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Lumpy Investment, Lumpy Inventories
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Abstract

The link between the physical micro environment (frictions and heterogeneity) and
the macroeconomic dynamics of general equilibrium macro models is influenced by the
details of how exactly general equilibrium closes such a model. We make this general
observation concrete in the context of the recent literature on how nonconvex capital
adjustment costs influence aggregate investment dynamics. Specifically, we introduce
inventories into a two-sector lumpy investment model. We find that with inventories
nonconvex capital adjustment costs dampen and propagate the reaction of investment
to shocks, and more so than without inventories: the initial response of fixed capital
investment to productivity shocks is 46% higher with frictionless adjustment than in our
preferred calibrated capital adjustment frictions model, once inventories are introduced,
but only 26% higher without inventories. The reason for this result is that with two
means of transferring consumption into the future, fixed capital and inventories, the
tight link between aggregate saving and fixed capital investment is broken.
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1 Introduction

Researchers have now explored an ever more detailed and complex set of microeconomic
frictions and heterogeneities in macroeconomic models. It has thus become an important
question for macroeconomists, who on the one hand strive to build well-microfounded models,
but are also, on the other hand, concerned about tractability and complexity of their models,
how microeconomic frictions and heterogeneity affect macroeconomic dynamics. Caplin and
Spulber (1987) present a striking example where any degree of nominal price stickiness at the
micro level is consistent with the same aggregate outcome, money neutrality. In such a case,
macroeconomic researchers arguably need not bother with the details of the microfoundation.

Conceptually, typical macroeconomic general equilibrium models can be split into a de-
cision theoretic part where economic agents make often complex and dynamic decisions,
which are, potentially, subject to a host of microeconomic frictions, e.g., physical adjust-
ment frictions, informational frictions, etc. The second part of these models then consists of
a formulation of aggregate resource and consistency constraints that will lead to the coor-
dination of the individual decisions through prices (e.g., in Walrasian models) or aggregate
quantities (e.g., in Non-Walrasian models, like search-and-matching models).

In this paper we argue that the answer to the question of how the microfoundations of
decisions affect macroeconomic outcomes may depend on modeling choices in the second
part, i.e., the details of how exactly general equilibrium closes a given physical environment,
a perhaps obvious, but nevertheless underappreciated point. In other words, we will show –
in a concrete, realistic and quantitative example – that there can be a cross effect between the
general equilibrium part of a macroeconomic model and the mapping from microfoundations
of decisions to macroeconomic outcomes.

Our example can simultaneously claim both realism with respect to a large body of
microevidence (e.g., Doms and Dunne (1998) and Cooper and Haltiwanger (2006)) and also a
certain notoriety in the literature: the debate about the aggregate effects of nonconvex capital
adjustment costs. In a seminal paper, Caballero and Engel (1999) argue that nonconvex
capital adjustment costs not only are powerful smoothers of aggregate investment, but also
help explain certain nonlinearities in aggregate investment fluctuations. These results were
produced in a macroeconomic model with essentially no general equilibrium elements, i.e.,
in a model with only a decision theoretic part that was aggregated by simple summation. In
a series of papers, Thomas (2002), Khan and Thomas (2003) and Khan and Thomas (2008)
argue, however, that once a general equilibrium part is added to the physical environment in
Caballero and Engel (1999) not only do aggregate nonlinearities vanish, but also nonconvex
capital adjustment costs have essentially no ability to smooth aggregate investment dynamics
over and above what is done by general equilibrium price movements. Models with nonconvex
capital adjustment costs thus deliver lumpy investment patterns at the micro level, but
feature business cycle statistics that are very close to standard RBC models, once real wages
and real interest rates adjust to clear markets.1

1Miao and Wang (2014a) provide an exact characterization of an economy with nonconvex fixed capital
adjustment costs – namely, constant returns to scale production technology, nonconvex adjustment costs are
proportional to the level of existing capital of a production unit, and shocks are small – where the aggre-
gate dynamics are exactly identical to the same economy without nonconvex fixed capital adjustment costs.
Conditional on the mentioned assumptions, this result is rather general and does not depend, for instance,
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This perhaps somewhat striking irrelevance result in our view is best and most intu-
itively understood from the first-order conditions of the representative household, which are
the same in a frictionless and a lumpy investment model, where the adjustment friction is
on the firm side. With a representative household, the intratemporal and intertemporal
first-order conditions govern the optimal paths of consumption and labor supply, which in
turn govern the optimal paths of output/income and saving in the short run. Thus, the
households in a lumpy investment model would like to follow the same consumption path as
in the frictionless model. The question is, whether they are able to do so when adjusting
the capital stock is costly. The answer turns out to be yes, as long as the economy can sub-
stitute between the extensive and intensive margins of investment (see Gourio and Kashyap
(2007) and, ultimately, Caplin and Spulber (1987) for this insight).2 To be concrete, after
a positive aggregate productivity shock, the economy uses investment to increase consump-
tion in the future. In a frictionless model this is entirely done through the intensive margin
of investment: every firm invests a little more. With nonconvex capital adjustment costs
this is no longer optimal, instead a few firms invest a lot. The desired amount of delayed
consumption is concentrated into a few firms which really need to invest, and the same ag-
gregate saving/investment path as in a frictionless model results. This intuition rests on the
assumption that the economy provides only one means of transferring consumption into the
future, fixed capital. This is the familiar dual role of fixed capital in standard models: factor
of production on the one hand and the only means of saving on the other, which in turn
implies the familiar equality between saving and (fixed capital) investment. For the economy
as a whole, investment and consumption dynamics are thus tightly linked. However, it is
important to realize that this is only one particular way of introducing general equilibrium
in a lumpy investment physical environment. There are others conceivable, and in reality
an economy may delay consumption through multiple channels. We show that once we in-
troduce multiple channels of investment and thus break the tight link between aggregate
consumption and aggregate fixed capital investment, nonconvex adjustment costs and their
magnitude matter much more for fixed capital investment dynamics. As has been mentioned
above, this paper is about a cross-derivative from how the aggregate resource constraint is
formulated to the ability of nonconvex adjustment costs to impact aggregate dynamics.

on the distribution of fixed capital adjustment costs or the presence/absence of persistent idiosyncratic pro-
ductivity shocks. On the other hand, Miao and Wang (2014b) show that nonconvex fixed capital adjustment
costs in the presence of sufficiently large shocks, such as changes to corporate tax rates, do matter for the
aggregate effects of such tax policies. In the more numerically focused literature, to which this paper belongs,
a similar back-and-forth has been happening: Veracierto (2002) provides for kinked, but convex adjustment
cost functions an approximate neutrality result similar to the Khan and Thomas series of papers. House
(2014) argues that, as depreciation rates get small and capital goods are long-lived, nonconvex fixed capital
adjustment costs become irrelevant for aggregate dynamics. On the other side of the debate are Gourio and
Kashyap (2007) and Bachmann et al. (2013), who argue that these irrelevance results are a matter of degree,
specific to the calibration strategy used, and inconsistent with some nonlinear aspects of the time series of the
aggregate investment rate in the U.S. Recently, Cooper and Willis (2012) and Winberry (2016) have argued
that the Khan and Thomas irrelevance results are inconsistent with real interest rate dynamics, and, once
interest rate dynamics are modeled more realistically, the behavior of models with nonconvex fixed capital
adjustment costs is much closer to the earlier results in, for instance, Caballero and Engel (1999). While
different in the modelling strategy these papers reach conclusions similar to ours as far as the aggregate
non-neutrality of nonconvex fixed capital adjustment frictions is concerned.

2We present a similar result in Section 5 in a robustness check to our baseline calibration.
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The key intuition for this result is the substitution between different investment channels.
Viewed from a social planners’ perspective,3 introducing more investment channels offers
more margins to smooth households’ consumption, in addition to the extensive/intensive
margin choice in fixed capital investment: if adjusting fixed capital is costly, the social
planner can use other investment channels to optimally spread consumption over time. As
a result, investment in fixed capital will be more sensitive to the level of frictions in capital
adjustment.

To be concrete: we investigate the implications of multiple investment vehicles for the
“neutrality question” in a quantitative DSGE model. Building on Khan and Thomas (2007),
we study a two-sector setting with an intermediate goods sector and a final goods sector.
The final goods sector has the opportunity to store, at a cost, the output from the inter-
mediate goods sector as inventories. The incentive to hold inventories is generated by fixed
ordering costs for shipments from the intermediate goods to the final goods sector. The
intermediate goods sector uses fixed capital as a production factor, whose adjustment, and
this is where we deviate from Khan and Thomas (2007), is subject to nonconvex costs. We
choose inventories as the second capital type because, 1) it is a highly cyclical component in
the national accounts and, 2) it is a natural means to buffer consumption against temporary
shocks. Methodologically, our paper provides the first quantitative analysis of how noncon-
vex capital adjustment frictions impact aggregate dynamics in the presence of capital good
heterogeneity.4

Figure 1 summarizes the point of the paper in a nutshell. It shows the impulse response
functions of fixed capital investment to a one standard deviation productivity shock. The
nonconvex fixed capital adjustment costs dampen the initial response of fixed capital in-
vestment to a productivity shock by 3.12 percentage points in the presence of inventories
(‘Model I1’ versus ‘Model I2’). That is, the ‘no capital adjustment costs’-impact response is
approximately 46% higher than the one with capital adjustment costs. In contrast, without
inventories nonconvex fixed capital adjustment costs dampen the initial response of fixed
capital investment to a productivity shock by only 2.39 percentage points (‘Model NI1’ ver-
sus ‘Model NI2’). That is, the ‘no capital adjustment costs’-impact response is only 26%
higher than the one with capital adjustment costs. This highlights the aforementioned in-
teraction effect or cross-derivative, namely, that the presence of inventories, a second capital
good, will quantitatively affect the difference between a frictionless and a frictional model for
fixed capital. In addition, with inventories the response of investment in the model with the
baseline level of nonconvex fixed capital adjustment costs is flatter than that in the model
without these capital adjustment frictions. This means that with inventories nonconvex cap-
ital adjustment costs stretch the propagation of the productivity shock by more than what
capital adjustment frictions can do without inventories. We will cast this argument in more
quantitative terms below, when we compare autocorrelation coefficients of aggregate fixed
capital investment across these various models.

