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IDENTIFYING LATENT GROUPED
PATTERNS IN COINTEGRATED

PANELS

WENXIN HUANG
Shanghai Jiao Tong University

SAINAN JIN AND LIANGJUN SU
Singapore Management University

We consider a panel cointegration model with latent group structures that allows for
heterogeneous long-run relationships across groups. We extend Su, Shi, and Phillips
(2016, Econometrica 84(6), 2215–2264) classifier-Lasso (C-Lasso) method to the
nonstationary panels and allow for the presence of endogeneity in both the station-
ary and nonstationary regressors in the model. In addition, we allow the dimension
of the stationary regressors to diverge with the sample size. We show that we can
identify the individuals’ group membership and estimate the group-specific long-run
cointegrated relationships simultaneously. We demonstrate the desirable property of
uniform classification consistency and the oracle properties of both the C-Lasso es-
timators and their post-Lasso versions. The special case of dynamic penalized least
squares is also studied. Simulations show superb finite sample performance in both
classification and estimation. In an empirical application, we study the potential
heterogeneous behavior in testing the validity of long-run purchasing power parity
(PPP) hypothesis in the post–Bretton Woods period from 1975–2014 covering 99
countries. We identify two groups in the period 1975–1998 and three groups in the
period 1999–2014. The results confirm that at least some countries favor the long-
run PPP hypothesis in the post–Bretton Woods period.

1. INTRODUCTION

Recently, there has been a growing literature on large dimensional panels with
latent group structures; see Lin and Ng (2012), Bonhomme and Manresa (2015,
BM hereafter), Sarafidis and Weber (2015), Ando and Bai (2016, 2017), Su, Shi,
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2 WENXIN HUANG ET AL.

and Phillips (2016, SSP hereafter), Lu and Su (2017), Su and Ju (2018), Wang,
Phillips, and Su (2018), Su, Wang, and Jin (2019), among others. In comparison
with other approaches to model unobserved heterogeneity in panel data models,
an important advantage of the latent group structures is that it offers a flexible way
to modeling unobserved heterogeneity while maintaining a certain degree of par-
simony. Two popular methods have been proposed to identify the unknown group
structures. One is based on the celebrated K-means clustering algorithm and the
other is based on the C-Lasso. For example, Lin and Ng (2012) and Sarafidis and
Weber (2015) consider a heterogeneous linear regression panel data model where
the slope coefficients exhibit an unknown group structure, whereas BM consider
a homogeneous linear panel data model where the additive fixed effects exhibit
group structure. Both groups of authors propose to apply the K-means clustering
algorithm to achieve classification. Ando and Bai (2016, 2017) extend BM’s ap-
proach to allow for group structures among the interactive fixed effects. Motivated
by the sparse feature of the slope coefficients under latent group structures, SSP
propose a novel variant of the Lasso procedure, i.e., classifier Lasso (C-Lasso),
to achieve classification and estimation for both linear and nonlinear panel data
models with or without endogeneity. Lu and Su (2017) propose a sequential test-
ing procedure to determine the unknown number of groups; Su and Ju (2018)
extend SSP’s C-Lasso to panel data models with interactive fixed effects; Su
et al. (2019) consider C-Lasso–based sieve estimation of time-varying panel data
models with latent structures; Wang, Phillips, and Su (2018) extend the CARDS
algorithm of Ke, Fan, and Wu (2015) to the panel data framework to identify the
group structures of slope parameters.

In this article, we consider identifying the latent group structures in nonsta-
tionary panels where some regressors are generated from an integrated process.
Despite the vast and diverse literature on nonstationary panels, most studies fo-
cus on panel unit root or cointegration tests with or without cross-sectional de-
pendence and the literature on formal cointegration analysis is relatively sparse.
Depending on whether the cointegrating relationship is allowed to be heteroge-
neous, one may consider either homogeneous or heterogeneous cointegrating re-
lations. For example, Phillips and Moon (1999) consider a general limit theory
for both cases in large dimensional nonstationary panels; Groen and Kleibergen
(2003) consider the likelihood-based cointegration analysis for heterogeneous and
homogeneous panel vector error-correction models; Kao and Chiang (2000) con-
sider both dynamic OLS (DOLS) and fully-modified OLS (FMOLS) estimation
and inference in homogeneous cointegrated panels; Mark and Sul (2003) consider
a panel DOLS in homogeneous nonstationary panels; Bai, Kao, and Ng (2009)
study homogeneous panel cointegrations with global stochastic trends; Pedroni
(2001) considers FMOLS for heterogeneous cointegrated panels. So the long-
run cointegrating relationships can be assumed to be either homogeneous or het-
erogeneous and we face a trade-off between assuming heterogeneous long-run
relationships, which is surely robust and perhaps also close to the reality, and
estimating a common or at least an average long-run relationship, which offers
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IDENTIFYING LATENT GROUPED PATTERNS 3

efficiency in estimation and inference if the underlying homogeneous assumption
is correct.

Despite the different treatments on the long-run relationships, the short-run dy-
namics, the individual intercepts, or the individual time trends, if they exist, are
commonly assumed to be heterogeneous across individuals. In this article, we
shall maintain the individual heterogeneity assumption on the individual effects
and short-run dynamics and take an intermediate approach to model the long-run
relationship. We propose a panel cointegration model with latent group structures
where the long-run relationships are homogeneous within a group and heteroge-
neous across different groups, and the short-run dynamics are allowed to be com-
pletely heterogeneous. The key issue is that the individual group membership is
unknown and has to be estimated from the data together with the other parameters
in the model. We extend SSP’s C-Lasso method to the nonstationary panel frame-
work. We consider the SSP’s C-Lasso method rather than the K-means clustering
algorithm for two reasons. First, the C-Lasso method has a computational advan-
tage over the K-means clustering algorithm. As SSP argue, the C-Lasso problem
can be transformed into a sequence of convex problems to be solved easily, while
the K-means procedure is NP-hard and tends to be much more computationally
involved than the C-Lasso method. Second, the asymptotic theory for the C-Lasso
method is well understood for stationary panels. It is natural to extend the theory
to nonstationary panels. We will propose a C-Lasso–based penalized least squares
(PLS) procedure to identify the unknown group structures and estimate the other
parameters in the model jointly.

Nevertheless, the extension of the asymptotic theory from stationary panels to
nonstationary panels is technically challenging for two main reasons. First, there
is a lack of certain uniform convergence results in the nonstationary panel liter-
ature. It is well known that both the K-means clustering algorithm and the C-
Lasso method enjoy certain oracle properties, which means the resulting estima-
tors are as asymptotically efficient as if the latent group structures were known.
But the establishment of such oracle properties relies on the application of cer-
tain exponential inequalities that are available for weakly dependent data as in
stationary panels but not available for strongly dependent data as in nonstation-
ary panels. To achieve the extension, we first need to establish some uniform
convergence results associated with the nonstationary I(1) variables. Second, we
allow for both stationary and nonstationary regressors in our cointegration mod-
els. Even though the number of nonstationary regressors is assumed to be fixed,
we allow the dimension of stationary regressors to grow with the sample size
at a controllable rate. The latter is very important for us to explore the idea of
DOLS and develop a panel dynamic PLS procedure. The growing dimension of
the stationary regressors does not affect the convergence rate of the estimators of
the long-run relationships, but it complicates the asymptotic analysis in several
places.

We assume that the number of groups is known and study the asymptotic
properties of the PLS estimators. We first establish the preliminary rates of
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4 WENXIN HUANG ET AL.

convergence for the coefficient estimators and show that, as expected, the long-
run parameters can be estimated consistently at a faster rate than the short-run
parameters. Given these preliminary consistency rates, we establish the uniform
classification consistency of the C-Lasso method, which essentially means that all
parameters within a group can be classified into the same group with probability
approaching 1 (w.p.a.1), and all individuals that are classified into the same group
indeed belong to the same group w.p.a.1. Such a uniform classification consis-
tency lays down the foundation for the study of the asymptotic distributions of
the PLS estimators. We show that both the C-Lasso estimators of the long-run pa-
rameters and their post-Lasso versions enjoy the asymptotic oracle properties and
then derive their asymptotic distributions under the joint limit theory.1 We show
that such a presence of endogeneity in both nonstationary and stationary regres-
sors does not cause the inconsistency of the long-run parameter estimators but
does yield an asymptotic bias in the estimators of both the short-run and long-run
parameters. To remove the asymptotic bias in the estimation of the long-run pa-
rameters, we explore the idea of DOLS in the time series framework and propose
a C-Lasso–based dynamic PLS procedure. When the number of groups is un-
known, we propose an information criterion to determine the number of groups.
Simulations show superb finite sample performance of the information criterion
and C-Lasso–based PLS procedure.

In an empirical application, we apply our method to reexamine the validity of
long-run PPP in the post–Bretton Woods period from 1975–2014 for a panel of
99 countries. Due to the establishment of the European Union in 1999, we con-
sider two subperiods, namely, 1975–1998 and 1999–2014. Then, we estimate the
long-run group-specific relationships by the dynamic PLS method. In general,
we observe heterogeneous behavior on the long-run relation between the nominal
exchange rate and aggregate price ratio. We find two groups in the 1975–1998
subsample, with one group of countries in favor of the validity of the PPP hypoth-
esis and the other group against the PPP hypothesis. In the 1999–2014 subsample,
we identify three groups and find significant evidence in favor of the long-run PPP
hypothesis in one group. There are more countries in this group in favor of the va-
lidity of the long-run PPP hypothesis in this period. We explain these results by
the “Revived Bretton Woods system” (also called Bretton Woods II in the litera-
ture) from 2000, see Dooley, Folkerts-Landau, and Garber (2004). These results
confirm the belief that at least some selected group of countries obey the long-run
PPP rule in the post–Bretton Woods period.

The rest of this article is organized as follows. We introduce the cointegrated
panel data model with latent group structures and propose a C-Lasso–based PLS
estimation procedure in Section 2. Section 3 introduces the main assumptions for
our asymptotic analysis. Section 4 studies the asymptotic properties of the PLS
estimators. Section 5 reports Monte Carlo simulation results. Section 6 applies the

1 Most asymptotic theories in the panel cointegration analysis have been established under the sequential limit
theory. A few exceptions include Phillips and Moon (1999), Sun (2004), and Bai and Ng (2010).
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IDENTIFYING LATENT GROUPED PATTERNS 5

dynamic PLS method to testing the long-run PPP hypothesis. Section 7 concludes.
We relegate the proofs of the main results to Appendix A. The online supplement,
available at Cambridge Journals Online (journals.cambridge.org/ect), contains of
the proofs of technical lemmas, the section on the determination of the number
of groups, the section on the practical implementation of the C-Lasso procedure,
and some additional simulation and application results.

NOTATION. For any real matrix A, we write the transpose A′, the Frobenius
norm ||A||, the spectral norm ||A||sp, and the Moore-Penrose inverse as A+.When
A is symmetric, we use λmax(A) and λmin(A) to denote its largest and smallest
eigenvalues, respectively. Ia and 0a×b denote the a ×a identity matrix and a ×b

matrix of zeros, and 1{·} is the usual indicator function. The operator
P→ denotes

convergence in probability, ⇒ weak convergence, a.s. almost surely, and plim
probability limit. We use (N,T ) → ∞ to signify that N and T pass jointly to
infinity.

2. MODEL AND ESTIMATION

In this section, we introduce the panel cointegration model with latent group struc-
tures and then propose a C-Lasso–based penalized least squares method to esti-
mate the model.

2.1. Panel Cointegration Model with Latent Group Structures

The dependent variable yit is measured for individuals i = 1,2, . . . ,N over
time t = 1,2, . . . ,T . We suppose that the nonstationary I(1) variables yit and
x1,it are generated according to the following heterogeneous panel cointegration
model{

yit = μi +β ′
1,i x1,it +β ′

2,i x2,it + uit

x1,it = x1,it−1 + ε1,it ,
, (2.1)

where μi is the unobserved individual fixed effects (FE), x1,it is a p1 × 1 vector
of nonstationary regressors of order one (I(1) process) for all i , x2,it is a p2 × 1
vector of stationary regressors (I(0) process) for all i , uit is the idiosyncratic error
term with mean zero and finite long-run variance, ε1,it also has zero mean and
finite long-run variance, and β1,i and β2,i are p1 ×1 and p2 ×1 vectors of slope
coefficients, respectively.

We assume that p1 is fixed but allow p2 to diverge to infinity at certain rate.
The latter is very important because we will extend our theory to the panel DOLS
framework. In this case, the first equation in (2.1) becomes

yit = μi +β ′
1,i x1,it +

p̄2∑
j=− p̄2

γ ′
i, j�x1,i,t+ j + v†

it , (2.2)
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6 WENXIN HUANG ET AL.

where �x1,it = x1,it − x1,i,t−1, x2,it only contains the lags and leads of
�x1,it : x2,it = (�x ′

1,i,t− p̄2
, . . . ,�x ′

1,i,t+ p̄2
)′, β2,i = (γ ′

i,− p̄2
, . . . ,γ ′

i, p̄2
)′, p2 =

(2 p̄2 + 1)p1, p̄2 is divergent with T, and v†
it is the new error term that typically

contains some approximation errors.
In the literature on nonstationary panels, β1,i , which stands for the long-run

cointegrating relationship, can be either homogeneous or heterogeneous, whereas
β2,i , which represents the short-run dynamics, is allowed to be heterogeneous
across all individuals in almost all studies. In fact, there is a large literature that
imposes a common long-run relationship and allows for individual-specific short-
run parameters. For example, in a cross-country study, it is possible for different
countries or regions to have different dynamics of adjustments towards an equi-
librium due to their historical and cultural differences, but they could all converge
to the same economic equilibrium in the very long run due to forces of arbitrage
and interconnections through international trade and cultural exchanges. See also
the concluding remark in Pesaran, Shin, and Smith (1999). In this article, we
maintain the heterogeneity assumption on β2,i ’s but follow the lead of SSP and
assume that β1,i ’s are heterogeneous across groups and homogeneous within a
group.

Specifically, we allow the true values of β1,i , denoted as β0
1,i , to follow a

grouped pattern of the general form

β0
1,i =

⎧⎪⎨⎪⎩
α0

1 if i ∈ G0
1

...
...

α0
K if i ∈ G0

K

, (2.3)

where α0
j �= α0

k for any j �= k, ∪K
k=1G0

k = {1,2, . . .N}, and G0
k ∩ G0

j = ∅ for any
j �= k. For now, we assume that the number of groups, K , is known and fixed.
But we will study the determination of K in Section C of the online supplement.
Let α ≡ (α1, . . . ,αK ), β1 ≡ (β1,1, . . . ,β1,N ), and β2 ≡ (β2,1, . . . ,β2,N ). We de-
note their true values as α0, β0

1, and β0
2, respectively. We also use β0

2,i and α0
k

to denote the true coefficients of β2,i and αk . We use Nk ≡ #G0
k to denote the

cardinality of the set G0
k . We are interested in identifying each individual’s group

membership and estimating the long-run cointegrating group-specific coefficients,
αk , k = 1, . . . ,K .

By allowing for the latent group structures for the long-run parameters, we
can achieve a right balance between parameter parsimony and model misspec-
ification. Note that the key parameters of interest in nonstationary panels are
the coefficients of the nonstationary regressors as they characterize the long-run
equilibrium relationship between the dependent variables and the nonstationary
regressors. If we allow these parameters to be individual-specific, we can run in-
dividual time-series regressions to estimate them but their estimators will have
nonstandard limiting distributions and can converge to the true values only at the
rate T . On the other hand, if we assume these coefficients are common across
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IDENTIFYING LATENT GROUPED PATTERNS 7

all individuals, we will have a convenient yet restrictive assumption that facil-
itates estimation and inference and meanwhile a very large chance of model
misspecification. The latent group structure adopted in this article is an inter-
mediate approach. It allows for a certain degree of heterogeneity in the long-run
parameters and helps to overcome some problems associated with nonstation-
ary time series analysis too. In particular, under some conditions we can iden-
tify the group structure and estimate the group-specific long-run parameters at
the rate

√
N T . Moreover, these long-run parameter estimators are asymptotically

normal.
Even though we focus only on the linear cointegrating model in this article, the

theory that we are developing is quite different from that in SSP for three main
reasons. First, the presence of nonstationary regressors substantially complicates
the asymptotic analysis. In particular, we need to establish some uniform conver-
gence rates that are not available in the nonstationary panel literature. Second, the
increasing dimension of the stationary regressors in the model also complicates
the issue. Third, we allow for endogeneity in both x1,it and x2,it . In the time-
series framework, it is well known that the endogeneity of either the I(1) or I(0)
regressors does not cause the inconsistency of the OLS estimator of the long-run
relationship. In particular, the estimators of the coefficients of I(1) regressors are
still consistent at the rate T , despite the fact that it exhibits an endogeneity bias of
order O(1/T ) (see, e.g., Proposition 19.2 in Hamilton, 1994). We will show that
a similar phenomenon occurs in the panel setup.

2.2. Penalized Least Squares Estimation

Without imposing the latent group structures in (2.3), we can estimate β1,i and
β2,i in (2.1) by using the fixed effects estimator. In this case, we consider the
within-group transformation

ỹit = β ′
1,i x̃1,it +β ′

2,i x̃2,it + ũit , (2.4)

or in vector form

ỹi = x̃1,iβ1,i + x̃2,iβ2,i + ũi , (2.5)

where ỹi = (ỹi1, . . . , ỹiT )
′ , ỹit = yit − ȳi , ȳi = 1

T

∑T
t=1 yit , and x̃1,it , x̃2,it , ũit ,

x̄1,i , x̄2,i , ūi , x̃1,i , x̃2,i , and ũi are analogously defined. The FE estimators β̃1,i

and β̃2,i are obtained as the minimizers of the following least squares criterion
function

QNT (β1,β2)= 1

NT 2

N∑
i=1

∥∥ỹi − x̃1,iβ1,i − x̃2,iβ2,i
∥∥2 = 1

NT 2

N∑
i=1

‖ỹi − x̃iβi‖2 ,

(2.6)
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8 WENXIN HUANG ET AL.

where βi = (β ′
1,i ,β

′
2,i )

′ and x̃i = (
x̃1,i , x̃2,i

)
has a typical row x̃ ′

it = (x̃ ′
1,it , x̃

′
2,it ).

