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Abstract

We structurally estimate the firm-level frictions across prefectures in China and
quantify their aggregate and distributional implications. Based on a general equilib-
rium model with input and output distortions and migration, we show that the firm-
level frictions are less dispersed and less correlated with firm productivity in richer
prefectures. Counterfactual exercises show that reducing the within-prefecture misal-
location increases aggregate welfare, discourages migration toward richer prefectures,
and reduces spatial inequality. Moreover, internal migration alleviates micro-frictions’
impacts on aggregate welfare and worsens their effects on spatial inequality.
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1 Introduction

Frictions at the firm level are costly: they affect production decisions, distort resource al-

location, and lower aggregate productivity. The existing studies on micro-level frictions

mainly focus on cross-country differences and show that these frictions are rooted in in-

stitutional quality, geography, and infrastructure investment.1 Similar to the international

context, these underlying factors also vary substantially across regions within the same coun-

try. However, different from the international context, due to labor mobility within a country,

the micro-frictions exert additional influence by reshaping the distribution of economic ac-

tivities across space. The interaction between region-specific frictions and labor mobility

implies that policies addressing misallocation in one location may generate positive or neg-

ative spillover effects on other regions through migration flows. To quantify the impacts of

such frictions, one needs a general equilibrium framework with both micro-level frictions and

labor mobility, and this paper aims to do so.

We accomplish three goals in this paper. First, we propose a general equilibrium frame-

work that incorporates micro-level frictions following Hsieh and Klenow (2009) into a multi-

region trade model that allows for migration, heterogeneous firms, and endogenous firm entry

and exit in the spirit of Melitz (2003). Second, we design an empirical strategy to struc-

turally estimate the joint distribution of micro-frictions and firm-level productivity within

each location. Lastly, we evaluate how micro-level frictions affect the aggregate welfare, spa-

tial distribution of resources, and their interaction with migration through counterfactual

simulations in the context of China.

We classify the firm-level frictions into output and labor frictions. The output frictions

are revenue wedges that distort the firm’s profit margin, and the labor frictions are payroll

wedges that affect the costs of hiring workers. In the model, each firm draws the two wedges

and its productivity from a location-specific joint distribution and makes its entry and sales

decisions based on its draw. At the aggregate level, firm-level frictions manifest themselves

through multiple channels. Within each location, the frictions affect the wage rates and

price levels as they distort the firms’ decisions in the factor and the output markets. Across

1For literature on micro-level frictions and resource misallocation, see Restuccia and Rogerson (2008),
Hsieh and Klenow (2009), Buera et al. (2011) and Midrigan and Xu (2014), among others for examples.
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locations, the micro-frictions permeate through inter-region trade as they distort the costs of

intermediate inputs. Lastly, these wedges also influence migration decisions at the individual

level through their impacts on wage rates and price levels.

Based on this model, we design an empirical strategy to structurally estimate the joint

distribution of the firm-level frictions and productivity in each location. Estimating the

joint distribution in the literature is challenging due to the survival bias induced by firm

entry and exit. In particular, while all the entrants draw from the joint distribution, we

only observe the surviving entrants with favorable draws in the data. Failing to account for

selection leads to biased results, as noted in Bai et al. (2019) and Yang (2021). Structurally

estimating the distribution by simulating the general equilibrium addresses the selection

issue; however, general equilibrium is computationally costly to evaluate even with a single

location, as seen in Bai et al. (2019). In our context with multiple locations and factor

mobility, structural estimation by solving the general equilibrium is prohibitively expensive.

We thus rely on the Simulated Method of Moments (SMM) to overcome this difficulty. In

particular, conditional on the observed level of selection, we use the sampling scheme in the

SMM to approximate the firm’s entry and exit decisions. The approximation allows us to

estimate the joint distribution for many locations without solving for the general equilibrium.

Based on the procedure described above, we estimate the joint distributions of produc-

tivity and frictions in 237 prefectures in China from 1998 to 2007. The firm-level data come

from the Annual Surveys of Industrial Firms (“ASIF ” thereafter) conducted by the National

Bureau of Statistics (NBS). We use each firm’s observed sales, payroll, and total production

costs to estimate the firm-level frictions following Hsieh and Klenow (2009), and then use the

SMM to infer the parameters governing the joint distributions. The parameters of interest

are the standard deviations of the frictions and the pair-wise correlations among firm-level

productivity, output friction, and labor friction within a location.

Two distinct patterns emerge from the estimation results. First, while both output

and labor frictions are prevalent in all the prefectures, the dispersion of labor frictions is

substantially higher. The average standard deviation of output frictions is 0.11, and the same

statistics for labor frictions is one order of magnitude higher at 1.18. The large standard

deviation in the labor frictions indicates that the input markets are more distorted than the
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output markets. Second, the frictions are less dispersed and less correlated with productivity

in prefectures with higher per-capita GDP. For example, while the average dispersion of the

output frictions is around 0.085 among the coastal prefectures, the same statistics is around

0.108 for the inland and poorer regions. These findings suggest that part of the observed

income disparity and population distribution might be attributed to the spatial distribution

of firm-level frictions: our reduced-form analyses show that around 13% of the observed

variations in per-capita GDP across prefectures can be explained by the dispersion and

productivity correlations of the frictions.

We perform counterfactual simulations to evaluate the aggregate and distributional im-

plications of the observed micro-friction distributions. In the first exercise, we reduce the

standard deviations of the output and labor frictions in all the prefectures by 0.01. Reducing

the dispersion of frictions leads to a 3.5% increase in aggregate welfare, corresponding to a

semi-elasticity of -3.5. When the distributions of frictions become less dispersed, the firms

are more likely to draw frictions closer to zero, which improves aggregate welfare through

several channels. As the labor frictions converge towards zero, the marginal product of labor

is more equalized across firms; similarly, the reduction in the dispersion of output frictions

better aligns market share with firm-level productivity. Both forces lead to aggregate gains

in output. Moreover, at the extensive margin, the reduced dispersion of frictions strengthens

the selection of firms by productivity: the low-productivity firms with favorable draws of

frictions are less likely to survive. As a result, the average productivity among the surviving

firms is higher. Reducing the dispersion of firm-level frictions also decreases spatial inequal-

ity. With lower standard deviations of friction, individuals are less likely to migrate to rich

prefectures, and the Gini coefficient of real wage declines. The equalizing effect comes from

smaller and poorer prefectures facing higher dispersion in the data. When the distribution

becomes less dispersed, the smaller and poorer prefectures benefit more, encouraging more

firm entries and attracting higher population inflow.

Migration interacts with the micro-frictions in a meaningful way: migration alleviates

the impacts of micro-frictions on the aggregate welfare and amplifies its distributional con-

sequences. To show this, we shut down migration in the baseline model and repeat the

exercise of reducing the dispersion parameters of frictions. Without internal migration,
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the aggregate welfare gain from the same 0.01 reduction in the standard deviation of both

frictions is 3.7%, higher than the impacts with internal migration. In the model with mi-

grations, the negative impacts of frictions at the national level are partially offset by the

migration flows — people leaving the heavily distorted regions in favor of the less distorted

ones, therefore reducing the economic activity at the heavily distorted locations. Without

migration, the aggregate impacts of friction are higher as people can no longer escape the

heavily distorted prefectures.

The above mechanism also implies that spatial inequality becomes less responsive to

micro-frictions when migration is shut down. For example, lowering the dispersion param-

eters reduces the Gini coefficient by 0.3 with migration, but the impact reduces to 0.24

without migration. Intuitively, while less dispersed distribution of frictions lowers the spa-

tial equality, migration works to amplify this effect by moving people out of those heavily

distorted regions, which tends to improve the real wage at the left tail.2

Lastly, we show that while both “migration liberalization” and “reduction in within-

prefecture misallocation” improve aggregate welfare, their implications on spatial inequality

are drastically different. To highlight this point, we simulate another counterfactual in

which the overall migration barriers decline to achieve the same 3.5 percent welfare gain as

the baseline exercise. While both policies lead to the same welfare gain, migration liberaliza-

tion worsens spatial inequality because the migrants prefer to move towards the richer and

less-distorted prefectures once the migration barriers decline. The population concentration

in these large prefectures further increases their productivity advantages through agglomer-

ation, leading to higher spatial inequality. On the contrary, when the friction distribution

becomes less dispersed, the productivity gaps between the poor and rich regions shrink,

resulting in lower spatial disparities.

Our paper is closely related to the literature on micro-level frictions and resource misal-

location (Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009; Buera et al., 2011; Guner

et al., 2008; Hopenhayn, 2014; Hsieh and Moretti, 2019). In the context of China, Brandt

et al. (2013) measure the reduction in the aggregate non-agricultural TFP due to labor

2As it will be clear later in this paper, we use a Melitz (2003) framework that features many agglomeration
forces in the New Economic Geography literature (Krugman, 1991; Fujita et al., 1999). These forces originate
from the increasing returns to scale production function, monopolist competition, and trade costs.
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and capital distortions across provinces and sectors for the period 1985-2007. Brandt et

al. (2017) emphasizes the role of entry barriers in regional income growth. Song and Wu

(2015) and Wu (2018) focus on the capital misallocation behind the micro-frictions among

Chinese firms. We contribute to this literature in two ways: we are the first to incorporate

endogenous migration into a general equilibrium framework with the micro-frictions. We are

also the first to propose a structural estimation strategy that can be efficiently implemented

in settings with many locations.

Our work is also broadly related to the literature on the Chinese economy. Brandt et al.

(2008) document the process of industrial transformation, the role played by institutions and

barriers to factor allocation. Song et al. (2011) argue that the reduction in the distortions

associated with state-owned enterprises may be responsible for the rapid economic growth

since 1992. Hsieh and Song (2015) use firm-level data to show that the reforms of the state

sector were responsible for 20 percent of aggregate TFP growth from 1998 to 2007. Tombe

and Zhu (2019) study how goods and labor market frictions affect aggregate productivity

at the province level. We show that the spatial dispersion of frictions lowers aggregate

welfare and output, and contributes to regional income differences. Moreover, from the

policy perspective, we highlight that while both migration liberalization and reduction in

frictions improve aggregate welfare, the former increases, but the latter decreases spatial

inequality.

The rest of this paper is organized as follows: Section 2 presents the theoretical framework

and defines the frictions. We discuss the estimation strategies and results in Section 3.

Section 4 presents the calibration strategy, and Section 5 describes the quantitative results.

Section 6 concludes.

2 The Model

We introduce labor and output frictions following Hsieh and Klenow (2009) into a multi-

location framework with migration, internal trade, heterogeneous firms, and endogenous firm

entry and exit decisions similar to Ma and Tang (2020).

5



2.1 Basic Setup

Consumers The economy contains J geographically segmented locations in the set J =

{j|j = 1, 2, · · · , J}. We index the locations with either i or j. Workers are identical and

mobile across locations subject to migration frictions. Workers residing in location j obtain

utilities from consuming the set of varieties available in location j:

Uj =

∑
k∈Θj

y (k)
ε−1
ε

 ε
ε−1

(Lj)
ψ φj, (1)

where ε represents the elasticity of substitution across all varieties, y(k) denotes the con-

sumption of variety k, and Θj denotes the set of available varieties in location j. The last

term, (Lj)
ψ φj, measures the amenity in location j, and ψ captures the extent to which

amenities are affected by the population, and φj is the fundamental amenity of the location.

Firms The production side follows Melitz (2003) with heterogeneous firm-level produc-

tivity and endogenous firm entry. The heterogeneity in productivity allows us to study

the correlation between frictions and productivity, and endogenous firm entry allows the

frictions to affect aggregate welfare through the number of varieties available to consumers.

Each variety k is produced by a unique firm using local labor and input bundles. The market

structure is monopolistic competition. Firms are heterogeneous in their productivity. The

production function is:

qj(k) = Aj × a(k)× bj(k), (2)

where qj(k) is the output of variety k, a(k) > 0 is the firm-level productivity, and Aj is the

location-specific productivity. The last term in equation (2), bj(k), is the input bundle for

the production of variety k, which can be produced according to:

bj(k) =
[
`bj(k)

]βj ∑
k′∈Θj

(
yb (k′; k)

) ε−1
ε


ε(1−βj)
ε−1

. (3)
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The variable `bj(k) denotes the labor input, and yb(k′; k) is the demand for variety k′ in order

to produce input bundle for the production of the variety k. The parameter 0 < βj < 1

denotes the labor share in the production.3

Each variety is tradable across locations, subject to costs. To “export” from location j

to i, a fixed cost of fij in the unit of input bundle in location j is incurred. Standard iceberg

trade costs also apply: to deliver 1 unit of variety from j to i, firms must produce and ship

tij ≥ 1 units from j. We assume tjj = 1,∀j ∈ J .

In addition to the heterogeneity in productivity, firms are subjected to two types of

idiosyncratic frictions: output and labor frictions. The output frictions, τy(k) < 1, are

equivalent to the revenue wedges such that the firm only receives a fraction [1− τy(k)] of its

revenue, rj(k). The output frictions can be negative to reflect a production subsidy. The

labor frictions, τ`(k) > −1, are the frictions that affect the marginal product of labor relative

to the composite varieties. A firm needs to pay [1 + τ`(k)] times the local wage rate, wj, to

hire one unit of labor. The labor frictions can also be negative, implying payroll subsidies.

The three types of firm-level idiosyncratic shocks, {a(k), τy(k), τ`(k)}, are assumed to be

drawn from a location-specific joint distribution with the cumulative distribution function

(CDF) Gj(a, τy, τ`).

We interpret both frictions as payroll or output “taxes” and “subsidies” implemented

by the local government and use these terms interchangeably with “frictions” in the rest of

the paper. We also assume that the local governments maintain balanced budgets. Thus

any surplus (deficits) from the distortionary taxes (subsidies) will be offset by rebates to or

lump-sum taxes on the local population. We denote the per-capita transfer in location j as

γj.

Lastly, we allow for endogenous entry and exit of the firms. Infinitely many potential

entrants with a zero outside option reside in each location. A potential entrant in location j

can pay a cost of fe in the unit of the local input bundle to start producing a new variety.4

Denote the number of entrants in location j as Ij. Upon entry, the firm draws its produc-

3Different from the standard neoclassical production function, we omit the capital inputs and instead
assume capital goods to be a subset of available varieties in the economy.