3We use in this paper a decentralized equilibrium model, where prices guarantee the social planners’
optimal allocations, but for the intuition a social planners’ perspective is useful.

4A paper related to ours is Fiori (2012), which also features lumpy capital adjustment in a two-sector
model, though without inventories, so the focus there is on movements of the relative price of investment,
which in our set up is constant by assumption. Another related paper is Berger and Vavra (2015) which
features lumpy adjustment in durable goods in the presence of fixed capital.
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Figure 1: Impulse Response Function of Fixed Investment
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Notes: This figure shows the impulse response functions of fixed capital investment to a one standard deviation aggregate
productivity shock in the intermediate goods sector. ‘Model I1’ has the baseline calibrated nonconvex fixed capital adjustment
cost parameter and the baseline calibrated inventory order cost parameter. ‘Model I2’ has zero nonconvex fixed capital adjust-
ment cost and the baseline inventory order cost parameter. ‘Model NI1’ has the baseline calibrated nonconvex fixed capital
adjustment cost parameter and zero inventories. ‘Model NI2’ has zero nonconvex fixed capital adjustment cost and zero inven-
tories. The difference between the IRFs of ‘Model I2’ and ‘Model I1’ is the effect of nonconvex fixed capital adjustment costs
in the presence inventories. The difference between the IRFs of ‘Model NI2’ and ‘Model NI1’ is the effect of nonconvex fixed
capital adjustment costs without inventories. There is no need to recalibrate the fixed capital adjustment cost parameter or the
inventory order cost parameter, as our calibration targets, being long-run targets, are not sensitive across model specifications
(see Table 2 below).
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Figure 1 also shows that inventories dampen the impact response of fixed capital in-
vestment. With a positive productivity shock the higher demand for consumption transfer
into the future can be partially satisfied by inventories, which are now relatively cheap to
produce. And this is done the more so, the higher the nonconvex fixed capital adjustment is,
i.e., the more costly the usage of fixed capital is: 11.68% impact response versus 9.95% im-
pact response, a 1.7 percentage points difference, in the frictionless fixed capital adjustment
model, yet 9.29% impact response versus 6.83% impact response, a 2.5 percentage points
difference, in the model with the baseline calibrated nonconvex fixed capital adjustment cost
parameter.

Another direct implication of our mechanism is, as we will show, that the households’
ability to smooth consumption is enhanced when there are both inventories and fixed cap-
ital. In the end, inventories partially offset the hindering effect on consumption smoothing
introduced by fixed capital adjustment frictions. As we will show, the impulse response func-
tions of consumption to an aggregate productivity shock from the lumpy investment model
and the frictionless adjustment model are very similar when inventories exist. Similarly, the
volatility and persistence of aggregate consumption are much less sensitive to fixed capital
adjustment frictions in models with inventories.

It is important to reiterate that the particular physical environment we chose – nonconvex
capital adjustment costs as the friction and inventories as a way to modify the aggregate
resource constraint – are not as important as the general insight here: when aggregate
resource constraints and general equilibrium effects are important for aggregate dynamics,
the precise details of how these general equilibrium effects are introduced into the physical
environment, the precise details of how the model is closed matter. In the words of Caballero
(2010): “But instead, the current core approach of macroeconomics preserves many of the
original convenience-assumptions from the research on the periphery5 and then obsesses with
closing the model by adding artificial factor supply constraints (note that the emphasis is
on the word artificial, not on the word constraints).” This paper provides a quantitative
analysis of the effects of closing the model in different ways for a specific, but prominent
example. Put differently, unlike Khan and Thomas (2008) and Bachmann et al. (2013), who
use the standard formulation for the aggregate resource constraint, this is not mainly a paper
about the link between microfrictions and aggregate dynamics per se, but rather a paper
about how this link is influenced by the formulation of the general equilibrium part of the
model, i.e., a cross effect.

The rest of the paper proceeds as follows. Section 2 outlines the model. Section 3
discusses the calibration and model solution. Section 4 presents the results and is followed
by a battery of robustness checks (Section 5). Section 6 concludes.

2 The Model

2.1 The Environment

There are three types of agents in the economy: final goods producers, intermediate goods
producers and households. The final goods producers use the intermediate goods, of which

5Caballero’s terminology for the first, decision theoretic part of macro models.
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they hold inventories in equilibrium, and labor to produce the final goods.6 Final output
can be either consumed or invested as fixed capital. The intermediate goods producers
combine fixed capital and labor to produce the intermediate goods. Households consume
final goods and provide homogeneous labor to both types of producers. They own all the
firms. They receive wage and dividend payments from both types of firms and purchase
their consumption goods from the final goods producers. All markets are competitive. This
environment is identical to the one in Khan and Thomas (2007), arguably the state-of-
the-art model in the general equilibrium inventory literature, with the exceptions that the
adjustment of fixed capital in the intermediate goods sector is subject to nonconvex costs
and the production function in the intermediate goods sector has decreasing returns to scale.

2.1.1 The Final Goods Producers

There is a continuum of final goods producers. They use intermediate goods, m, and labor, n,
to produce the final output through a production functionG(m,n).7 The production function
is strictly concave and has decreasing returns to scale. Whenever the final goods producers
purchase intermediate goods, they face a fixed cost of ordering and delivery, denoted in units
of labor, ε. To avoid incurring the fixed cost frequently, the final good producers optimally
hold a stock of inventories of the intermediate goods. Denote the inventory level for an
individual producer as s ∈ R+.

The final goods producers differ in their fixed cost parameter for ordering, ε ∈ [0, ε].
In each period, this parameter is drawn independently for every firm from a time-invariant
distribution H(ε). At the beginning of the period, a typical final goods firm starts with
its stock of inventories, s, inherited from the previous period. It also learns its fixed cost
parameter, ε. The firm decides whether to order intermediate goods. If the firm does so,
it pays the fixed cost and chooses a new inventory level. Otherwise, the firm enters the
production phase with the inherited intermediate goods inventory level s. We denote the
quantity of adjustment by xm. The inventory stock ready for production is s1 = s + xm,
with xm = 0 if the firm does not adjust.

After the inventory decision the firm determines its labor input, n, and the intermediate

6To be clear on terminology: inventories in this model are not a capital good in the sense that they enter
directly a production function, as in some modeling approaches in the literature. Thus, in our model, they
lack the dual role of fixed capital. But they are a capital good in the sense that they represent a means of
transferring consumption into the future, just like fixed capital. In this sense, we follow the NIPA terminology
and denote net inventory changes as investment and the corresponding stock variables as capital.

7Following Khan and Thomas (2007) we abstract from fixed capital in the final goods sector, which would
complicate the model and its computation considerably. In addition, the BEA Fixed Assets Accounts by
Industry tables (Table 3.1E and Table 3.1F) and the BEA Value Added by Industry table reveals that from
1997 to 2006 in the manufacturing sector, the sector arguably closest to the intermediate goods sector in
the model, capital intensity was 1.13 versus 0.77 in the trade sector, the sector arguably closest to the final
goods sector in the model. So, the importance of fixed capital is presumably lower in the trade than in the
manufacturing sector. Moreover, two thirds of total capital in the trade sector is structures, whereas only
43% of total capital is structures in the manufacturing sector. While we do not take an explicit stand, the
producers in our model economy are closer to individual establishments than firms. Our assumption of no
fixed capital in the final goods sector is then essentially an assumption on how fixed and slowly-depreciating
a production factor structures are at the business cycle frequency in the trade sector from the viewpoint of
an individual producer unit, which, we believe, is a sensible first pass.
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goods input, m ∈ [0, s1], for current production. Intermediate goods are used up in produc-
tion. The remaining stock of intermediate goods, s′ = s1 −m ≥ 0, is the starting stock of
inventories for the next period. Stored inventories incur a unit cost of σ, denoted in units
of final output. Inventory holding costs capture the idea that the storage technology that is
used to partially circumvent the costly shipping technology is not free. Inventories require
storage places, management and can lead to destruction of intermediate goods. The inven-
tory management of the final good firms balances the trade-offs between costly shipping and
costly storing optimally. In the end, the output of a typical final firm is y = G(m,n)− σs′.

2.1.2 Intermediate Goods Producers

There is a continuum of intermediate goods producers. They are subject to an aggregate
productivity shock, which, in the baseline model, is the sole source of aggregate uncertainty.8

Let z denote the aggregate productivity level. It follows a Markov chain, z ∈ {z1, · · · , zNz},
where P (z′ = zj|z = zi) = πij ≥ 0 and

∑Nz
j=1 πij = 1 for all i.

Each firm produces with fixed capital and labor. Whenever the firm decides to adjust its
capital stock, it has to pay a fixed cost, denoted in units of labor. In each period, the cost
of adjusting capital is drawn independently for every firm from a time-invariant distribution
I(ζ). A typical intermediate good producer is identified by its capital stock, k, and its cost
of adjusting capital, ζ ∈ [0, ζ].

