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Generalized Jump Regressions for Local Moments
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ABSTRACT
We develop new high-frequency-based inference procedures for analyzing the relationship between jumps
in instantaneous moments of stochastic processes. The estimation consists of two steps: the nonparametric
determination of the jumps as differences in local averages, followed by a minimum-distance type estima-
tion of the parameters of interest under general loss functions that include both least-square and more
robust quantile regressions as special cases. The resulting asymptotic distribution of the estimator, derived
under an infill asymptotic setting, is highly nonstandard and generally not mixed normal. In addition, we
establish the validity of a novel bootstrap algorithm for making feasible inference including bias-correction.
The new methods are applied in a study on the relationship between trading intensity and spot volatility in
the U.S. equity market at the time of important macroeconomic news announcement.
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1. Introduction

Many stochastic processes of practical empirical interest exhibit
jump-like behavior. We propose a new statistical framework
for analyzing the relationship between such jumps and other
explanatory variables, as well as the relationship between simul-
taneously occurring jumps in multiple stochastic processes. Our
approach relies crucially on the availability of high-frequency
data for nonparametrically estimating the jumps together with
a general minimum distance type estimator and accompanying
bootstrap procedure for making robust inference about the
parameters describing the relationship of interest.

Our new procedure is broadly applicable for studying the
relationship between jumps of instantaneous moment processes
associated with semimartingales. In financial applications,
arguably the most important example of these instantaneous
moments is the spot variance of asset prices, formally defined
as the local second moment of the return process. However,
the local moment processes of other market variables such as
trading volume, the time between trades, and quoted spreads, to
name a few, are also of empirical interest as measures of trading
activity and market liquidity. Jumps in these local moments
are often triggered by macroeconomic news announcements
occurring at specific times.

To illustrate, Figure 1 plots the price and trading volume of
the S&P 500 E-mini futures contract on September 18, 2013,
when the Federal Open Market Committee (FOMC) announced
its decision not to taper the quantitative easing in place at the
time. As the figure clearly shows, following the 2 p.m. announce-
ment there was a sharp increase in the volatility of the price (i.e.,
a positive volatility jump). This increase in the volatility was
accompanied by an equally abrupt increase in trading activity
(i.e., a positive volume jump). These types of jumps associated
with clearly identifiable news events provide an ideal framework
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Supplementary materials for this article are available online. Please go to www.tandfonline.com/UBES.

for studying the economic mechanisms at work, as exemplified
by the economic theory of Kandel and Pearson (1995) and
the recent empirical study of Bollerslev, Li, and Xue (2018)
concerning the relationship between jumps in the spot volatil-
ity and volume intensity at FOMC announcement times. This
same “identification-by-discontinuity” empirical strategy using
jumps has also been used in many other settings (see, e.g., Jacod
and Todorov 2010; Alexeev, Dungey, and Yao 2017; Bibinger,
Neely, and Winkelmann 2017; Li, Todorov, and Tauchen 2017a,
among others).

The key statistical challenge in analyzing these types of
jump relations stems from the fact that the jumps are latent
processes. Only if the full continuous-time sample path of
the underlying processes were available would the jumps be
exactly identified. In practice, however, empirical researchers
are almost always limited to discretely, albeit sometimes
very finely, sampled data. As such, the jumps are invariably
latent quantities that need to be estimated. Moreover, in our
application, the local moments (such as the spot volatility of
an asset) are themselves latent, creating an additional source
of estimation error uncertainty. Our new two-step estimation
procedure for addressing these issues builds on, and importantly
extends, the least-squares approach of Bollerslev, Li, and Xue
(2018) to allow for the use of general convex loss functions
and corresponding minimum-distance type estimators to
assess the relationship between the first-stage jump estimates.
Notably, this includes lin-lin loss, in which case the second-
stage may be implemented via quantile regressions, as a special
case.

Our motivation for considering more general loss functions
is 2-fold. Firstly, compared to the quadratic loss employed by
Bollerslev, Li, and Xue (2018), the lin-lin loss is known to be
more robust against influential observations in the sense of

© 2020 American Statistical Association
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Figure 1. Price and Volume around an FOMC announcement. NOTE: The figure shows the price and volume of the S&P 500 E-mini futures on September 18, 2013. On that
day, the FOMC announced its decision not to taper the quantitative easing in effect at the time.

Huber and Ronchetti (2009) (see, e.g., Koenker and Bassett
1978; Koenker 2005). This type of robustness is especially
relevant in the high-frequency data setting to help guard
against overly influential “observations” associated with “noisy”
data and potentially imprecise first-stage nonparametric jump
estimates. Second, in parallel to standard quantile regressions,
estimators based on different lin-lin losses have the potential
to reveal heterogeneous responses across quantiles (see, e.g.,
Koenker and Bassett 1982). As such, the different estimates may
be used as a diagnostic tool for examining the assumption of a
homogeneous response that is routinely, but implicitly, imposed
in most empirical work. In our leading empirical example,
discussed further below, we find that this is indeed a relevant
concern.

The generalization to accommodate more general, possibly
nonsmooth loss functions like lin-lin, also requires the use of a
distinctly different asymptotic theory and method of proof from
that of existing work. The strategy typically adopted to address
the complications stemming from the use of nonsmooth loss
functions relies on a quadratic expansion of an appropriately
defined limiting criterion function, as the latter will be smooth
in conventional settings (see, e.g., Huber 1967; Pollard 1985;
Koenker 2005). However, this approach does not work in the
present setting, as the aggregation in the second-step estimation
is based on only a fixed number of jumps. Hence, the non-
smoothness of the loss function cannot simply be “averaged
away.” Instead, we derive the asymptotic distribution of our new
estimator (in terms of stable convergence in law) using a novel
convexity argument (see, e.g., Knight 1989, 1998), in which the
distribution is characterized as the argmin of a localized version
of the limiting objective function.

Our theoretical results include those of Bollerslev, Li, and Xue
(2018) based on the quadratic loss, for which the asymptotic dis-
tribution is mixed normal, as a special case. However, the mixed
normality property that obtains under the quadratic loss does
not hold true more generally with non-smooth loss functions,
like lin-lin. Our theoretical arguments are also related to those
underlying the so-called jump regressions recently analyzed by
Li, Todorov, and Tauchen (2017a, 2017b). In contrast to that

setting, however, which involves the jumps inferred from dis-
cretely observable processes, our setting entails an “extra layer”
of latency associated with the nonparametric estimation of the
local moment processes, in turn resulting in an overall slower
rate of convergence.