4The quantity of input bundle requirement for the entry cost is identical across all the locations. However,
as the price of the input bundle differs across locations in the equilibrium, the entry costs will also differ in
value.
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tivity and frictions from the joint distribution Gj(a, τy, τ`). Conditional on its realization,

{a(k), τy(k), τ`(k)}, the firm decides its production plan. If the entrant cannot profitably

operate in any market, it will exit and forfeit the entry fee.

Migration Workers can migrate between the locations subject to costs. The migration

decision hinges on three elements: the indirect utility, the idiosyncratic preference, and the

bilateral migration costs. The indirect utility of living in location j, which we denote as Vj,

can be expressed as:

Vj =
wj + γj
Pj

(Lj)
ψ φj, (4)

where wj is the wage rate, γj is the transfer payment (tax), Pj is the ideal price index, and

(Lj)
ψ φj denotes the (endogenous) amenity in location j. In addition, each worker draws an

idiosyncratic preference shock toward each location {νj}Jj=1, where νj is i.i.d across locations

and individuals. We assume that νj follows a Frechet distribution with the CDF:

F (ν) = exp
(
−ν−κ

)
,

where κ is the shape parameter, which measures the elasticity of bilateral migration with

respect to frictions. Lastly, moving from location j to i also incurs an origin-destination-

specific dis-utility, which are denoted as λij ≥ 1, with λjj = 1,∀j ∈ J . The costs of migration

capture not only the financial expenses of moving but also the various policy barriers that

deter migration, such as the hukou system and working permits in China.

To sum up, a worker living in location j will migrate to location i if and only if location

i provides the highest utility among all locations:

Viνi
λij
≥ Vi′νi′

λi′j
,∀i′ ∈ J .

Similar to a standard discrete choice model, conditional on {Vi} and {λij}, the probability
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of an individual moving from location j to location i is:

mij =

(
Vi
λij

)κ
J∑
i′=1

(
Vi′
λi′j

)κ . (5)

From the law of large numbers, mij is the fraction of individuals living in location j that

move to location i. Denoting the initial population in location j as L̄j, the equilibrium

population flow from j to i is mijL̄j, and the equilibrium population in i is thus:

Li =
J∑
j=1

mijL̄j. (6)

2.2 Model Solution

Cost Minimization Solving the cost minimization problem of firm k in location j leads

to the following expression for the unit cost of the input bundle, which we denote as cj(k):

cj(k) = (1− βj)βj−1 β
−βj
j [(1 + τ`(k))wj]

βj (Pj)
1−βj = (1 + τ`(k))βj c̄j, (7)

where

c̄j = (1− βj)βj−1β
−βj
j w

βj
j P

1−βj
j ,

is the cost of a frictionless input bundle. In the expression above, the firm perceives the unit

cost of labor as [1 + τ`(k)]wj. The unit cost of production is thus firm-specific and different

from a standard Melitz model. Higher labor friction increases the costs of workers relative

to the composite varieties, distorting the optimal input composition of the firm.

Price, Sales, Revenue, and Employment To maximize the utility described in equation

(1), we obtain the following demand function for goods k in location i from the firm located
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in location j:

qij (k) =
Xi

P 1−ε
i

(pij(k))−ε , (8)

where qij(k) and pij(k) are the quantity and price of variety k sold in location i from location

j, respectively. The variable Pi is the ideal price index, and Xi is the total expenditure in

location i.

Similar results to Melitz (2003) can be derived with slight modifications. A firm located

in j determines the optimal pricing and whether it is profitable to sell to location i from:

max
pij(k),1ij(k)

{
1ij(k) ·

[
(1− τy(k)) pij(k)qij(k)− tijqij(k)cj(k)

Aja(k)
− fijcj(k)

]
, 0

}
,

subject to the demand function in equation (8). In the expression above, the output friction

distorts the revenue of the firm, and consequently, the firm’s decision to enter the market

i. The labor friction is also present through the unit cost, cj(k). Solving the maximization

problem leads to the standard pricing decision:

pij(k) =
ε

ε− 1

tijcj(k)

Aja(k) (1− τy(k))
, (9)

and the firm will serve market i so that 1ij(k) = 1 if and only if the profit is non-negative:

πij (k) =
1

ε

(1− τy(k))Xi

P 1−ε
i

[
ε

ε− 1

tijcj(k)

(1− τy(k))Aja(k)

]1−ε

− fijcj(k) ≥ 0. (10)

Conditional on a pair of (τy, τ`), there exists a cutoff productivity aij, below which firms in

location j will not sell to location i:

aij(k|τy, τ`) =
1

Aj

ε

ε− 1

tijcj(k)

(1− τy(k))Pi

[
(1− τy(k))Xi

εcj(k)fij

] 1
1−ε

. (11)
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Firm-level distortion The pre-tax revenue of the firm is the summation of sales to all

the destination markets:

rj(k) =
J∑
i=1

1ij(k)×

[
Xi

P 1−ε
i

[
ε

ε− 1

tijcj(k)

(1− τy(k))Aja(k)

]1−ε
]
,

and the output tax (subsidy) generated by the firm is τy · rj(k).

To account for the payroll friction, first note that the employment of the firm, `j(k), is:

`j(k) = fe
βj c̄

wj
+ bj(k)

[
βjcj(k)

(1 + τ`(k))wj

]
, (12)

where bj(k) is the total number of input bundles required by firm k to cover the production

and fixed costs from selling to all the destination markets:

bj(k) =
J∑
i=1

1ij(k)× [bij(k) + fij] , (13)

bij(k) = tij
qij(k)

Aja(k)
. (14)

The first term in equation (12) is the number of workers employed to cover the entry costs,

and the second term summarizes all the workers employed to cover the production and the

fixed costs of market access. The expression in the square bracket is the number of workers

employed to produce a single input bundle.

The labor tax (subsidy) paid by the firm is τ` · (wj`j(k)− feβj c̄j). In this expression,

wj`j(k) is the total payroll of the firm, from which we deduct the payroll at the entry stage,

feβj c̄j, since the entry costs are not distorted.

Entry and Exit We assume infinitely many potential entrants with zero outside options

reside in each location. This assumption implies in the equilibrium, the expected profit prior

to entry should equal the entry costs in each location. Specifically, the free entry condition

in location j is:

fec̄j =
J∑
i=1

∫∫∫ ∞
aij(k|τy ,τ`)

πij(k)gj(a, τy, τ`)da · dτy · dτ`. (15)

11



Note that in the expression above, the output and labor frictions affect the entry and exit

decisions in the general equilibrium through the profit function, πij(·). The equation also

implies that in the equilibrium, the aggregate profit is zero in all the locations.

Price Index The total number of varieties available in location i equals the number of

firms that decide to sell to location i from all the locations:

J∑
j=1

Ij

∫∫∫ ∞
aij(k|τy ,τ`)

gj(a, τy, τ`)da · dτy · dτ`,

where gj(a, τy, τ`) is the probability density function (PDF) associated with Gj(a, τy, τ`). The

ideal price index in location i is a CES aggregator over the prices of all the varieties available

in location i:

(Pi)
1−ε =

J∑
j=1

Ij

(
tijε

ε− 1

)1−ε ∫∫∫ ∞
aij(k|τy ,τ`)

[
cj(k)

Aja(1− τy)

]1−ε

gj(a, τy, τ`)da · dτy · dτ`. (16)

Labor Markets The labor demand in location j is the summation of the firm-level em-

ployment as in equation (12) across all the operating firms:

Ldj = Ij

∫∫∫ ∞
aij(k|τy ,τ`)

lj(a, τy, τ`)gj(a, τy, τ`)da · dτy · dτ`.

The labor market clearing condition equalizes the labor demand with supply, which consists

of migration flows from all the locations i ∈ J :

Ldj =
J∑
i=1

mjiL̄i. (17)

Income and Expenditure The total expenditure of location j, Xj consists of two parts,

1) the demand for consumption from workers, and 2) the demand from firms in order to

produce input bundles:

Xj = Yj +Xb
j . (18)
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In the equation above, Yj is the income in location j, which equals the consumption demand

in the equilibrium. The second term, Xb
j , is the demand for varieties to produce input

bundles. The equilibrium income in location j includes the labor income and the lump-sum

transfer/tax led by both distortions.

Yj = wjLj + γjLj,

where the total lump-sum transfer is:

γjLj = Ij

∫∫∫
[τy · rj(a, τy, τl) + τ` · (wj`j(a, τy, τl)− feβj c̄j)] · gj(a, τy, τ`)da · dτy · dτ`,

in which the first term, τy · rj(a, τy, τl), is the output tax (subsidy), and the second term, the

payroll tax (subsidy). Lastly, the expenditure for producing input bundles is

Xb
j = (1− βj) Ij

∫∫∫
[bj(a, τy, τ`)cj(τ`) + fec̄] · gj(a, τy, τ`)da · dτy · dτ`.

2.3 Equilibrium

Definition: Conditional on parameters, the equilibrium is a series of wage and price

{wj, Pj}Jj=1, a series of population distribution, {Lj}Jj=1, a series of mass of entering firms

and expenditure, {Ij, Xj}Jj=1, such that the following conditions hold:

1. Workers maximize utilities by choosing the consumption of each variety and a location

to live, as in equation (5).

2. Firms maximize profits by choosing the price and quantity sold in each market as in

equations (9) and (10).

3. The free entry condition holds in each location j, so the expected profit from entry is

zero, as in equation (15).

4. The labor market clears in each location as described in equation (17).

5. The balance of trade holds in each location: Xj =
∑J

i=1Xij, where Xj is defined in

equation (18), and Xij is the sales from location j to i.
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6. The government budget in each location is balanced so that the total deficit (surplus)

incurred by the output and labor frictions is offset by the lump-sum tax on (transfer

to) the workers in each location.

Appendix B provides more details on solving the model.

3 Estimation of Firm-level Frictions and Productivity

In this section, we briefly describe a procedure to structurally estimate the critical object of

interest in the literature, the joint distribution of the firm-level heterogeneity, Gj(a, τy, τ`), in

each location. The joint distribution is difficult to estimate due to the survival bias induced

by firm entry and exit. While Gj(a, τy, τ`) is the distribution that all entrants draw their

frictions and productivity, what we observe in the data are the surviving entrants who draw

favorable combinations of the shocks. Estimation without accounting for selection leads to

biased results, as noted in Yang (2021) and Bai et al. (2019). The solution often relies on

structurally estimating the distribution by fully solving the general equilibrium. However,

doing so is computationally costly, even with a single location, as seen in Bai et al. (2019).

Structural estimation by fully solving the general equilibrium is prohibitively expensive in

our context with many locations. To overcome this difficulty, we propose an estimation

procedure that solves the selection issue by sampling and relies on moment conditions that

can be approximated without solving the general equilibrium.

3.1 Data

ASIF The firm-level panel data come from the Annual Surveys of Industrial Firms (ASIF)

conducted by the National Bureau of Statistics (NBS) of China from 1998 to 2007. The

survey covers all state-owned and private firms with more than 5 million RMB in annual

sales. We locate the firms by zip codes and restrict our analysis to the prefectures with

at least 500 firms in the ASIF. The restriction leaves 237 prefectures in our sample, as

depicted in Figure A.1 in the appendix. Our sample is representative, covering more than

74.7 percent of the national GDP in 2007. The number of firms in these prefectures comprises
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approximately 98.8 percent of the entire sample in the ASIF. We use the information on the

sales, payroll, and total costs of production of each firm in the estimation procedure described

below.

3.2 Basic Assumptions

To estimate the joint distribution, we assume that the marginal distributions of 1− τy and

1 + τ` are log-normal:

log(1− τy) ∼ N (0, σy,j)

log(1 + τ`) ∼ N (0, σ`,j),

and the marginal distribution of a is a Type-I Pareto with the following CDF:

Gaj(a) = 1− a−θj .

The three shocks are also correlated with Kendall’s rank correlation matrix Σj, in which

the pair-wise correlations of interests are ρay,j, ρa`,j, and ρy`,j.
5 These assumptions im-

ply that we need to estimate six parameters in each location summarized in vector δj =

{σy,j, σ`,j, θj, ρay,j, ρa`,j, ρy`,j}. In total, there are 6J parameters across all the locations.

The above baseline setup assumes that within each location, the marginal distributions

of log(1− τy) and log(1 + τ`) have zero means. We highlight two points related to the “zero-

mean” assumption. First, the log-normal distributions with zero mean do not imply that

the means of τy and τ` are zero. Instead, it implies that the means of τy and τ` are both

functions of σy,j and σ`,j. In our context, the mean of τy is 1−exp(σ2
y,j/2) and the mean of τ` is

exp(σ2
`,j/2)−1. Since σy,j and σ`,j are location-specific, the average frictions also differ across

locations. Moreover, in the general equilibrium, the within-prefecture distortions reallocate

firms and workers across space through their impacts on output and factor prices. Therefore

the model allows for spillovers of within-prefecture frictions across space. Nevertheless, we

conduct robustness checks by relaxing the ”zero-mean” assumption and report the results in

5We specify the correlation as Kendall’s correlation instead of Pearson’s linear correlation because
Kendall’s correlation is preserved under monotonic transformations later used in the copula functions.
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Appendix D. The counterfactual results reveal interesting and subtle interactions between

selection bias and distribution of frictions. We refer the readers to the appendix for a detailed

discussion of these results.

The critical parameters of interest are σy,j and σ`,j, which measure the dispersion of

frictions within a location. Higher dispersion implies that micro-frictions are more prevalent

within a prefecture, leading to higher economic costs. Similarly, correlations between friction

and productivity, ρay,j or ρa`,j, which we denote as the “productivity correlation” of friction,

can also be costly. A positive correlation implies that the more productive firms are taxed

more, leading to potentially inefficient resource allocation. Similarly, a negative correlation

implies that the more productive firms are favored at the expense of the smaller ones. The

consequence of the negative correlation at the aggregate level, however, is more complicated.

