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Fixed-k inference for volatility

Tim Bollerslev
Department of Economics, Duke University

Jia Li
Department of Economics, Duke University

Zhipeng Liao
Department of Economics, UCLA

We present a new theory for the conduct of nonparametric inference about the la-
tent spot volatility of a semimartingale asset price process. In contrast to existing
theories based on the asymptotic notion of an increasing number of observations
in local estimation blocks, our theory treats the estimation block size k as fixed.
While the resulting spot volatility estimator is no longer consistent, the new the-
ory permits the construction of asymptotically valid and easy-to-calculate point-
wise confidence intervals for the volatility at any given point in time. Extending
the theory to a high-dimensional inference setting with a growing number of esti-
mation blocks further permits the construction of uniform confidence bands for
the volatility path. An empirically realistically calibrated simulation study under-
scores the practical reliability of the new inference procedures. An empirical ap-
plication based on intraday data for the S&P 500 equity index reveals highly signif-
icant abrupt changes, or jumps, in the market volatility at FOMC news announce-
ment times, validating recent uses of various high-frequency-based identification
schemes in asset pricing finance and monetary economics.

Keywords. Spot volatility, high-frequency identification, semimartingale, uni-
form inference.

JEL classification. C14, C22, C32.

1. Introduction

We propose new inference procedures for the latent spot volatility of a semimartingale
asset price process. Our approach is decidedly nonparametric in nature and allows for
the construction of pointwise and uniform confidence sets that exhibit reliable coverage
properties in empirically realistic settings. Applying the new procedures in the study
of aggregate equity market volatility reveals highly significant abrupt changes, akin to
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“volatility jumps,” at the time of FOMC announcements, adding important new insights
to the burgeoning literature in macroeconomics and finance on identification through
heteroskedasticity and news announcement effects.

Virtually all financial and macroeconomic time series exhibit time-varying volatil-
ity. Proper characterization of this variation plays a critical role not only in asset pricing
finance and risk management (see, e.g., the survey by Andersen, Bollerslev, Christof-
fersen, and Diebold (2013)), but increasingly so also in macroeconomic models of ag-
gregate economic fluctuations and policy analysis (see, e.g., the survey by Fernandez-
Villaverde and Rubio-Ramirez (2013)). Meanwhile, the true volatility is inherently la-
tent, and the development of econometric procedures for making reliable inference on
volatility, and financial market volatility in particular, has been among the most active
and vibrant areas of research in econometrics over the past 30 years (see, e.g., the in-
troductory chapter in Andersen and Bollerslev (2018) summarizing some of the most
important works).

Most of the early work in the area relied on specific discrete-time GARCH or
continuous-time stochastic volatility models, in which the volatility is inferred from the
particular parametric structure. As demonstrated by Nelson (1992) and Foster and Nel-
son (1996), even if the underlying parametric model is formally misspecified, the result-
ing filtered volatilities may still be interpreted as nonparametric consistent estimates.
However, the assumption of ever finer sampled observations over diminishing, or “lo-
cal,” time windows underpinning this interpretation (and the consistency of spot volatil-
ity estimators more generally, see, e.g., Comte and Renault (1996), Kristensen (2010) and
Alvarez, Panloup, Pontier, and Savy (2012)), is very difficult to mimic in practice (see,
e.g., the early discussion in Andersen and Bollerslev (1997)).

Instead, building on the ideas in Andersen, Bollerslev, Diebold, and Labys (2001) and
Barndorff-Nielsen and Shephard (2002), a more recent strand of literature has focused
not on the spot volatility at any given point in time, but rather on the integrated volatility
over a nontrivial time interval, like a day or a month. In this case, it is possible to con-
sistently estimate integrated functionals of the true latent volatility process via a single
level in-fill asymptotic scheme that is much more amenable to practical empirical im-
plementations (see also Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold,
and Labys (2003a), and Aït-Sahalia and Jacod (2007)). While these nonparametric real-
ized volatility measures constructed from high-frequency intraday data are now widely
used for modeling and forecasting time-varying volatilities over daily and longer hori-
zons, they are not well suited for pinpointing abrupt changes in the volatilities, or study-
ing issues regarding volatility jumps and the underlying economic causes and mecha-
nisms at work.1

As a case in point, Andersen, Bollerslev, Diebold, and Vega (2003b) document that
many macroeconomic news announcements are accompanied by short, but sustained

1Empirical evidence in support of financial market volatility jumps traces back to Bakshi, Cao, and Chen
(1997), Bates (2000), and Duffie, Pan, and Singleton (2000), all of whom rely on fairly tightly parameterized
stochastic volatility models and daily data in showing the importance of allowing for volatility jumps when
valuing financial options; for more recent evidence based on high-frequency intraday data and a more
flexible stochastic volatility model, see Andersen, Fusari, and Todorov (2015).
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periods of elevated volatility typically lasting for 1 to 2 hours, during which the informa-
tion content of the news release is processed more fully and a new equilibrium price is
established. This high-frequency empirical feature has also received a lot of attention
in the recent literature concerned with identification of macroeconomic shocks. Naka-
mura and Steinsson (2018), in particular, in their estimation of a simultaneous equation
model for policy news shocks relied explicitly on identification through heteroskedastic-
ity (following the approach of Rigobon (2003)) and asset price volatilities being higher
during short “treatment” windows around FOMC news announcements than during
“control” nonannouncement periods.2 Similarly, Bollerslev, Li, and Xue (2018) in their
estimation of the extent of heterogeneous beliefs among market participants, as em-
bodied in estimates of the intraday volume-volatility elasticity, relied crucially on a
regression-discontinuity design and elevated volatilities immediately following macroe-
conomic news announcements.

Set against this background, we propose a new nonparametric framework for con-
ducting reliable inference about spot volatilities over relatively short time windows, in-
cluding tests for volatility jumps as a by-product. In contrast to the aforementioned ex-
isting theory pertaining to nonparametric spot volatility inference, which is built upon
the asymptotic thought experiment of a growing number (i.e., k → ∞) of observations
over shrinking time windows for establishing consistency and asymptotic Gaussian-
based inferential procedures, our “fixed-k” theory treats the local window size as a fixed
constant, rather than a carefully chosen tuning sequence, thereby alleviating the prac-
tical empirical concerns about mimicking a “double asymptotic” theoretical framework
in which the number of observations in each shrinking local estimation window is as-
sumed to grow to infinity. However, as a result of this change in the asymptotic embed-
ding, under the fixed-k theory, the nonparametric estimator based on a small number
of observations does not consistently estimate the true latent spot volatility, simply be-
cause the law of large numbers has nothing to say in this “small-number” setting. Sim-
ilarly, a central limit theorem is no longer applicable for justifying standard asymptotic
Gaussian-based inference.3

Instead, we derive valid inference about the spot volatility process via a novel “ap-
proximate finite-sample” approach. To help fix ideas, suppose that the returns in a small
k-sized window are generated as increments of a Brownian motion with constant volatil-
ity. In this situation, the nonparametric spot volatility estimator, defined as the local av-
erage of the normalized squared returns, has an exact scaled chi-squared distribution
with k degrees of freedom. Our new fixed-k theory extends this simple baseline case to
the case of a general Itô semimartingale model, allowing for stochastic drift, stochas-
tic volatility, as well as price and volatility jumps, by exploiting the local Gaussianity

2The importance of volatility or “uncertainty” shocks for understanding aggregate investment decisions
and recessions more generally has been forcefully emphasized by Bloom (2009). Fernandez-Villaverde,
Guerrón-Quintana, Rubio-Ramirez, and Uribe (2011) also further highlight the real effects of volatility
shocks.

3This lack of consistency together with the decidedly nonparametric nature of our approach also sets it
apart from other procedures based on specific parametric stochastic volatility models coupled with various
in-fill asymptotic sampling schemes, as in, for example, Bandi and Reno (2016).
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of Itô semimartingales. As such, the asymptotic distribution of the estimator under the
fixed-k theory is essentially inherited from the finite-sample distribution of the approx-
imating Gaussian model, rather than from the aggregation of a large number of mar-
tingale differences as in conventional high-frequency theory on volatility inference (see,
e.g., Chapter 13.3 of Jacod and Protter (2012)). This idea in turn allows for the construc-
tion of pointwise confidence intervals (CI) for the spot volatility at a given point in time
based on scaled chi-squared limiting distributions. While the width of these new fixed-
k CIs generally exceed those of the conventional Gaussian-based CIs, our Monte Carlo
simulations confirm their far superior finite-sample coverage properties, especially for
smaller block sizes k.

Going one step further, we extend this pointwise inference theory to a high-
dimensional setting, allowing for uniform inference about the entire volatility path over
nontrivial time intervals. We arrive at this extension by casting the joint inference prob-
lem in terms of “many” local estimation blocks within a given time span. The issue of
high-dimensionality arises from the fact that with the size of each estimation block fixed,
the number of blocks has to grow at the same rate as the sample size. This presents a
unique challenge that has not hitherto been addressed in the literature. However, we
show that the same approximation underlying the pointwise inference holds uniformly
across all estimation blocks, thus allowing for the construction of uniform CIs for the
volatility process.

