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GLIVENKO-CANTELLI THEOREMS FOR INTEGRATED
FUNCTIONALS OF STOCHASTIC PROCESSES

By Jia Li and Congshan Zhang and Yunxiao Liu

Duke University and University of North Carolina at Chapel Hill

We prove a Glivenko–Cantelli theorem for integrated functionals
of latent continuous-time stochastic processes. Based on a bracket-
ing condition via random brackets, the theorem establishes the uni-
form convergence of a sequence of empirical occupation measures to-
wards the occupation measure induced by underlying processes over
large classes of test functions, including indicator functions, bounded
monotone functions, Lipschitz-in-parameter functions, and Hölder
classes as special cases. The general Glivenko–Cantelli theorem is
then applied in more concrete high-frequency statistical settings to
establish uniform convergence results for general integrated function-
als of the volatility of efficient price and local moments of microstruc-
ture noise.

1. Introduction. There is now a large and burgeoning literature on
the estimation of integrated functionals of stochastic processes based on
high-frequency data. The functional of interest takes the form

(1.1) Fg ≡
∫ 1

0
g(Vs)ds

for some latent continuous-time process V and some test function g (·).
The most prominent example is integrated volatility functionals, where V
is the stochastic volatility (or, more generally, spot covariance matrix) of
a semimartingale process. Special cases include the integrated variance-
covariance matrix ([8], [9], [11], [5], [12]), integrated betas ([10], [35], [36],
[40], [27]), correlation/leverage effects ([25]), idiosyncratic variance ([29]),
volatility Laplace transforms ([41]), volatility occupation times ([26]), and
eigenvalues ([4]). In a more complicated setting in which the underlying
semimartingale is contaminated with the so-called microstructure noise, the
latent process V may also include the other processes such as the stochastic
variance of microstructure noise. In applications, the integrated functional
Fg can be used to directly measure risk or to construct criterion functions
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2 JIA LI, CONGSHAN ZHANG, AND YUNXIAO LIU

for extremum estimation and specification test ([30]), and it may also appear
as the asymptotic variance of another estimator that needs to be estimated
for conducting feasible inference.

The estimation of integrated functionals can be viewed equivalently based
on the notion of occupation measure ([26]). Indeed, equation (1.1) also de-
fines F as the occupation measure induced by the process V : With g (·) =
1A (·) for some subset A, Fg reports the amount of time which the process V
spends in A. The occupation measure is thus a natural “realized” analogue
of the (conventional) probability distribution P , with P (A) denoting the
probability that Vt falls in A. In conventional statistical settings, a law of

large numbers may be written as Png
P−→ Pg, where Pn denotes the em-

pirical measure ([42]). In the same fashion, we can construct an empirical
occupation measure Fn such that

(1.2) Fng
P−→ Fg.

As such, a convergence result for an integrated functional for some g (·)
function can be understood as the pointwise convergence of Fn towards F
at the “point” g (·).

A theoretical question naturally arises from this perspective: Does the
pointwise convergence (1.2) holds uniformly for g ranging over a general
class G of test functions (e.g., all bounded monotone functions)? A similar
question has been well studied by various Glivenko–Cantelli theorems in the
classical empirical process literature, but it remains to be largely open for
occupation measures. The general lesson from the classical theory is that the
uniform convergence holds if the class G has “restricted complexity,” which
can be more precisely stated in terms of covering or bracketing numbers.

Set against this background, we aim to establish a general Glivenko–
Cantelli theorem for the occupation measure, as a first effort for bridging
the gap between the two literatures on high-frequency data and empirical
processes. Specifically, we consider a “plug-in” type estimator Fn given by

(1.3) Fng ≡
∫ 1

0
g(V̂s)ds,

where V̂ is a preliminary nonparametric estimator of the latent process V .
We show (see Theorem 1) that Fng converges in probability to Fg uniformly
over a class G under two high-level conditions: (i) a bracketing condition
stating that G can be covered by a finite number of brackets with any given

size; and (ii) Fnf
P−→ Ff for each bracket function f .

Our result resembles the classical Glivenko–Cantelli theorem for empirical
measures based on bracketing, but there are three important distinctions,
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which make our analysis notably different from prior work (cf. [42]). First,
unlike the (nonrandom) probability measure P , the occupation measure F is
itself a random quantity. As a result, the aforementioned bracketing condi-
tion cannot always be verified using (only) deterministic bracket functions as
in the classical setting. We address this issue by introducing random brack-
ets, accompanied by a novel notion of bracketing condition, which can be
verified for broad classes of test functions (e.g., bounded monotone functions,
Hölder class, and Lipschitz-in-parameter class) in the present setting.

Second, in order to accommodate the use of random brackets, we establish

(see Theorem 2) a general pointwise convergence result Fnf
P−→ Ff , allowing

the test function f to be random. This more general pointwise convergence
result is needed for applying our Glivenko–Cantelli theorem despite the fact
that each test function g ∈ G is deterministic.

Third, even for deterministic test functions, the pointwise convergence of
Fn is more complicated than that of the classical empirical measure: While
the latter follows simply from a law of large numbers for sample averages,
the former concerns integrated functionals of the nonparametric estimator
V̂ (recall (1.3)). Of course, when V is the spot variance-covariance matrix
process, the pointwise convergence of Fn is now relatively well understood in
the literature on integrated volatility functionals ([23], [24], [26], [30], [27]).
However, these papers focus exclusively on volatility estimation in the basic
setting without microstructure noise. In the presence of noise, V involves
not only the volatility but also local moments of the observation noise, and
requires a more deliberate method of estimation. To the best of our knowl-
edge, the (pointwise) estimation theory for the integrated functional with a
general test function g (·) has not been considered in the literature on noisy
high-frequency data.

To accommodate noisy data, we further establish a convergence result
for integrated functionals with general test functions, allowing for the pres-
ence of (a certain type of) microstructure noise. Specifically, we adopt the
pre-averaging approach ([19], [38], [21]) to construct a nonparametric spot
estimator V̂ that contains a noise-robust estimator for the efficient price’s
spot volatility and an estimator of the (time-varying and stochastic) spot
variance of microstructure noise, and we show that the associated empiri-

cal occupation measure Fn satisfies the pointwise convergence Fnf
P−→ Ff

for general (possibly random and discontinuous) test function f . We then
“upgrade” this pointwise convergence to a uniform version using our general
Glivenko–Cantelli theorem; see Section 3.2 for details. As an intermediate
step of this analysis, we develop a uniform approximation result for the
pre-averaging nonparametric spot estimators; this appears to be new to the
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noise literature, and may be useful in other types of analysis as well.
The present paper is closely related to two strands of the high-frequency

econometrics/statistics literature. The first is the literature on the estima-
tion of general integrated volatility functionals. Theorem 9.3.2 of [23] pro-
vides a pointwise convergence result for continuous test functions with poly-
nomial growth. The polynomial-growth condition is restrictive as it rules out
many commonly used test functions (e.g., beta, correlation, and idiosyncratic
variance). [27] relaxes this restriction based on a uniform approximation ar-
gument. Some uniform convergence results have appeared in the literature,
but only for very narrow classes of test functions. For example, [26] studies
the estimation of volatility occupation time, for which the test functions are
indicator functions; [30] and [29] study the uniform estimation of asymp-
totic conditional variance-covariance functions of a mixed Gaussian process
(indexed by a scalar) in order to conduct Bierens-type nonparametric spec-
ification tests. In contrast, the uniformity of our Glivenko–Cantelli theorem
holds for substantially broader classes of test functions. Moreover, we also
study the estimation in the presence of microstructure noise, which is not
considered in the aforementioned prior work.

Meanwhile, the extant literature on noisy high-frequency data has mostly
focused on the estimation of integrated variance or covariance matrix ([48],
[46], [31], [3], [47], [6], [7], [19], [22], [38], [16], [18], [21], [13], [44]), which
is a special case of Fg with g being the identity function (i.e., g (x) = x).
The asymptotic variance of these estimators are also integrated functionals,
typically taking form as integrated integer polynomials of the spot volatility
of the efficient price and the spot variance of the noise. To the best of
our knowledge, the present paper appears to be the first to establish the
pointwise estimation of general integrated functionals in the noisy setting,
while our main contribution, namely the Glivenko–Cantelli theorems, clearly
set our theory further apart from the extant literature on microstructure
noise.

Finally, this paper is clearly inspired by the classical empirical process
literature (see, e.g., [42]), but it concerns a very different non-stationary
non-ergodic infill asymptotic setting involving latent processes. In addition,
an interesting novelty of our theory is the use of random brackets, which
stem naturally from the stochastic nature of the occupation measure. Our
Glivenko–Cantelli theorem is a necessary first step for a more complete de-
velopment of empirical process theory (e.g., Donsker theorems) in the high-
frequency setting.

The rest of the paper is organized as follows. Section 2 presents our generic
Glivenko–Cantelli theorem. Section 3 specializes the general theorem in more
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concrete settings with and without microstructure noise, and provides an
empirical application. Section 4 concludes. All proofs are given in Section 5.

Notation: We use
P−→ and

P∗−→ to denote convergence in probability and
convergence in outer probability, respectively. For two real-valued sequences
(an)n≥1 and (bn)n≥1 , we write an � bn if there exists some constant C ≥ 1,
such that an/C ≤ bn ≤ Can. For any real number a, bac (resp. dae) denotes
the greatest (resp. smallest) integer smaller (resp. larger) than a. All limits
are for n→∞.

2. A Glivenko–Cantelli theorem for integrated functionals. This
section presents our Glivenko–Cantelli theorem for empirical occupation
measures. After introducing the setting in Section 2.1, we present our generic
Glivenko–Cantelli theorem in Section 2.2. This result is based on a brack-
eting condition via random brackets, and a pointwise convergence condition
for the brackets. The latter condition is studied in detail in Section 2.3.

2.1. Empirical occupation measure. Consider a filtered probability space
(Ω,F , (Ft)t≥0,P), on which a generic continuous-time stochastic process Vt
is defined over a fixed time interval normalized to be [0, 1]. The process
Vt is càdlàg, adapted, and takes values in an Euclidean space V. We are
interested in situations where Vt is not directly observable, but needs to be
(nonparametrically) estimated. In applications, Vt typically plays the role
of the spot variance of a financial asset, or the spot covariance matrix of
multiple assets. In more general settings, Vt may include the local moment
processes of other quantities such as the observational error on asset price
(i.e., microstructure noise), trading duration, volume, bid-ask spread, etc.

Much attention of the high-frequency econometrics and statistics litera-
ture has been devoted to estimating integrated functionals of the form

(2.1)

∫ 1

0
g (Vs) ds

for some measurable function g : V 7→ R. The most prominent example
is the case when Vt is the spot variance of an asset price process, and the
resulting integrated volatility functionals are of direct interest as measures
of financial risks. In addition, these functionals are more generally relevant
for statistical inference, in that the estimators’ asymptotic variances are
also integrated functionals. The latter type of functionals often have more
complicated forms, especially for estimators constructed using noisy high-
frequency data.

