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Wild Bootstrap for Instrumental Variables Regressions
with Weak and Few Clusters∗

Wenjie Wang† and Yichong Zhang‡

October 5, 2021

Abstract

We study the wild bootstrap inference for instrumental variable (quantile) regressions in the
framework of a small number of large clusters in which the number of clusters is viewed as fixed
and the number of observations for each cluster diverges to infinity. For the subvector inference,
we show that the wild bootstrap Wald test, with or without using the cluster-robust covariance
matrix, controls size asymptotically up to a small error as long as the parameters of endogenous
variables are strongly identified in at least one of the clusters. We further develop a wild bootstrap
Anderson-Rubin (AR) test for the full-vector inference and show that it controls size asymptotically
up to a small error even under weak or partial identification for all clusters. We illustrate the good
finite-sample performance of the new inference methods using simulations and provide an empirical
application to a well-known dataset about US local labor markets.

Keywords: Wild Bootstrap, Weak Instrument, Clustered Data, Randomization Test, Instrumental
Variable Quantile Regression.

JEL codes: C12, C26, C31

1 Introduction

Various recent surveys in leading economic journals suggest that weak instruments remain

important concerns for empirical practice. For instance, Andrews, Stock, and Sun (2019) survey

230 instrumental variable (IV) regressions from 17 papers published in the American Economic

Review (AER). They find that many of the first-stage F -statistics (and nonhomoskedastic

generalizations) are in a range that raises such concerns, and virtually all of these papers

report at least one first-stage F with a value smaller than 10. Brodeur, Cook, and Heyes
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the 2021 China Meeting of the Econometric Society, the 2021 Australasian Meeting of the Econometric Society and the
2021 Econometric Society European Meeting for their valuable comments. Wang acknowledges the financial support from
NTU SUG Grant No.M4082262.SS0 and Singapore Ministry of Education Tier 1 grant RG53/20. Zhang acknowledges
the financial support from Singapore Ministry of Education Tier 2 grant under grant MOE2018-T2-2-169 and the Lee
Kong Chian fellowship. Any possible errors are our own.
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(2020) investigate p-hacking and publication bias among over 21,000 hypothesis tests in 25

leading economic journals. They notice, in IV regressions, a sizable over-representation of

first-stage F just over 10 (also observed in Andrews et al. (2019)), and studies with relatively

weak instruments have a much higher proportion of second-stage t-statistics that are barely

significant around 1.65 and 1.96.

The issue of weak instruments is further complicated by the fact that in many empirical

settings, observations are clustered and the number of clusters is small (e.g., when clustering is

based on states, provinces, neighboring countries, or industries). In such case, the commonly

employed cluster-robust covariance estimator (CCE) is no longer consistent even under strong

instruments, and the cluster-robust first-stage F test (Olea and Pflueger, 2013) cannot be

directly applied as its critical values are obtained under the asymptotic framework with a

large number of clusters. Recently, Young (2021) analyzes 1,359 IV regressions in 31 papers

published by the American Economic Association (AEA) and highlights that many findings rest

on unusually large values of test statistics (rather than coefficient estimates) due to inaccurate

estimates of covariance matrices and are highly sensitive to influential clusters or observations :

with the removal of just one cluster or observation, in the average paper, the first-stage F can

decrease by 28%, and 38% of reported 0.05 significant two-stage least squares (TSLS) results

can be rendered insignificant at that level, with the average p-value rising from 0.029 to 0.154.

Motivated by these issues, we study the wild bootstrap inference for linear IV and IV

quantile regressions (IVQR) with a small number of clusters by exploiting its connection with

a randomization test based on the group of sign changes, following the lead of Canay, Santos,

and Shaikh (2021). First, for both IV and IVQR, we show that the subvector inference based

on a wild bootstrap Wald test, with or without the CCE, controls size asymptotically up to

a small error, as long as there exists at least one strong cluster in which the parameters of

endogenous variables are strongly identified. We further establish conditions under which they

have power against local alternatives (e.g., at least 5 strong clusters are required when the total

number of clusters equals 10 and the nominal level α equals 10%). Second, for IV and IVQR,

we develop the full-vector inference based on a wild bootstrap Anderson and Rubin (1949, AR)

test, which controls size asymptotically up to a small error regardless of instrument strength.

Additionally, for IV regressions, the wild bootstrap Wald test without the CCE is numerically

equivalent to a certain wild bootstrap AR test in the empirically prevalent case with single IV,

implying that it is robust to weak identification. Third, for IV regressions we establish the

validity result for bootstrapping weak-IV-robust tests other than the AR test with at least one

strong cluster. Fourth, to provide subvector and full-vector inferences for IVQR with a small

number of clusters, we propose a novel two-step gradient wild bootstrap procedure.

Our approach has several empirically relevant advantages. First, it enhances practitioners’
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toolbox by providing a reliable inference for IV and IVQR with a small number of clusters, as

illustrated by our study on the average and distributional effects of Chinese imports on local

labor markets in different US regions, following Autor, Dorn, and Hanson (2013). Second, it

is flexible with IV strength: by allowing for cluster-level heterogeneity in the first stage, the

bootstrap Wald test is robust to influential clusters, while its AR counterpart is fully robust

to weak instruments. Third, different from widely used heteroskedasticity and autocorrelation

consistent (HAC) estimators, our approach is agnostic about the within-cluster dependence

structure and thus avoids the use of tuning parameters to estimate the covariance matrix.

The contributions in the present paper relate to several strands of literature. First, it is

related to the literature on the cluster-robust inference.1 Djogbenou et al. (2019), MacKinnon

et al. (2019), and Menzel (2021) show bootstrap validity under the asymptotic framework

with a large number of clusters. However, as emphasized by Ibragimov and Müller (2010,

2016), Bester, Conley, and Hansen (2011), Cameron and Miller (2015), Canay, Romano, and

Shaikh (2017), Hagemann (2019a,b, 2020), and Canay et al. (2021), many empirical studies

motivate an alternative framework in which the number of clusters is small, while the number

of observations in each cluster is relatively large. For the inference, we may consider applying

the approaches developed by Bester et al. (2011), Hwang (2021), Ibragimov and Müller (2010,

2016), and Canay et al. (2017). However, Bester et al. (2011) and Hwang (2021) require an

(asymptotically) equal cluster-level sample size, while Ibragimov and Müller (2010, 2016) and

Canay et al. (2017) depend on strong identification for all clusters. Our bootstrap Wald test is

more flexible as it does not require an equal cluster size and only needs strong identification in

one of the clusters.

