, (17)

P ft =
∞∑
i=1

(
1

1 + rf

)i
Et (Dt+i) , (18)

Bt =
1

1 + rf
Et (Bt+1) . (19)

Equation (17) expresses price as a sum of two components: the fundamental price P ft

which summarizes all the expected future discounted dividend and a bubble component

Bt which is not related to the fundamentals.

If the transversality condition is imposed, then Bt = 0 and hence, Pt = P ft . Note that

Bt is an explosive process since (1 + rf ) > 1. Therefore, when P ft is not explosive, testing

the existence of a bubble is equivalent to examining the explosiveness in Pt. That is why

in the literature looking for an explosive behavior in the price-dividend ratio (Pt/Dt) has

been widely used; see, for example, Phillips, Shi and Yu (2015a, 2015b).

12



Figure 2: Price-dividend ratio in NASDAQ from December 1989 to December 1999

Our paper studies the price-dividend ratio in the NASDAQ composite index, we obtain

the data set from Phillips, Wu and Yu (2011), which contains the monthly real price and

real dividend series from February 1973 to June 2005. We then construct the price-dividend

(PD) ratio based on the two time series. After obtaining the PD ratio, we focus on the

sample period from December 1989 to December 1999.

In Figure 2, the PD ratio, the real price, and the real dividend are plotted in the

black solid line, the blue dash line, and the red dotted line, respectively. We fit Model

(4) with and without intercept to the PD ratio by LS, and then estimate the memory

parameter (d) in the residuals by the LW method of Robinson (1994). The point estimate

(“estimate” should be “estimates”) of the intercept (µ̂), the AR coeffi cient (ρ̂), and the

memory parameter (d̂) are reported in Panel A of Table 2. We use the subscript a and b

to denote the LS estimate without and with intercept, respectively. Since the estimates

of the AR coeffi cient are greater than 1 and d̂ ∈ (−0.5, 0), Model (4) is relevant and

the asymptotic theory developed in Theorem 3.1 is applicable. We then use the Cauchy

limiting distribution to form the 95% CI of ρ which is reported in Panel A of Table 2. As

13



the 95% CI excludes the unity, suggesting that there is strong evidence of explosiveness

in the PD ratio and, hence, strong evidence of the presence of a bubble. In Panel B, we

report the empirical results based on a subsample of the NASDAQ index, namely, January

1993 to December 1999. We continue to find that ρ̂ > 1, d̂ ∈ (−0.5, 0), and that the 95%

CI suggests the strong evidence of the presence of a bubble in the subsample.

Table 2: Empirical results for the NASDAQ Index
Panel A: Sample Period: December 1989 to December 1999, n = 120

d̂a ρ̂a 95% CIa d̂b µ̂ ρ̂b 95% CIb
Pt/Dt −0.084 1.0437 [1.0370, 1.0504] -0.060 −0.1445 1.0862 [1.0860, 1.0863]

Panel B: Sample Period: January 1993 to December 1999, n = 83

d̂a ρ̂a 95% CIa d̂b µ̂ ρ̂b 95% CIb
Pt/Dt −0.079 1.0478 [1.0220, 1.0736] -0.066 −0.1865 1.0969 [1.0957, 1.0981]

6 Conclusion

In this paper, we have made two contributions to the rapidly growing literature on explo-

sive time series. First, we show that in empirical data, it is very plausible that we may

have to use a mildly explosive model with anti-persistent errors to describe the movement

of financial assets. Second, we show that, when anti-persistent errors are in a first-order

autoregression with a mildly explosive root, the Cauchy limiting distribution remains valid

for the LS estimate. To develop the limiting distribution, we following PMG’s setup by

assuming the autoregressive parameter is ρn,m = 1 + cm
n and by adopting a sequential

limit with n→∞ followed by m→∞. When the errors are anti-persistent, an extra rate

condition m = δ lnn with δ > −2d
c is needed.