On the one hand, the negative correlation implies that small firms are more inefficient, and

the marginal firms are more likely to exit the market. This effect reduces the number of

varieties available to consumers, thus leading to welfare losses. On the other hand, however,

the negative correlation also implies that more productive firms face lower friction, which

might boost overall output and aggregate welfare. Later in the quantitative section, we show

that the welfare impact of negative correlations is ambiguous due to the confounding impacts

of the two forces described above.

We assume that the marginal distribution of productivity is Pareto, different from Bai et

al. (2019), which assumes multivariate normal distribution for both frictions and productiv-

ity. The Pareto assumption facilitates the aggregation as many analytical results from Melitz

(2003) depend crucially on it. The tractability at the aggregate level removes the need to

approximate the productivity shocks numerically and thus reduces the computational load

and improves accuracy when solving the model. Moving away from Gaussian assumptions,

however, complicates the estimation strategy. With mixed types of marginal distributions,

the joint-distribution Gj(·) described above does not adopt an explicit functional form. As a

result, we cannot use Maximum Likelihood Estimators (MLE); instead, we rely on the Simu-

lated Methods of Moments (SMM) and copula functions to recover δj. Moreover, the absence

of a multivariate Gaussian structure also leads to complexities in estimating the conditional

distribution of productivity. As explained later, we resort to Monte-Carlo simulations to
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circumvent this issue.

3.3 Simulated Method of Moments

Simulation, Sample Selection, and Entry The first step to implement the SMM is

to draw (a, τy, τ`) from the joint distribution specified above, conditional on a parame-

ter vector δj. We use copula functions to simulate the firm-level shocks. To do so, we

define a Gaussian copula over the interval [0, 1]3, which can specifically be expressed as

CR(u) = ΨR(Ψ−1(u1),Ψ−1(u2),Ψ−1(u3)). Ψ−1 is the inverse cumulative distribution func-

tion of a standard normal distribution. ΨR is the joint cumulative distribution function of

a multivariate normal distribution with mean vector zero and Pearson’s correlation matrix

R, converted from Kendall’s correlation matrix Σj. We can then use the Gaussian copula

to generate three dependent random variables valued between 0 and 1. Finally, we apply

the inverse CDF methods to convert them into (a, τy, τ`) with the marginal distributions

parameterized by δj. Within a prefecture, we draw Nj firms from Gj(·) by repeating this

process.

We address the selection bias issue by sample selection at the simulation stage. Selection

bias in the data arises because ASIF only includes firms above a revenue threshold. To ac-

count for this, we rank the simulated firms by revenue and only compute moment conditions

using the largest N̂j < Nj firms in each prefecture. In practice, we set Nj to be the num-

ber of firms observed in the 2008 Economic Census, which approximates the total number

of firms in the prefecture j and set N̂j to be the number of firms in ASIF from the same

prefecture. The rationale of our procedure is intuitive: prefectures with a large gap between

the observed N̂j and Nj must be hard for firms to operate in. Drawing a large number of

simulated firms and only selecting the top N̂j ensures that the simulated firms face fierce

selection in our simulation too.

Conditioning on the observed level of selection addresses the selection bias because the

impacts of general equilibrium forces on entry selection are summarized in the selection

cut-off of augmented productivity or, equivalently, in the fraction of entering firms that

choose to operate. Counterfactually, if some shock hits the economy that leads to a different

distribution of factor prices, these changes would have been reflected in the number of firms
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covered in ASIF and the economic census. Subsequently, our sample selection procedure

would take that shock into account by drawing a different number of Nj and selecting a

different N̂j. In other words, conditioning on the level of selection essentially assumes that

the observed economy is in equilibrium, and our identified joint distribution is conditional

on the distribution of endogenous variables in the observed economy.

The key advantage of selecting by revenue is that the firms within a prefecture can be

ranked without knowing any endogenous variables. Put differently, the firm-specific shocks,

(a, τy, τ`), are sufficient statistics to rank the firms by revenue. To see this, note that the

revenue generated by a firm originating in prefecture j and selling to prefecture i with a

draw of (a, τy, τ`) is:

rij(a, τy, τ`) =

(
ε

ε− 1

tij c̄j
Aj

)1−ε(
Xi

P 1−ε
i

)[
aε−1 (1− τy)ε (1 + τ`)

βj(1−ε)
]
,

in which the terms in the first two parentheses are common across all the firms in the same

location. Therefore, the rank of the market-specific revenue is determined solely by the draws

of productivity and friction in the last square bracket. To simplify the notation, we define

the terms in the square bracket as the “augmented productivity” inclusive of the frictions,

denoted as ã:

ãε−1 = aε−1 (1− τy)ε (1 + τ`)
β(1−ε) .

A firm with higher ã will be more productive and thus sell more to any given market.

Moreover, higher ã will also enable the firm to sell to more markets. As a result, a firm

with higher ã will collect a higher total revenue. In a random draw of Nj entrants, the

top N̂j firms ranked by revenue must also be the top N̂j firms ranked by ã. Therefore,

the sample-selection procedure based on ã addresses the selection bias without solving the

general equilibrium.

Moments With the selection bias addressed, we now describe the moment conditions. We

structurally estimate the vector δj in each prefecture by matching the following 17 moments

related to the distribution of productivity and frictions, computed following the methods in
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Hsieh and Klenow (2009). All the moments in the simulation are computed based on the

sample of N̂j firms ranked by ã and rely on the draws of {a, τy, τ`} without solving the model

as emphasized earlier.6

The first set of moments are the adjacent percentile ratios of the revenue distribution:

the 90-to-75, 75-to-50, 50-to-25, and 25-to-10 ratios. The moments related to the revenue

distribution help to pin down θj, the dispersion of productivity within a location. In the

simulation, we approximate the percentile ratios using the ã distribution. The distribution

of ã differs from that of the revenue because revenue also depends on the extensive margin,

as more productive firms serve more markets. While less than ideal, the approximation

using ã is still innocuous for two reasons. First, we use the adjacent percentile ratios of the

distribution since firms with similar ã are likely to serve similar sets of markets. Second, our

robustness checks in Section 5 show that the noise introduced by the approximation is small.

In the robustness check, we shut down the market selection in the model so all the firms serve

the same set of markets. In this alternative setup, the percentile ratios of ã are precisely the

same as the percentile ratios of revenue. Our main results are robust to the change in model

setup, indicating that the results are unlikely to be biased by the approximation of revenue

distribution.

To pin down the parameters related to τy and τ`, we first follow the approach in Hsieh and

Klenow (2009) to estimate firm-level frictions. Solving individual firm k’s cost minimization

problem leads to the following estimate for τ` (k):

τ`,j (k) =
βj

1− βj
· PjYj (k)

wjLj (k)
− 1,

where βj is the location-specific labor intensity that we will discuss later. PjYj (k) is the

firm’s expenditure on intermediate goods and wjLj (k) is the total wage bill. Both variables

come from the ASIF. Similarly, the profit maximization problem leads to the estimation of

output friction, τy,j (k), as follows:

τy,j (k) = 1− 1

1− βj
ε

ε− 1

PjYj (k)

Rj (k)
,

6The estimation also relies on the value of ε, and we follow the literature and set it to 6. Section 4
provides more details regarding the choice of this value.
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where Rj (k) denotes firm k’s sales revenue, which is also available in the ASIF data.

Our remaining moment conditions are based on the estimated firm-level friction within

each prefecture. In particular, we target the standard deviation and the 90-to-75, 75-to-50,

50-to-25, and 25-to-10 percentile ratios for both the distributions of log(1−τy) and log(1+τ`).

We have also computed the correlation matrix among log(1 − τy), log(1 + τ`) and revenue,

which serve as the targets for pinning down the parameters governing correlations between

frictions and productivity.

We allow βj to be location-specific in the estimation. One concern regarding the identifi-

cation of τ` is that differences in industrial composition across prefectures might be miscon-

strued as variations of labor friction.7 To address this concern, we account for the differences

in the industrial composition across prefectures in βj. We compute the labor share of each

of the 491 industries in ASIF at the 4-digit classification and then obtain the labor share

of each prefecture using the industry composition measured by employment share in each

prefecture.8

To sum up, we target 17 moments in each prefecture as summarized in the Mj vector. We

denote the simulated moments as M̂j. The SMM estimates δj by minimizing the weighted

distances between Mj and M̂j:

δ̂j ≡ argmin
(
M̂j −Mj

)T
Wj

(
M̂j −Mj

)
, (19)

where Wj is a 17 × 17 optimal weighting matrix. The weighting matrix is the inverse of

the variance-covariance matrix of the data moments computed by bootstrapping the firms

within prefecture j. Given the estimated δj vector at each prefecture, Figure A.2 in the

appendix plots the kernel density estimates of the sales, τy, and τl distributions in both the

data and the simulation for several selected prefectures. Even with the limited number of

targeted moments, the simulated distributions closely mimic those in the data.

7For example, a prefecture with predominately labor-intensive industries should have higher βj and thus
a higher share of payment to labor in the data. If we measure the firm-level τ` against a common β, we will
incorrectly infer that the firms in the prefecture have low levels of τ`.

8We compute the vector of {βj} using the procedure described above outside of the SMM, and therefore
βj is not jointly estimated with the other parameters in δj .
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3.4 Estimation Results

In this part, we briefly discuss the estimation results. We focus on the standard deviations of

the frictions and their correlation with productivity. Note that {σy,j, σ`,j} are the standard

deviations of log(1 − τy) and log(1 + τ`), respectively, not the standard deviations of τy

and τ`. Similarly, ρay and ρa` are the correlations between log(1 − τy) and log(1 + τ`)

and a, not the productivity correlations of τy and τ`. To avoid any confusion, we use σ̃y

and σ̃` to denote the standard deviations of τy and τ`, and use ρ̃ay and ρ̃a` to denote the

productivity correlations of τy and τ`. To compute {σ̃y, σ̃`, ρ̃ay, ρ̃a`}, we simulate 100,000

draws of {log(1− τy), log(1 + τ`), a} based on the estimated δj in each prefecture, and then

use the sample standard deviation of τy and τ` to estimate {σ̃y, σ̃`}. Similarly, we use the

sample correlations between τy, τ`, and a to estimate {ρ̃ay, ρ̃a`}. In this part, we highlight

two main data patterns and refer the readers to Appendix D for more details.

(a) Output Frictions (b) Labor Frictions (c) Both Frictions

Figure 1: Standard Deviation of Frictions and Correlation with Productivity

Notes: the first panel plots the standard deviations of output frictions, σ̃y, against their correlations with
productivity, ρ̃ay. The second panel plots the standard deviations of labor frictions, σ̃`, against their cor-
relations with productivity, ρ̃a`. The third panel plots the standard deviations of output frictions against
those of the labor frictions. Each point in the figures is a prefecture.

The first data pattern is that while both output and labor frictions are prevalent in all

the prefectures, the labor frictions are more pronounced. Panel (a) of Figure 1 plots the

standard deviation of the output frictions, σ̃y against their correlation with productivity,

ρ̃ay, and the second panel plots the labor frictions similarly. The average standard deviation

of output frictions is 0.11 across all 237 prefectures, and that of labor frictions is one order

of magnitude higher at 1.18. The large standard deviations in the labor wedges indicate
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that the input markets are more distorted than the output markets. The correlations with

productivity are comparable in size but different in sign. The average correlation between

productivity and output friction is positive at 0.18 and with labor friction, slightly negative

at -0.03. Moreover, the locations with higher dispersion of the frictions also tend to see higher

productivity correlation, and locations with higher dispersion of output friction also tend to

see higher dispersion of labor friction. These patterns suggest that the welfare impacts of

both frictions could be substantial at both the aggregate and the local levels.

The second pattern is that the locations with higher per-capita GDP tend to experience

less dispersion and lower productivity correlation. Panel (a) in Table 1 reports the regres-

sions of both frictions’ dispersion and productivity correlation against prefecture-level char-

acteristics. We find that prefectures with higher per-capita GDP enjoy substantially lower

dispersion and productivity correlation, controlling total population, industry composition,

and connectivity on the transportation networks. The negative coefficients on per-capita

GDP are significant in all cases except for σ̃`. The lower panel of the same table shows

that around 13% of the observed spatial variations in per-capita GDP can be attributed to

the estimated dispersion and productivity correlation parameters. The explanatory power

of output frictions is substantially higher than that of labor frictions.

Figure 2 further highlights these patterns by comparing these measures across four broad

regions sorted by per-capita GDP.9 For example, as seen in Panel (a), while the median

dispersion of the output frictions is 0.086 and 0.084 for the two richer regions, the same

statistics are 0.108 for the two poorer regions. The correlations between output frictions

and productivity are closer to zero in the two richer regions, as shown in Panel (b). While

the median correlations are -0.020 and -0.068 on the Southern and the Eastern Coasts,

respectively, they are much higher at 0.242 and 0.239 in the two poorer regions. We do

not observe significant variations in the spread of labor frictions across regions from Panel

(c), similar to the regression results as reported in Table 1. The correlation between labor

friction and productivity is closer to zero or negative in all four regions.10

9See Table A.1 for the definition of regions. The “Southern Coast” is the region with the highest per-
capita GDP, followed by the “Eastern Coast”. The two relatively less developed regions are the “North”and
the “Others” regions.

