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Abstract

We prove that the Maskin monotonicity∗ condition (proposed by Bergemann, Mor-

ris, and Tercieux (2011)) fully characterizes exact rationalizable implementation in an

environment with lotteries and transfers. Different from previous papers, our approach

possesses many appealing features simultaneously, e.g., finite mechanisms with no inte-

ger game or modulo game are used; no transfers are made in any rationalizable profile;

the message space is small; the implementation is robust to information perturbations

in the sense of Oury and Tercieux (2012).
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1 Introduction

Suppose a society has decided on social choice rule – a recipe for choosing the socially op-

timal alternatives on the basis of individuals’ preferences over alternatives. To tackle the

problem of how to implement the rule, Maskin (1999), in his classic paper, (i) describes a

decentralized decision making process as a mechanism, which specifies the possible actions

available to members of a society, as well as the outcomes of these actions; and (ii) asks

to what extent one can design a mechanism which makes all its Nash equilibrium outcomes

socially desirable. This is called Nash implementation. Maskin proposes a well-known mono-

tonicity condition, which is known as Maskin monotonicity, and shows that it is necessary

and “almost” sufficient for Nash implementation.

A Nash equilibrium is a strategy profile with the following two properties: (i) the

players’ strategies are best replies to their beliefs about other players’ strategies; and (ii)

their beliefs are correct. This paper is primarily concerned with revisiting the implementation

theory by using a more robust solution concept that drops (ii) and retains (i). This leads

us to use the notion of rationalizability. An advantage of using rationalizability lies in its

clean epistemic foundation, as it is the strategic consequence that comes solely from common

knowledge of rationality. This is in contrast with a rather involved epistemic condition for

Nash equilibrium (See Aumann and Brandenburger (1995)).

In a finite environment, the recent contributions to rationalizable implementation by

Bergemann, Morris, and Tercieux (2011) (henceforth, BMT), Jain (2021), Kunimoto and

Serrano (2019), and Xiong (2021) all construct an infinite mechanism which makes use of

the integer game for their sufficiency results. In the integer game, each agent announces some

integer and the person who announces the highest integer gets to name his favorite outcome.

Although the use of the integer game in the mechanism has been prevalent in the literature, it

has been considered a questionable feature; see Jackson (1992). A notable exception is Abreu

and Matsushima (1992), who construct a finite mechanism but consider virtual (as opposed

to exact) implementation in rationalizable strategies. Virtual implementation means that the

planner contents herself with implementing the socially desirable outcome with arbitrarily

high probability. The main purpose of our paper is to characterize the class of social choice

functions (henceforth, SCFs) that are exactly implementable in rationalizable strategies by a

finite mechanism, which necessarily excludes the integer game constructions. Rationalizable

strategies are defined as the set of strategies that survive the iterated elimination of never

best responses. In finite mechanisms, as in this paper, rationalizable strategies are equivalent
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to the strategies that survive the iterated elimination of strictly dominated strategies.

In the environments where the designer can use lottery allocations and transfers, our

Theorem 1 shows that an SCF is implementable in rationalizable strategies by a finite mech-

anism if and only if it satisfies Maskin monotonicity∗.1 Maskin monotonicity∗ was proposed

by BMT and is stronger than Maskin monotonicity.2 Theorem 1 handles the case of two

agents as well as more than two agents; moreover, no transfer is imposed on any ratio-

nalizable profile and the message space of our implementing mechanism is small because

our mechanism is only slightly more complex than a direct mechanism in which each agent

announces a state.3

We now highlight how this result provides new insights on classical as well as recent

results in the literature. First, Oury and Tercieux (2012) advocate rationalizable implemen-

tation by finite mechanisms as a way of achieving continuous implementation. They consider

the following situation: the planner wants not only that there is an equilibrium that imple-

ments the SCF but also that the same equilibrium continues to implement the SCF in all the

models close to her initial model. Hence, the SCF is continuously implementable. Theorem

4 of Oury and Tercieux (2012) shows that an SCF is continuously implementable by a finite

mechanism if it is exactly implementable in rationalizable strategies by a finite mechanism.4

This leaves open a characterization of SCFs which are exactly implementable in rationaliz-

able strategies by a finite mechanism. Our Theorem 1 addresses this important open issue.

In particular, it follows from Theorem 1 that any SCF which satisfies Maskin monotonicity∗

is continuously implementable.5

Second, we also discuss rationalizable implementation when the SCF is responsive. A

1Note that the no-worst-alternative condition (often abbreviated as NWA) used in their sufficiency results

by BMT, Jain (2021), Kunimoto and Serrano (2019), and Xiong (2021), is automatically satisfied in our

setup with transfers. The no-worst-alternative condition requires that the social choice outcome never be

the worst for any agent in any state.
2BMT show that Maskin monotonicity∗ is a necessary condition for rationalizable implementation using

mechanisms satisfying what they call the best-response property (which include finite mechanisms).
3The message space of our implementing mechanism is “small” in the sense that it only consists of few

reports of payoff-relevant information such as types or states. Note that the message space in Abreu and

Matsushima (1992) can also be made “small” in a similar sense by allowing for large transfers as we do in

this paper.
4Oury and Tercieux (2012) also prove the “only if” part of the result under a further assumption that

sending messages is slightly costly.
5See Section 5.1 for more discussion as well as some caveats in connecting our result with Theorem 4 of

Oury and Tercieux (2012).
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responsive SCF assigns distinct outcomes to different states. BMT observe that when the

SCF is responsive, Maskin monotonicity∗ reduces to Maskin monotonicity. We show that,

for any SCF f , we can construct an SCF f ε that is ε-close to f such that f ε is responsive

and satisfies Maskin monotonicity. This is summarized as our Corollary 3: “any” SCF

is virtually implementable for two or more agents in rationalizable strategies by a finite

mechanism, which is first proved by Abreu and Matsushima (1992) in the case with three or

more agents and yet without making use of transfers.

Finally, we construct an example in which some Maskin monotonic∗ SCF cannot be

implemented in rationalizable strategies by any direct mechanism.

The rest of the paper is organized as follows. In Section 2, we present the basic

setup and definitions. In Section 3, we introduce rationalizability and identify Maskin

monotonicity∗ as a necessary and sufficient condition for rationalizable implementation by

a finite mechanism. We also compare the result of this paper with Chen, Kunimoto, Sun,

and Xiong (2020) who investigate mixed-strategy Nash implementation in the same class of

environments. We extend our result to the case where only small transfers are allowed on

and off rationalizable strategy profiles in Section 4. Section 5 discusses implications of our

main result.

2 Preliminaries

2.1 Environment

Consider a finite set of agents I = {1, 2, ..., I} with I ≥ 2; a finite set of possible states Θ;

and a set of pure alternatives A. We consider an environment with lotteries and transfers.

Specifically, we work with the space of allocations/outcomes X ≡ ∆ (A) × RI where ∆(A)

denotes the set of lotteries on A that have a countable support, and RI denotes the set of

transfers to the agents.

Each state θ ∈ Θ induces for each agent i ∈ I a type θi. Each type θi is associated

with a bounded expected utility function vi (·, θi) : ∆ (A)→ R, and conversely, each bounded

expected utility function identifies at most one type. Let Θi denote the set of types/expected

utility functions of agent i which can be induced from Θ. As in Abreu and Matsushima

(1992), we will take for granted that distinct elements of Θi induce different preference

orderings over ∆(A). Assume also that for any type θi, there are alternatives a and a′ in

A such that vi (a, θi) 6= vi (a
′, θi). For each x =

(
`, (ti)i∈I

)
∈ X, we denote by ui (x, θi) =
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vi(`, θi) + ti the quasilinear utility function induced by θi.

We focus on a complete information environment in which the state θ is common knowl-

edge among the agents but unknown to the mechanism designer. Thanks to the complete-

information assumption, it is without loss of generality to assume that agents’ values are

private. The designer’s objective is specified by a social choice function f : Θ → ∆ (A),

namely, if the state is θ, the designer would like to implement the social outcome f (θ) which

is allowed to be a lottery. We can also allow an SCF to be defined as a mapping from Θ to

X. In this case, our implementation requires that no additional transfers be imposed on any

rationalizable message profile beyond the transfers prescribed by the SCF.

2.2 Mechanism and Solution

A mechanismM is a triplet ((Mi), g, (τi))i∈I where Mi is the nonempty finite set of messages

available to agent i, and we write M ≡ ×Ii=1Mi; g : M → X is the outcome function; and

τi : M → R is the transfer rule which specifies the transfer to agent i. The environment and

the mechanism together constitute a game with complete information at each state θ ∈ Θ

which we denote by Γ(M, θ).

In studying implementation in rationalizable strategies, we adopt the notion of corre-

lated rationalizability defined in Brandenburger and Dekel (1987) as a solution concept. We

define rationalizability for the finite game Γ (M, θ) as follows. Let S0
i (M, θ) = Mi, and we

define Ski (M, θ) inductively: for any k > 0, we set

Ski (M, θ) =

mi ∈Mi

∣∣∣∣∣∣∣∣
there exists λi ∈ ∆ (M−i) such that

(1) λi (m−i) > 0⇒ mj ∈ Sk−1
j (M, θ) for each j 6= i,

(2) mi ∈ arg maxm′
i∈Mi

λi (m−i)ui (g (m′i,m−i) , θi) .