An empirical application pertaining to the U.S. equity market volatility demon-
strates the practical usefulness of the new theoretical results. In particular, adding to
the burgeon empirical literature in monetary economics that relies on the short-term
impact of FOMC news announcements on asset prices for the identification of policy
shocks (for early contributions, see, e.g., Cochrane and Piazzesi (2002) and Bernanke
and Kuttner (2005)), we enlist the new fixed-k inference procedures to provide an in-
depth look at asset market volatility around FOMC news announcements. Our analysis
is based on high-frequency intraday data for the S&P 500 futures price around the re-
lease times of FOMC announcements during the 2003–2017 sample period. We find that
the vast majority of FOMC announcements result in significant abrupt increases in the
volatility at the time of the announcement, followed by a slow decline over the subse-
quent hour. We also uncover a slight “up-tick” in the volatility in advance of the official
release time for certain announcements, suggestive of possible leakage of information.
This richer, and statistically more rigorous, characterization of the short-term volatility
movements, afforded by the new fixed-k inference procedures, formally corroborate the
on-average heightened volatility following FOMC news announcements asserted in the
aforementioned recent literature (e.g., Nakamura and Steinsson (2018) and Bollerslev,
Li, and Xue (2018)) that rely on discontinuity-in-volatility-based identification strate-
gies.

The remainder of the paper is organized as follows. Section 2 presents the new the-
ory. Section 3 summarizes results from a Monte Carlo experiment corroborating the
practical applicability of the new inference procedures in empirically realistic settings.
Section 4 applies the proposed procedures in analyzing the behavior of aggregate equity
market volatility around FOMC announcements. Section 5 concludes. The Appendix
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collects all proofs. The Appendix in the Online Supplementary Material (Bollerslev, Li,
and Liao (2021)) contains additional simulation and empirical results.

2. Theory

Section 2.1 describes the setting. Section 2.2 presents the fixed-k pointwise inference
theory for spot volatility, which is further extended to accommodate uniform inference

in Section 2.3. Below, we use
P−→ and

d−→ to denote convergence in probability and
convergence in distribution, respectively. All limits are for n → ∞.

2.1 The setting

Suppose that the (log) price process X is an Itô semimartingale defined on a filtered
probability space (Ω�F� (Ft )t≥0�P) written as

Xt =X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs + Jt� (2.1)

where the drift process b and the stochastic volatility process σ are optional, and W is
a standard Brownian motion. The J process captures the price jumps, defined as the
sum of a purely discontinuous local martingale with jump sizes not bigger than 1, and a
pure-jump process with jump sizes bigger than 1, both of which are driven by a homo-
geneous Poisson random measure on R+ × R. Our econometric interest centers on the
spot variance process ct ≡ σ2

t .
We consider an in-fill asymptotic framework that is now standard in the high-

frequency econometrics literature (see, e.g., Andersen et al. (2001) and Barndorff-
Nielsen and Shephard (2002), and the book by Aït-Sahalia and Jacod (2014)). In particu-
lar, suppose that the price process X is observed at discrete times iΔn for i = 0�1� � � � � n
within the fixed time interval [0�T ] with Δn = T/n. Let the ith return of X be denoted by

Δn
i X ≡XiΔn −X(i−1)Δn� i ∈ {1� � � � � n}�

We study a standard spot variance estimator constructed over asymptotically shrinking
blocks; see, for example, Foster and Nelson (1996), Comte and Renault (1998), Lee and
Mykland (2008), Kristensen (2010), and Chapter 13 in Jacod and Protter (2012). Specif-
ically, we divide the sample into mn nonoverlapping blocks, each of which contains k

returns. Let In�j ≡ {(j − 1)k+ 1� � � � � jk} denote the collection of indices in the jth block,
which spans the time interval Tn�j ≡ [(j − 1)kΔnjkΔn).4 We stress that our theory treats
the block size k as a fixed number. This contrasts with existing work on nonparametric
spot volatility estimation, where the block size is invariably required to grow to infin-
ity. Correspondingly, to distinguish our theory from the traditional “large-k” asymptotic
theory, we refer to it as the “fixed-k” setting.

4For ease of exposition, we assume that the blocks are equally sized. Our theory can be easily extended
to allow for different block sizes.
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To obtain jump-robust volatility estimates, we adopt a truncation technique (as pro-
posed by Mancini (2001)) based on a sequence of truncation threshold un satisfying
un � Δ�

n for some � ∈ (0�1/2).5 With this truncation in place, the spot variance esti-
mator for the jth block is simply defined as

ĉn�j ≡ 1
kΔn

∑
i∈In�j

(
Δn
i X

)21{|Δn
i X|≤un}� (2.2)

This collection of blockwise estimators (ĉn�j)1≤j≤mn also serve as the functional esti-
mator for the entire process (ct)t∈[0�T ]. To emphasize this point, we further identify
(ĉn�j)1≤j≤mn with a t-indexed functional estimator (ĉn�t)t∈[0�T ] by defining

ĉn�t ≡ ĉn�j�

for t ∈ Tn�j and j ∈ {1� � � � �mn}. We will use this notation interchangeably in the sequel.

2.2 Fixed-k pointwise inference

In this subsection, we describe the fixed-k pointwise inference theory for the spot vari-
ance ct . This part of the theory concerns a finite collection of estimation blocks, and it is
developed under very mild regularity conditions collected in the following assumption.

Assumption 1. Suppose that X has the form (2.1) and there exists a sequence (Tm)m≥1

of stopping times increasing to infinity and a sequence (Km)m≥1 of constants such that
the following conditions hold for each m ≥ 1: (i) for some constant r ∈ [0�2), |bt | + |σt | +
|σt |−1 + ∫

(|x|r ∧ 1)Ft(dx) ≤Km for all t ∈ [0�Tm], where Ft denotes the spot Lévy measure
of J; (ii) E[|σt∧Tm − σs∧Tm |2] ≤ Km|t − s| for all t� s ∈ [0�T ].

Assumption 1 entails some very mild regularity conditions, allowing for essentially
unrestricted price and volatility jumps, leverage effect, and intraday periodicity. Con-
dition (i), in particular, imposes local boundedness on various processes, while condi-
tion (ii) states that the volatility process is locally (1/2)-Hölder continuous under the L2

norm. The latter condition can be readily verified if σ is an Itô semimartingale, or a long-
memory process driven by a fractional Brownian motion (see, e.g., Comte and Renault
(1998)).

Theorem 1, below, describes the finite-dimensional asymptotic property of the spot
variance estimator ĉn�t under the fixed-k asymptotic setting. To simplify notation, we
use χ̄2

k to denote the distribution of Zk/k, where Zk is a generic chi-squared random

variable with k degrees of freedom (i.e., Zk ∼ χ2
k), and use χ̄−2

k to denote the distribution

of k/Zk. We will refer to χ̄2
k and χ̄−2

k as the scaled chi-squared and scaled inverse-chi-
squared distributions, respectively.

5In practice, one may take � = 0�49 and un = Cσ̄Δ�
n for some constant C > 0 and a preliminary estimator

σ̄ of the daily average volatility. For example, when C = 5, un may be roughly interpreted as a 5-standard-
deviation rule. A popular choice of σ̄ is the bipower variation estimator of Barndorff-Nielsen and Shephard
(2004). If the price process X is assumed to be continuous, the truncation is not needed (i.e., un = ∞).
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Theorem 1. Suppose that Assumption 1 holds. Then, for any finite subset M ⊆ {1� � � � �
mn}, there exists a collection of independent χ̄2

k-distributed random variables (S̄j)j∈M
such that for any j ∈ M and t ∈ Tn�j ,

ĉn�t

ct
− S̄j =Op

(
Δ
(2−r)�∧(1/2)
n

) = op(1)� (2.3)

Comment. Theorem 1 shows that ĉn�t/ct can be approximated by a χ̄2
k-distributed ran-

dom variable, given by (kΔn)
−1 ∑

i∈In�j (WiΔn −W(i−1)Δn)
2. As a consequence,

ĉn�t

ct

d−→ χ̄2
k� (2.4)

With k fixed, the estimation error in ĉn�t does not vanish when Δn → 0, and hence, ĉn�t
is not a consistent estimator for ct . This is very different from the standard “large-k”

theory, under which ĉn�t
P−→ ct (see, e.g., Theorem 9.3.2 in Jacod and Protter (2012)).

Although the spot variance estimator ĉn�t is no longer consistent under the fixed-
k asymptotics, we can nevertheless use Theorem 1 to guide the conduct of valid fea-
sible inference. In particular, for any α ∈ (0�1), pick an interval [L̄α� Ūα] such that
χ̄2
k([L̄α� Ūα]) = 1 − α. It follows then readily by (2.4) that P(L̄α ≤ ĉn�t/ct ≤ Ūα) → 1 − α,

or equivalently, P(Ū−1
α ĉn�t ≤ ct ≤ L̄−1

α ĉn�t)→ 1−α. In other words, [Ū−1
α ĉn�t � L̄

−1
α ĉn�t] pro-

vides a confidence interval (CI) for ct with asymptotic level 1 − α. Note that since the
scaled chi-squared distribution χ̄2

k is not symmetric, a conventional symmetric CI cen-
tered at ĉn�t will not have the smallest possible length (i.e., minimal L̄−1

α − Ū−1
α ). To de-

duce the shortest CI, it is convenient to reparameterize L̃α = Ū−1
α and Ũα = L̄−1

α , so that
the CI can be rewritten as [L̃αĉn�t � Ũαĉn�t]. Then, since the χ̄2

k([L̄α� Ūα]) = 1 − α cover-

age constraint is equivalent to χ̄−2
k ([L̃α� Ũα]) = 1 − α, it is easy to see that the length of

[L̃αĉn�t � Ũαĉn�t] is minimized by taking [L̃α� Ũα] as the highest density (HD) interval of
the scaled inverse-chi-squared distribution χ̄−2

k . We will denote this as [L̃HD
α � ŨHD

α ] be-
low. Corollary 1 summarizes these results.