The nonstandard asymptotic distribution of the proposed
estimator also renders routine “studentization” infeasible.
Instead, we propose an easy-to-implement bootstrap algorithm
as a natural alternative for conducting feasible inference (see,
e.g., Efron and Tibshirani 1994; Davison and Hinkley 1997; Hall
1997). The bootstrap consists of two steps: resampling the data
in an iid fashion within local windows around the jump times,
followed by repeating the estimation using the resampled data
(after proper recentering). The use of a local resampling scheme
conveniently addresses the issue of data heterogeneity, which
constitutes one of the key complications for bootstrapping in
the high-frequency data setting (see Gonçalves and Meddahi
2009). We prove the asymptotic validity of the bootstrap in
this nonstandard statistical setting under general conditions
that permit both data heterogeneity and strong persistence. In
particular, we do not need the data to be actually iid for the
bootstrap to work. As such, our approach is distinctly different
from the bootstrap used in conventional quantile regressions
(see, e.g., Angelis, Hall, and Young 1993; Hahn 1995). It also
differs from the block-bootstrap sometimes used for capturing
time-series dependency (see, e.g., Carlstein 1986; Kunsch 1989).

Going one step further, we demonstrate how the resam-
pled bootstrap estimates readily allow for the implementation
of finite-sample bias-correction (Efron and Tibshirani 1994;
Horowitz 2001). An empirically realistically calibrated Monte
Carlo experiment in the supplemental appendix further shows
that the resulting bootstrap confidence intervals have good cov-
erage properties, and that the bias-correction is indeed useful in
reducing any finite-sample biases.

We apply the new method to study the relationship between
the volume and volatility jumps, and how that relationship is
affected by investors’ disagreement. Consistent with the impli-
cations from an extensive theoretical literature in economics
(see, e.g., Kandel and Pearson 1995), we find that the volume-
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volatility elasticity is generally below unity and decreasing in
the level of investors’ disagreement. These findings confirm the
recent results of Bollerslev, Li, and Xue (2018). Importantly,
however, we also find that these relations not only hold true “on
average,” but across a broad range of different quantiles. At the
same time, we also uncover notable systematic heterogeneity in
the elasticity estimates for certain types of announcements, thus
directly highlighting the empirical relevance of using the more
general loss functions and corresponding inference procedures
developed here. In the supplemental appendix, we further illus-
trate the method with another empirical application, in which
we study how the estimated jumps in the spot volatility and
volume intensity around macroeconomic news announcements
are related to the magnitude of the announcement surprises.

The rest of the article is organized as follows. Section 2
introduces the statistical setting and describes a few motivating
examples. Section 3 presents the statistical inference methods.
Section 4 details our main empirical findings. Section 5 con-
cludes. An online supplemental appendix contains all proofs,
and additional simulation and empirical results.

2. The Setting

2.1. Underlying Stochastic Processes

We begin by introducing the general statistical setting. We
assume that the data are observed at discrete times i�n, 0 ≤ i ≤
[T/�n], and that the sampling interval �n → 0 asymptotically
over the fixed sample span [0, T]. This hypothetical setting
of ever finer sampled data over a fixed time-interval is now
standard in the analysis of high-frequency intraday financial
data (see, e.g., Jacod and Protter 2012; Aït-Sahalia and Jacod
2014). Our statistical analysis concerns two types of high-
frequency data: asset prices, which following standard practice
we model as a semimartingale, and other possibly discrete-
valued market variables, for which we rely on a more general
state-space representation.

Let P denote the (log) price of an asset. We will assume that
P is defined on some probability space (�,F ,P) and can be
described by a continuous-time Itô semimartingale of the form,

dPt = αtdt + σtdWt + dJt , (1)

where αt denotes the drift process, σt is the stochastic volatility
process, Wt is a standard Brownian motion, and Jt collects the
jumps in the price process. We denote the spot variance process
by ct ≡ σ 2

t , which is the instantaneous variance of the diffusive
price moves, that is,

ct = Et
[
(σtdWt)

2]/ dt. (2)

We relegate the specifics of the regularity conditions concerning
the σt volatility process to the supplemental appendix. However,
the assumptions are extremely general, allowing for intraday
periodicity, stochastic volatility-of-volatility, volatility jumps,
leverage effects, and long-memory type dynamic dependencies.

In contrast to the (log) price process, other types of market
data have only limited support. For instance, trading volume or
quote spreads are typically integer multiples of a given lot or tick
size. This in turn necessitates a different modeling framework
from the Itô semimartingale in (1). Hence, following Li and

Xiu (2016) and Bollerslev, Li, and Xue (2018), we consider a
univariate process V generated by the state-space model on the
same discrete-time sampling grid,

Vi�n = V
(
ζi�n , εi

)
, 0 ≤ i ≤ [T/�n] , (3)

where ζi�n is a latent state process, εi is a random shock, and the
functionV (·, ·) transforms these two variables into the observed
time series (Vi�n)i≥0. By integrating out the random shock εi
with respect to its distribution Fε(·), one naturally obtains the
instantaneous mean process of V , that is,

mi�n ≡
∫

V
(
ζi�n , ε

)
Fε(dε). (4)

This type of state-space representation embodies two useful
features that we exploit in our statistical inference. First, by
assuming that the shocks (εi) are iid, the observations (Vi�n)

become conditionally (given the state process ζ ) independent.
However, unconditionally, V is still allowed to be highly serially
dependent (and heterogeneous) through the state process ζ .
Second, we do not need to impose any specific assumptions on
the transformation function V (·, ·). Instead, we merely require
some rather mild smoothness conditions on the m and ζ pro-
cesses to allow for the construction of valid nonparametric
inference procedures (see Assumptions A1 and A3 in the sup-
plemental appendix for further technical details).

Our analysis focuses on the jumps in the local instantaneous
moments, that is, the c and m processes. Formally, for a generic
process Z, its jump at time τ is defined by �Zτ ≡ Zτ − Zτ−,
where Zτ− = lims↗τ Zs is the left limit. We are primarily
concerned with jumps that occur at known (announcement)
times, corresponding to the setup commonly used in event-type
studies. However, the proposed statistical methods remain valid
with a finite set of unobserved jump times, provided that the
jump times may be recovered with probability approaching one
up to the sampling precision �n. As a case in point, in the setting
of Li, Todorov, and Tauchen (2017a), the times of “large” price
jumps may be consistently recovered using the thresholding
technique of Mancini (2001).