 .

Then, S∞i (M, θ) =
⋂∞
k=0 S

k
i (M, θ) denotes the set of rationalizable messages of agent i,

S∞ (M, θ) =
∏

j∈I S
∞
j (M, θ) the set of rationalizable message profiles, and S∞−i (M, θ) =∏

j 6=i S
∞
j (M, θ) the set of rationalizable message profiles of the opponents of agent i in

Γ (M, θ).

We abuse notation to identify ` ∈ ∆ (A) with xl = (`, 0, ..., 0) ∈ X and the range of

social choice function, f(Θ), as a subset of X. While we allow the outcome function g to

invoke transfers, the following implementation notion requires that for each rationalizable

profile m at state θ, the outcome g (m) exactly coincides with the social outcome f (θ) at

state θ with no transfer. In other words, we require exact implementation.
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Definition 1 An SCF f is implementable in rationalizable strategies if there exists

a mechanism M = ((Mi), g, (τi))i∈I such that for any θ ∈ Θ, (i) S∞(M, θ) 6= ∅; and (ii)

for any m ∈ S∞(M, θ), we have g (m) = f (θ) and τi (m) = 0.

Remark: Since we propose a finite implementing mechanism below, S∞ (M, θ) is always

nonempty, namely, requirement (i) of rationalizable implementation is automatically satis-

fied.

2.2.1 Maskin Monotonicity∗

In this section, we introduce a central condition to our rationalizable implementation re-

sult, which is called Maskin monotonicity∗. In our environment with transfers, Maskin

monotonicity∗ is equivalent to strict Maskin monotonicity∗ proposed by BMT as a necessary

condition for rationalizable implementation using “well behaved” (such as finite) mecha-

nisms.

For (θi, x) ∈ Θi ×X, let

Li(x, θi) = {y ∈ X : ui(x, θi) ≥ ui(y, θi)}

denote the lower-contour set at allocation x for type θi of agent i. Let

Ui(x, θi) = {y ∈ X : ui(y, θi) ≥ ui(x, θi)}

denote the upper-contour set at allocation x for type θi of agent i. Replacing the weak

inequality with a strict one, we can define SLi(x, θi) and SU i(x, θi) as the strict lower

and upper contour sets for type θi of agent i, respectively. For a given SCF f , we let

Pf = {Θz}z∈f(Θ) be the partition on Θ induced by f , i.e., Θz ≡ {θ ∈ Θ| f(θ) = z}. For each

partition P on Θ, we denote by P (θ) the atom in P which contains state θ and by Pi (θ)
the projection of the set of type profile P (θ) on Θi. Moreover, for each x ∈ X, let

Li (x,P (θ)) ≡
⋂

θ̃∈P(θ)

Li(x, θ̃i).

The following definition is obtained by adapting Definition 5 of BMT to our setup that

accommodates both lotteries and transfers.

Definition 2 An SCF f satisfies Maskin monotonicity∗ if there exists a partition P of

Θ such that (i) P is weakly finer than Pf ; (ii) for any θ̃, θ ∈ Θ, whenever θ 6∈ P(θ̃), there

exists i ∈ I for whom

Li(f(θ̃),P(θ̃)) ∩ SU i(f(θ̃), θi) 6= ∅. (1)
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Note that when f(θ) 6= f(θ̃) for any θ 6= θ̃, (i) in Definition 2 trivially holds, and

(ii) in Definition 2 is the same requirement as in Maskin monotonicity.6 Although Maskin

monotonicity∗ implies Maskin monotonicity, it was not a priori clear whether the two condi-

tions are different. Jain (2021) constructs an example showing that Maskin monotonicity∗

is strictly stronger than Maskin monotonicity. In Appendix A.1, we modify the example of

Jain (2021) to make the same point in our setup, which accommodates the case with two

agents, lotteries, and transfers. Accordingly, rationalizable implementation remains strictly

more restrictive than Nash implementation, even when we focus on finite mechanisms and

allow for lotteries and transfers.7

2.2.2 Challenge Scheme

Let P be the partition in the definition of Maskin monotonicity∗. First, a challenge scheme

for an SCF f is a set of allocations {x(θ̃, θi)}, one for each pair of state θ̃ and type θi of

agent i, such that

if Li(f(θ̃),P(θ̃)) ∩ SU i(f(θ̃), θi) 6= ∅, then x(θ̃, θi) ∈ Li(f(θ̃),P(θ̃)) ∩ SU i(f(θ̃), θi);

if Li(f(θ̃),P(θ̃)) ∩ SU i(f(θ̃), θi) = ∅, then x(θ̃, θi) = f(θ̃),

where we omit the reference to P in x(·, ·) to simplify the notation. We call x(θ̃, θi) a test

allocation when x(θ̃, θi) ∈ Li(f(θ̃),P(θ̃))∩ SU i(f(θ̃), θi) and in such a case, agent i is called

a whistle-blower for θ̃ at state θ.

The following lemma shows that there is a challenge scheme under which truth-telling

induces the best allocation within {x(θ̃, θi)}θ̃∈Θ,θi∈Θi
.

Lemma 1 There is a challenge scheme {x(θ̃, θi)} for an SCF f such that for any state θ̃

and type θi,

ui(x(θ̃, θi), θi) ≥ ui(x(θ̃, θ′i), θi),∀θ′i ∈ Θi. (2)

Proof. Fix an arbitrary challenge scheme {x̄(θ̃, θi)} for an SCF f . For each state θ̃ and

each type θi, we can redefine x(θ̃, θi) as the most preferred allocation of type θi in the (finite)

6We discuss this case in Section 5.2.
7In Chen, Kunimoto, Sun, and Xiong (2020), we prove that Maskin monotonicity fully characterizes

mixed-strategy Nash implementation using finite mechanisms in the same setup. See Section 3.3 for the

comparison between this paper and Chen, Kunimoto, Sun, and Xiong (2020) in terms of the implementing

mechanism and arguments.
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menu of allocations {x̄(θ̃, θ′i) : θ′i ∈ Θi}. It is straightforward to show that x(θ̃, θi) remains a

challenge scheme. Thus, we satisfy the following two properties: for each θi ∈ Θi and θ̃ ∈ Θ,

(i) ui(x(θ̃, θi), θi) = max
θ′′i ∈Θi

ui(x̄(θ̃, θ′′i ), θi),

and (ii) for any θ
′
i ∈ Θi, there exists θ

′′′
i ∈ Θi such that

ui(x(θ̃, θ′i), θi) = ui(x̄(θ̃, θ′′′i ), θi).

Then, combining the two equations above, we get

ui(x(θ̃, θi), θi) ≥ ui(x(θ̃, θ′i), θi), ∀θ′i ∈ Θi.

This completes the proof.

In the following, we shall invoke a challenge scheme which satisfies (2) and we call it

the best challenge scheme. The existence of the best challenge scheme proved in Lemma

1 demonstrates that the designer’s twin goals of allowing for whistle-blowing (as in Maskin

(1977, 1999)) and eliciting the truth (from the dictator lotteries as in Abreu and Matsushima

(1992, 1994)) can be perfectly aligned with the test allocations pre-specified at the outset.

2.2.3 Dictator Lottery

Let X̃ ≡ A∪
⋃
i∈I,θi∈Θi,θ̃∈Θ x(θ̃, θi) where each a ∈ A is identified with xa = (a, 0, ..., 0) ∈ X.

Since vi(·, θi) is bounded and Θ is finite, we choose η′ > 0 as an upper bound on the monetary

value of a change in the selection of an alternative in X̃, that is,

η′ > sup
i∈I,θi∈Θi,x,x′∈X̃

|ui(x, θi)− ui(x′, θi)| , (3)

Now, we have the following lemma.

Lemma 2 For each agent i ∈ I, there exists a function yi : Θi ∪ Θ→ X such that yi(θ) =

f(θ) for each θ ∈ Θ and for all types θi, θ
′
i with θi 6= θ′i, we have

ui (yi (θi) , θi) > ui (yi (θ
′
i) , θi) ; (4)

moreover, for each j ∈ I and θ′j, we also have that for every x ∈ X̃,

uj(yj(θ
′
j), θj) < uj(x, θj). (5)

8



From Abreu and Matsushima (1992) we can prove the existence of lotteries {y′i (·)} ⊂
∆ (A) which satisfy Condition (4). To satisfy Condition (5), we simply add a penalty of η′

to each outcome of the lotteries {y′i (θi)}θi∈Θi
. More precisely, for each θi ∈ Θi, we set

yi(θi) = (y′i(θi),−η′, . . . ,−η′) ∈ X.

We call the resulting lotteries the dictator lotteries for agent i and denote them by {yi (·)}.
Condition (4) shows that under dictator lotteries, each agent has a strict incentive to

reveal his true type (see Step 1 of Section 3.2), whereas Condition (5) says that these dictator

lotteries are strictly less preferred than any alternative a or test allocations in X̃ (see Step

3 of Section 3.2).

3 Rationalizable Implementation

We now state our main result on rationalizable implementation.