Corollary 1. Let [L̃α� Ũα] be an interval that assigns probability 1 − α under the χ̄−2
k

distribution for some α ∈ (0�1). Under the conditions of Theorem 1, we have

P(L̃αĉn�t ≤ ct ≤ Ũαĉn�t) → 1 − α�

Moreover, the length of [L̃α� Ũα] is minimized by [L̃HD
α � ŨHD

α ].

Comment. An interesting special case is obtained by setting α = 0�5, L̃α = −∞, and
Ũα to be the median of the χ̄−2

k distribution. In this case, we have P(ct ≤ Ũαĉn�t) → 0�5,
suggesting that Ũαĉn�t is an asymptotically median unbiased estimator of ct .6

6The median of χ̄−2
k is approximately (1− 2

9k )
−3, with the relative approximation error bounded by 0�25%

over k ∈ {5� � � � �200}. We are grateful to an anonymous referee for suggesting this asymptotically median
unbiased estimator.
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By comparison, a conventional Gaussian-based CI, as commonly employed in the
literature, relies on the following central limit theorem:

√
k(ĉn�t − ct)√

2ĉn�t

d−→ N (0�1)� (2.5)

where it is assumed that k → ∞ and kΔ
1/2
n → 0 (see Theorem 2 in Foster and Nel-

son (1996) for an early contribution and Theorem 13.3.3 in Jacod and Protter (2012)
for a more general result). The resulting CI takes the form [L∗

αĉn�t �U
∗
αĉn�t] with L∗

α ≡
1 − √

2/kzα/2, U∗
α ≡ 1 + √

2/kzα/2, and zα/2 denoting the 1 −α/2 quantile of the standard
normal distribution. A commonly used approach to improve the conventional asymp-
totic Gaussian approximation is to consider the log-transformed variance. By applying
the delta method to (2.5), we obtain√

k/2
(
log(ĉn�t)− log(ct)

) d−→ N (0�1)� (2.6)

Correspondingly, under the “large-k” asymptotic setting, the 1 −α level two-sided sym-
metric CI for log(ct) is given by[

log(ĉn�t)− √
2/kzα/2� log(ĉn�t)+ √

2/kzα/2
]
� (2.7)

The results in Theorem 1 combined with the continuous mapping theorem also speak
directly to the inference about the log spot variance.7 In particular, it follows readily that
for each j ∈ M and tj ∈ Tn�j ,(

log(ĉn�j)− log(ctj )
)
j∈M

d−→ (
log(S̄j)

)
j∈M�

which further implies

max
j∈M

∣∣log(ĉn�j)− log(ctj )
∣∣ d−→ max

j∈M
∣∣log(S̄j)

∣∣� (2.8)

For α ∈ (0�1), let z̄α denote the 1 − α quantile of maxj∈M | log(S̄j)| so that

P

(
max
j∈M

∣∣log(ĉn�j)− log(ctj )
∣∣ ≤ z̄α

)
−→ 1 − α�

A uniform 1 − α level confidence band for log(ctj ) across j ∈ M may therefore be con-
structed as [

log(ĉn�j)− z̄α� log(ĉn�j)+ z̄α
]
� j ∈ M.

We summarize the property of this confidence band in the following corollary.

7 Since the spot variance estimator is not consistent under the fixed-k setting, the delta method is not
applicable because it relies on a linear approximation in a shrinking neighborhood at the true value. Nev-
ertheless, we can still use the continuous mapping theorem to obtain the convergence result for certain
nonlinear transformations (such as the logarithm).
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Corollary 2. Under the same setting as Theorem 1, we have

P
(
log(ĉn�j)− z̄α ≤ log(ctj ) ≤ log(ĉn�j)+ z̄α for all j ∈ M

) → 1 − α�

for tj ∈ Tn�j and each j ∈ M.

Comments. (i) The symmetry of the [log(ĉn�j)− z̄α� log(ĉn�j)+ z̄α]j∈M confidence band,
combined with the constant width for all time points, makes this band particularly ap-
pealing for empirical work. These features stem from the fact that volatility is a scaling
factor and the log transformation effectively “descales” the process.

(ii) Note that when M is a singleton, the z̄α quantile can be solved numerically from

Fk

(
kez̄α

) − Fk

(
ke−z̄α

) = P
(∣∣log(S̄j)

∣∣ ≤ z̄α
) = 1 − α� (2.9)

where Fk(·) denotes the χ2
k cumulative distribution function. More generally, if M

contains m elements, it follows by the independence of the S̄j random variables that
P(maxj∈M | log(S̄j)| ≤ z̄α) = (Fk(ke

z̄α) − Fk(ke
−z̄α))m, so that z̄α can be solved from

Fk(ke
z̄α) − Fk(ke

−z̄α) = (1 − α)1/m. The joint 1 − α level critical value is thus the same
as the marginal critical value at confidence level (1 − α)1/m.

To more clearly illustrate the differences between the fixed-k CIs described in Corol-
lary 1 and the conventional Gaussian-based CIs, the left panel of Figure 1 depicts
[L̃HD

α � ŨHD
α ] and [L∗

α�U
∗
α] for a range of block sizes k ∈ {5� � � � �30} at confidence level

90%.8 As the figure shows, not only are the fixed-k CIs asymmetric, they are also gen-
erally wider than their conventional Gaussian benchmarks, with the differences espe-
cially pronounced for small block sizes. As demonstrated in our Monte Carlo simulation
experiments discussed in Section 3 below, these differences manifest in markedly differ-
ent finite sample coverage probabilities. Similarly, the right panel of Figure 1 compares
the critical values for the log variance: [−z̄α� z̄α] for the fixed-k setting (recall (2.9)) and
[−√

2/kzα/2�
√

2/kzα/2] for the conventional Gaussian setting (recall (2.7)). These criti-
cal values for the log variance are numerically closer than those for the variance itself.
Needless to say, the apparent closeness in the former case does not automatically imply
that the corresponding CIs exhibit better finite-sample coverage probabilities, in that
the finite-sample distribution of log(ĉn�t) and ĉn�t are also very different. That said, in
our Monte Carlo simulation experiment, we find that the log-transformation does in-
deed help mitigate the size distortions of the Gaussian-based CIs, but that the distor-
tions remain larger than for the fixed-k based CIs.

A limitation of Corollary 2, which it inherits from Theorem 1, is that it concerns a
fixed number of blocks, resulting in a subtlety regarding the scope of its applicability.
In particular, directly applying Corollary 2 to the full sample period [0�T ] would require
treating the total number of blocks mn as a fixed number, but this would lead to a logi-
cal inconsistency as mn = n/k → ∞ under the maintained asymptotic framework.9 The

8Here, and throughout the remainder of the paper, we focus on 90% CIs. The results for other confidence
levels are qualitatively very similar, and hence, are omitted for brevity.

9To put this into perspective, consider a representative empirical scenario with Δn = 1-minute and a
sample span T = 1 corresponding to a 6�5-hour trading day. For a fixed block size of say k= 10, there would
be “only” mn = 39 blocks.
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Figure 1. The figure plots critical values of fixed-k and Gaussian-based confidence intervals
for the spot variance ct (left) and its log transformation (right). The confidence level is fixed at
1 − α = 90%. The block size k ranges from 5 to 30. On the left panel, the solid lines correspond
to the fixed-k critical values (L̃HD

α � ŨHD
α ) defined by the 1 −α level highest density interval of the

scaled inverse-chi-squared distribution χ̄−2
k , and the dashed lines correspond to the benchmark

Gaussian-based critical values 1 ±√
2/kzα/2, where zα/2 denotes the 1 −α/2 quantile of the stan-

dard normal distribution. On the right panel, the solid lines correspond to the fixed-k critical
values ±z̄α, where z̄α denotes the 1 −α quantile of the | log χ̄2

k| distribution, and the dashed lines
correspond to the Gaussian-based critical values ±√

2/kzα/2 shown in equation (2.7).

joint inference for a growing number of blocks is a much more challenging problem, to
which we now turn.

2.3 Fixed-k inference in the high-dimensional case

This subsection is devoted to the uniform inference for the entire spot variance process
(ct)t∈[0�T ] under the fixed-k asymptotic setting. Given the appealing “descaling” feature
of the log transformation highlighted by Corollary 2, we focus exclusively on the log
variance process log(ct). The key technical challenge stems from the growing number
of blocks in the sample span [0�T ]. In particular, with k fixed, the number of blocks
mn = n/k grows at the same rate as the sample size n, rendering the joint inference a
high-dimensional problem. To address this challenge, we need to strengthen Assump-
tion 1 as follows.

Assumption 2. Suppose that Assumption 1 with r = 0 holds true. Moreover, for any p ≥
2, assume that

max
1≤j≤mn

E

[
sup

t�s∈Tn�j
|σt∧Tm − σs∧Tm |p

]
≤Km�p|t − s|p/2� (2.10)

for all m≥ 1 and some finite constant Km�p.



Quantitative Economics 12 (2021) Fixed-k inference for volatility 1063

Assumption 2 strengthens Assumption 1 in two important ways. First, the restric-
tion that r = 0 implies that the jumps in J have finite activity, whereas the activity of
price jumps is essentially unrestricted in Assumption 1. This finite-activity condition
is needed to ensure that the truncation is uniformly valid across the large number of
mn = O(n) blocks.10 Second, the condition in (2.10) further implies that the paths of the
volatility process are Hölder continuous (with an index strictly smaller than 1/2) on each
subinterval Tn�j . This condition holds if the volatility process behaves as a continuous Itô
semimartingale, or a long-memory process within each subinterval. Importantly, it does
not rule out jumps on the boundary time points between the Tn�j subintervals.11 While
this piecewise-continuity assumption restricts the form of volatility jumps, it readily
accommodates volatility jumps induced by regularly scheduled macroeconomic and
other precisely timed news announcements, for which it is natural to use the known
announcement times to divide nearby estimation blocks.