We also discuss how to obtain a feasible confidence interval for the AR coeffi cient.

Empirical coverage of CI based on the Cauchy limiting distribution is presented in the

Monte Carlo studies, suggesting that the limiting distribution works well in finite sam-

ples. Finally, an empirical study of a rational bubble in the NASDAQ index is provided,

highlighting the usefulness of the proposed model and the derived asymptotic theory.
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A Appendix

Lemma A.1 (Lemma 2.3 in El Machkouri, Es-Sebaiy and Ouknine (2016)) Suppose

we have the following stochastic differential equation:

dX(t) = cX(t)dt+ dG(t), X(0) = X0 = 0,

where G(t) is a Gaussian process and c > 0. Further assume the following two assumptions

hold for G = (G(t), t ≥ 0).

1. The process G has Hölder continuous paths of order δ ∈ (0, 1];

2. For every t ≥ 0, E(G2(t)) ≤ ct2γ for some positive constants c and γ.

Then, for every t ≥ 0, we have

1

2
X2(t) = c

∫ t

0
X2(s)ds+ cZ(t)

∫ t

0
ecsdG(s) +R(t),

where

Z(t) =

∫ t

0
e−csG(s)ds,

R(t) =
1

2
G2(t)− c

∫ t

0
G2(s)ds+ c2

∫ t

0

∫ s

0
e−c(s−r)G(s)G(r)drds.

Proof of Lemma 3.2 Throughout the proof, we assume n → ∞ with m fixed. By

backward substitutions, we can write

ybnrc =
1− ρbnrcn,m

1− ρn,m
µn + ρbnrcn,m y0 +

bnrc∑
j=1

ρbnrc−jn,m uj .

Note that ρn,m = exp( cmn ) + Rρ, with Rρ = −
∑∞

k=2

(
cm
n

)k
/k! = O(n−2). Applying the

binomial expansion, we have

ρbnrcn,m =
(

exp
(cm
n

)
+Rρ

)bnrc
=

bnrc∑
k=0

(
bnrc
k

)
exp

(cm
n

)bnrc−k
Rkρ

= exp
(cm
n

)bnrc
+

bnrc∑
k=1

(
bnrc
k

)
exp

(cm
n

)bnrc−k
Rkρ.
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We will show for any k ≥ 1,(
bnrc
k

)
exp

(cm
n

)bnrc−k
Rkρ → 0. (20)

To do so, note that
(bnrc
k

)
= O(nk), exp( cmn )bnrc−k = O(1), and Rkρ = exp(k lnRρ) =

exp
(
k lnO(n−2)

)
= exp (−2k ln(O(n))) . Hence,(
nr

k

)
exp

(cm
n

)nr−k
Rkρ = O[nk exp(−2k ln(O(n)))].

Moreover,

ln[nk exp(−2k ln(n))] = k ln(n)− 2k ln(n) = −k ln(n)→ −∞.

This proves (20).

Letting k∗ = arg maxk∈{2,...,n}
(
nr
k

)
exp

(
cm
n

)nr−k
Rkρ, we have

bnrc∑
k=2

(
bnrc
k

)
exp

(cm
n

)bnrc−k
Rkρ = O[n1+k∗ exp(−2k∗ ln(O(n)))]→ 0, (21)

because

ln[n1+k∗ exp(−2k∗ ln(n))] = (k∗ + 1− 2k∗) ln(n)

= (1− k∗) lnn→ −∞ since k∗ ≥ 2.

From (20) and (21), we have

bnrc∑
k=1

(
bnrc
k

)
exp

(cm
n

)bnrc−k
Rkρ → 0.