The study of integrated functionals in fact concerns the occupation mea-
sure. Specifically, we recall (see [17] and [26]) that the occupation measure
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F induced by Vt over the [0, 1] time interval is defined as

F(A) ≡
∫ 1

0
1{Vs∈A}ds,

for any Borel subset A ⊆ V , which records the amount of time spent by
the V process in the set A. The occupation measure is thus evidently the
“realized” analogue of the probability distribution of Vt. With an appeal to
basic integration theory, we can equivalently view the occupation measure
F as a linear functional that acts on measurable test functions, that is,

(2.2) Fg ≡
∫
V
g(x)F (dx) =

∫ 1

0
g(Vs)ds.

To construct the empirical occupation measure, we suppose that a non-
parametric estimator V̂t of the Vt process is available, satisfying the following
assumption.

Assumption 1. V̂t
P−→ Vt for Lebesgue almost every t ∈ (0, 1).

Assumption 1 requires V̂t to be a consistent “spot” estimator of Vt for
almost every t ∈ (0, 1). Although this condition is high-level in nature, it is
relatively mild. When Vt is the spot covariance of a multivariate semimartin-
gale, the spot estimation theory is well known under very general conditions
in the case without microstructure noise; see Theorem 9.3.2 of [23] for a
general result. Section 3.2 presents similar results in a setting with noise.

Equipped with this spot estimator, we can naturally define the corre-
sponding empirical occupation measure Fn as follows:

(2.3) Fng ≡
∫ 1

0
g(V̂s)ds.

A relatively basic problem concerns the pointwise consistency of Fn, that is,
for a fixed g function,

Fng
P−→ Fg.

Going one step further, our main theoretical goal in this paper is to address
the uniform convergence problem in a general setting. Specifically, we aim
to establish a Glivenko–Cantelli theorem of the form

sup
g∈G
|Fng − Fg| P∗−→ 0,
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where the supremum is taken over a large class G of test functions. As in
[42], we state the convergence under the outer probability P∗ to circumvent
measurability issues.

Before diving into the formal results, it is instructive to illustrate the use-
fulness of the Glivenko–Cantelli theorem in three types of applied scenarios.

Example (Risk Measurement). The integrated functional Fg may serve
as a measure of risk in financial applications. One case in point is the volatil-
ity occupation time studied by [26]. In that case, V is the stochastic volatility
of an asset, and G consists of test functions of the form g(x) = 1{x≤c} in-
dexed by the constant c > 0. The volatility occupation time complements
the popular integrated volatility measure

∫ 1
0 Vsds by providing additional

“distributional” information regarding the stochastic volatility process. In a
more general multivariate case, we may take V to be the spot beta process
of an asset with respect to the market portfolio, which is a conventional
measure of systematic risk and is formally defined as the ratio between their
spot covariance and the market portfolio’s spot variance. The beta occu-
pation time is then informative about the firm’s time-varying systematic
risk, which we will further illustrate in the empirical application (Section
3.3). In the same vein, one can study a firm’s idiosyncratic risk, asymmet-
ric information, and liquidity by setting V to be the corresponding process
that can be formed as transformations of assets’ spot covariance matrix and
instantaneous moments of microstructure noise. �

Example (M-Estimation). Establishing the consistency of an M-estimator
often relies on the uniform convergence of the criterion function. In this
scenario, G typically collects the criterion function indexed by a finite-
dimensional parameter θ. To fix ideas, consider a nonlinear model V1,t =
h (V2,t; θ), and set Vt = (V1,t, V2,t). For instance, V1,t may be the price of
an option contract, V2,t may be a vector consisting of the state variables in
the option pricing model such as the price of the underlying asset and its
stochastic volatility, and h (·) specifies the pricing formula parameterized by
θ, which in turn governs the risk-neutral dynamics of the state processes.
In this case, Vt is not directly observable for two reasons: The stochastic
volatility is latent, and the “efficient” prices of the option contract and the
underlying asset may be contaminated by microstructure noise (which is
particularly relevant for options). The estimation of θ can be carried out
by minimizing the sample version of

∫ 1
0 (V1,s − h (V2,s; θ))

2ds, which corre-
sponds to Fg with g (x1, x2) = (x1 − h (x2; θ))2 and, correspondingly, the
family G collects all such test functions indexed by θ over the parameter
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space. More generally, the θ parameter may be a function itself, giving rise
to a nonparametric M-estimation problem. �

Example (Feasible Functional Inference). The sampling variability
of a functional estimator is often captured by a limiting Gaussian process
with unknown (conditional) covariance function, typically taking a much
more complicated form than the original functional estimator of interest.
The associated feasible inference requires the uniform consistent estimation
of the asymptotic covariance function. One case in point is the nonparamet-
ric specification test of [29] for testing the constancy of smooth transfor-
mations of the spot covariance matrix (e.g., volatility level, beta, idiosyn-
cratic variance, correlation, eigenvalue, variance beta, etc.), which is based
on a functional central limit theorem for a continuum of integrated volatil-
ity functionals. The Glivenko–Cantelli theorem can be used to design the
estimator for the asymptotic covariance function and provides a generic tool
for justifying the estimator’s theoretical validity. �

2.2. A Glivenko–Cantelli theorem based on random brackets. Our the-
ory is inspired by the classical empirical process theory based on bracketing
(see Theorem 2.4.1 in [42]). In order to explain clearly the similarity and
the difference between these results, it is instructive to briefly review the
essentials of the classical theory first. Consider an i.i.d. sequence of random
variables (Zi)1≤i≤n and let P and Pn denote the corresponding probability
measure and empirical measure, respectively. For each P -integrable measur-
able function g, we denote

Pg ≡
∫
g (z)P (dz) , Png ≡

1

n

n∑
i=1

g (Zi) .

The pointwise convergence Png
P−→ Pg for a given g function follows directly

from a conventional law of large numbers. The corresponding Glivenko–
Cantelli theorem has the form

(2.4) sup
g∈G
|Png − Pg|

P∗−→ 0.

To obtain this uniform convergence, one approach is to restrict the com-
plexity of G using a notion of bracketing. Specifically, for a constant ε > 0,
a pair of functions (l (·) , u (·)) is said to form an ε-bracket if l (·) ≤ u (·)
and Pu − Pl ≤ ε. If for any ε > 0, there exists a finite collection of
ε-brackets given by {(lj , uj) : 1 ≤ j ≤ Nε} such that each g ∈ G satisfies
lj (·) ≤ g (·) ≤ uj (·) for some j, then the uniform convergence in (2.4) holds.
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Our theory is also based on a bracketing condition—which is described in
Assumption 2—but with an important difference. Unlike the (non-random)
probability measure P in the conventional setting, the occupation measure
F considered here is a random measure. Consequently, we need to consider
random bracket functions in certain applications as illustrated below. In the
sequel, a function f is called a random function on V if it is a (jointly)
measurable function defined on the product space Ω×V. We then define Ff
as Ff (ω) ≡

∫
f (ω, x)Fω (dx), ω ∈ Ω, where Fω is the realization of F on

the sample path ω.

Assumption 2. For each constant ε > 0, there exist a finite constant
Nε and a set of (possibly random) bracket functions {(lj , uj) : 1 ≤ j ≤ Nε},
such that for each g ∈ G and ω ∈ Ω, we can find constants j, k ∈ {1, . . . , Nε}
that may depend on ω and satisfy lj (ω, ·) ≤ g (·) ≤ uk (ω, ·) and∫

(uk (ω, x)− lj (ω, x))Fω (dx) ≤ ε.

Assumption 2 is more flexible than the aforementioned conventional brack-
eting condition in two related ways. One is to allow the bracket functions
to be random. The other is that the brackets for each test function g is al-
lowed to vary across different sample paths (i.e., j and k may depend on ω).
In particular, the lower and upper bracket functions lj and uk are allowed
to be “mixed and matched” to cover the test functions. Such flexibility is
particularly useful in our proof of the uniform convergence over bounded
monotone functions (see Theorem 3 below).

We are now ready to state our generic Glivenko–Cantelli theorem for
empirical occupation measures.

Theorem 1. Suppose that (i) Assumption 2 holds, and (ii) Fnf
P−→ Ff

for each bracket function f ∈ {lj , uj : 1 ≤ j ≤ Nε}. Then, we have

sup
g∈G
|Fng − Fg| P∗−→ 0.

Theorem 1 relies on two sufficient conditions: the bracketing condition
and the pointwise convergence for bracket functions. In the remaining part
of this subsection, we illustrate how to verify the bracketing condition for
general classes of test functions. Meanwhile, the pointwise convergence for
the bracket function introduces an interesting complication. That is, al-
though the original test functions (i.e., g) are deterministic, we nonetheless
need to consider random test functions (i.e., f) as well. To our knowledge, a
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general theory for Fnf
P−→ Fnf with f being random is not available in the

literature. For this reason, we provide such a result in Section 2.3 below. In
Section 3, we further specialize Theorem 1 in more concrete settings under
primitive conditions.

Turning to examples for Assumption 2, we start with the class of in-
dicator functions of the form g (·) = 1{ ·≤x}. When Vt is scalar-valued,

Fg =
∫ 1

0 1{Vs≤x}ds reports the time spent by the process V below a cer-
tain level x. This is the occupation time studied by [26], which we denote by
F (x) for simplicity. These test functions satisfy Assumption 2 as illustrated
by Example 1 below.

Example 1 (Indicator Functions). Consider a class of indicator func-
tions GI =

{
1(−∞,x] (·) : x ∈ R

}
. To construct the brackets for a given ε > 0,

let xj be the (jε ∧ 1)-quantile of F (·). Observe that F (xj) − F (xj−1) ≤ ε,
for j = 1, . . . , Nε, where Nε = d1/εe is finite. Then Assumption 2 can be
verified by setting the bracket functions as l1 (·) = 0 and lj+1 (·) = uj (·) =
1(−∞,xj ] (·) for j ≥ 1. �

Example 1 is of particular interest because it directly resembles the origi-
nal Glivenko–Cantelli problem regarding cumulative distribution functions,
as the occupation time F (x) is exactly the “realized” analogue of the dis-
tribution function P (Vt ≤ x). This example also demonstrates how to verify
the bracketing condition by adapting classical results from the empirical
process literature. Meanwhile, we also see that random brackets naturally
arise from this context because quantiles of the random measure F are also
random, resulting in random brackets. Indicator functions are special cases
of the class of bounded monotone functions, which also satisfy Assumption
2 as we now illustrate.