2.2. Motivating Examples

Intuitively, the jumps in economic variables may be seen as
capturing “abnormal” moves induced by the arrival of new
“lumpy” information, a prime example being regularly sched-
uled macroeconomic news announcements. Unlike “everyday”
trading environments, in which it is difficult to clearly pinpoint
specific shocks that drive the market, important macroeco-
nomic announcements provide a convenient “laboratory” for
isolating well-defined news from other confounding factors
(see, e.g., the discussion in Andersen et al. (2003)). Correspond-
ingly, insights as to what drives the jumps and the relationship
among the jumps in different variables can help shed new light
on the underlying economic mechanisms at work.

To fix ideas, we discuss two motivating examples. We will
later return to these examples in our empirical analysis. Both
examples concern the price volatility σ and the volume intensity
m, defined as the (square root of) the local second moment
of returns and the local mean of the observed trading volume,
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respectively. For each announcement time τ , we denote the
jumps in the log levels of these local moment processes as,

� log (στ ) ≡ log(στ ) − log(στ−),
� log (mτ ) ≡ log(mτ ) − log(mτ−). (5)

Empirically, as illustrated in Figure 1, � log (στ ) and � log (mτ )

are both generally positive at the time of important macroeco-
nomic news announcements.

In a recent article, Law, Song, and Yaron (2018) studied how
the surprise component of an announcement determine price
jumps. Taking this analysis one step further, it is possible to
examine more broadly the relationship between surprises and
jumps in local moments, such as the volatility and the volume
intensity. This empirical question in turn motivates the follow-
ing specification,

� log (Yτ ) = θ�Xτ , Y ∈ {σ , m}, (6)

where the explanatory variable Xτ would include proxies for the
announcement surprises, and possibly other control variables.
The expression in Equation (6) is naturally interpreted as an
instantaneous moment condition, necessitating the use of spe-
cialized inference procedures.

The study of volume and volatility jumps is also related
to the large existing literature on volume-volatility relations
more generally (see, e.g., Clark 1973; Tauchen and Pitts 1983).
In particular, following the analysis of Bollerslev, Li, and Xue
(2018), the oft-cited Kandel–Pearson equilibrium model (Kan-
del and Pearson 1995) predicts that the volume-volatility elastic-
ity should be below unity, and a decreasing function of the level
of investor disagreement. Meanwhile, since the Kandel–Pearson
theory concerns “abnormal moves” of market variables induced
by news announcements, this naturally suggests identifying the
elasticity as the slope coefficient θ2 in the following log-linear
specification (this is also the specification adopted by Bollerslev,
Li, and Xue (2018)),

� log (mτ ) = θ1 + θ2� log (στ ) . (7)

In parallel to Equation (6), this baseline specification may also
be extended to include covariates. Specifically, one may inves-
tigate the hypothesis that the elasticity is indeed a decreasing
function of the level of investors’ disagreement, by parameteriz-
ing the elasticity (and the intercept) as a linear function of other
explanatory variables (X1,τ , X2,τ ), that is,

� log (mτ ) = θ�
1 X1,τ + (θ�

2 X2,τ ) � log (στ ) . (8)

A test of the aforementioned hypothesis thus amounts to testing
whether the component of the θ2 parameter associated with the
investor disagreement proxy is negative.

The instantaneous moment conditions in (6) and (8) may
both be seen as specific examples of the following more general
form,

G (mτ−, mτ , cτ−, cτ ) =
K∑

k=1
θ�

k Xk,τ Hk (mτ−, mτ , cτ−, cτ ) ,

(9)
where G (·) and Hk (·) are continuously differentiable functions,
and θ = (θ1, . . . , θK) denotes the parameter vector of interest.
We turn next to the development of the new statistical methods
designed to allow for robust inference in this general setting.

3. Statistical Methods

3.1. Estimation Procedure

The practical estimation of θ is complicated by the fact that the
local moments σ and m (and hence their jumps) are not directly
observable. In response to this, we rely on a two-step estimation
procedure in which we first recover the jumps nonparametri-
cally through the use of properly designed “spot” estimators,
followed by a minimum-distance type estimation of θ .

Specifically, for each announcement time τ associated with
the jumps, let i(τ ) = τ/�n + 1 denote the corresponding
observation count. The volume intensity and spot volatility
after/before time τ (denoted by +/−) are then estimated by,

m̂τ± ≡ 1
kn

kn∑
j=1

V(i(τ )±j)�n , ĉτ± ≡ 1
kn�n

kn∑
j=1

r2
(i(τ )±j), (10)

where ri ≡ Pi�n − P(i−1)�n denotes the ith return, and the
integer sequence kn used in determining the size of the local
window formally satisfies kn → ∞ and kn�n → 0. In
general, one could also apply the thresholding technique of
Mancini (2001) to construct a jump-robust estimator for the
spot variance, although this is not formally needed under our
maintained assumption of finitely active jumps.

Armed with these spot estimators, the sample analogue of (8)
may be expressed as,

̂� log (mτ ) = θ�
1 X1,τ + (θ�

2 X2,τ ) ̂� log (στ ) + eτ , (11)
with the corresponding jump estimates defined by,

̂� log (mτ ) ≡ log
(
m̂τ+

) − log
(
m̂τ−

)
,

̂� log (στ ) ≡ (
log

(
ĉτ+

) − log
(
ĉτ−

))
/2. (12)

Note that ct = σ 2
t implies log(σt) = log(ct)/2. The error term

eτ in (11) arises from the estimation errors associated with the
local moments c and m (e.g., ĉτ− − cτ−). Similarly, the sample
analogue for the more general possibly nonlinear functional
form in (9) may be expressed as,

G
(
m̂τ−, m̂τ+, ĉτ−, ĉτ+

)
(13)

=
K∑

k=1
θ�

k Xk,τ Hk
(
m̂τ−, m̂τ+, ĉτ−, ĉτ+

) + eτ .

In view of Equations (11) and (13), the θ parameter could
in principle be estimated by linear least squares. However, as
is well-known in the literature on robust statistics, the implicit
use of a quadratic loss function is potentially problematic for at
least two reasons. First, the estimates may be driven by a few
highly influential “extreme” observations that manifest in the
high frequency data. Second, it rules out the possibility that the
strength of the relationship is not necessarily the same across all
announcements included in the estimation (i.e., heterogeneous
responses). Hence, we adopt a more general minimum-distance
type estimation framework,

θ̂n ≡ argmin
θ

Qn(θ),

Qn (θ) ≡
∑
τ∈T

L
(

G
(
m̂τ−, m̂τ+, ĉτ−, ĉτ+

)
−∑K

k=1 θ�
k Xk,τ Hk

(
m̂τ−, m̂τ+, ĉτ−, ĉτ+

) )
,

(14)
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where the set T identifies the specific announcements (as given
by the announcement times) included in the estimation.