So ρbnrcn,m = exp
(
cm
n

)bnrc
+ o(1). Since bnrc /nr → 1, we can write

ybnrc =
1− exp(cmr)

−cm/n µn + (exp (cmr) + o(1))y0 +

bnrc∑
j=1

ρbnrc−jn,m uj + o(1). (22)

For the third term in (22), we can show that ρbnrc−jn,m = exp
(
cm
n

)bnrc−j
+ o(1) which

allows us to express

bnrc∑
j=1

ρbnrc−jn,m uj =

bnrc∑
j=1

(
exp

(cm
n

)bnrc−j
+ o(1)

)
uj
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=

bnrc∑
j=1

exp
(cm
n

)bnrc−j
uj + o(1)

bnrc∑
j=1

uj

=

bnrc∑
j=1

exp
(cm
n

)bnrc−j
uj + op(n

1/2+d).

We obtain the third equality by using (9) where
∑bnrc

j=1 uj = Op(n
1/2+d).

Eventually, we can rewrite (22) as

ybnrc = nrµn + exp (cmr) y0 +

bnrc∑
j=1

exp
(cm
n

)bnrc−j
uj + op(n

1/2+d). (23)

Let Xn(r) = 1
n1/2+dς

Sbnrc with Sbnrc =
∑bnrc

j=1 uj . Recall that under Model (6), y0 =

op(n
1/2+d), µn = µ/nϑ with ϑ > 1/2− d. The first two terms in (23) vanish as n→∞. If

we multiply both sides in (23) by n−1/2−d, we have

n−1/2−dybnrc = ς

bnrc∑
j=1

e(bnrc−j)cm/n
∫ j/n

(j−1)/n
dXn(s) + op(1)

= ς

bnrc∑
j=1

∫ j/n

(j−1)/n
e(r−s)cmdXn(s) + op(1)

= ς

∫ r

0
e(r−s)cmdXn(s) + op(1)

⇒ ς

∫ r

0
e(r−s)cmdBH(s) := ςJHcm(r).

We have applied Lemma 3.1 with the continuous mapping theorem (Billingsley, 1968, p.

30) to obtain the last result.

For the terms involving
∑n

t=1 yt and
∑n

t=1 y
2
t−1, note that we can write

n−3/2−d
n∑
t=1

yt =
1

n

n∑
t=1

(
n−1/2−dyt

)
,

n−2−2d
n∑
t=1

y2
t =

1

n

n∑
t=1

(
n−1/2−dyt

)2
.

By applying the continuous mapping theorem, we obtain the second claim and the third

claim in Lemma 3.2.

For the last claim, after squaring yt and summing over t, we have

n∑
t=1

y2
t = ρ2

n,m

n∑
t=1

y2
t−1 + 2ρn,m

n∑
t=1

yt−1ut +

n∑
t=1

u2
t
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+nµ2
n + 2µnρn,m

n∑
t=1

yt−1 + 2µn

n∑
t=1

ut,

which leads to

y2
n =

2cm

n

n∑
t=1

y2
t−1 + 2ρn,m

n∑
t=1

yt−1ut +

n∑
t=1

u2
t

+
(cm)2

n2

n∑
t=1

y2
t−1 + nµ2

n + 2µnρn,m

n∑
t=1

yt−1 + 2µn

n∑
t=1

ut.

Thus, we have

2ρn,m

n∑
t=1

yt−1ut = y2
n −

2cm

n

n∑
t=1

y2
t−1 −

n∑
t=1

u2
t −

(cm)2

n2

n∑
t=1

y2
t−1

−nµ2
n − 2µnρn,m

n∑
t=1

yt−1 − 2µn

n∑
t=1

ut,

2

n1+2d

n∑
t=1

yt−1ut =
1

n1+2d
y2
n −

2cm

n2+2d

n∑
t=1

y2
t−1 −

1

n2d

1

n

n∑
t=1

u2
t

− nµ2
n

n1+2d
− 2

µn
n1+2d

n∑
t=1

yt−1 − 2
µn

n1+2d

n∑
t=1

ut + op(1),

and

2

n1+2d

n∑
t=1

yt−1ut +
1

n2d

1

n

n∑
t=1

u2
t =

1

n1+2d
y2
n −

2cm

n2+2d

n∑
t=1

y2
t−1 −

nµ2
n

n1+2d

−2
µn

n1+2d

n∑
t=1

yt−1 − 2
µn

n1+2d

n∑
t=1

ut + op(1),

as ρn,m → 1, and (cm)2

n2
∑n

t=1 y
2
t−1 = Op(n

2d) is dominated by 2cm
n

∑n
t=1 y

2
t−1 = Op(n

1+2d)

when m is fixed.