Example 2 (Bounded Monotone Functions). Consider a collection of
bounded monotone functions

GM ≡ {monotone functions g : V 7→ [0, 1]},

where we have normalized the range of g to be [0, 1]. Obviously, GI ⊂ GM .
In the classical setting, Theorem 2.7.5 in [42] shows that, for every ε > 0,
the number of ε-brackets needed to cover GM is bounded by exp

(
Kε−1

)
for

some universal constant K and is thus finite. Although this result cannot
be directly used to verify Assumption 2, the underlying method can be
adapted to construct random brackets in the current setting. The exact
construction is somewhat technical (especially when the occupation time
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F(x) is not strictly increasing), and we provide the details in the proof of
Theorem 3 below. �

Note that monotone functions in the above examples do not need to be
smooth, as the indicator functions are in fact discontinuous. Large classes
of smooth functions also satisfy the bracketing condition, as demonstrated
in the following two examples.

Example 3 (Lipschitz-in-Parameter Class). Let Θ ⊆ Rq be a compact
parameter space. We consider functions of the form g : V × Θ 7→ R, and
a collection GL = {g (·, θ) : θ ∈ Θ}. We further assume that g (x, θ) is
continuous in x for each θ ∈ Θ and, for any compact set K ⊆ V, there exists
a finite constant MK > 0, such that for all θ, θ′ ∈ Θ,

(2.5) sup
x∈K

∣∣g(x, θ)− g(x, θ′)
∣∣ ≤MK ∥∥θ − θ′∥∥ .

Since Θ is bounded, for each ε > 0 we can select a finite number of points
θ1, . . . , θNε from Θ such that each θ ∈ Θ satisfies ‖θ − θj‖ ≤ ε/(2MK) for
some j. Bracket functions can then be constructed as

lj (x) = g (x, θj)− ε/2, uj (x) = g (x, θj) + ε/2.

These functions are deterministic and satisfy Fuj−Flj ≤ ε. If Vt takes values
in a compact set K, it is also easy to see that GL can be covered by these
brackets because of the Lipschitz condition. �

Example 4 (Hölder Class). Let GH be a class of real-valued functions on
V satisfying the following condition: for any compact subset K of V, there
exist constants αK ∈ (0, 1] and MK > 0, such that

sup
x,y∈K,x 6=y

|g (x)− g (y)|
‖x− y‖αK

≤MK.

That is, the functions in G are uniformly αK-Hölder continuous on each K. If
Vt takes value in some compact set K, then we can apply Corollary 2.7.2 of
[42] to show that for every ε > 0, there exists deterministic bracket functions
{(lj , uj) : 1 ≤ j ≤ Nε} covering GH , with supx∈K(uj (x) − lj (x)) ≤ ε and
Nε ≤ exp

(
Kε−d/αK

)
for some constant K. It follows that Fuj − Flj ≤ ε on

all sample paths. Assumption 2 is then verified. �

A few remarks on Example 3 and Example 4 are in order. First, Example
3 concerns functions that are smoothly (in the Lipschitz sense) parametrized
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by a parameter θ. The Lipschitz condition (2.5) is easy to verify because K
and Θ are compact. Example 4 concerns a nonparametric family of test
functions, which is not parametrized by any finite-dimensional parameter.
The latter example only requires the functions to be Hölder continuous in
the state variable. This is a mild requirement in that the Hölder index can
be arbitrarily small.

Second, for illustration purpose, we have assumed in these examples that
the process Vt takes value in a compact subset K. This condition is seem-
ingly restrictive: For example, a stochastic volatility process typically takes
values in (0,∞) rather than in any fixed compact set. That said, we ac-
tually only need this condition to hold locally in time when deriving limit
theorems, thanks to the standard localization procedure (see Section 4.4.1
of [23]). Theorems 4 and 6, below, provide concrete uniform convergence
results under the latter more general condition.

2.3. Pointwise convergence for random test functions. Under the brack-
eting condition, Theorem 1 reduces the Glivenko–Cantelli problem into a
pointwise convergence for bracket functions. The examples in Section 2.2
show that the bracket functions may be random and/or discontinuous. For
this reason, we establish in this subsection a pointwise convergence result

Fnf
P−→ Ff

while allowing the test function f to be random and discontinuous. That
said, we do not restrict f to be a bracket function described in Section 2.2,
so this pointwise convergence result is of its own independent theoretical
interest. We impose the following condition on the test function f .

Assumption 3. (i) For Lebesgue almost every t ∈ [0, 1], f is almost
surely continuous at Vt, that is, P ({ω : f (ω, ·) is continuous at Vt (ω)}) =
1.

(ii) For a deterministic function F : V 7→ R+, |f (ω, x)| ≤ F (x) all ω ∈ Ω
and x ∈ V. Moreover, supx∈K F (x) <∞ for any compact subset K ⊆ V.

Condition (i) of Assumption 3 imposes a continuity requirement on f ,
while allowing for a form of discontinuity. Consider Example 1 for illustra-
tion, where f (·) = 1(−∞,xj ] (·) and xj is a quantile of the occupation time
F (x). Recall that F, xj , and f (·) are all random. Under the assumption that
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the occupation time x 7→ F (x) is continuous almost surely, we have∫ 1

0
P ({ω : f (ω, ·) is discontinuous at Vs (ω)}) ds

=

∫ 1

0
P (Vs = xj) ds = E

[∫ 1

0
1{Vs=xj}ds

]
= E [F (xj)− F (xj−)] = 0,

which implies condition (i).
Assumption 3(ii) introduces a deterministic envelope F for the random

function f . If f is a bounded function (such as the bracket functions in Ex-
amples 1 and 2), F can be simply taken as a constant. The envelope becomes
more relevant when f is not uniformly bounded. In this case, we require F
to be bounded on compact sets. This requirement is mild because we do not
need F to be bounded over the entire state space. Specifically, in Examples 3
and 4, each bracket function f can be chosen to be a continuous determinis-
tic function, and we can simply set F = |f |. In this case, supx∈K F (x) <∞
is ensured by the continuity of F because K is compact.

In order to accommodate general test functions (particularly without the
polynomial growth restriction used by [23] and [24]), we impose the following
local compactness condition, which permits the use of spatial localization as
in [30] and [27].

Assumption 4. There exist a sequence of stopping times (Tm)m≥1 in-
creasing to infinity and a sequence of compact subsets Km ⊆ V such that for
each m ≥ 1, Vt, V̂t ∈ Km for all t ≤ Tm∧T with probability approaching one.

By localization, Assumption 4 allows us to assume that Vt and V̂t take
values in a compact set K without loss of generality when deriving limit
theorems. It has two requirements. The first concerns the pathwise regularity
of the Vt process, namely, it is locally compactly valued. This condition is
mild and easy to verify. For example, if Vt is the spot volatility process taking
values in V = (0,∞), this condition is satisfied if both Vt and 1/Vt are locally
bounded. In this case, we can find a localizing sequence of stopping times
(Tm)m≥1 such that Vt ∈ [2/m,m] for t ≤ Tm.

The second requirement is high-level in nature, that is, the spot estimator
V̂t ∈ Km for all t ≤ Tm ∧ T , with probability approaching one. A sufficient
condition is the following uniform convergence:

(2.6) sup
t∈[0,T ]

‖V̂t − Vt‖ = op(1),

which then implies that V̂t falls in a small enlargement of the range of Vt.
Specifically, if Vt ∈ [2/m,m] as in the aforementioned example, then we can
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set Km = [1/m,m+ 1], which verifies Assumption 4. It should be noted
that the uniform approximation in (2.6) typically does not hold when the
process Vt contains jumps; however, for the purpose of verifying Assumption
4, (2.6) is not necessary, either. In more general settings, we often can still
show that

(2.7) sup
t∈[0,T ]

‖V̂t − V t‖ = op(1),

where V t is defined as a moving average of the Vt process, which is also (lo-
cally) compactly valued. The above argument can then be adapted straight-
forwardly to verify Assumption 4. The results in Section 3 provide more
details.

We are now ready to state the pointwise convergence for general random
test functions.

Theorem 2. Under Assumptions 1, 3, and 4, Fnf
P−→ Ff .

Theorem 2 is related to several known results on the pointwise conver-
gence of integrated volatility functionals. For example, Theorem 9.4.1 of
[23] and Theorem 3 of [27] establish results for continuous deterministic test
functions, and Lemma 1 of [26] concerns bounded deterministic test func-
tions that may be discontinuous. Theorem 2 here is more general in that
it can be applied not only to those test functions, but also allows them
to be random, which is needed for verifying the high-level condition of our
Glivenko–Cantelli theorem.

3. Applications. In this section, we apply the general theory devel-
oped in Section 2 to a range of statistical applications on high-frequency
data. Section 3.1 collects results for the uniform estimation of integrated
volatility functionals. Section 3.2 provides further extensions by incorporat-
ing microstructure noise. Section 3.3 presents an empirical application.

3.1. Glivenko–Cantelli theorems for integrated volatility functionals . The
estimation of spot covariance process and the related integrated volatility
functionals are relatively well understood in the literature. We first demon-
strate in this familiar context how to use our general Glivenko–Cantelli the-
orem (Theorem 1) to establish new uniform convergence results over general
classes of test functions. We do so under primitive conditions commonly seen
in the high-frequency econometrics and statistics literature.
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Consider a d-dimensional Itô semimartingale Xt of the form

Xt = x0 +

∫ t

0
bsds+

∫ t

0
σsdWs

+

∫ t

0

∫
R
δ (s, x) 1{‖δ(s,x)‖≤1} (µ− ν) (ds, dx)(3.1)

+

∫ t

0

∫
R
δ (s, x) 1{‖δ(s,x)‖>1}µ (ds, dx) ,

where the drift bt takes values in Rd, the spot volatility matrix σt takes
values in Rd⊗d, W is a d-dimensional standard Brownian motion, δ : Ω ×
R+ × R 7→ Rd is a predictable function, µ is a Poisson random measure
on Ω × R, with its compensator ν (ds, dx) = ds ⊗ λ (dx) for some σ-finite
measure λ (·). In practical applications, Xt models the (log) price process of d
financial assets. The process of interest in this context is the spot covariance
process defined as ct = σtσ

>
t , which takes values in an open set C (e.g., the

collection of positive definite matrices). For ease of discussion, all processes
are assumed to be càdlàg and adapted. We further impose a few (mild)
regularity conditions.

Assumption 5. Let r ∈ [0, 2) be a constant. The process X is an Itô
semimartingale given by (3.1). The processes bt and σt are locally bounded.
There exists a sequence of stopping times (Tm)m≥1 increasing to infinity
such that for each m ≥ 1, all ω ∈ Ω, and t ≤ Tm (ω):

(i) ‖δ (ω, t, z)‖r ≤ Dm (z), where Dm (·) is a sequence of nonnegative
bounded λ-integrable functions on R;

(ii) ct ∈ Km, where Km is a sequence of compact convex subsets of C.