Second, our paper is related to the literature on weak IVs, and various normal approximation-

based inference approaches are available for nonhomoskedastic cases, among them Stock and

Wright (2000), Kleibergen (2005), Andrews and Cheng (2012), Andrews (2016), Andrews and

Mikusheva (2016), Andrews (2018), Moreira and Moreira (2019), and Andrews and Guggen-

berger (2019). As Andrews et al. (2019, p.750) remark, an important question concerns the

quality of normal approximation with influential observations or clusters. When implemented

appropriately, bootstrap may substantially improve the inference for IV regressions,2 and Mor-

eira et al. (2009) establish the validity of bootstrap weak-IV-robust tests under weak IVs and

homoskedasticity. While it is possible to extend their results by allowing the number of clusters

to tend to infinity, such a framework could be unreasonable with influential clusters. We com-

1See Cameron, Gelbach, and Miller (2008), Conley and Taber (2011), Imbens and Kolesar (2016), Abadie, Athey,

Imbens, and Wooldridge (2017), Hagemann (2017, 2019a,b, 2020), MacKinnon and Webb (2017), Djogbenou, MacKinnon,

and Nielsen (2019), MacKinnon, Nielsen, and Webb (2019), Ferman and Pinto (2019), Hansen and Lee (2019), Menzel

(2021), among others, and MacKinnon, Nielsen, and Webb (2020) for a recent survey.
2See, for example, Davidson and MacKinnon (2010), Moreira, Porter, and Suarez (2009), Wang and Kaffo (2016),

Finlay and Magnusson (2019), and Young (2021), among others.
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plement this approach by establishing validity for these tests under the alternative asymptotics.

Third, our paper is related to the literature on IVQR.3 Although IVQR can be estimated via

GMM, for computational feasibility, we follow Chernozhukov and Hansen (2006) and implement

a profiled estimation procedure, which falls outside the scope of wild bootstrap for GMM

outlined by Canay et al. (2021). For the subvector inference, our gradient wild bootstrap

procedure is similar to the one implemented by Hagemann (2017) for a linear quantile regression

with clustered data and Jiang, Liu, Phillips, and Zhang (2021) for quantile treatment effect

estimation in randomized control trials, but it imposes a null hypothesis and further involves

a profiled minimization to obtain the bootstrap IVQR estimator. Also different from these

two papers, we show bootstrap validity by connecting it to the randomization test. For the

full-vector inference, we follow the idea by Chernozhukov and Hansen (2008a) and complement

their results by considering a setup with a small number of large clusters and proposing a wild

bootstrap AR test for IVQR.

Finally, we notice that although empirical applications often involve settings with substantial

first-stage heterogeneity, related econometric literature remains rather sparse. Abadie, Gu, and

Shen (2019) exploit such heterogeneity to improve the asymptotic mean squared error of IV

estimators in the homoskedastic case. Instead, we focus on developing inference methods that

are robust to the first-stage heterogeneity for both IV and IVQR with clustered data.

The remainder of this paper is organized as follows. Sections 2 and 3 present the main

results for IV and IVQR, respectively. Section 4 discusses cluster-level variables, whose values

are invariant within each cluster. Section 5 provides simulation results and practical recom-

mendations. Section 6 presents the empirical application.

2 Linear IV Regression

In this section, we consider the setup of a linear IV model with clustered data,

yi,j = X>i,jβ +W>
i,jγ + εi,j, Xi,j = Z>i,jΠz,j +W>

i,jΠw + vi,j, (1)

where the clusters are indexed by j ∈ J = {1, ..., q} and units in the j-th cluster are indexed

by i ∈ In,j = {1, ..., nj}. In (1), we denote yi,j ∈ R, Xi,j ∈ Rdx , Wi,j ∈ Rdw , and Zi,j ∈ Rdz

as an outcome of interest, endogenous regressors, exogenous regressors, and IVs, respectively.

The parameters β ∈ Rdx and γ ∈ Rdw are unknown structural parameters, while Πz,j ∈
Rdz×dx and Πw ∈ Rdz×dw are unknown parameters of the first stage. We allow for cluster-

level heterogeneity with regard to IV strength by allowing Πz,j in (1) to vary across clusters.

3See, for example, Chernozhukov and Hansen (2004, 2005, 2006, 2008a), Su and Hoshino (2016), de Castro, Galvao,

Kaplan, and Liu (2019), Wüthrich (2019), Chernozhukov, Hansen, and Wüthrich (2020), Alejo, Galvao, and Montes-

Rojas (2021), and Kaido and Wüthrich (2021) for a comprehensive literature review.
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This setting is motivated by the fact that in empirical studies, IVs are often strong for some

subgroups and weak for some others, such as ethnic groups and geographic regions,4 and,

as noted previously, many TSLS estimates and first-stage F s are highly sensitive to influential

clusters. In experimental economics with clustered randomized trials, subjects’ compliance with

the assignment may also have substantial variations among clusters, resulting in heterogeneous

IV strength.5

We next introduce the assumptions that will be used in our analysis of the asymptotic

properties of the wild bootstrap tests under a small number of clusters.

Assumption 1. The following statements hold: (i) The quantities

1√
n

∑
j∈J

∑
i∈In,j

(
Zi,jεi,j

Wi,jεi,j

)
and

1

n

∑
j∈J

∑
i∈In,j

(
Zi,jZ

>
i,j Zi,jW

>
i,j

Wi,jZ
>
i,j Wi,jW

>
i,j

)
converges in distribution and converges in probability to a positive-definite matrix, respectively.