Theorem 2, below, describes the uniform confidence band for the log variance pro-
cess and its asymptotic validity.

Theorem 2. Suppose that Assumption 2 holds and k ≥ 7. Let (S̄j)1≤j≤kn be i.i.d. χ̄2
k-

distributed random variables, and z̄n�α be the 1 − α quantile of sup1≤j≤mn
| log(S̄j)|. Then

P

(
sup

t∈[0�T ]

∣∣log(ĉn�t)− log(ct)
∣∣ ≤ z̄n�α

)
→ 1 − α�

Consequently, [log(ĉn�t) − z̄n�α� log(ĉn�t) + z̄n�α] forms a uniform confidence band for the
log(ct) process on [0�T ] with asymptotic level 1 − α.

Comments. (i) The confidence band described in Theorem 2 is constructed in exactly
the same manner as the band in Corollary 2. Thus, the proposed confidence band is
valid regardless of whether the number of blocks is fixed or divergent, although in the
latter case we need somewhat stronger assumptions to establish the validity.

(ii) Theorem 2 requires the block size k ≥ 7, which is not needed for the pointwise
inference discussed in Section 2.2. It is instructive to illustrate why this (seemingly pe-
culiar) condition is needed. It follows from Theorem 1 that ĉn�t/ct ≈ S̄j for each t ∈ Tn�j .
In order to get a similar approximation for log(ĉn�t/ct), we can apply a Taylor expansion
to show that

log
(
ĉn�t

ct

)
− log(S̄j) ≈ 1

S̄j

(
ĉn�t

ct
− S̄j

)
�

Although each 1/S̄j variable is Op(1), their maximum max1≤j≤mn |1/S̄j| is divergent, and
we need to “tame” the growth rate. Recall that the density of the scaled chi-squared dis-
tribution χ̄2

k behaves like an O(xk/2−1) function when x ≈ 0. Hence, a larger k results

10It might be possible to allow for infinitely active jumps if one sufficiently slows down the growth rate of
the number of blocks in the joint inference problem. This extension, however, would be secondary to our
main contribution, and hence, is not developed here.

11A similar piecewise continuity condition is also needed in the conventional “large-k” setting for the
uniform estimation of the volatility process; see Remark 1 of Li, Todorov, and Tauchen (2017a).
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in a smaller probability that S̄j is near zero. It turns out that when k ≥ 7 this proba-
bility is sufficiently small to ensure that max1≤j≤mn |1/S̄j| diverges slower than the uni-
form rate at which the ĉn�t/ct ≈ S̄j approximation occurs, which in turn ensures that
log(ĉn�t/ct)≈ log(S̄j) uniformly well.

To underscore the practical applicability of the new fixed-k theory and related infer-
ence procedures, we turn next to the results from an empirically realistically calibrated
Monte Carlo simulation experiment.

3. Monte Carlo simulations

Following Bollerslev and Todorov (2011), we simulate the (log) price process from a two-
factor stochastic volatility model. Specifically, with the unit time interval normalized to
“one day,” we generate the process X according to

dXt = √
ct dWt� ct = V1�t + V2�t �

dV1�t = 0�0128(0�4068 − V1�t) dt + 0�0954
√
V1�t

(
ρdWt +

√
1 − ρ2 dB1�t

)
�

dV2�t = 0�6930(0�4068 − V2�t) dt + 0�7023
√
V2�t

(
ρdWt +

√
1 − ρ2 dB2�t

)
�

where W , B1, and B2 denote independent standard Brownian motions.12 The ρ =
−0�7 parameter captures the well-documented negative correlation between price and
volatility shocks (i.e., the “leverage” effect). The V1 volatility factor is highly persistent
with a half-life of 2�5 months, while the V2 volatility factor is quickly mean-reverting
with a half-life of only one day. We fix V1�0 = V2�0 = 0�5, so that c0 = 1. We simulate the
“continuous-time processes” using an Euler scheme on a 1-second mesh, with the “ob-
served returns” actually used in the calculations sampled at Δn = 1 minute intervals. All
numerical results reported below are based on 100,000 Monte Carlo replications.

We begin by examining the performance of the fixed-k CIs for the spot variance ct
and its log transformation log(ct). We consider the optimal CI for the spot variance de-
scribed in Corollary 1, and the symmetric CI for the log spot variance described in Corol-
lary 2. For comparison, we also include results for the conventional “large-k” CIs formed
using the asymptotic Gaussian approximations in (2.5) and (2.6). We assess the coverage
for the true latent volatility values at time t = kΔn, corresponding to the endpoint of
the first estimation block for block size k. We compute the CIs for a range of block sizes
k ∈ {5� � � � �30}.

Figure 2 plots the resulting simulated coverage rates at nominal level 1−α = 90%. As
the figure clearly shows, the coverage rates of the fixed-k CIs for both ct and log(ct) are
notably closer to the nominal level than the Gaussian-based CIs. Quite remarkably, the
fixed-k CIs have almost exactly 90% coverage when k is small (e.g., k≤ 10). In sharp con-
trast, the Gaussian-based CIs all suffer from nontrivial size distortions for these smaller

12In Appendix SA in the Online Supplemental Material, we consider an additional data generating pro-
cess, in which the Brownian motions B1 and B2 are replaced by Lévy processes with infinitely active jumps.
The simulation results are very similar to the findings discussed below.
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Figure 2. The figure plots the simulation coverage probabilities for the optimal fixed-k 90%
CIs for the spot variance described in Corollary 1, the symmetric fixed-k 90% CIs for the log spot
variance described in Corollary 2, together with the conventional large-k 90% Gaussian-based
CIs. The block size k ranges from 5 to 30.

block sizes, indicating that the asymptotic Gaussian approximation that relies on k→ ∞
has not yet “kicked in.” The log transformation alleviates some of the size distortion, al-
though the coverage of the Gaussian-based CIs are still systematically below their nom-
inal levels.13

We turn next to an analysis of the uniform confidence band for the log spot variance
process. In view of the pointwise results discussed above, we fix the block size at k = 10,
and focus our analysis on the effect of including additional blocks. Specifically, we con-
sider the joint inference for mn ∈ {1�2�3�6�39�195} blocks, corresponding to 10-minute,
20-minute, 30-minute, 1-hour, 1-day, and 1-week horizons, respectively. The results in
Corollary 2 and Theorem 2 formally prescribe the same numerical confidence band,[

log(ĉn�t)− z̄n�α� log(ĉn�t)+ z̄n�α
]
� z̄n�α = 1 − α quantile of max

1≤j≤mn

∣∣log(S̄j)
∣∣�

However, the corollary makes the weaker assertion that the band covers the mn-
dimensional vector (log(ctj ))1≤j≤mn for tj ∈ Tn�j , whereas the theorem asserts uniform
coverage for the entire process (log(ct))t∈[0�T ]. Accordingly, we report uniform cover-
age rates for two separate cases. The first case pertains to the setting of Corollary 2, for
which we set tj as the starting time point of the jth estimation block. The second case
pertains to the setting of Theorem 2, for which we approximate the realized continuous-
time sample path (log(ct))t∈[0�T ] using the entire 1-second mesh from the Euler sim-

13Gonçalves and Meddahi (2009) proposed bootstrap inference methods for the integrated variance. Al-
though their theory is not directly applicable in the present context concerning spot variances, motivated
by their ideas we implement an alternative bootstrap-based version of the CIs. The results from these ad-
ditional simulations, reported in Appendix SA of the Online Supplementary Material, show that the fixed-k
CIs also control size better than the bootstrap CIs.
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Table 1. Monte Carlo coverage rates of fixed-k uniform confidence band.

Number of blocks (mn)

1 2 3 6 39 195

Corollary 2 0�896 0�897 0�898 0�897 0�898 0�851
Theorem 2 0�869 0�872 0�873 0�875 0�876 0�821

Note: The table reports the finite-sample coverage rates of the 90% uniform confidence band for the log spot variance
log(ct ). The block size is fixed at k = 10. The two separate rows labeled Corollary 2 and Theorem 2 pertain to the uniform
coverage for (log(ct(n�j)))1≤j≤mn and (log(ct ))t∈[0�T ] , respectively.

ulation scheme. As above, we focus on the simulated coverage rates at nominal level
1 − α = 90%.

The results in the top row of Table 1 for the mn-dimensional vector (log(ctj ))1≤j≤mn

show coverage rates almost identical to the nominal level over daily and shorter time
horizons (i.e., mn ≤ 39). However, at the longer 1-week horizon (i.e., mn = 195) there
is evidence of some under-coverage, reflecting the additional complications associated
with this higher-dimensional scenario. For the more challenging case involving the en-
tire process (log(ct))t∈[0�T ], the simulated coverage rates reported in the second row are
obviously lower, but still fairly close to the 90% nominal level.

Buttressed by these simulation results, we turn next to an empirical application of
the new procedures.

4. FOMC policy announcements and asset market volatility

The ability of the new fixed-k asymptotic theory to reliably assess the spot volatility over
relatively short estimation blocks renders the approach particularly appealing for situa-
tions in which the volatility process varies dramatically over short time-windows, possi-
bly as a result of specific economic events. These types of empirical scenarios have also
received considerable attention in the recent literature on high-frequency identification
of macroeconomic shocks. Nakamura and Steinsson (2018), for example, rely on high-
frequency bond futures data to identify monetary shocks and test for monetary nonneu-
trality via a simultaneous equation model identified by the assumption that asset price
volatilities are higher during short “treatment” windows around FOMC announcements
than during “control” windows void of any policy announcements. Bollerslev, Li, and
Xue (2018) similarly rely on a regression-discontinuity, or jump-regression, strategy for
estimating summary measures of investors’ difference-of-opinion based on the premise
that the volatilities of stock returns immediately following FOMC, and other macroe-
conomic, news announcements are “abnormally high” relative to their preannounce-
ment levels. Motivated by this recent literature and the identification schemes employed
therein, we enlist the new inference procedures to more formally assess the short-term
dynamics of aggregate stock market volatility around FOMC announcements.

