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Abstract

This paper evaluates the impacts of migration flows and transportation infras-
tructure on the spatial transmission of COVID-19 in China. Prefectures with larger
bilateral migration flows and shorter travel distances with Hubei, the epicenter of the
outbreak, experienced a wider spread of COVID-19. In addition, richer prefectures
with higher incomes were better able to contain the virus at the early stages of com-
munity transmission. Using a spatial general equilibrium model, we show that around
28% of the infections outside Hubei province can be explained by the rapid develop-
ment in transportation infrastructure and the liberalization of migration restrictions
in the recent decade.
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1 Introduction

The spatial transmission of COVID-19 in mainland China is unprecedented. Following the

initial report of the novel coronavirus in Wuhan, 262 cities in 30 provinces reported cases of

COVID-19 within the next 28 days. By the end of our sample period — February 22, 2020

— the number of infections outside Hubei province had reached 12,526. Part of the high

transmissibility of COVID-19 is undeniably due to biological reasons (Petersen et al., 2020);

nevertheless, it remains an open question as to what extent have socioeconomic factors, i.e.,

the unprecedented ease at which people travel and commute over long distances in China,

contributed to the spread of the disease. Recognizing the links between connectivity and

disease transmission broadens our understanding of the impacts of factor mobility, one of

the central topics of interest in spatial economics. In this paper, we set out to answer this

question.

The improved transportation infrastructure and liberalized migration policy, among many

others, are the potential forces behind the increased mobility of people in the recent decades

in China. The transportation infrastructure has expanded rapidly, as dense networks of

roads, railways, and airports have significantly reduced travel distance. Ma and Tang (2020a)

estimate that the average costs of passenger transportation have declined by around 70 per-

cent between 1995 and 2015. The reduction in commuting costs not only increases the fre-

quency of travel but also lowers the costs of medium- and long-term migrations. Meanwhile,

the reform of the household registration system (hukou) has gradually lowered migration

barriers in China (Tombe and Zhu, 2019; Fan, 2019). Many cities have relaxed the require-

ments to obtain local hukou, which improved the employment prospects of the migrants and,

at the same time, elevated their access to public services such as education, healthcare, and

social security. The steady decline in migration barriers and the improved transportation

infrastructure have induced a phenomenal rise in internal migration. Gross migration flows

rose from 64.5 million in 2000 to 129.0 million in 2015; gross flows specific to Hubei more

than doubled from 4.2 million to 10.3 million during this period.

The changes in transportation networks and migration patterns could have played im-

portant roles in shaping the spread of COVID-19. The onset of the outbreak of COVID-19
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was in the run-up to the Spring Festival, the period of travel fest expecting about 3 billion

trips (Bloomberg News, 2020). The population outflow from Wuhan amounted to 4.3 million

two weeks before the city-wide lockdown on January 23, 2020. Figure 1 shows the residual

scatter plots of a multivariate regression of outflows from Wuhan to different prefectures

in the two weeks before the lockdown (January 9–22, 2020). Cities with more emigrants

to and more immigrants from Wuhan record greater outflows from Wuhan, reflecting that

family reunions are the primary reasons for travel during the Spring Festival. In addition,

the partial correlation of population outflow and travel distance is negative, which suggests

that in addition to the movement of long-term migrants, short-term population movement,

e.g., work-related travel, comprises a significant proportion of all trips.

We evaluate the role of the transportation infrastructure and the reduction in migration

barriers in the context of the COVID-19 transmission in China. Specifically, we ask: with-

out the recent changes in the transportation networks and migration policies, how would the

transmission of COVID-19 be affected? In these counterfactual experiments, we hold con-

stant the public health measures implemented during the COVID-19 pandemic. Our setting

is unique. The spatial spread during our sample period originated from a single epicenter in

Hubei (Jia et al., 2020). Due to the stringent public health measures and travel restrictions,

there were few cross-transmissions among the regions outside the epicenter. In light of this

pattern, our empirical focus is on the spatial relations specific to Hubei even though our

spatial model accounts for all bilateral linkages.

We combine a disease transmission model and a general equilibrium spatial model in-

corporating trade in goods and migration flows, and conduct the analysis in three steps.

First, guided by the viral transmission model, we find that prefectures with larger bilat-

eral migration flows and shorter travel distances with Hubei experienced a greater spread

of COVID-19. However, these factors affected only transmissions in the early stages when

most cases were imported, indicating the travel ban’s effectiveness and other measures re-

stricting potential social interactions of return-migrants and visitors from Hubei with the

local population. Local economic activities also influenced the speed of transmission, with

two counteracting mechanisms. Prefectures with greater economic activities received more

imported cases; however, higher-income prefectures were better able to contain the virus in
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the early stages of community transmission.

In the second step, based on the spatial economic model, we quantify the effects of the

expanding transportation network and the reduction in migration barriers over the period

2005–15 on migration flows, the spatial distribution of population, and income. The indirect

general equilibrium effect on income is part of the total impact of the counterfactual policy

shock, affecting both aggregate transmissions and spatial patterns. We find that had the

transportation network reverted to the 2005 configuration, the travel distance with Hubei

would increase by nearly 90 percent for the average prefecture, while the total population

flow in and out of Hubei would decline by 14 percent. The reversion of the migration policy

to the 2005 configuration would reduce the Hubei-related migration flow by 57 percent.

In the third and final step, we bring together the counterfactual changes in migration

flows, population distribution, and income with the elasticities of incidence to these under-

lying variables, and simulate the counterfactual changes in the spread of COVID-19 outside

Hubei. We find that the number of infections would have been lower by 15.31% by Febru-

ary 22, 2020, had there been no expansions in transportation networks between 2005 and

2015. The transportation infrastructure affects the spread of COVID-19 mainly by altering

migration flows related to Hubei and short-term population movement; the quantitative ef-

fect of migration flows is around one-fourth that of short-term population movement. The

counterfactual change in migration policies had a similar quantitative effect. On its own, the

reversion of migration barriers to the 2005 configuration would have lowered the number of

infections by 17.82%. If both transportation networks and migration policies had reverted

to their 2005 configurations, the spread of COVID-19 would have been reduced by 28.21%.

These findings indicate that the swift spatial spread of COVID-19 is partly facilitated by the

tighter inter-regional linkages induced by the expanded transportation infrastructure and

the reform in migration policies over the past two decades.

Given the low number of infections in China, the healthcare costs of better connectivity

are likely to be orders of magnitude smaller than its economic benefits. Under our model,

reverting the transportation networks and migration policies to 2005-levels would reduce

the aggregate income by 3.60%, which equals to $321 billion, based on the estimates of

Chinese GDP from the World Bank. On the other hand, the 28.21% reduction of the
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incidences from reverting infrastructure and migration policies would lead to 3,517 fewer

infections, 132 fewer hospitalizations, and 23 fewer fatalities, based on the estimates of

hospitalization and fatality rates in Walker et al. (2020) and Verity et al. (2020). The costs

of these hospitalizations and fatalities are between $35 and $173 million, depending on the

estimates of the values of a statistical life as in Ashenfelter and Greenstone (2004) and

Viscusi and Aldy (2003)1. However, the low costs of better mobility critically depend on

the fact that the disease was efficiently controlled in China. Without effective containment

policies, the number of infections would have been much higher, and so would the healthcare

costs of better connectivity. For example, if China has 100 million cases of COVID-19, the

economic costs of a 28.21% change are between $283 billion and $1.40 trillion, which are on

par with the estimated benefit of better mobility (see Appendix B for details). One hundred

million cases in China is not unimaginable; it puts China at a 7% population infection rate,

similar to that in the U.S. in January 2021 (WHO, 2021). With these cautions in mind,

we argue that the unintended and potentially fatal consequences of factor mobility should

no longer be overlooked in the long and flourishing literature on transportation economics

(Fogel, 1962; Allen and Arkolakis, 2014; Donaldson and Hornbeck, 2016; Donaldson, 2018;

Allen and Arkolakis, 2019).