We consider an infill asymptotic framework in which X is sampled at
discrete times i∆n, i = 0, 1, . . . , n within a fixed time span normalized to
be [0, 1], where ∆n = 1/n goes to zero asymptotically. The spot covari-
ance process can be estimated using a truncated local realized covariance
estimator. Specifically, we choose an integer sequence kn of local windows
and a sequence un of truncation thresholds that satisfy (with r described in
Assumption 5):

(3.2) kn � nγ , un � n−$, γ ∈
(r

2
, 1
)
, $ ∈

[
1− γ
2− r

,
1

2

)
.

For each i ∈ {1, . . . , n− kn}, the spot covariance estimator for each t ∈
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((i− 1) ∆n, i∆n] is given by

(3.3) ĉt ≡
1

kn∆n

kn∑
j=1

(
∆n
i+jX

) (
∆n
i+jX

)>
1{‖∆n

i+jX‖≤un},

and we set ĉt ≡ ĉ(n−kn)∆n
for (n− kn) ∆n ≤ t ≤ 1.

Asymptotic properties of the spot estimator ĉt are known from prior lit-
erature under Assumption 5 and (3.2). Theorem 9.3.2 of [23] shows that

(3.4) ĉt
P−→ ct, t ∈ (0, 1),

which directly implies Assumption 1. In addition, [30] (see Lemma A2 in
that paper’s supplemental appendix) shows that

(3.5) sup
t∈[0,1]

‖ĉt − c̄t‖ = op(1),

where c̄t is defined as a local average of ct given by

c̄t ≡
1

kn∆n

∫ i∆n+kn∆n

i∆n

csds, t ∈ ((i− 1) ∆n, i∆n], i ∈ {1, . . . , n− kn} ,

and c̄t ≡ c̄(n−kn)∆n
for (n− kn) ∆n ≤ t ≤ 1. We can then use the uniform

approximation (3.5) to verify Assumption 4 (taking Vt = ct), following the
discussion in Section 2.3.

Equipped with these results, we are ready to specialize Theorem 1 under
more primitive conditions regarding the function class G and the underly-
ing processes, starting with the bounded monotone class GM described in
Example 2. Since the input of these monotone functions is one-dimensional,
we consider Vt = h (ct) for some continuous function h : C 7→ R. In the
univariate setting, h(·) can transform the spot variance into spot volatility,
log volatility, quarticity, volatility Laplace transform, etc. In the multivariate
setting, h(·) may transform the spot covariance matrix into beta, correlation,
idiosyncratic variance, eigenvalue, etc.

Theorem 3. Let Vt = h(ct) for some continuous function h : C 7→ R.
Suppose that the following conditions hold: (i) Assumption 5; (ii) kn and un
satisfy (3.2); (iii) the occupation time F (x) =

∫ 1
0 1{Vs≤x}ds is continuous in

x almost surely. Then,

sup
g∈GM

|Fng − Fg| P∗−→ 0.
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Theorem 3 is proved by verifying the high-level assumptions in Theorem
1. In the proof, we verify Assumption 2 by properly constructing random
brackets. To further establish the pointwise convergence for these bracket
functions, we verify the conditions in Theorem 2 under the primitive con-
ditions imposed by Theorem 3. Specifically, conditions (i) and (ii) lead to
(3.4) and (3.5) as explained above, and condition (iii) implies Assumption
3(i). Note that a sufficient condition of the continuity of the occupation time
F (x) is the existence of occupation density (meaning that F(x) is differen-
tiable in x). The latter existence results for Markov and Gaussian processes
are reviewed in [17] and [34]. [28] provides similar results for jump-diffusion
models that are commonly used in economics and finance (see Lemma 2.1
in that paper).

Based on a “more elementary” proof without bracketing, [26] establishes
(see Theorem 1 there) the uniform convergence of occupation time estima-
tors for univariate volatility, which corresponds to indicator test functions
(i.e., GI), and hence, is a special case of Theorem 3. Our result is far more
general as it shows that the convergence holds uniformly for all bounded
monotone functions.

We next consider the uniform convergence over the Lipschitz-in-parameter
and the Hölder classes of functions described in Examples 3 and 4, respec-
tively, with Vt = ct. Let GL and GH be defined as in those examples. As
mentioned before, we do not need to assume Vt to be compactly valued;
instead, we only need the localized version of this condition given by As-
sumption 5(ii).

Theorem 4. Suppose that the following conditions hold: (i) Assumption
5; (ii) kn and un satisfy (3.2). Then, for G = GL or GH ,

sup
g∈G
|Fng − Fg| P∗−→ 0.

Theorem 4 is also proved by verifying the high-level assumptions in The-
orem 1. The resulting Glivenko–Cantelli theorem is very general, as it estab-
lishes uniformity for both parametric families (GL) and Hölder-continuous
nonparametric families (GH). These classes cover most—if not all—smooth
test functions considered in the literature on integrated volatility function-
als. Theorem 4 reveals that the convergence is in fact uniform across all
these test functions, which is theoretically interesting.

3.2. Glivenko–Cantelli theorems in the noisy setting. In this subsection,
we further extend the results in Section 3.1 to a setting in which the semi-



18 JIA LI, CONGSHAN ZHANG, AND YUNXIAO LIU

martingale X is contaminated with microstructure noise. In financial ap-
plications, the noise is often attributed to various market frictions and has
long been recognized in the literature ([15], [32], [39]). The related statistics
literature has mainly focused on the estimation of integrated variance and
covariance matrix using various approaches including the multi-scale esti-
mator ([48], [46], [3], [47]), the realized kernel ([6], [7]), the pre-averaging
method ([19], [38], [2], [21]), the local method of moments ([13]), and the
likelihood method ([44]). By “localizing” these integrated estimators, several
papers also propose spot estimators of volatility ([49], [33], [45], [14]). In a
recent paper, [20] focuses on the noise and provides estimators for integrated
moments of noise.

To the best of our knowledge, however, the estimation of integrated func-
tionals for general test functions in the noisy setting remains largely to
be an open question, and the related Glivenko–Cantelli problem has not
been studied at all. In this subsection we establish such results for inte-
grated functionals of the volatility of efficient price and/or the spot variance
of microstructure noise, by applying our general Glivenko-Cantelli theorem
(Theorem 1).

We consider a similar setting as [22] for modeling noisy high-frequency
data. Suppose the latent efficient price process X (recall equation (3.1)) is
observed with error. That is, we observe

(3.6) Yi∆n = Xi∆n + εi, i = 0, . . . , b1/∆nc,

where εi denotes the d-dimensional noise, for which we impose the following
assumption.

Assumption 6. The variables (εi)i≥0 are F-conditionally independent
with zero mean. Moreover,

(i) for every q > 0, E [‖εi‖q|F ] = Mq,i∆n for some locally bounded process
(Mq,t)t≥0;

(ii) E[εiε
>
i |F ] = vi∆n for some càdlàg, Ft-adapted process (vt)t≥0 taking

values in an open set C, and there exist a sequence of stopping times (Tm)m≥1

increasing to infinity and a sequence (Km)m≥1 of compact convex subsets of
C such that vt ∈ Km for each m ≥ 1 and t ≤ Tm.

A few remarks are in order. Condition (i) of Assumption 6 is a mild reg-
ularity condition. We assume local boundedness of conditional moments at
all orders only for ease of exposition. Condition (ii) mainly requires that
the spot covariance of the noise vector is locally compactly valued. This
assumption is akin to Assumption 5(ii) on the spot covariance of efficient
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price. Like the latter, we also allow the noise volatility process to be stochas-
tic with jumps. This is empirically relevant and leads to some interesting
theoretical complications in our analysis.

We acknowledge that this setting is not completely general. While we
allow for unconditional dependence among the noises (as the v and Mq pro-
cesses can be highly persistent), we rule out their F-conditional dependence
which has been studied by [20]. In addition, we have implicitly assumed in
equation (3.6) that the data are regularly sampled, and hence, ruled out
random sampling. That being said, our main goal is not to estimate the
integrated covariance matrix under even more general settings, but rather
to illustrate how to establish new Glivenko–Cantelli theorems for general in-
tegrated functionals in the noisy setting, which extends the noise literature
in a new dimension. Our results may be extended to allow for more general
forms of noise as studied by [20], which would be an interesting topic for
future research.

The latent processes of interest are the efficient price’s spot covariance
process ct and the noise spot covariance vt. Similar to the development in
the no-noise setting considered in Section 3.1, the key to verifying the high-
level conditions of Theorem 1 is to establish a uniform approximation of
spot estimators for moving averages of the corresponding underlying pro-
cesses (recall (3.5)). But this type of uniform approximation is unavailable
in the extant literature on noisy high-frequency data. For this reason, we first
establish such a result, which is of independent theoretical interest. We con-
sider spot estimators using the pre-averaging method. We make this choice
only for concreteness, while noting that similar results may be established
using the other approaches mentioned above as well.

To implement the pre-averaging method, we consider a weight function
w : R 7→ R that is continuous, piecewise continuously differentiable with
Lipschitz-continuous derivative, and further satisfies w(s) = 0 for s /∈ (0, 1)
and

∫ 1
0 w(s)2ds > 0. For an integer sequence hn of pre-averaging windows,

we set

φn ≡
1

hn

∑
j≥0

w

(
j

hn

)2

, φ̄n ≡ hn
∑
j≥0

(
w

(
j

hn

)
− w

(
j − 1

hn

))2

.

The pre-averaging estimators are constructed using the following pre-averaged
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quantities

(3.7)

Ỹ n
i ≡

hn−1∑
j=1

w

(
j

hn

)
∆n
i+jY,

Ŷ n
i ≡

hn∑
j=1

(
w

(
j

hn

)
− w

(
j − 1

hn

))2 (
∆n
i+jY

) (
∆n
i+jY

)>
.

The spot estimators ĉt, v̂t are defined as follows. We choose a sequence kn
of integers satisfying kn/hn → ∞, and divide the sample span into bn/knc
non-overlapping blocks. For each block i ∈ {0, . . . , bn/knc − 1}, we form a
spot estimator for the noise spot covariance

(3.8) v̂ni ≡
hn

2φ̄n (kn − hn + 1)

kn−hn∑
j=0

Ŷ n
ikn+j ,

and the spot covariance of the efficient price
(3.9)

ĉni ≡
1

(kn − hn + 1)hnφn∆n

kn−hn∑
j=0

(
Ỹ n
ikn+j

)(
Ỹ n
ikn+j

)>
1{‖Ỹ nikn+j‖≤un}

− φ̄n
h2
n∆nφn

v̂ni ,

where the second term corrects the bias induced by the microstructure noise.
Finally, we set for each i ∈ {1, . . . , bn/knc − 1} and t ∈ ((i− 1) kn∆n, ikn∆n]

ĉt ≡ ĉni , v̂t ≡ v̂ni ,

and ĉt ≡ ĉ(bn/knc−1)kn∆n
and v̂t ≡ v̂(bn/knc−1)kn∆n

for (bn/knc − 1) kn∆n ≤
t ≤ 1. The pointwise and uniform approximation properties of these spot
estimators are given by the following proposition.