Let β̃ i = (β̃
′
1,i , β̃

′
2,i )

′. Then, β̃i = (x̃ ′
i x̃i )

−1 x̃ ′
i ỹi for each i . As mentioned above,

the estimators β̃1,i of the long-run parameters β1,i are consistent despite the pos-
sible presence of endogeneity bias, but they converge to the true values only at
the rate T with nonstandard limiting distributions. When β0

1,i ’s exhibit the latent
group structure in (2.3), it is possible to pull over the observations from both the
time series and cross-sectional dimensions to obtain more efficient estimators of
the group-specific long-run parameters. We will show that these new estimators,
possibly after bias correction, converge to the true values at the rate

√
N T and are

asymptotically normally distributed.
To explore the latent group structure of β1,i ’s in (2.3), we propose to esti-

mate β1, β2, and α by minimizing the following C-Lasso–based penalized least
squares (PLS) criterion function

QK
NT ,λ(β1,β2,α)= QNT (β1,β2)+

λ

N

N∑
i=1

(σ̃ i )
2−K

K∏
k=1

∥∥∥Q̂1i (β1,i −αk)
∥∥∥ ,

(2.7)

where λ= λ(N,T ) is a tuning parameter, σ̃ 2
i = 1

T

∑T
t=1(ỹit − β̃ ′

i x̃it )
2, and Q̂1i =

1
T 2

∑T
t=1 x̃1,it x̃ ′

1,it . When σ̃ i and Q̂1i are replaced by 1 and Ip1 , respectively, the
penalty term in (2.7) reduces to that in SSP. Here, we introduce these two terms
into the penalty to ensure the scale-invariant property of the penalized estimators.

As SSP remark, the second term on the right hand side of (2.7) is a penalty term
that takes a novel mixed additive-multiplicative form. It has N additive terms,
each of which takes a multiplicative form as the product of K separate penalties.
The multiplicative component is needed because for each i we do not know a
priori to which point β1,i should shrink and must allow β1,i to shrink to any
one of the K unknown values α1, . . . ,αK . Each of the K penalty terms in the
multiplicative expression permits β1,i to shrink to a particular unknown group-
specific parameter vector αk . The summation component is needed because we
need to pull information from all N cross-sectional units in order to identify the
group-specific parameters and the individual-specific parameters jointly. Note that
the tuning parameter λ is used to control the size of the penalty. A too small value
of λmeans that the penalty term would not play an important role so that many of
β1,i ’s would not shrink toward one of the group-specific values in {α1, . . . ,αK } ;
a too large value of λ will force all β1,i ’s to shrink toward one of the group-
specific values in {α1, . . . ,αK } , which may result in misclassification. In theory,
we require that λ tends to zero at an appropriate rate as (N,T )→ ∞. The exact
conditions on λ are stated in Assumption A.3(iv) below.

Minimizing the objective function in (2.7) yields the C-Lasso–based PLS esti-
mates β̂1, β̂2, and α̂. Let β̂1,i and α̂k denote the i th and kth columns of β̂1 and

α̂, respectively, i.e., β̂1 ≡ (β̂1,1, . . . , β̂1,N ) and α̂ ≡ (α̂1, . . . , α̂K ). We will study
the asymptotic properties of the C-Lasso estimators below.
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IDENTIFYING LATENT GROUPED PATTERNS 9

3. NOTATIONS AND ASSUMPTIONS

In this section, we spell out the main notations and assumptions that are needed
for the study of the asymptotic properties of our estimators.

Since we include the fixed effects μi in (2.1) and assume covariance-
stationarity of x2,it , we assume without loss of generality that x2,it has zero

mean.2 Let εit =
(

uit ,ε
′
1,it ,ε

′
2,it

)′
, where ε2,it = x2,it . The long-run covariance

matrix of {εit } is given by

	i =
∞∑

j=−∞
E(εi j ε

′
i0)=

⎛⎝	00,i 	01,i 	02,i
	10,i 	11,i 	12,i
	20,i 	21,i 	22,i

⎞⎠ , (3.1)

where, e.g., 	00,i = ∑∞
j=−∞ E(ui j u′

i0), 	01,i = ∑∞
j=−∞ E(ui j ε

′
1,i0), and

	02,i =∑∞
j=−∞ E(ui j ε

′
2,i0). Following the literature on nonstationary panels, we

will make the following decomposition

	i =
i +�i +�′
i ,

where 
i = E
(
εitε

′
it

)
denotes the short-run variance of {εit } and �i =∑∞

j=1 E(εi j ε
′
i0). We partition 
i and�i conformably with εit and 	i :


i =
⎛⎝
00,i 
01,i 
02,i

10,i 
11,i 
12,i

20,i 
21,i 
22,i

⎞⎠ and�i =
⎛⎝�00,i �01,i �02,i
�10,i �11,i �12,i
�20,i �21,i �22,i

⎞⎠ . (3.2)

Let �i =
i +�i denote the one-sided long-run covariance of {εit } . Let p = 1+
p1 + p2 denote the dimension of εit . Let S0, S1, and S2 denote, respectively, the
1× p, p1 × p, and p2× p selection matrices such that S0εit = uit and S�εit = ε�,it
for �= 1,2. In the dynamic DOLS example in (2.2), ε2,it contains ε1,it . For this
reason, we do not require that 	i be of full rank. But we will assume that 	11,i
and 
22,i are of full rank. As in the time-series literature, the full rank of 	11,i
rules out potential cointegration among the variables in x1,it when p1 > 1 and that
of 
22,i rules out collinearity among the variables in x2,it when p2 > 1. For more
precise conditions, see Assumption A.2 below.

Let maxi = max1≤i≤N and maxt = max1≤t≤T unless otherwise stated. Define
mini and mint analogously. We make the following assumptions.

Assumption A.1.

(i) For each i, {εit , t ≥ 0} is a linear process such that

εit = ψi (L)eit =
∞∑

j=0

ψi j ei,t− j ,

2 If E(x2,it ) = ν2i �= 0, we can rewrite the first equation in (2.1) as yit = μ∗
i +β ′

1,i x1,it +β ′
2,i x∗

2,it + uit , where

x∗
2,it = x2,it −ν2i has zero mean and μ∗

i = μi +β ′
2,i ν2i .
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10 WENXIN HUANG ET AL.

where {eit } is an independent process with zero mean and variance-
covariance matrix Ip . Each element of eit has finite 2 (q + ε) moments
that are bounded uniformly in (i, t) , where q > 4 and ε is an arbitrarily
small positive number.

(ii) maxi
∑∞

j=0 j2
∥∥Sψi j

∥∥ <∞ for any selection matrix S that selects any fi-
nite (nondivergent) number of rows in ψi j .

(iii) For each i, {εit , t ≥ 0} is a strong mixing process with mixing coefficients
αi (t) satisfying maxi αi (τ ) ≤ cαρτ for some cα <∞ and ρ ∈ (0,1).

(iv) {εit , t ≥ 0} are independent across i.

Assumption A.2.

(i) There exists a constant c11 such that liminfT →∞ λmin(
bT
T 2

∑T
t=1 x̃1,it x̃ ′

1,it

)
≥ c11 > 0 almost surely (a.s.), where bT = log log T .

(ii) There exist constants c	11
and c̄	11 such that 0 < c	11

≤
mini λmin

(
	11,i

)≤ maxi λmax
(
	11,i

)≤ c̄	11 <∞.

(iii) There exist constants c22 and c22 such that 0 < c22 ≤ mini λmin
(

22,i

) ≤
maxi λmax

(

22,i

)≤ c22 <∞.

(iv) Let 
∗
0.2,i = 
00,i −
02,i


−1
22,i
20,i . There exist constants c00 and c00

such that 0< c00 ≤ mini

∗
0.2,i ≤ maxi
00,i ≤ c00 <∞.

Assumption A.3.

(i) For each k = 1, . . . ,K , Nk/N → τk ∈ (0,1) as N → ∞.

(ii) min1≤k �= j≤K

∥∥∥α0
k −α0

j

∥∥∥≥ cα for some fixed cα > 0.

(iii) As (N,T ) → ∞, N/T 2 → c1 ∈ [0,∞), T/N2 → c2 ∈ [0,∞), and
p3

2T −1 (log T )6 → c3 ∈ [0,∞).

(iv) As (N,T ) → ∞, λb2
T → 0, λT N− 1

q b−(K+1)
T / log T → ∞,

bK+1
T N1/q T −1 log T → 0, bT N2/q T −1/2/ log T → 0, and

bT p1/2
2 N1/q T −1/2 log T = O (1) .

Assumption A.1(i)–(ii) imposes that the innovation process {εit } is a linear
process that exhibits certain moment and summability conditions. The linear-
ity assumption is weak because of the celebrated Wold decomposition theorem
which says that any mean zero covariance stationary process with absolutely
summable auto-covariances can be represented as an MA(∞) linear process. See,
e.g., Proposition 4.1 in Hamilton (1994). The summability conditions are used to
ensure the validity of the required central limit theory. When p2 is fixed, the se-
lection matrix S is not needed. In our asymptotic analysis, we will frequently call
upon the Beveridge and Nelson (1981, BN) decomposition:

εit = ψi (1)eit + ĕi,t−1 − ĕit , (3.3)
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IDENTIFYING LATENT GROUPED PATTERNS 11

whereψi (1)=∑∞
j=0ψi j , ĕit =∑∞

j=0 ψ̆ i j ei,t− j , and ψ̆ i j =∑∞
k= j+1ψik . Follow-

ing Phillips and Solo (1992, p. 989), Assumption A.1(i)–(ii) ensures that

max
i

max
t

E ‖Sĕit ‖2q <∞
for any selection matrix S such that Sĕit selects only a fixed number of elements
in ĕit . For example, S = (

S′
0, S

′
1

)′
selects the first 1 + p1 elements ĕit that cor-

responds to
(

uit ,ε
′
1,it

)′
. Assumption A.1(iii) assumes that {εit , t ≥ 0} is a strong

mixing process for the convenience of using a Bernstein-type exponential inequal-
ity that is available for strong mixing processes. It is satisfied by many well-known
processes such as linear stationary autoregressive moving average (ARMA) pro-
cesses with continuously distributed errors and a large class of processes im-
plied by numerous nonlinear models, including bilinear, nonlinear autoregressive
(NLAR), and autoregressive conditional heteroskedastic (ARCH)-type models.
See Davidson (1994, Chap. 14), Doukhan (1994), and Fan and Yao (2008, Chap.
2.6) for more examples of strong mixing processes. In particular, Davidson (1994,
Chap. 14.4) provides some sufficient conditions to verify that a linear process of
the type in Assumption A.1(i) is strong mixing, and Andrews (1984) provides an
example of an autoregressive process that is not strong mixing. The geometric
mixing rate can be relaxed to being algebraic with a little bit more involved no-
tation in the proofs. Here, we follow SSP and assume the geometric mixing rate
condition for simplicity. By White (2001, Thm. 7.18), Assumption A.1(i)–(iii) is
far more sufficient to ensure the functional central limit theorem (FCLT) holds for
{Sεit , t ≥ 0} for each i provided its long-run variance-covariance matrix is pos-
itive definite. Assumption A.1(iv) imposes cross-sectional independence, as was
done in the early literature on panel cointegration analyses (see, e.g., Phillips and
Moon, 1999; Kao and Chiang, 2000; Mark and Sul, 2003). We do not relax such
an assumption in this article because even under this restrictive assumption, the
rigorous asymptotic analysis is already extremely involved.

Assumption A.2(i) requires that Q̂1i ≡ 1
T 2

∑T
t=1 x̃1,it x̃ ′

1,it is well behaved uni-
formly in i. For each i,we can readily apply the results in Park and Phillips (1988,
1989) and show that

Q̂1i ⇒
∫ 1

0
B̃1,i (r) B̃1,i (r)

′ dr, (3.4)

where B̃1,i = B1,i −
∫ 1

0 B1,i (r)dr and B1,i is a p1-dimensional Brownian motion
with covariance 	11,i . In this case, as long as 	11,i is positive definite, we can
ensure that Q̂1i is asymptotically nonsingular for each i. For our asymptotic anal-
ysis, we require that both the maximum and minimum eigenvalues of Q̂1i be well
behaved uniformly in i. For the maximum eigenvalue, we can call upon the usual
law of iterated logarithm (LIL) and show that

limsup
T →∞

λmax(Q̂1i/(2loglog T )) <

(
1

2
+ ε

)
c̄	11a.s., (3.5)
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12 WENXIN HUANG ET AL.

where ε is an arbitrarily small positive number and c̄	11 is a constant defined in
Assumption A.2(ii). For the minimum eigenvalue, a sufficient condition for the
Assumption A.2(i) to hold is that there exist some positive constants ci ∈ (0,1)
with min1≤i≤N ci ≥ c0 > 0 such that

x ′
1,i MιT x1i ≥ ci x ′

1,i x1i ≥ c0x ′
1,i x1i for all i = 1, . . . ,N, (3.6)

where MιT = IT − ιT (ι′T ιT )−1ι′T = IT − 1
T ιT ι

′
T and ιT is a T ×1 vector of ones.

To see the meaning of the above condition, we observe that for any nonrandom
vector ω ∈ Rp1 such that ‖ω‖ = 1 and x1,iω is nonzero,

ω′
T∑

t=1

x̃1,it x̃
′
1,itω= ω′x ′

1,i MιT x1iω = ω′x ′
1,i x1iω− (x1,iω)

′ιT (ι′T ιT )−1ι′T x1iω

= ω′x ′
1,i x1iω

[
1 − (x1,iω)

′ιT (ι′T ιT )−1ι′T x1iω

(x1,iω)′x1iω

]
.

So the condition in (3.6) requires the existence of a c0 ∈ (0,1) such that
(x1,iω)

′ιT (ι′T ιT )−1ι′T x1iω

(x1,iω)′x1iω
≤ 1 − c0, which essentially requires that x1iω is not ιT a.s.

uniformly in i. Then, by the “other” or Chung-type LIL (see, e.g., Donsker and
Varadhan, 1977; Lai and Wei, 1982a, p. 163; Lai and Wei, 1982b, p. 364, Phillips,
1996, p. 799; Bai, 2004, pp. 140–141) and the Cramér-Wold device, we have

liminfT →∞λmin

(
bT
T 2 x ′

1,i x
′
1,i

)
≥ c1 for some c1 > 0. This, in conjunction with

(3.6), implies that Assumption A.2(i) would be satisfied with c11 = c1c0.
Assumption A.2(ii)–(iii) imposes some conditions on the eigenvalues of non-

stochastic square matrices. They imply that 	11,i and 
22,i have full rank uni-
formly in i . Assumption A.2(iv) is imposed to ensure nondegenerate limiting
distributions. Given Assumption A.2(iii), it implicitly implies that 
′

20,i
20,i is
bounded away from infinity and thus restricts the degree of endogeneity in the
stationary regressors.

Assumption A.3(i)–(ii) is commonly assumed in the panel literature with latent
group structures; see, e.g., Bonhomme and Manresa (2015), Ando and Bai (2016),
SSP, Lu and Su (2017), and Su and Ju (2018). In particular, Assumption A.3(ii)
requires the separability of the group-specific parameters. Assumption A.3(iii)
imposes conditions on N, T, and p2. It requires that N should not diverge to
infinity at a rate faster than T 2 or slower than T 1/2. Note that we do not require
N = o(T ) as in most studies on nonstationary panels under joint limit theory
(see, e.g., Phillips and Moon, 1999; Bai and Ng, 2010). The last condition in
Assumption A.3(iii) is analogous to the condition p3

2T −1 = o (1) in the time series
framework (e.g., Saikkonen, 1991). Assumption A.3(iv) looks quite complicated
but can be simplified a great deal in the special case where N and T pass to infinity
at the same rate as in many macro applications. In this case, noting that q > 4 as
stated in Assumption A.1(i) and p3

2T −1 = o (1) implied by Assumption A.3(iii),
we can replace Assumption A.3(iv) by the following assumption:
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IDENTIFYING LATENT GROUPED PATTERNS 13

Assumption A.3(iv*). As (N,T )→ ∞, λb2
T → 0, and λT 1− 1

q b−(K+1)
T / log T →

∞.
Then, we can find a large range of values for λ satisfying Assumption A.3(iv*). It
is sufficient to have

λ∝ T −α for α ∈
(

0,
q − 1

q

)
.

When q is sufficiently large (e.g., the tails of the error terms decay exponentially
fast), the upper bound for α is arbitrarily close to 1. If we only require q > 4, then
it is fine to choose λ∝ T −3/4.

4. ASYMPTOTIC PROPERTIES

In this section, we first find the preliminary rates of convergence for the coefficient
estimators and prove classification consistency. Then, we study the oracle proper-
ties of C-Lasso estimators and their post-Lasso versions. The special case of panel
dynamic PLS is also considered, and an extension to models with incidental time
trends is also considered.

4.1. Preliminary Rates of Convergence

Let β∗
i = (β0′

1,i ,β
∗′
2,i )

′, where β∗
2,i = β0

2,i +
−1
22,i
20,i . The following theorem es-

tablishes the preliminary rates of consistency for both β̂ i and α̂k .

THEOREM 4.1. Suppose that Assumptions A.1–A.3 hold. Then,

(i) ||β̂1,i −β0
1,i || = OP (T −1 +λ) and ||β̂2,i −β∗

2,i || = OP (p1/2
2 (T −1/2 +λ))

for i = 1, . . . ,N,

(ii) 1
N

∑N
i=1 ||β̂1,i − β0

1,i ||2 = OP (b2
T T −2) and 1

N

∑N
i=1 ||β̂2,i − β∗

2,i ||2 =
OP (p2T −1),

(iii) (α̂(1), . . . , α̂(K ))− (α0
1, . . . ,α

0
K )= OP (bT T −1) where (α̂(1), . . . , α̂(K )) is a

suitable permutation of (α̂1, . . . , α̂K ).