This study contributes to the literature on the health costs of transportation infras-

tructure, and more generally, to the long-run economic determinants of the transmission of

disease. Adda (2016) employs quasi-experimental variation and a difference-in-differences

design to evaluate the role of public transportation and expanding railways in France on

viral transmission. We take a different approach by employing a quantitative spatial model

that characterizes how transportation costs and migration barriers shape spatial links among

prefectures to determine the spread of COVID-19 from Hubei. Our approach enables the

computation of the national-level general equilibrium effects of shocks to economic fundamen-

tals while relies more on the model’s structure. The literature on COVID-19 also investigates

the association between population mobility and spatial spread. Most of these studies focus

on projecting the impacts of travel restrictions (Chinazzi et al., 2020), assessing community

transmission risk (Jia et al., 2020), and evaluating the effectiveness of transmission control

1Appendix B provides more details on the cost-benefit estimation.
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measures in containing the spread (Jia et al., 2020; Kraemer et al., 2020; Tian et al., 2020). In

contrast, our study explores the roles of transportation infrastructure and migration policies

— the fundamentals that determine population mobility — on disease transmission through

the lens of a spatial economic model.2

Our work is also related to a broader literature that explores the propagation of shocks

to economic fundamentals through spatial linkages. Allen and Arkolakis (2014) and Allen

et al. (2020) propose a series of spatial general equilibrium models to study the interactions

of goods and factor mobility. In the context of the Ricardian models, Caliendo et al. (2018,

2019) analyze the transmission of trade and migration shocks in a similar setup to our

model. We highlight that in addition to the direct economic impacts usually documented

in the literature, the mobility of people has an unintended spatial impact through disease

transmission.

The remainder of the paper is organized as follows. Section 2 describes the data. Section

3 examines the roles of migration flows, travel distance, and local economic activities on the

spread of COVID-19 outside Hubei. Section 4 lays out a general equilibrium spatial model

that computes the aggregate effects of counterfactual changes in transportation networks and

migration policies. Section 5 quantifies the model, and Section 6 presents the counterfactual

experiments. Section 7 concludes.

2 Data

Prefecture-level Data on COVID-19 Cases We collected prefecture-level data on re-

ported COVID-19 cases with daily frequency from the Health Commissions of different pre-

fectures. We exclude the data of the epicenter Hubei given that our study focuses on the

spatial spread of the disease outside Hubei.3 Our baseline analysis covers the period from

January 28 to February 22, 2020 — 30 days after the lockdown of Hubei, when the spread

was almost halted, as shown in Figure A.1 in the appendix. By then, there were 12,526

2The existing economic literature establishes the links between epidemics and economic activities, such
as international trade (Oster, 2012), business cycles (Adda, 2016), and social networks (Fogli and Veldkamp,
2019).

3The exclusion is also due to the possibility that the data for Hubei in the early stages of the outbreak
may underestimate the actual prevalence of infection.
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reported cases of infections located across 267 prefectures outside Hubei.

Migration Flows The bilateral migration data come from a 10% subsample of the 1%

Population Sampling Survey of China (mini census) in 2015. The mini census data contains

information on prefecture of residence and prefecture of hukou registration, based on which

we code migration status and calculate bilateral migration flows. We employ the following

prefecture-level measures for the empirical analysis: (i) the ratio of emigrants to Hubei to

the local population in a particular prefecture, and (ii) the share of immigrants from Hubei

in the local population in a particular prefecture. For the quantification analysis, we also

employ the data on migration flows in 2005 from a 20% subsample of the 1% Population

Sampling Survey of China in 2005.

Transportation Networks The transportation network data come from Ma and Tang

(2020a), which constructs the transportation networks from the digitized transportation

maps that incorporate roads, railways, high-speed railways, and waterways. The distance is

measured as the time required to travel between two points. We use the data from 2005 and

2015 in this paper, which are visualized in Figure A.2.

Other Data Sources We have used the following datasets in the quantification stage in

Section 5. We use the Investment Climate Survey from the World Bank to calibrate the

parameters related to internal trade. The Population Census in 2000 and 2010 were used to

measure the initial population distribution.

3 Empirical Framework and Results

This section lays out an empirical model linking the spatial transmission of COVID-19 to

economic fundamentals. Specifically, we consider the number of infections in a locality as a

function of bilateral population flows with Hubei, which are determined by the bilateral long-

term migration pattern with Hubei, the travel distance, and the size of the local economy.

Guided by the disease transmission model in Appendix C, we estimate the following equation:
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Ii(t) = exp
(
β0t + β1tXi + β2τMi + β3t ln(Disti) + β4t ln(Popi) + β5t ln(GDPpci) + νi(t)

)
, (1)

where Ii(t) is the number of infections at time t; Xi denotes the ratio of Hubei-bound emi-

grants to the local population in prefecture i, and Mi is the share of immigrants from Hubei

in the local population in prefecture i; Disti measures the travel distance between prefecture

i and Hubei based on transportation networks in 2015;4 and Popi and GDPpci represent

population size and GDP per capita in 2015, respectively. Equation (1) is estimated by a

Poisson quasi-maximum likelihood count model (Wooldridge, 1999), with robust standard

errors clustered by prefecture.

The time-varying coefficients βιt represent the cumulative effects of the underlying vari-

ables up to period t. We set the starting date t = 0 to January 28, 2020, five days after the

lockdown was imposed in Wuhan and other cities in Hubei. At this time, most imported

cases would have passed the incubation period, and would have been recorded. Therefore,

the estimates βι0 reveal the effects of the underlying variables on the arrivals of imported

cases. For the baseline analysis, we include in the sample the observations from January 28

to February 22, 2020, with time intervals of five days.5 The differences in the coefficients,

βιt − βιt−δ, capture the effects of the underlying variables on the local transmission within

an incubation period [t − δ, t], which also reflects the effectiveness of the prevention and

control policies. For example, when travelers from Hubei are subjected to quarantine orders,

β1t − β1t−δ and β2t − β2t−δ are expected to be zero in the later periods.

3.1 Empirical Results

Figure 2 reports the point estimates of βιt and their 90% confidence intervals. Appendix E

demonstrates that the baseline findings are robust to a variety of alternative specifications.

We find in Panel A that the prefectures with a higher share of Hubei-bound emigrants

have on average more cases of COVID-19 infection. However, the cumulative effect remains

4The travel distance is the simple average of the distances between prefecture i and all prefectures in
Hubei.

5Based on the findings in the epidemiological literature on COVID-19 (Guan et al., 2020; Li et al., 2020),
we set the incubation period to five days.
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stable over the sample period. This finding suggests that while cases were imported when

Hubei-bound emigrants returned home for the Spring Festival, such imported cases did not

engender further community transmissions in the later periods, perhaps due to the effective

quarantine measures that were implemented.

As shown in Panel B, a higher share of immigrants from Hubei is also associated with

a wider spread of the disease. Additionally, the associated imported cases resulted in local

transmissions over an earlier period between January 28 and February 2, 2020, but the effect

quickly diminished afterward. Panel C presents the estimates for the distance to Hubei,

which reflect the effects of short-term population movement, such as business trips, before

the lockdown in Hubei on disease transmission in the subsequent periods. As expected,

prefectures closer to the epicenter had more imported cases at the start of the period, but

the distance does not affect subsequent transmissions, consistent with the travel restrictions

from and to Hubei. We observe a similar pattern for population size in Panel D. The lack

of correlation between population size and the number of local transmissions indicates the

effectiveness of a range of public health interventions aimed at minimizing interpersonal

contact (Jia et al., 2020; Kraemer et al., 2020; Tian et al., 2020).

Last but not least, Panel E shows the effects of GDP per capita. Ceteris paribus, prefec-

tures with higher incomes reported more imported cases due to tighter economic relationships

with Hubei. Interestingly, as shown in Figure A.3, in an earlier period between January 28

and February 7, 2020, a higher income per capita was associated with a slower spread of

the disease, indicating that higher-income regions were more capable of implementing trans-

mission control measures promptly. Lower-income prefectures caught up in the later period,

though, and the incidence rate as of February 12, 2020, was no longer correlated with income

level.

In Section 6, we take the estimates of the underlying parameters β’s as given and quan-

tify the impacts of different counterfactual configurations of transportation networks and

migration policies on the transmission of COVID-19. A change in transportation networks

alters travel distance and migration flows, as well as spatial distributions of population and

income across China through general equilibrium effects. Our regression analysis indicates

that all these factors have independent effects on disease transmission. The following section
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introduces a quantitative spatial model that computes the aggregate effect of counterfactual

changes in transportation infrastructure and migration costs.