(ii) The quantity

1

n

∑
j∈J

∑
i∈In,j

(
Zi,jX

>
i,j

Wi,jX
>
i,j

)
converges in probability to a full rank matrix.

Assumption 2. The following statements hold:

(i) There exists a collection of independent random variables {Zj : j ∈ J}, where Zj = [Zε,j :

Zv,j] with Zε,j ∈ Rdz and Zv,j ∈ Rdz×dx, and vec(Zj) ∼ N(0,Σj) with Σj positive definite for

all j ∈ J , such that
 1
√
nj

∑
i∈In,j

Z̃i,jεi,j,
1
√
nj

∑
i∈In,j

Z̃i,jv
>
i,j

 : j ∈ J

 d−−→ {Zj : j ∈ J} .

(ii) For each j ∈ J , nj/n→ ξj > 0.

(iii) 1
n

∑
j∈J
∑

i∈In,j Wi,jW
>
i,j is invertible.

(iv) For each j ∈ J ,

1

nj

∑
i∈In,j

∥∥∥W>
i,j

(
Γ̂n − Γ̂cn,j

)∥∥∥2 p−→ 0,

4For instance, as remarked by Abadie et al. (2019), the return-to-schooling literature has often used compulsory

schooling year as an IV for years of schooling while minimum school-leaving age is determined by state-specific laws,

and in studies that use exogenous shock to oil or coal supply as an IV, states with large shares of oil or coal industries

typically have strong first stage.
5One example is Muralidharan, Niehaus, and Sukhtankar (2016)’s evaluation of a smartcard payment system. In

some villages, 90% or more of the recipients complied with the treatment assignment, while in many villages, less than

10% complied.
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where Γ̂n and Γ̂cn,j denote the coefficient from linearly regressing Zi,j on Wi,j by using the entire

sample and by only using the sample in the j-th cluster, respectively.

Remark 1. The above assumptions are similar to those imposed in Canay et al. (2021). As-

sumption 1 ensures that the TSLS estimators (and their null-restricted counterparts) are well

behaved. Assumption 2(i) is satisfied whenever the within-cluster dependence is sufficiently

weak to permit the application of a suitable central limit theorem and the data are indepen-

dent across clusters. The assumption that Zj have full rank covariance matrices requires that

Zi,j can not be expressed as a linear combination of Wi,j within each cluster j. Assumption 2(ii)

gives the restriction on cluster sizes. Assumption 2(iii) ensures Γ̂n is uniquely defined. Assump-

tion 2(iv) is the sufficient condition for 1
nj

∑
i∈In,j Z̃i,jW

>
i,j = op(1), which is needed in our proof.

It holds under cluster homogeneity. As pointed out by Canay et al. (2021), this assumption is

satisfied whenever the distributions of (Z>i,j,W
>
i,j)
> are the same across clusters. Furthermore,

Assumption 2(iv) holds automatically if Wi,j includes cluster dummies and their interactions

with all other control variables. If Wi,j includes cluster-level variables, then including cluster

dummies would violate Assumption 2(iii). In Appendix A, we propose a cluster-level projection

procedure, which ensures 1
nj

∑
i∈In,j Z̃i,jW

>
i,j = 0 for j ∈ J .

2.1 Subvector Inference

In this section, we study the properties of the wild bootstrap Wald test with a small number

of large clusters. We let the parameter of interest β to shift with respect to (w.r.t.) the sample

size to incorporate the analyses of size and local power in a concise manner: βn = β0 +µβ/
√
n,

where µβ ∈ Rdx is the local parameter. Let λ>β β0 = λ0, where λβ ∈ Rdx×dr , λ0 ∈ Rdr and dr

denotes the number of restrictions under the null hypothesis. Define µ = λ>β µβ. Then, the null

and local alternative hypotheses can be written as

H0 : µ = 0 v.s. H1,n : µ 6= 0. (2)

We consider the test statistic with a dr × dr weighting matrix Âr, that is,

Tn = ||
√
n(λ>β β̂ − λ0)||Âr , (3)

where ||u||A =
√
u>Au for a generic vector u and a weighting matrix A. The wild bootstrap

test is implemented as follows:

Step 1: Compute the null-restricted residual ε̂ri,j = yi,j − X>i,jβ̂
r − W>

i,j γ̂
r, where β̂r and γ̂r are

null-restricted TSLS estimators of β and γ.

Step 2: Let G = {−1, 1}q and for any g = (g1, ..., gq) ∈ G generate

y∗i,j(g) = X>i,jβ̂
r +W>

i,j γ̂
r + gj ε̂

r
i,j. (4)
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For each g = (g1, ..., gq) ∈ G compute β̂∗g and γ̂∗g , the analogues of the TSLS estimators β̂

and γ̂ using y∗i,j(g) in place of yi,j and the same (Z>i,j, X
>
i,j,W

>
i,j)
>. Compute the bootstrap

analogues of the test statistic:

T ∗n(g) = ||
√
n(λ>β β̂

∗
g − λ0)||Â∗r,g , (5)

where Â∗r,g denotes the bootstrap weighting matrix, which will be specified below.

Step 3: To obtain the critical value, we compute the 1− α quantile of {T ∗n(g) : g ∈ G}:

ĉn(1− α) = inf

{
x ∈ R :

1

|G|
∑
g∈G

I{T ∗n(g) ≤ x} ≥ 1− α

}
, (6)

where I{E} equals one whenever the event E is true and equals zero otherwise. The

bootstrap test for H0 rejects whenever Tn exceeds ĉn(1− α).

Let Q̂Z̃X,j = n−1
j

∑
i∈In,j Z̃i,jX

>
i,j and Q̂Z̃X = n−1

∑
j∈J
∑

i∈In,j Z̃i,jX
>
i,j, where Z̃i,j are the

residuals from regressing Zi,j on Wi,j using the full sample (i.e., Z̃i,j = Zi,j − Γ̂>nWi,j and Γ̂n is

defined in Assumption 2(iv)). Let QZ̃X,j and QZ̃X denote the probability limits of Q̂Z̃X,j and

Q̂Z̃X , respectively. In addition, let Q̂Z̃Z̃ = n−1
∑

j∈J
∑

i∈In,j Z̃i,jZ̃
>
i,j, Q̂ = Q̂>

Z̃X
Q̂−1

Z̃Z̃
Q̂Z̃X , and let

QZ̃Z̃ and Q denote the probability limits of Q̂Z̃Z̃ and Q̂, respectively.