Theorems 4.1(i) and 4.1(ii) establish the pointwise and mean square conver-
gence of β̂i = (β̂

′
1i , β̂

′
2,i )

′, respectively; Theorem 4.1(iii) indicates that α̂1, . . . , α̂K

consistently estimate the true group-specific coefficients, α0
1, . . . ,α

0
K , subject to a

suitable permutation. We summarize some interesting findings. First, despite the
presence of endogeneity in both the nonstationary and stationary regressors, we
can estimate the true coefficients (β0

1,i ) of the nonstationary regressors consis-
tently. Second, when 
20,i is nonzero, we cannot estimate the true coefficients
(β0

2,i ) of the stationary regressors consistently. Instead, β̂2,i is consistent with the

pseudo-true value β∗
2,i = β0

2,i +
−1
22,i
20,i , where 
−1

22,i
20,i signifies the endo-
geneity bias. Third, the effect of increasing dimension (p2) appears in the rates of
convergence for β̂2,i but not in those for β̂1,i . Apparently, β̂1,i ’s converge to their
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14 WENXIN HUANG ET AL.

true values faster than β̂2,i ’s to their pseudo-true values. Fourth, as in SSP, the
pointwise convergence of β̂i depends on λ while the mean square convergence of
{β̂1,i , β̂2,i } and the convergence of α̂k’s do not. As we have shown in the proof
of the above theorem, the convergence of α̂k only depends on the mean square
convergence of {β̂1,i }.

For notational simplicity, hereafter we will write α̂(k) as α̂k . We define the
estimated groups

Ĝk = {i ∈ {1,2, . . . ,N} : β̂1,i = α̂k} for k = 1, . . . ,K . (4.1)

To study the classification consistency, we need to establish the uniform consis-
tency of β̂1,i and β̂2,i . This is reported in the next theorem.

THEOREM 4.2. Suppose that Assumptions A.1–A.3 hold. Then, for any fixed
c > 0,

(i) P(max1≤i≤N ||β̂1,i −β0
1,i || ≥ cbT a1NT )= o

(
N−1

)
,

(ii) P(max1≤i≤N ||β̂2,i −β∗
2,i || ≥ cp1/2

2 a2NT )= o
(
N−1

)
,

where a1NT = T −1 N1/q (log T )(1+ε)/2 for some arbitrarily small ε > 0, and
a2NT = T −1/2 (log T )3 .

The uniform convergence rate of β̂1,i is not affected by p2 but is slower than
the time series convergence rate T −1. The higher q is (which means the higher
order moments for the error terms), the closer a1NT is to T −1. When the er-
ror terms have exponentially decaying tails as assumed in Bonhomme and Man-
resa (2015), we can make a1NT arbitrarily close to T −1 subject to a logarithm
factor.

4.2. Classification Consistency

To study the classification consistency, we follow SSP and define the following
two sequences of events

ÊkNT ,i = {i �∈ Ĝk|i ∈ G0
k} and F̂kNT ,i = {i �∈ G0

k |i ∈ Ĝk},

where i = 1, . . . ,N and k = 1, . . . ,K . Let ÊkNT = ∪i∈Ĝk
ÊkNT i and F̂kNT =

∪i∈Ĝk
F̂kNT i . ÊkNT denotes the error event of not classifying an element of G0

k

into the estimated group Ĝk ; and F̂kNT denotes the error event of classifying an el-
ement that does not belong to G0

k into the estimated group Ĝk . Following SSP, we
say that a classification method is individually consistent if P(ÊkNT ,i )→ 0 and
P(F̂kNT ,i )→ 0 as (N,T )→ ∞ for each i ∈ G0

k and k = 1, . . . ,K , and it is uni-

formly consistent if P(∪K
k=1 ÊkNT )→ 0 and P(∪K

k=1 F̂kNT )→ 0 as (N,T )→ ∞.
The following theorem establishes the uniform classification consistency.
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IDENTIFYING LATENT GROUPED PATTERNS 15

THEOREM 4.3. Suppose that Assumptions A.1–A.3 hold. Then, as
(N,T )→ ∞
(i) P(∪K

k=1 ÊkNT ) ≤∑K
k=1 P(ÊkNT )→ 0,

(ii) P(∪K
k=1 F̂kNT )≤∑K

k=1 P(F̂kNT )→ 0.

Theorem 4.3 implies that all individuals within a certain group, say G0
k , can be

simultaneously correctly classified into the same group (denoted as Ĝk) w.p.a.1.
Conversely, all individuals that are classified into the same group, say Ĝk , simul-
taneously correctly belong to the same group (G0

k) w.p.a.1. The result implies
that in large samples, we can virtually take the estimated group as the true group.
In particular, let N̂k = #Ĝk . One can easily show that P(Ĝk = G0

k)→ 1 so that

P(N̂k = Nk)→ 1.
Note that Theorem 4.3 is an asymptotic result and it does not ensure that all

individuals can be classified into one of the estimated groups in finite samples.
Indeed, when T is not large, some units might not be classified if λ is not suffi-
ciently big and we stick to the classification rule in (4.1). In practice, we classify
i ∈ Ĝk if β̂i = α̂k for some k = 1, . . . ,K , and i ∈ Ĝl for some l = 1, . . . ,K if
||β̂ i − α̂l || = min{||β̂i − α̂1||, . . . , ||β̂ i − α̂K ||} and

∑K
k=1 1{β̂i = α̂k} = 0. Since

Theorem 4.3 ensures
∑K

k=1 P(β̂i = α̂k) → 1 as (N,T ) → ∞ uniformly in i,
we can ignore such a modification in large samples in subsequent theoretical
analyses and restrict our attention to the classification rule in (4.1) to avoid
confusion.

4.3. Oracle Properties and Post-Lasso Estimators

To study the oracle property of the C-Lasso–based PLS estimators, we add some
notations:

Q(k) ≡ lim
Nk→∞

1

6Nk

∑
i∈G0

k

S1ψi (1)ψi (1)′ S′
1 = lim

Nk →∞
1

6Nk

∑
i∈G0

k

	11,i ,

Bk,NT ≡ B1k,NT +B2k,NT ,

B1k,NT = 1√
Nk

∑
i∈G0

k

S1

∞∑
r=0

∞∑
s=0

ψi,s+rψ
′
i,s si ,

B2k,NT = −1√
Nk

T + 1

2T

∑
i∈G0

k

S1ψi (1)ψi (1)′ si ,

V(k) ≡ lim
Nk→∞

1

Nk

∑
i∈G0

k

(
1

6
s′

i	i si S1	i S′
1 − 1

12

(
s′

i	i S′
1 ⊗ S1	i si

)
Kp1,1

)
,

V22,i =
(

−1

22,i J1,i ⊗ J2,i

)
V 0

i

(
J ′

1,i

−1
22,i ⊗ J ′

2,i

)
,
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16 WENXIN HUANG ET AL.

where si = S′
0 − S′

2

−1
22,i
20,i , J1,i = (

0p2×1,0p2×p1 , Ip2

)
, J2,i =(

1,01×p1,−
′
20,i


−1
22,i

)
, Kp1,1 is the p1 × p1 commutation matrix,3 and

V 0
i = limT →∞Var(T −1/2∑T

t=1vec
(
εitε

′
it −
i

)
).

The following theorem reports the asymptotic properties of α̂k and β̂2,i .

THEOREM 4.4. Suppose that Assumptions A.1–A.3 hold. Let S2 denote an
l × p2 selection matrix such that S2β2,i selects only l elements in β2,i , where l is
a fixed integer that does not grow with (N,T ) . Then

(i)
√

Nk T (α̂k −α0
k )−Q−1

(k)Bk,NT ⇒ N(0,Q−1
(k)V(k)Q

−1
(k)) as (N,T )→ ∞ for

k = 1, . . . ,K ,

(ii)
√

TS2

(
β̂2,i −β∗

2,i

)
⇒ N

(
0,S2V22,iS

′
2

)
as T → ∞ for each i = 1, . . . ,N.

To understand the above results, we consider the case where the group mem-
bership is known. In this case, the oracle estimators of αk and β2,i are respectively
given by

α̂oracle
k =

⎛⎜⎝∑
i∈G0

k

x̃ ′
1,i M2,i x̃1,i

⎞⎟⎠
−1 ∑

i∈G0
k

x̃ ′
1,i M2,i ỹi for k = 1, . . . ,K ,

β̂
oracle
2,i = (

x̃ ′
2,i x̃2,i

)−1
x̃ ′

2,i(ỹi − x̃1,i α̂
oracle
k ) for i ∈ G0

k,

where M2,i = IT − x̃2,i

(
x̃ ′

2,i x̃2,i

)−1
x̃ ′

2,i . One can readily show that α̂k shares the

same asymptotic bias and variance as α̂oracle
k , and similarly, β̂2,i shares the same

asymptotic bias and variance as β̂
oracle
2,i . In this case, we say that our C-Lasso

estimators α̂k and β̂2,i are asymptotically oracle efficient. As expected, α̂k may
have an asymptotic bias of order O

(
T −1

)
in the presence of endogeneity, but it

converges to its true value at the usual
√

Nk T -rate after bias correction.
A close examination of the asymptotic bias of α̂k indicates that Bk,NT can be

rewritten as the summation of two terms, B1k,NT and B2k,NT . B1k,NT appears
even without the within-group transformation as in Phillips and Moon (1999);
B2k,NT is simply due to the time-demeaning operator. As mentioned above, we
allow for both sources of endogeneity. When 
20,i �= 0, we have a contempo-
raneous correlation between the stationary regressor x2,it and the error term uit

in the cointegrating regression model. When S1
∑∞

r=0
∑∞

s=0ψi,s+rψ
′
i,s S′

0 �= 0 or
S1ψi (1)ψi (1)′ S′

0 �= 0, we allow the correlation of uit with some leads or current
values of ε1,it . When both types of correlations vanish, Bk,NT = 0, so that there
is no endogeneity bias in this special case.

3 The commutation matrix is used for transforming the vectorized form of a matrix into the vectorized form
of its transpose. For any m × n matrix A, Km,n is the mn × mn matrix which transforms vec(A) into vec(A′):
Km,n vec(A) =vec(A′).
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IDENTIFYING LATENT GROUPED PATTERNS 17

Note that we specify a selection matrix S2 in Theorem 4.4 that is not needed if
p2 is fixed. When p2 diverges to infinity, we cannot derive the asymptotic normal-
ity of β̂2,i directly. Instead, we follow the literature on inferences with a diverging
number of parameters (e.g., Fan and Peng, 2004; Lam and Fan, 2008; Lu and Su,
2015; Qian and Su, 2016a, 2016b) and prove the asymptotic normality for any
arbitrary finite linear combinations of elements of β̂2,i .

Given the estimated groups, {Ĝk,k = 1, . . . ,K }, we can obtain the post-Lasso
estimators of αk and β2,i as

α̂
post
k =

⎛⎝∑
i∈Ĝk

x̃ ′
1,i M2,i x̃1,i

⎞⎠−1 ∑
i∈Ĝk

x̃ ′
1,i M2,i ỹi for k = 1, . . . ,K ,

β̂
post
2,i = (

x̃ ′
2,i x̃2,i

)−1
x̃ ′

2,i(ỹi − x̃1,i α̂
post
k ) for i ∈ Ĝk .

We show in the proof of Theorem 4.4 that the C-Lasso estimators α̂k and β̂2,i

are asymptotically equivalent to their post-Lasso versions α̂post
k and β̂

post
2,i , respec-

tively. The following theorem reports the limiting distributions of α̂post
k and β̂

post
2,i .

THEOREM 4.5. Suppose that Assumptions A.1–A.3 hold. Then

(i)
√

Nk T (α̂post
k −α0

k )−Q−1
(k)Bk,NT ⇒ N(0,Q−1

(k)V(k)Q
−1
(k)) for k = 1, . . . ,K ,

(ii)
√

TS2(β̂
post
2,i −β∗

2,i)⇒ N
(
0,S2V22,iS

′
2

)
for i = 1, . . . ,N,

where Q(k), Bk,NT , V(k), and V22,i are as defined before Theorem 4.4 and S2 is
as defined in Theorem 4.4.

Given the asymptotic results in Theorems 4.4 and 4.5, one can make inference
as if the true group membership is known. Despite the asymptotic equivalence of
the C-Lasso estimators and their post-Lasso versions, it is well known that the
post-Lasso estimators tend to have a smaller finite sample bias in simulations and
are thus recommended for practical uses. Despite this, in order to make inference
on the long-run cointegrating relationship, we have to remove the bias. There are
two standard ways to correct the endogeneity bias in the time series literature,
namely, fully-modified least squares (FMOLS) and dynamic OLS (DOLS). In
principle, one can consider either the panel DOLS or panel FMOLS method as in
Kao and Chiang (2000) and Mark and Sul (2003) based on the estimated groups.
The procedure is standard and thus omitted. Alternatively, we can consider the
use of the DOLS idea in the C-Lasso procedure, which yields the C-Lasso-based
dynamic PLS (DPLS) estimation procedure. See the next subsection for details.

4.4. The Case of Dynamic PLS

In this subsection, we focus on the dynamic PLS (DPLS) estimation of the panel
cointegration model with latent group structures. We show that the results in The-
orems 4.4 and 4.5 continue to be valid with little modification.
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18 WENXIN HUANG ET AL.

For notational clarity, we now assume that
{

yit,x1it
}

are generated by

{
yit = μi +β ′

1,i x1,it + uit

x1,it = x1,it−1 + ε1,it ,
(4.2)

where μi , uit , and ε1,it are defined as before, and β1,i ’s exhibit the latent struc-
tures in (2.3).

To consider the panel DPLS estimation method, we follow Saikkonen (1991)
and Stock and Watson (1993) and make the following assumption.

Assumption A.4. (i) The process {uit } can be projected on to {ε1,it } as fol-
lows: uit = ∑∞

j=−∞ γi j ε1,i,t+ j + vit , where
∑∞

j=−∞ ‖γi j ‖ < ∞, vit is an error

term with mean zero and finite 2q th moment where q > 4, and vit and ε1,it are
uncorrelated for all lags and leads.

(ii) As (N,T ) → ∞, there exists a > 1/2 such that T a∑| j |> p̄2
||γi j || → 0,

N1/2T 1/2−a → 0, and N1/2 p̄2T −a → 0.
Assumption A.4(i) ensures that E(ε1,itvit+k) = 0 for k = 0,±1,±2, . . . and

Assumption A.4(ii) ensures that the values of ε1,it in the very remote past and
future have only negligible impacts on uit . Therefore, we can truncate the leads
and lags and run the following DOLS regression model

yit = μi +β ′
1,i x1,it +

p̄2∑
j=− p̄2

γ ′
i j�x1,i,t+ j + v†

it , (4.3)

where v†
it = va

it + vit , and va
it = ∑

| j |> p̄2
γ ′

i j�x1,i,t+ j signifies the approxima-
tion/truncation error. Let x2,it denote a collection of the lags and leads of
�x1,it : x2,it = (�x ′

1,i,t− p̄2
, . . . ,�x ′

1,i,t+ p̄2
)′. Let β2,i = (γ ′

i,− p̄2
, . . . ,γ ′

i p̄2
)′ and

p2 = (2 p̄2 + 1)p1. After the within-group transformation, we have the following
model

ỹit = β ′
1,i x̃1,it +

p̄2∑
j=− p̄2

γ ′
i j �̃x1,i,t+ j + ṽ†

it = β ′
1,i x̃1,it +β ′

2,i x̃2,it + ṽ†
it , (4.4)

where ṽ†
it = v†

it − v̄†
i , v̄

†
i = 1

T −2 p̄2

∑T − p̄2
t= p̄2+1 v

†
it , and ỹit and x̃2,i are analogously

defined.
As before, we can continue to consider the C-Lasso-based PLS regression and

obtain the Lasso estimators of β1,i , β2,i , and αk . We denote these estimators as

β̂
D
1,i , β̂

D
2,i , and α̂D

k , where D abbreviates DPLS. Let Ĝk denote the estimated
group as before. The corresponding post-Lasso estimators of αk and β2,i take the
form
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IDENTIFYING LATENT GROUPED PATTERNS 19

α̂
D, post
k =

⎛⎝∑
i∈Ĝk

x̃ ′
1,i M2,i x̃1,i

⎞⎠−1 ∑
i∈Ĝk

x̃ ′
1,i M2,i ỹi for k = 1, . . . ,K ,

β̂
D, post
2,i = (

x̃ ′
2,i x̃2,i

)−1
x̃ ′

2,i

(
ỹi − x̃1,i α̂

D, post
k

)
for i ∈ Ĝk,

where x̃1,i = (
x̃1,i, p̄2+1, . . . , x̃1,i,T − p̄2

)′
, ỹi and x̃2,i are analogously defined, and

M2,i = IT −2 p̄2 − x̃2,i

(
x̃ ′

2,i x̃2,i

)−1
x̃ ′

2,i .

The following theorem shows the asymptotic properties of α̂D, post
k and β̂

D, post
2,i

where expressions for both V(k) and V22,i are greatly simplified.

THEOREM 4.6. Suppose that Assumptions A.1, A.2(i)–(iii), and A.3–A.4 hold.
Suppose that there exists a constant c00 such that min1≤i≤N 
00,i ≥ c00> 0. Then

(i)
√

Nk T (α̂D,post
k −α0

k )⇒ N(0, Q−1
(k)V

†
(k)Q

−1
(k)) for k = 1, . . . ,K ,

(ii)
√

TS2(β̂
D,post
2,i −β0

2,i)⇒ N
(
0,S2V22,iS

′
2

)
for i = 1, . . . ,N,

where Q(k) ≡ limNk →∞ 1
6Nk

∑
i∈G0

k
	11,i , V

†
(k) ≡ limNk→∞ 1

Nk

∑
i∈G0

k
1
6	

†
00,i	11,i , 	

†
00,i = 	00,i − 	01,i	

−1
11,i	10,i and V22,i = 
−1

22,i V22,i

−1
22,i

with V22,i = limT →∞Var(T −1/2∑T
t=1 x2,it uit ).