At the beginning of each period, the firm learns aggregate productivity, z, and its id-
iosyncratic cost of adjusting capital, ζ. It starts with a fixed capital stock, k, inherited
from the previous period. First, it decides about the labor input, l. It combines l and k
according to a production function zF (k, l). The F (·) function is strictly concave and has
decreasing returns to scale.9 After production, the firm chooses whether to adjust its capital
stock. It can pay a fixed cost to adjust its capital stock by investing i. In this case, the new
capital stock for the next period in efficiency units is k′ = [(1 − δ)k + i]/γ, where δ is the
depreciation rate and γ is the steady state growth rate of the economy. Alternatively, the
firm can avoid the adjustment cost and start the next period with the depreciated capital
stock k′ = (1− δ)k/γ.

8As pointed out in Khan and Thomas (2007), placing aggregate productivity in the intermediate sector
is necessary in this physical environment to generate a countercyclical relative price of intermediate goods, a
feature found in the U.S. data. In one of the robustness checks in Section 5 we do, however, consider the case
where aggregate productivity shocks hit the final goods producers. We also abstract, in the baseline setting,
for reasons of computability, from the persistent idiosyncratic productivity shocks that the recent literature
(see Khan and Thomas (2008) and Bachmann et al. (2013)) has used to explain the observed micro-level
heterogeneity in the data. Given the two firm problems, the computational burden in our model is already
high. Nevertheless, we study in Section 5 the case with persistent idiosyncratic productivity shocks as a
robustness check.

9As Miao and Wang (2014a) shows, fixed adjustment costs cannot be expected to have a large impact with
a constant return to scale production technology. We follow the majority of the literature, e.g., Bachmann
et al. (2013), Bloom (2009), Khan and Thomas (2008), Gourio and Kashyap (2007) as well as Cooper and
Haltiwanger (2006), and use a decreasing returns to scale assumption.
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2.1.3 Households

We assume a continuum of identical households who value consumption and leisure. They
have access to a complete set of state-contingent claims. Households own all the firms. They
provide labor to the firms and receive wage and dividend payments.

The households have the following felicity function:

u(c, nh) = log c− Ahnh,

where nh is the total hours devoted to market work.

2.2 Competitive Equilibrium

2.2.1 Aggregate State Variables

In addition to z, the aggregate productivity level, two endogenously determined distributions
are aggregate state variables in this model: the distribution of the firm-specific inventory
stocks, µ(S), and the distribution of firm-specific fixed capital stocks, λ(K). Both S and K
are subsets of a Borel algebra over R+.

The aggregate state variables are summarized as (z, A), where A = (µ, λ). The distribu-
tion of µ evolves according to a law of motion µ′ = Γµ(z, A), and similarly, the distribution
of λ evolves according to λ′ = Γλ(z, A).

The final good is the numeraire. Workers are paid ω(z, A) per unit of labor input. The
intermediate goods are traded at q(z, A) per unit.

2.2.2 Problem of the Household

The households receive a total dividend payment D(z, A) and labor income nh(z, A)ω(z, A)
from the firms. In each period the households determine how much to work and how much to
consume. All we need from the household problem is an intertemporal and an intratemporal
first-order condition.

We can express the dynamic programming problems for both types of firms with the
marginal utility of consumption as the pricing kernel:

p(z, A) =
1

c(z, A)
.

Then every firm weighs its current profit by this pricing kernel and discounts its future
expected earnings by β. This changes the unit of the firm’s problems in both sectors to utils
but leaves the policy functions unchanged.

The first-order conditions also imply that the real wage is given by:

ω(z, A) =
Ah

p(z, A)
.
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2.2.3 Problem of Final Goods Producers

Let V0 be the value, in utils, of a final goods producer at the beginning of a period after the
inventory adjustment cost parameter is realized and before any inventory adjustment and
production decisions. Let V1 be the expected value function after the adjustment decision
but before the production decision. Given the aggregate laws of motion Γµ and Γλ, the
firm’s problem is characterized by the following three equations. For expositional ease, the
arguments for functions other than the value functions are omitted.

V0(s, ε; z, A) = pqs+ max

{
− pωε+ Va(z, A),−pqs+ V1(s; z, A)

}
, (1)

Va(z, A) = max
s1>0
{−pqs1 + V1(s1; z, A)}, (2)

and:

V1(s1; z, A) = max
n≥0,s1≥s′≥0

{
p[G(s1 − s′, n)− σs′ − ωn]

+ βEz

[∫ ε

0

V0(s′, ε; z′, A′)d(H(ε))

]}
.

(3)

The expectation is taken over z′, next period’s aggregate productivity.
Equation (1) describes the binary inventory adjustment decision of the firm. The firm

adjusts if the value of entering the production phase with the optimally adjusted inventory
level, described by Va(·) in equation (2), minus the cost of adjustment, exceeds the value of
directly entering the production phase with the inherited inventory level, V1(s; z, A).

The solution to equation (1) amounts to a cut-off rule in ε. The firm adjusts if:

−pωε+ Va(z, A) ≥ −pqs+ V1(s; z, A).

Therefore the cut-off value is:

ε̃(s; z, A) =
Va(z, A)− V1(s; z, A) + pqs

pω
.

Given the support of the adjustment cost distribution, this cut-off value is modified to:

ε∗ = max(0,min(ε, ε̃)).

The firm adjusts if its draw is smaller than or equal to ε∗(s; z, A).
Equation (2) describes the value of inventory adjustment. The solution to this equation

is the optimal target level of inventory, s∗1. Note that the optimization problem in equation
(2) does not depend on any firm-specific characteristics. Therefore in any period, all the
adjusting firms choose the same inventory target level, s∗1(z, A).

10



Equations (1) and (2) jointly determine the production-time inventory level, s1:

s1(s, ε; z, A) =

{
s∗1(z, A) if ε ≤ ε∗(s; z, A)

s if ε > ε∗(s; z, A)
.

Notice that from s1(s, ε; z, A) the quantity of intermediate goods ordered, the order flows, is
given by xm(s, ε; z, A) ≡ s1(s, ε; z, A)− s.

Equation (3) describes the production phase. The firm finds the optimal inventory level
for the next period and the optimal employment level for this period. The decision for next
period’s inventory level, s′, is equivalent to deciding about the amount of intermediate goods
to be used up in current production.

The solution for employment does not depend on the continuation value function. There-
fore, given s′, it is the analytical solution to:

∂G(s1 − s′, n∗)
∂n

= ω.

The optimal employment and inventory usage decision jointly imply the optimal output
level:

y∗(s1; z, A) = G(s1 − s′∗(s1; z, A), n∗(s1; z, A))− σs′∗(s1; z, A).

2.2.4 Problem of the Intermediate Goods Producers

Let W0 be the value, in utils, of the intermediate good producers prior to the realization of
the adjustment cost parameter ζ. Let W1 be the value function after the realization of ζ.
The intermediate good producer’s problem can be summarized by the following equation:

W1(k, ζ; z, A) = max
l

{
p · [q · zF (k, l)− lω]+

max {Wi(k; z, A),−pζω +Wa(k; z, A)}
}
,

(4)

where:

Wa(k; z, A) = max
k′
{−(γk′ − (1− δ)k)p+ βEz [W0((k′; z′, A′)]} , (5)

Wi(k; z, A) = βEz [W0((1− δ)k/γ; z′, A′)] , (6)

W0(k; z, A) =

∫ ζ

0

W1(k, ζ; z, A)d(I(ζ)). (7)

The expectation in equation (5) and (6) is taken over z′, next period’s aggregate productivity.
In equation (4), the firm first solves for the optimal employment, given the fixed capital

stock. The solution is:

∂qzF (k, l∗)

∂l
= ω.
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After the production decision, the firm solves the binary fixed capital adjustment decision.
The firm adjusts if the expected value from the optimally adjusted fixed capital stock, given
in equation (5), minus the cost of adjustment, exceeds the expected value from the unadjusted
fixed capital stock, given in equation (6).

The solution to the adjustment decision follows a cut-off rule for ζ. The firm adjusts if:

−pωζ +Wa(k; z, A) ≥ Wi(k; z, A).

Therefore the cut-off value for ζ is:

ζ̃(k; z, A) =
Wa(k; z, A)−Wi(k; z, A)

pω
.

The restriction from the support of the cost distribution applies, so that

ζ∗ = max(0,min(ζ, ζ̃)).

The firm adjusts to the target capital stock if its adjustment cost is smaller than or equal
to ζ∗(k; z, A).

The optimal adjustment target for fixed capital is given by the solution to equation (5).
Although the value function depends on the level of individual capital stocks, the resulting
policy function, k∗, does not. After the binary adjustment decision, the capital stock for the
next period is:

k′(k; z, A) =

{
k∗(z, A) if ζ ≤ ζ∗(k; z, A)

(1− δ)k/γ if ζ > ζ∗(k; z, A)
.

2.2.5 Recursive Equilibrium

A recursive competitive equilibrium for the economy defined by:{
u(c, nh), β, F (k, l), G(m,n), σ, δ, γ,H(ε), I(ζ), {πij}

}
,

is a set of functions:{
V0, V1,W0,W1, xm, n, s

′, k′, l, i, c, nh, p, q, ω,D,Γµ,Γλ
}
,

such that:

1. Given ω, q, p, Γµ and Γλ, V0 and V1 solve the final good firm’s problem with policy
functions xm, n, s

′.

2. Given ω, q, p, Γµ and Γλ, W0 and W1 solve the intermediate good firm’s problem with
policy functions k′, l, i.

3. Given ω, D and p, c satisfies the household’s first-order conditions.
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4. The final goods market clears:

c(z, A) =

∫
S

∫ ε

0

y(s, ε; z, A)d(H(ε))d(µ(s))

−
∫
K

∫ ζ

0

i(k, ζ; z, A)d(I(ζ))d(λ(k)).

5. The intermediate goods market clears:∫
S

∫ ε

0

xm(s, ε; z, A)d(H(ε))d(µ(s)) =∫
K

∫ ζ

0

zF (k, n(k, ζ; z, A))d(I(ζ))d(λ(k)).