There is already a large literature in macroeconomics studying the effect of monetary
policy shocks, as identified through the impact of FOMC announcements on the level
of asset prices, including early notable contributions by Cochrane and Piazzesi (2002),
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Rigobon and Sack (2004), and Bernanke and Kuttner (2005), and more recent work by
Wright (2012) and Johnson and Paye (2019) specifically related to the Fed funds rate be-
ing at or near the zero lower bound. A closely related literature in asset pricing finance
similarly seeks to associate large intraday asset price movements, in the form of statis-
tically significant jumps, with specific economic news, like FOMC announcements, as
exemplified by Andersen, Bollerslev, and Diebold (2007), Lee and Mykland (2008), and
Lee (2012). Meanwhile, other recent studies have documented that most of the equity
risk premium appears to be earned in specific phases of the FOMC news release cy-
cle; see, for example, Savor and Wilson (2014), Lucca and Moench (2015), and Cieslak,
Morse, and Vissing-Jorgensen (2019). Related to this, Ai and Bansal (2018) exploited the
unique environment created by FOMC announcements to help discriminating nonex-
pected utility theory from standard Von Neumann–Morgenstern theory, and the role of
uncertainty in determining asset prices in particular. It is not our intent to add to this
burgeoning literature on the determinant of the equity risk premium, and the efficacy
of monetary policy more generally. Instead, we simply recognize the unique position of
FOMC announcements as the most important type of regularly scheduled macroeco-
nomic news with an immediate impact on asset prices and asset market volatilities.

Our data consists of intraday transaction prices for the E-mini futures contract on
the S&P 500 index, spanning July 1, 2003 to March 2, 2017. The data was obtained from
Tick Data. To help mitigate the effect of market microstructure “noise,” we follow stan-
dard practice in the literature to sparsely sample the data at a 1-minute sampling fre-
quency (see, e.g., the discussion in Zhang, Mykland, and Aït-Sahalia (2005)). We rely on
Bloomberg’s Economic Calendar to pinpoint the exact announcement times for each
of the 109 FOMC announcements that occurred during regular trading hours over our
sample period.

Before considering the aggregate results for all of the FOMC announcements, it is in-
structive to detail the results for a few specific days. The most important episode in our
sample vis-a-vis the role of the Fed is arguably the 2007–2008 financial crisis. We thus
consider three FOMC announcements that occurred during the crisis, each of which is
naturally associated with a clearcut narrative. The top-left panel in Figure 3, in particu-
lar, plots the time series of the S&P 500 E-mini futures prices over a 2-hour window on
September 18, 2007. The window is centered at the exact time-of-day when the FOMC
announced its decision to lower the target Fed funds rate from 5�25% to 4�75%, so as to
forestall the adverse impact of the mortgage crisis on the U.S. economy. As the figure
shows, this announcement resulted in a sharp price jump of more than 1% in the level
of the S&P 500 index. Comparing the price paths in the one hour before and after the
announcement, the FOMC announcement evidently also resulted in an increase in the
intraday volatility. The top-middle panel, pertaining to the announcement on March 18,
2008, which occurred soon after the Fed guaranteed Bear Stearns’ bad loans to facili-
tate its acquisition by J. P. Morgan Chase, tells a similar story in regards to the volatility.
While the market index fluctuated within a fairly narrow price band in the one hour
leading up to the announcement, the 1 hour following the announcement obviously
witnessed much larger fluctuations. Moreover, although this announcement triggered
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Figure 3. The top panel plots the S&P 500 E-mini futures prices one hour before and after
selected FOMC announcements, with the announcement time normalized to zero. The bot-
tom panel plots the corresponding log spot variance estimates formed on 10-minute estimation
blocks (squares), together with 90% pointwise CIs (bars) and 90% uniform confidence bands
(shaded areas).

a negative price jump at the time of its release, this immediate price impact was re-
versed within the hour. Meanwhile, not all FOMC announcements necessarily result in
immediate price jumps. As a case in point, the top-right panel shows the S&P 500 futures
prices around the “zero-lower-bound” announcement on December 16, 2008. Nonethe-
less, even though the price itself did not jump at the time of that announcement, the
volatility evidently increased quite sharply.

In an effort to more rigorously underpin these visual impressions, the bottom pan-
els in Figure 3 display the log spot variance estimates computed over 10-minute blocks
(i.e., k = 10) 1 hour before and after each of the three announcements. To prevent price
jumps at announcement times from “contaminating” the spot volatility estimation, we
remove the two (resp., three) 1-minute returns before (resp., after) the announcement
time, resulting in a 5-minute gap between preannouncement and post-announcement
estimation blocks. In addition to the point estimates (squares), we also plot the corre-
sponding 90% fixed-k pointwise CIs (bars), together with the 90% uniform confidence
bands for the 1 hour before and 1 hour after the announcement times (shaded areas).

Three interesting features emerge. First, the lack of overlap in the CIs immediately
before and after the announcements corroborate the visual impression gleaned from the
price plots in the top panels, of significantly higher volatilities in the immediate after-
math of the announcements. Second, there is a tendency for the volatility to trend down
over the post-announcement hour. However, it typically remains at elevated levels even
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after one hour of trading. Third, for some days there is also evidence of a slight buildup
in the volatility in advance of the announcement.14 This preannouncement “up-tick”
may possibly be explained by informed trading steered by leaked information during the
official press lock-up period.15 Consistent with this, Bernile, Hu, and Tang (2016) and
Kurov, Sancetta, Strasser, and Wolfe (2019) both reported that some directional price-
adjustments seemingly occurred in anticipation of the official FOMC news release.

We intentionally choose the three announcement days in Figure 3 because they all
represent specific milestones in financial history. Nonetheless, the short-term volatility
patterns that these specific events reveal are to a large extent representative of the full
set of FOMC announcements. In particular, the finding that the announcements trig-
ger positive volatility jumps, or cτ > cτ−, holds true almost uniformly across all FOMC
announcements.

To formally test this hypothesis, we estimate spot volatilities immediately before and
after all of the 109 announcements in our sample, say ĉ1− and ĉ1+, respectively, based on
10-minute estimation blocks.16 In parallel to the calculations above, we again exclude
the two (resp., three) 1-minute returns immediately before (resp., after) the announce-
ment as a conservative way to truncate announcement-induced price jumps. Referring
to the distributional results in Theorem 1, it follows that under the null hypothesis that
the spot volatilities are the same, the ratio ĉ1+/ĉ1− converges in distribution to the ratio
between two independent χ̄2

10-distributed variables, that is, an F(10�10)-distribution. Cor-
respondingly, the 1 − α quantile of this F-distribution may be used as the critical value
to determine whether the cτ = cτ− null hypothesis is rejected against the positive-jump
alternative, or cτ > cτ−, at significance level α. Conversely, a test against the negative-
jump alternative, or cτ < cτ−, may be carried out using the test statistic ĉ1−/ĉ1+ and the
identical critical value.

The first two columns of Table 2 report the number of FOMC announcements, out
of 109 in total, for which we reject the “no-jump” hypothesis against each of the two
one-sided alternatives at the 10% significance level. For 104 of the days is the post-
announcement spot variance estimate ĉ1+ significantly higher than the preannounce-
ment estimate ĉ1−, thus confirming that FOMC announcements generally induce posi-
tive volatility jumps.17 Meanwhile, the tests never reject the null hypothesis against the

14This is most notable for the announcement on March 18, 2008, and may also be gleaned from a closer
look at the underlying price movements in Figure 3.

15 The lock-up period refers to a short, often less than 30-minutes, period before the official announce-
ment, when accredited journalists receive the information, thereby facilitating their preparation of me-
dia reports. However, under embargo agreements, the media cannot disclose the information until the
scheduled release time. The FOMC explicitly expressed concerns about violations of this embargo in the
transcript of its November 3, 2010, meeting. A report by the Office of Inspector General is available at
https://oig.federalreserve.gov/reports/board-controls-sensitive-economic-information-apr2016.pdf.

16The choice of k reflects the usual “bias-variance” trade-off. Small values of k result in small biases and
wide CIs, and vice versa. Our choice of k = 10 is mainly motivated by our simulation results summarized in
Figure 2, which indicate that k = 10 provides excellent size control, while larger values of k may lead to size
distortions. As an additional robustness check, we also repeated the empirical analysis with an even more
conservative choice of k = 5. The results, detailed in Appendix SB.2 in the Online Supplemental Material,
are qualitatively very similar to the ones based on k= 10 discussed here.

17The use of more stringent 5% and 1% significance levels slightly reduce the number of rejections to
102 and 95, respectively, but does not alter our main empirical message.

https://oig.federalreserve.gov/reports/board-controls-sensitive-economic-information-apr2016.pdf
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Table 2. Significant volatility movements around FOMC announcements.