Even though we have not stated in the above theorem, α̂D
k and β̂

D
2,i are asymp-

totically equivalent to α̂D,post
k and β̂

D,post
2,i , respectively. Thus, both C-Lasso–

based DPLS estimators and their post-Lasso versions have asymptotic normal
distributions and are asymptotically oracle efficient. One can readily construct the
usual t-statistics and F-statistics to make inference. For example, to make infer-
ence on the group-specific long-run cointegrating relationship, we can estimate
Q(k) and V

†
(k), respectively by4

Q̂(k) = 1

N̂k T 2

∑
i∈Ĝk

x̃ ′
1,i M2,i x̃1,i and V̂

†
(k) ≡ 1

N̂k

∑
i∈Ĝk

1

6
	̂†

00,i	̂11,i ,

where 	̂†
00,i = 	̂00,i − 	̂01,i	̂

−1
11,i	̂10,i , and 	̂00,i , 	̂11,i, 	̂01,i , and 	̂10,i denote

the HAC estimator of the long-run variance-covariance components	00,i , 	11,i ,

4 Noting that by Lemma A.4(i)

Qk,NT = 1

Nk T 2

∑
i∈G0

k

x̃′
1,i x̃1,i − 1

Nk T 2

∑
i∈G0

k

(
x̃′

1,i x̃2,i

)(
x̃′

2,i x̃2,i

)−1 (
x̃′

2,i x̃1,i

)

≡ 1

Nk T 2

∑
i∈G0

k

x̃′
1,i x̃1,i + OP

(
b−1

T

)
= 1

Nk T 2

∑
i∈G0

k

x̃′
1,i x̃1,i +oP (1) ,

we can also consistently estimate Q(k) by Q̃(k) = 1
N̂k T 2

∑
i∈Ĝk

x̃′
1,i x̃1,i .
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20 WENXIN HUANG ET AL.

	01,i , and 	10,i in 	i . In practice, we recommend the use of α̂D,post
k and β̂

D,post
2,i

because the post-Lasso estimators typically outperform the C-Lasso ones.

4.5. The Case of Incidental Time Trends

Our panel cointegration model can be extended to models with both individual
fixed effects and incidental time trends:{

yit = μi +ρi t +β ′
1,i x1,it +β ′

2,i x2,it + uit

x1,it = μ1,i + x1,it−1 + ε1,it ,
, (4.5)

where i = 1, . . . ,N and t = 1, . . . ,T, ρi t denotes the incidental time trend, we
allow for the presence of an intercept term μ1,i in the I(1) process

{
x1,it

}
, and

the other variables are defined as before. The above model reduces to model (2.1)
when ρi = 0 andμ1i = 0 for all i. In that case, we have employed the within-group
demeaned transformation to eliminate the individual fixed effects. In the presence
of both individual effects and incidental time trends in the above model, we can
similarly employ the within-group detrended data to eliminate both individual
fixed effects and incidental time trends. Specifically, we consider the detrended
model:

ẏit = β ′
1,i ẋ1,it +β ′

2,i ẋ2,it + u̇it , (4.6)

where ẏit = yit −∑T
t=1 yit g′

t

(∑T
s=1 gsg′

s

)−1
gt with gt = (1, t)′, and ẋ1,it , ẋ2,it ,

and u̇it are analogously defined. Then we can apply the same estimation proce-
dure as used in Section 2.2 with the dotted variables replacing the tilded vari-
ables. The asymptotic properties of the resulting C-Lasso estimators and their
post-Lasso versions will be modified by changing the demeaned Brownian mo-
tion to the detrended one in the limiting distributions.

To see this point clearly, we observe that

x1,it = x1,i0 +μ1,i t +
t∑

s=1

ε1,is = x1,i0 +μ1,i t + x0
1i,t ,

where x0
1,it = ∑t

s=1 ε1,is is a purely random walk process. Define κT =
diag(1,T −1) and g(r)= (1,r)′. Let t = �Tr�, the integer part of T r for r ∈ [0,1].
Then as T → ∞, κT gt → g(r) uniformly in r ∈ [0,1]. By the functional central
limit theorem and continuous mapping theorem, we have

1√
T

ẋ1,i�T r� = 1√
T

⎡⎣x1,i�T r� −
T∑

t=1

x1,it g′
t

(
T∑

s=1

gs g′
s

)−1

gt

⎤⎦
= 1√

T

⎡⎣x0
1,i�T r� −

T∑
s=1

x0
1,it g′

t

(
T∑

s=1

gsg′
s

)−1

gt

⎤⎦
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IDENTIFYING LATENT GROUPED PATTERNS 21

= x0
1,i�T r�√

T
− 1

T

T∑
t=1

x0
1,it√
T
κT g′

t

(
1

T

T∑
t=1

κT gt g
′
tκT

)−1

κT gT

⇒ B1,i(r)−
∫

B1,i(r)g(r)
′dr

(∫
g(r)g(r)′

)−1

g(r)≡ Bτ1,i(r),

where B1,i(·) is as defined below (3.4), and Bτ1,i (·) is a detrended Brownian mo-
tion and independent across i . Following the analysis in Sections 4.1–4.4, we can
show that Theorems 4.1–4.3 continue to hold with the demeaned data replaced by
the detrended data, and that the limiting distributions in Theorems 4.4–4.6 can be
modified accordingly to account for different asymptotic moments on Qk and Vk

with the demeaned Brownian motion replaced by the detrended Brownian motion.
For brevity, we do not report the details here.

5. MONTE CARLO SIMULATION

In this section, we evaluate the finite sample performance of both PLS-based and
DPLS-based C-Lasso estimates and their post-Lasso versions.

5.1. Data Generating Processes

We consider five data generating processes (DGPs). The observations in DGPs 1–
3 are drawn from three groups with N1 : N2 : N3 = 0.3 : 0.4 : 0.3. DGPs 4–5 try to
mimic the estimates and estimated group structures in the empirical application,
where observations in DGP 4 are drawn from two groups with N1 : N2 = 0.9 : 0.1,
and those in DGP 5 are drawn from three groups with N1 : N2 : N3 = 0.5 : 0.3 : 0.2.
There are four combinations of the sample sizes with N = 50, 100 and T = 40,
80.

DGP 1 (Strictly exogenous nonstationary regressors). The observations
(yit ,x ′

it ) are generated from the following cointegrated panel{
yit = μi +β0′

i xit + uit = μi +β0′
1,i x1,it + uit

x1,it = x1,it−1 + ε1,it
, (5.1)

where μi ∼ IID N(0,1), xit = x1,it is a 2 ×1 vector, εit = (uit , ε
′
1,it )

′ follows a

multivariate standard normal distribution, and β0
i = β0

1,i exhibits the group struc-
tures in (2.3) for K = 3 and

(α0
1 ,α

0
2 ,α

0
3)=

((
0.4
1.6

)
,

(
1
1

)
,

(
1.6
0.4

))
.

DGP 2 (Weakly dependent nonstationary regressors). The observations
(yit ,x ′

it ) are generated via (5.1) but we now allow for correlations between the
two nonstationary regressors in x1,it , the correlations between x1,it and μi , and
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the correlations between uit and ε1,it . Specifically, for each i we generate a 4-

dimensional time series
{
ε†

it , t ≥ 1
}

via a linear process ε†
it = ∑∞

j=1ψi j ei,t− j ,

where eit are IID N (0, I4) , ψi j = 0.5 · j−3.5 ·	1/2
1 , and 	1/2

1 is the symmet-

ric square root of 	1 ≡

⎛⎜⎜⎝
1 0.3 0.2 0

0.3 1 0.2 0.2
0.2 0.3 1 0.2
0 0.2 0.2 1

⎞⎟⎟⎠ . Then we set uit = S0ε
†
it ,

ε1,it = S1ε
†
it , and μi = Sμε

†
i1, where S0 = (1,0,0,0) , S1 =

(
0 1 0 0
0 0 1 0

)
, and

Sμ = (0,0,0,1).

DGP 3 (Weakly dependent nonstationary and stationary regressors). The ob-
servations (yit ,x ′

it ) are generated from the following cointegrated panel{
yit = μi +β0′

i xit + uit = μi +β0′
1,i x1,it +β0

2i x2,it + uit

x1,it = x1,it−1 + ε1,it
,

where x1,it is a 2 × 1 vector, β0
1,i exhibits the group structures and preserves the

setting in DGP 1, and x2,it = ε2,it contains a scalar stationary regressor. The
coefficients of the stationary regressors are heterogeneous across all i such that
β2,i ∼ IID N(0.5,1). To allow correlation between μi and xit , for each i we

first generate a 5-dimensional time series
{
ε†

it , t ≥ 1
}

via a linear process ε†
it =∑∞

j=1ψi j ei,t− j , where eit are IID N (0, I5) , ψi j = 0.5 · j−3.5 ·	1/2
2 , and 	1/2

2 is

the symmetric square root of 	2 ≡

⎛⎜⎜⎜⎜⎝
1 0.3 0.2 0.2 0

0.3 1 0.2 0 0.2
0.2 0.2 1 0 0.2
0.2 0 0 1 0.2
0 0.2 0.2 0.2 1

⎞⎟⎟⎟⎟⎠ . Then we set

uit = S0ε
†
it , ε1,it = S1ε

†
it , ε2,it = S2ε

†
it , andμi = Sμε

†
i1,where S0 = (1,0,0,0,0) ,

S1 =
(

0 1 0 0 0
0 0 1 0 0

)
, S2 = (0,0,0,1,0) and Sμ = (0,0,0,0,1).

DGP 4 (Mimicking the first subsample in Table 5). The observations (yit ,x ′
it )

are generated via (5.1), where xit = x1,it contains one nonstationary regressor.

For each i , we first generate a 3-dimensional time series
{
ε†

it , t ≥ 1
}

via a linear

process ε†
it =∑∞

j=1ψi j ei,t− j , eit are IID N (0, I3) , ψi j = 0.5 · j−3.5 ·	1/2
1 , and

	
1/2
1 is the symmetric square root of	1 ≡

⎛⎝ 1 0.3 0
0.3 1 0.2
0 0.2 1

⎞⎠ . Then we set uit =

S0ε
†
it , ε1,it = S1ε

†
it , and μi = Sμε

†
i1, where S0 = (1,0,0) , S1 = (0,1,0), and

Sμ = (0,0,1). β0
i = β0

1,i exhibits the group structures in (2.3) for K = 2 with

(α0
1 ,α

0
2)= (0.9,−0.7), which is the collection of the group-specific estimates for
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the first subsample in Table 5. Note that we set N1 : N2 = 0.9 : 0.1 for this DGP.
DGP 5 (Mimicking the second subsample in Table 5). The observations

(yit ,x ′
it ) are generated via (5.1). The innovation processes are generated via the

same processes in DGP 4. Now, β0
i = β0

1,i exhibits the group structures in (2.3) for

K = 3 with (α0
1,α

0
2 ,α

0
3) = (0.9,0.2,−0.6), the collection of the group-specific

estimates for the second subsample in Table 5. Note that for this DGP we set
N1 : N2 : N3 = 0.5 : 0.3 : 0.2,which is close to 49 : 27 : 23, the ratios of estimated
numbers of elements in the three estimated groups.

In all cases, the number of replications is 10,000.

5.2. Classification and Estimation

For the moment, we assume that the number of groups is known and examine
the performance of classification and estimation. When the number of groups is
unknown, we can apply the information criterion (IC) introduced in Section C of
the online supplement to determine the number of groups. We also examine the
finite sample performance of the IC in Section E of the online supplement.

For classification, we consider the PLS-based C-Lasso classification results for
DGPs 1, 2, 4, and 5, and both the PLS- and DPLS-based C-Lasso classification
results for DGP 3. For the DPLS-based classification in DGP 3, we introduce
the lags and leads of �x1,it in our penalized estimation by setting p̄2 = �T 1/4�.
We follow Section 4.2 and define two types of average classification errors:
P̄(Ê)= 1

N

∑N
i=1 P̂(∪K

k=1 ÊkNT ,i ) and P̄(F̂)= 1
N

∑N
i=1 P̂(∪K

k=1 F̂kNT ,i ),where P̂
is the empirical mean over 10,000 replications. Table 1 reports the classification
errors by setting λ = cλT −3/4 with cλ = 0.1 and 0.2.5 We summarize some im-
portant findings from Table 1. First, both types of classification errors vary over
cλ. The smaller value of cλ, the smaller percentage of the classification errors.
This means that a larger value of penalty term tends to lead to a higher rate of
misclassification. Second, as T increases, the percentage of classification errors
drops significantly. In fact, when T is 80, we have less than 1% of individuals mis-
classified in all cases under investigation. Third, for DGP 3, the performance of
the DPLS-based C-Lasso classification is not as good as that of the PLS-based C-
Lasso estimation. Despite this fact, the former performance becomes acceptable
when T = 80 for both choices of cλ.

For the estimation, we consider both the C-Lasso estimates and their post-Lasso
versions. Specifically, for all DGPs we consider the PLS-based C-Lasso estimates,
the OLS-based post-Lasso estimates, the DOLS-based post-Lasso estimates, and
the oracle estimates that are obtained by using the true group structures. For DGP
3, we also consider the DPLS-based C-Lasso estimates, their post-Lasso versions,
and the oracle estimates. For all DOLS-based estimates, we set p̄2 as above. We
report the bias, root-mean-square error (RMSE), and coverage probability of the
two-sided nominal 95% confidence interval for the estimate β̂1,i (1) of the first

5 See Section D in the online supplement for more details on the determination of λ in practice.
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TABLE 1. Empirical classification errors in per-
centage

cλ 0.1 0.2
N T P̄(Ê) P̄(F̂) P̄(Ê) P̄(F̂)

DGP1 50 40 0.212 0.221 0.515 0.410
50 80 0.000 0.000 0.001 0.001

100 40 0.218 0.226 0.475 0.384
100 80 0.000 0.000 0.001 0.001

DGP2 50 40 0.483 0.506 0.875 0.728
50 80 0.000 0.000 0.003 0.002

100 40 0.500 0.518 0.796 0.667
100 80 0.000 0.000 0.004 0.003

DGP3 50 40 0.535 0.563 0.799 0.684
(PLS) 50 80 0.001 0.001 0.005 0.004

100 40 0.532 0.562 0.745 0.640
100 80 0.000 0.000 0.003 0.002

DGP3 50 40 6.337 5.630 12.255 9.700
(DPLS) 50 80 0.038 0.031 0.186 0.141

100 40 6.027 5.432 11.453 9.138
100 80 0.033 0.026 0.157 0.120

DGP4 50 40 1.234 0.834 0.821 0.543
50 80 0.014 0.008 0.004 0.002

100 40 1.225 0.823 0.801 0.527
100 80 0.011 0.007 0.004 0.003

DGP5 50 40 0.000 0.000 0.040 0.004
50 80 0.000 0.000 0.000 0.000

100 40 0.000 0.000 0.032 0.004
100 80 0.000 0.000 0.001 0.000

parameter β1,i (1) in β1,i for each DGP in Tables 2–3, where all criteria are aver-
aged over different groups and across 10,000 replications. For example, we calcu-
late the RMSE of β̂1,i (1)’s as 1

N

∑K0
k=1 NkRMSE(α̂k,1) with α̂k,1 denoting the first

element in α̂k for one replication and then average them across all replications for
each case.