Proposition 1. Suppose that (i) Assumptions 5 and 6 hold; (ii) kn �
nγ, hn � n1/2, and un � (hn∆n)$, where

γ ∈
(

6 + r

8
, 1

)
, $ ∈

[
4(1− γ)

2− r
,
1

2

)
.
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Then, (a)

max
0≤i≤bn/knc−1

∥∥∥∥∥ĉni − 1

kn∆n

∫ (i+1)kn∆n

ikn∆n

csds

∥∥∥∥∥ = op(1),

max
0≤i≤bn/knc−1

∥∥∥∥∥v̂ni − hn
2φ̄n(kn − hn + 1)

kn−hn∑
j=0

hn∑
l=1

(
w

(
l

hn

)
− w

(
l − 1

hn

))2

×
(
v(ikn+j+l)∆n

+ v(ikn+j+l−1)∆n

) ∥∥∥∥∥ = op(1).

(b) ĉt
P−→ ct and v̂t

P−→ vt for t ∈ [0, 1).

Compared with extant results on spot estimation in the noisy setting, the
key novelty of Proposition 1 is the uniform approximation described in part
(a), which implies part (b) as a corollary because of the right continuity of
the processes c and v. This result is analogous to the uniform approxima-
tion (3.5) in the no-noise setting, and describes what the spot estimators are
“directly” approximating. We remind the reader that this type of uniform
approximation is used to show that the spot estimators uniformly fall in
a small enlargement around the compact set in which the underlying pro-
cesses take value (up to a localizing stopping time), which in turn allows
us to accommodate general test functions without requiring them to have
polynomial growth (cf. [23]); see [27] for a more detailed discussion on this
“spacial localization” technique. Although the approximating variable for
v̂ni takes a somewhat complicated form as a “double moving average,” it
is enough for our purpose mentioned above. We stress that this uniform
approximation result holds even if the underlying c and v processes are dis-
continuous. In this situation, the seemingly natural uniform approximation
supt∈[0,1](‖ĉt − ct‖+ ‖v̂t − vt‖) = op(1) would generally fail.

Equipped with Proposition 1, we can readily establish Glivenko–Cantelli
theorems in the noisy setting in parallel to Theorems 3 and 4, as described
in the following theorems.

Theorem 5. Let Vt = h(ct, vt) for some continuous function h : C × C 7→
R, and let V̂t = h(ĉt, v̂t). Suppose that (i) the conditions in Proposition 1
hold; (ii) the occupation time F (x) =

∫ 1
0 1{Vs≤x}ds is continuous in x almost

surely. Then,

sup
g∈GM

|Fng − Fg| P∗−→ 0.
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Theorem 6. Let Vt = (ct, vt) and V̂t = (ĉt, v̂t). Suppose that the condi-
tions in Proposition 1 hold. Then, for G = GL or GH ,

sup
g∈G
|Fng − Fg| P∗−→ 0.

Theorems 5 and 6 provide Glivenko–Cantelli results for bounded mono-
tone functions, Lipschitz-in-parameter, and Hölder classes in the noisy set-
ting. Of course, a special case of these results is the pointwise estimation
of integrated functionals for any specific test function g (·), which is often
needed for estimating asymptotic variances of estimators constructed based
on noisy high-frequency data (also see [37]). But our results are not restricted
to this specific purpose, and they may serve as a starting point for the study
of general integrated functionals and an associated empirical process theory
in the noisy setting for future research.

3.3. Empirical illustration. We illustrate the usefulness of the proposed
theory with an empirical application pertaining to the time-varying system-
atic risk of individual firms. The recent COVID-19 pandemic has made an
enormous negative impact on the global financial markets, and the effect
also varies substantially across industries. On one hand, airline companies
have suffered from arguably the most severe loss due to consumers’ safety
concerns and governments’ travel bans, with their solvency relying critically
on government bailouts. On the other hand, technology companies appear
to be much less influenced, some of which (e.g., Amazon.com) have even
witnessed significant gains in their equity values during the ongoing crisis.

Set against this background, we study the market betas of four individual
“stocks” in the US equity market using a recent sample from January 2,
2019 to June 30, 2020 (recall that the market beta of a firm measures the
sensitivity of the firm’s stock price with respect to changes in the price of the
market portfolio). The first three companies are Amazon.com, Facebook, and
Boeing. The last one is an equally weighted portfolio of the three major US
airline companies: American Airlines, Delta Air Lines, and United Airlines.
For ease of discussion, we refer to the latter portfolio as “Airlines.” The
market portfolio is proxied by the S&P 500 ETF. We obtain high-frequency
transaction data during regular trading hours from the TAQ database, and
sample the data sparsely at the 1-minute frequency so as to mitigate the
effect of microstructure noise. Empirically, we are interested in how the
betas of these companies have evolved during the COVID-19 pandemic. We
thus divide the full sample into four periods. The first spans the entire year
of 2019, and is used as the pre-COVID benchmark. The six months in 2020
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are then equally divided into three 2-month periods. Note that although the
COVID-19 virus was first reported in China on December 31, 2019, it did
not appear to be a major concern in the US during the first two months
of 2020 (the first COVID death in the US was reported on February 29,
2020). The number of confirmed cases then substantially increased across
the country and caused an enormous turmoil in the stock market.

Our numerical analysis proceeds more precisely as follows. We suppose
that the asset prices are modeled by (3.1). Denoting the log price of the
market portfolio by X1,t and the log price of a firm by X2,t, the firm’s beta
is given by βt = hβ(ct) ≡ c12,t/c11,t, which is exactly the “local” regression
coefficient obtained by regressing the firm’s instantaneous return on that of
the market portfolio without intercept. A large (resp. small) beta indicates
that the firm bears high (resp. low) systematic risk. We summarize the
distributional feature of the firm’s beta process on a time interval [0, T ]

using its occupation time, defined as T−1
∫ T

0 1{βs≤x}ds, which measures the
proportion of time spent by the beta process below a certain level x ∈ R.
We estimate the spot beta using β̂t = hβ(ĉt), with ĉt defined in (3.3). We
set the block size kn = 30 and, following [26], set the truncation threshold
adaptively as un = 5

√
BV∆0.49

n , where BV is the bipower estimator (see
[11]) of integrated volatility computed separately for each trading day and
each asset.

Figure 1 plots the estimated beta occupation time for each stock in each
of the four subsamples. Looking at the estimates for Amazon on the top-left
panel, we see that in 2019 the occupation measure of the e-commerce firm’s
beta concentrates near (indeed moderately above) unity, and we get essen-
tially the same estimate in the first two months of 2020. However, we find
a remarkable left-shift of the occupation time for the later two subsamples
during the pandemic, suggesting that Amazon’s market beta has become
much lower and, in particular, is below unity most of the time. It is interest-
ing to note that the estimates for the March-April period and the May-June
period are virtually the same, despite that they were estimated separately
without any restriction. This distributional evidence for Amazon’s reduced
sensitivity with respect to the market portfolio suggests that the Amazon
stock may play a useful role for diversifying the market-level risk during the
crisis. The estimates for Facebook, shown on the top-right panel of Figure
1, are similar to those of Amazon in the pre-COVID subsamples (i.e., 2019
and 2020 Jan-Feb), as well as the early pandemic period of March and April.
However, in the more recent May-June period, the estimate appears to have
largely returned to its pre-COVID level, which shows an interesting contrast
to Amazon.
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Fig 1. Occupation Times of Market Betas around the COVID-19 Pandemic.

The estimates of Boeing and Airlines, shown on the bottom panels of
Figure 1, are drastically different from the technology companies. Indeed,
their occupation time estimates have evidently shifted to the right during
the early pandemic period (March and April), and even more so in the
more recent period (May and June). More specifically, we see that, during
the pandemic, not only do their occupation measures center at much higher
levels of beta, they also become much more dispersed. These findings suggest
that firms in the airline industry load on an elevated level of systematic risk,
and their risk loadings also bear an additional “layer” of high uncertainty.

Overall, this empirical example demonstrates how the proposed uniform
estimation theory may be applied in practice. Admittedly, a limitation of the
theory developed here is that it only provides consistent functional estima-
tion. Formal hypothesis testing would further require empirical process-type
functional central limit theorems (i.e., Donsker theorems) for the family of
integrated functionals. Existing results on this issue are rather limited (see
[30] and [29]), and the empirical-process theory for either nonsmooth test
functions (e.g., the occupation time) or noisy data remains to be challenging
open questions. These may be interesting topics for future research.
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4. Conclusion. We prove a general Glivenko-Cantelli theorem for inte-
grated functionals of latent stochastic processes, which is based on a brack-
eting condition with (possibly) random brackets. The theorem is shown to
be broadly applicable for general classes of test functions, and various under-
lying stochastic processes commonly studied in high-frequency econometrics
and statistics including particularly the volatility of efficient price and spot
variance of microstructure noise.

5. Proofs.

5.1. Proofs for Section 2. In this subsection, we prove Theorem 1 and
Theorem 2.

Proof of Theorem 1. Let ε > 0 and consider brackets (lj , uj)1≤j≤Nε given
by Assumption 2. Then, for each g ∈ G and ω ∈ Ω, we can find j (ω) and
k (ω) in {1, . . . , Nε}, such that

lj(ω) (ω, ·) ≤ g (·) ≤ uk(ω) (ω, ·)

and ∫ (
uk(ω) (ω, x)− lj(ω) (ω, x)

)
Fω (dx) ≤ ε,

where the integers j (ω) and k (ω) may depend on ω. These conditions further
imply that∫ (

uk(ω) (ω, x)− g (x)
)
Fω (dx) ≤ ε,

∫ (
g (x)− lj(ω) (ω, x)

)
Fω (dx) ≤ ε.

We then observe∫
g (x)Fn,ω (dx)−

∫
g (x)Fω (dx)

=

∫
g (x)Fn,ω (dx)−

∫
uk(ω) (ω, x)Fω (dx)

+

∫
uk(ω) (ω, x)Fω (dx)−

∫
g (x)Fω (dx)

≤
∫
uk(ω) (ω, x)Fn,ω (dx)−

∫
uk(ω) (ω, x)Fω (dx) + ε.

Since k (ω) ∈ {1, . . . , Nε}, we further have

Fng − Fg ≤ max
1≤j≤Nε

(Fnuj − Fuj) + ε.



26 JIA LI, CONGSHAN ZHANG, AND YUNXIAO LIU

Hence,

(5.1) sup
g∈G

(Fn − F) g ≤ max
1≤j≤Nε

(Fn − F)uj + ε.