Theorem 1 An SCF f is implementable in rationalizable strategies by a finite mechanism

if and only if it satisfies Maskin monotonicity∗.

Since a finite mechanism satisfies the best response property defined in BMT (see Def-

inition 6 of BMT), the “only if” part of Theorem 1 follows from Proposition 3 of BMT. We

will construct a mechanism to prove the “if” part of Theorem 1 in the following subsections.

3.1 The Mechanism

3.1.1 Message Space:

A generic message of agent i is:

mi =
(
m1
i ,m

2
i ,m

3
i

)
∈M1

i ×M2
i ×M3

i = Mi = (Θi ∪Θ)×Θ×Θ.

That is, agent i is asked to make (1) an announcement of either his own type or the state

(which we denote by m1
i ); and (2) another two announcements of the state (which we denote

by m2
i and m3

i ).
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3.1.2 Allocation Rule:

Let P be the partition in the definition of Maskin monotonicity∗. Say two states θ and θ′

are equivalent (denoted as θ ∼ θ′) if they belong to the same atom of P . Given a message

profile m, we say that m is consistent if there exists θ̃ ∈ Θ such that

m1
i ∼ m2

i ∼ m3
i ∼ θ̃ for every i ∈ I. (6)

That is, consistency requires that every agent i announces three states m1
i ,m

2
i and

m3
i from the same atom of P . Note that m is inconsistent whenever m1

i ∈ Θi for some agent

i. We extend x :Θ×Θi → X to x :Θ× (Θi ∪Θ)→ X such that x(θ, θ̃) = f(θ) for any pair

of states (θ, θ̃) ∈ Θ2. For every agent i ∈ I, we say that agent i challenges his own report if

x (m3
i ,m

1
i ) 6= f (m3

i ) , and agent i does not challenge his own report if x (m3
i ,m

1
i ) = f (m3

i ) .

For each message profile m ∈M , the allocation is defined as follows:

g (m) =
1

I

∑
i∈I

[
e (m) yi

(
m1
i

)
⊕ (1− e (m))x

(
m3
i ,m

1
i

)]
where yk : Θk ∪Θ→ X is the dictator lottery for agent k defined in Lemma 2 and αx⊕ (1−
α)x

′
denotes the outcome which corresponds to the compound lottery that with probability

α, outcome x occurs, and with probability 1− α, outcome x
′

occurs;8 moreover, we define

e(m) =

 0, if m is consistent;

ε, otherwise.

That is, the designer first chooses an agent, with equal probability, to be checked. In checking

agent i, the designer will use agent i’s first report to check i’s third report in determining

the allocation.

After the designer picked agent i to be checked, the outcome function distinguishes

two cases: (1) if e(m) = 0, then we implement x (m3
i ,m

1
i ) which is equal to f (m3

i ); (2) if

e(m) = ε, we implement the compound lottery:

ε× yi
(
m1
i

)
⊕ (1− ε)× x

(
m3
i ,m

1
i

)
.

That is, with probability ε, we implement the lottery yi (m
1
i ) and with probability 1 − ε,

we implement the lottery x(m3
i ,m

1
i ). We elaborate on how we choose ε together with other

parameters in Section 3.1.4.

8More precisely, if x = (`, (ti)i∈I) and x′ = (`′, (t′i)i∈I) are two outcomes in X, we identify αx⊕ (1−α)x′

with the outcome (α`+(1−α)`′, (αti+(1−α)t′i)i∈I), where we also identify the compound lottery α`+(1−α)`′

with a lottery in ∆(A).
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3.1.3 Transfer Rule:

In order to define the transfer rule, we introduce a few pieces of notation. For each message

profile m, let I0 (m1) ≡
{
j ∈ I : m1

j ∈ Θ
}

be the set of agents who report a state in their

first announcement. Fix an arbitrary θ′′′ ∈ Θ. For each message profile m, we define

θ̂(m1) =


θ′,

θ′′,

θ′′′,

if I0 (m1) = ∅ and m1 = (θ′i)i∈I for some θ′ ∈ Θ;

if I0 (m1) 6= ∅ and m1
j = θ′′ for all j ∈ I0 (m1) ;

otherwise.

We may interpret θ̂(m1) as a state “identified” by the first announcement profile (m1
i )i∈I . In

the first two cases, such an identification is clear: either everyone reports a type in their first

announcement and the joint type profile can be induced from a single state θ′ or some agent

announces a state in the first announcement and all the agents who announce a state reach

an unanimous agreement in announcing a common state θ′′ (in which case we ignore the

agents who announce a type in their first announcement, in this identification). When there

is no such a clear identification, we simply set θ̂(m1) equal to an arbitrarily pre-specified

state θ′′′.

Given the definition of θ̂(m1), for any message profile m, we specify the transfer to

agent i as follows:

τi(m) = τ 1
i (m) + τ 2

i (m) + τ 3
i (m) , (7)

where

τ 1
i (m) =

 0

−η′′
if m2

i ∼ θ̂(m1);

otherwise.

τ 2
i (m) =

 0

−η
if m3

i ∼ m2
i+1;

otherwise.

τ 3
i (m) =

 0

−η
if m1

i ∈ Θi or [m1
i ∈ Θ, m1

i ∼ m2
j ∼ m3

j , and x(m1
i ,m

1
j) = f(m1

i ),∀j ∈ I];

otherwise,

η > 0 and η′′ > 0 will be chosen in Section 3.1.4.

In words, τ 1
i (m) and τ 2

i (m) guarantee that in reporting m2
i and m3

i each agent i

will only want to announce states which are also equivalent to θ̂(m1). Specifically, τ 1
i (m)

requires that agent i pay η′′ if his announcement m2
i is not equivalent to θ̂(m1); likewise,

τ 2
i (m) requires that agent i pay η if his announcement m3

i is not equivalent to agent (i+1)’s

11



announcement m2
i+1 where I + 1 ≡ 1. In addition, τ 3

i (m) requires that agent i pay η if he

announces a state in m1
i which is not equivalent to his own or some other agents’ second and

third announcements of state; or agent i’s announced state m1
i is challenged by some other

agent (i.e., x(m1
i ,m

1
j) 6= f(m1

i ) for some j 6= i).

3.1.4 Choice of parameters

Since Θ is finite, we can first find d > 0 such that for any i ∈ I and any pair of types

θi, θ
′
i ∈ Θi with θi 6= θ′i, the dictator lotteries satisfy

ui (yi (θi) , θi) > ui (yi (θ
′
i) , θi) + d. (8)

Second, we can choose ε > 0, η′′ > 0 sufficiently small and η > 0 sufficiently large such that

the following three conditions hold:9

• The penalty scale η dominates any incentive from a change in allocations induced by

g (·) together with the penalty η′′ resulted from τ 1
i , i.e.,

η − η′′ > sup
i∈I,θi∈Θi,m,m̃∈M

 |ui(g (m) , θi)− ui(g (m̃) , θi)| ,
|ui(yi (m1

i ) , θi)− ui(yi (m̃1
i ) , θi)|

 . (9)

• The penalty scale η′′ and ε are chosen not to disturb agent i’s challenge. More precisely,

whenever agent i is checked, if he has reported a false state in m3
i for which he is a

whistle-blower at the true state, it is still strictly better for him to tell the truth in m1
i

to challenge m3
i . That is,

x (m3
i ,m

1
i ) 6= f(m3

i )⇒ for any θ̃ ∈ P(m3
i ),

(1− ε)
[
ui(x(θ̃, m1

i ),m
1
i )− ui(f(θ̃),m1

i )
]
− εη > η′′.

(10)

• The penalty scale η′′ does not disturb the truth-telling incentive from the dictator

lotteries:
ε

I
d > η′′. (11)

9Fix d such that (8) holds. Note that one particular way to choose η is to set it larger than the RHS of

(9); next we choose ε small enough such that the LHS of (10) is larger than ε/Id. Finally, we choose η′′ such

that both (9) and (11) hold.
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3.2 Proof of Theorem 1

We start by outlining the proof of Theorem 1. In this proof, we show in Step 1 that if the

SCF f satisfies Maskin monotonicity∗ and a message mi = (m1
i ,m

2
i ,m

3
i ) is rationalizable,

then either m1
i is the true type of agent i or m1

i is a state which is equivalent to the true

state. To wit, if an agent reports a type, then reporting his true type is strictly better than

reporting another type due to (4) of Lemma 2. Moreover, we show that if an agent reports

a state, then it must be equivalent to the true state. This result follows from the combined

force of the transfer rule τ 3
i (·) and Maskin monotonicity∗, which is at the heart of our proof

of Theorem 1. As a consequence of these two claims, θ̂(m1) must be equivalent to the true

state.

In Step 2, the cross-checking penalties τ 1
i (m) and τ 2

i (m) ensure that m2
i and m3

i are

both equivalent to the true state. Finally, in Step 3 we conclude that if a message mi is

rationalizable, then m1
i must also be a state rather than a type and the reported state must

be equivalent to the true state. This follows from the fact that a type announcement in m1
i

triggers a worse outcome by (5) of Lemma 2 than a state announcement in m1
i . In summary,

if m is rationalizable, then m1
i , m

2
i , and m3

i must be all equivalent to the true state. Hence,

the social outcome designated to the true state is implemented and no transfers are incurred.