Table 2 reports the estimation results for DGPs 1–2 and 4–5 based on the PLS
method. Table 3 reports the estimation results for DGP 3 based on both the PLS
and DPLS methods.6 These tables reveal some general patterns. First, the bias and
RMSE of the C-Lasso estimates and their post-Lasso versions always decrease as
either N or T increases, and they decrease faster when T increases than when N
increases. This is as expected due to faster convergence rate of the estimates along
the time dimension than along the cross-sectional dimension. Second, when there
is no endogeneity issue in DGP1, the finite sample performance of the post-Lasso
OLS estimates is close to that of the oracle ones and dominates that of the DOLS-
based post-Lasso estimates. This indicates that the DOLS may hurt in finite sam-
ples when there is no endogeneity issue in the model. Third, when endogeneity is

6 The estimation results for cλ = 0.1 are available upon request.
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TABLE 2. RMSEs, Biases, and Coverage probabilities for various estimates

N T cλ = 0.2 RMSE Bias Coverage % RMSE Bias Coverage %
DGP1-PLS DGP2-PLS

50 40 C-Lasso 0.0174 0.0001 93.05 0.0287 0.0223 85.67
Post-LassoO L S 0.0173 0.0001 93.24 0.0276 0.0211 87.47
Post-LassoDO L S 0.0226 0.0000 84.58 0.0215 0.0001 94.72
Oracle 0.0172 0.0001 93.30 0.0215 0.0000 94.73

50 80 C-Lasso 0.0082 0.0001 93.51 0.0138 0.0107 75.74
Post-LassoO L S 0.0082 0.0001 93.55 0.0135 0.0105 76.98
Post-LassoDO L S 0.0091 0.0001 90.27 0.0088 0.0000 94.15
Oracle 0.0082 0.0001 93.55 0.0088 0.0000 94.15

100 40 C-Lasso 0.0122 0.0001 93.75 0.0252 0.0218 73.51
Post-LassoO L S 0.0121 0.0001 94.01 0.0240 0.0205 77.62
Post-LassoDO L S 0.0155 0.0001 85.75 0.0148 0.0001 95.82
Oracle 0.0120 0.0001 94.08 0.0148 0.0001 95.85

100 80 C-Lasso 0.0056 0.0000 94.42 0.0120 0.0105 59.63
Post-LassoO L S 0.0056 0.0000 94.42 0.0117 0.0101 62.00
Post-LassoDO L S 0.0063 0.0001 91.57 0.0060 0.0001 95.26
Oracle 0.0056 0.0000 94.42 0.0060 0.0001 95.27

DGP4-PLS DGP5-PLS
50 40 C-Lasso 0.0290 0.0233 73.88 0.0263 0.0226 52.22

Post-LassoO L S 0.0285 0.0226 76.03 0.0263 0.0226 52.21
Post-LassoDO L S 0.0188 −0.0001 93.57 0.0139 0.0001 94.18
Oracle 0.0188 0.0001 93.70 0.0139 0.0001 94.18

50 80 C-Lasso 0.0140 0.0114 68.02 0.0128 0.0110 44.90
Post-LassoO L S 0.0139 0.0112 68.76 0.0128 0.0110 44.89
Post-LassoDO L S 0.0081 0.0000 94.06 0.0061 −0.0001 94.31
Oracle 0.0081 0.0000 94.06 0.0061 −0.0001 94.31

100 40 C-Lasso 0.0259 0.0229 53.83 0.0242 0.0223 24.31
Post-LassoO L S 0.0252 0.0221 58.16 0.0243 0.0223 24.27
Post-LassoDO L S 0.0130 −0.0002 94.22 0.0097 0.0000 94.31
Oracle 0.0130 0.0000 94.32 0.0097 0.0000 94.31

100 80 C-Lasso 0.0126 0.0113 46.00 0.0119 0.0109 18.40
Post-LassoO L S 0.0124 0.0110 47.67 0.0119 0.0109 18.40
Post-LassoDO L S 0.0057 0.0000 94.49 0.0043 0.0000 94.45
Oracle 0.0057 0.0000 94.49 0.0043 0.0000 94.45

present in DGPs 2–5, the post-Lasso DOLS estimators are distinctly superior to
the C-Lasso and post-Lasso OLS ones for all cases and their performance is very
close to that of the oracle ones. Since the endogeneity issue is not well accounted
for the C-Lasso and post-Lasso OLS estimates, their coverage probabilities may
deteriorate when N or T increases. Fourth, for DGP 3 the DPLS-based C-Lasso
estimates outperform the PLS-based C-Lasso estimates to a great margin, but the
post-Lasso estimates are not quite distinct from each other in terms of bias and
RMSE. Fifth, the coverage probabilities of the DOLS-based post-Lasso estimates
are generally quite close to the nominal level (95%) in all cases (except for DGP
1 in the absence of endogeneity). For DGP3, the coverage probabilities of DPLS-
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TABLE 3. RMSEs, Biases, and Coverage probabilities for various estimates

N T RMSE Bias Coverage % RMSE Bias Coverage %
DGP3-PLS DGP3-DPLS

50 40 C-Lasso 0.0275 0.0206 88.14 C-Lasso 0.0232 0.0000 93.31
Post-LassoO L S 0.0318 0.0193 81.74
Post-LassoDO L S 0.0215 0.0000 94.90 Post-Lasso 0.0227 0.0000 93.91
Oracle 0.0214 0.0000 95.02 Oracle 0.0214 0.0000 95.02

50 80 C-Lasso 0.0126 0.0094 80.41 C-Lasso 0.0087 0.0000 94.24
Post-LassoO L S 0.0156 0.0091 71.00
Post-LassoDO L S 0.0086 0.0000 94.29 Post-Lasso 0.0086 0.0000 94.28
Oracle 0.0086 0.0000 94.29 Oracle 0.0086 0.0000 94.29

100 40 C-Lasso 0.0237 0.0200 78.75 C-Lasso 0.0162 0.0000 94.67
Post-LassoO L S 0.0254 0.0184 75.25
Post-LassoDO L S 0.0148 −0.0001 96.02 Post-Lasso 0.0157 −0.0001 95.24
Oracle 0.0147 −0.0001 96.11 Oracle 0.0150 −0.0005 96.11

100 80 C-Lasso 0.0108 0.0091 67.20 C-Lasso 0.0060 0.0000 95.11
Post-LassoO L S 0.0121 0.0088 63.49
Post-LassoDO L S 0.0060 0.0000 95.01 Post-Lasso 0.0060 0.0000 95.11
Oracle 0.0060 0.0000 95.01 Oracle 0.0059 0.0000 95.16

based C-Lasso estimates are closer to the nominal level compared to those of the
PLS-based C-Lasso estimates. These two facts suggest that the DOLS bias cor-
rection yields good coverage probability when endogeneity is present. Lastly, in
general the post-Lasso DOLS estimates outperform the C-Lasso estimates (except
for DGP 1 in the absence of endogeneity) and thus are recommended for practical
uses.

6. APPLICATION: TESTING THE PPP HYPOTHESIS

In this section, we apply our method to reinvestigate the purchasing power parity
(PPP) hypothesis in international economics.

6.1. PPP Hypothesis

The PPP hypothesis assumes that in the absence of transaction costs and trade
barriers, a basket of identical goods will have the same price in different mar-
kets when the prices are expressed in the same currency. Unlike the law of one
price for one particular good, the PPP is built on a “basket of goods,” indicat-
ing that the nominal exchange rate is adjusted by the relative general price index
for international comparison. The long-run PPP hypothesis was broadly accepted
in the postwar period before the breakdown of the Bretton Woods system in the
early 1970s. In the post–Bretton Woods period, most applied work fails to sup-
port the validity of the long-run PPP; see, e.g., Frenkel (1981) and Adler and
Lehmann (1983). Some researchers attribute this to the low power of time series
unit root tests when T is short and advocate the use of panel unit root tests. Indeed,
some panel unit root testing results favor the PPP hypothesis in the post–Bretton
Woods period; see, e.g., Oh (1996) and Papell (1997). Even so, the empirical find-
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ings are still mixed. There remain two main issues in testing the validity of the
PPP hypothesis by using panel data. One is the sample selection issue and the
other is the unobserved heterogeneity issue. Our cointegrated panel model with
latent group structures can provide a data-driven method to address these two
issues simultaneously and is expected to offer some new insights into the PPP
hypothesis.

6.2. Model and Data

The PPP hypothesis has two versions: strong and weak. We first consider the
strong PPP hypothesis. Denote the domestic price index as Pit , the corresponding
foreign price index as Pjt , and Eit as the nominal exchange rate. If the strong
PPP hypothesis holds, we have the equation Eit = Pit

Pjt
, where we suppress the

dependence of Eit on j, which is typically fixed in panel studies. In the loga-
rithmic form, we have eit = pit − pj t, where eit = log(Eit ), pit = log(Pit ), and
pj t = log(Pjt). Previous panel unit root tests are built on the equation

eit = (pit − pj t)+ uit , (6.1)

where uit stands for the real exchange rate. The rejection of the null hypothesis
that the processes {uit , t ≥ 1} are all nonstationary is regarded as evidence in favor
of the validity of the long-run PPP or mean-reversion in real exchange rates. The
most important assumption in the strong PPP hypothesis is that there exists a
one-to-one relationship between the nominal exchange rates and aggregate price
ratios. In practice, the movements may not be directly proportional, leading to the
cointegrating slopes deviating away from the unity. Pedroni (2004) modifies (6.1)
by allowing for heterogeneous coefficients across individuals and estimating the
following long-run PPP hypothesis in weak version

eit = μi +βi (pit − pj t)+ uit = μi +βi�pi j,t + uit , (6.2)

where βi is allowed to vary across countries and is expected to be positive,
�pi j,t = pit − pj t , and μi is the unobserved fixed effect for country i .

In our weak PPP model, we assume that βi exhibits the latent group structures
studied in this article. By pooling the slope coefficients within a group altogether,
we can obtain more efficient estimates than those obtained from a fully hetero-
geneous cointegrated panel model. In addition, since our C-Lasso method is a
data-driven method, we do not manually assign different countries to different
groups, which alleviates the sample selection problem.

We obtain monthly and quarterly data of the nominal exchange rate and con-
sumer price index (CPI) from January 1975 to July 2014 covering 99 countries
from International Financial Statistics. Here, we use the CPI to represent the gen-
eral price index. We choose the time span from 1975 to 2014 to cover the post–
Bretton Woods period. Given the fact that the Euro dollar was introduced to the
global financial markets as an accounting currency on 1 January 1999, we con-
sider two subsamples. We obtain a balanced panel with 67 countries in the period
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1975–1998 and another balanced panel with 99 countries in the period 1999–
2014. For the quarterly data, we have 91 time series periods in 1975Q.1–1998.Q4
and 55 times series periods in 1999.Q1–2014.Q2. For the monthly data, we have
283 time series periods in period 1975.M1–1998.M12 and 172 times series peri-
ods in 1999.M1–2014.M7.

6.3. Group and Estimation Results

In this section, we present the classification and estimation results for the quar-
terly data. The results for the monthly data are relegated to Section F in the on-
line supplement. We determine the number of groups by using the information
criterion (IC) proposed in Section C of the online supplement. Table A.2 in the
online supplement reports the information criterion with different tuning param-
eter values: λ = cλ × T −3/4 where cλ = 0.025, 0.05, 0.1, and 0.2. Obviously,
the IC is robust to the choice of tuning parameters. Following the majority rule,
we decide to select K = 2 groups for the period 1975.Q1–1998.Q4 and K = 3
groups for the period 1999.Q1–2014.Q2. Note that the IC is minimized at cλ =
0.1 and 0.05 for the first and second, subsamples respectively. We will choose
cλ = 0.1 and 0.05 for these two subsamples, respectively and report the estimation
results.

Table 4 reports the DPLS estimation results for the subsamples 1975.Q1–
1998.Q4 and 1999.Q1–2014.Q2 by using cλ = 0.1 and 0.05, respectively. We
summarize some important findings from Table 4. First, the group-specific esti-
mates vary a lot across groups, which indicates strong unobserved heterogeneities
in both subsamples. Second, both the C-Lasso estimate and its post-Lasso one for
Group 1 are reasonably close to unity in both the first and second subsamples,
which lends some positive support to the weak-form long-run PPP hypothesis. But
the estimates in Group 2 in either subsample suggest a negative long-run relation-
ship between the price index difference and the exchange rate, which contradicts
the long-run PPP hypothesis. The estimate for Group 3 in the second subsample
is positive and quite small in comparison with unity, which suggests a quite weak
proportional relation between the change in the price index and that of the ex-

TABLE 4. Estimation results for the quarterly data

Panel A: From 1975.Q1–1998.Q4
Pool Group 1 Group 2
DOLS C-Lasso post-Lasso C-Lasso post-Lasso

βi 0.7465 0.8609 0.8608 –0.7007 –0.6992
(0.0207) (0.0190) (0.0190) (0.0857) (0.0857)

Panel B: From 1999.Q1–2014.Q2
Pool Group 1 Group 2 Group 3
DOLS C-Lasso post-Lasso C-Lasso post-Lasso C-Lasso post-Lasso

βi 0.3623 0.8667 0.8681 –0.5732 –0.5775 0.1986 0.1960
(0.0184) (0.0189) (0.0189) (0.0227) (0.0228) (0.0296) (0.0296)
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change rate. Third, similar results are also observed for the monthly data, and the
long-run relationship between the nominal exchange rate and general price index
presents similar patterns in either subsample period. This indicates the robustness
of our findings.

TABLE 5. Classification results for the quarterly data

Panel A: From 1975.Q1–1998.Q4
Group 1 (N1 = 62)

Algeria Australia Austria Bahrain Belgium
Bolivia Botswana Canada Colombia Costa Rica
Cyprus Denmark Dominican Egypt El Salvador
Finland France Ghana Greece Guatemala
Honduras Hungary Iceland India Indonesia
Iran Ireland Israel Italy Ivory Coast
Jamaica Japan Jordan Kenya South Korea
Luxembourg Malta Mauritius Mexico Morocco
Nepal Netherlands New Zealand Nigeria Norway
Pakistan Paraguay Philippines Portugal Singapore
South Africa Spain Sri Lanka Sudan Sweden
Switzerland Tanzania Thailand Trinidad and Tobago Turkey
Uruguay Venezuela

Group 2 (N2 = 5)
Ecuador Kuwait Malaysia Myanmar Saudi Arabia

Panel B: From 1999.Q1–2014.Q2
Group 1 (N1 = 49)

Angola Argentina Austria Bangladesh Belgium
Botswana Brunei Canada Costa Rica Denmark
Dominican Europe Finland France Germany
Ghana Honduras Iceland Iran Italy
Jamaica Japan Jordan Luxembourg Malawi
Mexico Mongolia Morocco Mozambique Netherlands
Nigeria Norway Pakistan Romania Saudi Arbia
Sri Lanka Sudan Sweden Switzerland Tanzania
Trinidad and Tobago Tunisia Turkey Uganda United Kingdom
Ukraine Venezuela Viet Nam Zambia

Group 2 (N2 = 23)
Albania Armenia Australia Bolivia Brazil
Bulgaria Colombia Congo Croatia El Salvador
Georgia Hungary Ireland Ivory Coast Kuwait
Latvia Macau Moldova New Zealand Peru
Philippines Spain Thailand

Group 3 (N3 = 27)
Algeria Cambodia Czech Republic Egypt Guatemala
Hong Kong India Indonesia Israel Kazakhstan
Kenya South Korea Kyrgyzstan Laos Lithuania
Macedonia Malaysia Mauritius Myanmar Nepal
Paraguay Poland Portugal Russia Singapore
South Africa Uruguay

Note: Countries in bold denote coincidences of the classification results based on the monthly and
quarterly datasets.
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FIGURE 1. The geographic features of countries in the three groups in subsample 2 (1999–
2014).

Table 5 summarizes the group classification results for the two subsamples;
see also Figure 1 for the classification results for the second subsample. Interest-
ingly, we find that the majority of the countries in the first subsample are clas-
sified into Group 1, which indicates the long-run PPP holds for most countries
in the period 1975.Q1–1998.Q4. During this time span, we have only 68 coun-
tries in the dataset, and some developing countries like Argentina, Brazil, and
Russia are excluded from our subsample due to the fact that they have experi-
enced hyperinflation. For the second subsample, we find even more interesting
results. Figure 1 suggests that those countries that support the long-run PPP equi-
librium are mainly located in Europe, Africa, Middle East, and North America.
The members of Group 1 suggest a polarization of economic development. Fur-
ther, we observe that most countries in Groups 2 and 3 are either fast-growing
or middle-income countries (e.g., South Korea, Singapore, and Brazil) in the last
decades in East Asia and South America. It confirms the Balassa-Samuelson ef-
fect, where the productivity differentials are one of the most important factors
behind the PPP deviation, see Balassa (1964) and Samuelson (1964). In this case,
countries with rapidly expanding economies should tend to have more rapidly ap-
preciating exchange rates. In general, our results suggest heterogeneous behavior
in the long-run PPP hypothesis.

7. CONCLUSION

In this article, we propose a C-Lasso–based PLS procedure to estimate a cointe-
grated panel with latent group structures on the long-run cointegrating relation-
ships. We allow for completely heterogeneous short-run dynamics but assume that
long-run relationships are homogeneous within a group and heterogeneous across
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different groups. Our method can determine the individual’s group membership
consistently and estimate the parameters efficiently. To remove the asymptotic
bias in the estimators of the long-run parameters, we also consider the dynamic
PLS procedure. Simulation results confirm the asymptotic studies. An application
to testing the validity of the long-run PPP hypothesis suggests strong evidence of
latent group structures.

There are several interesting topics for future research. First, we do not al-
low for cross-sectional dependence in our model. In macro-econometrics, cross-
sectional dependence is frequently modelled via the multi-factor error structure
(Pesaran, 2006) or interactive fixed effects (Bai, 2009). Depending on whether
we allow for unit-root behavior in the factors, different methods can be called
upon (see, e.g., Bai and Ng, 2004; Bai and Kao, 2006; Bai et al., 2009; Bai and
Ng, 2010). But this certainly complicates the asymptotic analysis and deserves a
separate treatment. Second, when the dimension of the nonstationary variables is
higher than 2, multiple cointegrating relationships may exist. It is worthwhile to
consider the panel vector error-correction model or likelihood-based panel coin-
tegration analysis in this case. Third, as an anonymous referee insightfully points
out, in practice it is worthwhile to allow for the presence of a single group, e.g.,
the K th group, that contains individuals with heterogeneous slope coefficients.
As one can imagine, both the C-Lasso and K-means algorithms fail in this case
and one has to design a new algorithm to pin down the elements in the first K −1
groups. One possible way is to consider a sequential testing procedure based on
some preliminary consistent estimates of the slope coefficients as in Wang and Su
(2019). We leave these topics for future research.
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APPENDIX A: Proofs of the Main Results in Section 4

In this appendix, we first state some technical lemmas that are used in the proofs of
Theorems 4.1–4.6 and then prove these main results. The proofs of the technical lemmas
are relegated to the online supplementary Appendix B.

Let x0
1,it = ∑t

s=1 ε1,it . Noting that x1,it = x1,i0 +∑t
s=1 ε1,it and x̃1i,t = x1,it −

1
T
∑T

s=1 x1,is = x0
1,it − 1

T
∑T

s=1 x0
1,is , the initial value x1,i0 does not play a role in

our analysis. Without loss of generality, we assume that x1,i0 = 0 and write x1,it for∑t
s=1 ε1,it hereafter. Recall that

Q̂i,x̃ x̃ =
(

1
T 2

∑T
t=1 x̃1,it x̃ ′

1,it
1

T 2

∑T
t=1 x̃1,it x̃ ′

2,it
1

T 2

∑T
t=1 x̃2,it x̃ ′

1,it
1
T
∑T

t=1 x̃2,it x̃ ′
2,it

)
=
(

Q̂i,x̃1 x̃1
Q̂i,x̃1 x̃2

Q̂i,x̃2 x̃1
Q̂i,x̃2 x̃2

)
,

Q̂i,x̃ ũ =
(

1
T 2

∑T
t=1 x̃1,it ũit

1
T 2

∑T
t=1 x̃2,it ũit

)
=
(

Q̂i,x̃1 ũ
Q̂i,x̃2 ũ

)
,

Q̂i,x̃ ũ∗ =
(

1
T 2

∑T
t=1 x̃1,it ũ∗

it
1

T 2

∑T
t=1 x̃2,it ũ∗

it

)
=
(

Q̂i,x̃1 ũ∗
Q̂i,x̃2 ũ∗

)
,
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where ũ∗
it = ũit − x̃ ′

2it

−1
22,i
20,i . Let x̃1,i = (

x̃1,i1, . . . , x̃1,i N
)′
. Define x̃2,i , ũi , and ũ∗

i

analogously. Let M�,i = IT − x̃�,i (x̃
′
�,i x̃�,i )

−1 x̃ ′
�,i for �= 1,2, where IT is a T ×T identity

matrix. Recall that DT =
(

Ip1 0
0

√
T Ip2

)
.We shall abbreviate Q̂i,x̃1 x̃1

as Q̂1i frequently

for notational simplicity.
To prove the main results in the article, we need the following lemmas.