In the formal analysis below, we will further assume that
the loss function L(·) satisfies the following very general set of
assumptions.

Assumption 1. The loss function L(·) is convex, and for some
constant p > 0, L(cx) = |c|p L(x) for all c, x ∈ R.

This setup differs from the setting commonly studied in the
literature on M-estimation with possibly non-smooth objective
functions (see, e.g., Huber 1967; Pollard 1985; Koenker 2005).
In that extant literature, the distribution of the estimator
is typically characterized through the use of a quadratic
approximation to a smooth limiting objective function, even
if the sample objective function is nonsmooth. By contrast,
in the present setting with high-frequency data sampled over
a fixed time span, the aggregation in (14) is invariably over
finitely many announcement times T , thereby rendering the
use of a quadratic approximation to a possibly nonsmooth
L(·) loss function inappropriate, and in turn complicating
the characterization of the θ̂n estimator by conventional
methods.

The setup also differs from that of more conventional robust
quantile regressions. In particular, even though the lin-lin loss
function (i.e., L(x) = x(q − 1{x<0}) for q ∈ (0, 1)) satisfies
Assumption 1 and directly mirrors the loss function used in
standard quantile regressions (see, e.g., Koenker and Bassett
1978, 1982; Koenker 2005), the θ̂n estimator is distinctly differ-
ent as it involves nonparametrically estimated (latent) jumps, as
opposed to directly observed data.

Assumption 1 pertaining to the form of the loss function
obviously also includes quadratic loss (i.e., L(x) = x2) as a
special case. Further assuming the linear functional form in
(11), θ̂n may be expressed in closed form as a function of the
nonparametric jump estimates. In this situation, it is also rela-
tively straightforward to show that the asymptotic distribution
of θ̂n is centered at the true value with a mixed Gaussian distri-
bution (i.e., indeed the method of proof adopted in Bollerslev,
Li, and Xue (2018)). However, that same method of proof is not
applicable for more general possibly non-smooth loss functions.
Correspondingly, the asymptotic distribution of θ̂n is generally
not mixed Gaussian either.

For the empirical results reported below, we will primarily
rely on the non-smooth lin-lin loss function. As noted above,
our motivation for doing so is 2-fold. First, since the lin-lin loss
is less sensitive to outliers than the quadratic loss, the result-
ing estimators will be more robust against data imperfections
in the sense of Koenker and Bassett (1978) and Huber and
Ronchetti (2009). This feature is particularly desirable in our
study of (major) news announcements, as the market tends to
be especially turbulent during such times. Second, estimators
associated with different quantiles may reveal heterogeneous
responses across announcements, with their own distinct eco-
nomic interpretations. This feature of the lin-lin loss function
has also previously been emphasized by Koenker and Bassett
(1982) as providing a useful tool for detecting heteroscedas-
ticity and evaluating the validity of a given specification more
generally.

To derive the limit distribution of θ̂n, it is helpful to reparam-
eterize the sample objective function via a change of variable
θ → θ0 + k−1/2

n h, where θ0 denotes the true parameter, and
the local parameter h = (h1, . . . , hK) quantifies the deviation
of θ from the true parameter in a k−1/2

n -neighborhood (this
also corresponds to the convergence rate of the nonparametric
jump estimates in (12) that enter the objective function in
(14)). Correspondingly, we define the reparameterized objective
function as,

Mn(h) ≡ kp/2
n Qn(θ0 + k−1/2

n h), (15)

where the scaling factor kp/2
n is included to ensure that Mn(·)

is well behaved asymptotically. It follows readily that since θ̂n
minimizes Qn(θ), the normalized estimator ĥn = k1/2

n (̂θn − θ0)
minimizes Mn(h), that is,

ĥn = argmin
h

Mn(h). (16)

Moreover, under mild regularity conditions, the localized objec-
tive function Mn(·) converges stably in law (i.e., joint with any
bounded random variables that are measurable to the underly-
ing σ -field) to a limiting process, say M(·), thereby providing a
framework for deriving the distribution of θ̂n through that of ĥn.

Some additional notation is required for characterizing the
process M (·). For each t, we set vt ≡ ∫

V (ζt , ε)2 Fε(dε) −
m2

t . Further, let ∂G(x; dx) and ∂Hk (x; dx) denote the first
differential of G (·) and Hk (·), respectively. To represent the
asymptotic distribution, we consider the random variables(
ηm,τ−, ηm,τ+, ηc,τ−, ηc,τ+

)
τ∈T that are, conditionally on F ,

mutually independent, centered Gaussian with conditional
variances E

[
η2

m,τ±|F] = vτ± and E[η2
c,τ±|F] = 2c2

τ±. These η

variables capture the sampling variability of the spot estimators.
Finally, we set,

ξτ ≡ ∂G
(
mτ−, mτ , cτ−, cτ ; ηm,τ−, ηm,τ+, ηc,τ−, ηc,τ+

)
,

ξ ′
k,τ ≡ ∂Hk

(
mτ−, mτ , cτ−, cτ ; ηm,τ−, ηm,τ+, ηc,τ−, ηc,τ+

)
,

(17)
and define the limiting process M(·) as

M(h) =
∑
τ∈T

L
(

ξτ −
K∑

k=1
θ�

0,kXk,τ ξ
′
k,τ

−
K∑

k=1
h�

k Xk,τ Hk (mτ−, mτ , cτ−, cτ )

)
. (18)

Since the objective function Mn(·) converges stably in law to
M(·) in finite dimensions, we can appeal to a convexity argu-
ment (see Knight 1989, 1998) to deduce that ĥn converges stably
in law to the argmin of the M(·) limiting process, that is,

ĥ ≡ argmin
h

M(h). (19)

In the special case when the loss function L(·) is quadratic,
the limit minimization problem in (19) may be solved analyt-
ically. In that situation, it is also relatively straightforward to
show that the distribution of ĥ is centered mixed Gaussian.
In general, however, with non-quadratic loss, even though ĥ
is symmetrically distributed, the estimator will not be mixed
Gaussian. For example, with absolute deviation loss (i.e., L(x) =
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|x|), the distribution of ĥ is given by that of the regression coef-
ficient in a median regression for the mixed Gaussian variables
ξτ − ∑K

k=1 θ�
0,kXk,τ ξ

′
k,τ against Xk,τ Hk (mτ−, mτ , cτ−, cτ ), 1 ≤

k ≤ K, for τ in the finite setT (see Section 3.1 of Koenker (2005)
for details on the finite-sample behavior of regression quantiles).