Note that 1
n

∑n
t=1 u

2
t
as→ E[u2

t ] by the ergodic theorem and

nµ2
n

n1+2d
=
n−2d

n2θ
µ2 <

n1−2d

n2θ
µ2 =

(
n1/2−d

nϑ

)2

µ2 → 0,

µn
n1+2d

n∑
t=1

yt−1 = µ
1

nϑ
n3/2+d

n1+2d

(
1

n3/2+d

n∑
t=1

yt−1

)
= µ

n1/2−d

nϑ
Op(1) = op(1),

µn
n1+2d

n∑
t=1

ut = µ
1

nϑ
n1/2+d

n1+2d

(
1

n1/2+d

n∑
t=1

ut

)
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= µn−1/2−d−ϑOp(1) = op(1) since ϑ > 0, and d < 1/2.

These results lead to

2

n1+2d

n∑
t=1

yt−1ut +
1

n2d

1

n

n∑
t=1

u2
t ⇒ ς2

[(
JHcm(1)

)2 − 2cm

∫ 1

0

(
JHcm(r)

)2
dr

]
.

So we have

1

n1+2d

n∑
t=1

yt−1ut +
1

n2d

1

2n

n∑
t=1

u2
t ⇒ ς2

[
1

2

(
JHcm(1)

)2 − cm∫ 1

0
(JHcm(r))2dr

]
= ς2

[
cmZ(1)

∫ 1

0
ecmsdBH(s) +R(1)

]
.

where the last step follows from Lemma A.1. This completes the proof of Lemma 3.2.

To analyze the asymptotics when m → ∞, we introduce the following lemma, which

documents some results of distributional equivalence. By the self-similarity property of

fBM, we have BH
(
t
m

) d
=
(

1
m

)H
BH(t). Let B̃H(t) := mHBH

(
t
m

)
.

Lemma A.2 Applying the self-similarity property of fBM, we can obtain the following:

1.
∫ 1

0 J
H
cm(r)drBH(1)

d
= 1

m2H+1

∫m
0 J̃Hc (s)dsB̃H(m);

2.
(∫ 1

0 J
H
cm(r)dr

)2 d
= 1

m2H+2

(∫m
0 J̃Hc (s)ds

)2
;

3.
∫ 1

0 (JHcm(r))2dr
d
= 1

m2H+1

∫m
0

(
J̃Hc (s)

)2
ds;

4. cmZ(1)
∫ 1

0 e
cmsdBH(s) +R(1)

d
= 1

m2H

(
cZ̃(m)

∫m
0 ecsdB̃H(s) + R̃(m)

)
,

where

J̃Hc (r) =

∫ r

0
ec(r−s)dB̃H(s),

Z̃(m) =

∫ m

0
e−csB̃H(s)ds,

R̃(m) =
1

2

(
B̃H(m)

)2
− c

∫ m

0

(
B̃H(s)

)2
ds+ c2

∫ m

0

∫ r

0
ec(r−s)B̃H(r)B̃H(s)drds.