6. The labor market clears:

nh(z, A) =

∫
S

∫ ε

0

(n(s; z, A) + ε · 1(xm(s, ε; z, A) 6= 0)) d(H(ε))d(µ(s))

+

∫
K

∫ ζ

0

(l(k, n(k; z, A)) + ζ · 1(i(k, ζ; z, A) 6= 0))d(I(ζ))d(λ(k)).

7. The laws of motion for aggregate state variables are consistent with individual decisions
and the stochastic processes governing z:

(a) Γµ(z, A) defined by s′(s, ε; z, A) and H(ε);

(b) Γλ(z, A) defined by k′(k, ζ; z, A) and I(ζ).

2.2.6 Some Terminology

Final Sales (FS), is defined as the total output of the final goods sector. Intermediate
goods demand, X, is the total amount of intermediate goods purchased by the final goods
sector. Intermediate goods usage, M, is the total amount of intermediate goods used up
in production by the final goods sector. The difference between the two evaluated at the
relative price of intermediate goods is Net Inventory Investment (NII):

NII = q × (X−M).

Finally, Gross Domestic Product (GDP) in this environment is defined as the sum of final
sales and net inventory investment:

GDP = FS + NII.
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3 Calibration and Computation

3.1 Baseline Parameters

The model period is a quarter. We choose the following functional forms for the production
functions:

F (k, l) = kθk lθl ,

G(m,n) = mθmnθn .

We discretize the productivity process z into Nz = 11 points following Tauchen (1986). The
underlying continuous productivity process follows an AR(1) in natural logarithms. We do
not take a strong stance on the persistence of the auto-correlation parameter of this process,
but instead choose two values, ρz = 0.95 as a lower bound and baseline case, and ρz = 0.98
as an upper bound in the robustness checks in Section 5.10 We then calibrate σz so as to
make the model match the volatility of U.S. GDP, 1.66%.

We set the subjective discount factor, β = 0.984, the depreciation rate δ = 0.017, and
the steady state growth factor γ = 1.004. Ah is calibrated so that the aggregate labor
input equals 0.33. θm = 0.5245 is calibrated so as to make the model match the share of
intermediate inputs in final output, 0.499, as reported by Khan and Thomas (2007). In the
baseline case, we set θk = 0.25 and θl = 0.5, the values used in Bloom (2009), which amounts
to a capital elasticity of the firms’ revenue function, θk

1−θl
, of 0.5.11 We finally calibrate θn to

match an aggregate labor share of 0.64. All these parameters are summarized in Table 1:

Table 1: Baseline Parameters

β Ah θm θn θk θl ρz σz δ γ
0.9840 2.0720 0.5245 0.3530 0.2500 0.5000 0.9500 0.0167 0.0170 1.0040

Notes: β is the subjective discount factor of the households; Ah is the preference parameter for leisure; θm is the elasticity of materials in the
final goods production function; θn is the elasticity of labor in the final goods production function; θk is the capital elasticity in the intermediate
goods production function; θl is the labor elasticity in the intermediate goods production function; ρz is the auto-correlation for the aggregate
productivity process; σz is the standard deviation for aggregate productivity innovations; δ is the depreciation rate; γ is the steady state growth
rate.

3.2 Inventory and Adjustment Cost Parameters

We assume that the inventory adjustment costs, ε, are uniformly distributed, H(ε), on [0, ε].
ε is set so that the average inventory-to-sales ratio in the model equals 0.8185, the average
of the real private non-farm inventory-to-sales ratio in the United States between 1960:1 and

10We thus bracket not only the value used by Khan and Thomas (2007), ρz = 0.956, but also the canonical
values used in business cycle research and published in seminal handbook articles, albeit in one-sector models;
see Cooley and Prescott (1995), ρz = 0.95, and King and Rebelo (1999), ρz = 0.979.

11Cooper and Haltiwanger (2006), using LRD manufacturing data, estimate this parameter to be 0.592;
Hennessy and Whited (2005), using Compustat data, find 0.551. Gourio and Kashyap (2007) use a much
lower capital elasticity, while Bachmann et al. (2013) calibrate also to 0.5, but use a different distribution
onto θk and θl (in their inventory-focused paper Khan and Thomas (2007) assume constant returns to scale
in the intermediate goods sector). We conduct a robustness check with respect to the calibration of θk and
θl in Section 5 allowing for a production function that is closer to the linear case.
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2006:4. The unit cost of holding inventories, σ, is chosen so that the annual storage cost for
all inventories is 12% of aggregate final output in value (see Richardson (1995) for details).
These two targets jointly determine ε = 0.4580 and σ = 0.0128.

We assume that I(ζ), the distribution of fixed capital adjustment costs, is uniform be-
tween [0, ζ]. The upper bound of the distribution is chosen so that the fraction of investors
with lumpy fixed capital adjustments, defined as a gross investment rate larger than 20% in
a given year, is 18%. This calibration target is taken from Cooper and Haltiwanger (2006)’s
analysis of manufacturing firms in the Longitudinal Research Database (LRD). This yields
ζ = 0.1950.12

3.3 Numerical Solution

The inherent nonlinearity of the model suggests global numerical solution methods. We
use value function iterations from equation (1) to equation (3) to solve the problem of the
final good producers. We use value function iterations from equation (4) to equation (7) to
solve the intermediate good firm’s problem. Howard policy function accelerations are used
to speed up convergence (see Appendix A.1 for the details of the numerical implementation).

Our model gives rise to two endogenous distributions as state variables. We adopt the
methods in Krusell and Smith (1997), Krusell and Smith (1998), Khan and Thomas (2003)
as well as Khan and Thomas (2008) to compute the equilibrium. Denote the Ith moment
of distribution µ(S) and λ(K) as µI(S) and λI(K) respectively. We approximate each
distribution function with its first moment. We find that a log-linear form for the Γ(·)
functions approximates the law of motion rather well in terms of forecasting accuracy:

log µ′1 = αµ + γµ log(µ1) + ψµ log(z), (8)

log λ′1 = αλ + βλ log(λ1) + ψλ log(z). (9)

We adopt similar rules for the pricing kernel and the relative price of intermediate goods:13

log p = αp + βp log(λ1) + ψp log(z), (10)

log q = αq + βq log(λ1) + ψq log(z), (11)

12It should be clear that the exact numbers for ε and ζ have little direct economic meaning and cannot be
compared to other calibrations for these parameters in the literature. They are essentially free parameters
to hit observable calibration targets (which are what is common across papers), such as the inventory-
to-sales ratio and the fraction of firms that have lumpy fixed capital investments. They will also lead to
additional interpretable economic statistics like the average adjustment cost paid conditional on adjustment
that we display below in Table 2. The precise values of these parameters are dependent on the entire model
environment and its calibration.

13Since the cross-sectional averages of the capital stock and the inventory holdings distributions turn
out to be highly correlated in the model’s equilibrium, and thus including them both would lead to a
multicollinearity problem, we use the average capital holdings in its own forecast equation and the two
pricing equations, and the average inventory holdings only in its own forecast equation. We have also
experimented with other functional forms for the forecasting rules such as adding interaction terms between
aggregate productivity and the capital and inventory moments. This did not lead to significant improvements
in goodness-of-fit and often jeopardized numerical stability. Our specifications perform very well as measured
by the R2 of the equilibrium OLS regressions, which exceeds 0.998 in all specifications.
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where λ1 is the first moment of the capital stock distribution, and µ1 is the first moment of
the inventory stock distribution.

Given an initial guess for {α{·}, β{·}, γ{·}, ψ{·}}, we solve the value functions as described
above. Then we simulate the model without imposing the pricing rules in equations (10) and
(11). In each model simulation period we search for a pair of prices, (p, q) such that all the
firms optimize and all the markets clear under the forecasting rules in equation (8) and (9).
To guarantee numerical accuracy, we use the value functions to re-solve all the optimization
problems period by period and for every guess of (p, q). Given the market clearing prices,
we update the capital and inventory stock distributions and proceed into the next period.

At the end of the simulation, we update the parameters {α{·}, β{·}, γ{·}, ψ{·}} using the
simulated time series for the approximating moments and the market clearing prices. Then
we repeat the algorithm with the updated parameters. Upon convergence of the param-
eters, we check the accuracy of the Γ(·) functions by the R2 in the regression stage (see
Appendix A.2 for additional accuracy checks on the numerical solution).

4 Results

We study the influence of nonconvex fixed capital adjustment costs on aggregate dynamics
in our model by numerical simulation. The model with the calibration above is denoted
by ‘Model I1’. In addition, we analyze three models that share all parameters with ‘Model
I1’ and each other, except for ε and ζ. ‘Model I2’ has the calibrated baseline equilibrium
inventory holdings with ε = 0.4580, but features a frictionless technology for adjusting the
fixed capital stock, ζ = 0. We also simulate two models without inventories, ‘Model NI1’ and
‘Model NI2’. In these models, we set ε = 0 to eliminate equilibrium inventory holdings.14

‘Model NI1’ has the same level of ζ as ‘Model I1’, while ‘Model NI2’ does not feature frictions
in adjusting the fixed capital stock. The parameter specifications for the four models are
summarized in Table 2. We do not recalibrate ζ in ‘Model NI1’ as the calibration targets
are largely insensitive to the changes in equilibrium inventory levels. To understand how
the presence of inventories interacts with the effects of nonconvex fixed adjustment costs,
we study the cross differences. That is, we contrast the differences between ‘Model I1’ and
‘Model I2’ with the differences between ‘Model NI1’ and ‘Model NI2’.