LEMMA A.1. Let S =(S1,S2) be a selection matrix, where S1 and S2 are l × p1 and
l × p2 matrices, respectively, and l is a fixed integer. Suppose that Assumptions A.1–A.3
hold. Then for each i = 1, . . . ,N,

(i) SDT Q̂i,x̃ x̃ DT S
′⇒S

(∫ 1
0 B̃1,i B̃ ′

1,i 0
0 
22,i

)
S′,

(ii) T Q̂i,x̃1 ũ∗⇒∫ 1
0 B̃1,id B ′

0,i +�10,i −
(∫ 1

0 B̃1,id B ′
2,i +�12,i

)

−1

22,i
20,i ,

(iii) T 3/2S2 Q̂i,x̃2 ũ∗⇒S2
(
J1,i ⊗ J2,i

)
N
(

0,V 0
i

)
,

(iv) T
(
β̃1,i −β0

1,i

)
⇒
(∫ 1

0 B̃1,i B̃ ′
1,i

)−1 [∫ 1
0 B̃1,i d B ′

0,i +�10,i −
(∫ 1

0 B̃1,i d B ′
2,i +�12,i

)

−1

22,i
20,i

]
,

(v)
√

TS2

(
β̃2,i −β∗

2,i

)
⇒S2

(

−1

22,i J1,i ⊗ J2,i

)
N
(

0,V 0
i

)
,

where B̃1,i = B1,i − ∫ 1
0 B1,i (r)dr , �10,i = 
10,i + �10,i , J1,i =(

0p2×1,0p2×p1 , Ip2

)
, J2,i =

(
1,01×p1 ,−
′

20,i

−1
22,i

)
, and V 0

i =
limT →∞Var(T −1/2∑T

t=1vec(εit ε
′
it −
i )).

LEMMA A.2. Suppose that Assumptions A.1–A.3 hold. Then for any fixed constant
c > 0,

(i) P
(

max1≤i≤N
1

T 2

∥∥∥x̃ ′
1,i ũi

∥∥∥≥ ca1NT

)
= o

(
N−1

)
,

(ii) P
(

max1≤i≤N

∥∥∥ 1
T x̃ ′

2,i ũi −
20,i

∥∥∥≥ cp1/2
2 a2NT

)
= o

(
N−1

)
,

(iii) P
(

max1≤i≤N
1

T 2

∥∥∥x̃ ′
1,i x̃2,i

∥∥∥ ≥ cp1/2
2 a1NT

)
= o

(
N−1

)
,

(iv) P
(

max1≤i≤N

∥∥∥ 1
T
∑T

t=1 x̃2,it x̃ ′
2,it −
22,i

∥∥∥ ≥ cp2a2NT

)
= o

(
N−1

)
,

(v) P
(

max1≤i≤N

∥∥∥Q̂i,x̃1 ũ∗
∥∥∥ ≥ ca1NT

)
= o

(
N−1

)
,

(vi) P
(

max1≤i≤N

∥∥∥T Q̂i,x̃2 ũ∗
∥∥∥≥ cp1/2

2 a2NT

)
= o

(
N−1

)
.

LEMMA A.3. Suppose that Assumptions A.1–A.3 hold. Then

(i) lim sup
T →∞

λmax

(
1

2T 2 loglogT
x̃1,i x̃ ′

1,i

)
≤
(

1
2 +c

)
c̄	11 a.s. for any fixed small

constant c > 0,

(ii) P
(

min1≤i≤N λmin(T Q̂i,x̃2 x̃2
) ≥ c22/2

)
= 1−o

(
N−1

)
,

(iii) P
(

min1≤i≤N λmin(DT Q̂i,x̃ x̃ DT ) ≥ c11/(2bT )
)

= 1−o
(

N−1
)
.
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LEMMA A.4. Suppose that Assumptions A.1–A.3 hold. Then for any constant c > 0,

(i) P
(

max1≤i≤N

∥∥∥ 1
T 2 x̃ ′

1,i M2,i x̃1,i − 1
T 2 x̃ ′

1,i x̃1,i

∥∥∥> cb−1
T

)
= o

(
N−1

)
,

(ii) P
(

max1≤i≤N

∥∥∥ 1
T x̃ ′

2,i M1,i x̃2,i −
22,i

∥∥∥> c p2a2NT

)
= o

(
N−1

)
,

(iii) P
(

max1≤i≤N

∥∥∥ 1
T 2 x̃ ′

1,i M2,i ũ
∗
i

∥∥∥> ca1NT

)
= o

(
N−1

)
,

(iv) P
(

max1≤i≤N

∥∥∥ 1
T x̃ ′

2,i M1,i ũ∗
i

∥∥∥> cp1/2
2 a2NT

)
= o

(
N−1

)
.

LEMMA A.5. Suppose that Assumptions A.1–A.3 hold. Then for any ε > 0,

(i) P
(

max1≤i≤N

∥∥∥β̃1,i −β0
1,i

∥∥∥> c bT a1NT

)
= o

(
N−1

)
,

(ii) P
(

max1≤i≤N

∥∥∥β̃2,i −β∗
2,i

∥∥∥> cp1/2
2 a2NT

)
= o

(
N−1

)
,

(iii) P
(

max1≤i≤N

∥∥∥σ̃ 2
i −
∗

0.2,i

∥∥∥> ε)= o
(

N−1
)
,

where recall that 
∗
0.2,i =
00,i −
02,i


−1
22,i
20,i .

LEMMA A.6. Suppose that Assumptions A.1–A.3 hold. Then

(i) 1
N
∑N

i=1

∥∥∥ 1
T 2 x̃ ′

1,i ũ
∗
i

∥∥∥2 = OP

(
T −2

)
,

(ii) 1
N
∑N

i=1

∥∥∥ 1
T 3/2 x̃ ′

2,i ũ
∗
i

∥∥∥2 = OP

(
p2T −2

)
,

(iii) 1
N
∑N

i=1

∥∥∥ 1
T 2 x̃ ′

1,i x̃1,i

∥∥∥2 = OP (1) ,

(iv) 1
N
∑N

i=1

∥∥∥ 1
T 2 x̃ ′

1,i x̃2,i

∥∥∥2 = OP

(
p2T −2

)
(v) 1

N
∑N

i=1

∥∥∥ 1
T 2 x̃ ′

1,i M2,i ũ
∗
i

∥∥∥2 = OP

(
T −2

)
.

To study the asymptotic distributions of the post-Lasso estimators α̂
post
k , we let

Qk,NT = 1
Nk T 2

∑
i∈G0

k
x̃ ′

1,i ×M2,i x̃1,i and Vk,NT = 1√
Nk T

∑
i∈G0

k
x̃ ′

1,i M2,i ũi for k =
1, . . . ,K . We make the following decomposition for Vk,NT = 1√

Nk T

∑
i∈G0

k
x̃ ′

1,i M2,i ũi :

Vk,N T = 1√
Nk T

∑
i∈G0

k

x̃ ′
1,i

(
ũi − x̃2,i


−1
22,i
20,i

)
+ 1√

Nk T

∑
i∈G0

k

x̃ ′
1,i x̃2,i


−1
22,i (
20,i − 1

T
x̃ ′

2,i ũi )

+ 1√
Nk T

∑
i∈G0

k

x̃ ′
1,i x̃2,i

[

−1

22,i −
(

1

T
x̃ ′

2,i x̃2,i

)−1
]

20,i

+ 1√
Nk T

∑
i∈G0

k

x̃ ′
1,i x̃2,i

[

−1

22,i −
(

1

T
x̃ ′

2,i x̃2,i

)−1
](

1

T
x̃ ′

2,i ũi −
20,i

)
≡ V1k,N T + V2k,N T + V3k,N T + V4k,N T .

The following lemma studies the asymptotic properties of Qk,NT , V�k,NT for � =
1,2,3,4, and Vk,NT .
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LEMMA A.7. Suppose that Assumptions A.1–A.3 hold. Then

(i) Qk,NT
P→ Q(k),

(ii) V1k,NT −Bk,NT ⇒ N
(
0,V(k)

)
,

(iii) V2k,NT = oP (1) ,

(iv) V3k,NT = oP (1)

(v) V4k,NT = oP (1) ,

(vi) Vk,NT −Bk,NT ⇒ N
(
0,V(k)

)
,

where Q(k), Bk,NT , and V(k) are as defined before Theorem 4.4.

To consider the DOLS estimator. Let ṽa
i =

(
ṽa

i, p̄2+1, . . . , ṽ
a
i,T − p̄2

)′
, ṽa

it = va
it −

1
T −2 p̄2

∑T − p̄2
t= p̄2+1 v

a
it , where va

it = ∑
| j |≥ p̄2

γ ′
i, j�x1,i,t− j signifies the approxima-

tion error. Adjust the definitions of x̃1,i and M2,i to use the time series ob-
servations x�,i = (x�,i, p̄2+1, . . . , x�,i,T − p̄2)

′, � = 1,2, where recall that x2,it =
(�x ′

1,i,t− p̄2+1, . . . ,�x ′
1,i,t+ p̄2

)′.

LEMMA A.8. Let the conditions in Theorem 4.6 hold. Then
1√
Nk T

∑
i∈G0

k
x̃ ′

1,i M2,i ṽ
a
i = oP (1).

Proof of Theorem 4.1. (i) First, noting that β2,i ’s do not enter the penalty term in
the PLS objective function in (2.7), we can concentrate them out to obtain the following
objective function

QK ,c
NT ,λ(β1,α)=

1

N

N∑
i=1

Qc
NT ,i (β1,i )+ λ

N

N∑
i=1

(σ̃ i )
2−K

K∏
k=1

‖ Q̂1i (β1,i −αk) ‖ . (A.1)

where Qc
NT ,i (β1,i )= 1

T 2

∥∥M2,i ( ỹi − x̃1,iβ1,i )
∥∥2
. Let QK ,c

NT i,λ(β1i ,α)= Qc
NT ,i (β1,i )+

λ(σ̃ i )
2−K ∏K

k=1 ||Q̂1i (β1,i −αk)||. Then QK ,c
NT ,λ(β1,α) = 1

N
∑N

i=1 QK ,c
NT i,λ(β1,i ,α).

Let b̂1,i = β̂1,i − β0
1,i and b̂2,i = β̂2,i − β∗

2,i . Noting that M2,i ( ỹi − x̃1,iβ1,i ) =
M2,i

[
ũi − x̃1,i (β1,i −β0

1,i )
]
, we have

QNT ,i (β̂1,i )− QNT ,i (β
0
1,i )=

1

T 2

∥∥∥M2,i (ũi − x̃1,i b̂1,i )
∥∥∥2 − 1

T 2

∥∥M2,i ũi
∥∥2

= b̂′
1,i Q̆i,x̃1 x̃1

b̂1,i −2b̂′
1,i Q̆i,x̃1 ũ , (A.2)

where Q̆i,x̃1 x̃1
= 1

T 2 x̃ ′
1,i M2,i x̃1,i and Q̆i,x̃1 ũ = 1

T 2 x̃ ′
1,i M2,i ũi . By the triangle and reverse

triangle inequalities, the fact that ‖Ab‖ ≤ ‖A‖sp‖b‖ for conformable matrix A and vector
b, we have∣∣∣∣∣∣

K∏
k=1

‖Q̂1i (β̂1,i −αk )‖−
K∏

k=1

‖Q̂1i (β
0
1,i −αk)‖

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
K −1∏
k=1

‖Q̂1i (β̂1,i −αk )‖{‖Q̂1i (β̂1,i −αK )‖−‖Q̂1i (β
0
1,i −αK )‖}

∣∣∣∣∣∣
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+
∣∣∣∣∣∣
K −2∏
k=1

‖Q̂1i (β̂1,i −αk )‖‖Q̂1i (β
0
1,i −αK )‖{‖Q̂1i (β̂1,i −αK −1)‖−‖Q̂1i (β

0
1i −αK −1)‖}

∣∣∣∣∣∣
+···+

∣∣∣∣∣∣
K∏

k=2

‖Q̂1i (β
0
1,i −αk)‖{‖Q̂1i (β̂1,i −α1)‖−‖Q̂1i (β

0
1,i −α1)‖}

∣∣∣∣∣∣
≤ĉi,N T (α)‖Q̂1i (β̂1,i −β0

1,i )‖ ≤ ĉi,N T (α)‖Q̂1i ‖sp‖b̂1,i ‖, (A.3)

where ĉi,NT (α) = ∏K−1
k=1 ‖Q̂1i (β̂1,i − αk)‖ + ∏K−2

k=1 ‖Q̂1i (β̂1,i − αk)‖‖Q̂1i (β
0
1,i −

αK )‖ + ·· ·+ |∏K
k=2 ‖Q̂1i (β

0
1,i −αk)‖ = Op(1) as ||Q̂1i ||sp = OP (1). Since β̂1,i min-

imize QK ,c
NT i,λ, we have QK ,c

NT i,λ(β̂1,i , α̂)− QK ,c
NT i,λ(β

0
1,i α̂) ≤ 0. Combining with (A.2)–

(A.3), we have

b̂′
1,i Q̆i,x̃1 x̃1

b̂1,i ≤ 2b̂′
1,i Q̆i,x̃1 ũ +λ(σ̃ i )

2−K ĉi,NT (α)‖Q̂1i‖sp‖b̂1,i‖.

Then

ci,x̃1 x̃1
‖b̂1,i‖ ≤ ‖2Q̌i,x̃1 ũ‖+λ(σ̃ i )

2−K ĉi,NT (α̂)‖Q̂1i‖sp, (A.4)

where ci,x̃1 x̃1
= λmin(Q̆i,x̃1 x̃1

) = λmin(Q̂i,x̃1 x̃1
−T 1/2 Q̂i,x̃1 x̃2

(T Q̂i,x̃2 x̃2
)−1

T 1/2 Q̂i,x̃2 x̃1
) ≥ λmin(Q̂i,x̃1 x̃1

)− oP (1) is bounded away from zero in probability by
Lemma A.1(i). In fact, we can apply Lemmas A.2(iii)–(iv) and Assumptions A.2(i),
A.2(iii), and A.3(iii)–(iv) and show that

P

(
min

i
bT ci,x̃1 x̃1

≥ c11/2

)
= 1−o

(
N−1

)
. (A.5)

Then, by Lemmas A.1(i), A.2(iv), A.5(iii), and Assumption A.2(iii),

‖b̂1,i ‖ ≤ c−1
i,x̃1 x̃1

(
2‖Q̆i,x̃1 ũ‖+λ(σ̃ i )

2−K ĉi,NT (α̂)‖Q̂1i‖sp

)
= OP (T

−1 +λ), (A.6)

because

‖Q̆i,x̃1 ũ‖ = 1

T 2

∥∥∥x̃ ′
1,i M2,i ũi

∥∥∥= 1

T 2

∥∥∥x̃ ′
1,i M2,i ũ∗

i

∥∥∥
=
∥∥∥Q̂i,x̃1 ũ∗ − Q̂i,x̃1 x̃2

(Q̂i,x̃2 x̃2
)−1 Q̂i,x̃1 ũ∗

∥∥∥
≤
∥∥∥Q̂i,x̃1 ũ∗

∥∥∥+ T −1
∥∥∥T Q̂i,x̃1 x̃2

∥∥∥∥∥∥T Q̂i,x̃2 ũ∗
∥∥∥∥∥∥(T Q̂i,x̃2 x̃2

)−1
∥∥∥= OP

(
T −1

)
.