Proof of Lemma A.2

We only need to show the following results are correct:

1. Z(1)
d
= 1

mH+1 Z̃(m);
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2.
∫ 1

0 e
cmsdBH(s)

d
= 1

mH

∫m
0 ecsdB̃H(s);

3.
∫ 1

0

(
BH(s)

)2
ds

d
= 1

m2H+1

∫m
0

(
B̃H(s)

)2
ds;

4.
∫ 1

0 J
H
cm(s)ds

d
= 1

mH+1

∫m
0 J̃Hc (s)ds;

5.
∫ 1

0 (JHcm(s))2ds
d
= 1

m2H+1

∫m
0

(
J̃Hc (s)

)2
ds;

6. m2
∫ 1

0

∫ s
0 e

cm(r−s)BH(r)BH(s)drds
d
= 1

m2H

∫m
0

∫ s
0 e

c(r−s)B̃H(r)B̃H(s)drds.

As the steps to prove the above results are similar, we shall only prove the last two

claims. For the fifth claim, we have∫ 1

0

(
JHcm(r)

)2
dr =

∫ 1

0

(∫ r

0
ecm(r−s)dBH(s)

)2

dr

=

∫ 1

0
e2cmr

(∫ r

0
e−cmsdBH(s)

)2

dr

=

∫ 1

0
e2cmr

(∫ mr

0
e−cvdBH

( v
m

))2

dr

=
1

m2H

∫ 1

0
e2cmr

(∫ mr

0
e−cvd

(
mHBH

( v
m

)))2

dr

=
1

m2H

∫ m

0
e2cu

(∫ u

0
e−cvdB̃H(v)

)2

d
( u
m

)
=

1

m2H+1

∫ m

0

(∫ u

0
ec(u−v)dB̃H(v)

)2

du

=
1

m2H+1

∫ m

0

(
J̃Hc (u)

)2
du.

For the sixth result, we have

m2

∫ 1

0

∫ s

0
ecm(r−s)BH(r)BH(s)drds = m2

∫ 1

0
e−cms

(∫ s

0
ecmrBH(r)dr

)
BH(s)ds

= m2

∫ 1

0
e−cms

(∫ ms

0
ecrBH

( r
m

)
d
( r
m

))
BH(s)ds

=
m

mH

∫ m

0
e−cv

(∫ ms

0
ecrB̃H(r)dr

)
BH

( v
m

)
d
( v
m

)
=

1

m2H

∫ m

0
e−cv

(∫ v

0
ecrB̃H(r)dr

)
B̃H(v)dv

=
1

m2H

∫ m

0

∫ v

0
ec(r−v)B̃H(r)B̃H(v)drdv.

Proof of Theorem 3.1
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To avoid confusion, we now refer n→∞ with m fixed as the “fix-m asymptotics”, and

n→∞ followed by m→∞ as the “sequential asymptotics”.

From (7) and (8), we can have the following expressions for the normalized centered

LS estimates

ecm

m
n(ρ̂a − ρ) =

ecm

m
n

(∑n
t=1 yt−1ut + 1

2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1

−
1
2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1

)

=
ecm

m
n

∑n
t=1 yt−1ut + 1

2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1

− ecm

m
Ba
n

:=
ecm

m
Aan −

ecm

m
Ba
n, (24)

where Aan = n
∑n
t=1 yt−1ut+

1
2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1

and Ba
n = n

2

∑n
t=1 u

2
t /
∑n

t=1 y
2
t−1.

Similarly, we can express

ecm

m
n(ρ̂b − ρ) =

ecm

m
n


∑n
t=1 yt−1ut−

1
n

∑n
t=1 yt−1

∑n
t=1 ut+

1
2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1−

1
n(
∑n
t=1 yt−1)

2

−
1
2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1−

1
n(
∑n
t=1 yt−1)

2


:=

ecm

m
Abn −

ecm

m
Bb
n, (25)

where

Abn = n

∑n
t=1 yt−1ut − 1

n

∑n
t=1 yt−1

∑n
t=1 ut + 1

2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1 − 1

n (
∑n

t=1 yt−1)2 , Bb
n = n

1
2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1 − 1

n (
∑n

t=1 yt−1)2 .