Similarly, we can deduce that

(5.2) sup
g∈G

(F− Fn) g ≤ − min
1≤j≤Nε

(Fn − F) lj + ε.

From (5.1) and (5.2), we see that the following holds almost surely

sup
g∈G
|(Fn − F) g| ≤ max

1≤j≤Nε
|(Fn − F)uj |+ max

1≤j≤Nε
|(Fn − F) lj |+ ε.

Therefore,

P∗
(

sup
g∈G
|(Fn − F) g| > 3ε

)
≤ P

(
max

1≤j≤Nε
|(Fn − F)uj |+ max

1≤j≤Nε
|(Fn − F) lj | > 2ε

)
≤ P

(
max

1≤j≤Nε
|(Fn − F)uj | > ε

)
+ P

(
max

1≤j≤Nε
|(Fn − F) lj | > ε

)
→ 0,

where the convergence follows from condition (ii) of Theorem 1. This finishes
the proof. �

Proof of Theorem 2. With an appeal to the standard localization tech-
nique (see, e.g., Section 4.4.1 of [23]), we can assume that for some compact
subset K ⊆ V,

Ωn ≡
{
Vt, V̂t ∈ K for all t ∈ [0, T ]

}
satisfies P (Ωn)→ 1.

Fix some s ∈ (0, 1) such that

V̂s
P−→ Vs and P ({ω : f (ω, ·) is continuous at Vs (ω)}) = 1.

By Assumption 1 and Assumption 3(i), this holds for Lebesgue almost every
s ∈ (0, 1). By the subsequence characterization, for each subsequence N1 ⊆
N, there exists a further subsequence N2 ⊆ N1 such that for an event Ω1 ⊆ Ω
satisfying P (Ω1) = 1, we have

V̂s (ω)→ Vs (ω) ,



GLIVENKO-CANTELLI THEOREMS FOR INTEGRATED FUNCTIONALS 27

as n → ∞ along N2 for all ω ∈ Ω1. Let Ω2 ≡ {ω : f (ω, ·) is continuous
at Vs (ω)}. Note that P (Ω1 ∩ Ω2) = 1. For each ω ∈ Ω1 ∩ Ω2, the mapping
x 7→ f (ω, x) is continuous at Vs (ω), and hence,

f(ω, V̂s (ω))→ f (ω, Vs (ω))

as n→∞ along N2. With an appeal to the subsequence characterization of
convergence in probability again, we see that

(5.3) f(V̂s)
P−→ f (Vs) , as n→∞.

By Assumption 3(ii), supx∈K |f (x)| ≤ supx∈K F (x) < ∞. By the bounded
convergence theorem, (5.3) further implies

E
[∣∣∣f(V̂s)− f (Vs)

∣∣∣ 1Ωn

]
→ 0.

Since this holds for Lebesgue almost every s ∈ [0, 1], we can use the bounded
convergence theorem again to deduce that

E
[∣∣∣∣∫ 1

0
f(V̂s)ds−

∫ 1

0
f(Vs)ds

∣∣∣∣ 1Ωn

]
≤
∫ 1

0
E
[∣∣∣f(V̂s)− f (Vs)

∣∣∣ 1Ωn

]
ds→ 0.

Since P (Ωn) → 1, the assertion Fnf
P−→ Ff readily follows from the above

convergence. �

5.2. Proofs for Section 3.1. In this subsection, we prove Theorem 3 and
Theorem 4 in Section 3.1.

Proof of Theorem 3. The proof is done by verifying the high-level con-
ditions of Theorem 1.

We start with recalling a known result. Let G̃M denote the collection
of monotone functions g̃ : [0, 1] 7→ [0, 1]. By Theorem 2.7.5 of [42], for
each ε > 0, there exist piecewise constant deterministic bracket functions
{(l̃j , ũj) : 1 ≤ j ≤ Nε} such that each g̃ ∈ G̃M satisfies l̃j ≤ g̃ ≤ ũj for some

j, and
∫ 1

0 (ũj (q)− l̃j (q))dq ≤ ε/2. Consequently,∫ 1

0
(ũj (q)− g̃ (q))dq ≤ ε/2,

∫ 1

0
(g̃ (q)− l̃j (q))dq ≤ ε/2.

We now proceed to construct the random brackets. For each ω ∈ Ω, we
denote

Fω (x) ≡
∫ 1

0
1{Vs(ω)≤x}ds,
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and denote its left-continuous and right-continuous inverse respectively by

F−1
ω (q) ≡ inf {x : Fω (x) ≥ q} , F−1

ω (q) ≡ sup {x : Fω (x) ≤ q} .

Below, we verify that Assumption 2 is satisfied with the following bracket
functions:

lj (ω, x) ≡ l̃j (Fω (x)) , uj (ω, x) ≡ ũj(Fω (x)).

For each g ∈ GM and ω ∈ Ω, the (deterministic) function g ◦ F−1
ω belongs

to G̃M . Hence, for some j (ω) ∈ {1, . . . , Nε}, we have

l̃j(ω) (·) ≤ g ◦ F−1
ω (·) ,

and ∫ 1

0

(
g ◦ F−1

ω (q)− l̃j(ω) (q)
)
dq ≤ ε/2.

These estimates further imply (by Lemma 21.1 of [43])

(5.4) lj(ω) (ω, ·) = l̃j(ω) ◦ Fω (·) ≤ g (·) ,

and

(5.5)

∫ (
g (x)− lj(ω) (ω, x)

)
Fω (dx)

=

∫ 1

0

(
g ◦ F−1

ω (q)− l̃j(ω) (q)
)
dq ≤ ε/2.

By repeating a similar argument for the function g ◦ F−1
ω ∈ G̃M , we can find

some k (ω) ∈ {1, . . . , Nε}, such that

(5.6) g (·) ≤ uk(ω) (ω, ·) ,
∫ (

uk(ω) (ω, x)− g (x)
)
Fω (dx) ≤ ε/2.

(We note that k (ω) may be different from j (ω) because they are associated

with two different functions in G̃M , namely, g ◦ F−1
ω and g ◦ F−1

ω , and this
distinction is relevant because the occupation time may not be strictly in-
creasing.) The requirements of Assumption 2 readily follow from (5.4), (5.5),
and (5.6). Condition (i) of Theorem 1 is now verified.

It remains to verify condition (ii) of Theorem 1. We do this by applying
Theorem 2. Under conditions (i) and (ii) of Theorem 3, we have (3.4) and
(3.5) by Theorem 9.3.2 of [23] and Lemma 2 of [27], that is,

(5.7) ĉt
P−→ ct, sup

t∈[0,1]
‖ĉt − c̄t‖ = op(1).
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Under Assumption 5, ct ∈ Km for all t ≤ Tm. By the convexity of Km,
we also have c̄t ∈ Km. By the uniform approximation in (5.7), we see that
ĉt falls in some enlargement K′m of Km for all t ∈ [0, T ] with probability
approaching 1. From these results and the continuity of h (·), Assumptions
1 and 4 readily follow.

The remaining task is to verify Assumption 3 for each of the bracket func-
tions lj and uj defined above. We provide the details for the lower bracket
lj . Note that lj takes values in [0, 1], so we can set the envelope function
F (x) = 1 identically. To verify Assumption 3(i), we recall that l̃j is piece-
wise constant and F (·) is almost surely continuous. Let x0 ∈ (0, 1) be any
point of the finitely many discontinuity points of l̃j , it suffices to show that,
for Lebesgue a.e. t ∈ [0, 1],

P (F (Vt) = x0) = 0.

This holds true because∫ 1

0
P (F (Vs) = x0) ds = E

[∫ 1

0
1{F(Vs)=x0}ds

]
= 0.

We can then apply Theorem 2 to show that Fnlj
P−→ Flj for each j. The

proof for Fnuj
P−→ Fuj is similar. �

Proof of Theorem 4. The proof is done by verifying the high-level con-
ditions of Theorem 1. As explained in Examples 3 and 4, we can verify
Assumption 2 with deterministic bracket functions which are also contin-
uous. Let f be a generic bracket function in these examples, it remains

to verify that Fnf
P−→ Ff by applying Theorem 2. To this end, we note

that Assumptions 1 and 4 can be verified as in the proof Theorem 3, and
Assumption 3 holds with F = |f | because f is continuous. �

5.3. Proofs for Section 3.2. We first prove Proposition 1. It is easy to see
that, upon using a polarization argument, there is no loss of generality to
consider the univariate case with d = 1. Moreover, by a classical localization
argument (see Section 4.4.1 of [23]), we can also strengthen Assumptions 5
and 6 as the following condition without loss of generality.

Assumption 7. We have Assumptions 5 and 6 with T1 =∞. Moreover,
the processes b and Mq are uniformly bounded, and c, v take values in a
compact convex set K ⊂ C. For some bounded λ-integrable function D(·) on
R, ‖δ(ω, t, z)‖r ≤ D(z).
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Throughout the proofs, we use K to denote a generic constant that may
change from line to line; we sometimes write Kp in order to emphasize its
dependence on some parameter p. We use ‖ · ‖p to denote the Lp norm
and write EF [ · ] in place of E[ · |F ]. For notational simplicity, we denote
wnj ≡ w (j/hn) and w̄nj ≡ w (j/hn) − w ((j − 1)/hn). In addition, let Xc be
the continuous part (i.e., drift plus diffusion) of X, and then set Y c

i∆n
=

Xc
i∆n

+ εi. We define the pre-averaged quantities Ỹ c,n
j , X̃c,n

i , ε̃ni in the same
way as in (3.7), with Y replaced by Y c, Xc, ε, respectively. Finally, we set

ĉn′i ≡
1

(kn − hn + 1)hn∆nφn

kn−hn∑
j=0

(Ỹ c,n
ikn+j)

2 − φ̄n
h2
n∆nφn

v̂ni .

The proof of Proposition 1 is divided into three lemmas. Lemma 1 and
Lemma 2 establish uniform approximations for v̂ni and ĉn′i , respectively.
Lemma 3 shows the uniform asymptotic negligibility of ĉni − ĉn′i .

Lemma 1. Suppose that (i) Assumption 7 holds, and (ii) hn → ∞ and
kn � nγ for some γ ∈ (0, 1). Then,

max
0≤i≤bn/knc−1

∣∣∣∣∣v̂ni − hn
2φ̄n(kn − hn + 1)

kn−hn∑
j=0

hn∑
l=1

(w̄nl )2

×
(
v(ikn+j+l)∆n

+ v(ikn+j+l−1)∆n

) ∣∣∣∣∣ = op(1).