Table 2: Model Specifications

Model
Name

ζ ε
Average
Adjustment
Cost

Fraction of Investors
with Lumpy
Adjustments

Note

I1 0.1950 0.4580 0.9100% 18.00% Baseline fixed capital adjustment cost with inventory
I2 0.0000 0.4580 0.0000% 0.000% Frictionless fixed capital adjustment with inventory
NI1 0.1950 0.0000 0.8700% 18.18% Baseline fixed capital adjustment cost without inventory
NI2 0.0000 0.0000 0.0000% 0.000% Frictionless fixed capital adjustment without inventory

Notes: ‘Model I1’ has the baseline calibrated nonconvex fixed capital adjustment cost parameter and the baseline calibrated inventory order
cost parameter. ‘Model I2’ has zero nonconvex fixed capital adjustment cost and the baseline inventory order cost parameter. ‘Model NI1’ has
the baseline calibrated nonconvex fixed capital adjustment cost parameter and zero inventories. ‘Model NI2’ has zero nonconvex fixed capital
adjustment cost and zero inventories. “Average Adjustment Cost” is the average adjustment cost paid as a fraction of firms’ output, conditional
on adjustment. “Fraction of Investors with Lumpy Adjustments” is the share of firms that adjust more than 20% of their initial capital stocks in
a given year.

14In theory, zero ordering costs are not inconsistent with positive inventory holdings as the firms might
want to hedge against changes in the relative price of intermediate goods. However, in our simulations, given
the inventory holding costs, no firm holds a positive level of inventories when ε = 0.
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We present four sets of results on those four models. We first compare their unconditional
business cycle moments. Second, we study the impulse response functions for fixed capital
investment and consumption across the four models. Third, we plot the volatility and
persistence for consumption, fixed capital investment and, for the models with inventories,
net inventory investment for a wider range of ζ. And finally, we analyze the role of general
equilibrium price movements in bringing about these results.

4.1 Unconditional Business Cycle Analysis

After computing the equilibrium, we simulate the model for 1,000 periods, of which we
discard the first 100 to eliminate the influence of initial conditions. Except for net inventory
investment and fixed capital investment, all the simulated time series are transformed by
natural logarithms and then detrended by an HP filter with smoothing parameter 1600. We
detrend fixed capital investment with the HP filter directly and then divide the deviations
by the trend. We divide net inventory investment by GDP and then apply the HP filter to
this ratio.

Table 3: Business Cycle Statistics

(a) Standard Deviation

GDP Consumption Fixed Investment NII/GDP Inventory Level

Model I1 1.664 0.720 10.299 0.411 1.343
Model I2 1.742 0.713 12.469 0.338 1.232

Model NI1 1.645 0.844 12.521 - -
Model NI2 1.761 0.821 15.090 - -

Data 1.663 0.901 4.890 0.422 1.655

(b) First Order Auto-correlation

GDP Consumption Fixed Investment NII/GDP Inventory Level

Model I1 0.687 0.760 0.746 0.612 0.930
Model I2 0.665 0.794 0.608 0.681 0.943

Model NI1 0.688 0.727 0.676 - -
Model NI2 0.673 0.777 0.639 - -

Data 0.842 0.883 0.901 0.370 0.891

Notes: “NII” denotes net inventory investment. GDP, consumption, and inventory levels are logged and detrended with an HP filter with a penalty
parameter of 1600. We detrend fixed investment with the HP filter and then divide the deviations by the trend. We divide NII by GDP and then
detrend this ratio with the HP filter. All the standard deviations reported in Panel (a) are percentage points. Time period for the data moments:
1960:1 - 2006:4.

The business cycle statistics in Panel (a) and (b) of Table 3 show several effects of inven-
tories on aggregate dynamics.15 The first message is that nonconvex fixed capital adjustment
costs matter for aggregate dynamics. Business cycle dynamics differ significantly between

15Bachmann et al. (2013) is explicitly about how nonconvex fixed capital adjustment costs shape the
implied model investment dynamics in terms of higher than standard second moments. They argue that
aggregate investment data exhibits conditional heteroskedasticity and that micro nonconvexities are a nat-
ural mechanism to explain this. In contrast, this paper is about micro nonconvexities and their role in
shaping standard second moments and impulse response functions. Basically, this paper asks: is the fixed
capital adjustment technology that is consistent with the micro data able to do what stand-in adjustment
technologies do, namely, dampen and propagate aggregate investment.
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‘Model I1’ and ‘Model I2’. For example, the percentage standard deviation of fixed cap-
ital investment decreases from 12.47 in the frictionless ‘Model I2’ to 10.30 in the lumpy
investment ‘Model I1’. Persistence of fixed capital investment increases from 0.61 to 0.75.
In contrast, consumption volatility and persistence move in the opposite way as investment
volatility and persistence. Consumption is more volatile and less persistent with fixed cap-
ital adjustment costs, because the ability to use fixed capital as a means of consumption
smoothing is hampered.16

Regarding the cross differences, the effects of nonconvex fixed capital adjustment costs
change significantly in models where inventories are absent. Most notably, the persistence
of fixed investment only increases by 0.04 between ‘Model NI2’ and ‘Model NI1’, while it
increases by 0.14 between ‘Model I2’ and ‘Model I1’, bringing the model halfway, from 0.61
to 0.75, to the persistence of investment in the data, 0.90.

The unconditional volatility of consumption increases by 0.023 percentage points between
‘Model NI2’ and ‘Model NI1’, while it only increases by 0.007 percentage points between
‘Model I2’ and ‘Model I1’.17 The persistence of consumption decreases by 0.050 between
‘Model NI2’ and ‘Model NI1’, while it only decreases by 0.034 between ‘Model I2’ and ‘Model
I1’. Thus, consumption dynamics are more insulated from variations in capital adjustment
frictions in the presence of inventories.

These results suggest that inventories strengthen the propagation effect of fixed ad-
justment costs on fixed capital investments.18 At the same time, inventories enhance the
households’ ability to smooth consumption, making fixed capital adjustment costs much less
effective in affecting consumption volatility and persistence.

As for net inventory investment and the level of inventories, we see that they behave
exactly the opposite way from fixed capital investment, when the latter is subject to ad-
justment frictions. Their volatility rises and their persistence falls, when capital adjustment
frictions are introduced. This is due to the substitution towards inventories as a means of
consumption smoothing, as fixed capital becomes more costly to use.

16The excessively high fixed investment volatility, as shown in the third column of Panel (a), is a common
property of two-sector models where fixed capital is only used in intermediate goods production. Khan
and Thomas (2007) find similar results. As fixed adjustment cost works to dampen investment volatility,
this might point to our calibration of ζ being conservative, especially in light of the insights of Bachmann
et al. (2013), who argue that focusing only on the fraction of lumpy investment episodes when calibrating
nonconvex adjustment costs might lead to a downward biased estimate.

17Looking at unconditional volatility is not ideal, however. The unconditional volatility numbers are a
combination of changes in persistence and changes in conditional volatility, which is why we focus on the
latter two in what follows.

18Note that already without inventories we have that nonconvex fixed capital adjustment costs matter
somewhat for aggregate dynamics as, in line with the recent evidence in Bloom (2009) and Cooper and
Haltiwanger (2006), our implied revenue elasticity of capital is closer to the calibration in Gourio and Kashyap
(2007), where the substitution between the extensive and intensive margin of fixed capital investment is more
difficult.
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4.2 Conditional Business Cycle Analysis - Impulse Response Func-
tions

The first two panels of Figure 2 show the impulse response functions of aggregate fixed capital
investment and consumption to a positive, one standard deviation productivity shock in the
intermediate goods sector (see Appendix A.3 for the details of how these impulse response
functions are computed).

Figure 2: Impulse Response Functions
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(b) Consumption
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(c) Net Inventory Investment/GDP
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(d) Relative Price

Notes: This figure shows the impulse response functions of fixed capital investment, consumption, net inventory investment(NII)
over GDP and the relative price to a one standard deviation aggregate productivity shock in the intermediate goods sector.
‘Model I1’ has the baseline calibrated nonconvex fixed capital adjustment cost parameter and the baseline calibrated inventory
level. ‘Model I2’ has zero nonconvex fixed capital adjustment cost and the baseline calibrated inventory level. ‘Model NI1’ has
the baseline calibrated nonconvex fixed capital adjustment cost parameter and zero inventories. ‘Model NI2’ has zero nonconvex
fixed capital adjustment cost and zero inventories. The impulse response of net inventory investment over GDP is reported in
absolute values, instead of percentage points, as the steady state value of net inventory investment is zero.

Fixed Capital Investment Panel(a) of Figure 2 presents the four impulse response func-
tions for fixed capital investment. Comparing the models with ζ = 0.1950 against the models
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with ζ = 0 at the same level of inventories, we can see that nonconvex fixed capital adjust-
ment costs dampen the initial responses both with and without inventories. However, at
different levels of inventories, capital adjustment costs dampen these responses to a different
degree. Without inventories, the initial response is dampened by 2.39 percentage points. In
contrast, the initial response is dampened by 3.12 percentage points in models with invento-
ries. Inventories also increase shock propagation. Comparing the impulse response function
of ‘Model I1’ with that of ‘Model NI1’ without inventories, we see that the impulse response
function in the model with inventories is flatter.

Both the extra dampening effect and the increased propagation of the shocks come from
the key mechanism in our model: the substitution between fixed capital investment and
inventory investment as a means of consumption smoothing. When adjusting fixed capital is
costly, the economy switches to inventories. As a result, fixed capital investments do not need
to respond to productivity shocks as much as when inventories are absent. The responses are
also more protracted because firms tend to wait for lower adjustment cost draws to invest.