4 The Model

Our model is drawn from Ma and Tang (2020a), which extends Tombe and Zhu (2019) to

allow for productivity agglomeration. The economy contains a mass L̄ > 0 of individuals and

J cities indexed by j = 1, 2, ..., J . Individuals can migrate between the J cities within China

subject to frictions. Individuals living in city j obtain utilities according to the following

CES function:

Uj =

(∫ 1

0

(qj(ω))
η−1
η dω

) η
η−1

, (2)

where ω indexes the goods and η is the elasticity of substitution.

The production side of the model follows Eaton and Kortum (2002): firms operate in

perfectly competitive markets, and every city can produce every variety of ω. The production

function for variety ω in city j is:

qj(ω) = Aj · zj(ω) · `j,

where `j is the labor input. Aj is the city-specific productivity that depends on an exogenous

component, Āj, and the population to allow for agglomeration:

Aj = Āj · (Lj)β , (3)

where β is the agglomeration elasticity. The city-variety specific productivity, zj(ω), is from

an i.i.d. Frechet distribution with parameter θ:

F (z) = exp
[
−(z)−θ

]
.

Trade is subject to iceberg costs: for a unit of product to arrive in city i from city j, τij > 1
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units of goods need to be produced and shipped.

The consumers in city i purchase from the supplier offering the lowest price for every

variety ω:

pi(ω) = min
j=1,··· ,J+1

{pij(ω)} ,

where pij(ω) is the price of ω from city j at the market in city i.

4.1 Migration

Individuals decide on migration destinations to maximize utility. Denote Vj as the indirect

utility of living in city j:

Vj =
wj
Pj
, (4)

where wj is the nominal wage and Pj is the ideal price index in city j:

Pj =

(∫ 1

0

(pj(ω))1−η dω

) 1
1−η

.

In addition to the indirect utility, each worker also draws an idiosyncratic location preference

for each city {ej}Jj=1 from an i.i.d. Frechet distribution with the CDF:

F (ej) = exp
[
− (ej)

−κ] ,
where κ is the shape parameter. Lastly, moving from j to i also incurs a pair-specific cost,

λij ≥ 1 with λii = 1. If a worker moves from city j to i, the utility in the end is the

combination of the location preference and the migration costs:

Vi · ei
λij

.

The costs of migration capture the financial costs of moving and commuting, the psycho-

logical costs of living in an unfamiliar environment, as well as the policy barriers that deter
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migration, such as the hukou system.

Considering all the determinants of migration, a worker living in city j will migrate to

city i if and only if doing so provides her with the highest utility among all the J locations:

Vi · ei
λij

≥ Vk · ek
λkj

, ∀k = 1, 2, ..., J.

Conditional on Vj, the probability of an individual migrating from city j to i is:

mij =
(Vi)

κ (λij)
−κ

J∑
m=1

(Vm)κ (λmj)
−κ
. (5)

This probability is also the fraction of the individuals who migrate from city j to i due to

the law of large numbers. Therefore, the migration flow from city j to city i is:

Lij = (Vi)
κ (λij)

−κ (Πj)
−κ L̄j, (6)

where Πj is the expected utility of a worker who lives initially in j:

Πj =

[
J∑

m=1

(Vm)κ (λmj)
−κ

] 1
κ

.

4.2 The Equilibrium

Given the parameters of the model, the equilibrium is defined as a vector of prices {wj, pj(ω)},

a vector of quantities {qj(ω)}, and a population distribution {Lj} such that:

• Every individual maximizes his utility by choosing the location and the consumption

bundle.

• Every firm maximizes its profit.

• The labor market in each location clears.

• Trade is balanced.

Appendix D provides details of the equilibrium conditions.
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5 Quantification

We quantify the model to 291 prefecture-level cities in China around the year 2015. The

sample is determined by data availability, and we focus on the year 2015 as it is the latest

year in which the 1% Population Sampling Survey is available. The quantification strategy

aims to capture the migration flows into and out of the Hubei province and the broad pattern

of migration flows inside China as well. Table 1 summarizes all the parameters.

Common Parameters The following common parameters come from the literature. Fol-

lowing Redding and Turner (2015), we set the agglomeration elasticity, β, to 0.1. We set the

elasticity of substitution to, η = 6, which is a value in the middle of plausible ranges.6 The

trade elasticity is θ = 4 as in Simonovska and Waugh (2014). The elasticity of migration,

κ, varies between 1.4 and 3.3 in the literature; we set κ = 2.0 following Hsieh and Moretti

(2019).7 Appendix E provides robustness checks and shows that the quantitative results are

robust to the alternative parameter values.

Initial Population Distribution The initial population distribution comes from the Pop-

ulation Census in the year 2010. We use the total population, including the urban and rural

populations in each prefecture, as the initial population.

Migration and Trade Costs We assume that the migration costs from j to i, denoted

as λij takes the following functional form:

λij = λ̄ · λi · λj ·
(
T pij
)ξ
. (7)

Migration frictions depend on the national migration policy, λ̄, and the location-specific

entry and exit barriers, λi and λj. Migration frictions are also related to the underlying

6The elasticity of substitution usually ranges between 5 and 10 in the literature (Anderson and van
Wincoop, 2004).

7For example, Monte et al. (2018) estimate κ to be 3.3 in the context of the U.S. and Hsieh and Moretti
(2019) set it to 2.0. Bryan and Morten (2019) estimate it to be 2.7 using Indonesian data. Stillwell et al.
(2014) finds κ to be between 1.4 and 2.2 in in a number of the European countries based on reduced-form
estimations.
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passenger transportation networks between the cities, T pij, up to an elasticity of ξ. We first

focus on the transportation network,
(
T pij
)ξ

.

We use the transportation network, T pij, in 2015 from Ma and Tang (2020a). The param-

eter ξ governs the elasticity of λij with respect to the infrastructure, T pij. We follow the same

estimation methods in Ma and Tang (2020a), with the updated bilateral migration matrix

in 2015. The migration flow in equation (6) can be transformed to:

log (Lij) = κ log (Vi)− κ log (Πj) + log
(
L̄j
)
− κ log λ̄− κ log λi − κ log λj − κξ log

(
T pij
)
.

This equation leads to a reduced-form estimation with origin and destination fixed effects.

The two fixed effects, δi and δj, absorb all the variables in the expression above except for

the last term:

log (Lij) = δi + δj − κξ log
(
T pij
)
.

We estimate the equation using OLS, with the migration flow data from the 1% Population

Sampling Survey in 2015. The regression estimates κξ to be 0.40. With the calibrated κ

at 2.0, the estimated ξ equals 0.20. We also estimate the equation with an instrumental

variable for T pij to alleviate the concerns of endogenous placements of infrastructure. To

do so, we follow Faber (2014) to construct the Minimum-Spanning Tree instruments. The

point estimate is only slightly higher at κξ = 0.42 and with corresponding ξ at 0.21. In the

baseline model, we use the OLS estimate.

The trade costs matrix is also based on Ma and Tang (2020a). The trade cost matrix is

assumed to be:

τij = τ̄ ·
(
T gij
)ψ
,

where τ̄ is the overall trade frictions, T gij is the underlying goods transportation network,

and ψ is the elasticity of the iceberg costs to T gij. We take the values of
(
T gij
)ψ

directly from

Ma and Tang (2020a) and estimate τ̄ in our context.
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City-Level Productivity, Āj We follow the methods in Ma and Tang (2020b), which

implements Donaldson and Hornbeck (2016) in the context of China to estimate the city-

level productivity. The details are explained in Appendix D.

5.1 Joint Calibration

The remaining four parameters call for joint-calibration: the overall migration and trade

barriers, λ̄ and τ̄ , and the origin and destination-specific migration barriers, λi and λj.

As the COVID-19 outbreak stems from a single epicenter of Hubei, the migration flows

between prefectures outside of Hubei are irrelevant to the virus’s spatial spread. For this

reason, we only impose λi and λj on the prefectures within Hubei province, and assume that

λi = λj = 1.0 for all the migration flows outside of Hubei. To simplify notation, we use λIN

to denote the common migration friction of moving into any prefecture in Hubei, and λOUT

to denote the friction of moving out of Hubei.