Assumption 3. One of the following two conditions holds: (i) dx = 1 and (ii) there exists a

scalar aj for each j ∈ J such that QZ̃X,j = ajQZ̃X , where QZ̃X is of full column rank.

Assumption 3(i) states that in the case with one endogenous variable (the leading case in

empirical applications), no further condition is required. With multiple endogenous variables,

Assumption 3(ii) requires that QZ̃X,j = ajQZ̃X for all j ∈ J , where aj 6= 0 for some clusters

and aj = 0 otherwise. Assumption 1 ensures that overall we have strong identification, and

thus, QZ̃X is of full rank, then when aj 6= 0, QZ̃X,j is also of full rank, i.e., the coefficients

of the endogenous variables βn are strongly identified in cluster j. We call these clusters the

strong clusters. On the other hand, strong identification for βn is not ensured in the rest of the

clusters. For these clusters, Assumption 3(ii) excludes the case that the Jacobian matrix QZ̃X,j

is of a reduced rank but is not a zero matrix.6

We first study the asymptotic behaviors of the wild bootstrap Wald test when the weighting

matrix Âr in (3) has a deterministic limit and the bootstrap weighting matrix Â∗r,g equals Âr.

Assumption 4. ||Âr−Ar||op = op(1), where Ar is a dr×dr symmetric deterministic weighting

matrix such that 0 < c ≤ λmin(Ar) ≤ λmax(Ar) ≤ C <∞ for some constants c and C, λmin(A)

6It is possible to select out the clusters with Jacobian matrices of reduced rank via some testing procedure (Robin

and Smith, 2000; Kleibergen and Paap, 2006; Chen and Fang, 2019). We leave this investigation for future research.
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and λmax(A) are the minimum and maximum eigenvalues of the generic matrix A, and ||A||op
denotes the operator norm of the matrix A.

Theorem 2.1. (i) Suppose that Assumptions 1-4 hold. Then under H0,

α− 1

2q−1
≤ lim inf

n→∞
P{Tn > ĉn(1− α)} ≤ lim sup

n→∞
P{Tn > ĉn(1− α)} ≤ α.

(ii) Further suppose that there exists a subset Js of J such that aj > 0 for each j ∈ Js, aj = 0

for j ∈ J\Js, d|G|(1 − α)e ≤ |G| − 2q−qs+1, where qs = |Js|, and let aj = Q−1Q>
Z̃X
Q−1

Z̃Z̃
QZ̃X,j

when dx = 1. Then under H1,n,

lim
||µ||2→∞

lim inf
n→∞

P{Tn > ĉn(1− α)} = 1.

Remark 2. Theorem 2.1 states that as long as there exists at least one strong cluster, the Tn-

based wild bootstrap test is valid in the sense that its limiting null rejection probability is no

greater than the nominal level α and no smaller than α−1/2q−1, which decreases exponentially

with the total number of clusters rather than the number of strong clusters. Intuitively, although

the weak clusters do not contribute to the identification of βn, the scores of such clusters and

their bootstrap counterparts (i.e., 1√
nj

∑
i∈In,j Z̃i,jεi,j and 1√

nj

∑
i∈In,j gjZ̃i,j ε̂

r
i,j for j ∈ J\Js) still

contribute to the limiting distribution of TSLS and the randomization with sign changes.

Additionally, one might consider employing an alternative procedure (e.g., see Moreira et al.

(2009), Davidson and MacKinnon (2010), Finlay and Magnusson (2019), and Young (2021)):

X∗i,j(g) = Z>i,jΠ̂z +W>
i,jΠ̂w + gj v̂i,j, y∗i,j(g) = X∗>i,j (g)β̂r +W>

i,j γ̂
r + gj ε̂

r
i,j, (7)

where Π̂z and Π̂w are some estimates of the first-stage coefficients. This procedure is asymp-

totically equivalent to ours under the current framework.

Remark 3. For the empirically prevalent case with a single endogenous variable and single IV

(e.g., 101 out of 230 specifications in Andrews et al. (2019)’s sample and 1,087 out of 1,359 in

Young (2021)’s sample), the Tn-based wild bootstrap test is numerically equivalent to a certain

bootstrap AR test (the ARn-based bootstrap test in Section 2.2), which is fully robust to weak

IV. However, the more widely used wild bootstrap test with the CCE (e.g., Cameron et al.

(2008), Cameron and Miller (2015), and Roodman, Nielsen, MacKinnon, and Webb (2019))

is not weak-IV robust and thus may produce size distortions in this case if the IV is weak

(see Section 5.1). Furthermore, the robustness of the Tn-based bootstrap test depends on our

specific procedure and thus cannot be extended to alternative ones such as the commonly

employed pairs cluster bootstrap (block bootstrap—for example, see Cameron et al. (2008),

Angrist and Pischke (2008), Goldsmith-Pinkham, Sorkin, and Swift (2020), and Hahn and Liao

(2021)—including percentile, percentile-t, and bootstrap standard error).

8



Remark 4. For alternative inference methods with a small number of clusters, Bester et al.