10Table A.2 in the Appendix reports the regression results using regional dummy variables and shows that
the regional variations in the dispersion and productivity correlation are statistically significant.
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Table 1: Spatial Distribution of Frictions

(a) The Covariates of Frictions

(1) (2) (3) (4)
σ̃y σ̃` ρ̃a,y ρ̃a,`

log(per-capita GDP) -0.006** -0.024 -0.107*** -0.028**
(0.002) (0.024) (0.025) (0.013)

log(population) -0.003* -0.012 -0.034* 0.011
(0.002) (0.025) (0.020) (0.014)

industry share 0.000 0.002 0.002 0.002***
(0.000) (0.001) (0.002) (0.001)

labor share 0.254*** -2.864** 1.095 -0.168
(0.080) (1.124) (0.816) (0.477)

remoteness 0.090*** 0.341 0.251 -0.391***
(0.020) (0.231) (0.164) (0.123)

N 237 237 237 237
Adj.R-squared 0.158 0.023 0.112 0.098

(b) Variations of Per-capita GDP Explained by Frictions

Parameters R2 Parameters R2

σ̃y 0.0197 σ̃y, σ̃` 0.0219
σ̃` 0.0000 ρ̃ay, ρ̃a` 0.0998
ρ̃y 0.0913 σ̃y, ρ̃ay 0.1137
ρ̃` 0.0054 σ̃`, ρ̃a` 0.0072

σ̃y, ρ̃ay, σ̃`, ρ̃a` 0.1332

Notes: the upper panel reports the regression results of the dispersion and productivity correlation of output
and labor frictions against prefecture-level characteristics. Robust standard errors are reported in the paren-
thesis. ***: significant at the 1% level; *: significant at the 5% level; *: significant at the 10% level. “Industry
share” refers to the share of the manufacturing industry in GDP, “labor share” refers to βj discussed earlier,
and “remoteness” of a prefecture measures the location of a prefecture in the transportation network, from
Ma and Tang (2020). The lower panel reports the r-squared obtained from regressing log(per-capita GDP)
against various combinations of the dispersion and productivity correlation parameters.

3.5 Discretization and the Conditional Distributions of Produc-

tivity

Before evaluating the model quantitatively, we discuss our strategy to discretize the joint

distribution of friction and productivity. In this part, we propose a novel numerical strategy

that takes advantage of the analytical tractability of Pareto-distributed productivity.
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(a) output frictions, std (b) output frictions, corr

(c) labor frictions, std (d) labor frictions, corr

Figure 2: Frictions by Region

Notes: the four panels display the box plots of the standard deviations of the output and labor frictions,
σ̃y and σ̃`, as well as their correlations with productivity, ρ̃ay and ρ̃a`, by regions. The four regions are
sorted by average per-capita GDP in descending order. “Southern Coast” refers to the prefectures in the
provinces of Guangdong and Hainan; “Eastern Coast” refers to Shanghai and the prefectures in the provinces
of Jiangsu, Zhejiang, and Fujian; “North” refers to Beijing, Tianjin, and the prefectures in the provinces of
Hebei, Shandong, Liaoning, Jilin, and Heilongjiang. The prefectures in all the other provinces are included
in “Others”. In the box plot, the central red line marks the median, and the bottom and top edges of the
box mark the 25th and the 75th percentiles, respectively. The two bars are the upper and lower adjacent
values, defined as U = x[75] + 3

2

(
x[75] − x[25]

)
and L = x[75] − 3

2

(
x[75] − x[25]

)
, where x[25] and x[75] are the

25th and the 75th percentiles of the data. The outliers, marked with the “+” sign, are the observations that
are higher than U or lower than L.

In order to evaluate the integrals that involve firm-level shocks, such as in equation

(15) and (16), the traditional approach is to discretize all three dimensions of the joint

distribution into grids and then evaluate the integrals numerically. The main drawback of

this approach is that the numerical accuracy is highly dependent on the productivity grid.
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This high sensitivity of productivity comes from the fact that the cutoff productivity affects

the limits of the integration. Without a fine grid, one has to interpolate on the limits of the

integration, which leads to low accuracy in the solution. In our context, a productivity grid

with thousands of points is required to achieve a reasonable level of accuracy. Unfortunately,

given the complexity of the model, such a productivity grid is prohibitively expensive to

implement. To circumvent this issue, we propose a new approach that analytically evaluates

the integration associated with productivity.

Our approach works as follows. We first discretize τy and τ` into an Ny × N` matrix,

in which (τ ky , τ
l
`) is the (k, l)th element of the matrix. Conditional on a pair of (τ ky , τ

l
`),

we estimate the distribution of productivity, assuming that the conditional distribution is

Pareto. With the estimated conditional productivity, we then analytically evaluate all the

integrals that involve productivity. Compared to the alternative approach of discretizing

productivity, our approach is analytically tractable, significantly reducing computational

load and improving simulation accuracy.

To implement this solution strategy, we first need to estimate the distribution of produc-

tivity, conditional on the realization of τ ky and τ l` .
11 The estimation is not trivial because

the conditional distribution does not adopt a closed-form density function, as is common in

Gaussian copulas. The lack of a closed-form density function leads to several issues. The

first conceptual issue is that one cannot ascertain the conditional distribution to be Pareto.

Fortunately, we find that the assumption of Pareto distribution approximates the conditional

distribution of productivity reasonably well. To measure the goodness-of-fit of the Pareto

assumption, we compute the adjusted R2 in the Zipf plots for each (τ ky , τ
l
`) in each prefec-

ture j, as detailed later. Out of the J × Ny × N` tests, the median adjusted R2 is 0.999,

and 95 percent of the adjusted R2s are higher than 0.992. Our simulations’ goodness-of-fit

is better than the commonly-accepted empirical Pareto distributions. For example, Axtell

(2001) shows that the firm size distribution in the U.S. follows a Pareto distribution, and

the adjusted R2 of the firm size distribution in the U.S. data is 0.992 when measured using

employment, and 0.976 when measured using sales. In the case of the U.S. city-size distri-

11One cannot directly use the marginal distribution of productivity as estimated above because the pro-
ductivity and the frictions are correlated.
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bution, the adjusted R2 of the Zipf plot is 0.986 in Gabaix (1999). Based on this, we assume

the conditional distribution is Pareto and proceed as follows.

Given that the conditional distribution of productivity follows a Pareto distribution, our

next step is to estimate the shape parameter, θkl for each grid point (τ ky , τ
l
`).

12 We proceed

with Monte-Carlo simulations in the following steps in each prefecture j:

Step 1: Simulate NMC draws of (a, τy, τ`) from the distribution defined in the estimated δ̂j.

Step 2: Assign each draw, (a, τy, τ`), to the nearest grid point (k, l) in the Ny×N` matrix. We

define the nearest point as

k = argmink′=1,2,··· ,Ny |τy − τ
k′

y |, l = argminl′=1,2,··· ,N`|τ` − τ
l′

` |.

Step 3: Denote the number of draws assigned to each grid point (k, l) as nkl. Estimate θkl

using the method-of-moments estimator based on nkl draws as:

θ̂kl =
ākl

ākl − akl
, (20)

where ākl is the mean of, and akl is the minimum of, all the productivity draws assigned

to the grid point. Firm size follows a power law distribution in our model, and the tail

index of firms at grid point (k, l) is θkl/(ε−1). To ensure the existence of the mean, we

assume that the tail index is greater than 1, which implies a lower bound of θkl > ε−1

in the estimation.

Step 4: To measure the goodness-of-fit of the Pareto assumption, we compute the adjusted

R2 of the Zipf plot at each grid point (k, l). The exercise plots the logarithm of a

against the logarithm of the frequency of a at each grid point (k, l). If the underlying

distribution is Pareto, Zipf’s plot would be linear. With this insight, we run a simple

linear regression on the log-log plot and use the adjusted R2 to measure the goodness-

of-fit of the Pareto assumption at the grid point.

12We have also estimated the location parameter of the Pareto distribution for each grid point and find
that they are all clustered at 1, the location parameter in the marginal distribution. As a result, we assume
the location parameter in all the conditional distributions to be 1.
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In practice, we set Ny = N` = 5 and NMC = 20 million. We discretize both frictions

by standard errors so that the five grid points correspond to [−2,−1, 0,+1,+2] standard

deviations away from the mean, respectively. Appendix C provides more details on the

estimation, as well as the solution of the model based on the discretized frictions.

4 Calibration

Other than the estimated joint distribution, the remaining parameters to be disciplined are

{ψ, κ, ε, βj, fe}, the initial population distribution {L̄j}, the fundamental productivity and

amenity, {Aj, φj}, trade costs matrices {fij, tij}, and the migration cost matrix, {λij}. We

calibrate the model into the same 237 prefectures as defined in the previous Section from

1998 to 2007. Table 2 summarizes the calibrated parameters.

The following parameters are calibrated without solving the model. The congestion

elasticity, ψ = −0.1, comes from Ahlfeldt et al. (2015).13 The migration elasticity, κ = 1.61,

comes from Ma and Tang (2022), who estimated a gravity equation using the migration flow

data in China. The elasticity of substitution, ε = 6, is consistent with the range commonly

used in the literature.14 We calibrate the location-specific labor share, βj, by combining the

prefecture-specific labor share from ASIF and the national input-output tables. We do not

directly use the labor share from ASIF because the dataset only contains large firms and thus

does not represent all the firms in China. In particular, we take the prefecture-specific labor

share from the ASIF—the same as those estimated in Section 3.3—and normalize them so

that the average βj is 0.37, which is the aggregate labor share derived from the 2002 Input-

Output Table of China.15 This normalization ensures that βj varies across prefectures as

indicated by ASIF and is consistent with the labor share in the national IO tables. Lastly,

the initial population distribution {L̄j} comes from the Population Census in 2000. The

fixed costs of trade matrix fij are directly taken from Ma and Tang (2020), who measured

13Note that with the absence of agglomeration elasticity, ψ = −0.1 ensures the existence and the uniqueness
of the equilibrium, as discussed in Allen and Arkolakis (2014).

14Anderson and van Wincoop (2004) surveyed the estimates of the elasticity of substitution in the literature
and concluded that the reasonable range is between 5 and 10.

15Denote the labor share estimated in Section 3.3 at location j as βSMM
j . The normalized labor share used

in the quantitative part is βj = βSMM
j − (1/J)

∑J
i=1 β

SMM
i + 0.37.
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these costs using the fraction of entrepreneurs in each prefecture in the 2005 One-Percent

Population Survey.

Table 2: Parameters

(a) Pre-set Parameters

Para. Value Source Note

ψ -0.1 Ahlfeldt et al. (2015) congestion elasticity
κ 1.61 Ma and Tang (2022) migration elasticity
ε 6.0 Anderson and van Wincoop (2004) elasticity of substitution
{βj} - ASIF data and IO Table prefecture-specific labor share
{L̄j} - population census, 2000 prefecture-specific initial population

(b) Jointly-Calibrated Parameters

Para. Value Calibration target Note

fe 27.9 firms-to-population ratio entry costs
t̄ 1.99 internal-trade-to-GDP average trade costs
λ̄ 106.3 aggregate stay-rate average migration costs
{Aj} - output prefecture-specific productivity
{φj} - population prefecture-specific amenity

Notes: Panel (a) presents the parameter externally determined, and Panel (b) presents the jointly-calibrated
parameters. ψ comes from Ahlfeldt et al. (2015). The value of κ is from Ma and Tang (2022), and the value
of ε comes from Anderson and van Wincoop (2004). βj is computed using the ASIF data and Input-Output
Tables in China. fe is calibrated to match the firm-to-population ratio from the 2008 Economic Census. t̄ is
calibrated to match the target obtained from the Investment Climate Survey. The target for λ̄ comes from
the One Percent Population Survey in 2005. {Aj} matches the prefecture-level output, and {φj} matches
the prefecture-level population.

Joint Calibration All the other parameters are jointly calibrated in the general equilib-

rium. We follow the strategy in Ma and Tang (2020) by assuming that the iceberg trade

and migration costs are functions of the geographic costs matrix, Tij, which are estimated

in the same paper. In particular, we assume the following functional form and normalize

tii = λii = 1,∀i:

tij = t̄× Tij,∀i 6= j

λij = λ̄× Tij,∀i 6= j.
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The Tij matrix from Ma and Tang (2020) describes the relative costs of transportation based

on the observed road, railway, and river network between all prefecture pairs. The functional

form assumption reduces the calibration of the {tij} and {λij} matrices to two scalars, t̄ and

λ̄.

We normalize the vector of the location-specific productivity, {Aj}, so that the produc-

tivity in Beijing is 1. The remaining 236 elements in {Aj} are to be calibrated. Similarly,

we normalize φj in Beijing to be 1 and jointly calibrate the other elements in {φj}. Together

with the three remaining scalars, fe, t̄, and λ̄, we have a total of 3+236∗2 = 475 parameters

to be jointly calibrated.

The parameter fe is the fixed cost of entry. We pin down fe by matching the ratio of

entering firms to the population in the data. In the model, the moment is computed as∑J
j=1 Ij/L̄. In the data, the number of firms corresponds to the number of legal entities

(“Fa Ren”) in the 2008 Economic Census, and the target moment is 5.7 entering firms per

thousand population.

The average costs of internal trade, t̄, is chosen to match the internal-trade-to-GDP ratio

of 0.625 in China, as reported in the Investment Climate Survey by the World Bank in 2005.

λ̄ is calibrated to match the aggregate stay rate computed from the One Percent Population

Survey in 2005. In the data, we define the aggregate stay rate as the fraction of the population

that does not move between 2000 and 2005 in the initial population in 2000. We calculate

the ratio using a sample of 237 prefectures. In the model, the corresponding statistics is∑J
j=1 mjjL̄j/

∑J
j=1 L̄j, where mjj is the probability of staying as defined in equation (5).

Lastly, we treat {Aj, φj} as the structural residuals and use them to match the real

output and population share in each prefecture as reported in the City Statistical Yearbooks in

2007.16 The 475 parameters described above are jointly determined in the general equilibrium

and, thus, are jointly calibrated. We implement the joint calibration using a fixed-point

algorithm and describe the details in Appendix C.

Model Fit Before discussing the counterfactual results, we present several measures of

model fit in Figure 3. The calibration strategy outlined above allows us to perfectly match

16We use the summation of each prefecture’s secondary and tertiary GDP to proxy its output. The model
counterpart is Yj . We ignore the agriculture output as the model excludes the agriculture sector.
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the real wage and population in each prefecture but not the other aggregate endogenous

variables. Nevertheless, our model can capture the salient features in the data, such as

migration flows and the number of firms.

(a) migration flows (b) number of firms

Figure 3: Model Fit

Notes: the figures plot the model-predicted population flows and the number of firms against the data. The
red dashed line is the 45-degree line. In the left panel, each dot is a prefecture pair, and we omitted the
pairs where the origin and the destination prefectures are the same. In the right panel, each dot represents
a prefecture. The number of firms in the model is Ij . The number of firms in the data comes from the
Economic Census.