We jointly calibrate these four parameters to four moments in the data. The first moment

is the internal-trade-to-GDP ratio of 0.625 from the Investment Climate Survey conducted

by the World Bank. This moment identifies the overall internal trade barrier, τ̄ . The

second moment is the overall stay-rate of 89 percent. This moment is defined as one minus

the fraction of migrants in the entire population as computed from the Population Sampling

Survey. This moment pins down λ̄. The other two moments also come from the same survey:

the outflow rate of all prefectures in Hubei province at 14.7 percent, and the inflow rate at

3.5 percent. The outflow (inflow) rate is defined as the total outflow (inflow) population as

a fraction of the initial population of Hubei. The outbound and inbound migration barriers,

λOUT and λIN, are respectively backed out from these two moments.

Our model is calibrated to match the population flow into and out of the Hubei province

in 2015. Moreover, we can also match the bilateral population flows between prefectures in

Hubei and prefectures outside Hubei due to the detailed geographic information incorporated

in the T pij matrix. Appendix D discusses the out-of-sample model fit.
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6 Quantitative Results

In this section, we illustrate the impact of transportation networks and migration policies on

disease transmission through the lens of our model. In the model, transportation networks

were captured by the T pij and T gij matrices, and the migration policies are summarized in the

Λ = {λ̄, λIN, λOUT} vector. To counterfactually simulate the population flow, we first need

to estimate these objects under the counterfactual scenario.

To back-out the policy parameters, we re-calibrate the model to the state of the Chinese

economy around the year 2005. Following the same strategy, we use the data from the

2005 Population Survey, the initial population from the census in 2000, and the T pij and

T gij matrices in 2005 from Ma and Tang (2020a) to calibrate the counterfactual. We also

re-estimate the Āj vector in the year 2005. All the other parameters are the same as in the

2015 calibration. These parameters are reported in Table 1.

The migration policy has been substantially liberalized over time, as seen in the table.

Between 2005 and 2015, the national migration multiplier, λ̄, fell by 54 percent, while the

Hubei-specific frictions fell by 11 – 43 percent. The decline in these estimated policies is

driven by the surge of internal migration in China, as reflected in the two Population Surveys.

In the 2005 survey, the aggregate stay rate was around 94.4 percent, and it declined to 89

percent in 2015. Similarly, the outflow rate of Hubei province doubled from 7.4 percent

to 14.7 percent, and the inflow rate more than quadrupled from 0.8 percent to 3.5 percent.

These data patterns are broadly consistent with the reforms in the urbanization policy during

that time, as discussed in detail in Hsu and Ma (2021).

6.1 Counterfactuals: Migration Flows, Population, Real Income

and Welfare

In the rest of the section, we present three sets of counterfactual simulations. In the first

“constant network” simulation, we use the T pij and T gij matrix in the year 2005 and keep

all the other parameters the same as in the 2015 baseline. In the second counterfactual,

“constant policy”, we use the Λ vector in 2005. In the third simulation, “constant network

and policy”, we revert T pij, T
g
ij, and Λ back to 2005. The counterfactual results, together
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with the baseline model, are presented in Table 2. With the older transportation network,

the total population flow in and out of Hubei province declines by 13 percent. The mild

response of migration flow is expected because distance-related costs are a minor obstacle

for migrants (Morten and Oliveira, 2016). The tightening of migration policies, on the other

hand, induces a sharp decline in population flow. Reverting the policy vector to the year 2005

reduces the Hubei-related population flow by 57 percent. Lastly, combining both changes

leads to a 63 percent reduction in population flow.

When transport network and migration policies are altered, spatial distributions of pop-

ulation and income change as well. Figure A.4 in the appendix shows the distribution

of changes in population and wage rates in different counterfactual scenarios. The induced

change in welfare is significantly larger than that in real income. For example, the population-

weighted average decline in real wage under the case of “constant network & policy” is 3.60%,

while the decline in welfare is 7.41%.8

6.2 Counterfactuals: Disease Transmission

Given the counterfactual migration flows, travel distance, population, and income per capita,

we simulate the incidence of COVID-19 in prefecture i according to:

Ii(t)
CF = Ii(t) exp

(
β̂1t∆Xi+ β̂2τ∆Mi+ β̂3t∆ ln(Disti)+ β̂4t∆ ln(Popi)+ β̂5t∆ ln(GDPpci)

)
,

where ∆Xi = XCF
i −Xi and XCF

i represents the counterfactual ratio of Hubei-bound emi-

grants to the local population in prefecture i. Other variables are defined analogously. β̂ιt’s

are the estimates obtained from Section 3.1. The counterfactual total number of infections

outside Hubei is computed as I(t)CF =
∑

i Ii(t)
CF .

Panel (b) in Table 2 presents the counterfactual trends of COVID-19 under the three

scenarios discussed above and contrasts them with the actual data. For brevity, we focus

on the actual and counterfactual spreads by February 22, 2020. We find that had the

transportation networks been the same as in 2005, the total number of reported infections

8Welfare in prefecture i is defined as wi

Pi
m
−1/κ
ii , where mii is the stay rate as defined in equation (5). The

term m
−1/κ
ii captures the welfare loss that comes from the migration frictions as shown in Tombe and Zhu

(2019).
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would have been lower by 1,908, amounting to 15.31% of the total reported infections. In

the counterfactual scenario where the migration policy remained the same as in 2005, the

number of reported infections would have been lower by 2,221, which is 17.82% of the total

reported infections. Lastly, had both transportation networks and migration policies reverted

to their 2005 configurations, the number of infections would have been lower by 3,517, which

is 28.21% of the total reported infections. Figure A.5 in the appendix presents the spatial

distribution of the counterfactual declines in the number of infections across prefectures. We

find that the spread could have been reduced more in the coastal areas and in the regions

that are geographically closer to Hubei in the counterfactuals.

The quantitative importance of transportation networks and migration policies is similar

in explaining the overall spread of COVID-19 outside Hubei. However, the two factors affect

the disease spread through different channels, as revealed by the decomposition exercises in

Table 2. Panel (b.1) finds that under the case of “constant network”, the direct effect of an

increase in travel distance decreases the number of total reported infections by 11.27%, while

the induced decrease in migration flows leads to only a 3.44% reduction. These estimates are

consistent with the findings in Section 6.1 that migration flows declines slightly in response to

a reversion of the transportation infrastructure to the 2005 configuration. Hence, the rapid

expansion of transportation infrastructure in China mainly affects disease transmission by

increasing short-term population movement rates rather than altering medium- and long-

term migration patterns. Columns (8) and (9) reveal the roles of changes in income and

population distributions induced by the changing transportation network. We find that such

general equilibrium effects lower the reported number of COVID-19 cases by 1.21%. Panel

(b.2) shows that the counterfactual changes in migration policies mainly affect the disease

spread through changing migration flows, while the general equilibrium effects lead to a

moderate reduction of 1.44%. Lastly, as shown in Panel (b.3), under the case of “constant

network and policy”, the induced changes in migration flows, travel distance, and income

and population reduce the reported number of infections by 16.89%, 11.27%, and 2.54%,

respectively.
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7 Conclusion

We evaluate the impacts of migration flows and transportation infrastructure on the spatial

transmission of COVID-19 in China. Using the daily data of reported cases at the prefec-

ture level and the bilateral migration data from the mini census, we show that cities with

larger bilateral migration flows and shorter travel distances with Hubei experienced a greater

spread of COVID-19. In addition, wealthier prefectures with higher incomes were better able

to contain the virus in the early stages. We then evaluate the contribution of the rapid de-

velopment in transportation infrastructure and the liberalization of migration restrictions in

the recent decade using a general equilibrium spatial model. We show that the increased

mobility of people following the expansion of transportation networks and easing migration

policies explain around 28% of the infections outside Hubei province. The strong link be-

tween disease transmission, migration policy, and transportation networks documented in

this paper highlights the need to incorporate epidemiological elements in the models of the

spatial economy in future research.
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Tables and Figures

Figure 1: Residual Scatter Plots
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Note: The residual scatter plots are of the multivariate regression lnOutF lowi = γ0 + γ1 lnXi + γ2 lnMi +
γ3 lnDisti + νi, where lnOutF lowi denotes the share of population outflows from Wuhan to prefecture i in
the two weeks before the lockdown (January 9–22, 2020); Xi denotes the ratio of emigrants to Hubei to the
population in prefecture i in 2015; Mi is the share of immigrants from Hubei in the local population in pre-
fecture i in 2015; Disti measures the travel distance between prefecture i and Hubei based on transportation
networks in 2015. We discuss the data sources in Section 2. The green straight line is the best-fitted line.