(2011) and Hwang (2021) provide asymptotic approximations that are based on t and F distri-

butions, in the spirit of Kiefer and Vogelsang (2002, 2005)’s fixed-k asymptotics. Their approach

would require stronger homogeneity conditions than the wild bootstrap in the current context;

for example, the cluster sizes are approximately equal for all clusters (nj/n̄→ 1 for j ∈ J , where

n̄ = q−1
∑

j∈J nj), the cluster-level scores in Assumption 2(i) have the same normal limiting

distribution for all clusters, and the cluster-level Jacobian matrices in Assumption 3 have the

same probability limit for all strong clusters (i.e., aj = 1 for j ∈ Js).
Furthermore, the wild bootstrap test has remarkable resemblance to the Fama-MacBeth

type approach in Ibragimov and Müller (2010, hereafter IM) and the randomization test with

sign changes in Canay et al. (2017, hereafter CRS), which are based on the asymptotic inde-

pendence of cluster-level estimators (say, β̂1, ..., β̂q). However, we notice that for IV regressions

(and IVQR), their size properties can be very different. For instance, IM and CRS rule out

weak IVs in the sense of Staiger and Stock (1997) for all clusters (i.e., Πz,j = n
−1/2
j Cj, where

Cj has a fixed full rank value), as the cluster-level IV estimators of such weak clusters would

become inconsistent and have highly nonstandard limiting distributions, violating their under-

lying assumptions.7 By contrast, the size result in Theorem 2.1 holds even with only one strong

cluster. In this sense, the wild bootstrap is more robust to cluster heterogeneity in IV strength.

However, if all clusters are strong and the cluster-level estimators have minimal finite-sample

bias, IM and CRS have an advantage over the wild bootstrap as they do not require Assumption

3(ii) when dx > 1. The two types of approaches could therefore be considered as complements.

Remark 5. To establish in Theorem 2.1 the power of the wild bootstrap test against n−1/2-local

alternatives, we need a sufficient number of strong clusters and homogeneity of the signs of

Jacobians for these strong clusters (i.e., aj > 0 for each j ∈ Js).8 For instance, if q equals 10,

the condition d|G|(1 − α)e ≤ |G| − 2q−qs+1 requires that qs ≥ 5 and qs ≥ 6 for α = 10% and

5%, respectively. Theorem 2.1 suggests that although the size of the wild bootstrap test is well

controlled even when some clusters are weak, to enhance power, it might be beneficial to merge

some less influential clusters.9

Remark 6. Theorem 2.1 can also be shown for other IV estimators such as the limited in-

formation maximum likelihood (LIML) and jackknife IV estimators (Phillips and Hale, 1977;

Angrist, Imbens, and Krueger, 1999; Hausman, Newey, Woutersen, Chao, and Swanson, 2012).

7Also, if there exist both strong and “semi-strong” clusters, in which the (unknown) convergence rates of IV estimators

can vary among clusters and be slower than
√
nj (Andrews and Cheng, 2012), then the estimators with the slowest rate

will dominate in their statistics.
8The case with a single IV requires Πz,j to have the same sign across all clusters. The case with one endogenous

variable and multiple (orthogonalized) IVs requires the sign of each element of Πz,j to be the same across all clusters.
9To avoid double dipping, we need prior knowledge of cluster-level first-stage heterogeneity, which may be available

in practice (for example, when compulsory schooling years or exogenous shock to oil or coal supply are used as an IV).
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For instance, let

(β̂>liml, γ̂
>
liml)

> = (X̄>PZ̄X̄ − µ̂X̄>MZ̄X̄)−1(X̄>PZ̄Y − µ̂X̄>MZ̄Y ), (8)

where µ̂ = minr r
>Ȳ >MWZ(Z>MWZ)−1Z>MW Ȳ r/(r

>Ȳ >MZ̄ Ȳ r), r = (1,−β>)>, Ȳ = [Y :

X], Z̄ = [Z : W ], X̄ = [X : W ], Y , ε, X, Z and W are formed by yi,j, εi,j, X
>
i,j, Z

>
i,j and W>

i,j,

respectively, and PA = A(A>A)−1A>, MA = In − PA, where A is an n-dimensional matrix and

In is an n-dimensional identity matrix. Then, by the definition of µ̂,

nµ̂ ≤
(

1√
n
e>MWZ

)(
1

n
Z>MWZ

)−1(
1√
n
Z>MW e

)
/

(
1

n
e>MZ̄e

)
= OP (1), (9)

and LIML has the same limiting distribution as TSLS under Assumptions 1 and 2. The results

in Theorem 2.1 therefore hold for the wild bootstrap test with LIML as well. We omit the

details for brevity, but notice that LIML is less biased than TSLS in the over-identified case,10

and its corresponding bootstrap tests can therefore have better finite-sample size control since

the randomization requires a distributional symmetry around zero (see Section 5.1).

Now we consider a wild bootstrap test for the Wald statistic when the weighting matrix Âr

equals Âr,CR, the inverse of the CCE, where

Âr,CR =
(
λ>β V̂ λβ

)−1

, (10)

V̂ = Q̂−1Q̂>
Z̃X
Q̂−1

Z̃Z̃
Ω̂CRQ̂

−1

Z̃Z̃
Q̂Z̃XQ̂

−1, Ω̂CR = n−1
∑

j∈J
∑

i∈In,j

∑
k∈In,j Z̃i,jZ̃

>
k,j ε̂i,j ε̂k,j, ε̂i,j =

yi,j −X>i,jβ̂−W>
i,j γ̂, and β̂ and γ̂ are the TSLS estimators. The corresponding Wald statistic is

TCR,n = ||
√
n(λ>β β̂ − λ0)||Âr,CR . (11)

We follow a similar wild bootstrap procedure by defining

T ∗CR,n(g) = ||
√
n(λ>β β̂

∗
g − λ0)||Â∗r,CR,g , Â∗r,CR,g =

(
λ>β V̂

∗
g λβ

)−1

, (12)

where V̂ ∗g = Q̂−1Q̂>
Z̃X
Q̂−1

Z̃Z̃
Ω̂∗CR,gQ̂

−1

Z̃Z̃
Q̂Z̃XQ̂

−1, Ω̂∗CR,g = n−1
∑

j∈J
∑

i∈In,j

∑
k∈In,j Z̃i,jZ̃

>
k,j ε̂
∗
i,j(g)ε̂∗k,j(g),

and ε̂∗i,j(g) = y∗i,j(g) − X>i,jβ̂∗g −W>
i,j γ̂
∗
g . The bootstrap critical value ĉCR,n(1 − α) is the 1 − α

quantile of {T ∗CR,n(g) : g ∈ G}. The asymptotic behavior of this test is given as follows.