The following theorem summarizes the asymptotic behavior
of Mn(·) and ĥn in terms of M(·) and ĥ, and in turn the
distribution of θ̂n, for general loss function L(·).

Theorem 1. Under Assumption 1 and Assumptions A1–A3 in
the supplemental appendix, the sequence Mn(·) of processes
converges stably in law to M(·) in finite dimensions. Moreover, if
ĥ uniquely minimizes M(·) almost surely, then ĥn ≡ k1/2

n (̂θn −
θ0) converges stably in law to ĥ.

Proof. See the supplemental appendix.

Theorem 1 establishes that θ̂n is indeed a k1/2
n -consistent

estimator of the true θ0 parameter. Since the number of
(announcement-induced) jumps is finite within the fixed
sample span in our infill asymptotic setting, θ̂n inherits the
nonparametric k1/2

n -rate of the corresponding finite collection
of spot estimators. We note that the uniqueness condition of
ĥ corresponds to the identification condition, which typically
amounts to ruling out multi-collinearity among the regressors
in specific settings. Moreover, it characterizes the limiting
distribution of the normalized estimator k1/2

n (̂θn − θ0) in
terms of the argmin (i.e., ĥ) of the M(·) limiting process.
However, as the discussion above makes clear, the resulting
asymptotic distribution of θ̂n can be highly nonstandard, and
it is fundamentally different from those in conventional M-
estimation theory.

3.2. Feasible Inference via Bootstrap

The nonstandard distribution of θ̂n that obtains under general
nonsmooth loss does not allow for the use of standard Gaussian-
based inference procedures. Instead, we propose an easy-to-
implement bootstrap approach for computing confidence inter-
vals for the true parameter θ0. The bootstrap has two distinct
advantages in the current setting. First, since the asymptotic
distribution of θ̂n is generally not (mixed) Gaussian, there is
no clear way to render the estimator pivotal via “studentization.”
By contrast, the bootstrap readily approximates the nonstandard
asymptotic distribution. Second, the same bootstrap resampling
scheme may be used for multiple competing estimators associ-
ated with different loss functions, thereby facilitating any formal
statistical comparisons of the different estimators. The bootstrap
algorithm is defined by

Algorithm 1.
Step 1: For each τ ∈ T , generate iid draws (V∗

i(τ )−j, r∗
i(τ )−j)1≤j≤kn

and (V∗
i(τ )+j, r∗

i(τ )+j)1≤j≤kn from (Vi(τ )−j, ri(τ )−j)1≤j≤kn and
(Vi(τ )+j, ri(τ )+j)1≤j≤kn , respectively.
Step 2: Compute (m̂∗

τ−, m̂∗
τ+, ĉ∗

τ−, ĉ∗
τ+)τ∈T the same way as

(m̂τ−, m̂τ+, ĉτ−, ĉτ+)τ∈T except that the original data (Vi(τ )+j,
ri(τ )+j)1≤|j|≤kn are replaced with (V∗

i(τ )+j, r∗
i(τ )+j)1≤|j|≤kn .

Step 3: Estimate θ̂
∗
n = argminθ Q∗

n(θ), where

Q∗
n(θ) ≡

∑
τ∈T

L
(

G
(
m̂∗

τ−, m̂∗
τ+, ĉ∗

τ−, ĉ∗
τ+

) − ε̂τ

−
K∑

k=1
θ�

k Xk,τ Hk
(
m̂∗

τ−, m̂∗
τ+, ĉ∗

τ−, ĉ∗
τ+

) )
,

ε̂τ ≡ G
(
m̂τ−, m̂τ+, ĉτ−, ĉτ+

)
−

K∑
k=1

θ̂
�
k Xk,τ Hk

(
m̂τ−, m̂τ+, ĉτ−, ĉτ+

)
.

Step 4: Repeat Steps 1–3 a large number of times. Use the
Monte Carlo distribution of k1/2

n (̂θ
∗
n−θ̂n) to approximate that of

k1/2
n (̂θn − θ0). In particular, a symmetric two-sided confidence

interval for θ0,j (i.e., the jth element of θ0) is given by CIn =
[θ̂n,j − zn,1−α/2, θ̂n,j + zn,1−α/2], where zn,1−α/2 is the (1 −α/2)-
quantile of |θ̂∗

n,j − θ̂n,j| in the Monte Carlo sample.

The bootstrap described in Algorithm 1 relies on an iid
resampling scheme within local windows before and after the
announcement times τ ∈ T to account for temporal hetero-
geneity in the data. Intuitively, within each of these local win-
dows, the state processes σ and ζ are approximately constant,
thereby permitting the use of an iid scheme. However, it is
important to stress that the validity of this bootstrap does not
require the data to actually be iid. We only require the obser-
vations of V to be conditionally independent, which allows for
both heterogeneity and persistence in the underlying processes.
As such, the bootstrap theory is also very different from the type
of bootstrap traditionally used in quantile regressions (see, e.g.,
Angelis, Hall, and Young 1993; Hahn 1995). It is possible that the
wild bootstrap (see Wu 1986) may similarly be used to address
the issue of heterogeneity in the present context. However, we
leave this question for future research.

Theorem 2 formally establishes the asymptotic validity of this
new bootstrap procedure proposed here.

Theorem 2. Under the same conditions as in Theorem 1, the
conditional distribution function of k1/2

n (̂θ
∗
n − θ̂n) given data

converges in probability to the F-conditional distribution of ĥ
under the uniform metric. Consequently, the confidence inter-
val CIn described in the bootstrap Algorithm 1 has asymptotic
level 1 − α.

Proof. See the supplemental appendix.

In addition to constructing confidence intervals, the same
bootstrap algorithm may also be used in correcting finite-
sample biases in the θ̂n estimator and the bootstrap confidence
intervals (see also the discussion in Horowitz (2001)). In
particular, the bias in θ̂n − θ0 is naturally approximated by,

β̂n ≡ Med∗ [̂
θ

∗
n − θ̂n

]
,

where Med∗ denotes the median in the bootstrap sample. This
in turn suggests the bias-corrected estimator,

θ̂
c
n ≡ θ̂n − β̂n.
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Similarly, let zc
n,1−α/2 denote the (1 − α/2)-quantile of |θ̂∗

n,j −
θ̂n,j − β̂n,j| in the Monte Carlo sample. A bias-corrected confi-
dence interval may then be constructed as,

CIc
n ≡ [θ̂ c

n,j − zc
n,1−α/2, θ̂ c

n,j + zc
n,1−α/2].