As shown in Figure 3, the bilateral migration flows in our model broadly match that in the

data. The ability to match the bilateral migration flows stems from the assumption that the

migration costs depend on distance through transportation costs. The reliance on distance

echoes the findings in the literature that a gravity-like relationship holds for the international

migration flows, such as in Grogger and Hanson (2011) and Ortega and Peri (2014). Panel

(b) of the same figure suggests that we can reasonably match the prefecture-level number of

firms.

5 Quantitative Results

We evaluate the aggregate and the distributional impacts of micro-level frictions with coun-

terfactual exercises. In the first set of counterfactual simulations, we lower the dispersion of

the frictions, σy,j and σ`,j, and in the second set, we lower the productivity correlations, ρay,j
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and ρa`,j. To carry out a counterfactual exercise, we repeat the steps outlined in Section 3.5

to re-discretize the output and labor friction grids and re-estimate the conditional distribu-

tion of productivity. We then solve the model based on the counterfactual grid points. All

the other parameters are the same between the counterfactual and the baseline simulations.

We define the equilibrium welfare of a prefecture, V̄j, as:

V̄j ≡
wj + γj
Pj

(Lj)
ψ (mjj)

− 1
κ . (21)

Compared to indirect utility, Vj, defined in equation (4), the equilibrium welfare, V̄j, also

captures the impacts of the migration frictions and idiosyncratic shocks, ν, by including

the last term (mjj)
− 1
κ .17 The national-level welfare is then computed as

∑J
j=1 LjV̄j. In the

paper, we focus on the welfare implications and relay those based on the real income to the

Appendix Figures A.3 to A.6.18

5.1 Dispersion and Correlation of Frictions

In the first set of results, we reduce the levels of {σy,j, σ`,j} by 0.01 in all the prefectures and

compute the semi-elasticity of various endogenous variables to the dispersion parameters.19

With lowered dispersion of the frictions, misallocation is alleviated in all the prefectures.

The impacts at the aggregate level are summarized in Figure 4, and the impacts at the

prefecture-level are reported in Figure 5.

The within-prefecture misallocation exerts a sizable impact on the welfare at the national

level. As shown in Panel (a) of Figure 4, reducing σy and σ` by 0.01 increases the aggregate

welfare by 3.5 percent, leading to a semi-elasticity of -3.5. When the distributions of frictions

become less dispersed, the firms are more likely to draw frictions closer to zero, which

improves aggregate welfare through several channels. As the labor frictions converge towards

17See proposition 2 in Tombe and Zhu (2019) for more details.
18We denote Yj/Pj as the “real income” of prefecture j, and compute the aggregate real income as∑J
j=1(Yj/Pj)Lj . The real income includes real wage, wj/Pj , and transfer payments, γj/Pj .
19A reduction of 0.01 is different from a proportional reduction of 1%. For example, if σy,j = 0.5 in

the baseline, a reduction of 0.01 means that in the counterfactual σy,j = 0.49. We report the percentage
reduction results and the implied elasticity in Appendix Figures A.4 and A.5 and discuss these later in the
section.
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(a) aggregate welfare (b) firm entry (c) net flow to rich prefectures

Figure 4: The Aggregate Impacts of Reducing σy,j and σ`,j

Notes: the panels present the aggregate and distributional impacts of reducing the dispersion of frictions in
all the prefectures. The x-axis in all panels indicates the reduction in σy,j and σ`,j in levels. The y-axes
in panels (a), (b), and (c) denote the ratio of aggregate welfare, the number of entering firms, and the net
population flow to rich prefectures to the baseline level, respectively.

zero, the marginal product of labor is more equalized across firms; similarly, the reduction

in the dispersion of output frictions better aligns market share with firm-level productivity.

Both forces lead to aggregate gains in output. At the extensive margin, the higher expected

profit encourages more firms to enter, further lowering the price index, as shown in Panel (b)

of the same figure. Similarly, with lowered dispersion, it becomes harder for firms with low

productivity and higher subsidies to survive. In the counterfactual equilibrium, the selection

on productivity is strengthened, and therefore the average productivity among the surviving

firms is higher. Lastly, as we will discuss later in Panel (c), the dispersion reduction also

reallocates the population towards smaller prefectures, alleviating the congestion disutility.

To disentangle the impacts of each friction, we repeat the exercises by only lowering

σy and σ` separately. The semi-elasticity of welfare to labor dispersion (-2.09) is higher

than that of the output friction (-1.43), as shown in Panel (a) of Figure 4. The differences

between the labor and the output frictions are even more pronounced in the number of

entering firms, as shown in Panel (b) of the same figure. The greater impact of labor friction

is mainly because the estimated labor dispersion is much larger than the output dispersion,

as discussed earlier.

In Panel (c) of Figure 4, we plot the changes in the net population flow to the “top-10

richest prefectures” from the baseline equilibrium against the reductions in the standard

32



(a) real wage (b) welfare

(c) net population flow (d) firm entry

Figure 5: The Prefecture-Level Impacts of Reducing σy,j and σ`,j by 0.01

Notes: the panels present the distributional impacts of reducing σy and σ` by 0.01. The x-axis in all panels
indicates the natural logarithm of the initial real wage. The y-axes in panels (a), (b), and (d) are log
differences between the counterfactual and the baseline levels of the real wage, welfare, and the number of
entering firms, respectively. Panel (c) plots the differences in the level of net population flow in the unit of
10,000 people. Each dot represents a prefecture.

deviation.20 As mentioned earlier, reducing the standard deviation encourages migration

toward poorer prefectures. When the standard deviation of both frictions drops by 0.01, the

migration flow toward those richest prefectures declines by around 3.87 percent.

At the prefecture level, the changes in local welfare and the real wage reduce population

flows toward richer prefectures. Figure 5 plots the prefecture-level response to a 0.01 reduc-

tion in {σy,j, σ`,j}. Panels (a) and (b) show a negative relationship between a prefecture’s

20“Net population flow” in prefecture j is defined as the difference between the equilibrium and the initial
population, Lj−L̄j . The “top-10 richest prefecture” is measured by the real wage in the baseline equilibrium.
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initial real wage and the changes in real wage and welfare. The poorer prefectures benefit

disproportionately more from the reduction in the dispersion and thus become more attrac-

tive. As a result, economic activity reallocates from the richer prefectures towards the poorer

ones, as seen in Panel (c) in both Figures 4 and 5 in the case of population and in Panel (d)

of Figure 5 in the case of firm entry. The byproduct of the reallocation is a decline in the

spatial inequality of welfare. Our results show that with the 0.01 reduction in both standard

deviations, the Gini coefficient of real wage decreases by 0.3%, with a semi-elasticity of -0.3.

Figure A.3 in the appendix shows that the results remain qualitatively the same with other

common measures of spatial inequality, such as the logarithm of the standard deviation and

the Herfindahl-Hirschman index.

The equalizing effect of a uniform reduction in the dispersion suggests a stronger impact

in locations with initially higher σ, and the impact weakens in prefectures with initially lower

σ. Poorer prefectures face higher dispersion in the benchmark economy as shown in Table 1,

and thus benefit more from the uniform decline in the dispersion parameters. The findings

suggest “decreasing-returns-to-scale” in reducing the standard deviations of the frictions: a

larger proportion of reduction in the standard deviation leads to smaller gain in real wage.

Productivity Correlation In addition to the dispersion parameters, we also study the

impact of the productivity correlations, {ρay, ρa`}, by reducing the absolute values of these

parameters. When the correlation moves closer to zero, productivity becomes less dependent

on friction.

The reduction of the productivity correlation leads to similar results compared to a de-

crease in the dispersion. As shown in Figure 6, when the absolute value of the correlation

parameters declines by 0.01, the aggregate welfare increases by 0.77 percent. The sign of

productivity correlation is crucial for the welfare implications. Intuitively, while reducing a

positive correlation towards zero makes more productive firms less distorted and thus reallo-

cates resources towards them, moving a negative correlation closer to zero achieves exactly

the opposite effect by distorting the more productive firms more. As a result, reducing the

absolute value of the negative productivity correlations could dampen welfare. In the base-

line estimation, the welfare-dampening impact primarily applies to labor frictions because as
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(a) aggregate welfare (b) firm entry

Figure 6: The Aggregate Impacts of Reducing ρay,j and ρa`,j

Notes: the panels present the aggregate impacts of reducing the productivity correlation of frictions in all
the prefectures. The x-axis indicates the reduction in ρay,j and ρa`,j in absolute values. The y-axes are the
ratio of the aggregate welfare and the number of entering firms to the baseline levels, respectively.

many as 146 prefectures have negative correlations between labor frictions and productivity.

Subsequently, reducing the absolute values of productivity correlations with labor frictions

leads to lower welfare in many prefectures. In comparison, only 38 prefectures have nega-

tive correlations between output friction and productivity, and therefore we observe welfare

improvements when correlations between output friction and productivity are lowered.

Elasticities The results discussed above are based on uniformly reducing the key param-

eters by 0.01 (semi-elasticities). Appendix Figures A.4 and A.5 present the results based on

the elasticity of σ and ρ, respectively. To compute the elasticity, we reduce σ-parameters by

10% or the absolute values of the ρ-parameters by 10%. The results are consistent with those

reported in Figures 4 and 6. One notable difference is that the elasticity of labor dispersion

(-1.72) is much larger than that of the output dispersion (-0.16). The difference comes from

the fact that the average standard deviation of the labor friction is substantially higher than

that of the output friction, as shown in Figure 1 and discussed in Section 3.4. Due to the

differences in the magnitude, the same percentage reduction in dispersion parameters means

a much more significant reduction in levels of labor frictions, although their semi-elasticities

are similar as shown in Figures 4 and 6.
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5.2 Migration and Spatial Frictions

In the last part, we study the interaction between migration friction and the spatial distri-

bution of firm-level frictions. We first compute a “no migration” baseline equilibrium by

setting λ̄ to a sufficiently high value so that the aggregate stay rate increases to 1.0. All the

other parameters are the same as in the baseline model. We then reduce the dispersion and

productivity correlation parameters starting from the “no migration” baseline. Comparing

the effects of reducing friction with and without migration highlights the interaction between

the two. Table 3 summarizes the results.

Table 3: The Effects of Migration (Percentage Points)

Aggregate Welfare Firm Entry Gini
Baseline No Mig. ∆ Baseline No Mig. ∆ Baseline No Mig. ∆

σ 3.533 3.701 4.753 3.027 3.199 5.656 -0.300 -0.242 -19.247
ρ 0.769 0.778 1.194 0.316 0.403 27.582 0.147 0.139 -5.309

Notes: the table summarizes the effects of reducing σ or ρ by 0.01 for both output and labor frictions in
all prefectures, with or without internal migration. All the welfare impacts are in percentage points. For
example, reducing σ by 0.01 increases aggregate welfare by 3.533% in the baseline model and 3.701% in the
model without migration. Therefore, the effect of migration is 3.701/3.533 − 1 = 4.75%, as shown in the
third column under the header “∆”. The Gini coefficient refers to that of the real wage.

Shutting down the migration amplifies the aggregate impacts and dampens the distri-

butional impacts of micro-frictions. As shown in Table 3, in the model without migration,

reducing σy and σ` by 0.01 increases aggregate welfare by 3.701 percent, higher than the

effect of the baseline model with migration at 3.533 percent. Therefore, shutting down mi-

gration amplifies the aggregate impacts by 3.701/3.533 − 1 = 4.75 percent. Similar results

emerge when the productivity correlation is lower, as seen in the second row of the same

table. In the baseline model with migrations, the negative impacts of micro-level frictions

on aggregate output are partially offset by the migration flows — people leaving the heavily

distorted regions in favor of the less distorted ones, thus reducing the economic activity in

the heavily distorted regions. Without migration, the aggregate impacts are amplified as

people can no longer escape the heavily distorted prefectures.

Moreover, without migration, spatial inequality becomes less responsive to micro-frictions.

For example, lowering the dispersion parameters reduces the Gini coefficient by 0.3 percent
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with migration, but the impact reduces to 0.24 percent when migration is not allowed. The

impact on spatial inequality is the by-product of the mechanism described above. Micro-

frictions in our model lead to spatial inequality partly because they divert away workers.

Without migration, this negative channel is shut down. The heavily distorted regions no

longer suffer from an exodus of workers; therefore, the distributional impacts are less severe.

Figure 7: Reducing dispersion parameter v.s. migration frictions

Notes: the red and blue dots (curve) represent the distributional impacts from reducing the standard devi-
ation of frictions and migration liberalization in all the prefectures, respectively. The x-axis is the natural
logarithm of the initial real wage. The y-axis is the log differences in the net population flow to receiving
prefectures from the baseline to the counterfactual economy. Each dot is a prefecture, and the curves are
the best quadratic fit.

The policy implication of the exercises above is that migration and place-based policies

that reduce local friction are substitutes for impacting aggregate welfare. In other words,

the government can improve aggregate welfare by either moving people away from the less-

developed regions or alleviating micro-frictions in these regions. By our calculation, to

achieve the same level of welfare gain as reducing the standard deviations of both friction

by 0.01, the migration frictions, λ̄, need to decline by around 18.3 percent from the baseline

level. The liberalization in migration frictions increases the total number of migrants by 3.1

percent, leading to the same 3.5 percent increase in aggregate welfare. However, the two

policies have drastically different implications for spatial inequality. When the migration
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barriers are alleviated, people move to the richer prefectures. When the distortions are less

dispersed, people move to the poorer prefectures, as seen in Figure 7. As a result, the Gini

coefficient of real wage increases with migration liberalization by 0.002 and decreases under

less dispersed micro-level distortions by 0.001.

5.3 Robustness Checks

The baseline results reported above assume the values of ψ, κ, and ε from the literature.

In this section, we report the results based on alternative values of these parameters. In

all the robustness checks, we re-calibrate the parameters reported in Panel (b) of Table

2 because the calibration targets depend on ψ, κ, and ε. The upper panel of Table 4

reports the semi-elasticity of endogenous variables of interest to measures of dispersion, σy

and σ`, and productivity correlations, ρay and ρa`. We present the results under the baseline

parameterization in the first row for reference. The main results are robust across the various

specifications.