Theorem 2.2. (i) Suppose that Assumptions 1-3 hold, and q > dr. Then under H0,

α− 1

2q−1
≤ lim inf

n→∞
P{TCR,n > ĉCR,n(1− α)} ≤ lim sup

n→∞
P{TCR,n > ĉCR,n(1− α)} ≤ α +

1

2q−1
.

(ii) Further suppose that there exists a subset Js of J such that minj∈Js |aj| > 0, aj = 0 for each

j ∈ J\Js, and d|G|(1 − α)e ≤ |G| − 2q−qs+1, where qs = |Js|, and let aj = Q−1Q>
Z̃X
Q−1

Z̃Z̃
QZ̃X,j

10It may be interesting to consider an alternative asymptotic framework in which the number of clusters is fixed but

the number of IVs tends to infinity (Bekker, 1994). We leave this direction of investigation for future research.
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when dx = 1. Then under H1,n,

lim
||µ||2→∞

lim inf
n→∞

P{TCR,n > ĉCR,n(1− α)} = 1.

Remark 7. Theorem 2.2 states that with at least one strong cluster, the TCR,n-based wild

bootstrap test controls size asymptotically up to a small error, and it has power against local

alternatives if the condition on the number of strong clusters is satisfied. Moreover, different

from Theorem 2.1, the power result in Theorem 2.2 does not require the homogeneity condition

on the sign of first-stage coefficients. Indeed, the critical values of the two tests have different

asymptotic behaviors, with ĉn(1 − α)
p−→ ∞ while ĉCR,n(1 − α) = OP (1), as ||µ||2 → ∞,

which translates into relatively good power properties of the bootstrap test with the CCE. In

particular, when dr = 1, its local power is strictly higher when ||µ||2 is sufficiently large.11

2.2 Full-Vector Inference

In general, Theorems 2.1 and 2.2 do not hold when all clusters are “weak.” For instance, under

the weak-IV sequence such that Πz,j = n
−1/2
j Cj with some fixed full rank Cj for all j ∈ J ,

1√
n

∑
j∈J

∑
i∈In,j

Z̃i,jX
>
i,j

d−−→
∑
j∈J

√
ξjQZ̃Z̃,jCj +

∑
j∈J

√
ξjZv,j, (13)

where QZ̃Z̃,j = plim 1
nj

∑
i∈In,j Z̃i,jZ̃

>
i,j and

∑
j∈J
√
ξjQZ̃Z̃,jCj, the signal part of the first stage,

is of the same order of magnitude as the noise part
∑

j∈J
√
ξjZv,j. Then, the randomization with

sign changes would be invalid because for each j ∈ J , (i) the distribution of
√
ξj
(
QZ̃Z̃,jCj + Zv,j

)
is not symmetric around zero and (ii) Cj cannot be consistently estimated. For example, the

bootstrap analogue of (13) under the procedure in (7) has the following limiting distribution:

∑
j∈J

√
ξjQZ̃Z̃,jCj +

∑
j∈J

√
ξjgjZv,j +

∑
j∈J

ξj(1− gj)QZ̃Z̃,jQ
−1

Z̃Z̃

∑
j̃∈J

√
ξj̃Zv,j

 , (14)

where the second term equals the G-transformed noise in (13) while the third is an extra term.

In the case that the parameter of interest may be weakly identified in all clusters or the

homogeneity condition in Assumption 3(ii) may not hold, we may consider the inference on the

full vector of βn. Recall that βn = β0 +µβ/
√
n. Under the null, we have µβ = 0, or equivalently,

βn = β0. Define the AR statistic with an asymptotically deterministic weighting matrix as

ARn =
∥∥√nf̂∥∥

Âz
, (15)

where Âz is a dz × dz weighting matrix with an asymptotically deterministic limit, f̂ =

11Note that as ||µ||2 → ∞, lim infn→∞ P{TCR,n > ĉCR,n(1 − α)} > lim infn→∞ P{TCR,n > c̃n(1 − α)} =

lim infn→∞ P{Tn > ĉn(1− α)}, where c̃n(1− α) denotes the (1− α) quantile of

{
|
√
n(λ>β β̂

∗
g − λ0)|/

√
λ>β V̂ λβ : g ∈ G

}
,

and the inequality holds because ĉCR,n(1− α) = OP (1) while c̃n(1− α)
p−→∞, since λ>β V̂ λβ = OP (1).
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n−1
∑

j∈J
∑

i∈In,j fi,j, fi,j = Z̃i,j ε̂
r
i,j, ε̂

r
i,j = yi,j−X>i,jβ0−W>

i,j γ̄
r, and γ̄r is the null-restricted ordi-

nary least squares (OLS) estimator of γ: γ̄r =
(∑

j∈J
∑

i∈In,j Wi,jW
>
i,j

)−1∑
j∈J
∑

i∈In,j Wi,j(yi,j−
X>i,jβ0). Additionally, we define the AR statistic with the (null-imposed) CCE as

ARCR,n =
∥∥√nf̂∥∥

ÂCR
, ÂCR =

n−1
∑
j∈J

∑
i∈In,j

∑
k∈In,j

fi,jf
>
k,j

−1

. (16)

Another (Wald-type) AR statistic widely applied in practice is defined as12

ARR,n =
∥∥√nδ̂∥∥

ÂR
, ÂR =

(
Q̂−1

Z̃Z̃
Ω̂RQ̂

−1

Z̃Z̃

)−1

, (17)

where Ω̂R = n−1
∑

j∈J
∑

i∈In,j

∑
k∈In,j Z̃i,jZ̃

>
k,jûi,jûk,j, ûi,j is the residual of regressing yi−X>i β0

on Zi,j and Wi,j, and δ̂ is the corresponding OLS estimate of the coefficient of Zi,j. Our wild

bootstrap procedure is defined as follows.

Step 1: Compute the null-restricted residual ε̂ri,j = yi,j −X>i,jβ0 −W>
i,j γ̄

r.