Since k1/2
n β̂n is op(1) (by Theorem 2), it follows readily that θ̂

c
n

(resp. CIc
n) will have the same asymptotic properties as θ̂n (resp.

CIn) described in Theorem 1 (resp. Theorem 2). However, as
shown by the Monte Carlo simulations presented in the supple-
mental appendix, the bias-corrected estimator and confidence
intervals tend to be better behaved in finite samples.

3.3. Intraday Patterns and Difference-in-Difference
Estimation

A further complication, and a potential source of finite-sample
bias, that arise in the analysis of high-frequency financial data
stems from the marked intraday periodic patterns that exist
in such data. In particular, volatility, trading activity, bid-ask
spreads and many other financial variables all tend to be higher
around the time of market opening and closing (see, e.g., Wood,
McInish, and Ord 1985, for some of the earliest empirical evi-
dence). To further complicate matters, these intraday patterns
also tend to vary somewhat both over time and across assets.
A failure to account for this may result in systematically biased
parameter estimates if the jumps underlying the estimation
occur at specific times-of-day. To remedy this, Bollerslev, Li, and
Xue (2018) proposed a simple difference-in-difference (DID)
type approach based on an appropriate control group. This same
DID strategy can be applied in the current more general setting.

Formally, for each announcement time τ , define the con-
trol group C (τ ) of NC nonannouncement times, the implicit
assumption being that the processes of interest do not jump at
time τ in the control group. The intraday patterns in the “raw”
jump estimators defined in (12) may then be controlled for by
“differencing out” the corresponding estimates averaged within
the control group,

˜� log (mτ ) ≡ ̂� log (mτ ) − 1
NC

∑
η∈C(τ )

̂� log
(
mη

)
,

˜� log (στ ) ≡ ̂� log (στ ) − 1
NC

∑
η∈C(τ )

̂� log
(
ση

)
.

(20)

In our empirical analysis below, we take C (τ ) to be the same
time-of-day as τ over the previous NC = 22 non-announcement
days (roughly corresponding to the length of one trading
month).

These DID jump estimators can be incorporated in the esti-
mation straightforwardly by allowing the G (·) and Hk (·) trans-
formations in the instantaneous moment condition (9) to also
depend on the spot estimators in the control group. To simplify
the notation, define Ŝτ ≡ (m̂τ−, m̂τ+, ĉτ−, ĉτ+) and S̃τ ≡
(̂St)t∈{τ }∪C(τ ). The DID estimator for θ is then given by,

θ̃n ≡ argmin
θ

Q̃n(θ),

Q̃n (θ) ≡
∑
τ∈T

L

(
G(̃Sτ ) −

K∑
k=1

θ�
k Xk,τ Hk(̃Sτ )

)
.

(21)

Compared to the non-DID objective function Qn, the DID
counterpart involves the additional spot estimators in the
control groups. Since the different control groups may overlap
with each other, possibly in a highly irregular fashion, the
asymptotic distribution of θ̃n becomes much more cumbersome
to characterize analytically than that of θ̂n. However, the
bootstrap Algorithm 1 is readily adapted to accommodate this
additional complication. Algorithm 2 spells out the necessary
adjustments.

Algorithm 2.
Step 1: For each τ ∈ T ∪ (∪τ ′∈T C

(
τ ′)), generate iid draws

(V∗
i(τ )−j, r∗

i(τ )−j)1≤j≤kn and (V∗
i(τ )+j, r∗

i(τ )+j)1≤j≤kn from
(Vi(τ )−j, ri(τ )−j)1≤j≤kn and (Vi(τ )+j, ri(τ )+j)1≤j≤kn , respectively.
Step 2: Compute S̃∗

τ the same way as S̃τ , except that the
original data (Vi(τ )+j, ri(τ )+j)1≤|j|≤kn are replaced with (V∗

i(τ )+j,
r∗

i(τ )+j)1≤|j|≤kn .
Step 3: Estimate θ̃

∗
n = argminθ Q̃∗

n(θ), where

Q̃∗
n(θ) ≡

∑
τ∈T

L

(
G(̃S∗

τ ) − ε̃τ −
K∑

k=1
θ�

k Xk,τ Hk(̃S∗
τ )

)
,

ε̃τ ≡ G(̃Sτ ) −
K∑

k=1
θ̃

�
k Xk,τ Hk(̃Sτ ).

Step 4: Repeat steps 1–3 a large number of times. Use the Monte
Carlo distribution of k1/2

n (̃θ
∗
n − θ̃n) to approximate that of

k1/2
n (̃θn − θ0). In particular, a symmetric two-sided confidence

interval for θ0,j (i.e., the jth element of θ0) is given by C̃In =
[θ̃n,j − z̃n,1−α/2, θ̃n,j + z̃n,1−α/2], where z̃n,1−α/2 is the (1 −α/2)-
quantile of |θ̃∗

n,j − θ̃n,j| in the Monte Carlo sample. �

The theoretical justification for the DID estimator and Algo-
rithm 2 essentially mirrors the theory described in the previous
subsection. To proceed with the details, define the modified
limiting variables corresponding to (17) as,

ξ̃τ ≡ ∂G((mt−, mt , ct−, ct)t∈{τ }∪C(τ ) ;
(ηm,t−, ηm,t+, ηc,t−, ηc,t+)t∈{τ }∪C(τ )),

ξ̃ ′
k,τ ≡ ∂Hk((mt−, mt , ct−, ct)t∈{τ }∪C(τ ) ;

(ηm,t−, ηm,t+, ηc,t−, ηc,t+)t∈{τ }∪C(τ )),

(22)

and, correspondingly, modify the definition in (18) as

M̃(h) =
∑
τ∈T

L
(

ξ̃τ −
K∑

k=1
θ�

0,kXk,τ ξ̃
′
k,τ

−
K∑

k=1
h�

k Xk,τ Hk
(
(mt−, mt , ct−, ct)t∈{τ }∪C(τ )

) )
.

(23)

Theorem 3, characterizes the asymptotic distribution of the DID
estimator θ̃n and justifies the asymptotic validity of Algorithm
2.

Theorem 3. Under the same conditions as Theorem 1, the
following statements hold:

(a) The sequence M̃n(h) = kp/2
n Q̃n(θ0 +k−1/2

n h) of processes
converges stably in law to M̃(h) in finite dimensions. Moreover,
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if h̃ uniquely minimizes M̃(·) almost surely, then k1/2
n (̃θn − θ0)

converges stably in law to h̃.
(b) The conditional distribution function of k1/2

n (̃θ
∗
n − θ̃n)

given data converges in probability to the F-conditional dis-
tribution of h̃ under the uniform metric. Consequently, the
confidence interval C̃In described in the bootstrap Algorithm 2
has asymptotic level 1 − α.