The flip side of the substitution between the two investment means can be observed in
Panel(c) of Figure 2, which shows the impulse response functions of net inventory investment
(over GDP). As expected, the response of net inventory investment is stronger when adjusting
fixed capital investment is costly. In ‘Model I1’, the impact response is roughly 0.0032, while
in ‘Model I2’ it is only 0.0024.19

The same mechanism can also explain the other cross effect, namely, how lumpy fixed
capital investment changes the effect of inventories on aggregate investment dynamics. For
both levels of fixed capital capital adjustment costs, inventories dampen the positive response
of fixed capital investment to a positive productivity shock, as the latter is no longer used as
much to ensure consumption smoothing. This switching away from fixed capital investment
as a means of transferring consumption into the future is stronger, the more costly it is
to adjust fixed capital. This explains why inventories dampen the initial response of fixed
capital investment by somewhat over 2.5 percentage points with fixed capital adjustment
frictions, but only by 1.7 percentage point, when fixed capital can be freely adjusted.

Consumption Another implication from the above mechanism is that consumers’ ability
to smooth consumption is enhanced by inventories. We illustrate this with the impulse
response functions for consumption in Panel(b) of Figure 2.

First, the impact response from the models with inventories is below those from the
models without inventories, for every level of fixed capital adjustment costs. Secondly, the
smoothing effectiveness of inventories is so good that consumers despite the presence of
capital adjustment costs can almost exactly recreate their frictionless consumption path.
Nonconvex fixed capital adjustment costs barely change the response of consumption after
the initial impact, when there are inventories. In contrast, without inventories nonconvex
fixed capital adjustment costs do interfere with consumption smoothing.

We interpret these response functions as evidence that inventories provide an effective
smoothing device for the consumers. As a result, consumption dynamics are less volatile
when productivity shocks hit and capital adjustment frictions are less relevant for consump-
tion dynamics in the presence of inventories.

19The impulse responses for NII are reported in absolute changes as a fraction of GDP, not in percentage
changes relative to the steady state. This is because the steady state value for NII is zero.
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Figure 3: Conditional Volatility and Persistence of Fixed Capital Investment
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(b) Persistence

Notes: This figure shows the impact response to an aggregate technology shock and the the first-order autocorrelation coefficient
of fixed capital investment for models with ζ ∈ [0, 0.4]. The x-axis for both panels shows the upper bound of the capital

adjustment cost distribution, ζ. In Panel(a), the y-axis shows the first element of the IRF of fixed capital investment to a
one-standard deviation aggregate productivity shock in the intermediate good sector in percentage points. In Panel(b), the
y-axis shows the first-order auto-correlation of fixed capital investment. For Panel(b) we detrend fixed capital investment with
the HP(1600) filter and then divide the deviations by the trend.

4.3 Conditional Volatility and Persistence as a Function of Capital
Adjustment Costs

In this section we illustrate the substitution mechanism between the two investment goods
from a slightly different angle. We now simulate our model under our calibrated inventory
level and the “No Inventory” setup over a wide range of ζ ∈ [0, 0.4]. The lower bound is
frictionless adjustment, whereas the upper bound, 0.4, is approximately twice the baseline
ζ = 0.1950.20 We study how the conditional volatility, i.e., the impact response in the
impulse-response function, and the persistence of fixed capital investment, consumption and
net inventory investment change over this range of fixed capital adjustment costs.

Panel (a) of Figure 3 presents the conditional volatility of fixed capital investment over
said ζ-range for both the inventory model and the “No Inventory” model. Independently
of the level of inventories, higher capital adjustment costs dampen the impact response
of fixed capital investment to aggregate shocks, and they do this in a more pronounced
way in the model with inventories. The interaction between inventories and nonconvex
capital adjustment costs is also apparent in the behavior of the persistence of fixed capital
investment in Panel (b) of Figure 3. With inventories, persistence increases from 0.61 to 0.75
when ζ changes from 0 to 0.4. In contrast, without inventories persistence only increases
from 0.64 to 0.68 over the same range of ζ. The agents rely less on fixed capital investment
when inventories are available. As a result, the fluctuations in fixed capital investments
are dampened and drawn out. It is important to emphasize again that the central message
of the paper is depicted in the different slopes of the two lines in both panels of Figure 3,

20At ζ = 0.4 the annual fraction of firms which have lumpy investments is 15.42%, and the annual average
adjustment cost paid conditional on adjustment and measured as a fraction of the firm’s output is 1.56%.
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Figure 4: Conditional Volatility and Persistence of Net Inventory Investment
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Notes: See notes to Figure 3. This figure shows the impact response to an aggregate technology shock and the the first-order
autocorrelation coefficient of net inventory investment (NII) divided by GDP for models with ζ ∈ [0, 0.4].

which is precisely a graphical representation of the nontrivial cross effect between general
equilibrium modeling and the impact of adjustment costs for fixed capital on aggregate
statistics - conditional volatility and persistence.

We can directly observe the substitution between different investment channels by con-
trasting the conditional volatility of fixed capital investment in Figure 3 to the conditional
volatility of net inventory investment in Panel (a) of Figure 4. As fixed adjustment costs in-
crease, the agents rely more on inventories and less on fixed capital for consumption smooth-
ing. As a result, higher fixed adjustment costs lead to more volatile net inventory investment
and less volatile fixed capital investment. Panel (b) of Figure 4 shows the opposite, albeit
with a small nonmonotonicity, effect on persistence of net inventory investment.21

Also, we can see the implications of the investment substitution mechanism in the dy-
namics of consumption. Figure 5 shows that with inventories the conditional volatility of
consumption is lower for every level of capital adjustment costs. More importantly, as the
slopes of the two curves suggest, the rate at which fixed adjustment costs increases con-
ditional consumption volatility is lower when inventories exist. In other words, the same
increase in fixed adjustment cost makes conditional consumption volatility move up higher
when inventories are absent from the economy, whereas it can barely increase conditional
consumption volatility when inventories are present.

The change in consumption persistence reveals the same mechanism, as shown in Panel
(b) of Figure 5. The existence of inventories changes the degree to which fixed capital
adjustment costs affect consumption persistence. Over the same range of ζ, consumption

21The small nonmonotonicity is reflective of an overall persistence effect caused by adjustment costs on
fixed capital investment and thus a more persistent output in the intermediate goods sector. The supply of
intermediate goods becomes more persistent as fixed capital adjustment costs increase, while it is really the
demand for intermediate goods as a means of smoothing consumption that causes the initial strong decrease
of persistence in net inventory investment. Eventually, the effect from the supply side of intermediate goods
slightly dominates.
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Figure 5: Conditional Volatility and Persistence of Consumption
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Notes: See notes to Figure 3. This figure shows the impact response to an aggregate technology shock and the the first-order
autocorrelation coefficient of consumption for models with ζ ∈ [0, 0.4]. For Panel(b) consumption is logged and detrended with
an HP filter with a smoothing parameter of 1600.

persistence decreases by much less in the inventory models compared to the “No Inventory”
models. With inventories, consumption dynamics are more insulated from the effects of
frictions in the adjustment of fixed capital.

4.4 The Effect of Market Clearing

The results on the effectiveness of fixed capital adjustment costs with or without inventories
so far take into account all general equilibrium effects, i.e., adjustments of real interest rates
and real wages, as well as the relative price of intermediate goods. In this section we isolate
the effects of these price movements on how inventories impact the (ir)relevance of nonconvex
fixed capital adjustment costs.

To this end, we solve three partial equilibrium versions of our model. In the first case, we
fix the pricing kernel p (and thus the real wage), and the relative price q, at their long-run
general equilibrium averages and simulate the model. In the second case, we fix the pricing
kernel to its long-run general equilibrium average, but allow the relative price to adjust so
that the intermediate goods market clears. In the last case we fix the relative price to its
long-run general equilibrium average, but allow the pricing kernel (and the real wage) to
adjust so that the final goods market clears.

The impulse response functions of fixed capital investment for all three cases are reported
next to the full general equilibrium case – Panel (a) – in Figure 6. Panel(b) is the response
from the first partial equilibrium case where both prices are fixed. Two messages emerge from
this case. First, as is well known in the literature, nonconvex adjustment frictions matter a
lot in partial equilibrium: the impact response drops substantively, and propagation arises
only when fixed adjustment frictions are introduced. Second, inventories by and large do
not change the effect of fixed adjustment frictions, as the differences between Model I1 and
I2 are very similar to the differences between Model NI1 and NI2. Put differently, the effect
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Figure 6: IRF for Fixed Capital Investments in Partial Equilibrium Models
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(b) PE: Both Prices Fixed
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(c) PE: Pricing Kernel Fixed
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Notes: These are the impulse response functions for fixed capital investments. Panel(a) is a reproduction of Figure 1. Panel(b)
is based on models where both the pricing kernel and the relative price are fixed. Panel(c) is based on models where only the
pricing kernel is fixed. Panel(d) is based on models where only the relative price is fixed.

of fixed capital adjustment frictions swamps the differential effect of inventories.
Panel(c) presents the response functions from the models where the pricing kernel is fixed

but the relative price is not. The results in these models are very similar to those in the first
case where both prices are fixed. Once again, nonconvex adjustment frictions matter a lot,
but inventories do not interact with them significantly. Market clearing in the intermediate
goods market only leads to slightly dampened fixed investment responses overall, as decreases
in the relative price q (see Panel(d) of Figure 2) lead consumption smoothing activities away
from fixed capital investment.