Recall that the agents commonly know the true state of the world which is unknown

to the designer. Denote the true state by θ ∈ Θ. We now prove the “if” part of Theorem 1

in three steps.

Step 1: For every m ∈ S∞ (M, θ), if m1
i ∈ Θi, then m1

i = θi; if m1
i ∈ Θ, then m1

i ∼ θ.

Fix agent i ∈ I and message mi ∈ S∞i (M, θ). Then, there is λi ∈ ∆
(
S∞−i (M, θ)

)
against which mi is a best reply. We prove Step 1 in each of the following two substeps.

Step 1A. If m1
i ∈ Θi, then m1

i = θi.

We show that for every mi ∈ S∞i (M, θ) with m1
i ∈ Θi, we have m1

i = θi. Suppose

not, that is m1
i ∈ Θi s.t. m1

i 6= θi. We construct m̃i = (θi,m
2
i ,m

3
i ), which is the same as

mi except that m̃1
i = θi 6= m1

i . Note that for any m−i ∈ S∞−i (M, θ) we have e (mi,m−i) =

e (m̃i,m−i) = ε since both m1
i and m̃1

i are in Θi (and hence (mi,m−i) and (m̃i,m−i) are not

consistent). Fix m−i with λi(m−i) > 0. Thus, in terms of allocation, the expected gain from

choosing m̃i rather than mi is at least εd/I, and the potential loss in terms of transfers is

bounded by η′′ due to τ 1
i (·). It follows from (11) that m̃i is a strictly better reply than mi.

This is a contradiction.

Step 1B. If m1
i ∈ Θ, then m1

i ∼ θ.
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Fixmi ∈ S∞i (M, θ) withm1
i ∈ Θ. Saym1

i = θ̃.We first show that there exists somem−i

with λi(m−i) > 0 such that m1
i ∼ m2

j ∼ m3
j and x(m1

i ,m
1
j) = f(m1

i ) for every agent j ∈ I.
Suppose not. Then, by τ 3

i (·), agent i is penalized by η. Consider m̃i = (θi,m
2
i ,m

3
i ), which is

identical to mi except that m̃1
i = θi. The potential loss from choosing m̃i rather than mi in

terms of transfers is bounded by η′′ due to τ 1
i (·). The potential loss in terms of allocation from

choosing m̃i rather than mi is bounded by supi∈I,θi∈Θi,m,m′∈M |ui(g (m) , θi)− ui(g (m′) , θi)| ,
while the gain due to τ 3

i (·) from choosing m̃i rather than mi is η. By (9), m̃i = (θi,m
2
i ,m

3
i )

is a strictly better reply against λi than mi. This contradicts to the hypothesis that mi ∈
S∞i (M, θ).

Note that we have fixed mi ∈ S∞i (M, θ) with m1
i = θ̃. In addition to this, we consider

m−i ∈ S∞−i (M, θ) such that, ∀k ∈ I,

θ̃ ∼ m2
k ∼ m3

k,

and

x(θ̃, m1
k) = f(θ̃).

Suppose on the contrary that θ̃ 6∼ θ. Then, since the SCF f satisfies Maskin monotonicity∗,

there exists some agent j ∈ I for whom x(θ̃, θj) 6= f(θ̃) and

uj(x(θ̃, θj), θj) > uj(f(θ̃), θj). (12)

That is,

uj(x(m3
j , θj), θj) > uj(f(m3

j), θj),

since m3
j ∼ θ̃.

Now we construct m̃j =
(
θj,m

2
j ,m

3
j

)
, which is the same as mj except that m̃1

j = θj. In

the following, we shall show that m̃j strictly dominates mj, which contradicts the hypothesis

that mj ∈ S∞j (M, θ).

Fix an arbitrary m̃−j ∈ S∞−j(M, θ). Observe first that e(m̃j, m̃−j) = ε, as m̃1
j ∈ Θj

which implies that (m̃j, m̃−j) is not consistent. Thus,

g (m̃j, m̃−j) =
1

I

∑
k 6=j

[
εyk
(
m̃1
k

)
⊕ (1− ε)x

(
m̃3
k, m̃

1
k

)]
⊕ 1

I

[
εyj(m̃

1
j)⊕ (1− ε)x(m3

j , m̃
1
j)
]
,

(13)

where x(m3
j , m̃

1
j) = x(θ̃, θj) 6= f(m3

j). In contrast,

g (mj, m̃−j) =
1

I

∑
k∈I

[
e (mj, m̃−j) yk

(
m̃1
k

)
⊕ (1− e (mj, m̃−j))x

(
m̃3
k, m̃

1
k

)]
, (14)
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where x(m3
j ,m

1
j) = f(m3

j). We now show that m̃j strictly dominates mj by considering

the following two subcases of j’s opponents’ announcement m̃−j: e(mj, m̃−j) = ε and

e(mj, m̃−j) = 0. We first show that in both cases g (m̃j, m̃−j) differs from g (mj, m̃−j) only

when agent j is chosen to be checked.

• When e(mj, m̃−j) = ε, we have

g (mj, m̃−j) =
1

I

∑
k 6=j

[
εyk
(
m̃1
k

)
⊕ (1− ε)x

(
m̃3
k, m̃

1
k

)]
⊕ 1

I

[
εyj
(
m1
j

)
⊕ (1− ε) f(m3

j)
]

.

(15)

A comparison between (13) and (15) shows that g (m̃j, m̃−j) differs from g (mj, m̃−j)

only when agent j is chosen to be checked.

• When e(mj, m̃−j) = 0, we have that (mj, m̃−j) is consistent, m̃1
k ∼ θ̃ and x (m̃2

k, m̃
1
k) =

x(m2
j ,m

1
j) = f (m̃2

k) = f(θ̃) for every k 6= j. Hence (13) can be written as

g (m̃j, m̃−j) =
1

I

∑
k 6=j

[
εf(θ̃)⊕ (1− ε) f(θ̃)

]
⊕ 1

I

[
εyj(m̃

1
j)⊕ (1− ε)x(m3

j , m̃
1
j)
]
, (16)

while

g (mj, m̃−j) = f(θ̃). (17)

A comparison between (16) and (17) shows that g (m̃j, m̃−j) differs from g (mj, m̃−j)

only when agent j is chosen to be checked.

When agent j is chosen to be checked, we compare the payoff difference between choos-

ing mj and choosing m̃j as follows. In terms of dictator lotteries, by (9), the loss of agent

j induced from choosing mj to choosing m̃j is bounded by εη; in terms of allocations from

the best challenge scheme, the gain of agent j induced from choosing mj to choosing m̃j

is (1− ε) (uj(x(θ̃, θj), θj) − uj(f(θ̃), θj)); and in terms of transfers, the loss of agent j from

choosing mj to choosing m̃j is bounded by η′′ (due to τ 1
j ). By (10), we conclude that agent j

obtains a strictly higher expected utility under m̃j than mj against m̃−j. Hence, we obtain

the desired contradiction to the hypothesis that mj ∈ S∞j (M, θ).

Finally, we conclude that m1
i ∼ θ.

Step 2: For every agent i ∈ I and every mi ∈ S∞i (M, θ), we have m2
i ∼ m3

i ∼ θ.

Fix an arbitrary m ∈ S∞ (M, θ) . We first show that m2
i ∼ θ. It follows from Step 1,

for each mi ∈ S∞i (M, θ) , m1
i = θi or m1

i ∼ θ. If

I0
(
m1
)
≡
{
j ∈ I : m1

j ∈ Θ
}
6= ∅,
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by Step 1, we have θ̂(m1) ∼ θ. If I0 (m1) = ∅, by Step 1, we have that m1
i = θi for

each agent i ∈ I, then in m1, we have a type profile induced by the true state. Hence,

for each m ∈ S∞ (M, θ), we must have θ̂(m1) ∼ θ. Suppose by way of contradiction that

m2
i = θ′ 6∼ θ. This implies that for any m−i ∈ S∞−i (M, θ) , (mi,m−i) is inconsistent. We

construct m̃i = (m1
i , θ,m

3
i ) which is identical to mi except that m̃2

i = θ. Thus, (m̃i,m−i)

implements some allocation at least as good as induced by (mi,m−i) since mi and m̃i only

differ in their second report. In terms of transfers incurred, the gain from (m̃i,m−i) rather

than (mi,m−i) is η′′ from τ 1
i (·), since the penalty to agent i is η′′ induce by (mi,m−i) from

τ 1
i (·). Hence, m̃i is a better reply than mi against any m−i ∈ S∞−i (M, θ). This is the desired

contradiction.

We next show that m3
i ∼ θ. By the previous argument, we know that m2

i ∼ θ ∀i ∈ I.
Suppose by way of contradiction that m3

i = θ′ 6∼ θ. We construct m̃i = (m1
i ,m

2
i , θ) which

is identical to mi except that m̃3
i = θ. Note that (m̃i,m−i) and (mi,m−i) may implement

different allocations, and in terms of transfer, the gain is η from (m̃i,m−i) rather than

(mi,m−i). By (9), η dominates any incentive from a change in allocations. Hence, we

conclude that m̃i is a strictly better response than mi against m−i. This completes the proof

of Step 2.