Proof. See the supplemental appendix.

Note that the same bootstrap-based bias correction used
in adjusting the non-DID estimates described in the previous
subsection may similarly be used in bias correcting the DID
estimates. The requisite modifications to the expressions for θ̂

c
n

and CIc
n are obvious, albeit notationally cumbersome, and we

omit the details for brevity.

3.4. Discussion

The proposed new methods are related to several studies on
regression-type analysis of jumps. In particular, Li, Todorov,
and Tauchen (2017a) first introduced the notion of least-squares
jump regressions for analyzing the relationship among price
jumps, while Li, Todorov, and Tauchen (2017b) extended that
framework to allow for the use of general loss functions. Unlike
these prior studies, however, the present analysis pertains to
the jumps in local moments, such as price volatility and volume
intensity, rather than the jumps in the price process itself. The
estimation and inference for these types of jumps are notably
more complicated. For one, jumps in the local moments are
estimated at a nonparametric rate, whereas the price jumps can
be recovered at a parametric rate. The much more pronounced
intraday diurnal patterns that exist in both volatility and trading
volume, and the DID estimation strategy based on the inclusion
of irregularly spaced control groups developed here to address
this issue, also results in additional sampling errors that are quite
cumbersome to characterize analytically. Our new bootstrap-
based inference procedure conveniently solves this problem.

The current article is also closely related to the recent work of
Bollerslev, Li, and Xue (2018) and the analysis therein pertaining
to regressions involving jumps in volume intensity and spot
volatility. However, our method generalizes this prior work by
allowing for nonlinear functional forms and general possibly
non-smooth loss functions, like the lin-lin loss function. All of
this in turn necessitates a different strategy for developing the
asymptotic distribution of the estimators. Thus, even though our
iid bootstrap resampling scheme bears close resemblance to that
of Bollerslev, Li, and Xue (2018), the validity of the bootstrap
inference for our new estimator demands its own (new) and very
different method of proof.

The present article also extends the scope of the possible
empirical investigations from the univariate volume-volatility
relations analyzed in Bollerslev, Li, and Xue (2018) to more
general event type analysis involving the jumps in other instan-
taneous moments, and our theory can be readily extended to a
multivariate setting (which is done in a working article version
of this article). Further along these lines, we also explicitly
recognize a nontrivial finite-sample bias in this type of analysis

that could severely distort any empirical conclusions. Our new
bootstrap provides a simple, yet effective, way of correcting this
bias.

It would be interesting to extend the new theory developed
here to explicitly allow for the presence of microstructure noise
in the spot volatility estimation. The same proof strategy under-
lying Theorem 1 could in principle be used to characterize
the asymptotic distribution, provided that the joint asymptotic
distribution of the spot volatility estimator and the m̂τ± local
mean estimator is known. Results on noise-robust spot volatility
estimation (see, e.g., Bibinger and Winkelmann 2015) could
possibly be extended to verify this “high-level” condition.

4. Macroeconomic News, Volume, and Volatility

4.1. Data Description

Our primary data consists of intraday observations on trading
volume and transaction prices for the E-mini futures contract on
the S&P 500 index obtained from TickData. We sample the data
at every minute to help mitigate the effect of market microstruc-
ture noise (see, e.g., the discussion in Zhang, Mykland, and
Ait-Sahalia (2005)). The sample spans 7:00 a.m. to 4:15 p.m.
from July 1, 2003 to March 2, 2017. We further removed days
with irregular trading hours. In the end, we are left with a total
3383 trading days, comprising 1,880,948 one-minute return and
trading volume observations.

In addition to the price and volume data, we also use infor-
mation about the date and time of two important macroeco-
nomic announcements: namely the Federal Open Market Com-
mittee (FOMC) rate decisions and statements about monetary
policy, and the nonfarm payroll (NFP) employment report.
These particular announcements are generally considered to be
the two most important macroeconomic news announcements
(see, e.g., Andersen et al. 2003, 2007). The FOMC decision
is typically announced every six-week at 2:15 p.m., while the
NFP report is released at 8:30 a.m. on the first Friday of each
month. We rely on Bloomberg’s Economic Calendar to pinpoint
the exact time and date. Importantly, our use of futures data
spanning several hours before the opening of the “cash” market
at 9:30 a.m. allows us to study the all-important NFP report (this
contrasts with many other studies, including Bollerslev, Li, and
Xue (2018), which rely on data during regular trading hours
only). In total our sample contains 110 FOMC and 157 NFP
announcements.

4.2. Volume-Volatility Elasticity and Investor
Disagreement

We apply the proposed method to investigate the relationship
among volatility and volume jumps, by revisiting the analysis in
Bollerslev, Li, and Xue (2018) pertaining to the volume-volatility
elasticity. Our baseline specification, corresponding to Equation
(7), takes the form,

˜� log (mτ ) = θ1 + θ2 ˜� log (στ ) + eτ , (24)

where again ˜� log (mτ ) and ˜� log (στ ) denote the DID jump
estimates of the volume intensity and spot volatility, respectively.
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Based on least-square estimation methods, Bollerslev, Li, and
Xue (2018) found the elasticity (i.e., θ2) to be generally below
unity, which according to the economic theory of Kandel and
Pearson (1995) is indicative of disagreement among investors
in interpreting the macroeconomic news announcements. Fur-
thermore, by parameterizing the elasticity as a function of prox-
ies of investors’ disagreement Xτ ,

˜� log (mτ ) = θ1 + (θ2 + θ3Xτ ) ˜� log (στ ) + eτ . (25)

Bollerslev, Li, and Xue (2018) also found the elasticity to be
generally lower for higher levels of disagreement (i.e., θ3 is
negative). This again accords with the theoretical implications
derived from Kandel and Pearson (1995).

Following the analysis in Bollerslev, Li, and Xue (2018), we
will consider two different disagreement proxies: (i) the disper-
sion in the forecasts in the Survey of Professional Forecasters
(SPF) for the one-quarter-ahead unemployment rate (the unem-
ployment rate serves a natural gauge for the state of the macro
economy, but the dispersion in the forecasts for other macroeco-
nomic variables, like GDP growth, leads to very similar results),
and (ii) the Economic Policy Uncertainty (EPU) index of Baker,
Bloom, and Davis (2016) (a more detailed rationale for the use
of this specific disagreement proxy is provided in Bollerslev, Li,
and Xue (2018)). As in Bollerslev, Li, and Xue (2018), we also set
the local window kn = 30 as a reasonable rule-of-thumb in view
of the simulation results shown in the supplemental appendix.
Recall that the theory features undersmoothing (i.e., kn being
small) to reduce the bias in the spot estimation resulting from
time-varying volatility and volume intensity, which suggests
using a small kn. However, at the same time, the inference
is based on central limit theorems under kn → ∞, so the
limit theory would not “kick in” when kn is too small. A data-
driven choice of kn in the present context is a challenging open
question, which may be an interesting topic for future research.