In other words, our exercise of comparing differences in differences really becomes only
interesting, once real interest rate and real wage movements have been taken into account.
The response functions in Panel(d) of Figure 6 come from the models where the pricing
kernel and the real wage move freely to clear the final goods market, yet the relative price
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of intermediate goods is fixed. These response functions resemble those from the general
equilibrium case in that in models with inventories the impact response of fixed investment is
41% higher with frictionless fixed capital adjustment, whereas in models without inventories
it is only 33% higher.22 Nevertheless, market clearing in the intermediate goods market
does play a role in rendering fixed capital adjustment frictions more relevant. Recall that in
full general equilibrium the difference in the initial fixed investment response between the
frictionless model and the lumpy model was 46% (in the case with inventories) vs. 26% (in
the case without inventories), that is the difference widens, when the intermediate goods
market clear through a decline in q. The decline of the relative price q after an increase
in aggregate productivity further facilitates the shifting of consumption smoothing through
building up inventories and away from fixed capital investment. This substitution channel,
for a given decline in q, is more valuable in an economy, when fixed capital adjustment is
costly.23

Taken together, the impulse response functions in Figure 6 illustrate two possible mecha-
nisms to break the irrelevance result for nonconvex fixed capital adjustment costs (in addition
to making the extensive and intensive margin of fixed capital investment difficult to substi-
tute, see Gourio and Kashyap (2007)): decouple, with or without relative price movements
for the second saving vehicle, the tight link between aggregate saving and fixed capital in-
vestment induced by the standard aggregate resource constraint with one saving vehicle, as
in our paper (Panels (a) and (d) of Figure 6) and Berger and Vavra (2015); or dampen the
real interest rate movements induced by this tight link (see Cooper and Willis (2012) and
Winberry (2016)), an extreme version of which can be seen in Panels (b) and (c) of Figure 6.
Both mechanisms, though distinct, are associated with smoother aggregate consumption
dynamics.

5 Robustness

In the baseline model and its calibration we made several choices that we subject to four
robustness tests in this section: (1) we set the persistence parameter of the aggregate pro-
ductivity shock at ρz = 0.95; (2) we chose, following Bloom (2009), θk = 0.25 and θl = 0.5;
(3) we let the aggregate productivity shock affect only the production function in the in-
termediate goods sector; and (4) we did not allow for persistent idiosyncratic productivity

22The relative impact conditional on the same level of adjustment costs for fixed capital has changed
between Panels (a) and (d) of Figure 6. For example, with no fixed capital adjustment costs, fixed capital
reacts more to a productivity shock when there are inventories, but the price of intermediate goods is fixed,
compared to the case where the price of intermediate goods adjusts downward, where the relative size of
the reaction of fixed capital investment is reversed between the inventory and the ‘no inventory’-case. Of
course, with frictionless fixed capital adjustment, positive inventory holding costs and a fixed price at which
inventories can be stocked up, there is really not much reason to smooth consumption via inventories and
thus fixed capital investment reacts more strongly. This changes, when the price of intermediate goods
declines, which makes inventories as a smoothing device more attractive.

23Notice the contrast to the mechanism in Fiori (2012), where the aggregate relevance of lumpy investment
is generated entirely by movements of a relative price in a two-sector environment, namely, the relative price
of investment. Here the relevant relative price, that is, of intermediate goods, strengthens, but does not
drive our result.
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shocks in either sector. In this section we conduct four robustness checks, all relative to the
baseline scenario:

1. We set ρz = 0.98. All other parameters are calibrated using the same strategy as before,
i.e., σz to match the volatility of U.S. GDP, Ah to match an aggregate labor input of
0.33, θm to match a material share in final output of 0.499, θn to match an aggregate
labor share of 0.64, σ to match the annual storage costs of inventories as a fraction
of final output of 12%, and ζ and ε to match, respectively, the fraction of investors
with lumpy fixed capital adjustments of 18% and an average inventory-to-sales ratio
of 0.8185.24

2. We set θk = 0.256 and θl = 0.64, following Khan and Thomas (2008), and thus
allowing for a much less curved production function. Put differently, the implied capital
elasticity of the firms’ revenue function, after labor is optimally chosen, is now θk

1−θl
=

0.71, as opposed to the 0.5 of the baseline case. All other parameters are calibrated
using the same strategy as before.

3. We assume the production function in the final goods sector to be zG(m,n) and in
the intermediate goods sector to be F (k, l), i.e., there is now no aggregate productivity
shock in the intermediate goods sector. ρz is set to 0.95 and σz is calibrated to match
the volatility of U.S. GDP. All other parameters are calibrated using the same strategy
as before.25

4. We allow for persistent idiosyncratic productivity shocks in the intermediate goods
sector, i.e., the production function in the intermediate goods sector is now zεF (k, l).
We assume that log(ε) follows an AR(1) process and discretize it, using the method by
Tauchen (1986), on a 15-state Markov chain. The underlying parameters are ρε = 0.95,
i.e., we set ρε = ρz, and σε = 0.022, both strategies following Khan and Thomas (2008).
All other parameters are calibrated using the same strategy as before.

The results are concisely summarized in Table 4, which shows the reduction in the initial
investment impulse response between the case with calibrated fixed capital adjustment costs
and the frictionless capital adjustment case as a percentage of the case with calibrated fixed
capital adjustment costs, where we compare the case with inventories (left column) with the
case without inventories (right column); and in Figures 7 and 8, which are the equivalent
of Figures 3 and 5 in Section 4.3, i.e., they show how in the various models the conditional
volatility and persistence of aggregate investment and consumption change as a function
of fixed capital adjustment costs, comparing the case with inventories to the case without
them. The result is clear: in all cases inventories lead to a stronger dampening of the initial
response of investment by fixed capital adjustment costs, and its persistence rises by much
more, by and large consistent with the baseline case. The weakest relative dampening effect
is generated in the case of the less curved production function, which is consistent with

24Table 7 in Appendix B summarizes the parameters of all four robustness check models and juxtaposes
them with the baseline parameters.

25We should repeat that such an inventory model yields counterfactual comovements of the relative price
of intermediate goods, which is procylical here.
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the intuition given in the introduction: the closer-to-linear the production function is, the
easier the substitution between the extensive and intensive margin of investment, so that
inventories are relatively less useful for smoothing consumption. As for the no-change result
when we increase ρz to 0.98, while it is true that the value of ρz will change the absolute
responsiveness of the model to shocks, the robustness check shows that the responsiveness
of the model to shocks is altered in essentially the same way across the four models (I1, I2,
NI1, NI2), so that the relative responsiveness of these models to shocks remains unaltered,
at least in the range for the persistence parameter we study.

Table 4: Dampening of Initial Fixed Capital Investment Responses - Inventories versus No
Inventories

Inventories No Inventories

Baseline 46% 26%

ρz = 0.98 50% 30%
θk = 0.256, θk = 0.64 28% 17%

Aggr. Prod. Shock in Final Goods Sector 61% 25%
Idiosyncratic Prod. Shocks 45% 25%

Notes: This table shows the reduction in the initial investment impulse response between the case with calibrated fixed capital

adjustment costs and the frictionless capital adjustment case as a percentage of the case with calibrated fixed capital adjustment

costs. We compare the case with inventories (left column) with the case without inventories (right column). We display these

statistics for the baseline case from Section 4.2 as well as the four robustness checks described in this section.

27



Figure 7: Conditional Volatility and Persistence of Fixed Capital Investment
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(a) Volatility - ρz = 0.98
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(b) Persistence - ρz = 0.98
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(c) Volatility - θk = 0.256, θk = 0.64
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(d) Persistence - θk = 0.256, θk = 0.64
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(e) Volatility - Aggr. Prod. Shock in Final Goods
Sector
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(f) Persistence - Aggr. Prod. Shock in Final Goods
Sector
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(g) Volatility - Idiosyncratic Prod. Shocks
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(h) Persistence - Idiosyncratic Prod. Shocks

Notes: This figure shows the impact response to an aggregate technology shock and the the first-order autocorrelation coefficient
of fixed capital investment for models with ζ ∈ [0, 0.4]. The x-axis for both panels shows the upper bound of the capital

adjustment cost distribution, ζ. The left-hand side panels show on the y-axis the first element of the IRF of fixed capital
investment to a one-standard deviation aggregate productivity shock in the intermediate good sector (except for the third row,
where the productivity shock is to the final goods sector) in percentage points. In the right-hand side panels, the y-axis shows
the first-order auto-correlation of fixed capital investment. For the right-hand side panels, we detrend fixed capital investment
with the HP(1600) filter and then divide the deviations by the trend.
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Figure 8: Conditional Volatility and Persistence of Consumption
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(a) Volatility - ρz = 0.98
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(b) Persistence - ρz = 0.98
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(c) Volatility - θk = 0.256, θk = 0.64
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(d) Persistence - θk = 0.256, θk = 0.64
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(e) Volatility - Aggr. Prod. Shock in Final Goods
Sector
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(f) Persistence - Aggr. Prod. Shock in Final Goods
Sector
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(g) Volatility - Idiosyncratic Prod. Shocks
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(h) Persistence - Idiosyncratic Prod. Shocks

Notes: See notes to Figure 7. This figure shows the impact response to an aggregate technology shock and the the first-order
autocorrelation coefficient of consumption for models with ζ ∈ [0, 0.4]. For the right-hand side panels, consumption is logged
and detrended with an HP filter with a smoothing parameter of 1600.
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6 Conclusion

This paper shows that it matters for the aggregate implications of microfrictions how general
equilibrium effects are introduced into the physical environment of dynamic stochastic gen-
eral equilibrium models with these microfrictions. Specifically, we show that how relevant
nonconvex fixed capital adjustment costs are for business cycle dynamics depends on how
the aggregate resource constraint is modeled, depends on how the model is closed. Future
research will explore the general insight in more general frameworks.