Figure 2: Estimates of Cumulative Effects: βιt
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Note: This figure plots the point estimates and the corresponding 90% confidence intervals of the βιt coeffi-
cients in equation (1).
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Table 1: Calibration Results

(a) Fixed Parameters

Name Value Source Note

β 0.1 Redding and Turner (2015) The agglomeration elasticity
θ 4.0 Simonovska and Waugh (2014) Trade elasticity
κ 2.0 Hsieh and Moretti (2019) Migration elasticity
η 6.0 Anderson and van Wincoop (2004) Elasticity of substitution
Āj - Ma and Tang (2020b) City-level productivity

(b) Calibrated Parameters

Name 2005 2015 Note

λ̄ 1415.24 645.24 Overall Migration Barrier
λIN 7.77 4.41 Entry Barrier, Hubei
λOUT 0.85 0.76 Exit Barrier, Hubei
τ̄ 10.65 13.46 Overall Trade Barrier

Note: This table summarizes the calibrated model parameters. Panel (a) presents the parameters that come
from the literature. Panels (b) presents the jointly calibrated parameters.
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Table 2: Counterfactual Experiments

(a) Population Flow: Baseline v.s. Counterfactual Simulations (Thousands)

Case Total Flow Outflow Inflow Fraction of Baseline
(1) (2) (3) (4)

Baseline 10253.11 8247.61 2005.50 1.00
Constant Network 8971.20 7339.09 1632.11 0.87
Constant Policy 4359.36 3797.87 561.49 0.43
Constant Network & Policy 3779.17 3325.76 453.41 0.37

(b) Incidence of COVID-19 Outside Hubei: Actual v.s. Counterfactual Simulations

Actual Counterfactual

All Factors Migration Flows Travel Distance GDP and Pop
Cases Cases Decline % Cases Decline % Cases Decline % Cases Decline %

Date (1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel b.1: Constant Network (Transportation Networks Same as 2005)

28/Jan/2020 2349 1975 15.94 2267 3.47 2078 11.53 2311 1.64
02/Feb/2020 5873 4794 18.37 5656 3.69 5055 13.93 5777 1.63
07/Feb/2020 9368 7829 16.43 9024 3.67 8228 12.17 9245 1.31
12/Feb/2020 11266 9468 15.96 10863 3.58 9937 11.79 11124 1.26
17/Feb/2020 12068 10263 14.95 11637 3.57 10767 10.78 11921 1.22
22/Feb/2020 12464 10556 15.31 12035 3.44 11059 11.27 12313 1.21

Panel b.2: Constant Policy (Migration Policies Same as 2005)

28/Jan/2020 2349 1953 16.85 1983 15.58 2349 0.00 2315 1.43
02/Feb/2020 5873 4748 19.15 4829 17.77 5873 0.00 5776 1.65
07/Feb/2020 9368 7564 19.25 7685 17.97 9368 0.00 9226 1.52
12/Feb/2020 11266 9156 18.73 9297 17.47 11266 0.00 11101 1.47
17/Feb/2020 12068 9817 18.65 9969 17.39 12068 0.00 11890 1.47
22/Feb/2020 12464 10243 17.82 10397 16.59 12464 0.00 12285 1.44

Panel b.3: Constant Network & Policy

28/Jan/2020 2349 1695 27.83 1978 15.81 2078 11.53 2279 2.99
02/Feb/2020 5873 4005 31.81 4809 18.12 5055 13.93 5688 3.14
07/Feb/2020 9368 6532 30.28 7652 18.31 8228 12.17 9114 2.71
12/Feb/2020 11266 7946 29.47 9261 17.79 9937 11.79 10971 2.62
17/Feb/2020 12068 8622 28.55 9931 17.71 10767 10.78 11757 2.58
22/Feb/2020 12464 8947 28.21 10359 16.89 11059 11.27 12148 2.54

Note: This table reports the results of three counterfactual experiments: “Constant Network” refers to the counterfactual
using the T pij and T gij matrices in 2005; “Constant Policy” refers to the counterfactual using the Λ parameters in 2005;
“Constant Network & Policy” refers to the counterfactual using both the T pij and T gij matrices and the Λ parameters in
2005. Panel (a) summarizes the population flows in and out of the Hubei province in the baseline and the counterfactual
simulations. Panel (b) reports the actual spread of reported COVID-19 cases over time, and the spreads under three
counterfactual scenarios. Columns 4 to 9 decompose the overall counterfactual changes reported in columns 2 and 3 into
different components: (i) changes induced by counterfactual changes in bilateral migration flows specific to Hubei (i.e., Xi and
Mi in equation (1)); (ii) changes induced by counterfactual changes in bilateral distance with Hubei (i.e., ln(Disti) in equation
(1)); (iii) changes induced by counterfactual changes in population and GDP per capita (i.e., ln(Popi) and ln(GDPpci) in
equation (1)).
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Online Appendix

A Additional Tables and Figures

Figure A.1: Spread of COVID-19 Over Time
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Figure A.3: Estimates of Policy Parameters: αιt
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Note: This figure plots the point estimates and the corresponding 90% confidence intervals of the αιt
coefficients of equation (C.5). These estimates are obtained by α̂ιt = β̂ιt − β̂ιt−δ, where β̂ιt’s are obtained
from equation (1). The standard errors of α̂ιt’s are computed based on the variance-covariance matrix of

β̂ιt’s, and the confidence intervals are constructed accordingly.
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Figure A.4: Counterfactual Changes in Population, Real GDP per capita, and Welfare
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Note: This figure reports the distributions of counterfactual changes in population and income under three
counterfactual scenarios: “Constant Network” refers to the counterfactual using the T pij and T gij matrices in
2005; “Constant Policy” refers to the counterfactual using the Λ parameters in 2005; “Constant Network &
Policy” refers to the counterfactual both the T pij and T gij matrices and the Λ parameters in 2005. Under each
graph two summary statistics are presented. In the first column, the mean is the average counterfactual pop-
ulation growth weighted by the population in the baseline equilibrium. In the middle column (respectively,
the last column), the mean change in real wage (respectively, welfare) is the percentage change in the popula-
tion weighted average of real wage (respectively, welfare) from the baseline to the counterfactual equilibrium,
which represents the change in real wage (respectively, welfare) at the national level. All columns report the
standard deviation of the counterfactual changes weighted by the population in the baseline equilibrium.
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B Details of the Cost-Benefit Calculations in the In-

troduction

Benefits The GDP of China in 2015 was 8.914 trillion constant 2010 USD as reported

by the World Bank, which leads to the cost estimate of 8914 ∗ 0.036 = 321 billion USD as

reported in the main text.

Costs The reduction in the number of infections, 3517, is based the data in the last row

of Table 2: 12464 − 8947 = 3517. The hospitalization rate of COVID-19 in China is esti-

mated to be 3.75% (Walker et al., 2020), which leads to 3517 ∗ 0.0375 ≈ 132 reduction in

hospitalizations. The infection fatality rate in China was estimated to be 0.66% (Verity et

al., 2020), which leads to 3517 ∗ 0.0066 ≈ 23 fewer fatalities.

The value of a statistical life estimated in the literature ranges from $1.5 million to

$7.5 million (Ashenfelter and Greenstone, 2004; Viscusi and Aldy, 2003). According to the

official report, the cost of hospitalization during the pandemic was 23,000 RMB ($3,600)

(State Council, 2020). Using the lower estimate of a statistical life at $1.5 million, the costs

are computed as 23 ∗ 1.5 + 132 ∗ 0.0036 ≈ 35 million USD; and at the higher estimate of $7.5

million: 23 ∗ 7.5 + 132 ∗ 0.0036 ≈ 173 million USD. In these calculations, we ignored the loss

of human capital due to the lack of data; however, such omissions are unlikely to alter the

relative sizes between the healthcare costs and economic benefits of better connectivity due

to the sheer gap between the two.

Costs in the Hypothetical Case A 28.21% reduction of 100 million cases is 28.2 million

fewer cases. The reduction leads to 1.06 million fewer hospitalizations and 186 thousand fewer

fatalities, using the same estimates of hospitalization and fatality rates as above. Applying

the same estimate of costs, the lower bound is 186000∗1.5+1060000∗0.0036 ≈ $283 billion,

and the upper bound, 186000 ∗ 7.5 + 1060000 ∗ 0.0036 ≈ $1.40 trillion.