Since the proofs of the sequential asympotics for e
cm

m n(ρ̂a−ρ) are very similar to those

for e
cm

m n(ρ̂b−ρ), we shall only prove the later. In fact, the only difference between the two

estimates is the extra terms induced by the inclusion of an intercept in the LS regression.

As we proceed, we will see the extra terms vanish in the sequential asympotics.

We first show the sequential limit of e
cm

m Abn in (25). Applying Lemma 3.2 and Lemma

A.2, as n→∞ with fixed m,

ecm

m
Abn ⇒ ecm

m

cmZ(1)
∫ 1

0 e
cmsdBH(s) +R(1)−

∫ 1
0 J

H
cm(r)drBH(1)∫ 1

0 (JHcm(r))2dr −
(∫ 1

0 J
H
cm(r)dr

)2

d
=

ecm

m

1
m2H

(
cZ̃(m)

∫m
0 e−crB̃H(r)dr + R̃(m)− 1

m

∫m
0 JHc (s)dsB̃H(m)

)
1

m2H+1

(∫m
0 J̃Hc (s)2ds− 1

m

(∫m
0 J̃Hc (s)ds

)2
)

= ecm
cZ̃(m)

∫m
0 e−crB̃H(r)dr + R̃(m)− 1

m

∫m
0 JHc (s)dsB̃H(m)∫m

0 J̃Hc (s)2ds− 1
m

(∫m
0 J̃Hc (s)ds

)2 . (26)
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For the sake of notational simplicity, we now introduce the following process with

m ≥ 0,

ξ(m) =

∫ m

0
e−crdB̃H(r), (27)

where the integral is interpreted in the Young sense.

From Lemma 2.1 of El Machkouri, Es-Sebaiy and Ouknine (2016), we obtain a well-

defined limit Z̃(∞) =
∫∞

0 e−crB̃H(r)dr. As m→∞, we have

Z̃(m)
as→ Z̃(∞) and ξ(m)

as→ ξ(∞) = cZ̃(∞). (28)

These two results are similar to those obtained by the martingale convergence theorem

used in PMG when m→∞.

By the definition of the Young integral, we obtain B̃H(0) = 0. By the definition of

Z̃(m), we have

ξ(m) = e−cmB̃H(m) + c

∫ m

0
e−crB̃H(r)dr = e−cmB̃H(m) + cZ̃(m),

J̃Hc (r) =

∫ r

0
ec(r−s)dB̃H(s) = ecr

∫ r

0
e−csdB̃H(s) = ecrξ(r).

So we can express (26) as

ecm

(
cZ̃(m)

∫m
0 ecsdB̃H(s) + R̃(m)

)
− ecsξ(s)ds 1

mB̃
H(m)∫m

0 e2csξ2(s)ds− 1
m

(
e−cm

∫m
0 ecsξ(s)ds

)2
=

e−cm
[(
cZ̃(m)

∫m
0 ecsdB̃H(s) + R̃(m)

)
− ecsξ(s)ds 1

mB̃
H(m)

]
e−2cm

[∫m
0 e2csξ2(s)ds− 1

m

(
e−cm

∫m
0 ecsξ(s)ds

)2]
=

e−cm
(
cZ̃(m)

∫m
0 ecsdB̃H(s) + R̃(m)

)
− ϕ′1

e−2cm
[∫m

0 e2csξ2(s)ds
]
− ϕ′2

, (29)

where ϕ′1 =
(
e−cm

∫m
0 ecsξ(s)ds

) (
1
mB̃

H(m)
)

:= ϕ′1a × ϕ′1b, ϕ′2 = 1
m

(
e−cm

∫m
0 ecsξ(s)ds

)2.
By applying (28) and L’Hospital’s rule, as m→∞,

ϕ′1a = e−cm
∫ m

0
ecsξ(s)ds

as→ Z̃(∞) . (30)

Since E
(

1
mB̃

H(m)
)

= 0, V ar
(

1
mB̃

H(m)
)

= m2H

m2 → 0, as m→∞,

ϕ′1b =
1

m
B̃H(m)

p→ 0.
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Moreover, the continuous mapping theorem and Equation (30) imply that, as m→∞,(
e−cm

∫ m

0
ecsξ(s)ds

)2
as→ Z̃2(∞).