We develop a dynamic stochastic general equilibrium model to evaluate how the availabil-
ity of multiple investment channels, here inventories in addition to fixed capital, affects the
aggregate implications of nonconvex capital adjustment costs. We find that with more than
one ways to invest, capital adjustment costs are more effective in dampening and propagating
the response of fixed capital investment to an aggregate productivity shock.
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Appendix

A Numerics

A.1 Numerical Implementation

We start the algorithm to compute the recursive equilibrium (see Section 2.2.5) of the model
outlined in Section 2 with a guess of the Krusell and Smith forecast rules on prices and future
cross-sectional averages of the inventory and capital stocks, see equations (8) to (11) in the
main text. With the conjectured forecast rules, we use value function iteration to solve the
problems of the intermediate good producers and the final good producers. To approximate
the value function, we use cubic spline interpolation with “not-a-knot” condition over fixed
grids. The spline interpolation and evaluation algorithms are based on De Boor (1978)
and implemented in the open-source library PPPACK. The grid points are equispaced over
fixed intervals. The end points of the intervals and the number of grid points used for the
benchmark model are reported in Table 5. In simulations of the equilibrium (see below) we
check that the end points of the interval are never reached. We iterate the value functions
until the relative difference between two consecutive iterations is smaller than 1.0E-7 under
the l∞ norm. We employ a 20-step Howard policy function acceleration module to speed up
convergence. We discretize the aggregate productivity process using the method outlined in
Tauchen (1986) with 11 grid points. We require the boundaries of the discretization to be 2
times the standard deviation of the underlying AR(1) process.

Table 5: Grid Points in Value Function Approximation

State Variable Left End Right End Number of Grid Points

s 0.0 3.0 20
k 0.0 4.0 20
µ1(S) 0.25 0.75 10
λ1(K) 0.5 1.5 10

Notes: s is the inventory holding at the firm level. k is the capital stock at the firm level.
µ1(S) is the cross-sectional mean of the inventory distribution. λ1(K) is the cross-sectional
mean of the capital stock distribution.

With the approximated value functions, we simulate the model economy. In these simu-
lations we track the distribution of firms with probability mass functions. For example, the
intermediate goods firm size distribution over capital is tracked by two vectors: {m(ki), ki},
where m(ki) is the mass of firms with capital stock ki. These mass points evolve endogenously
in the simulation. The sum of weights over all grid points equals to one:

∑nk
i m(ki) = 1,

and nk is the number of unique values of capital stock with non-zero mass. The firm size
distribution over inventory stock is tracked using the same method. At the end of each pe-
riod, we drop the mass points with a weight smaller than 1.0E-10 and reassign their weight
uniformly across the other mass points to reduce the computational load. We need to track
approximately 35 mass points for the final goods firm distribution, and approximately 85
mass points for the intermediate goods firm distribution.
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We conduct the simulations without imposing the conjectured forecast rules used in the
value function iteration part of the algorithm. Instead, we search for a pair of (p, q) to
clear the final and intermediate good markets in each period of the simulation, and let the
cross-sectional averages of the inventory and capital stocks evolve given these equilibrium
prices. The excess demand functions for both markets are nonlinear, and thus we employ
the Gauss-Jacobi algorithm to solve for the pair of (p, q). Both markets are cleared with a
relative error margin of 1.0E-8. For better accuracy, we re-solve the optimization problems
of the intermediate good producers and the final good producers for every guess of (p, q) in
the Gauss-Jacobi solver in every period.

We simulate the model over 1,000 periods and discard the first 100 periods when updating
the forecast rules with OLS. After updating the forecast rules, we repeat the algorithm:
solve the value functions again with the updated forecast rules and simulate the model
without imposing the forecast rules. We loop over the entire algorithm until the forecast
rules converge with a percentage difference smaller than 1.0E-4. The converged forecast
rules for the benchmark model are reported in Table 6. Since the cross-sectional averages of
the capital stock and the inventory holdings distributions turn out to be highly correlated
in the model’s equilibrium, and thus including them both would lead to a multicollinearity
problem, we use the average capital holdings in its own forecast equation and the two pricing
equations (γ{.} = 0), and the average inventory holdings only in its own forecast equation
(βµ = 0).

Table 6: Forecast Rules for Benchmark Model

α β γ ψ R2

log µ′1 -0.0892 - 0.8297 0.2262 0.9984
log λ′1 0.0025 0.9039 - 0.1048 0.9995
log p 1.2521 -0.3355 - -0.3027 0.9999
log q -0.8436 -0.1888 - -0.3861 0.9999

Notes: This table reports the forecast rules for the benchmark model cor-
responding to equations (8) to (11). µ1 is the cross-sectional mean of the
inventory stock distribution, and λ1 is the cross-sectional mean of the cap-
ital stock distribution.

A.2 Further Quality Checks on the Numerical Implementation

In addition to looking at the R2 of the OLS estimation, we use the procedure outlined in
Den Haan (2010) to check the accuracy of our numerical implementation. We start the
exercise by drawing a new sequence of aggregate shocks zt different from the sequence used
in the solution algorithm. Using this new zt-series, we first simulate the model with the
method described in Appendix A.1 for 1,000 periods, using the forecast rules reported in
Table 6. Denote the simulated time series of the mean of the capital stock distribution as
k̂t, and the sequence of the mean of the inventory level distribution as ŝt. We then generate
another set of predicted time paths of the same variables, denoted as k̃t and s̃t, by using only
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the forecast rules reported in Table 6:

log(k̃1) = log(k̂1),

log(s̃1) = log(ŝ1),

log(k̃t+1) = αk + βk log(k̃t) + ψk log(zt),

log(s̃t+1) = αs + γs log(s̃t) + ψs log(zt).

The accuracy of the forecast rules can be measured with the maximum and the mean of
the relative deviation between the simulated and the predicted time series. For example, the
Den Haan (2010) accuracy measures for the forecast rules of the capital stock distribution
are:

dmaxk = max
t>100

(| log(k̂t)− log(k̃t)|),

davek =

∑1000
t=100(| log(k̂t)− log(k̃t)|)

900
,

and similar measures can be computed for the forecast rules of the inventory holdings dis-
tribution. We discard the first 100 periods of both sequences when computing the accuracy
measures to avoid the influence of the initial conditions.

Figure 9: Simulated and Predicted kt and st
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Notes: This figure shows the simulated and predicted time paths for the mean of the capital stock distribution and the inventory
distribution. The simulated time paths are generated with the algorithms described in Appendix A.1. The predicted time paths
are generated using only the forecast rules reported in Table 6.

We plot the time paths of the simulated and the predicted sequences in Figure 9. The
graphs suggest that differences between the simulated and the predicted sequences are small
and not persistent, and do not accumulate over the course of the simulation. For kt, d

ave
k =

0.0027 and dmaxk = 0.0103. For st, d
ave
s = 0.0041 and dmaxk = 0.0139. These numbers are well

within the range of numbers that Den Haan (2010) reports in his accuracy exercises.
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A.3 Computation of the Impulse Response Functions

To compute the impulse response functions in the main text, we first keep z = 1 for 100
periods thus letting the economy reach a steady state. All the aggregate variables converge
to constants well before the 100th period, and we use the firm-individual capital stock and
inventory holding distributions obtained at the end of this simulation as the initial condition
to generate impulse response functions.

Starting from this initial condition, we next simulate the model for m = 60 periods for
m = 60 times. For the ith simulation, we force the first i aggregate shocks to be one grid
point above z = 1, and the rest of the shocks to be z = 1. Since we discretize z into 11 states,
the median state corresponding to z = 1 is the 6th z-grid point, and the higher-productivity
state is the 7th z-grid point.

We first compute the average time path of a certain variable χ as the weighted average
of the time paths from all m simulations. Denote the time path of χ in the ith simulation
by χi, then the average time path, χ̄, is given by:

χ̄ =
m∑
i=1

χi · φi,

where φi is the weight on the ith simulation:

φi =
(1− πs)π(i−1)

s∑m
j=1(1− πs)π(j−1)

s

,

and πs is the probability of staying in the higher-productivity state (the 7th z-grid point):

πs =
Nz∑
j=κ

πκj,

κ =
Nz + 1

2
+ 1.

Recall that in the Markovian representation of the aggregate shocks, πκj is the probability
of transiting to state j from state κ, Nz is the total number of potential states, and κ is the
state of higher productivity: one grid point above z = 1.

The IRF of χ is then computed as:

IRFχ =

(
χ̄

χs
− 1

)
·
(

σz
zκ − zκ−1

)
,

where χs is the steady state value of χ. The last scaling factor serves to convert the size of
the shock from one grid point to one standard deviation.

When implementing this procedure we set m high enough (m = 60) so that the weight
on the last path of z is numerically negligible: φ60 ≈ 1.3E-9. In the graphs of the main text
we report the first eight elements of the IRF.
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B Parameters for Robustness Checks

Table 7: Parameters for Robustness Checks

Model Ah θm θn θk θl ρz σz σ ζ ε

Baseline 2.0720 0.5245 0.3530 0.2500 0.5000 0.9500 0.0167 0.0128 0.1950 0.4580

ρz = 0.98 2.0700 0.5240 0.3530 0.2500 0.5000 0.9800 0.0173 0.0125 0.1950 0.4480
θk = 0.256, θk = 0.64 2.0800 0.5240 0.2820 0.2560 0.6400 0.9500 0.0150 0.0144 0.2697 0.1130

Aggr. Prod. Shock in Final Goods Sector 2.0700 0.5245 0.3530 0.2500 0.5000 0.9500 0.0088 0.0129 0.1900 0.4672
Idiosyncratic Prod. Shocks 2.0720 0.5240 0.3530 0.2500 0.5000 0.9500 0.0167 0.0128 0.1360 0.4650

Notes: Ah is the preference parameter for leisure; θm is the elasticity of materials in the final goods production function; θn is the elasticity of
labor in the final goods production function; θk is the capital elasticity in the intermediate goods production function; θl is the labor elasticity
in the intermediate goods production function; ρz is the auto-correlation for the aggregate productivity process; σz is the standard deviation for

aggregate productivity innovations; ζ is the upper bound of the fixed capital adjustment cost distribution; ε is the upper bound of the inventory
adjustment cost distribution. For better readability, we have left out the parameters that stay the same across all models: β, δ and γ.
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