Step 3: For any agent i ∈ I and any m ∈ S∞ (M, θ), we have g (m) = f(θ) and τi (m) = 0.

By Steps 1 and 2, for any m ∈ S∞ (M, θ) , we have that θ̂(m1) ∼ θ and m2
i ∼ m3

i ∼ θ

for every agent i ∈ I. We next show that for any m ∈ S∞ (M, θ) , m1
i ∼ θ for every agent

i. Fix an arbitrary m ∈ S∞ (M, θ) . Suppose not. By Step 1, this implies that ∃i ∈ I such

that m1
i = θi. We first note that m is inconsistent. Thus,

g (mi,m−i) =
1

I
ε
∑
k 6=i

yk
(
m1
k

)
⊕ 1

I
εyi(θi)⊕ (1− ε) f (θ) . (18)

Consider m̃i = (θ,m2
i ,m

3
i ) which is identical tomi except thatm1

i = θ.When e (m̃i,m−i) = ε,

g (m̃i,m−i) =
1

I
ε
∑
k 6=i

yk
(
m1
k

)
⊕ 1

I
εf(θ)⊕ (1− ε) f (θ) ; (19)

when e (m̃i,m−i) = 0,

g (m̃i,m−i) = f (θ) .

By choosing m̃i rather than mi, by (5) there is positive gain from g (m̃i,m−i) rather than

g (mi,m−i); while there is no loss, as we have m2
j ∼ m3

j ∼ θ for every agent j ∈ I. Hence,

mi 6∈ S∞i (M, θ), which is the desired contradiction.

We thus conclude that for every m ∈ S∞(M, θ), we have e (m) = 0 so that no transfer

is invoked and f(θ) is implemented. This completes the proof of Step 3.
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3.3 Comparison with Chen, Kunimoto, Sun, and Xiong (2020)

The current paper was developed from our earlier paper which addresses the problem of

mixed-strategy Nash implementation in finite mechanisms. Here we comment on the main

differences in the implementing mechanisms and arguments adopted in these two papers.

The mechanism in Chen, Kunimoto, Sun, and Xiong (2020) (henceforth, M-AM) rests

on the elicitation and cross-checking of type profiles to identify the allocation to be imple-

mented. Specifically, the implementing mechanism of M-AM asks each agent to report a

type (the first report) and a type profile (the second report). The mechanism is structured

to establish two main properties which we coined consistency (a common type profile being

announced in all agents’ second reports and the profile identifies a state) and no challenge

(no agent has incentive to “overturn” the allocation induced by the common second report

with a test allocation). The Nash implementation result follows from these two properties

and Maskin-monotonicity.

For rationalizable implementation, we need to work with the Maskin monotonicity∗

condition proposed by BMT instead of Maskin monotonicity. The Maskin monotonicity∗

condition is associated with a partition over the states rather than the type profiles. In

order for a type profile to identify the atom which contains the true state, the partition

must exhibit a product structure, by which we mean that each atom can be identified with

a product set of type profiles. Unfortunately, this additional requirement entails a loss of

generality, as it rules out some SCFs which satisfy Maskin-monotonicity∗.10

The current mechanism resolves this difficulty by giving the agents a choice of reporting

a type or a state in their first report, as opposed to only a type in their first report in M-AM.

Moreover, through structuring the incentive of inducing “truth-telling” in the first report,

we make sure that any rationalizable message profile m identifies (via θ̂(m1)) the atom which

contains the true state. This is accomplished by introducing three new ideas: (i) we revise

the notion of consistency which now refers only to states but not type profiles; moreover,

the notion involves all the three reports m1
i , m

2
i , and m3

i ; (ii) we include two state reports so

that the first state report (m2
i ) does not affect the allocation and η′′ can be made small; and

(iii) we introduce the new transfer rule τ 3
i (·). We now elaborate on the role of τ 3

i (·) used in

10To see this, suppose that there are two agents and each of them has two types, i.e., I ={1, 2}, and Θi =

{θi, θ′i} for each i ∈ I. Let f be an SCF f such that f (θ1, θ2) 6= f (θ1, θ
′
2) = f (θ′1, θ2) = f (θ′1, θ

′
2) and the as-

sociated partition Pf is given as Pf = {{(θ1, θ2)}, {(θ′1, θ2) , (θ1, θ
′
2) , (θ′1, θ

′
2)}} . This clearly violates product

structure. Assume further that vi(f (θ1, θ2) , θi) > vi(f (θ′1, θ
′
2) , θi) and vi(f (θ1, θ2) , θ′i) < vi(f (θ′1, θ

′
2) , θ′i)

for each agent i ∈ I. Then, f satisfies Maskin-monotonicity∗ associated with Pf .
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Step 1 of the proof of Theorem 1 which has no counterpart in M-AM.

This new transfer rule τ 3
i (·) plays a crucial role for our result. Recall that in the proof

of Theorem 1, we first make sure that in the first report, the agents either report a true

type or a state equivalent to the true state. More precisely, by (4) of Lemma 2 and the

argument in Step 1A if an agent reports a type it must be the true type, while by Maskin

monotonicity∗ and the argument in Step 1B if an agent reports a state it must be a state

equivalent to the true state. Then, via θ̂(m1), the cross-checking between the second report

and the first report guarantees the state reported in the second report belongs to the atom

containing the true state. As the notion of consistency differs from that of M-AM (point (i)

above), we also need to rule out the possibility that some agent reports a type in his first

report. The construction of dictator lotteries incentivizes agents to choose a state report

rather than any type report. In contrast, the first report in M-AM is a type and need not

be the true type even in equilibrium.

4 Small Transfers

One issue regarding Theorem 1 we address here is that the size of transfers may be large in

the mechanism. Allowing lottery allocations, we can use the idea of Abreu and Matsushima

(1994) to show that if the SCF satisfies Maskin monotonicity∗ without transfer (see Definition

5 below), then it is implementable in rationalizable strategies with arbitrarily small transfers.

We first propose a notion of rationalizable implementation with bounded transfers.

Definition 3 A social choice function f is implementable in rationalizable strategies with

transfers bounded by τ̄ if there exists a mechanism M = ((Mi, τi)i∈I , g) such that for

every state θ ∈ Θ, (i) S∞(M, θ) 6= ∅; (ii) for any m ∈ S∞(M, θ), we have g (m) = f (θ)

and τi (m) = 0; and (iii) |τi (m) | ≤ τ̄ and g(m) ∈ ∆ (A) for every m ∈ M and every agent

i ∈ I.

In other words, Definition 3 strengthens Definition 1 in requiring that the transfer be

bounded by τ̄ even for message profiles which are not rationalizable. Next, we propose a

notion of rationalizable implementability in which there are no transfers on any rationalizable

strategy profile and only arbitrarily small transfers on every strategy profile.

Definition 4 An SCF f is implementable in rationalizable strategies with arbitrarily

small transfers if, for every τ̄ > 0, the SCF f is implementable in rationalizable strategies

with transfers bounded by τ̄ .
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For (`, θi) ∈ ∆ (A) × Θi, we use Li (`, θi) to denote the lower-contour set in ∆ (A) at

allocation ` for type θi, i.e.,

Li (`, θi) = {`′ ∈ ∆(A) : vi (`, θi) ≥ vi(`
′, θi)} .

Then, for each ` ∈ ∆ (A), let

Li (`,P (θ)) ≡
⋂

θ̃∈P(θ)

Li(`, θ̃i).

Similarly, we also define SU i (`, θi) without invoking transfers.

Definition 5 Say an SCF f satisfies Maskin monotonicity∗ without transfer if there

exists a partition P of Θ such that (i) P is at least as fine as Pf ; (ii) for any θ̃, θ ∈ Θ,

whenever θ̃ 6∈ P (θ), there exists i ∈ I for whom

Li(f(θ̃),P(θ̃)) ∩ SU i(f(θ̃), θi) 6= ∅.

Clearly, Maskin monotonicity∗ without transfer implies the Maskin monotonicity∗ con-

dition introduced in Definition 2, since the former requires that the test allocation be a

lottery over alternatives without transfers. To prove our implementation result with arbi-

trarily small transfers, we assume that there exists a “uniformly worse outcome” w ∈ A such

that ui(f(θ̃), θi) > ui (w, θi) for every θ̃ ∈ Θ, and every agent i of every type θi. Note that

this assumption is stronger than the no-worst-alternative (NWA) condition used by BMT.

We now state the result formally:

Theorem 2 Suppose that there exists an outcome w ∈ A such that for every agent i ∈ I,

ui(f(θ̃), θi) > ui (w, θi) for every θ̃ ∈ Θ and every type θi ∈ Θi. Then, an SCF fA :

Θ→ ∆(A) is implementable in rationalizable strategies with arbitrarily small transfers if fA

satisfies Maskin monotonicity∗ without transfer.