Step 2: Let G = {−1, 1}q and for any g = (g1, ..., gq) ∈ G define

f̂ ∗g = n−1
∑
j∈J

∑
i∈In,j

f ∗i,j(gj), and δ̂∗g = Q̂−1

Z̃Z̃
f̂ ∗g , (18)

where f ∗i,j(gj) = Z̃i,jε
∗
i,j(gj) and ε∗i,j(gj) = gj ε̂

r
i,j. Compute the bootstrap statistics:

AR∗n(g) =
∥∥√nf̂ ∗g∥∥Âz , AR∗CR,n(g) =

∥∥√nf̂ ∗g∥∥ÂCR , AR∗R,n(g) =
∥∥√nδ̂∗g∥∥Â∗R,g , where Â∗R,g =(

Q̂−1

Z̃Z̃
Ω̂∗R,gQ̂

−1

Z̃Z̃

)−1

, Ω̂∗R,g = n−1
∑

j∈J
∑

i∈In,j

∑
k∈In,j Z̃i,jZ̃

>
k,jû

∗
i,j(gj)û

∗
k,j(gj), and û∗i,j(gj)

equals the residual of regressing ε∗i,j(gj) on Zi,j and Wi,j.

Step 3: Let ĉAR,n(1 − α), ĉAR,CR,n(1 − α), and ĉAR,R,n(1 − α) denote the (1 − α)-th quantile of

{AR∗n(g)}g∈G, {AR∗CR,n(g)}g∈G and {AR∗R,n(g)}g∈G, respectively.

Remark 8. Unlike the TCR,n-based Wald test in Section 2.1, we do not need to bootstrap the

CCE for the ARCR,n test even though ÂCR also admits a random limit. This is because ÂCR

is invariant to the sign changes. On the other hand, we do need to bootstrap the CCE for the

ARR,n test as ÂR, similar to that for the Wald test, is variant to the sign changes.

Theorem 2.3 shows that in the general case with multiple IVs, the ARn-based bootstrap

test is fully robust to weak IVs and few clusters, and those based on ARCR,n and ARR,n control

size asymptotically up to a small error when q > dz. Notice that the ARR,n test requires

homogeneity condition similar to that imposed in Canay et al. (2021) for OLS-based Wald test.

12See, for example, Chernozhukov and Hansen (2008b), Finlay and Magnusson (2009), Cameron and Miller (2015),

Andrews et al. (2019), and Roodman et al. (2019). This AR statistic is based on the reduced form of (1): ỹi,j(β0) =

Z>i,jδn+W>i,jθn+ui,j , where ỹi,j(β0) = yi,j−X>i,jβ0, δn = Πz(βn−β0), θn = Πw(βn−β0)+γ, and ui,j = v>i,j(βn−β0)+εi,j .

If the IVs Zi,j are valid, then testing βn = β0 is equivalent to testing δn = 0 by using a Wald test.
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Theorem 2.3. Suppose that Assumptions 1(i) and 2 hold, and βn = β0. For ARn, further

suppose that ||Âz − Az||op = op(1), where Az is a dz × dz symmetric deterministic weighting

matrix such that 0 < c ≤ λmin(Az) ≤ λmax(Az) ≤ C < ∞ for some constants c and C. For

ARR,n, further suppose that for each j ∈ J , Q̂Z̃Z̃,j

p−→ bjQZ̃Z̃, where bj 6= 0 and QZ̃Z̃ is positive

definite. Then,

α− 1

2q−1
≤ lim inf

n→∞
P{ARn > ĉAR,n(1− α)} ≤ lim sup

n→∞
P{ARn > ĉAR,n(1− α)} ≤ α,

If further q > dz, then for h ∈ {CR,R},

α− 1

2q−1
≤ lim inf

n→∞
P{ARh,n > ĉAR,h,n(1− α)} ≤ lim sup

n→∞
P{ARh,n > ĉAR,h,n(1− α)} ≤ α +

1

2q−1
.

Remark 9. The behavior of wild bootstrap for other weak-IV-robust statistics proposed in the

literature is more complicated as they depend on an adjusted sample Jacobian matrix (e.g.,

see Kleibergen (2005), Andrews (2016), and Andrews and Guggenberger (2019)). Further

complication therefore arises when all the clusters are weak for a reason similar to that noted

in (14). Additionally, with few clusters this adjusted Jacobian is no longer asymptotically

independent from the score. However, with at least one strong cluster, we are still able to

establish the validity results. Further details are given in Appendix C .

For the weak-IV-robust subvector inference, one may use a projection approach (Dufour

and Taamouti, 2005) after implementing the bootstrap AR tests for βn, but the result may

be rather conservative. Alternative subvector inference approaches (e.g., see Section 5.3 in

Andrews et al. (2019)) provide a power improvement over the projection under the framework

with a large number of observations/clusters, but they cannot be directly applied in the current

context for a reason similar to that noted above.13 To enhance power, we may apply the methods

in Section 2.1 if we are confident that βn is strongly identified in at least one of the clusters.

3 Linear IV Quantile Regression

In this section, we consider the linear IV quantile regression (IVQR) following the setup in

Chernozhukov and Hansen (2006). We propose a gradient wild bootstrap procedure for IVQR

and obtain results parallel to those in Theorems 2.1-2.3. Similar to the previous section, we

allow the coefficients to shift w.r.t. the sample size to incorporate the analyses of size and local

power in a concise manner. We define that Xi,j ∈ Rdx contains endogenous covariates, whose

coefficients are the parameters of interest, Wi,j ∈ Rdw contains the exogenous control variables,

and Zi,j contains exogenous variables that are excluded from the regression. The variable

13The asymptotic critical values given by these approaches will no longer be valid with a small number of clusters.