As of Jan 12th, 2021, the WHO reported 22.3 million cases in the U.S., which is 6.7% of

the total population of 330.8 million. The hypothetical 100 million cases in China translate

into a 7.2% population infection rate, based on China’s population of 1,394 million.
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C A Simple Model of Disease Transmission

In this appendix, we lay out a simple model of disease transmission that rationalizes the

empirical model in Section 2 and provides structural interpretations of the regression coeffi-

cients.

The disease takes two stages to develop. In the first stage, all cases are imported from

Hubei. The number of imported cases, Ii(0), follows a Poisson distribution with the arrival

rate λi given by:

λi = exp
(
θ0 + θ1Xi + θ2Mi + θ3 ln(Disti) + θ4 ln(Popi) + θ5 ln(GDPpci)

)
, (C.1)

where Xi denotes the ratio of Hubei-bound emigrants to the local population in prefecture

i, and Mi is the share of immigrants from Hubei in the local population in prefecture i;

Disti measures the travel distance between prefecture i and Hubei based on transportation

networks in 2015; and Popi and GDPpci represent population size and GDP per capita in

2015, respectively. The arrival rate takes a gravity form, and is determined by the bilat-

eral migration pattern with Hubei, the travel distance, which affects short-term population

movement, and the size of the local economy.

In the second stage, the disease is transmitted locally. We consider the dynamics of the

epidemic as follows:
dIi(t)

dt
= γΩi(t)Ii(t), (C.2)

where γ denotes the rate at which new cases develop, which is exogenously determined by

the infectiousness of COVID-19; Ii(t) denotes the fraction of individuals who are infected

at time t; Ωi(t) is the fraction of individuals who are susceptible to contracting the disease,

which is time varying and depends on avoidance behaviours and the public health measures

controlling social interactions. Compared to the Standard Inflammatory Response (SIR)

model which is often employed in the epidemiology literature, our framework abstracts away

from the dynamics associated with the fraction of the population who have recovered from

the disease and have immunity (R), and the fraction of the population who are deceased due

to the disease (D). We do this because in prefectures outside Hubei during the sample period,

both the percentage of the population with immunity and the percentage of the population

who are deceased are negligible. Moreover, as is shown in Figure A.1, the spread outside
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Hubei was almost halted by the end of the sample period, suggesting that R and D should

play a minimal role in determining the transmission dynamics outside Hubei.

We assume that the fraction of susceptible individuals is determined by:

Ωi(t) = α̃0t + α̃1tXi + α̃2tMi + α̃3t ln(Disti) + α̃4t ln(Popi) + α̃5t ln(GDPpci) + ε̃i(t). (C.3)

Again, we allow the size of the susceptible population to be affected by bilateral migration

patterns and distance with Hubei, reflecting possible interactions such as family gatherings

with relatives traveling from Hubei prior to the Spring Festival. Importantly, the α̃ coef-

ficients could vary over time, reflecting the effectiveness of measures to contain the trans-

mission of the disease. For example, when travelers from Hubei are subjected to quarantine

orders, the coefficients α̃1t and α̃2t are expected to be zero; when the travel ban from and to

the epicenter is imposed, α̃3t should decrease in magnitude; when prefectures outside Hubei

adopt stringent transmission control measures such as social distancing or lockdowns, the

coefficients α̃4t and α̃5t should shrink. Equation (C.2) is then rewritten as

dIi(t)

dt
=
(
α0t+α1tXi+α2tMi+α3t ln(Disti)+α4t ln(Popi)+α5t ln(GDPpci)+εi(t)

)
Ii(t), (C.4)

where αιt = γα̃ιt. In the following analysis, we refer to the α coefficients as policy param-

eters that capture the period-specific prevention and control policies governing the disease

transmission at the prefecture level.

In the empirical analysis, we consider a discrete time version of equation (C.4), which is

given by

Ii(t) = Ii(t− δ) exp
(
α0t + α1tXi + α2tMi + α3t ln(Disti) + α4t ln(Popi) + α5t ln(GDPpci) + εi(t)

)
= Ii(0) exp

∑
τ=δ,...,t−δ,t

(
α0τ + α1τXi + α2τMi + α3τ ln(Disti) + α4τ ln(Popi) + α5τ ln(GDPpci) + εi(τ)

)
,

(C.5)

where δ represents the incubation time. Based on the findings in the epidemiological litera-

ture on COVID-19, we set the incubation period to five days. As shown in the second line

of the equation, the number of infections in time t is determined by the number of initial

imported cases and the cumulative increments up to time t. Substituting equation (C.1)

into (C.5), we arrive at our estimation equation:

Ii(t) = exp
(
β0t + β1tXi + β2τMi + β3t ln(Disti) + β4t ln(Popi) + β5t ln(GDPpci) + νi(t)

)
, (C.6)
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where βιt = θι +
∑

τ=δ,...t αιτ represents the cumulative effects of the underlying variables up

to period t, and νi(t) = εi(0) +
∑

τ=δ,...,t εi(τ). With the estimates of βιt, we can back out

the period-specific policy parameters αιt = βιt − βιt−δ, which capture the dynamics of the

policy interventions.

Guided by the model, we estimate the relationship between the number of infections and

the economic fundamentals by a Poisson quasi-maximum likelihood count model (Wooldridge,

1999) based on equation (C.6).9 The baseline estimates of βιt are reported in Figure 2 in the

main text. Figure A.3 presents the estimates of the policy parameters αιt, which reveal the

effects of the variables of interest on the disease propagation within a time interval.

D Details about the Spatial Model

D.1 Equilibrium Conditions and Model Solution

The solution of the model utilizes the equilibrium conditions as specified in Section 4. Con-

ditional on a guess of equilibrium population distribution {Lj}, the solution of the model is

similar to a standard Eaton-Kortum model. The price charged by the suppliers from city j

in city i for variety ω is:

pij(ω) =
τijwj
zj(ω)Aj

,

as determined by the profit maximization problem of the firm. The price paid for a

particular variety ω in city i is:

pi(ω) = min
j

{
τijwj
zj(ω)Aj

}
.

9The Poisson quasi-maximum likelihood count data model is generally preferred to alternative count
data models (such as the negative binomial model), because the Poisson MLE estimator is consistent even
when the error distribution is misspecified (i.e., the true distribution is not Poisson), provided that the
conditional mean is specified correctly (Cameron and Trivedi, 2013; Wooldridge, 2002). Despite of this
consideration, we demonstrates the robustness of the baseline findings to alternative specifications that
estimate the relationship between the number of infections and the economic fundamentals in Appendix E.
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Conditional on the Frechet distribution of productivity, the price index in city i is:

Pi =

(∫ ∞
0

p1−ηdGi(p)

) 1
1−η

= Ψ

(
J+1∑
j=1

(wjτij)
−θ(Aj)

θ

)−1/θ

where Gi(p) is the CDF of prices in city i, and Ψ is the Gamma function evaluated at

1 + (1− η/θ). The share of total expenditure in city i on the goods from city j is thus:

πij =
(wjτij)

−θ (Aj)
θ∑J+1

k=1 (wkτik)
−θ (Ak)

θ
.

The expression for the bilateral trade flow from j to i is thus:

Xij = Xiπij = wiLi
(wjτij)

−θ (Aj)
θ∑J+1

k=1 (wkτik)
−θ (Ak)

θ
.

From the last equation, it is straightforward to solve for the equilibrium wage rate in city

j through a system of non-linear equations. To see this, note that the trade balance

condition implies Xj =
∑J+1

j=1 Xij = wjLj:

Xj =
J+1∑
j=1

Xij ⇐⇒ wjLj =
J+1∑
j=1

wiLi
(wjτij)

−θ (Aj)
θ∑J+1

k=1 (wkτik)
−θ (Ak)

θ
. (D.1)

The equation above describes a system of J + 1 non-linear equations where the vector {wj}

is the unknown. We solve this with a simple iteration algorithm. All the other endogenous

variables are functions of the wage rate. In particular, with the solution of the wage rate,

we can compute the indirect utility, Vj, followed by the migration probabilities according to

equation (5), which we replicate here for completeness:

mij =
(Vi)

κ (λij)
−κ

J∑
m=1

(Vm)κ (λmj)
−κ
.

Note that the equation above is also the solution of the utility maximization problem

of the individuals. We don’t need to separately solve for the labor market clearing

conditions as they are implicitly guaranteed by the trade balance condition per Walras’s
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Law.