We present the formal proof of Theorem 2 in Appendix A.2. In the proof, for each

τ̄ > 0, we construct an augmented mechanism which assigns a small weight/probability α to

the baseline mechanism (so that its transfers rescaled by α do not exceed τ̄) and weight 1−α
assigned to part of the mechanism in Abreu and Matsushima (1994) (so that the incentive to

manipulate outcomes can be disciplined with small transfers bounded by τ̄). Moreover, any
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rationalizable message in the augmented mechanism must involve a rationalizable message

in the baseline mechanism.11

Abreu and Matsushima (1992) achieve virtual implementation in rationalizable strate-

gies with a domain restriction instead of transfers. However, to achieve exact implementa-

tion with the Maskin monotonicity∗ condition, we can only have the agents report (in their

rationalizable messages) states which are equivalent to the true state. Since the agents’

type/preference can still vary within these equivalent states, we cannot use the technique

of Abreu and Matsushima (1992) even with their domain restriction. More precisely, Abreu

and Matsushima (1992) demonstrate that, equipped with a true state in the first report, the

designer can use the reported state (which is the true state under rationalizability by their

construction) to pick a good/bad outcome to incentivize a particular agent. This is also the

case when the partition in the Maskin monotonicity∗ condition is the finest, as there are no

other states equivalent to the true state. In this case, we can invoke the domain restriction

in Abreu and Matsushima (1992) without transfers to achieve our implementation result. In

a similar vein, we can also dispense with the outcome w in this case.

5 Discussion

We conclude by discussing how this paper contributes to the literature. First, we relate

our result to continuous implementation of Oury and Tercieux (2012). Second, we discuss

how our result simplifies for a “responsive” SCF and how it can be tightly connected to the

virtual implementation result of Abreu and Matsushima (1992). Finally, we argue that it is

generally impossible to simplify our implementing mechanism into a direct mechanism where

every agent only announces a state.

5.1 Continuous Implementation

Oury and Tercieux (2012) consider the following situation: the planner wants not only that

there is an equilibrium that implements the SCF but also that the same equilibrium continues

to achieve implementation of the SCF in all the models close to his initial model. Hence,

the SCF is continuously implementable. Oury and Tercieux (2012) obtain the following

11We formalize the step as Claim 4 in Appendix A.2. Roughly speaking, the baseline mechanism plays

the same role as the dictator lotteries in Abreu and Matsushima (1994), except that the baseline mechanism

only elicits the atom in the partition which contains the true state instead of the true state. With Claim 4,

Theorem 2 follows from a construction and argument similar to those of Abreu and Matsushima (1994).
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characterization of continuous implementation in their Theorem 4: an SCF is continuously

implementable by a finite mechanism if it is exactly implementable in rationalizable strategies

by a finite mechanism.12 Under “local payoff uncertainty”, Oury (2015) obtains the same

characterization. Since these result say nothing about the class of SCFs that are exactly

implementable in rationalizable strategies by finite mechanisms, characterizing such SCFs

has been an important open question in the literature. We establish the following continuous

implementation result which is a direct consequence of our Theorem 1 and Theorem 4 of

Oury and Tercieux (2012).

Corollary 1 If an SCF satisfies Maskin monotonicity∗, it is continuously implementable by

a finite mechanism.

To the best of our knowledge, our Proposition 1 is the first result which continuously

implements all Maskin monotonic∗ SCFs by a finite mechanism. The identified condition,

Maskin monotonicity∗, is strictly stronger than Maskin monotonicity, as we will show in

Appendix A.1. However, two caveats remain in relating Corollary 1 to Theorem 4 of Oury

and Tercieux (2012). The first caveat is that we focus on complete information environ-

ments, whereas Oury and Tercieux deal with incomplete information environments where

the baseline model can be an arbitrary finite type space. The second caveat is that we study

environments with lotteries and transfers, whereas Oury and Tercieux impose no condition

on the environments.

In incomplete-information environments with lotteries and transfers, Chen, Kunimoto,

and Sun (2021) made some progress in this direction. They show that any incentive com-

patible SCF is continuously implementable by a finite mechanism, provided that (i) each

agent knows his own payoff type; (ii) agents’ beliefs satisfy a generic correlation condition;

and (iii) we allow for arbitrarily small ex post transfers both on the equilibrium and off the

equilibrium. In other words, under these assumptions above, incentive compatibility is the

only constraint for continuous implementation.

5.2 Responsive SCFs

We draw a connection between our result and the virtual implementation result proved

by Abreu and Matsushima (1992). To do so, consider the following condition on SCFs

12In fact, assuming that sending messages is slightly costly, Oury and Tercieux (2012) also prove the con-

verse: an SCF is continuously implementable by a finite mechanism only if it is rationalizably implementable

by a finite mechanism.
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introduced by BMT:

Definition 6 An SCF f is responsive if, for any pair of states θ, θ′ ∈ Θ, f(θ) = f(θ′)⇒
θ = θ′.

Responsiveness requires that the SCF “responds” to a change in the state with a change

in the social choice outcome. As mentioned after we introduce Definition 2, a responsive SCF

that satisfies Maskin monotonicity must satisfy Maskin monotonicity∗. Indeed, since Pf is

the finest partition on Θ, for any two states θ and θ′, θ′ ∈ P(θ) is equivalent to θ′ = θ.

We formalize this result whose proof is omitted.

Lemma 3 If an SCF f is responsive, then f satisfies Maskin monotonicity if and only if f

satisfies Maskin monotonicity∗.

Theorem 1 and Lemma 3 together imply the following corollary for the case of respon-

sive SCFs.

Corollary 2 If an SCF f is responsive, then f is implementable in rationalizable strategies

by a finite mechanism if and only if it satisfies Maskin monotonicity.

BMT prove that under a condition which they call no-worst alternative condition (See

Definition 4 of BMT, p. 1259),13 if there are at least three agents, f is responsive, and

satisfies strict Maskin monotonicity, then it is implementable in rationalizable strategies by

an infinite mechanism. In contrast, Corollary 2 covers the case of two agents and employ a

finite mechanism.

An SCF f is said to be virtually implementable if, for any ε ∈ (0, 1), the SCF f is

exactly implementable with probability 1 − ε. Abreu and Matsushima (1992) show that

when there are at least three agents, any SCF is virtually implementable in rationalizable

strategies by a finite mechanism. In Appendix A.3, we show that given any SCF f, there

exists a responsive and Maskin-monotonic SCF which is “close” to f . Hence, the following

corollary follows from Theorem 1 and Lemma 3.

Corollary 3 Any SCF f is virtually implementable in rationalizable strategies by a finite

mechanism.

13No-worst alternative requires that any social outcome cannot be the worst outcome in any state. In our

setup with transfers, no-worst alternative is automatically satisfied.
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Recall that our mechanism is different from that of Abreu and Matsushima (1992),

who do not use transfers but rather introduce a domain restriction in the lottery space. The

domain restriction in Abreu and Matsushima (1992) requires that for every agent i and state

θ, there exist a pair of lotteries which are strictly ranked for agent i and for which other

agents have the (weakly) opposite ranking.

5.3 Direct Mechanisms

The message space in our implementing mechanism is remarkably parsimonious. To recap,

each agent is only asked to announce a type or state together with another two states.

As our setup assumes that different types correspond to different cardinal preferences over

lottery allocations, we only ask the agents to announce payoff-relevant information. With

this feature in mind, we may still investigate to what extent we could simplify the mechanism

further.

A prominent benchmark is to ask whether we could actually achieve rationalizable

implementation for any Maskin monotonic∗ SCF via some direct mechanism. In our setup,

a direct mechanism is a mechanism ((Mi), g, (τi))i∈I in which (i) agents are asked to report

the state (i.e., Mi = Θ for every agent i), and (ii) a unanimous report leads to the social

outcome with no transfers (i.e., g (θ, ..., θ) = f (θ) and τi (θ) = 0 for every agent i and for

each state θ). In Appendix A.4, we construct an SCF which satisfies Maskin monotonicity∗;

hence, by Theorem 1, it is implementable in rationalizable strategies. Moreover, we show

that the SCF cannot be implemented in rationalizable strategies using a direct mechanism.

A Appendix

In this Appendix, we provide the proofs omitted from the main body of the paper.

A.1 Maskin Monotonicity and Maskin Monotonicity∗

We first recap the definition of Maskin monotonicity.

Definition 7 An SCF f satisfies Maskin monotonicity if, for any pair of states θ̃ and

θ with f(θ̃) 6= f (θ), there is some agent i ∈ I such that

Li(f(θ̃), θ̃i) ∩ SU i(f(θ̃), θi) 6= ∅. (20)
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The following example shows that Maskin monotonicity∗ is strictly stronger than

Maskin monotonicity.

Example 1 Let A = {a, b, c, d} , I = {1, 2} , X = ∆ (A) × R2, and Θ = {α, β, γ, δ} .
The agents’ utility functions are given in the two tables below. Consider the following SCF

f (α) = f (β) = f (γ) = (a, 0, 0) ∈ X and f (δ) = (b, 0, 0) ∈ X. For simplicity of notation,

we write a ∈ A for (a, 0, 0) ∈ X and b ∈ A for (b, 0, 0) ∈ X, each of which is a degenerate

lottery over A with no transfer to any agent.

v1 α β γ δ

a 3 2 2 2

b 2 3 1 3

c 1 1 3 1

d 0 0 0 0

v2 α β γ δ

a 3 2 2 2

b 1 0 1 1

c 2 1 3 3

d 0 3 0 0

In the following three claims below, we show that the SCF f satisfies Maskin mono-

tonicity, while it does not satisfy Maskin monotonicity∗.