Null ĉ1+ − ĉ1− = 0 ĉ1− − ĉ2− = 0 ĉ2+ − ĉ1+ = 0
Alternative > 0 < 0 > 0 < 0 > 0 < 0

No. of rejections 104 0 21 17 4 44

Note: The table reports the number of FOMC announcements (out of a total of 109) for which the null hypothesis indicated
in the top row is rejected by a one-sided test at the 10% significance level. ĉ2− and ĉ1− (resp., ĉ1+ and ĉ2+) refer to the spot
variance estimates in the two 10-minute estimation blocks before (resp., after) the announcements.

negative-jump alternative, ruling out the possibility of downward volatility jumps, and a
resolution of uncertainty, immediately following FOMC announcements. This perhaps
is not surprising, as the new “lumpy” information conveyed by the FOMC statements
may require additional interpretation by investors, even if the policy announcements
may eventually help resolve uncertainty in the long-run.18

Further investigating the specificities of the patterns observed in Figure 3, we con-
sider the volatilities calculated over the 10-minute estimation blocks immediately pre-
ceding (resp., following) the 10-minute blocks used in the estimation of ĉ1− (resp., ĉ1+).
Denoting these estimates by ĉ2− and ĉ2+, respectively, we test for a general buildup
in the volatility in advance of FOMC announcements by comparing ĉ2− and ĉ1−, and
a decline in the volatility following the announcements by comparing ĉ1+ and ĉ2+.
Column 3 (resp., 4) in Table 2 shows the number of instances in which ĉ1− is signifi-
cantly higher (resp., lower) than ĉ2− at the 10% significance level. No obvious picture
emerges: there is a significant preannouncement increase in the volatility in 21 in-
stances, while the volatility exhibits a significant decline before the announcement in
17 instances. Thus, the previously discussed preannouncement “up-tick” on March 18,
2008, is by no means unique, but it is also not a widely shared phenomenon. Looking
at the last two columns reveals a more systematic post-announcement pattern, with
ĉ2+ being significantly lower than ĉ1+ for close to half of the days, suggesting that the
volatility fairly quickly mean-reverts after the initial burst triggered by the announce-
ment.

To gain additional insight on the strength of this mean-reversion, we consider
a longer horizon comprised of the ten 10-minute estimation blocks before and af-
ter the announcement time. We refer to these estimates as ĉj− and ĉj+, respectively,
with j ∈ {1� � � � �10} signifying the distance in 10-minute multiples from the announce-
ment time. Since FOMC announcements typically take place at 2:15 PM (EST), the
ten post-announcement blocks essentially span the remaining part of the regular trad-
ing day. We use the 11th estimation block before the announcement, and the corre-
sponding spot variance estimate ĉ11−, as our benchmark, and perform one-sided tests
at the 10% significance level to examine whether ĉj± > ĉ11− significantly for each j ∈
{1� � � � �10}.

Figure 4 summarizes the results by reporting the rejection rates for each of the
twenty estimation blocks averaged across all of the 109 announcements in the sample.

18Although the evidence is not as overwhelming, in Appendix SB.1 in the Online Supplemental Material
we also document a tendency for upward volatility movements during post-announcement press confer-
ences.
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Figure 4. The figure reports the proportions of FOMC announcements for which the spot vari-
ance in each of the ten 10-minute estimation blocks before and after the announcement is signif-
icantly higher, at the 10% significance level, than the spot variance in the 11th 10-minute bench-
mark block before the announcement. The light-shaded area indicates 10%.

Looking at the preannouncement window, the rejection rates for the first eight blocks are
either below or very close to the 10% nominal level, indicating the lack of any systematic
increase in the volatility up until 20 minutes before the announcement. However, there
is a notable increase in the rejections for the two estimation blocks in the 20-minute
window before the announcement time, echoing the previous findings in Table 2 for
ĉ1− > ĉ2−, indicative of occasional preannouncement “up-ticks” in the volatility. Mean-
while, the rejection rate for the first post-announcement block is close to 100%, provid-
ing unambiguous support for the notion that FOMC-induced monetary policy shocks
result in heightened asset price volatility. The subsequent estimation blocks evidence
a gradual decline in the average rejection rates the further apart in time the blocks are
from the announcement time. In spite of this decline, the volatility usually remains at an
elevated level in the trading hours after the announcement compared to the benchmark
before the announcement.

In sum, not only do FOMC monetary policy announcements typically cause asset
prices to jump, they almost always trigger highly statistically significant positive jumps
in asset market volatility. This increase in the volatility is gradually reversed over the re-
mainder of the trading day. In addition, there is also a significant buildup in the volatil-
ity shortly in advance of certain announcements. These “fine structures” are only for-
mally revealed through the use of very short estimation blocks and accompanying re-
liable inference procedures, as afforded by our new fixed-k asymptotic theory. By con-
trast, conventional asymptotic Gaussian-based inference for spot volatility on this time
scale is subject to nontrivial size distortions, and hence, would be difficult to inter-
pret.
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5. Conclusion

Conventional theory for nonparametric inference about spot volatility invariably relies
on a “large-k” asymptotic scheme, under which local estimation windows are assumed
to contain an increasing number of observations, while at the same time the length of
the windows shrink to zero asymptotically. By “properly” choosing the block size of the
windows to be “large enough but not too large,” the asymptotic theory in turn delivers
nonparametric consistent volatility estimates together with asymptotic Gaussian-based
inference. However, the practical implementation of this conventional double asymp-
totic framework is marred with difficulties.

Instead, we propose a novel fixed-k asymptotic theory and corresponding single
asymptotic framework that is much more amenable to practical implementation. Our
key insight is that even though the estimates themselves are no longer consistent, it is
still possible to conduct valid nonparametric inference about the true latent spot volatil-
ities. In order to do so, we derive easy-to-implement pointwise CIs determined by scaled
chi-squared distributions. In contrast to the standard Gaussian-based CIs, which suffer
from severe size distortions for small estimation block sizes, the new fixed-k CIs attain
almost exact coverage. To allow for uniform inference about the entire volatility process,
we further extend the fixed-k theory to a high-dimensional setting, in which the number
of estimation blocks grows at the same rate as the sample size. This high-dimensional
theory is also new to the literature on volatility estimation and inference.

We demonstrate the practical usefulness of the proposed new methods by study-
ing the volatility of the S&P 500 aggregate equity index around FOMC news announce-
ments. Our empirical results provide unambiguous support for positive volatility jumps
at announcement times, thus formally corroborating the high-frequency identification-
by-discontinuity strategies used in a number of recent studies. The new procedures also
reveal other more subtle pre and post-announcement drifts in the volatility, which may
help shed new light on the way in which investors position themselves in advance of the
announcements and process the information revealed by the announcements.

Appendix: Proofs

Throughout the proofs, we use K to denote a positive constant that may change from
line to line, and write Kp to emphasize its dependence on some parameter p. For p ≥ 1,
we use ‖ · ‖p to denote the Lp-norm of a random variable. For each j, we use t(n� j) to
denote the starting point of the Tn�j time interval, that is, t(n� j)≡ (j−1)kΔn. In addition,
by a standard localization procedure, we can strengthen Assumptions 1 and 2 by assum-
ing that they hold with T1 = ∞ without loss of generality; see Section 4.4.1 in Jacod and
Protter (2012) for details on the localization procedure.

Proof of Theorem 1. Denote X ′ ≡ X − J, that is, the continuous part of X . For each
j ∈ {1� � � � �mn}, define ĉ′

n�j ≡ (kΔn)
−1 ∑

i∈In�j (Δ
n
i X

′)2 and Sn�j ≡ Δ−1
n

∑
i∈In�j (Δ

n
i W )2. We

then decompose for each t ∈ Tn�j ,

kĉn�j − ctSn�j = (ct(n�j) − ct)Sn�j +Rn�j +R′
n�j� (A.1)

where Rn�j ≡ k(ĉn�j − ĉ′
n�j) and R′

n�j ≡ kĉ′
n�j − ct(n�j)Sn�j .
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We rewrite Rn�j = ∑
i∈In�j ζn�i where ζn�i ≡ Δ−1

n ((Δn
i X)21{|Δn

i X|≤un} − (Δn
i X

′)2). By
some known estimates (see p. 1476 in Jacod and Rosenbaum (2013)),

E
[∣∣(Δn

i X
)21{|Δn

i X|≤un} − (
Δn
i X

′)2∣∣] ≤KΔ(2−r)�+1
n �

which further implies E[|ζn�i|] ≤KΔ(2−r)�
n . Hence,

Rn�j =Op
(
Δ(2−r)�
n

)
� (A.2)

For each i ∈ In�j , let

ξn�i ≡ Δn
i X

′ − σt(n�j)Δ
n
i W =

∫ iΔn

(i−1)Δn

bs ds +
∫ iΔn

(i−1)Δn

(σs − σt(n�j))dWs� (A.3)

Note that by Itô’s isometry and Assumption 1,

E

[∣∣∣∣∫ iΔn

(i−1)Δn

(σs − σt(n�j))dWs

∣∣∣∣2]
= E

[∫ iΔn

(i−1)Δn

|σs − σt(n�j)|2 ds
]

≤KΔ2
n�

It is then easy to see that ‖ξn�i‖2 ≤KΔn. Since(
Δn
i X

′)2 − (
σt(n�j)Δ

n
i W

)2 = ξ2
n�i + 2ξn�iσt(n�j)Δ

n
i W �

we further deduce

E
[∣∣(Δn

i X
′)2 − (

σt(n�j)Δ
n
i W

)2∣∣] ≤ E
[
ξ2
n�i

] + 2E
[∣∣ξn�iσt(n�j)Δ

n
i W

∣∣] ≤KΔ
3/2
n � (A.4)

By the triangle inequality and (A.4),

E
[∣∣R′

n�j

∣∣] ≤ Δ−1
n E

[ ∑
i∈In�j

∣∣(Δn
i X

′)2 − (
σt(n�j)Δ

n
i W

)2∣∣] ≤KΔ
1/2
n �

which implies that

R′
n�j =Op

(
Δ

1/2
n

)
� (A.5)

Finally, we note that ct(n�j) − ct = Op(Δ
1/2
n ) and Sn�j = Op(1), and hence, (ct(n�j) −

ct)Sn�j = Op(Δ
1/2
n ). Combining this estimate with (A.1), (A.2), and (A.5), we deduce

kĉn�j − ctSn�j = Op(Δ
(2−r)�∧(1/2)
n ). Since 1/ct =Op(1), this further implies

ĉn�j

ct
− k−1Sn�j = Op

(
Δ
(2−r)�∧(1/2)
n

)
�

Note that k−1Sn�j is χ̄2
k-distributed. Moreover, the Sn�j variables are clearly mutually in-

dependent. This completes the proof of Theorem 1.