The baseline model adopts the features from Melitz (2003) and allows selection into ex-

porting by assuming fixed exporting costs. While this assumption is supported by empirical

evidence, it nevertheless introduces tension between the model and the estimation proce-

dure. In particular, we approximate the adjacent percentile revenue ratios using augmented

productivity measures in the SMM estimation. The approximation is only exact when firms

in the adjacent percentiles serve the same markets, which might not be valid with fixed

exporting costs. To gauge the potential bias, we repeat the quantitative exercise in the last

robustness check assuming fij = 0, ∀i 6= j and keep the fii the same as in the baseline model.

This assumption rules out selection into exporting so all the operating firms sell to all the

markets. Nevertheless, the assumption retains the selection at the entry stage so that firms

with a total operating profit lower than fii still exit the market. In other words, the SMM

procedures described in the previous section are perfectly consistent with this alternative

setup. The last row in Table 4 shows that the quantitative results are remarkably consistent

between this version and our baseline results. The similarity suggests that our quantitative

results are not biased by the approximation of adjacent percentile ratios.

The lower panel of Table 4 reports the “effects of migration” across different specifications.
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Table 4: Robustness Checks

(a) Semi-Elasticities

Aggregate
Welfare

Firm
Entry

Net Flow to
Rich Prefectures

σ ρ σ ρ σ ρ
Baseline -3.53 -0.77 -3.03 -0.32 3.87 4.63
ψ = −0.2 -3.56 -0.81 -3.03 -0.32 4.04 4.80
κ = 2.0 -3.51 -0.79 -3.00 -0.31 5.26 6.05
ε = 5.0 -3.01 -2.17 -1.93 -1.67 4.96 4.05
fij = 0, i 6= j -3.23 -0.85 -2.51 -0.52 3.19 4.89

(b) Effects of Migration

Aggregate
Welfare

Firm
Entry

Gini
Coefficient

σ ρ σ ρ σ ρ
Baseline 4.75 1.19 5.66 27.58 -19.25 -5.31
ψ = −0.2 4.22 0.45 5.55 27.33 -18.96 -4.46
κ = 2.0 5.57 -1.54 6.51 31.55 -21.29 -9.03
ε = 5.0 16.80 15.41 22.24 15.88 -15.22 -18.40
fij = 0, i 6= j 5.20 10.08 6.14 21.95 -15.95 -23.53

Notes: this table reports the robustness checks with respect to ψ, κ, ε, and fij . The numbers in the upper
panel are the semi-elasticities of variables in the column headers to a reduction of 0.01 in both σy,j and σ`,j
under columns with header “σ”. Similarly, the columns with the header “ρ” compute the semi-elasticity
with a reduction of 0.01 in the absolute values of both ρay,j and ρa`,j . The lower panel reports the effects of
migration, computed in the same way as in Table 3. We compute the Gini coefficient for the real wage.
“Aggregate welfare” and “net flow to rich prefectures” are defined in the main text. The “number of entering
firms” refers to “I” in the model. ψ is the dispersion elasticity; κ is the migration elasticity, and ε is the
elasticity of substitution. In the last row, setting fij = 0,∀i 6= j assumes away selection into exporting, so
all the operating firms sell to all the locations.

We compute the “effects of migration” in the same way as those reported in Table 3, and

replicate the results in the baseline model in the first row for reference. Across all the

specifications, shutting down migration amplifies the aggregate implications while dampening

the distributional effects of the dispersion parameter. The effects of migration are weaker

with stronger congestion elasticity when ψ = −0.2 because congestion forces discourage

workers from moving into the larger and less-distorted prefectures. On the contrary, higher

migration elasticity (κ = 2) strengthens migration’s effect as it incentivizes workers to move

to locations with higher real income. Lower elasticity of substitution (ε = 5) achieves similar

results because it strengthens the love-of-variety effect, and thus encourages workers to move
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to richer prefectures that host more varieties. Lastly, shutting down market selection with

fij = 0, i 6= j leads to mixed results. On the one hand, the disparity in the number of varieties

among locations disappears in this case, reducing migration flows. On the other hand,

the variations in factor prices across locations could be higher in the general equilibrium,

increasing migration flows in the end.

Lastly, across all the quantitative results, the effects of ρ are typically more sensitive as

compared to the effects of σ. The reason, as discussed in detail in the previous part, is that

positive and negative productivity correlations might have opposite welfare implications. As

a result, reducing the absolute values of ρ could lead to counter-acting effects depending on

the baseline estimates of ρ, rendering the results sensitive to other parameters.

6 Conclusion

This paper structurally estimates the spatial distribution of firm-level frictions and studies

their aggregate and distributional impacts. We show that the frictions in both factor and

output markets vary systematically across prefectures. Firm-level frictions are less dispersed

and correlated with productivity in richer prefectures. Our counterfactual exercise shows

that reducing the within-prefecture misallocation increases aggregate welfare, discourages

migration towards large prefectures, and narrows spatial income inequality. Moreover, we

show that internal migration alleviates the aggregate impacts of micro-frictions and worsens

spatial inequality simultaneously. Workers prefer to migrate out of the poor and heavily

distorted locations to favor the richer and less-distorted ones.

A couple of caveats exist in interpreting our results. Frictions are completely exogenous,

and their causes must be rooted in certain institutional or geographical factors, which we do

not explore in the current project. Our analysis focuses on manufacturing firms in the urban

area; thus, our work cannot be directly applied to the agriculture and rural sectors. We

also abstract away from the housing markets in the urban sectors and model the congestion

through a stylized functional form. We focus on the basic patterns of spatial misallocation,

highlight their importance, and relay the other factors mentioned above to future work.
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Appendix

A Additional Figures and Tables

Legend
Missing
In	Sample

Legend
Missing
In	Sample

Figure A.1: Prefectures in the Sample

Notes: this map shows the 237 prefectures in the sample. We select the largest common set of prefectures
between Ma and Tang (2020) and those with at least 500 unique firms in the ASIF database.
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(a) Beijing (b) Tianjin (c) Shanghai (d) Suzhou

(e) Guangzhou (f) Shenzhen (g) Chengdu (h) Xi’an

Figure A.2: Model Fit, Estimation

Notes: the eight panels present the kernel density estimates for the distribution of sales, output friction, and
labor friction in both the data and the simulation for eight selected prefectures.
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(a) real wage (b) gini

(c) std(log) (d) HHI

Figure A.3: Semi-Elasticity of σy,j and σ`,j, Additional Results

Notes: the four panels present the aggregate and distributional impacts of reducing the standard deviation
of frictions in all the prefectures. The x-axes in all panels indicate the reduction in σy,j , and σ`,j in levels.
The y-axes in panel (a) is the ratio of the real wage to the baseline level. In Panels (b), (c), and (d) the
y-axes are the Gini coefficient, standard deviation of the natural logarithm, and the HHI index of real wage
across prefectures.

46



(a) real wage (b) welfare

(c) net flow to top prefectures by real wage (d) firm entry

Figure A.4: Elasticity of σy,j and σ`,j

Notes: the four panels present the aggregate and distributional impacts of reducing the standard deviation of
frictions in all the prefectures. The x-axes in all panels indicate the reduction in σy,j , and σ`,j in percentage
terms.
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(a) real wage (b) welfare

(c) net flow to top prefectures by real wage (d) firm entry

Figure A.5: Elasticity of ρay,j and ρa`,j

Notes: the four panels present the aggregate and distributional impacts of reducing the productivity corre-
lations of frictions in all the prefectures. The x-axes indicate the reduction in ρay,j , and ρa`,j in percentage
terms.
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Figure A.6: Reducing correlation parameter v.s. migration frictions, Changes in Net Popu-
lation Flow

Notes: the red and blue dots (curve) present the distributional impacts of reducing the productivity corre-
lation parameters and migration liberalization in all the prefectures, respectively. The x-axis indicates the
natural logarithm of the initial real wage. The y-axis is the log differences in the net population flow to
receiving prefectures from baseline to the counterfactual economy.
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Table A.1: Definition of Regions

Region Provinces

Southern Coast Guangdong Hainan
Eastern Coast Shanghai Fujian Jiangsu Liaoning
North Beijing Tianjin Hebei Heilongjiang Jilin

Liaoning Shandong
Others -

Notes: this table defines the “regions” used in the empirical analysis, sorted by average per-capita GDP.
“Southern Coast” is the region with the highest per-capita GDP, followed by “Eastern Coast”, “North”, and
“Others”. All the provinces not included in the top three regions are in the “others” category. We classify
all the prefectures in a province to the corresponding region.

Table A.2: Spatial Variation of Frictions across Regions

(1) (2) (3) (4)
σ̃y σ̃` ρ̃a,y ρ̃a,`

Southern Coast -0.022*** -0.043 -0.289*** -0.015
(0.002) (0.042) (0.032) (0.025)

Eastern Coast -0.020*** -0.160*** -0.299*** -0.028
(0.003) (0.031) (0.039) (0.023)

North -0.002 0.108*** -0.043* 0.047***
(0.003) (0.030) (0.022) (0.016)

N 237 237 237 237
Adj.R-squared 0.217 0.160 0.391 0.044

Notes: this table regresses the dispersion and productivity correlation of output frictions (σ̃y and ρ̃ay) and
the labor frictions (σ̃` and ρ̃a`) against regional dummy variables. The reference group is the “Others”
region. See Table A.1 for the definition of regions. Robust standard errors are reported in the parenthesis.
***: significant at the 1% level; *: significant at the 5% level; *: significant at the 10% level.
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B Solving the Model

We need to solve a series of {wj, Ij, Pj, Xj} for all j = 1, 2, · · · , J . Before providing the

details of the solution, we first present the following results and notations that will be used

extensively in the appendix. Note that the solution is based on the discretized version of the

model, in which the frictions τy and τ` are discretized into grid points.

• We denote the firms in a grid point (τ ky , τ
l
`) as “type d” firms, in which d = 1, 2, · · · , Ny×

N` indexes the types.

• The CDF and the PDF of a in prefecture j, type d is:

Gd
j (a) = 1−

(
ξdj
)θdj a−θdj ,

gdj (a) = θdj
(
ξdj
)θdj a−θdj−1,

where ξdj is the lower bound, and θdj is the shape parameter. In practice, we found that

ξdj = Āj, and thus directly enforce the condition.

• The cut-off productivity is solved as in equation (11):

adij =
ε

ε− 1

tijc
d
j(

1− τ dy,j
)
Pi

[(
1− τ dy,j

)
Xi

εcdjfij

] 1
1−ε

.

• A potential entrant has probability λdj to be type-d and the type is only revealed after

paying the entry fee. Therefore:

Idj = λdjIj,

Ij =
D∑
d=1

Idj .

• The un-distorted cost of a bundle in prefecture j is:

c̄j = (1− βj)βj−1β
−βj
j w

βj
j P

1−βj
j ,
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and the distorted cost of a bundle is:

cdj = (1− βj)βj−1β
−βj
j [(1 + τ d`,j)wj]

βjP
1−βj
j =

(
1 + τ d`,j

)βj
c̄j.

• We use υdij to denote the following combination of parameters related to selling from j

to i:

υdij =

(
ε

ε− 1

)1−ε
[

tij(
1− τ dy,j

)]1−ε

. (B.1)

and ηdij to denote the measure of trade flow from j to i:

ηdij = υdij
(
cdj
)1−ε

∫ ∞
adij

aε−1dG(a) (B.2)

= υdij
(
cdj
)1−ε

 (
ξdj
)θdj θdj

θdj − ε+ 1

(adij)−θdj+(ε−1)

B.1 Updating Price

The ideal price index in prefecture i can thus be expressed as:

P 1−ε
i =

J∑
j=1

D∑
d=1

Idj

∫ ∞
adij

(
ε

ε− 1

tijc
d
j

1− τ dy,j

)1−ε

aε−1dGd
j (a)

=
J∑
j=1

D∑
d=1

Idj θ
d
j

(
ξdj
)θdj ( ε

ε− 1

tijc
d
j

1− τ dy,j

)1−ε ∫ ∞
adij

aε−θ
d
j−2da

=
J∑
j=1

D∑
d=1

Idj
(
ξdj
)θdj ( ε

ε− 1

tijc
d
j

1− τ dy,j

)1−ε(
θdj

θdj − ε+ 1

)(
adij
)−θdj+(ε−1)

Pi =

(
ε

ε− 1

)
J∑
j=1

D∑
d=1

Idj

 (
ξdj
)θdj θdj

θdj − ε+ 1

( tij
1− τ dy,j

)1−ε (
cdj
)1−ε (

adij
)−θdj+(ε−1)


1

1−ε
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Alternatively, we can also express the price index using the definition of υdij:

Pi =

{
J∑
j=1

D∑
d=1

λdjIjυ
d
ij

(
cdj
)1−ε

∫ ∞
adij

aε−1dG(a)

} 1
1−ε

=

{
J∑
j=1

D∑
d=1

λdjIjη
d
ij

} 1
1−ε

(B.3)

B.2 Updating Wage

We back out the wage rates using labor market clearing conditions. The pre-tax sales revenue

from i to j by type-d is:

Xd
ji = Idi

∫ ∞
adji

Xj

P 1−ε
j

[
pdji(a)

]1−ε
dG(a)

= Idi

∫ ∞
adji

Xj

P 1−ε
j

(
ε

ε− 1

tjic
d
i

1− τ dy,i

)1−ε

aε−1dG(a)

= Idi
Xj

P 1−ε
j

(
ε

ε− 1

tjic
d
i

1− τ dy,i

)1−ε (
ξdj
)θdj θdj

θdj − (ε− 1)

(
adji
)−θdj+(ε−1)

. (B.4)

Alternatively, the trade flow can also be expressed as:

Xd
ji = Idi

Xj

P 1−ε
j

ηdji.