Claim 1 For every agent i ∈ I and θ ∈ Θ, Li (a, θ) ⊂ Li (a, α).

Proof. Observe that for any agent i ∈ I, any ã ∈ A\ {a}, and any θ ∈ Θ, the utility

difference between a and ã is weakly larger at α than that at θ. That is,

vi (a, α)− vi (ã, α) ≥ vi (a, θ)− vi (ã, θ) .

Hence, for any x ∈ X, i ∈ I, and θ ∈ Θ, we have ui(a, θ) ≥ ui (x, θ) implies ui(a, α) ≥
ui(x, α).

Claim 2 The SCF f violates Maskin monotonicity∗.

Proof. Consider an arbitrary partition P finer than Pf = {{α, β, γ} , {δ}} . Note that

P (δ) = {δ} for any partition P finer than Pf .

Case 1. α ∈ P (β) and α ∈ P (γ).

In this case, P = Pf and hence P (α) = {α, β, γ}. Since L1 (a, β) = L1 (a, δ) and

L2 (a, γ) = L2 (a, δ). Thus, Li (a,P (α)) ⊂ Li (a, δ) for all i ∈ {1, 2} but f (α) 6= f (δ).

Hence, f violates Maskin monotonicity∗ for such P .

Case 2. α 6∈ P (β) or α 6∈ P (γ).
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We derive a contradiction for the case with α 6∈ P (β) . By Claim 1, we have Li (a,P (β)) ⊂
Li (a, α) for all i ∈ {1, 2}. Then, f violates Maskin monotonicity∗ for P because Li (a,P (β)) ⊂
Li (a, α) for all i ∈ {1, 2} but α 6∈ P (β). The argument for the case with α 6∈ P (γ) is similar

and so omitted.

Claim 3 The SCF f satisfies Maskin monotonicity.

Proof. This can be confirmed by observing that b ∈ L1 (a, α) ∩ SU1 (a, δ), c ∈ L2 (a, β) ∩
SU2 (a, δ), b ∈ L1 (a, γ)∩ SU1 (a, δ), a ∈ L1 (b, δ)∩ SU1 (b, α), d ∈ L2 (b, δ)∩ SU2 (b, β), and

a ∈ L1 (b, δ) ∩ SU1 (b, γ) .

A.2 Small Transfers

The following lemma is the counterpart of Lemma 2. We prove this by making use of the

outcome w as opposed to transfers:

Lemma 4 Suppose that there exists an outcome w ∈ A such that for every agent i, ui(f(θ̃), θi) >

ui (w, θi) for every θ̃ ∈ Θ and every type θi ∈ Θi. Then, for each agent i ∈ I, there exists a

function yi : Θi ∪Θ→ X such that yi(θ) = f(θ) for each θ ∈ Θ, and for all types θi, θ
′
i ∈ Θi

with θ′i 6= θi, we have

ui (yi (θi) , θi) > ui (yi (θ
′
i) , θi) ; (21)

moreover, for each j ∈ I and θ′j, we also have for every θ̃ ∈ Θ,

uj(yj(θ
′
j), θj) < uj(f(θ̃), θj). (22)

Proof. From Abreu and Matsushima (1992) we can prove the existence of lotteries {y′i (·)} ⊂
∆ (A) which satisfy Condition (21). To satisfy Condition (22), we simply choose δ ∈ (0, 1)

large enough and define yj (θj) = δw ⊕ (1 − δ)yj(θj) such that uj(yj (θj) , θj) < uj(f(θ̃), θj)

for each j ∈ I and each θ′j ∈ Θj, and for every θ̃ ∈ Θ.

Equipped with Lemma 4, we can modify the mechanism M = ((Mi), g, (τi))i∈I in

Section 3, η′′ and η are determined according to (8) and (9) and the transfers all arise from

τi. We call such M the baseline mechanism. Based on the baseline mechanism M, we will

construct an augmented mechanism M̃ = ((M̃i), g̃, (τ̃i))i∈I to prove Theorem 2.
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A.2.1 The Mechanism

We augment the message space of the implementing mechanism in Section 3 by adding to it

K + 1 additional reports of states, where K will be chosen later. Formally, each message in

the augmented mechanism is written as follows.

Player i’s message space is

M̃i = Mi × M̃0
i × · · · × M̃K

i = Mi × Θ× · · · ×Θ︸ ︷︷ ︸
K + 1 terms

,

where each player i simultaneously makes an announcement in Mi (of the baseline mechanism

M) and K + 1 announcements of the state. We write a generic message m̃i ∈ M̃i of agent i

as

m̃i =
(
mi, m̃

0
i , ..., m̃

K
i

)
.

A.2.2 Outcome

Define ρ : ΘI → ∆ (A) such that for every k ≥ 1, we define

ρ
(
m̃k
)

=

 f(θ̃), if there exists θ̃ ∈ Θ such that m̃k
i = θ̃ ∈ Θ for all i ∈ I;

w otherwise.

Let D be the bound of the utility difference across all different outcomes of ρ(·). That is,

D = sup
i∈I,θi∈Θi,θ′,θ′′∈Θ

|ui(ρ (θ′) , θi)− ui(ρ (θ′′) , θi)| .

For any message profile m̃ =
(
m, m̃0, ..., m̃K

)
∈ M̃ , the outcome g̃(m̃) is defined as

follows:

g̃(m̃) = α× g(m)⊕ (1− α)× 1

K

K∑
k=1

ρ(m̃k)

where α > 0 will be chosen later, and g(·) is the outcome function of the baseline mechanism

in Section 3. That is, the outcome is a lottery combining the outcome of the baseline

mechanism, and the equally weighted sum of all outcome functions over all rounds 1 through

K.
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A.2.3 Transfers

We specify the transfer to agent i as follows:

τ̃i(m̃) = α× τi(m) + (1− α)×
(
τ 4
i

(
m−i, m̃

0
i

)
+ τ 5

i

(
m̃0, ..., m̃K

))
where τi(·) is the transfer rule of the baseline mechanism defined in (7); moreover, we include

two additional transfers τ 4
i (·) and τ 5

i (·):

τ 4
i

(
m−i, m̃

0
i

)
=

 −γ0

if m̃0
i ∼ m3

i+1;

otherwise.

That is, agent i receives a fine of γ if their 4th report (m̃0
i ) is not equivalent to agent i+ 1’s

3rd report (m3
i+1) in the baseline mechanism.

τ 5
i

(
m̃0, ..., m̃K

)
=


−ξ,

if there exists k ∈ {1, . . . , K} such that m̃k
i 6∼ m̃0

i and m̃k′
j = m̃0

j ,

for all k′ ∈ {1, . . . , k − 1} and all j ∈ I;

0, otherwise.

That is, agent i receives a fine of ξ if he is the first one who deviates from his own 4th report

(m̃0
i ).

Finally, given any τ̄ > 0, we choose positive numbers α, γ, ξ, and K such that

τ̄ > α (η′′ + 2η) + (1− α) (γ + ξ) (23)

ξ >
1

K
D

γ > ξ +
1

K
D.

We choose ξ small and K large such that ξ > 1
K
D and ξ+ 1

K
D < τ̄

4
. Then, we choose γ such

that ξ + 1
K
D < γ < τ̄

4
. Thus, (1− α) (γ + ξ) < τ̄

2
for any α ∈ (0, 1). Given η′′ and η chosen

according to (8) and (9), we choose α small enough such that α (η′′ + 2η) < τ̄
2
.

A.2.4 Proof of Theorem 2

Note that all allocations and transfers used in the baseline mechanism are multiplied by

α, which can be interpreted as “the baseline mechanism is played with probability α.” By

the construction of g̃(m̃), we know that m1
i ,m

2
i and m3

i have no influence on the outcome

designated by ρ nor agent i’s transfers specified by τ 4
i or τ 5

i . In particular, m3
i affects τ 4

i−1

but not τ 4
i . Thanks to these features, we can establish the following claim.
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Claim 4 For every agent i ∈ I, every state θ ∈ Θ, and every m̃i =
(
mi, m̃

0
i , ..., m̃

K
i

)
∈

S∞i (M̃, θ), we have mi ∈ S∞i (M, θ).

Proof. We prove m̃i =
(
mi, m̃

0
i , ..., m̃

K
i

)
∈ Ski (M̃, θ) implies that mi ∈ Ski (M, θ) by induc-

tion on k. The case with k = 0 is trivial. Fix k ≥ 0. Suppose m̃i =
(
mi, m̃

0
i , ..., m̃

K
i

)
∈

Ski (θ,M̃) implies that mi ∈ Ski (M, θ). We shall show that m̃i =
(
mi, m̃

0
i , ..., m̃

K
i

)
∈

Sk+1
i (M̃, θ) implies that mi ∈ Sk+1

i (M, θ). We prove the contrapositive. Suppose that

mi 6∈ Sk+1
i (M, θ). Thus, in the game Γ(M, θ), a standard duality argument implies that

there exists some βi ∈ ∆(Mi) such that βi delivers a strictly better payoff than mi for agent

i against any m−i ∈ Sk−i(M, θ). Now consider β̃i ∈ ∆(M̃i) such that β̃i takes the same

distribution over Mi as βi does, and assigns probability one on (m̃0
i , ..., m̃

K
i ). Note that β̃i

and m̃i each generate different payoffs for agent i only when the baseline mechanism M is

chosen. Moreover, against any m̃−i =
(
m−i, m̃

0
−i, ..., m̃

K
−i
)
∈ Sk−i(M̃, θ), it follows from the

induction hypothesis that m−i ∈ Sk−i(M, θ). Since α > 0, we know that β̃i delivers a strictly

better payoff than m̃i for agent i against any m̃−i =
(
m−i, m̃

0
−i, ..., m̃

K
−i
)
∈ Sk−i(M̃, θ). Hence,

m̃i /∈ Sk+1
i (M̃, θ).