Now, noting that ỹi − x̃1,i β̂1,i = ũ∗
i + x̃2,iβ

∗
2,i − x̃1,i b̂1,i and β̂2,i =

(
x̃ ′

2,i x̃2,i

)−1
x̃ ′

2,i ( ỹi −
x̃1,i β̂1,i )= β∗

2,i +
(

x̃ ′
2,i x̃2,i

)−1
x̃ ′

2,i (ũ
∗
i − x̃1,i b̂1,i ), we have

∥∥∥b̂2,i

∥∥∥ =
∥∥∥β̂2,i −β∗

2,i

∥∥∥≤
∥∥∥∥∥
(

1

T
x̃ ′

2,i x̃2,i

)−1
∥∥∥∥∥

sp

{
1

T

∥∥∥x̃ ′
2,i ũ∗

i

∥∥∥+ 1

T

∥∥∥x̃ ′
2,i x̃1,i

∥∥∥∥∥∥b̂1,i

∥∥∥}
= OP (1)

{
OP (p1/2

2 T −1/2)+ OP (p1/2
2 )OP (T

−1 +λ)
}

= OP (p1/2
2 (T −1/2 +λ)), (A.7)
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as we can readily show that ||( 1
T x̃ ′

2,i x̃2,i )
−1||sp = OP (1) given Lemma A.2(iv) and As-

sumption A.2(iii), and that 1
T

∥∥∥x̃ ′
2,i ũ

∗
i

∥∥∥= OP (p1/2
2 T −1/2) and 1

T

∥∥∥x̃ ′
2,i x̃1,i

∥∥∥= OP (p1/2
2 )

as in the proof of Lemma A.1(i)–(iii).
(ii) By the Minkowski’s inequality, as (N,T )→ ∞ we have

ĉi,NT (α)≤
K−1∏
k=1

{
‖Q̂1i (β̂1,i −β0

1,i )‖+‖Q̂1i (β
0
1,i −αk)‖

}

+
K−2∏
k=1

{
‖Q̂1i (β̂1,i −β0

1,i )‖+‖Q̂1i (β
0
1,i −αk )‖

}
‖Q̂1i (β

0
1,i −αK )‖

+ . . .+
K∏

k=2

‖Q̂1i (β
0
1,i −αk )‖

=
K−1∑
s=0

‖Q̂1i (β̂1,i −β0
1,i )‖s

s∏
k=1

aks‖Q̂1i (β
0
1,i −αk)‖K−1−s

≤ CK ,NT (α)

K−1∑
s=0

‖Q̂1i (β̂1,i −β0
1,i )‖s ≤ CK ,NT (α)(1+2‖Q̂1i ‖sp‖b̂1,i ‖),

(A.8)

where aks ’s are finite integers and CK ,NT (α) = maxi max1≤s≤k≤K−1∏s
k=1 aks‖Q̂1i (β

0
1,i − αk)‖K−1−s = max1≤l≤K max1≤s≤k≤K−1

∏s
k=1 aks‖Q̂1i (α

0
l −

αk)‖K−1−s = O(1) as K is finite. Let ĈK = CK NT (α̂). By Lemmas A.3(i) and A.3(iii)
and Assumption A.3(iv), 2λĈK (σ̃ i )

2−K c−1
i,x̃1 x̃1

‖Q̂1i‖2
sp = OP (λbT loglog T ) = oP (1)

uniformly in i. Combining (A.6) and (A.8) yields

‖b̂1,i ‖ ≤
c−1

i,x̃1 x̃1

1−cNT

{
‖2Q̆i,x̃1 ũ‖+λĈK (σ̃ i )

2−K ‖Q̂1i‖sp

}
,

where cNT = 2λĈK maxi (σ̃ i )
2−K c−1

i,x̃1 x̃1
‖Q̂1i ‖2

sp = oP (1). Then by Lemmas A.5(iii) and
A.6(v),

1

N

N∑
i=1

‖b̂1,i ‖2 ≤ (
ĉx̃1 x̃1

1− cN T
)2

1

N

N∑
i=1

[‖2Q̆i,x̃1 ũ‖+λĈK (σ̃ i )
2−K ‖Q̂1i ‖]2 = OP (b

2
T (T

−2 +λ2)),

(A.9)

where ĉx̃1 x̃1
=
[
mini ci,x̃1 x̃1

]−1 = OP (bT ) by (A.5).

To refine the result in (A.9), we shall prove that 1
N
∑N

i=1 ||b̂1,i ||2 = OP (b
2
T T −2). Let

β0
1 =

(
β0′

1,1, . . . ,β
0′
1,N

)′
and β1 = β0

1 +bT T −1ν1, where ν1 = (v ′1,1, . . . ,v ′1,N )′ and ν1,i

is a p1-vector. We want to show that for any given ε∗ > 0, there exists a large constant
L = L(ε∗) such that, for sufficiently large N and T we have

P

{
inf

N−1
∑N

i=1 ‖ν1,i ‖2=L
QK ,c

NT ,λ(β
0
1 +bT T −1ν1,α̂) > QK ,c

NT ,λ(β
0
1,α

0)

}
≥ 1−ε∗. (A.10)
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This implies that w.p.a.1 there is a local minimum {β̂1,α̂} such that 1
N
∑N

i=1 ||b̂1,i ||2 =
Op(b2

T T −2) regardless of the property of α̂. By (A.2), Lemma A.3(iii), and the Cauchy-

Schwarz inequality, with probability 1−o
(

N−1
)

we have

T 2
[

QK ,c
NT ,λ(β

0
1 +bT T −1ν1,α̂)− QK ,c

NT ,λ(β
0
1,α

0)
]

= 1

N

N∑
i=1

b2
T ν

′
1,i Q̆i,x̃1 x̃1

ν1,i − 2T

N

N∑
i=1

bT ν
′
1,i Q̆i,x̃1 ũ + λT 2

N

×
N∑

i=1

(σ̃ i )
2−K

K∏
k=1

‖Q̂1i (β
0
1,i +bT T −1ν1,i − α̂k)‖

≥
⎡⎢⎣1

2
c11

1

N

N∑
i=1

‖bT ν1,i‖2 −2

⎛⎝ 1

N

N∑
i=1

‖bT ν1,i‖2

⎞⎠1/2⎛⎝T 2

N

N∑
i=1

‖Q̆i,x̃1 ũ‖2

⎞⎠1/2
⎤⎥⎦

≡ D1NT − D2NT , say.

By Lemma A.6(v), T 2

N
∑N

i=1 ‖Q̆i,x̃1 ũ‖2 = OP (1). So D1NT dominates D2NT for suffi-

ciently large L . That is, T 2[QK ,c
NT ,λ(β

0
1 +bT T −1ν1,α̂)− QK ,c

NT ,λ(β
0
1,α

0)]> 0 for suffi-

ciently large L . Consequently, we must have N−1∑N
i=1 ‖b̂1,i‖2 = OP (b

2
T T −2).

Note that
∥∥∥( 1

T x̃ ′
2,i x̃2,i )

−1
∥∥∥

sp
= [λmin(

1
T x̃ ′

2,i x̃2,i )]
−1 and

min
i
λmin(

1

T
x̃ ′

2,i x̃2,i )≥ min
i
λmin(
22,i )−max

i

∥∥∥∥ 1

T
x̃ ′

2,i x̃2,i −
22,i

∥∥∥∥
≥ c22

2
with probability 1−o

(
N−1

)
(A.11)

by Lemma A.2(iv) and Assumption A.2(iii). Then we have by (A.7), Lemmas A.2(iii)–(iv)
and A.6(ii), and Assumptions A.2(iii) and A.3(iv) that

1

N

N∑
i=1

∥∥∥b̂2,i

∥∥∥2 ≤ 2max
i

∥∥∥∥∥
(

1

T
x̃ ′

2,i x̃2,i

)−1
∥∥∥∥∥

2

sp

1

N T 2

N∑
i=1

{∥∥∥x̃ ′
2,i ũ∗

i

∥∥∥2 +
∥∥∥x̃ ′

2,i x̃1,i

∥∥∥2 ∥∥∥b̂1,i

∥∥∥2
}

≤ OP (1)

⎧⎨⎩ 1

N T 2

N∑
i=1

∥∥∥x̃ ′
2,i ũ∗

i

∥∥∥2 +max
i

1

T 2

∥∥∥x̃ ′
2,i x̃1,i

∥∥∥2 1

N

N∑
i=1

∥∥∥b̂1,i

∥∥∥2

⎫⎬⎭
= OP

(
p2T −1

)
+ OP (p2a2

1N T )OP (b
2
T T −2)= OP

(
p2T −1

)
.

(iii) Let PNT (β1,α) = 1
N
∑N

i=1
∏K

k=1 ‖β1,i − αk‖. By (A.3) and (A.8), as
(N,T )→ ∞,

|PN T (β̂1,α)− PN T (β
0
1,α)| ≤ CK ,N T (α)

1

N

N∑
i=1

‖b̂1,i ‖+2CK ,N T (α)
1

N

N∑
i=1

‖b̂1,i ‖2

≤ CK ,N T (α)

⎛⎝ 1

N

N∑
i=1

‖b̂1,i ‖2

⎞⎠1/2

+ OP (b
2
T T −2)= OP (bT T −1).

(A.12)
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By (A.12), and the fact that PNT (β
0
1,α

0)= 0 and that PNT (β̂1,α̂)− PNT (β̂1,α
0)≤ 0,

we have

0 ≥ PNT (β̂1,α̂)− PNT (β̂1,α
0)= PNT (β

0
1,α̂)− PNT (β

0
1,α

0)+ OP (bT T −1)

= 1

N

N∑
i=1

K∏
k=1

‖β0
1,i − α̂k‖+ OP (bT T −1)

= N1

N

K∏
k=1

‖α̂k −α0
1‖+ N2

N

K∏
k=1

‖α̂k −α0
2‖+ . . .+ NK

N

K∏
k=1

‖α̂k −α0
K ‖+ OP (bT T −1).

(A.13)

By Assumption A.3(i), Nk/N → τk ∈ (0,1) for each k = 1, . . .K . So (A.13) implies
that

∏K
k=1 ‖α̂k −α0

j ‖ = OP (bT T −1) for j = 1, . . . ,K . It follows that (α̂(1), . . . , α̂(K ))−
(α0

1 , . . . ,α
0
K )= OP (bT T −1). �

Proof of Theorem 4.2. (i) By Lemma A.3(i), limsupT →∞
∥∥∥Q̂1i

∥∥∥
sp

≤ 2c̄	11 log log T

a.s. By Lemma A.3(iii), P(min1≤i≤N bT ci,x̃1 x̃1
≥ c11/2) = 1 − o

(
N−1

)
. By Lemma

A.5(iii) and Assumption A.2(iv), P
(

min1≤i≤N σ̃
2
i ≥ c00/2

)
= 1−o

(
N−1

)
. Noting that

∥∥∥Q̆i,x̃1 ũ

∥∥∥2 ≤ 2
∥∥∥Q̂i,x̃1 ũ∗

∥∥∥2 +2
∥∥∥Q̂i,x̃1 x̃2

∥∥∥2 ∥∥∥T Q̂i,x̃2 ũ∗
∥∥∥2 ∥∥∥(T Q̂i,x̃2 x̃2

)−1
∥∥∥2

sp
,

we can readily apply Lemma A.2(iii)–(v) and Assumptions A.2(iii) and A.3(iii)–(iv) and

show that P(maxi

∥∥∥Q̆i,x̃1 ũ

∥∥∥ ≥ ca1NT )= o(N−1). Then by (A.4) and (A.8) we can show

that P(max1≤i≤N ||b̂1,i || ≥ cbT a1NT )= o(N−1).
(ii) By (A.7) and (A.11), Lemma A.2(vi), the result in part (i), and Assumption

A.3(iii)–(iv)

P

(
max

i

∥∥∥b̂2,i

∥∥∥ ≥ cp1/2
2 a2NT

)

≤ P

⎛⎝max
i

∥∥∥∥∥
(

1

T
x̃ ′

2,i x̃2,i

)−1
∥∥∥∥∥

sp

1

T

{∥∥∥x̃ ′
2,i ũ∗

i

∥∥∥+
∥∥∥x̃ ′

2,i x̃1,i

∥∥∥∥∥∥b̂1,i

∥∥∥}≥ cp1/2
2 a2NT

⎞⎠
≤ P

(
max

i

1

T

(∥∥∥x̃ ′
2,i ũ

∗
i

∥∥∥+
∥∥∥x̃ ′

2,i x̃1,i

∥∥∥∥∥∥b̂1,i

∥∥∥)≥ cp1/2
2 a2NT c22/2

)
+ P

(
min

i
λ

(
1

T
x̃ ′

2,i x̃2,i

)
≤ c22/2

)
≤ P

(
max

i

1

T

∥∥∥x̃ ′
2,i ũ

∗
i

∥∥∥ ≥ cp1/2
2 a2NT c22/4

)
+ P

(
max

i

1

T

∥∥∥x̃ ′
2,i x̃1,i

∥∥∥∥∥∥b̂1,i

∥∥∥ ≥ cp1/2
2 a2NT c22/4

)
+o

(
N−1

)
= o

(
N−1

)
,
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where we also use the fact maxi
1
T

∥∥∥x̃ ′
2,i x̃1,i

∥∥∥‖b̂1,i‖ = o (T a1NT )o (bT a1NT ) =
o(p1/2

2 a2NT ) with probability 1−o
(

N−1
)
. �

Proof of Theorem 4.3. We fix k ∈ {1, . . . ,K }. By the consistency of α̂k and β̂1,i , we

have β̂1,i − α̂l → α0
k −α0

l �= 0 for all i ∈ G0
k and l �= k. It follows that w.p.a.1

∥∥∥β̂1,i − α̂l

∥∥∥ �=
0 for all i ∈ G0

k and l �= k. Note that ỹit − x̃ ′
1,it β̂1,i − x̃ ′

2,it β̂2,i = ũ∗
it − x̃ ′

1,it b̂1,i − x̃ ′
2,it b̂2,i .

Now, suppose that
∥∥∥β̂1,i − α̂k

∥∥∥ �= 0 for some i ∈ G0
k . Then the first-order condition (with

respect to β1,i ) for the minimization problem in (2.7) implies that

0 = T
∂QK

i N T ,λ(β̂1, β̂2,α̂)

∂β1,i

= −2
1

T

T∑
t=1

x̃1,it (ỹit − x̃ ′
1,it β̂1,i − x̃ ′

2,it β̂2,i )+ Tλ(σ̃ i )
2−K

K∑
j=1

Q̂1i �̂i j

K∏
l=1,l �= j

∥∥∥Q̂1i (β̂1,i − α̂l )
∥∥∥

= − 2

T

T∑
t=1

x̃1,it ũ∗
it +

⎛⎝2+ λ(σ̃ i )
2−K ĉ1,ik∥∥∥Q̂1i (β̂1,i − α̂k )

∥∥∥ Q̂1i

⎞⎠T Q̂1i (β̂1,i − α̂k )

+2T Q̂i,x1 x2 b̂2,i +2T Q̂1i (α̂k −α0
k )+ Tλ(σ̃ i )

2−K
K∑

j=1, j �=k

Q̂1i �̂i j

K∏
l=1,l �= j

∥∥∥Q̂1i (β̂1,i − α̂l )
∥∥∥

≡ −B̂i1 + B̂i2 + B̂i3 + B̂i4 + B̂i5, (A.14)

where �̂i j = Q̂1i (β̂1,i − α̂ j )/
∥∥∥Q̂1i (β̂1,i − α̂ j )

∥∥∥ if
∥∥∥Q̂1i (β̂1,i − α̂ j )

∥∥∥ �= 0 and
∥∥∥�̂i j

∥∥∥ ≤ 1

otherwise, ĉ1,ik = ∏K
l=1,l �=k

∥∥∥Q̂1i (β̂1,i − α̂l )
∥∥∥ � c0

1,ik ≡ ∏K
l=1,l �=k

∥∥∥Q̂1i (α
0
k −α0

l )
∥∥∥ for

i ∈ G0
k by Theorem 4.1, where a � b signifies that a and b are of the same probability

order.
By Theorem 4.2(ii), we can readily show that P

(∥∥∥α̂k −α0
k

∥∥∥ ≥ cbT a1NT

)
= o

(
N−1

)
for any fixed c > 0. This, in conjunction with Lemma A.3(i) and Theorem 4.2(i)–(ii),
implies that∥∥∥Q̂1i

∥∥∥
sp

≤ 2c	11 loglog T and c0
k
(
c11/bT

)K−1 ≤ ĉ1,ik ≤ c0
k
(
2c	11 log log T

)K−1 a.s.,

(A.15)

where c0
k ≡∏K

l=1,l �=k

∥∥∥α0
k −α0

l

∥∥∥> 0 by Assumption A.3(ii). Then

P

(
max
i∈G0

k

∥∥∥B̂i5

∥∥∥≥ CTλ(loglog T )K bT a1NT

)
= o

(
N−1

)
(A.16)

for some large constant C > 0. By Lemma A.3(i) and Theorem 4.2(iii),

P

(
max
i∈G0

k

∥∥∥B̂i4

∥∥∥ ≥ CbT T a1NT log log T

)
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≤ P

(
max
i∈G0

k

∥∥∥2Q̂1i (α̂k −α0
k )
∥∥∥≥ CbT a1NT log log T, max

i∈G0
k

∥∥∥Q̂1i

∥∥∥
sp

≤ 2c	11 loglog T

)

+P

(
max
i∈G0

k

∥∥∥Q̂1i

∥∥∥
sp

≥ 2c	11 log log T

)

≤ P

(
max
i∈G0

k

∥∥∥α̂k −α0
k

∥∥∥≥ CbT a1NT /(4c	11 )

)
+0 = o

(
N−1

)
(A.17)

for any constant C > 0. By Lemma A.2(iii) and Theorem 4.2(ii)

P

(
max
i∈G0

k

∥∥∥B̂i3

∥∥∥≥ CT bT p2a1N T a2N T

)
= P

(
max
i∈G0

k

∥∥∥2T Q̂i,x1x2 b̂2,i

∥∥∥≥ CbT p2a1N T a2N T

)
= o

(
N−1

)
.