To prove Theorem 2, we need two technical lemmas. Recall that X ′ ≡ X − J denote
the continuous part of X . We consider another collection of index sets (Ĩn�j)1≤j≤mn such
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that, for each j, Ĩn�j ⊆ In�j and Ĩn�j contains kj elements. We then set

c̃′
n�j ≡ (kΔn)

−1
∑
i∈Ĩn�j

(
Δn
i X

′)2
�

Lemma A1 establishes a uniform approximation result for (c̃′
n�j)1≤j≤mn .

Lemma A1. Suppose that Assumption 2 holds. Then, with S̃n�j ≡ Δ−1
n

∑
i∈Ĩn�j (Δ

n
i W )2, we

have for any ε ∈ (0�1/2),

max
1≤j≤mn

sup
t∈Tn�j

∣∣∣∣ c̃′
n�j

ct
− k−1S̃n�j

∣∣∣∣ = op
(
Δε
n

)
�

Proof. For each j ∈ {1� � � � �mn} and t ∈ Tn�j , we decompose

kc̃′
n�j − ct S̃n�j = (ct(n�j) − ct)S̃n�j +Δ−1

n

∑
i∈Ĩn�j

((
Δn
i X

′)2 − (
σt(n�j)Δ

n
i W

)2)
� (A.6)

By Assumption 2, we have for any p ≥ 1, 1 ≤ j ≤mn, and t ∈ Tn�j ,∥∥∥ sup
t∈Tn�j

|ct(n�j) − ct |
∥∥∥
p

≤KpΔ
1/2
n �

Hence, the Lp-norm of supt∈Tn�j |(ct(n�j) − ct)S̃n�j| is also uniformly bounded by KpΔ
1/2
n .

By a maximal inequality, we further deduce that

max
1≤j≤mn

sup
t∈Tn�j

|ct(n�j) − ct | = Op
(
Δ

1/2−1/p
n

)
� (A.7)

Define ξn�i as in (A.3). Note that by the Burkholder–Davis–Gundy inequality, Hölder’s

inequality, and Assumption 2, we have for any p ≥ 2,

E

[∣∣∣∣∫ iΔn

(i−1)Δn

(σs − σt(n�j))dWs

∣∣∣∣p]
≤ KpE

[(∫ iΔn

(i−1)Δn

|σs − σt(n�j)|2 ds
)p/2]

≤ KpΔ
p/2−1
n E

[∫ iΔn

(i−1)Δn

|σs − σt(n�j)|p ds
]

≤ KpΔ
p
n �

It is then easy to see that ‖ξn�i‖p ≤KpΔn. Consequently, for any p ≥ 1,

∥∥(
Δn
i X

′)2 − (
σt(n�j)Δ

n
i W

)2∥∥
p

≤ ∥∥ξ2
n�i

∥∥
p

+ 2
∥∥ξn�iσt(n�j)Δ

n
i W

∥∥
p

≤KpΔ
3/2
n �
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By the triangle inequality,∥∥∥∥Δ−1
n

∑
i∈Ĩn�j

((
Δn
i X

′)2 − (
σt(n�j)Δ

n
i W

)2)∥∥∥∥
p

≤ Δ−1
n

∑
i∈In�j

∥∥(
Δn
i X

′)2 − (
σt(n�j)Δ

n
i W

)2∥∥
p

≤KpΔ
1/2
n �

By a maximal inequality, we further deduce

max
1≤j≤mn

∣∣∣∣Δ−1
n

∑
i∈Ĩn�j

((
Δn
i X

)2 − (
σt(n�j)Δ

n
i W

)2)∣∣∣∣ =Op
(
Δ

1/2−1/p
n

)
� (A.8)

In view of (A.6), (A.7), and (A.8), we can take p sufficiently large and deduce

max
1≤i≤mn

sup
t∈Tn�j

∣∣kc̃′
n�j − ct S̃n�j

∣∣ = op
(
Δε
n

)
�

From here, the assertion of the lemma readily follows.

Lemma A2, below, establishes a uniform bound for the density of the

max
1≤j≤mn

∣∣log(S̄j)
∣∣

variable.

Lemma A2. Let k≥ 2 and p∗
n(·) be the probability density function of max1≤j≤mn | log(S̄j)|,

where (S̄j)1≤j≤mn are i.i.d. χ̄2
k-distributed random variables. Then p∗

n(x) ≤ k for any x ≥ 0.

Proof. Denote the probability density function and the cumulative distribution func-
tion of | log(S̄j)| by g(·) and G(·), respectively. Since the variables (S̄j)1≤j≤mn are i.i.d.,

P

(
max

1≤j≤mn

∣∣log(S̄j)
∣∣ ≤ x

)
= (

P
(∣∣log(S̄j)

∣∣ ≤ x
))mn =G(x)mn�

which implies that

p∗
n(x) =mnG(x)mn−1g(x)� (A.9)

Since G(·) is an increasing function,

mnG(x)mn−1
∫ ∞

x
g(u)du ≤

∫ ∞

x
p∗
n(u)du = P

(
max

1≤j≤mn

∣∣log(S̄j)
∣∣ ≥ x

)
≤ 1�

Therefore,

mnG(x)mn−1 ≤ 1∫ ∞

x
g(u)du

� (A.10)
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By (A.9) and (A.10),

p∗
n(x) ≤ g(x)∫ ∞

x
g(u)du

� (A.11)

It remains to show that the right-hand side of (A.11) is bounded by k for all x≥ 0.
Let p(·) and P(·) be the density and distribution functions of log(S̄j), respectively.

Note that G(x) = P(x)− P(−x) and g(x) = p(x)+p(−x). Since kS̄j is χ2
k-distributed,

P(x) = P
(
kS̄j ≤ kex

) = 1

2k/2�(k/2)

∫ kex

0
uk/2−1e−u/2 du�

where �(·) is the Gamma function, and hence,

p(x) = ck exp
(
k
(
x− ex

)
2

)
� where ck ≡ (k/2)k/2

�(k/2)
�

We further define h(x) = xk/2−1 exp(−kx/2) and rewrite p(x) = cke
xh(ex). By changing

variables, ∫ ∞

x
p(u)du = ck

∫ ∞

ex
h(u)du�

∫ ∞

x
p(−u)du = ck

∫ e−x

0
h(u)du�

We can then rewrite

g(x)∫ ∞

x
g(u)du

= p(x)+p(−x)∫ ∞

x
p(u)du+

∫ ∞

x
p(−u)du

= exh
(
ex

) + e−xh
(
e−x

)∫ ∞

ex
h(u)du+

∫ e−x

0
h(u)du

� (A.12)

By (A.12),

g(x)∫ ∞

x
g(u)du

≤ exh
(
ex

) + e−xh
(
e−x

)∫ e−x

0
h(u)du

= e−xh
(
e−x

)∫ e−x

0
h(u)du

(
1 + e2x h

(
ex

)
h
(
e−x

))
� (A.13)

For ease of notation, we define

U(y) ≡ yh(y)∫ y

0
h(u)du

� V (x) ≡ log
(
e2x h

(
ex

)
h
(
e−x

))
� (A.14)

The inequality (A.13) can then be rewritten as

g(x)∫ ∞

x
g(u)du

≤U
(
e−x

) · (1 + eV (x)
)
� (A.15)

Since h(x) = xk/2−1 exp(−kx/2), we can rewrite V (x) more explicitly as

V (x) = kx− kex

2
+ ke−x

2
�
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Note that V (0) = 0 and, for any x, V ′(x) = k(1 − ex/2 − e−x/2) ≤ 0. Hence,

sup
x≥0

V (x) ≤ 0� (A.16)

Turning to the U(·) function, we first compute its derivative

U ′(y) =
[
h(y)+ yh′(y)

] ∫ y

0
h(u)du− yh(y)2

(∫ y

0
h(u)du

)2 �

By direct calculation, we have

h(y)+ yh′(y) = k

2
(1 − y)h(y)� (A.17)

We can then rewrite

U ′(y) = Ũ(y)h(y)(∫ y

0
h(u)du

)2 � where Ũ(y) ≡ k

2
(1 − y)

∫ y

0
h(u)du− yh(y)� (A.18)

Since k≥ 2, Ũ(0) = 0. Moreover, the derivative of Ũ(y) satisfies, for y > 0,

Ũ ′(y) = −k

2

∫ y

0
h(u)du+ k

2
(1 − y)h(y)− h(y)− yh′(y)

= −k

2

∫ y

0
h(u)du ≤ 0�

where the first equality is by direct calculation, and the second equality is by (A.17).
Therefore, Ũ(y) ≤ 0 for all y ≥ 0. By (A.18), we further see that U(·) is nonincreasing on
[0�∞). Recalling the definition of U(·) and applying L’Hôpital’s rule, we have U(0) = k/2.
Therefore, U(y) ≤ k/2 for all y ≥ 0, yielding

sup
x≥0

U
(
e−x

) ≤ k

2
� (A.19)