The algorithm above depends on a guess of {Lj}, and the migration flows from solving

equation (5) also imply a new equilibrium vector of population. We iterate on the population

distribution until convergence at 1.0E-5.

D.2 City-Level Productivity

We estimate the city-level productivity from the residual of the following regression:

ln (wj) = δ0 + δ1 ln (Lj) + δ2 ln (MAj) + νj,

where Lj is the population of city j and wj is the wage rate that is approximated by per

capita GDP. This equation comes from the trade balance condition in equilibrium. One can

manipulate equation (D.1) as:

(wj)
1+θ = (Lj)

−1

[
J+1∑
j=1

wiLi
(τij)

−θ∑J+1
k=1 (wkτik)

−θ (Ak)
θ

] [
Āj (Lj)

β
]θ

wj = (Lj)
βθ−1
θ+1

[
J+1∑
j=1

wiLi
(τij)

−θ∑J+1
k=1 (wkτik)

−θ (Ak)
θ

] 1
θ+1 (

Āj
) θ

θ+1 .

Taking logarithms on both sides of the equation, and approximating the terms in the square

bracket as MAj =
∑J+1

j=1 wiLi (τij)
−θ following Donaldson and Hornbeck (2016), we arrive at

the equation to back-out city-level productivity:

lnwj =
βθ − 1

θ + 1
lnLj +

1

θ + 1
ln MAj +

θ

θ + 1
ln Āj.

The term, MAj, is the market access from location j that encompasses the physical trans-

portation network and market size distribution in China.10 Denoting the residual of regress-

ing lnwj on lnLj and ln MAj as ν̃j, it is then straightforward to see that Āj = exp
(
ν̃j

θ+1
θ

)
.

We estimate this regression with our sample of 291 cities and use θ = 4 to back out the

10The equation embodies the idea that the wage rate in a location depends on the agglomeration forces
captured in Lj , the location advantage as summarized in MAj , and the exogenous productivity in the residual
term. See Appendix D for more details.
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productivity term.

D.3 Out-of-Target Model Fit

Our model is calibrated to match the overall population flow into and out of the Hubei

province around the year 2015. Consequently, these overall moments are exactly matched

in the baseline quantification. Moreover, the T pij matrix behind the bilateral migration costs

captures the underlying geography and the transportation networks. The incorporation of

such features allows us to match the bilateral population flows between prefectures in Hubei

and prefectures outside Hubei, as shown in the three panels of Figure D.1 in the appendix.

The baseline quantification of the model is able to fit the broad pattern of bilateral migration

flows as the model prediction and the data are clustered around the 45-degree line. The

popular destination cities among the outbound Hubei migrants in the data, such as Shenzhen,

Shanghai, and Beijing, are also the top choices of the Hubei migrants in our model. The

predicted outflow is more uniform across destinations compared to the data. This uniformity

is mainly because the aggregation elasticity is relatively low (β = 0.1). As a result, the hot-

spot cities in the data do not attract a sufficiently large population inflow in the baseline

model.

Figure D.1: Bilateral Population Flow, Model v.s. Data
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(b) Outflow
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(c) Inflow
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Note: This figure plots the model-predicted bilateral population flows between Hubei and the prefecture
cities outside of Hubei, against the data. Only prefectures with positive population flows with the Hubei
province are plotted. The red straight line is the 45 degree line.
Data source: 1% Population Sampling Survey of 2015.
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E Robustness Checks

E.1 Different Structural Parameters

In the baseline model, we calibrated β, κ, θ, and η using the common values from the

literature. In this section, we check the robustness of the quantitative results with respect

to these parameters. For each of the parameters listed above, we carry out two robustness

checks: one with a value above the baseline level and the other below. In each of the

robustness checks, we re-calibrate the four policy parameters (λ̄, τ̄ , λIN, and λOUT) and

keep the other parameters the same as in the baseline version. We then re-compute the

counterfactual results following the same steps as outlined in the paper. The parameter

values in the robustness checks are reported in Table E.1. We report the number of infections

under the “constant network and policy” counterfactual simulations in Figure E.1. The

results under the other counterfactual simulations are similar and available upon request.

As shown in the figure, the number of incidence under the counterfactual simulations is

robust to these parameters’ variations. Note that the counterfactual results do not vary at

all to the changes in η. The irrelevance of η is because the elasticity of substitution only

shifts the welfare level but does not interact with the trade and migration decisions, a feature

common in the models based on Eaton and Kortum (2002).

E.2 Alternative Specifications

In this subsection, we demonstrate the robustness of the baseline findings to alternative

empirical models of disease transmission.

Additional controls. We first augment the baseline regression model with additional

control variables at the prefecture level, namely, agricultural employment share, manufac-

turing employment share, share of population aged 60 or above, and the share of male.11 We

consider that these variables are exogenous to the changes in transportation networks and

migration policies in the quantitative exercises. Empirically, the question is whether there is

evidence in the data that these factors are correlated with the main variables in the baseline

11These are aggregated variables based on the 1% Population Sampling Survey in 2015, which are assem-
bled and published by the provincial statistics bureau.
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model, leading to biases in the estimates of βιt. Figure E.2 reports the regression results.

For the main variables of interest, the baseline estimates (red diamond points) always lie

within the 90% confidence intervals of the estimates obtained from the augmented model

(blue circle points). For the additional controls, all estimated coefficients are statistically

insignificant. In columns (4) and (5) of Table E.2, we conduct the counterfactual simulations

using the estimates of the augmented model and obtain very similar results. We take these

findings as suggestive evidence that our baseline results are unlikely to be severely biased

due to omitted factors that may have independent effects on local transmission.

Negative binomial regression. We adopt the negative binomial model to estimate

the relationships between the number of infections and the economic fundamentals. The es-

timate of βιt are reported in Figure E.3. Except for the coefficients of ln(Popi), the baseline

Poisson MLE estimates are always within the 90% confidence intervals of the negative bino-

mial estimates. We then employ the negative binomial estimates to conduct counterfactual

simulations. Columns (6) and (7) in Table E.2 show that if both transportation networks

and migration policies had reverted to their 2005 configurations, the number of infections

would have been lowered by 3,409 at the end of the sample period, which is 27.35% of the

total reported infections. The results resemble the baseline findings.

Linear regression model with logarithm transformation. We also estimate the

following linear model by the OLS regression

ln(1+Ii(t)) = β0t+β1tXi+β2tMi+β3t ln(Disti)+β4t ln(Popi)+β5t ln(GDPpci)+εi(t). (E.1)

The consistency of OLS estimates does not depend on the assumption of the error distri-

bution. Figure E.4 presents the OLS estimates. For Xi and ln(Popi), the OLS estimates

are statistically different from the Poisson MLE estimates in the early sample period when

there are more zero-value observations in the data. The ad hoc adjustment of left-hand-side

variable for the zero counts appears to introduce biases.12 The results of counterfactual

12We also consider the inverse hyperbolic sine transformation to adjust for zero counts, and obtain similar
findings (available on request).
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simulations based on the OLS estimates are reported in columns (8) and (9).13 Compared to

the baseline results, the linear specification with log transformation generates larger counter-

factual changes in the earlier period. But the gap across different specifications diminishes

over time.

Instrumentation strategy. One may concern that the travel distance to Hubei could

be correlated with unobserved local socioeconomic factors that have independent effects on

disease transmission. To address this potential problem, we follow Faber (2014) and con-

struct the Minimum-Spanning Tree instrument. Intuitively, the instrument is based on the

hypothetical routes that central planners would have constructed if the only policy objective

had been to connect all targeted destinations on a single network subject to global construc-

tion cost minimization. Hence, it should be exogenous to the economic conditions of different

locales. Since the baseline estimating equation is nonlinear, we perform this instrumentation

strategy by adding the residuals from the first-stage regression and its squared term as a

control function (CF) to the second stage (Wooldridge, 2002). The regression results are

presented in Figure E.5. In Figure E.6, we conduct an IV estimation for the linear equation

((E.1)). We find that (i) the 90% confidence intervals of the estimates obtained from the

CF model (respectively, the IV model) always contain the estimates from the baseline Pois-

son MLE model (respective, the OLS model); and (ii) for both specifications, the estimated

coefficients of ln(Disti) based on the instrumentation strategy are somewhat larger in mag-

nitude than the baseline estimates, although the differences are statistically insignificant. In

columns (10)-(11), we conduct counterfactual simulations based on the estimates in Figure

E.5. The counterfactual change in the cases of infection is slightly larger than the baseline

estimate — if both transportation networks and migration policies had reverted to their 2005

configurations, the number of infections would have been declined by 32.75%. Columns (12)

and (13) repeat the exercise based on the linear IV model, and obtain similar results.