By Claim 4 and the proof of Theorem 3, we have m3
j ∼ θ. Then, we can follow verbatim

the argument on p. 12 of Abreu and Matsushima (1994) to show that every agent j reports

a state equivalent to θ in his k-th report for every k = 0, ..., K. Hence, for every agent i ∈ I
and every m̃i ∈ S∞i (M̃, θ), we have g̃(m̃) = f(θ) and τ̃i(m̃) = 0. By (23), we also have

|τi(m)| ≤ τ̄ for every m ∈M .14

A.3 Responsive SCFs

We show that any SCF can be “perturbed” a little bit to satisfy responsiveness and Maskin

monotonicity. Fix an SCF f and ε ∈ (0, 1). Define f ε : Θ→ ∆(A) as follows: for any θ ∈ Θ,

f ε(θ) = εyi(θi) + (1− ε)f(θ),

where yi(θi) is the dictator lottery for type θi, as constructed in Lemma 2. Moreover, by

adding small penalties to the dictator lotteries, we can make yi(θi) 6= yi(θ
′
i) whenever θ 6= θ′,

without affecting the conclusion of Lemma 2 (i.e., (24) below). Therefore, θ 6= θ′ implies

f ε(θ) 6= f ε(θ′). In other words, we can make f ε responsive. We now argue that f ε is also

14Thanks to the existence of such outcome w, the construction of ρ(·) allows us to penalize any unilateral

deviation from an unamimous announcement. Hence, we do not need the additional transfer used in Abreu

and Matsushima (1994) (which they denote by η).
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Maskin monotonic. Fix two states θ and θ′ with θ 6= θ′ (and hence f ε(θ) 6= f ε(θ′)). Since

θ 6= θ′ and due to the construction of dictator lotteries, there must exist agent i for whom

ui(yi(θi), θi) > ui(yi(θ
′
i), θi) and ui(yi(θ

′
i), θ

′
i) > ui(yi(θi), θ

′
i). (24)

We construct the following lottery x(θ′, θi) ∈ X:

x(θ′, θi) ≡ εyi(θi) + (1− ε)f(θ′).

That is, x(θ′, θi) is constructed by replacing yi(θ
′
i) in f ε(θ′) with yi(θi). By (24), we have

x(θ′, θi) ∈ Li (f ε (θ′) , θ′i) ∩ SU i (f ε (θ′) , θi) .

This shows that f ε satisfies Maskin monotonicity.

A.4 Direct Mechanisms

Example 2 Suppose that there are two agents: {1, 2}; two states: {α, β}; and four pure

alternatives: {a, b, c, d}. Let f be an SCF such that f (α) = (a, 0, 0) and f (β) = (b, 0, 0).

Agents’ utilities across different states are described in the following table:

v1 α β

a 2 3

b 0 0

c −1/2 1/2

d 1/2 −1/2

v2 α β

a 0 0

b 3 2

c −1/2 1/2

d 1/2 −1/2

Since d ∈ L1(f(β), β)∩SU1(f(β), α) and c ∈ L2(f(α), α)∩SU2(f(α), β), it follows that

f satisfies Maskin monotonicity∗. Hence, by Theorem 1, f is implementable in rationalizable

strategies by a finite (indirect) mechanism. A direct mechanismM = ((Mi)i∈{1,2}, h) in this

environment has message space Mi = {α, β} and we denote its outcome and transfer rule

altogether by h = (g (·) , τ1 (·) , τ2 (·)).15 To derive a contradiction, we hypothesize that

f is implementable in rationalizable strategies by a direct mechanism. Then, h (α, α) =

(a, 0, 0) and h (β, β) = (b, 0, 0); moreover, without loss of generality, we assume that (α, α) ∈
15While we only employ penalties/negative transfers in proving all the positive results, Claims 5-7 below

work regardless of whether the direct mechanism employs positive or negative transfers.
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S∞(M, α) and (β, β) ∈ S∞(M, β).16 Our argument is decomposed into the following three

claims.

The first claim states how we proceed with the first round of elimination of messages

under the hypothesis.

Claim 5 At state β, message α is strictly dominated by message β for agent 2; moreover,

at state α, message β is strictly dominated by message α for agent 1.

Proof. Let p̃a, p̃b, p̃c, and p̃d be the probabilities assigned over the four alternatives induced

by h(β, α). First, we show that u1(h(α, α), α) > u1(h(β, α), α), which is equivalent to,

2 > 2p̃a −
1

2
p̃c +

1

2
p̃d + τ1 (β, α) . (25)

Suppose not. Then, (β, α) becomes another rationalizable message profile at state α because

(α, α) is a rationalizable message profile. It follows that h(β, α) = (a, 0, 0) by the hypothesis

of implementation. Thus, we have u2(h(β, β), α) > u2(h(β, α), α). This implies that (β, β)

is also a rationalizable message profile at state α, and h(β, β) = (a, 0, 0). However, since

(β, β) ∈ S∞(M, β), we also have from the hypothesis of implementation that h(β, β) =

(b, 0, 0) and hence a contradiction. Thus, (25) holds.

Next, we show that at state β, it is a best response for agent 1 to report α given that

agent 2 reports α. Suppose not. Then, we have u1(h(α, α), β) < u1(h(β, α), β), which is

equivalent to,

3p̃a +
1

2
p̃c −

1

2
p̃d + τ1 (β, α) > 3. (26)

Summing up (25) and (26), we have

p̃a + p̃c − p̃d > 1.

This implies that p̃a + p̃c > 1, which is impossible.

Thus, at state β, it is a best response for agent 1 to report α given that agent 2 reports

α. Then, it follows that at state β, message α is strictly dominated by message β for agent

2. Otherwise, every message is rationalizable; and in particular (α, α) ∈ S∞(M, β) and

h(α, α) = (b, 0, 0) 6= (a, 0, 0). A similar argument proves the second part of the claim.

16Recall that S∞(M, α) 6= ∅. If (α, β) ∈ S∞(M, α), then, h(α, β) = (a, 0, 0) by the hypothesis of

implementation. Hence, at state α, given that agent 1 reports α, it is a best response for agent 2 to report

α. It follows that (α, α) ∈ S∞(M, α). Suppose that (β, α) ∈ S∞(M, α). Then, at state α, given that agent

2 reports α, it is also a best response for agent 1 to report α. It also follows that (α, α) ∈ S∞(M, α).

30



The next claim states that agent 1 is the only whistle-blower when (β, β) is reported

at state α, and agent 2 is the only whistle-blower when (α, α) is misreported at state β;

moreover, the common test allocation is h(α, β).

Claim 6 h(α, β) ∈ L1(f(β), β) ∩ SU1(f(β), α) and h(α, β) ∈ L2(f(α), α) ∩ SU2(f(α), β).

Proof. By Claim 5, α is the unique rationalizable message for agent 1 at state α. Hence,

we have that at state α, agent 1 strictly prefers h(α, β) to h (β, β)(= f (β)). Moreover,

since (α, α) ∈ S∞(M, α), it follows that agent 2 weakly prefers h (α, α)(= f (α)) to h(α, β).

Similarly, at state β, agent 2 strictly prefers h(α, β) to h (α, α) and agent 1 weakly prefers

h (β, β) to h(α, β). Hence, we establish the claim.

Claim 7 There are no direct mechanisms that implement f in rationalizable strategies.

Proof. Suppose that we can achieve rationalizable implementation in a direct mechanism.

Then, we have an allocation h(α, β) specified in Claim 6. Let pa, pb, pc, and pd be the

probabilities assigned over the four alternatives induced by h(α, β). By Claim 6, for agent

1, we obtain the following inequalities:

h(α, β) ∈ L1(f(β), β)⇔ 3pa + 1
2
pc − 1

2
pd + τ1 (α, β) ≤ 0;

h(α, β) ∈ SU1(f(β), α)⇔ 2pa − 1
2
pc + 1

2
pd + τ1 (α, β) > 0.

Hence, we have pc − pd < −pa ≤ 0.

For agent 2, we have the following inequalities:

h(α, β) ∈ L2(f(α), α)⇔ 3pb − 1
2
pc + 1

2
pd + τ2 (α, β) ≤ 0;

h(α, β) ∈ SU2(f(α), β)⇔ 2pb + 1
2
pc − 1

2
pd + τ2 (α, β) > 0.

Hence, we have pc − pd > pb ≥ 0. Therefore, we obtain both pc < pd and pc > pd and have

reached a contradiction.
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