Note that:

Xd
i =

J∑
j=1

Xd
ji,

is the total revenue of the type-d firms in prefecture i.
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The number of input bundles required to generate the sales above is:

Bd
ji = Idi

∫ ∞
adji

tji
qdji
a
dG(a)

= Idi

∫ ∞
adji

Xj

P 1−ε
j

(
ε

ε− 1

tjic
d
i

1− τ dy,i
1

a

)−ε
tji

1− τ dy,i

(
1− τ dy,i

) 1

a
dG(a)

= Idi

(
1− τ dy,i

)
Xj

P 1−ε
j

(
tji

1− τ dy,i

)1−ε(
ε

ε− 1
cdi

)−ε ∫ ∞
adji

aε−1dG(a)

= Idi

(
1− τ dy,i

)
Xj

P 1−ε
j

(
tji

1− τ dy,i

)1−ε(
ε

ε− 1
cdi

)−ε (
ξdi
)θdi θdi

θdi − (ε− 1)

(
adji
)−θdi +(ε−1)

.

Alternatively, the bundle requirement can be expressed as:

Bd
ji = Idi

(
1− τ dy,i

)
Xj

P 1−ε
j

(
tji

1−τdy,i

)1−ε (
ε
ε−1

cdi
)1−ε(

ε
ε−1

cdi
) (

ξdi
)θdi θdi

θdi − (ε− 1)

(
adji
)−θdi +(ε−1)

= Idi

(
1− τ dy,i

)
Xj

P 1−ε
j

νdji
(
cdi
)1−ε(

ε
ε−1

cdi
) (

ξdi
)θdi θdi

θdi − (ε− 1)

(
adji
)−θdi +(ε−1)

.

= Idi

(
1− τ dy,i

)
Xj

P 1−ε
j

ηdji(
ε
ε−1

cdi
)

The relationship between Bd
ji and Xd

ji is therefore:

Xd
ji = Bd

jic
d
i

ε

ε− 1

1

1− τ dy,i
.

For each unit of input bundle, the labor demand that minimizes the unit costs is:

ldi =

[
Pi

(1 + τ d`,i)wi

]1−βj (
βj

1− βj

)1−βj

=
βjc

d
i

(1 + τ d`,i)wi
,

and thus the labor demand to generate Xji is ldi · Bd
ji. Firms also need to purchase input

bundles to pay for the fixed operating costs. The total demand for input bundles in prefecture
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i in order to cover the operating costs of serving prefecture j is:

Bd
f,ji = fjiI

d
i

∫ ∞
adji

dG(a) = fjiI
d
i ·
(
1−G(adji)

)
= fjiI

d
i

(
ξdi
)θdi (adji)−θdi .

As a result, the total labor demand incurred in prefecture i for serving prefecture j is the

sum of both variable and fixed costs of production:

Ldji = ldi · (Bd
ji +Bd

f,ji).

The total labor demand in prefecture i is thus the sum of labor demand by all destinations

and types of firms and the labor incurred to cover the entry costs measured as undistorted

input bundles. Finally, the labor market clearing condition in prefecture i is given as:

Li =
N∑
j=1

D∑
d=1

Ldji + Iife

(
Pi
wi

)1−βj ( βj
1− βj

)1−βj
,

where the LHS is the total labor supply in prefecture i.

B.3 Updating Expenditure

The total expenditure of prefecture j, Xj, is the final spending by the consumers, plus

expenditure on composite varieties:

Xj = Yj + (1− βj)

[
D∑
d=1

cdj

J∑
i=1

(
Bd
ij +Bd

f,ij

)
+ Ijfec̄j

]
. (B.5)

Different from the labor-market clearing condition, (1−βj) fraction of the total bundle costs

regardless of distortion,
[∑D

d=1 c
d
j

∑J
i=1

(
Bd
ij +Bd

f,ij

)
+ Ijfec̄j

]
, must be the expenditure on

the differentiated products, as there is no additional wedge in intermediate goods usage.

The equilibrium income in prefecture j, denoted as Yj, includes both the labor income

55



and the lump-sum transfer/tax from both distortions:

Yj = wjLj +
D∑
d=1

τ dy,jX
d
j +

D∑
d=1

βjτ
d
`,j

1 + τ d`,j
cdj

J∑
i=1

(
Bd
ij +Bd

f,ij

)
. (B.6)

In the expression above, the first term is the total labor income, the second is the total tax

revenue from the output wedge, and the last is the labor wedge. Similar to the expression in

the previous section, βjc
d
j

∑J
i=1

(
Bd
ij +Bd

f,ij

)
is the total payroll costs, net of the undistorted

entry, to the firms. Out of distorted labor costs,
τd`,j

1+τd`,j
fraction is the payroll tax. Substitute

the expression of Yj into the expression of Xj:

Xj = wjLj +
D∑
d=1

τ dy,jX
d
j +

D∑
d=1

βjτ
d
`,j

1 + τ d`,j
cdj

J∑
i=1

(
Bd
ij +Bd

f,ij

)
+ (1− βj)

[
D∑
d=1

cdj

J∑
i=1

(
Bd
ij +Bd

f,ij

)
+ Ijfec̄j

]
.

B.4 Updating the Number of Entrants

The free entry condition in prefecture j is:

J∑
i=1

D∑
d=1

λdj
∫ ∞
adij

(
1− τ dy,j

)
Xi

εP 1−ε
i

(
ε

ε− 1

tijc
d
j

1− τ dy,j

)1−ε

aε−1 − cdjfijdG(a)

 = fec̄j. (B.7)

In the equation above, the left-hand side is the expected profit before the realization of type

and productivity, and the right-hand side is the cost of entry. Re-arrange the equation above

using the definition of υij in the equation (B.1):

J∑
i=1

Xi

εP 1−ε
i

D∑
d=1

λdj
(
1− τ dy,j

)
υdij
(
cdj
)1−ε

∫ ∞
adij

aε−1dG(a) = fec̄j +
J∑
i=1

D∑
d=1

λdj

∫ ∞
adij

cdjfijdG(a).
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Stack the above equation for all the origin prefectures j = 1, · · · , J into a matrix form:

∑D
d=1 λ

d
1

(
1− τ dy,1

)
ηd11

∑D
d=1 λ

d
1

(
1− τ dy,1

)
ηd21 · · ·

∑D
d=1 λ

d
1

(
1− τ dy,1

)
ηdJ1∑D

d=1 λ
d
2

(
1− τ dy,2

)
ηd12

∑D
d=1 λ

d
2

(
1− τ dy,2

)
ηd22 · · ·

∑D
d=1 λ

d
2

(
1− τ dy,2

)
ηdJ2

...
...

...
...∑D

d=1 λ
d
J

(
1− τ dy,J

)
ηd1J

∑D
d=1 λ

d
J

(
1− τ dy,J

)
ηd2J · · ·

∑D
d=1 λ

d
J

(
1− τ dy,J

)
ηdJJ



×


X1

ε
P ε−1

1

X2

ε
P ε−1

2

...

XJ
ε
P ε−1
J

 =


fec̄1 +

∑J
i=1

∑D
d=1 λ

d
1

∫∞
adi1
cd1fi1dG(a)

fec̄2 +
∑J

i=1

∑D
d=1 λ

d
2

∫∞
adi2
cd2fi2dG(a)

...

fec̄J +
∑J

i=1

∑D
d=1 λ

d
J

∫∞
adiJ
cdJfiJdG(a)

 .

Denote the matrix in the first line as Ψ, and substitute in the solution of price in equation

(B.3):



X1

ε

{∑J
j=1

D∑
d=1

λdjIjυ
d
1j

(
cdj
)1−ε ∫∞

ad1j
aε−1dG(a)

}−1

X2

ε

{∑J
j=1

D∑
d=1

λdjIjυ
d
2j

(
cdj
)1−ε ∫∞

ad2j
aε−1dG(a)

}−1

...

XJ
ε

{∑J
j=1

D∑
d=1

λdjIjυ
d
Jj

(
cdj
)1−ε ∫∞

adJj
aε−1dG(a)

}−1


= (Ψ)−1


fec̄1 +

∑J
i=1

∑D
d=1 λ

d
1

∫∞
adi1
cd1fi1dG(a)

fec̄2 +
∑J

i=1

∑D
d=1 λ

d
2

∫∞
adi2
cd2fi2dG(a)

...

fec̄J +
∑J

i=1

∑D
d=1 λ

d
J

∫∞
adiJ
cdJfiJdG(a)

 .

where (Ψ)−1 is the inverse of the matrix Ψ. Denote the RHS vector of the above equation

as ~F , and with the understanding that ~Fj is the jth element of ~F , we can re-arrange the

equation as:



ε
X1

∑J
j=1 Ij

D∑
d=1

λdjη
d
1j

ε
X2

∑J
j=1 Ij

D∑
d=1

λdjη
d
2j

...

ε
X3

∑J
j=1 Ij

D∑
d=1

λdjη
d
Jj


=


1
~F1

1
~F2
...

1
~FJ

 .
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Note that in the equation above, we have used the definition of ηdij defined in equation (B.2).

Re-write the LHS of the above equation as a matrix multiplication:

∑D
d=1 λ

d
1η
d
11

∑D
d=1 λ

d
2η
d
12 · · ·

∑D
d=1 λ

d
Jη

d
1J∑D

d=1 λ
d
1η
d
21

∑D
d=1 λ

d
2η
d
22 · · ·

∑D
d=1 λ

d
Jη

d
2J

...
...

...
...∑D

d=1 λ
d
1η
d
J1

∑D
d=1 λ

d
2η
d
J2 · · ·

∑D
d=1 λ

d
Jη

d
JJ

×

I1

I2

...

IJ

 =


X1

ε ~F1

X2

ε ~F2
...

XJ
ε ~FJ

 .

Denote the LHS matrix on the first line as Φ, and the number of entrants is computed as:
I1

I2

...

IJ

 = (Φ)−1


X1

ε ~F1

X2

ε ~F2
...

XJ
ε ~FJ

 . (B.8)

The above solution based on matrix inversion is fast but unstable. If the linear solution

fails, we then directly solve equation (B.7) as a system of non-linear equations using gradient-

based methods.

C Quantification

C.1 Marginal Distributions

In each prefecture, log(1 − τy), log(1 + τ`), and a follow a joint distribution, in which the

marginal distributions of log(1 − τy) and log(1 + τ`) are Gaussian with a normalized mean

of zero, and the marginal distribution of a is Pareto. We also allow for a general correlation

structure across the three dimensions, as captured by the three correlation parameters, ρy,`,

ρy,a, and ρ`,a. We need to estimate the following 6 parameters: the 3 correlations, the shape

parameter governing the Pareto productivity, the 2 standard deviations of τy, and τ`.

We assume that we can observe the top x percent of the firms sorted by augmented

productivity, as defined below.
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Augmented productivity and the ranking of firms The revenue of firm k originating

in prefecture j and selling to prefecture i with a draw of a, τ dy,j, τ
d
`,j is:

rdij =

(
1− τ dy,j

)
Xi

P 1−ε
i

[
ε

ε− 1

tijc
d
j(

1− τ dy,j
)
a

]1−ε

=

(
εtij
ε− 1

)1−ε [
Xi

P 1−ε
i

]{
aε−1

(
1− τ dy,j

)ε [(
1 + τ d`,j

)βj
c̄j

]1−ε
}

=

(
εtij c̄j
ε− 1

)1−ε [
Xi

P 1−ε
i

]{
aε−1

(
1− τ dy,j

)ε (
1 + τ d`,j

)βj(1−ε)}
.

In the expression above, the first two terms are common across all the firms, and the firms

ranked by the “augmented productivity” in the curly bracket, defined as ãdj :

(
ãdj
)ε−1

= aε−1
(
1− τ dy,j

)ε (
1 + τ d`,j

)βj(1−ε)
.

It is straightforward to see that a firm with higher ãdj will be larger and more productive. In

a random draw of firms, the firms with the highest ãdj will survive regardless of tij and fij.

Aggregating the expression of sales across different markets, the revenue of the firm is:

J∑
i=1

rdij =
J∑
i=1

(
εtij c̄j
ε− 1

)1−ε [
Xi

P 1−ε
i

]{
aε−1

(
1− τ dy,j

)ε (
1 + τ d`,j

)βj(1−ε)}
=

(
εc̄j
ε− 1

)1−ε (
ãdj
)ε−1

{
J∑
i=1

(tij)
1−ε Xi

P 1−ε
i

}
.

The terms in the curly bracket summarize the markets the firm sells. The market access

term is firm-specific, as more productive firms will break into more markets.

C.2 Conditional Distributions

We discretize τy and τ` onto a grid, and on each grid point, we need to estimate the conditional

distribution of a. We do this by Monte Carlo simulations as the conditional distribution

from Gaussian copulas does not adopt closed-form solutions. We verify that the conditional

distributions are similar to Pareto using Zipf plots.
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Degenerate Distributions In several cases, the estimated conditional distribution leads

to very high levels of θdj . Numerically the resulting (ξdj )
θdj ≈ ∞. Theoretically, as θdj →∞, it

is straightforward to see that the Pareto distribution collapses to a degenerate distribution at

ξdj . In light of this, we approximate the conditional distribution as a degenerate distribution

to avoid numerical infinities in implementation.

In the case of a degenerate distribution, the following integration will be affected:

∫ ∞
adij

aε−1dG(a) =

 0 , if adij > ξdj(
ξdj
)ε−1

, if adij ≤ ξdj

This integration shows up in the expression of ηdij, Pi,X
d
ij, and Bd

ij. In addition, the proba-

bility of entry becomes binary (0 or 1), and therefore the following variables will be affected:

Bd
f,ji and Idj . In particular,

∫ ∞
adij

dG(a) = 1−G(adij) =

0 , if adij > ξdj

1 , if adij ≤ ξdj

C.3 Joint Calibration

We solve the joint calibration problem as a fixed point problem and use the Gauss-Jacobi

algorithm to find the fixed point. The algorithm ends with a tolerance value of 1.0E-4.

D Additional Results

D.1 Regional Variations of Frictions

Table D.1 regresses the standard deviation and productivity correlation of output and la-

bor frictions against per-capita GDP by gradually controlling prefecture-level characteristics,

such as population, labor share, the share of the manufacturing industry in GDP, and con-

nectivity in the transportation network. A negative and significant relation between the

dispersion of output frictions and income persists in all our regressions. A one-percent in-

crease in per capita GDP decreases the standard deviation of output frictions by 0.006.