The stability of the estimated coefficients obtained from the IV regression in Figure

E.5 and the augmented model in E.2 suggests that, conditional on local income level and

13Using the OLS estimates, the counterfactual number of cases is calculated according to

Ii(t)
CF =

(
1 + Ii(t)

)
exp

(
β̂1t∆Xi + β̂2τ∆Mi + β̂3t∆ ln(Disti) + β̂4t∆ ln(Popi) + β̂5t∆ ln(GDPpci)

)
− 1,
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population size, the travel distance with Hubei based on the pre-determined transportation

networks could be exogenous to other unobserved determinants of local transmission. It

is very challenging to find a valid instrument for GDP per capita. Therefore, the causal

interpretation of the local income coefficient should be taken with caution. Although the

potential confounding effects of the omitted variables are a priori ambiguous, we argue that

they are unlikely to severely bias the quantitative results for the following reason. We find

that the real income would have declined by 3.60% on average in the counterfactual scenario

where the transportation networks and migration policy remained the same as in 2005. Based

on the baseline estimate, this translates to a decline in the number of cases by 1.14% at the

end of the sample period. This is gauged against the overall counterfactual change of 28.21%

(column (3) of Table 2). Therefore, quantitatively, the baseline findings of the counterfactual

experiments may not be too sensitive to the bias induced by the omitted variables that are

correlated with local income, unless the bias is an order of magnitude larger than the baseline

estimate. As is discussed above, the estimated coefficients of ln(GDPpc) remain stable at

least to the additional controls such as local demographics and industry structure.

Additional robustness checks. In Figure E.7, we augment equation (1) with province

× day fixed effects, which necessarily account for unobserved province-specific factors (e.g.,

local institutional quality, stringency of control measures) that may be correlated with the

variables of interest and may have independent effects on the spread of the virus. Our

baseline findings remain robust to this more stringent specification. To confirm that it is

the migration flows specific to Hubei rather than migration flows per se that induced the

propagation of COVID-19 in the early stages, we introduce additional controls of bilateral

migrations with regions outside Hubei. The results are reported in Figure E.8. Reassuringly,

the coefficients associated with migration flows specific to Hubei remain similar to those in

the baseline regression. Moreover, bilateral migration flows with regions outside Hubei have

economically and statistically insignificant effects on the spread of the virus.
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Table E.1: Parameter Values in the Robustness Checks

Name Baseline Robustness Checks Note
Low High

β 0.1 0.05 0.2 Agglomeration elasticity
κ 2.0 1.4 3.3 Migration elasticity
θ 4.0 2.0 6.0 Trade elasticity
η 6.0 4.0 8.0 Elasticity of substitution

Note: This table lists the parameter values used in the baseline model and
the robustness checks. We carry out two robustness checks per parameter with
values both above and below the baseline level.

Table E.2: Incidence of COVID-19 Outside Hubei: Alternative Specifications
(Constant Network & Policy)

Actual Counterfactual

Specification: Baseline Additional Negative Linear
Poisson Controls Binomial ln(1 + Case)

Cases Cases Decline % Cases Decline % Cases Decline % Cases Decline %
Date (1) (2) (3) (4) (5) (6) (7) (8) (9)

28/Jan/2020 2349 1695 27.83 1698 27.71 1636 30.35 1495 36.35
02/Feb/2020 5873 4005 31.81 4040 31.20 3935 33.00 3824 34.88
07/Feb/2020 9368 6532 30.28 6590 29.66 6542 30.16 6315 32.59
12/Feb/2020 11266 7946 29.47 7971 29.25 8009 28.91 7649 32.11
17/Feb/2020 12068 8622 28.55 8623 28.55 8669 28.16 8269 31.48
22/Feb/2020 12464 8947 28.21 8879 28.76 9055 27.35 8579 31.17

Specification: Poisson Linear+IV
+CF ln(1 + Case)

Cases Decline % Cases Decline %
Date (10) (11) (12) (13)

28/Jan/2020 1679 28.53 1667 29.05
02/Feb/2020 3897 33.65 3952 32.72
07/Feb/2020 6222 33.59 6352 32.19
12/Feb/2020 7516 33.29 7645 32.14
17/Feb/2020 8099 32.89 8246 31.67
22/Feb/2020 8382 32.75 8540 31.49

Note: This table reports the actual spread of reported COVID-19 cases over time, and the spreads under the counterfactual
scenario “Constant Network & Policy” with both the T pij and T gij matrices and the Λ parameters remained the same as in
2005. Columns 2 and 3 repeat the baseline results. The remaining columns repeat the counterfactual simulation, but replace
β̂ιt with the estimates from alternative regression models, namely: (i) the augmented model with additional controls in Figure
E.2 (columns 4 and 5); (ii) the negative binomial model in Figure E.3 (columns 6 and 7); (iii) the linear model with dependent
variable ln(1 + Case) in Figure E.4 (columns 8 and 9); (iv) the Poisson model with control functions in Figure E.5 (columns
10 and 11); and (v) the linear IV model in Figure E.6 (columns 12 and 13).
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Figure E.1: Counterfactual Changes in COVID-19 Transmission under Different
Parameterizations

(a) Agglomeration Elasticity β
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(b) Migration Elasticity κ
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(c) Trade Elasticity θ
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(d) Elasticity of Substitution η
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Note: This figure presents the number of infections in the robustness checks under the “constant networks
and policy” counterfactual simulations. The results using the baseline parameter values are also reported as
references.
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Figure E.2: Estimates of Cumulative Effects: βιt (Including Additional Controls)
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Note: This figure plots the point estimates and the corresponding 90% confidence intervals of the βιt co-
efficients. For comparison purposes, the baseline estimates (in Figure 2) are reported in the figures and
represented by the red diamond points.
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Figure E.3: Estimates of Cumulative Effects: βιt (Negative Binomial)
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Estimates: Negative Binomial Estimates: Baseline Poisson

Note: This figure plots the point estimates and the corresponding 90% confidence intervals of the βιt co-
efficients. For comparison purposes, the baseline estimates (in Figure 2) are reported in the figures and
represented by the red diamond points.
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Figure E.4: Estimates of Cumulative Effects: βιt (Linear Model with Log Transformation)
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Estimates: Linear ln(1+Case) Estimates: Baseline Poisson

Note: This figure plots the point estimates and the corresponding 90% confidence intervals of the βιt co-
efficients. For comparison purposes, the baseline estimates (in Figure 2) are reported in the figures and
represented by the red diamond points.
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Figure E.5: Estimates of Cumulative Effects: βιt (Poisson + Control Functions)
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Note: This figure plots the point estimates and the corresponding 90% confidence intervals of the βιt co-
efficients. For comparison purposes, the baseline estimates (in Figure 2) are reported in the figures and
represented by the red diamond points.
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Figure E.6: Estimates of Cumulative Effects: βιt (Linear + IV)
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Estimates: Linear IV Estimates: Baseline OLS

Note: This figure plots the point estimates and the corresponding 90% confidence intervals of the βιt coeffi-
cients. For comparison purposes, the estimates based on the OLS model (in Figure E.4) are reported in the
figures and represented by the red diamond points.
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Figure E.7: Estimates of Policy Parameters: βιt (Controlling for Province×Date FEs)
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Note: This figure reports the point estimates and the corresponding 90% confidence intervals of regression
model (1) augmented with province × date fixed effects. For comparison purposes, the baseline estimates
(in Figure 2) are reported in the figures and represented by the red diamond points.
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Figure E.8: Estimates of Policy Parameters: βιt (Controlling for Migration Flows Outside
Hubei)
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Note: This figure reports the point estimates and the corresponding 90% confidence intervals of regression
model (1) augmented with province × date fixed effects, and the bilateral migration flows with regions
outside Hubei. The explanatory variable in panel F is the ratio of emigrants to regions outside Hubei to
the local population in prefecture i in 2015. The explanatory variable in panel G is the share of immigrants
from Hubei in the local population in prefecture i in 2015. For comparison purposes, the baseline estimates
(in Figure E.7) are reported in the figures and represented by the red diamond points.
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