(A.18)

By Lemma A.5(iii), Assumptions A.2(i) and A.2(iv), we have with probability 1 − o(
N−1

)
(

Q̂1i (β̂1,i − α̂k)
)′

B̂i2 = (β̂1,i − α̂k)
′ Q̂1i

⎛⎝2+ λ(σ̃ i )
2−K ĉ1,ik∥∥∥Q̂1i (β̂1,i − α̂k )

∥∥∥ Q̂1i

⎞⎠T Q̂1i (β̂1,i − α̂k)

≥ Tλ(β̂1,i − α̂k)
′ Q̂1i

(σ̃ i )
2−K ĉ1,ik∥∥∥Q̂1i (β̂1,i − α̂k )

∥∥∥ Q̂1i Q̂1i (β̂1,i − α̂k)

≥ Tλb−1
T λmin

(
bT Q̂1i

)
(σ̃ i )

2−K ĉ1,ik

∥∥∥Q̂1i (β̂1,i − α̂k )
∥∥∥

≥ cK
11c0

k (2c̄00)
1−K/2Tλb−K

T

∥∥∥Q̂1i (β̂1,i − α̂k )
∥∥∥ . (A.19)

Define

�kN T ≡
⎧⎨⎩c11c0

k/bT ≤ min
i∈G0

k

ĉ1,ik ≤ max
i∈G0

k

ĉ1,ik ≤ 2c0
k c	11 log log T

⎫⎬⎭
∩
⎧⎨⎩max

i∈G0
k

∥∥∥B̂i5

∥∥∥ ≤ CTλ(log log T )K bT a1N T

⎫⎬⎭∩
⎧⎨⎩max

i∈G0
k

∥∥∥B̂i4

∥∥∥≤ CbT T a1N T log log T

⎫⎬⎭
∩
⎧⎨⎩max

i∈G0
k

∥∥∥B̂i3

∥∥∥ ≤ CT bT p2a1N T a2N T

⎫⎬⎭ .
Then P (�kNT ) = 1 − o

(
N−1

)
by (A.15)–(A.18). Let �c

kNT denote the complement of

�kNT . Conditional on �kNT , we have, uniformly in i ∈ G0
k ,∣∣∣∣(Q̂1i (β̂1,i − α̂k )

)′ (
B̂i2 + B̂i3 + B̂i4 + B̂i5

)∣∣∣∣
≥
∣∣∣∣(Q̂1i (β̂1,i − α̂k )

)′
B̂i2

∣∣∣∣− ∣∣∣∣(Q̂1i (β̂1,i − α̂k)
)′ (

B̂i3 + B̂i4 + B̂i5

)∣∣∣∣≥ {
cK

11c0
k (2c̄00)

1−K/2Tλb−K
T

− C
[
T bT p2a1N T a2N T +bT T a1N T log log T + Tλ(log log T )K bT a1N T

]}
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×
∥∥∥Q̂1i (β̂1,i − α̂k )

∥∥∥
≥ 1

2
cK

11c0
k (2c̄00)

1−K/2Tλb−K
T

∥∥∥Q̂1i (β̂1,i − α̂k )
∥∥∥ for sufficiently large (N,T ) ,

where the last equality follows because T bT p2a1NT a2NT + bT T a1NT log log T +
Tλ(log log T )K bT a1NT = o

(
Tλb−K

T

)
by Assumption A.3(iv). It follows that for all

i ∈ G0
k ,

P(ÊkN T ,i ) = P
(

i /∈ Ĝk |i ∈ G0
k

)
= P

(
B̂i1 = B̂i2 + B̂i3 + B̂i4 + B̂i5

)
≤ P

(∥∥∥Q̂1i (β̂1,i − α̂k)B̂i1

∥∥∥ ≥
∥∥∥Q̂1i (β̂1,i − α̂k)

(
B̂i2 + B̂i3 + B̂i4 + B̂i5

)∥∥∥)
≤ P

(∥∥∥Q̂1i (β̂1,i − α̂k)B̂i1

∥∥∥ ≥
∥∥∥Q̂1i (β̂1,i − α̂k)

(
B̂i2 + B̂i3 + B̂i4 + B̂i5

)∥∥∥ ,�kN T

)
+P

(
�c

kN T
)

≤ P

(∥∥∥B̂i1

∥∥∥≥ 1

2
cK

11c0
k (2c̄00)

1−K/2Tλb−K
T

)
+o

(
N−1

)
= o (1) ,

where the last line follows by the fact that ||B̂i1|| = OP (1) by Lemma A.1(ii) and that
Tλb−K

T → ∞ under Assumption A.3(iv).

In addition, by Lemma A.2(v) and the fact that a1NT = o
(
λb−K

T

)
under Assumption

A.3(iv),

P(∪K
k=1 ÊkNT )≤

K∑
k=1

P(ÊkNT )≤
K∑

k=1

∑
i∈Gk

P(ÊkNT ,i )

≤
K∑

k=1

∑
i∈Gk

P

(∥∥∥B̂i1

∥∥∥≥ 1

2
cK

11c0
k (2c̄00)

2−K Tλb−K
T

)
+o (1)

≤ N max
1≤i≤N

P

(∥∥∥B̂i1

∥∥∥≥ 1

2
cK

11c0
k (2c̄00)

2−K Tλb−K
T

)
+o(1)= o (1) .

(A.20)

We have completed the proof of Theorem 4.3(i).
Given (i), the proof of (ii) is similar to Theorem 4.2(ii) in SSP and thus omitted. �

Proof of Theorem 4.4. We first write our mixed panel model in vector form: ỹi =
x̃1,iβ1,i + x̃2,iβ2,i + ũi , where x̃l,i = (

x̃l,i1, . . . , x̃l,iT
)′ for l = 1,2, and ỹi and ũi are

similarly defined. Recall that M2,i = IT − x̃2,i (x̃
′
2,i x̃2,i )

−1 x̃ ′
2,i . Then we rewrite the ob-

jective function QK
NT ,λ(β1,β2,α) as follows

QK
NT ,λ(β1,β2,α)= QNT (β1,β2)+

λ

N

N∑
i=1

(σ̃ i )
2−K

K∏
k=1

‖Q̂1i (β1,i −αk )‖, (A.21)

where

QNT (β1,β2)=
1

NT 2

N∑
i=1

( ỹi − x̃1,iβ1,i − x̃2,iβ2,i )
′( ỹi − x̃1,iβ1,i − x̃2,iβ2,i ). (A.22)
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The first-order conditions are

0p1×1 = −2

T 2
x̃ ′

1,i ( ỹi − x̃1,i β̂1,i − x̃2,i β̂2,i )+λ(σ̃ i )
2−K

×
K∑

j=1

Q̂1i �̂i j

K∏
l=1,l �= j

‖Q̂1i (β̂1,i − α̂l )‖ ∀ i = 1, . . . ,N, (A.23)

0p2×1 = −2

T 2
x̃ ′

2,i ( ỹi − x̃1,i β̂1,i − x̃2,i β̂2,i ) ∀ i = 1, . . . ,N, and (A.24)

0p1×1 = λ

N

N∑
i=1

(σ̃ i )
2−K Q̂1i �̂ik

K∏
l=1,l �=k

‖Q̂1i (β̂1,i − α̂l)‖ ∀ k = 1, . . . ,K , (A.25)

where �̂i j is defined after (A.14). Let k ∈ {1, . . . ,K } be fixed. We observe that (a) ‖β̂1,i −
α̂k‖ = 0 for any i ∈ Ĝk by the definition of Ĝk , and (b) β̂1,i − α̂l

p→ α0
k − α0

l �= 0 for

any i ∈ Ĝk and l �= k. It follows that ‖�̂i j ‖ ≤ ‖1‖ for any i ∈ Ĝk and �̂i j = Q̂1i (α̂k −
α̂ j )/‖Q̂1i (α̂k − α̂ j )‖ for any i ∈ Ĝk and j �= k. Let Ĝ0 denote the set of unclassified

individuals. Given Theorem 4.3, it is easy to show that P(#Ĝ0 > 0) = o (1) . Noting that∏K
l=1 ‖Q̂1i (α̂k − α̂l )|| = 0 for any l, we have

∑
i∈Ĝk

K∑
j=1, j �=k

(σ̃ i )
2−K Q̂1i �̂i j

K∏
l=1,l �= j

‖Q̂1i (β̂1,i − α̂l )‖

=
∑

i∈Ĝk

K∑
j=1, j �=k

(σ̃ i )
2−K Q̂2

1i (α̂k − α̂ j )

‖Q̂1i (α̂k − α̂ j )‖
K∏

l=1,l �= j

‖Q̂1i (α̂k − α̂l )‖ = 0p1×1. (A.26)

It follows that by (A.25) and (A.26)

0p1×1 =
N∑

i=1

(σ̃ i )
2−K Q̂1i �̂ik

K∏
l=1,l �=k

‖Q̂1i (β̂1,i − α̂l )‖

=
∑
i∈Ĝk

(σ̃ i )
2−K Q̂1i �̂ik

K∏
l=1,l �=k

‖Q̂1i (α̂k − α̂l )‖+
∑
i∈Ĝ0

(σ̃ i )
2−K Q̂1i �̂ik

K∏
l=1,l �=k

‖Q̂1i (β̂1,i − α̂l )‖

+
K∑

j=1, j �=k

∑
i∈Ĝ j

(σ̃ i )
2−K Q̂2

1i (α̂ j − α̂k)

‖Q̂1i (α̂ j − α̂k)‖
K∏

l=1,l �= j

‖Q̂1i (α̂ j − α̂l )‖

=
∑
i∈Ĝk

(σ̃ i )
2−K Q̂1i �̂ik

K∏
l=1,l �=k

‖Q̂1i (α̂k − α̂l )‖+
∑
i∈Ĝ0

(σ̃ i )
2−K Q̂1i �̂ik

K∏
l=1,l �=k

‖Q̂1i (β̂1,i − α̂l )‖.

(A.27)

Averaging both sides of (A.23) over i ∈ Ĝk and using (A.26) and (A.27), we have

0p1×1 = 2

Nk T 2

∑
i∈Ĝk

x̃ ′
1,i (ỹi − x̃1,i α̂k − x̃2,i β̂2,i )+ λ

Nk

∑
i∈Ĝ0

(σ̃ i )
2−K Q̂1i �̂ik

K∏
l=1,l �=k

‖Q̂1i (β̂1,i − α̂l )‖.

(A.28)
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Solving β̂2,i from (A.24) as a function of β̂1,i and replacing β̂1,i by α̂k for i ∈ Ĝk yields

β̂2,i =
(

x̃ ′
2,i x̃2,i

)−1
x̃ ′

2,i ( ỹi − x̃1,i α̂k). (A.29)

Plugging (A.29) into (A.28) yields

α̂k =
⎛⎜⎝ 1

Nk T 2

∑
i∈Ĝk

x̃ ′
1,i M2,i x̃1,i

⎞⎟⎠
−1

1

Nk T 2

∑
i∈Ĝk

x̃ ′
1,i M2,i ỹi

+
⎛⎜⎝ 1

Nk T 2

∑
i∈Ĝk

x̃ ′
1,i M2,i x̃1,i

⎞⎟⎠
−1

λ

2Nk

∑
i∈Ĝ0

(σ̃ i )
2−K êik

K∏
l=1,l �=k

‖Q̂1i (β̂1,i − α̂l )‖

≡ α̂
post
k + R̂k , say.

Noting that Q̂1i �̂ik
∏K

l=1,l �=k ‖Q̂1i (β̂1,i − α̂l )‖ �= 0 only if i ∈ Ĝ0 and by (A.20), we have
that for any ε > 0

P
(√

N T ||R̂k || ≥ ε
)

≤
K∑

k=1

∑
i∈G0

k

P(i ∈ Ĝ0|i ∈ G0
k)≤

K∑
k=1

∑
i∈G0

k

P(i /∈ Ĝk |i ∈ G0
k)= o(1).

That is,
√

N T ||R̂k || = oP (1) and α̂k is asymptotically equivalent to its post-Lasso estima-
tor α̂Ĝk

. Similarly, given the fast convergence rate of α̂Ĝk
, β̂2,i in (A.29) is also asymp-

totically equivalent to its post-Lasso version β̂
post
2,i , where β̂

post
2,i =

(
x̃ ′

2,i x̃2,i

)−1
x̃ ′

2,i ( ỹi −
x̃1,i α̂

post
k ) for each i ∈ Ĝk .We formally study the asymptotic properties of α̂post

k and β̂
post
2,i

in the proof of Theorem 4.5 below. �

Proof of Theorem 4.5. (i) Noting that ỹi = x̃1,iβ
0
1,i + x̃2,iβ

0
2,i + ũi , we have√

Nk T (α̂post
k −α0

k )= Q̂−1
(k) V̂(k)+ Q̂−1

(k) R̂(k),

where Q̂(k) = 1
Nk T 2

∑
i∈Ĝk

x̃ ′
1,i M2,i x̃1,i , V̂(k) = 1√

Nk T

∑
i∈Ĝk

x̃ ′
1,i M2,i ũi , and R̂(k) =

1√
Nk T

∑
i∈Ĝk

x̃ ′
1,i M2,i ×x̃1,i

(
β0

1,i −α0
k

)
. Noting that 1{i ∈ Ĝk} = 1{i ∈ G0

k} + 1{i ∈
Ĝk\G0

k}−1{i ∈ G0
k\Ĝk}, we have

Q̂(k) = 1

Nk T 2

∑
i∈G0

k

x̃ ′
1,i M2,i x̃1,i + 1

Nk T 2

∑
i∈Ĝk \G0

k

x̃ ′
1,i M2,i x̃1,i − 1

Nk T 2

∑
i∈G0

k \Ĝk

x̃ ′
1,i M2,i x̃1,i

≡ Qk,N T + Q̂1(k)+ Q̂2(k), say.

By Theorem 4.3 P(||Q̂1(k)|| ≥ εN−1/2T −1) ≤ P(F̂kNT ) = o (1) and P(||Q̂2(k)|| ≥
εN−1/2T −1) ≤ P(ÊkNT ) = o (1) for any ε > 0. It follows that Q̂(k) = Qk,NT +
oP

(
N−1/2T −1

)
. Similarly, we can show that V̂(k) = Vk,NT + oP

(
N−1/2T −1

)
and
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R̂(k) = oP

(
N−1/2T −1

)
, where Vk,NT = 1√

Nk T

∑
i∈G0

k
x̃ ′

1,i M2,i ũi . It follows that
√

Nk T (α̂post
k − α0

k ) = Q−1
k,NT Vk,NT + oP (1) . Then the conclusion in (i) follows from

Lemmas A.7(i)–(vi).

(ii) Noting that β̂
post
2,i =

(
x̃ ′

2,i x̃2,i

)−1
x̃ ′

2,i ( ỹi − x̃1,i α̂
post
k ) and ỹi = x̃1,iα

0
k + x̃2,iβ

∗
2,i +

ũ∗
i for i ∈ G0

k , we have for i ∈ G0
k and l × p2 selection matrix S2,

√
TS2

(
β̂

post
2,i −β∗

2,i

)
= S2

(
1

T
x̃ ′

2,i x̃2,i

)−1 1√
T

x̃ ′
2,i ũ

∗
i + 1√

T
S2

(
1

T
x̃ ′

2,i x̃2,i

)−1

× 1

T
x̃ ′

2,i x̃1,i T
(
α0

k − α̂post
k

)
= S2

(
1

T
x̃ ′

2,i x̃2,i

)−1 1√
T

x̃ ′
2,i ũ

∗
i + OP

(
T −1/2

)
⇒ N

(
0,S2V22,iS

′
2
)

by (i) and Lemmas A.1(i) and A.1(iii). Here V22,i =(

−1

22,i J1,i ⊗ J2,i

)
V 0

i

(
J ′

1,i

−1
22,i ⊗ J ′

2,i

)
. �

Proof of Theorem 4.6(i). In vector form, we have the regression model:

ỹi = x̃1,iβ1,i + x̃2,iβ2,i + ṽ†
i , (A.30)

where x̃2,i = (
x̃2,i, p̄2+1, . . . , x̃2,i,T − p̄2

)′
, x̃2,it = x2,it − 1

T −2 p̄2

∑T − p̄2
t= p̄2+1 x2,it , x2,it =

(�x ′
1,i,t− p̄2

, . . . ,�x ′
1,it , . . . , �x ′

1,i,t+ p̄2
)′, and x̃1,i and ṽ†

i are similarly defined. In par-

ticular, a typical element of ṽi is given by ṽ†
it = v†

it − 1
T −2 p̄2

∑T − p̄2
t= p̄2+1 v

†
it , where v†

it =
va

it +vit and va
it =∑

| j |≥ p̄2
γ ′

i, j�x1,i,t− j signifies the approximation error.

Assumption A4 ensures the approximation error term va
it is asymptotically negligible in

our asymptotic analysis. Following the proofs of Theorems 4.1–4.4, we can prove that the

C-Lasso estimator α̂D
k of αk is asymptotically equivalent to its post-Lasso version α̂D,post

k ,
where

α̂
D,post
k =

⎛⎜⎝∑
i∈Ĝk

x̃ ′
1,i M2,i x̃1,i

⎞⎟⎠
−1 ∑

i∈Ĝk

x̃ ′
1,i M2,i ỹi .

As in the proof Theorem 4.5, we can show that
√

Nk T (α̂post
k − α0

k ) =
Q−1

k,NT Vk,NT + oP (1) , where Qk,NT = 1
Nk T 2

∑
i∈G0

k
x̃ ′

1,i M2,i x̃1,i and Vk,NT =
1√
Nk T

∑
i∈G0

k
x̃ ′

1,i M2,i ṽ
†
i . Lemma A.7(i) continues to apply: Qk,NT = Q(k) + oP (1) .

Now

Vk,NT = 1√
Nk T

∑
i∈G0

k

x̃ ′
1,i M2,i ṽi + 1√

Nk T

∑
i∈G0

k

x̃ ′
1,i M2,i ṽ

a
i ≡ Vk,NT +Va

k,NT , say.

Lemma A.7(ii)–(vi) continues to apply to Vk,NT (1)with little modification. Now, vit plays
the role of u∗

it in the lemma. But since vit is uncorrelated to all lags and leads of �x1,it =
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ε1,it , si defined in Theorem 4.4 becomes si = S′
0 − S′

2

−1
22,i
20,i = S′

0 as 
20,i is now
zero. Then

B1k,N T = 1√
Nk

∑
i∈G0

k

S1

∞∑
r=0

∞∑
s=0

ψi,s+rψ
′
i,s S′

0 = 1√
Nk

∑
i∈G0

k

∞∑
t=0

E
(
ε1,it vi0

)= 0,

B2k,N T = −1√
Nk

T +1

2T

∑
i∈G0

k

S1ψi (1)ψi (1)
′ S0 = −1√

Nk

T +1

2T

∑
i∈G0

k

∞∑
t=−∞

E
(
ε1,it vi0

)= 0.

It follows that Vk,NT ⇒ N(0,V†
(k)), where V

†
(k) ≡ limNk →∞ 1

Nk

∑
i∈G0

k

1
6	

†
00,i	11,i ,

and 	†
00,i =	00,i −	01,i	

−1
11,i	10,i . In addition, Va

k,NT = oP (1) by Lemma A.8. Con-

sequently,
√

Nk T (α̂
post
k −α0

k )⇒ N(0,Q−1
(k)V

†
(k)Q

−1
(k)).

(ii) This follows from Theorem 4.5(ii) and the fact that 
20,i = 0 so that β∗
2,i = β0

2,i . �
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