60



These results imply that richer prefectures tend to have less dispersed output frictions. In

addition, locations with higher labor share in production costs or those more remote cities

seem to experience higher dispersion of output frictions. We have also explored how cor-

relations with productivity vary against income. The productivity correlations of output

frictions also decrease with income: a one-percent increase in per capita GDP leads to a

decrease of 0.107 in the correlations.

The relationship between income and the dispersion of labor frictions is also negative.

Our estimation indicates that a one-percent increase in per capita GDP decreases σ̃`. How-

ever, this coefficient is not precisely identified. Those prefectures with a higher labor share

in production experience less dispersed labor frictions. The relationship between the produc-

tivity correlation of labor frictions and income is also significantly negative: a one-percent

increase in per capita GDP reduces the productivity correlation by 0.028.
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D.2 Non-Zero Mean in Friction Distributions

In the baseline model, we assume that the marginal distributions of frictions follow log-

normal distributions with zero means. In this part, we relax this assumption and present

the results with non-zero means. In particular, we assume that the marginal distributions

of the frictions are:

log(1− τy) ∼ N (µy,j, σy,j)

log(1 + τ`) ∼ N (µ`,j, σ`,j),

where {µy,j, µ`,j} are the mean of the log-normal distributions, which are new parameters

that we need to estimate for each prefecture. The additional moments we try to match

are the mean of log(1 − τy) and log(1 + τ`) given our estimated {τy, τ`} from the data. We

repeat the estimation and quantification procedure as described in the main text, with the

difference that now, each prefecture is characterized by eight instead of six parameters.

The estimated dispersion and correlation parameters highly correlate with those in the

baseline specification. Table D.2 regresses the estimated parameters under non-zero mean

assumptions against those in the baseline estimation. As shown in the first four columns

of the table, all coefficients are positive, although the relationship between the correlation

parameters is imprecisely measured. The similarity of these parameters between the baseline

and the extended model suggests that the main results in the baseline model are unlikely to

be driven by the zero-mean assumption.

The estimated mean parameters correlate with the dispersion parameters, as shown in

the last two columns of the same table. In other words, locations with a higher dispersion

of firm-level frictions are also likely the locations with higher average frictions. The co-

movement between the mean and the dispersion of frictions is expected, as the distribution

of dispersions is likely influenced by location-specific institutional quality.

To understand the welfare implications of the estimated frictions, we repeat the exercises

reported in the main text. Recall that to quantify the model, we first re-estimate the

conditional productivity distributions and re-calibrate the parameters reported in the second

panel of Table 2: the location fundamentals, the entry costs, and the multipliers on the trade
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Table D.2: Comparing the Non-Zero Mean Estimations with the Baseline

Dispersion Corr. w. Prod. Mean

(1) (2) (3) (4) (5) (6)
output labor output labor output labor

Dispersion, output, baseline 0.786***
(0.071)

Dispersion, labor, baseline 31.165**
(14.208)

Corr. w. prod., output, baseline 0.142
(0.130)

Corr. w. prod., output,baseline 0.314*
(0.166)

Dispersion, output, non-zero mean 6.830***
(0.205)

Dispersion, labor, non-zero mean 0.324***
(0.004)

Constant 0.050*** -25.262 -0.292*** 0.015 -0.574*** 0.712***
(0.008) (16.953) (0.033) (0.018) (0.027) (0.178)

N 237 237 237 237 237 237
Adj.R-squared 0.337 0.016 0.001 0.011 0.825 0.967

Notes: the table compares the estimated parameters in the baseline estimation to those estimated under
the non-zero mean assumptions. Standard errors are in parentheses. ***: significant at the 1% level; *:
significant at the 5% level; *: significant at the 10% level. The dependent variables of the columns are those
estimated under the non-zero mean assumptions.

and migration matrices. To compute the semi-elasticities of frictions, we move the σ, ρ, or

µ parameters toward zero by 0.01. In the case of σ, this amounts to a reduction of 0.01. In

the cases of ρ and µ, this exercise reduces their absolute values by 0.01. We then compare

the key endogenous variables in the counterfactual simulations to those under the baseline

estimation. Table D.3 summarizes the results. The first row of the table repeats the baseline

results reported in the main text for reference.

Different from the baseline results, under the non-zero mean assumption, reducing the

frictions’ dispersion parameter could reduce aggregate welfare. The first column of Table D.3

highlights these results. While the semi-elasticity of σ is -3.53 in the baseline result, it turns

positive to 0.4 under the non-zero mean assumption. Further decomposing the positive semi-

elasticity indicates that the reversal comes from the output friction with a semi-elasticity of

1.5. In contrast, the semi-elasticity in labor friction is still negative at -1.13.

The seemingly puzzling effect of dispersion comes from rich interactions between σ and

the selection effects. In short: lowering σ could reduce welfare by increasing the mean
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Figure D.1: The Conditional Mean of Frictions

Notes: the first panel plots the unconditional probability density function of the output friction, τy, such that
log(1−τy) follows a normal distribution with mean µy and standard deviation σy. The two dashed lines have
the same µy. The red dashed line has a baseline level of σy, and the blue dashed line has a counterfactual level
of σy lower than the baseline. The second panel compares the friction distribution conditional on survival
(the red solid line) to the unconditional one under the baseline scenario. Firms with higher frictions are less
likely to survive, and therefore the solid density functions are more skewed to the left. The vertical line is
the conditional mean of friction. The third panel repeats the exercise for the counterfactual distribution.
Note that as selection drives out the firms with higher friction, the conditional mean of the distribution with
a lower σy (0.60) is higher than that from the baseline distribution (0.49). The last panel compares the two
conditional distributions between the baseline and the counterfactual cases. Compared to the unconditional
distributions reported in the first panel, the yellow shaded area, in which the firm faces reduced friction in
the counterfactual, shrinks. At the same time, the dark shaded area, in which the firm faces higher frictions
in the counterfactual, expands due to the selection effect.
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Table D.3: The Semi-Elasticities under the Non-Zero Mean Assumptions

Aggregate
Welfare

Firm
Entry

σ ρ µ σ ρ µ
Baseline -3.53 -0.77 - -3.03 -0.32 -
Both Frictions, Non-Zero Mean 0.40 -3.91 -1.70 2.57 -1.89 -2.23
Output Frictions, Non-Zero Mean 1.50 -2.87 -1.72 3.91 -1.55 -2.41
Labor Frictions, Non-Zero Mean -1.13 -0.91 0.02 -1.41 -0.36 0.17

Notes: the table reports the aggregate implications under the assumption of the non-zero mean. The numbers
in the table are the semi-elasticities of reducing σ, ρ, or µ by 0.01. The first row repeats the baseline results
for reference. The second row performs the same exercise, using the parameters estimated under the non-zero
mean assumption. The third row reports the results in which we only change the parameters related to the
output frictions, and in the last row, we only change the parameters related to the labor frictions.

friction conditional on the firm’s survival. This effect is particularly pronounced when the

unconditional mean of friction is positive. Figure D.1 illustrates these effects. The top

panel plots the density function of τy from a hypothetical prefecture in the non-zero mean

estimation, where the unconditional mean of τy is positive. Recall that we assume log(1−τy)

follows a normal distribution with mean µy and standard deviation σy. The red dashed line

is the density function of τy, and the blue dashed line is the density of a counterfactual

distribution with the same µy but a lower σy. As expected, the counterfactual distribution

with a lower dispersion is more clustered around the unconditional mean, as the mass at

both the right and the left tails move toward the center. Note that reducing the dispersion

leads to opposite effects on the two tails. On the one hand, moving firms away from the

right tail reduces the friction they face, as indicated by the yellow shades on the right. On

the other hand, however, moving the firms from the left tail toward the center effectively

increases their friction, as indicated by the dark shades on the left.21

The selection of firms subsequently amplifies the adverse effects on the left tail and, at the

same time, dampens the positive effects on the right. This is because firms on the right tail

are much less likely to survive than those on the left. The second panel of Figure D.1 contrasts

the unconditional distribution to the one conditional on survival in the baseline case. The

third panel does the same for the counterfactual case with a lower σ. In both cases, the

21The unconditional mean of a log-normal distribution is exp(µ+ σ2

2 ), which means that a reduction in σ
typically reduces the unconditional mean, as shown in the top panel of Figure D.1. However, the selection
effect we discuss later offsets the decline in the unconditional mean and leads to a higher conditional mean,
as shown in the second and third panels.
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(a) Output Frictions (b) Labor Frictions

Figure D.2: The Changes in Conditional Mean of Frictions with a Lower σ

Notes: the figures show the histograms of the changes in the conditional mean of output (labor) frictions
when we lower σy (σ`) by 0.01 in the left (right) panel. The conditional mean is computed from the
friction distribution, conditional on firm survival with a non-negative profit. The blue lines use the baseline
parameters, and the red lines use the parameters estimated with the non-zero mean assumption.

conditional distributions shift to the left, as those are the right tail are less likely to survive.

However, as the firms on the right tail see a reduction in friction in the counterfactual, the

selection effect could offset or reverse the welfare gains associated with lower dispersion. The

two vertical lines in the second and third panels of the figure indicate the conditional means

of friction in the baseline (0.49) and the counterfactual cases (0.60): indeed, the selection

effect implies that reducing σ could lead to an increase in the mean friction conditional

on survival, which in turn reduces welfare. To further highlight this mechanism, the last

panel of Figure D.1 plots the two conditional distributions together. The selection effect

is more prominent than the unconditional distributions reported in the first panel. The

yellow-shaded area where the firms enjoy lower frictions in the counterfactual shrinks in the

conditional distribution, as these firms are less likely to survive. At the same time, the dark-

shaded area where the firm faces higher frictions in the counterfactual expands. Eventually,

the conditional mean of frictions increases in the counterfactual with a lower σ.

The effects described above are more pronounced in the case of output frictions under

the non-zero mean assumption. Figure D.2 presents the histogram of the changes in the

conditional mean of frictions when we reduce σ across 237 prefectures. The red solid lines

are based on the parameters estimated under the non-zero mean assumptions, and the blue
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dashed lines are based on the baseline case with µy = µ` = 0. As the figure shows, the

conditional mean in most prefectures increases when σy declines, leading to an adverse welfare

impact as reported in Table D.3. The reason behind this is the estimated unconditional mean

of the frictions: while only 138 prefectures have positive unconditional labor frictions, 228

have positive unconditional output frictions. The changes in conditional mean are also milder

in the baseline estimation with µ = 0, in which the unconditional means are close to zero.22

Lastly, Table D.3 also confirms that reducing the absolute values of µ parameters typically

leads to welfare improvement, especially in the case of output frictions with a semi-elasticity

of -1.72. The welfare effects are expected, as reductions in µ typically lower both the un-

conditional and conditional frictions in all locations. The semi-elasticity of labor frictions is

much smaller at 0.02 and not significantly different from zero, mostly because the estimated

µ parameters for labor frictions are much closer to zero than that of the output friction: the

average µ` is only 0.06, while the average µy is −0.46.23

E Data

Annual Surveys of Industrial Firms (ASIF) We use the ASIF panel data from 1998

to 2007. Our sample excludes the firms whose sales revenue is less than the wage bill or

the value of intermediate inputs and those with non-positive value-added, total assets, fixed

assets, or equity. We also drop the firms with fewer than 20 employees as the payroll data

in these firms might be subject to higher measurement errors. Prefectures with less than

500 firms are also excluded. In the 237 prefectures in our sample, the dataset contains 1.05

million firms during 1998-2007. Around 92.9 percent of the firms are private.

We use the “user costs of capital” as the proxy for capital costs. The user costs of capital

are the rate of return from total assets, together with the depreciation of the fixed asset in

the current year. Total assets include both fixed assets and flow of funds. The interest rate

is a simple average of the lending interest rate between 2000 and 2005 reported in the World

22The unconditional mean in the baseline case is not zero when σ > 0. In particular, the unconditional
mean of the labor friction is exp(σ2

`/2)− 1, and of the output friction, 1− exp(σ2
y/2).

23The unconditional mean of output friction is 1 − exp(µy + σ2
y/2), and therefore a lower µy indicates

higher average τy.
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Bank Indicator. We understand that the changes in the price of capital goods would be a

better measure of the capital costs. However, as we do not have access to such information,

we settle with a less-than-ideal but reasonable measure of capital costs.

Economic Census Data on the total number of firms in each prefecture are collected

from the Second Economic Census conducted by the National Bureau of Statistics in 2008.

The economic census in China is conducted every five years and covers all the legal entities,

establishments, and self-employed enterprises of the second and tertiary industries. Each

prefecture-level city’s Bureau of Statistics publishes its Communique of the Second National

Economic Census. The No.1 Communique provides the number of enterprise legal entities

that we use as an approximation for the total number of entering firms, which is required for

estimating firm-level frictions and calibration. The total number of enterprise legal entities

in our sample is 3,616,432.

Population Census The population data come from the Population Census in 2000. The

population Census in China is conducted every ten years and provides the resident population

of each prefecture. Unlike the Hukou population, an individual can be considered a prefecture

resident only if he/she has lived there for more than half a year. We use the number of

residents in each prefecture as the indicator for the initial population distribution in 2000.

To compute the aggregate stay rate to calibrate the scale of the migration costs λ̄, we relied

on the One Percent Population Survey in 2005. The survey is conducted every five years and

covers around 17.05 million respondents, which took up about 1.31% of the total population

in 2005. The advantage of the one-percent population survey over the population census

is that it provides more detailed information about the respondent, including the current

residence and his/her residence five years ago, which enables us to calculate the aggregate

stay rate.

Investment Climate Survey This survey covers 12,500 firms in mainland China. Each

firm was asked to report the percentage of sales by destination: within the prefecture, within

the province, across provinces, or overseas. On average, 62.5 percent of the total revenue

was generated from sales outside the local prefecture.
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City Statistical Yearbook City Statistical Yearbook is an annual statistical publication

containing social-economic data of cities at the prefecture and county levels. We use the

per-capita GDP data at the prefecture level to calibrate the prefecture-specific productivity.

Input Output Tables We use the IO table published in 2002 to compute the labor share

at the national level. In particular, labor share is the ratio between the total value-added

and total output across all non-agriculture industries.
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