Proof. We set ηni,j ≡
∑hn

l=1 (w̄nl )2 ((εikn+j+l− εikn+j+l−1)2− (v(ikn+j+l)∆n
+

v(ikn+j+l−1)∆n
)). Our proof replies on the following decomposition:

v̂ni −
hn

2φ̄n(kn − hn + 1)

kn−hn∑
j=0

hn∑
l=1

(w̄nl )2
(
v(ikn+j+l)∆n

+ v(ikn+j+l−1)∆n

)
= Un1,i + Un2,i + Un3,i,

where

Un1,i ≡
hn

2φ̄n(kn − hn + 1)

kn−hn∑
j=0

ηni,j ,

Un2,i ≡
hn

2φ̄n(kn − hn + 1)

kn−hn∑
j=0

hn∑
l=1

(w̄nl )2 (∆n
ikn+j+lX

)2
,

Un3,i ≡
hn

φ̄n(kn − hn + 1)

kn−hn∑
j=0

hn∑
l=1

(w̄nl )2 ∆n
ikn+j+lX (εikn+j+l − εikn+j+l−1) .
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We now consider these terms in turn, starting with Un1,i. Note that for
any p ≥ 1,

EF
[
|ηni,j |p

]
≤ Kph

−3p/2
n ,

which follows from the fact that |w̄nl | ≤ K/hn, the conditional independence
of (εi)i≥0, the Burkholder–Davis–Gundy inequality and Hölder’s inequality.
We further observe that, conditional on F , ηni,j has zero mean and ηni,j is
independent of ηni,k for |j − k| > hn. From here, we deduce

EF

∣∣∣∣∣∣ hn
2φ̄n(kn − hn + 1)

kn−hn∑
j=0

ηni,j

∣∣∣∣∣∣
p ≤ Kpk

−p/2
n ,

which further implies ∥∥Un1,i∥∥p ≤ Kpk
−1/2
n .

With an appeal to the maximal inequality, we deduce∥∥∥∥ max
0≤i≤bn/knc−1

∣∣Un1,i∣∣∥∥∥∥
p

≤ Kpn
1/pk−1/2−1/p

n .

Since kn � nγ , picking p > 2(1− γ)/γ yields

(5.8) max
0≤i≤bn/knc−1

∣∣Un1,i∣∣ = op(1).

Next, we note that

E
[∣∣Un2,i∣∣] =

hn
2φ̄n(kn − hn + 1)

kn−hn∑
j=0

hn∑
l=1

(w̄nl )2 E
[(

∆n
ikn+j+lX

)2] ≤ K∆n.

Hence, E[max0≤i≤bn/knc−1 |Un2,i|] ≤ Kk−1
n , which further implies

(5.9) max
0≤i≤bn/knc−1

∣∣Un2,i∣∣ = op(1).

Finally, we consider Un3,i. Note that, conditional on F , the variables

∆n
ikn+j+lX(εikn+j+l − εikn+j+l−1), 1 ≤ l ≤ hn,

are independent with zero mean. Hence,

EF

( hn∑
l=1

(w̄nl )2 ∆n
ikn+j+lX (εikn+j+l − εikn+j+l−1)

)2


=

hn∑
l=1

(w̄nl )4 (∆n
ikn+j+lX

)2 EF [(εikn+j+l − εikn+j+l−1)2
]

≤ Kh−4
n

hn∑
l=1

(
∆n
ikn+j+lX

)2
.
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Note that E[(∆n
i X)2] ≤ K∆n. Hence,∥∥∥∥∥

hn∑
l=1

(w̄nl )2 ∆n
ikn+j+lX (εikn+j+l − εikn+j+l−1)

∥∥∥∥∥
2

≤ Kh−3/2
n ∆1/2

n .

This estimate further implies ‖Un3,i‖2 ≤ Kh
−1/2
n ∆

1/2
n . By maximal inequality,

(5.10)

∥∥∥∥ max
0≤i≤bn/knc−1

∣∣Un3,i∣∣∥∥∥∥
2

≤ Kk−1/2
n h−1/2

n = o(1).

The assertion of the lemma then follows from (5.8), (5.9), and (5.10). �

Lemma 2. Suppose that (i) Assumption 7 holds, and (ii) hn � n1/2,
kn � nγ, with 1/2 < γ < 1. Then,

max
0≤i≤bn/knc−1

∣∣∣∣∣ĉn′i − 1

kn∆n

∫ (i+1)kn∆n

ikn∆n

csds

∣∣∣∣∣ = op (1) .

Proof. Step 1. We outline the proof in this step. Throughout the proof, we
use opu (1) to denote a generic sequence of random variables that is op (1)
uniformly for 0 ≤ i ≤ bn/knc − 1. For ease of notation, we denote

An ≡
1

(kn − hn + 1)hn∆nφn
, Bn ≡

φ̄n
h2
n∆nφn

.

We can then rewrite ĉn′i = An
∑kn−hn

j=0 (Ỹ c,n
ikn+j)

2−Bnv̂ni . Since Ỹ c,n
i = X̃c,n

i +
ε̃ni by definition, we can decompose

ĉn′i = An

kn−hn∑
j=0

(X̃c,n
ikn+j)

2 +An

kn−hn∑
j=0

(ε̃nikn+j)
2 −Bnv̂ni

+2An

kn−hn∑
j=0

X̃c,n
ikn+j ε̃

n
ikn+j .

The assertion of the lemma then follows from

(5.11)



An

kn−hn∑
j=0

(X̃c,n
ikn+j)

2 − 1

kn∆n

∫ (i+1)kn∆n

ikn∆n

csds = opu (1) ,

An

kn−hn∑
j=0

(ε̃nikn+j)
2 −Bnv̂ni = opu(1),

An

kn−hn∑
j=0

X̃c,n
ikn+j ε̃

n
ikn+j = opu(1).
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These claims will be proved in steps 2, 3, and 4, respectively.
Step 2. In this step, we prove the first claim in (5.11). For each i ≥ 0,

we define a function wn,i (·) as follows: wn,i(s) ≡ w(j/hn), for s ∈ [(i + j −
1)∆n, (i+ j)∆n) and j ≥ 1. We can then rewrite

X̃c,n
i =

∫ (i+hn−1)∆n

i∆n

wn,i(s)dX
c
s .

By Itô’s formula,

(5.12)

(
X̃c,n
i

)2

=

(∫ (i+hn−1)∆n

i∆n

wn,i(s)dX
c
s

)2

= 2

∫ (i+hn−1)∆n

i∆n

(∫ s

i∆n

wn,i(u)dXc
u

)
wn,i(s)(bsds+ σsdWs)

+

∫ (i+hn−1)∆n

i∆n

wn,i(s)
2σ2
sds.

For ease of notation, let Γni ≡
∫ (i+hn−1)∆n

i∆n
wn,i(s)

2σ2
sds. By (5.12), we can

decompose

(5.13) (X̃c,n
i )2 − Γni = ξc,n1,i + ξc,n2,i ,

where

ξc,n1,i ≡ 2

∫ (i+hn−1)∆n

i∆n

(∫ s

i∆n

wn,i(u)dXc
u

)
wn,i(s)σsdWs,

+2

∫ (i+hn−1)∆n

i∆n

(∫ s

i∆n

wn,i(u)σudWu

)
wn,i(s)bsds,

ξc,n2,i ≡ 2

∫ (i+hn−1)∆n

i∆n

(∫ s

i∆n

wn,i(u)budu

)
wn,i(s)bsds.

Note that wn,i (·) is bounded. By standard estimates for continuous Itô
semimartingales, we have for any p ≥ 1,

(5.14) E
[∣∣∣ξc,n1,i

∣∣∣p] ≤ Kp(hn∆n)p, E
[∣∣∣ξc,n2,i

∣∣∣p] ≤ Kp(hn∆n)2p.

We observe that ξc,n1,i is F(i+hn−1)∆n
-measurable and has zero Fi∆n-conditional

mean. Hence, for each i, (ξc,n1,i+l(hn−1),F(i+(l+1)(hn−1))∆n
)l≥0 forms a martin-

gale difference array, and accordingly, we can then decompose
∑kn−hn

j=0 ξc,n1,ikn+j
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as the sum of hn− 1 terms, each of which is a sum of martingale differences
with the aforementioned form. Then, by the Burkholder–Davis–Gundy in-
equality and Hölder’s inequality, we deduce from (5.14) that∥∥∥∥∥∥An

kn−hn∑
j=0

ξc,n1,ikn+j

∥∥∥∥∥∥
p

≤ Kph
1/2
n k−1/2

n .

By a maximal inequality under Lp, we further have∥∥∥∥∥∥ max
0≤i≤bn/knc−1

∣∣∣∣∣∣An
kn−hn∑
j=0

ξc,n1,ikn+j

∣∣∣∣∣∣
∥∥∥∥∥∥
p

≤ Kpn
1/ph1/2

n k−1/2−1/p
n ≤ Kpn

1−γ
p
− 2γ−1

4 .

Since γ ∈ (1/2, 1), we can pick p > 4(1− γ)/(2γ − 1), so that the majorant
side of the above estimates goes to zero as n→∞. Hence,

(5.15) An

kn−hn∑
j=0

ξc,n1,ikn+j = opu(1).

In addition, we note that (5.14) implies that ‖ξc,n2,i ‖p ≤ Kp (hn∆n)2, and
hence, by the triangle inequality,∥∥∥∥∥∥An

kn−hn∑
j=0

ξc,n2,ikn+j

∥∥∥∥∥∥
p

≤ Kphn∆n.

With an appeal to a maximal inequality, we deduce∥∥∥∥∥∥ max
0≤i≤bn/knc−1

∣∣∣∣∣∣An
kn−hn∑
j=0

ξc,n2,ikn+j

∣∣∣∣∣∣
∥∥∥∥∥∥
p

≤ Kpn
1/p−1hnk

−1/p
n ≤ Kpn

1−γ
p
− 1

2 .

Since γ < 1, we can pick p > 2 (1− γ) so that the above bound vanishes to
zero as n→∞. Hence,

(5.16) An

kn−hn∑
j=0

ξc,n2,ikn+j = opu(1).

Combining (5.13), (5.15) and (5.16), we deduce

(5.17) An

kn−hn∑
j=0

(X̃c,n
ikn+j)

2 −An
kn−hn∑
j=0

Γnikn+j = opu (1) .
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Let Ct ≡
∫ t

0 csds. We can rewrite Γnikn+j =
∑hn

l=1 (wnl )2 ∆n
ikn+j+lC. Hence,

An

kn−hn∑
j=0

Γnikn+j

= An

kn−hn∑
j=0

hn∑
l=1

(wnl )2 ∆n
ikn+j+lC

= An

kn∑
u=1

 hn∧u∑
l=1∨(u−kn+hn)

(wnl )2

∆n
ikn+uC

=
1

(kn − hn + 1)∆n

kn∑
u=1

(∑hn∧u
l=1∨(u−kn+hn) (wnl )2∑hn

l=1

(
wnl
)2

)
∆n
ikn+uC

=
1

kn∆n

kn∑
u=1

∆n
ikn+uC + opu (1) ,

where the second equality follows from a change of variable, the third equal-
ity is by the definition of An and hnφn =

∑hn
l=1(wnl )2, and the last line

follows from the fact that kn/hn →∞ and the process c is bounded. We can
write the above equivalently as

(5.18) An

kn−hn∑
j=0

Γnikn+j −
1

kn∆n

∫ (i+1)kn∆n

ikn∆n

csds = opu (1) .