As 1
m → 0, ϕ′2

p→ 0. Note that ϕ′1 and ϕ
′
2 are the extra terms due to the inclusion of

the intercept in the LS regression. As they vanish, e
cm

m Aan and
ecm

m Abn are asymptotically

equivalent in the sequential asymptotics. Therefore, as m→∞, we can write (29) as,

e−cm
(
cZ̃(m)

∫m
0 ecsdB̃H(s) + R̃(m)

)
e−2cm

∫m
0 e2csξ2(s)ds

+ op(1) (31)

To derive the sequential limit of e
cm

m Abn, we need the following lemma.

Lemma A.3 let ω and η be two independent standard normal random variables. Then,

as m→∞, we obtain:

1. e−2cm
∫m

0 e2csξ2(s)ds
as→ c

2 Z̃
2(∞);

2. cZ̃(m)
(
e−cm

∫m
0 ecsdB̃H(s)

)
⇒ cZ̃(∞)

√
HΓ(2H)
c2H

η;

3. ξ(m)
as→ ξ(∞) =

√
HΓ(2H)
c2H

ω;

4. e−cmR̃(m)
p→ 0.

The first result is immediate after applying (28) and L’Hospital’s rule. The last three

results can be obtained by applying Lemma 2.1, Lemma 2.2 and Lemma 2.4 of El Machk-

ouri, Es-Sebaiy and Ouknine (2016). Hence, as m → ∞ and using ξ(∞) = cZ̃(∞), we

have

e−cm
(
cZ̃(m)

∫m
0 ecsdB̃H(s) + R̃(m)

)
e−2cm

∫m
0 e2csξ2(s)ds

+ op(1) ⇒
cZ̃(∞)

√
HΓ(2H)
c2H

η

c
2 Z̃

2(∞)

=
ξ(∞)

√
HΓ(2H)
c2H

η

1
2cξ

2(∞)

= 2c× η

ω
= 2c× C, (32)

where C is the standard Cauchy variate.

We now analyze the sequential limit of e
cm

m Bb
n in (25). A standard calculation shows

ecm

m
Bb
n =

ecm

m
n

1
2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1 − 1

n (
∑n

t=1 yt−1)2
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=
ecm

m

n−1−2d 1
2

∑n
t=1 u

2
t

n−2−2d
(∑n

t=1 y
2
t−1 − 1

n (
∑n

t=1 yt−1)2
)

=
e−cm

e−2cm

m2H

m2H+1

Op(n
−2d)

Op

(
e2cm

m2H+1

) as n→∞
= Op

(
m2Hn−2d

ecm

)
.

The third equality is established by 1
n

∑n
t=1 u

2
t = Oas(1), Lemma 3.2, Lemma A.2 and

Lemma A.3. The assumption m = δ lnn, with δ > −2d
c implies that

m2Hn−2d

ecm → 0. To see

this,

ln
m2Hn−2d

ecm
= 2H lnm− 2d lnn− cm

= 2H (ln δ + ln lnn)− 2d lnn− cδ lnn

= −(cδ + 2d) lnn+ 2H (ln δ + ln lnn)

→ −∞.

Hence,
ecm

m
Bb
n = op(1). (33)

This suggests that when n→∞ followed by m→∞ and when m = δ lnn with δ > −2d
c ,

1
n1+2d

1
2

∑n
t=1 u

2
t is dominated by

1
n1+2d

∑n
t=1 yt−1ut.

Equations (25), (32) and (33) imply that the sequential limit of 1
2c
ecm

m n(ρ̂b − ρ) is the

standard Cauchy random variable C.
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