Our analysis advances Bollerslev, Li, and Xue (2018) in three
important ways. First, our use of futures data, which is available

before the regular trading hours for the SPY ETF used by Boller-
slev, Li, and Xue (2018), allows us to study the all-important
NFP announcement. Second, we complement the least-square
estimation strategy used by Bollerslev, Li, and Xue (2018) with
the new quantile-regression type estimators formally developed
here, so as to uncover (potentially) heterogeneous responses in
the volume-volatility relationship across quantiles. Third, since
the regressors in (24) and (25) are estimated with error, the
findings reported in Bollerslev, Li, and Xue (2018) could be
affected by finite-sample “attenuation” biases, which our new
bootstrap bias-correction technique conveniently circumvents.

To begin, Figure 2 plots the least-square and quantile-
regression estimates for the θ2 volume-volatility elasticity
parameter based on the baseline specification in (24), along
with their 90% two-sided CIs. For the FOMC (resp. NFP)
announcements reported in the left (resp. right) panel, the bias-
corrected least-square elasticity estimate equals 0.714 (resp.
0.733). Although both of these estimates exceed their uncor-
rected counterparts (equal to 0.697 and 0.687, respectively),
they are still significantly below unity, consistent with the
implications from the economic theory of Kandel and Pearson
(1995) and the presence of disagreement among investors.

The median regression estimate (q = 0.5) of 0.703 for the
FOMC announcements is also very close to the least-square esti-
mate of 0.714. Hence, the least-square estimate appears robust,
in the sense that it is not driven by a few influential out-
liers. Importantly, all of the elasticity estimates for the FOMC
announcements are also below unity and generally statistically
significantly so. As such , this further buttresses the idea that
investor disagreement plays an important role in the functioning
of markets.

The quantile regression estimates for θ2 for the NFP
announcements are also mostly below unity. However, in
contrast to the fairly homogeneous FOMC quantile estimates,
there is a clear downward pattern in the quantile elasticity
estimates for the NFP announcements. In particular, the
estimates for the lower quantiles are all close to, and from
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Figure 2. Baseline volume-volatility elasticity estimates. NOTE: This figure reports the least-square (solid line) and quantile-regression (circles) estimates of the θ2 elasticity
coefficient, along with their confidence intervals (CI), for the baseline specification without any covariates, ˜� log(mτ ) = θ1 + θ2 ˜� log(στ ) + eτ . The left (resp. right)
panel gives the estimates around FOMC (resp. NFP) announcements.
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Figure 3. Volume-volatility elasticity and disagreement. NOTE: This figure reports the least-square (solid line) and quantile-regression (circles) estimates of the θ3

coefficient, along with their confidence intervals (CI), for the specification ˜� log(mτ ) = θ1 + (θ2 + θ3Xτ ) ˜� log(στ )+ eτ , where Xτ denotes the disagreement proxy. The
top (resp. bottom) row reports the results based on the dispersion measure among professional forecasters (SPF) (resp. the Economic Policy Uncertainty (EPU) index). The
left (resp. right) panel gives the estimates around FOMC (resp. NFP) announcements.

a statistical perspective equivalent to, unity. This therefore
suggests that for the NFP announcements a rational-expectation
type interpretation, in which most investors agree, is sometimes
operative.

A central tenet of all economic disagreement models, the
Kandel–Pearson model (Kandel and Pearson 1995) included,
is that higher levels of disagreement among investors should
“loosen” the relationship between trading volume and volatility.
More specifically, following the analysis of Bollerslev, Li, and
Xue (2018) this should manifest in the volume-volatility elas-
ticity being a decreasing function of the level of disagreement.
To examine this hypothesis, Figure 3 plots the least-square and
quantile-regression estimates for the θ3 parameter from the
specification in (25), along with their 90% two-sided CIs. The
left (resp. right) two panels report the estimates for FOMC (resp.
NFP).

Looking first at the results in the top row based on the use
of the forecast dispersion among professional forecasters (SPF)
as a measure of disagreement, the θ3 estimates for both the
FOMC and NFP announcements are generally below zero across
all quantiles, and often significantly so. This finding is quite
remarkable, as it suggests that the negative relationship between
the volume-volatility elasticity and disagreement predicted by
the economic theory, holds not only on average (consistent with
the least-square estimates previously reported in Bollerslev, Li,
and Xue (2018)), but across all quantiles. In other words, this
negative relation is a robust feature that does not seem to depend
on a particular set of announcements. The results reported in
the bottom row based on the Economic Policy Uncertainty
(EPU) index further reinforces this same conclusion. In fact, if
anything these results are even stronger, with all of the estimates
below zero.

In sum, our new bias-corrected estimators confirm prior
(potentially biased) empirical evidence that the volume-
volatility elasticity around important news announcements
is generally below unity. Moreover, this holds true not only
on average, but across all quantiles. It also holds true not

only for FOMC announcements, but also for the nonfarm
payroll employment report, often referred to as the “king”
of announcements by market participants. Finally, further
corroborating the underlying economic theory and the import
of investor disagreement, the new methods reveal the elasticity
to be a robustly decreasing function of aggregate levels of
disagreement.

5. Conclusion

We propose a general minimum-distance type estimator for
estimating the relationship between jumps in instantaneous
moments of stochastic processes. The asymptotic distribution
of the proposed estimator, derived under an in-fill asymp-
totic setting, is generally nonstandard. We propose an easy-
to-implement bootstrap algorithm for conducting feasible
inference and bias-correction. Using high-frequency intraday
data for the S&P 500 E-mini futures contract, we apply
the new methods to study the behavior of trading intensity
and spot volatility at the time of important macroeconomic
news announcement. Consistent with the implications from
economic theory and a model in which investors agree-to-
disagree, we find that the estimated volume-volatility elasticities
are below unity and negatively related to the level of investor
disagreement, not only “on average,” but across all quantiles.

Supplementary Materials

The supplement contains (i) technical details for the theoretical results in
the main article; (ii) simulation and additional empirical results; and (iii)
computational codes used for generating the numerical results in the article.
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