The first claim of (5.11) then readily follows from (5.17) and (5.18).
Step 3. We can rewrite ε̃nj = −

∑hn
l=0 w̄

n
l+1εj+l. Since the variables (εi)i≥0

are F-conditionally independent with bounded moments and |w̄nl | ≤ Kh−1
n ,

(5.19)
EF [(ε̃nj )2] =

hn∑
l=0

(
w̄nl+1

)2
v(j+l)∆n

,

EF
[∣∣ε̃nj ∣∣p] ≤ Kph

−p/2
n , for any p > 0.

For notational simplicity, we set Λnj ≡ (ε̃nj )2 − EF [(ε̃nj )2]. From (5.19), we
can further deduce

(5.20) EF
[∣∣Λnj ∣∣p] ≤ Kph

−p
n .

Note that, conditional on F , the series (Λnj )j≥1 has zero mean with hn-
dependence. By the triangle inequality, the Burkholder–Davis–Gundy in-
equality, and Hölder’s inequality, we see that (5.20) further implies (recall
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hn � n1/2)

EF

∣∣∣∣∣∣An
kn−hn∑
j=0

Λnikn+j

∣∣∣∣∣∣
p ≤ KpA

p
nk

p/2
n h−p/2n ≤ Kpn

p/4k−p/2n .

Taking an unconditional expectation yields∥∥∥∥∥∥An
kn−hn∑
j=0

Λnikn+j

∥∥∥∥∥∥
p

≤ Kpn
1/4k−1/2

n .

By using a maximal inequality,∥∥∥∥∥∥ max
0≤i≤bn/knc−1

∣∣∣∣∣∣An
kn−hn∑
j=0

Λnikn+j

∣∣∣∣∣∣
∥∥∥∥∥∥
p

≤ Kpn
1−γ
p
− 2γ−1

4 .

The majorant side is o(1) if we pick p > 4(1 − γ)/(2γ − 1). We thus have
An
∑kn−hn

j=0 Λnikn+j = opu(1), that is,

(5.21) An

kn−hn∑
j=0

(ε̃nikn+j)
2 −An

kn−hn∑
j=0

hn∑
l=0

(
w̄nl+1

)2
v(ikn+j+l)∆n

= opu (1) .

By Lemma 1 and the fact that Bn = Op(1),

(5.22) Bnv̂
n
i −

An
2

kn−hn∑
j=0

hn∑
l=1

(w̄nl )2 (v(ikn+j+l)∆n
+ v(ikn+j+l−1)∆n

)
= opu(1).

In addition,

(5.23)

An
2

kn−hn∑
j=0

hn∑
l=1

(w̄nl )2 (v(ikn+j+l)∆n
+ v(ikn+j+l−1)∆n

)
=
An
2

kn−hn∑
j=0

hn∑
l=0

(
(w̄nl )2 +

(
w̄nl+1

)2)
v(ikn+j+l)∆n

= An

kn−hn∑
j=0

hn∑
l=0

(
w̄nl+1

)2
v(ikn+j+l)∆n

+ opu (1) ,

where the first equality is by direct calculation, and the last line follows
from An ≤ Knk−1

n h−1
n , |(w̄nl+1)2 − (w̄nl )2| ≤ Kh−3

n ≤ Kn−1h−1
n , and the
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boundedness of v. The second claim of (5.11) then readily follows from (5.21),
(5.22), and (5.23).

Step 4. In this step, we show the third claim in (5.11). Note that, condi-
tional on F , the series (X̃c,n

ikn+j ε̃
n
ikn+j)j≥0 has zero mean and is hn-dependent.

For q = 0, . . . , hn − 1, we set

Ini,q ≡ {q, q + hn, q + 2hn, . . .} ∩ {0, . . . , kn − hn}.

We can then decompose

kn−hn∑
j=0

X̃c,n
ikn+j ε̃

n
ikn+j =

hn−1∑
q=0

∑
j∈Ini,q

X̃c,n
ikn+j ε̃

n
ikn+j ,

where each
∑

j∈Ini,q
X̃c,n
ikn+j ε̃

n
ikn+j summation only involves F-conditionally

independent variables. Recall from (5.19) that EF [|ε̃nikn+j |p] ≤ Kph
−p/2
n .

For each q, we can then apply the Burkholder–Davis–Gundy inequality and
Hölder’s inequality to deduce that

EF

∣∣∣∣∣∣
∑
j∈Ini,q

X̃c,n
ikn+j ε̃

n
ikn+j

∣∣∣∣∣∣
p ≤ Kph

−p/2
n EF


∣∣∣∣∣∣
∑
j∈Ini,q

(
X̃c,n
ikn+j

)2

∣∣∣∣∣∣
p/2


≤ Kph
−p/2
n

(
kn
hn

)p/2−1 ∑
j∈Ini,q

∣∣∣X̃c,n
ikn+j

∣∣∣p .
By a standard estimate for continuous Itô semimartingale, E[|X̃c,n

ikn+j |
p] ≤

Kp (hn∆n)p/2. Hence,∥∥∥∥∥∥
∑
j∈Ini,q

X̃c,n
ikn+j ε̃

n
ikn+j

∥∥∥∥∥∥
p

≤ Kph
−1/2
n k1/2

n ∆1/2
n .

By the triangle inequality, we further deduce∥∥∥∥∥∥An
kn−hn∑
j=0

X̃c,n
ikn+j ε̃

n
ikn+j

∥∥∥∥∥∥
p

≤ An

hn−1∑
q=0

∥∥∥∥∥∥
∑
j∈Ini,q

X̃c,n
ikn+j ε̃

n
ikn+j

∥∥∥∥∥∥
p

≤ Kph
1/2
n k−1/2

n .

By using a maximal inequality,∥∥∥∥∥∥ max
0≤i≤bn/knc−1

∣∣∣∣∣∣An
kn−hn∑
j=0

X̃c,n
ikn+j ε̃

n
ikn+j

∣∣∣∣∣∣
∥∥∥∥∥∥
p

≤ Kpn
1−γ
p
− 2γ−1

4 .
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Taking any fixed p > 4 (1− γ) / (2γ − 1) implies that the majorant side of
the above estimate is o (1). This further implies the third claim of (5.11).�

Lemma 3. Suppose that (i) Assumption 7 holds, and (ii) kn � nγ, hn �
n1/2, and un � (hn∆n)$, where

γ ∈
(

6 + r

8
, 1

)
, $ ∈

[
4(1− γ)

2− r
,
1

2

)
.

Then,

max
0≤i≤bn/knc−1

∣∣∣∣∣∣∣
∑kn−hn

j=0

(
(Ỹ n
ikn+j)

21{|Ỹ nikn+j |≤un} − (Ỹ c,n
ikn+j)

2
)

(kn − hn + 1)hn∆nφn

∣∣∣∣∣∣∣ = op(1).

Proof. Recall the definition of wn,i(s) in the proof of Lemma 2. We can

write Ỹ n
i − Ỹ

c,n
i as

Ỹ n
i − Ỹ

c,n
i =

∫ (i+hn)∆n

i∆n

∫
R
δ(s, z)1{|δ(s,z)|>1}wn,i(s)µ(ds, dz)

+

∫ (i+hn)∆n

i∆n

∫
R
δ(s, z)1{|δ(s,z)|≤1}wn,i(s) (µ− ν) (ds, dz).

By Corollary 2.1.9 in [23],

E
[(
Ỹ n
i − Ỹ

c,n
i

)2
∧ u2

n

]
≤ K (hn∆n)2$ E



∣∣∣Ỹ n
i − Ỹ

c,n
i

∣∣∣
(hn∆n)$

∧ 1

2


≤ Kn−
1
2
− (2−r)$

2 an,(5.24)

for some deterministic sequence an = o (1). Note that E[|Ỹ c,n
i |2] ≤ Kn−1/2.

Therefore, by the Cauchy–Schwarz inequality and the above estimate,

(5.25) E
[
|Ỹ c,n
i |

((
Ỹ n
i − Ỹ

c,n
i

)
∧ un

)]
≤ Kn−

1
2
− (2−r)$

4 a1/2
n .

In addition, we observe that

E
[
|Ỹ c,n
i |

21{|Ỹ c,ni |>un/2}
]
≤ Kp

E
[
|Ỹ c,n
i |p+2

]
upn

≤ Kpn
− 1

2
− p(1/2−$)

2 ,(5.26)
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where the first inequality is by Markov’s inequality, and the second inequality
follows from E[|Ỹ c,n

i |p+2] ≤ Kpn
−(p+2)/4.

Recall the following elementary inequality (see, e.g., equation (47) of [1]):
for x, y ∈ R and u ∈ (0, 1),∣∣∣|x+ y|2 1{|x+y|≤u} − |x|2

∣∣∣
≤ K

(
|x|2 1{|x|>u/2} + y2 ∧ u2 + |x| (|y| ∧ u)

)
.

Combining this inequality with (5.24), (5.25), and (5.26), and further fixing
some p > (2− r)$/ (1− 2$), we deduce

E
[∣∣∣(Ỹ n

i )21{|Ỹ ni |≤un} − (Ỹ c,n
i )2

∣∣∣] ≤ Kn− 1
2
− (2−r)$

4 a′n,

where a′n = a
1/2
n + n−p(1/4−$/2)+(2−r)$/4 = o(1). Hence,

E

 max
0≤i≤bn/knc−1

∣∣∣∣∣∣∣
∑kn−hn

j=0

(
(Ỹ n
ikn+j)

21{|Ỹ nikn+j |≤un} − (Ỹ c,n
ikn+j)

2
)

(kn − hn + 1)hn∆nφn

∣∣∣∣∣∣∣


≤ Kk−1
n h−1

n n

bn/knc−1∑
i=0

kn−hn∑
j=0

E
[
(Ỹ n
ikn+j)

21{|Ỹ nikn+j |≤un} − (Ỹ c,n
ikn+j)

2
]

≤ Kn1−γ− (2−r)$
4 a′n.

Under the maintained assumption on $ and γ, the majorant side of the
above display can be further bounded by Ka′n = o (1). The assertion of the
lemma then readily follows. �

Proof of Proposition 1. Part (a) of Proposition 1 follows directly from
Lemmas 1, 2, and 3. Part (b) is implied by part (a) because of the the right
continuity of v and c. �

Proof of Theorems 5 and 6. The proof of Theorem 5 (resp. Theorem
6) is the same as that of Theorem 3 (resp. Theorem 4), except that we use
Proposition 1 in place of equation (5.7). �
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