Combining (A.15), (A.16), and (A.19), we deduce g(x)/
∫ ∞
x g(u)du ≤ k. This inequality,

together with (A.11), implies the assertion of the lemma.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Step 1. In this step, we derive a uniform approximation re-
sult for the truncated spot variance estimator. Let μ denote the standard Poisson ran-
dom measure that drives the jumps in J, and (τq)q≥1 be the consecutive jumps of
the Poisson process t �→ μ([0� t]). Since the jumps of J has finite activity, the set {q ≥
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1 : τq ∈ [0�T ]} is almost surely finite. Denote Mn = {1� � � � �mn} and M′
n = {j ∈ Mn :

Tn�j does not contain any jump time τq}. We also define

Jn = {
i : ΔJs �= 0 for some s ∈ (

(i− 1)Δn� iΔn
]}
�

and then set Ĩn�j = In�j \ Jn. Let kj denote the number of elements in Ĩn�j . Note that for
n sufficiently large, each time interval Tn�j can contain at most one jump time τq under
the finite activity assumption. Therefore, kj = k− 1 when j ∈ Mn \M′

n and kj = k when
j ∈ M′

n.
Recall that X ′ = X − J is the continuous part of X . By Proposition 1 of Li, Todorov,

and Tauchen (2017b), we have Jn = {i : |Δn
i X| > un} with probability approaching 1, and

hence,

Δn
i X1{|Δn

i X|≤un} =
{
Δn
i X

′ if i /∈ Jn�

0 if i ∈ Jn�

Consequently, with probability approaching 1,

ĉn�j = c̃n�j ≡ (kΔn)
−1

∑
i∈Ĩn�j

(
Δn
i X

′)2
� for all j ∈ Mn�

By Lemma A1, for any ε ∈ (0�1/2),

max
1≤j≤mn

sup
t∈Tn�j

∣∣∣∣ ĉn�jct
− k−1S̃n�j

∣∣∣∣ = op
(
Δε
n

)
� (A.20)

where S̃n�j ≡ Δ−1
n

∑
i∈Ĩn�j (Δ

n
i W )2.

Step 2. In this step, we show that

max
1≤j≤mn

sup
t∈Tn�j

∣∣log(ĉn�t)− log(ct)− log
(
k−1S̃n�j

)∣∣ = op(1)� (A.21)

Denote Yn�j ≡ ĉn�j/ct(n�j) and Dn�j ≡ Yn�j − k−1S̃n�j . Note that

max
1≤j≤mn

sup
t∈Tn�j

∣∣log(ĉn�t)− log(ct)− log
(
k−1S̃n�j

)∣∣
≤ max

1≤j≤mn

∣∣log(Yn�j)− log
(
k−1S̃n�j

)∣∣ + max
1≤j≤mn

sup
t∈Tn�j

∣∣log(ct)− log(ct(n�j))
∣∣� (A.22)

By localization, we can assume that ct ≥ η for some constant η > 0 without loss of gen-
erality. Then, by the mean value theorem, | log(ct) − log(ct(n�j))| ≤ K|ct − ct(n�j)|. From
(A.7), we further see that for any ι ∈ (0�1/2),

max
1≤j≤mn

sup
t∈Tn�j

∣∣log(ct)− log(ct(n�j))
∣∣ =Op

(
Δ

1/2−ι
n

)
� (A.23)

By (A.20), there exists a positive real sequence δn = o(Δ0�49
n ) such that the sequence

of events Ωn ≡ {|Dn�j| ≤ δn, for all 1 ≤ j ≤ mn} satisfies P(Ωn) → 1. By the mean value
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theorem, for each j, there exists some λn�j ∈ [0�1] such that∣∣log(Yn�j)− log
(
k−1S̃n�j

)∣∣ = |Dn�j|
k−1S̃n�j + λn�jDn�j

� (A.24)

Let Sn�j ≡ Δ−1
n

∑
i∈In�j (Δ

n
i W )2. For any constant C1 > 0, we observe that

P

(
max
j∈M′

n

1∣∣k−1S̃n�j + λn�jDn�j

∣∣ ≥ C1n
2/(k−2)

)

≤ P

({
max

1≤j≤mn

1∣∣k−1Sn�j + λn�jDn�j

∣∣ ≥ C1n
2/(k−2)

}
∩Ωn

)
+ o(1)

≤
mn∑
j=1

P

({∣∣k−1Sn�j + λn�jDn�j

∣∣ ≤ 1
C1

n−2/(k−2)
}

∩Ωn

)
+ o(1)

≤
mn∑
j=1

P

(
Sn�j ≤ k

C1
n−2/(k−2) + kδn

)
+ o(1)� (A.25)

where the first inequality follows from the fact that S̃n�j = Sn�j when j ∈ M′
n and P(Ωn) →

1, the second inequality is obvious, and the last line holds because |Dn�j| ≤ δn for all j in
restriction to Ωn.

Note that Sn�j ∼ χ2
k, so its probability density is bounded by Kxk/2−1 for x near zero.

Therefore,

mn∑
j=1

P

(
Sn�j ≤ k

C1
n−2/(k−2) + kδn

)
≤ Kmn

(
1
C1

n−2/(k−2) + δn

)k/2−1

≤ KC
1−(k/2)
1 +Kmnδ

k/2−1
n � (A.26)

Since δn = o(Δ0�49
n ) and k≥ 7, mnδ

k/2−1
n = o(1). Then, by (A.25) and (A.26),

lim sup
n→∞

P

(
max
j∈M′

n

1∣∣k−1S̃n�j + λn�jDn�j

∣∣ ≥ C1n
2/(k−2)

)
≤KC

1−(k/2)
1 �

Therefore,

max
j∈M′

n

1∣∣k−1S̃n�j + λn�jDn�j

∣∣ =Op
(
n2/(k−2))� (A.27)

Note that for j ∈ Mn \M′
n, S̃n�j ∼ χ2

k−1, and it is easy to see that 1/|k−1S̃n�j + λn�jDn�j| =
Op(1). Since the set Mn \M′

n is finite,

max
j∈Mn\M′

n

1∣∣k−1S̃n�j + λn�jDn�j

∣∣ = Op(1)�

which together with (A.27) implies

max
1≤j≤mn

1∣∣k−1S̃n�j + λn�jDn�j

∣∣ = Op
(
n2/(k−2))� (A.28)
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Since k≥ 7, 2/(k−2) ≤ 2/5 < 1/2. By (A.20), (A.24), and (A.28), we deduce that (by taking
ε sufficiently close to 1/2)

max
1≤j≤mn

∣∣log(Yn�j)− log
(
k−1S̃n�j

)∣∣ = op
(
Δ
ε−2/(k−2)
n

) = op(1)� (A.29)

Combining (A.22), (A.23), and (A.29), we deduce (A.21) as claimed.
Step 3. We prove the assertion of the theorem in this step. By (A.21),

sup
t∈[0�T ]

∣∣log(ĉn�t)− log(ct)
∣∣ − max

1≤j≤mn

∣∣log
(
k−1S̃n�j

)∣∣ = op(1)� (A.30)

We note that the variables (S̃n�j)1≤j≤mn are independent. Moreover, S̃n�j = Sn�j ∼ χ2
k for

all but finitely many j’s (which correspond to the Tn�j intervals containing jump times),
and S̃n�j ∼ χ2

k−1 in the exceptional cases. Since mn → ∞, it is easy to see that

P

(
max

1≤j≤mn

∣∣log
(
k−1S̃n�j

)∣∣ �= max
1≤j≤mn

∣∣log
(
k−1Sn�j

)∣∣) = o(1)� (A.31)

By (A.30) and (A.31),

sup
t∈[0�T ]

∣∣log(ĉn�t)− log(ct)
∣∣ − max

1≤j≤mn

∣∣log
(
k−1Sn�j

)∣∣ = op(1)�

Hence, there exists a positive real sequence δn = o(1) such that with probability ap-
proaching 1, ∣∣∣ sup

t∈[0�T ]

∣∣log(ĉn�t)− log(ct)
∣∣ − max

1≤j≤mn

∣∣log
(
k−1Sn�j

)∣∣∣∣∣< δn� (A.32)

Consequently,

P

(
sup

t∈[0�T ]

∣∣log(ĉn�t)− log(ct)
∣∣ ≤ z̄n�α

)
≤ P

(
max

1≤j≤mn

∣∣log
(
k−1Sn�j

)∣∣ ≤ z̄n�α + δn
)

+ o(1)

= P

(
max

1≤j≤mn

∣∣log
(
k−1Sn�j

)∣∣ ≤ z̄n�α
)

+ P

(
z̄n�α < max

1≤j≤mn

∣∣log
(
k−1Sn�j

)∣∣ ≤ z̄n�α + δn
)

+ o(1)

= P

(
max

1≤j≤mn

∣∣log
(
k−1Sn�j

)∣∣ ≤ z̄n�α
)

+ o(1)

= 1 − α+ o(1)� (A.33)

where the first inequality is by (A.32), the first equality holds obviously, the second equal-
ity holds because the density of max1≤j≤mn | log(k−1Sn�j)| is bounded (see Lemma A2)
and δn = o(1), and the last line follows from the definition of z̄n�α. By a similar argument,
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we can also show that

P

(
sup

t∈[0�T ]

∣∣log(ĉn�t)− log(ct)
∣∣ ≤ z̄n�α

)
≥ 1 − α− o(1)� (A.34)

The assertion of the theorem then readily follows from (A.33) and (A.34).
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