Also, bootstrap tests based on the subvector statistics therein may not be robust to weak IVs even under conditional

homoskedasticity (Wang and Doko Tchatoka, 2018).
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Φi,j(τ) ∈ Rdφ contains instrumental variables (IVs) that are constructed from (Wi,j, Zi,j), that

is, Φi,j(τ) = Φ(Wi,j, Zi,j, τ). The function Φ(·) may be unknown but can be estimated as Φ̂(·).
The corresponding feasible IVs are defined as Φ̂i,j(τ) = Φ̂(Wi,j, Zi,j, τ). Additionally, a scalar

nonnegative weight is defined as Vi,j(τ), which also may be unknown, and its estimator is defined

as V̂i,j(τ). Then the DGP of our IVQR is summarized in the following assumption. Throughout

this section, for a generic function g of data Di,j = (yi,j, Xi,j,Wi,j, Zi,j), we let Png(Di,j) =
1
n

∑
j∈J
∑

i∈In,j g(Di,j), Png(Di,j) = 1
n

∑
j∈J
∑

i∈In,j Eg(Di,j), Pn,jg(Di,j) = 1
nj

∑
i∈In,j g(Di,j),

and Pn,jg(Di,j) = 1
nj

∑
i∈In,j Eg(Di,j).

Assumption 5. (i) Suppose P(yi,j ≤ X>i,jβn(τ) + W>
i,jγn(τ)|Wi,j, Zi,j) = τ for τ ∈ Υ, where

Υ is a compact subset of (0, 1), βn(τ) = β0(τ)+µβ(τ)/
√
n, and γn(τ) = γ0(τ)+µγ(τ)/

√
n.

(ii) Suppose supτ∈Υ (||µγ(τ)||2 + ||µβ(τ)||2 + ||β0(τ)||2 + ||γ0(τ)||2) ≤ C <∞.

(iii) For all τ ∈ Υ, βn(τ) ∈ int(B), where B is compact and convex.

(iv) Suppose maxi∈[nj ],j∈J supy∈R fyi,j |Wi,j ,Xi,j ,Zi,j(y) < C for some constant C ∈ (0,∞), where

fyi,j |Wi,j ,Xi,j ,Zi,j(·) denotes the conditional density of Yi,j given Wi,j, Xi,j, Zi,j.

(v) Denote Π(b, r, t, τ) = Pn(τ − 1{yi,j < X>i,jb + W>
i,jr + Φ>i,j(τ)t})Ψi,j(τ), where Ψi,j(τ) =

Vi,j(τ) · [W>
i,j,Φ

>
i,j(τ)]>. Then, there are compact subsets R and Θ of Rdw and Rdφ, re-

spectively, such that Jacobian matrix ∂
∂(r>,t>)

Π(b, r, t, τ) is continuous and has full column

rank, uniformly in n and over B ×R×Θ×Υ.

(vi) supi∈Ij ,j∈J ,τ∈Υ E||Ψi,j(τ)||2+a <∞ for some a > 0.

Remark 10. First, Assumption 5 allows for the case in which βn(τ) is partially or weakly iden-

tified as we do not require the Jacobian matrix w.r.t. β, γ (i.e., ∂
∂(b>,r>)

Π(b, r, 0, τ)) to be of

full rank. Such a condition is assumed later in Assumption 8 when we do need point identi-

fication for the subvector inference. Second, under Assumption 5, Chernozhukov and Hansen

(2006) show that (γ>n (τ), 0>dφ×1)> is the unique solution to the weighted quantile regression of

yi,j − X>i,jβn(τ) on Wi,j and Φi,j(τ) at the population level. Then, the inference of βn(τ) can

be implemented via a profiled method described below. For a given value b of βn(τ), we first

compute

(γ̂(b, τ), θ̂(b, τ)) = arg inf
r,t

∑
j∈J

∑
i∈In,j

ρτ (yi,j −X>i,jb−W>
i,jr − Φ̂>i,j(τ)t)V̂i,j(τ), (19)

where ρτ (u) = u(τ − 1{u ≤ 0}). For the subvector inference, we will assume the identification

of βn(τ) and proceed to estimate it by β̂(τ) defined as

β̂(τ) = arg inf
b∈B
||θ̂(b, τ)||Âφ(τ), (20)
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where B is a compact subset of Rdx and Âφ(τ) is some dφ × dφ weighting matrix. Last, we

define γ̂(τ) = γ̂(β̂(τ), τ) and θ̂(τ) = θ̂(β̂(τ), τ). For the full-vector inference, we will not rely on

the point identification of βn(τ). Instead, we use AR-type test statistics in which b is evaluated

at the null hypothesis. In the following, we state the regularity conditions for both subvector

and full-vector inferences.

Assumption 6. (i) Let

Q̂n(b, r, t, τ) =Pnρτ (yi,j −X>i,jb−W>
i,jr − Φ̂>i,j(τ)t)V̂i,j(τ),

Qn(b, r, t, τ) =Pnρτ (yi,j −X>i,jb−W>
i,jr − Φ>i,j(τ)t)Vi,j(τ),

and Q∞(b, r, t, τ) = limn→∞Qn(b, r, t, τ). Suppose (γn(b, τ), θn(b, τ)) and (γ∞(b, τ), θ∞(b, τ))

are the unique minimizers of Qn(b, r, t, τ) and Q∞(b, r, t, τ) with respect to (r, t), respec-

tively. In addition, suppose (γn(b, τ), θn(b, τ), γ∞(b, τ), θ∞(b, τ)) are continuous in b ∈ B
uniformly over τ ∈ Υ, (γn(b, τ), θn(b, τ)) ∈ int(R×Θ) for all (b, τ) ∈ B×Υ where R and

Θ are defined in Assumption 8, θ∞(b, τ) has a unique root for τ ∈ Υ,

sup
(b,τ)∈B×Υ

|Q∞(b, r, t, τ)−Qn(b, r, t, τ)| = op(1), and sup
(b,τ)∈B×Υ

|Q̂n(b, r, t, τ)−Qn(b, r, t, τ)| = op(1).

(ii) For any ε > 0,

lim
δ→0

lim sup
n→∞

P

sup

∥∥∥∥√nj(Pn,j − Pn,j)
(
f̂τ (Di,j, βn(τ) + vb, γn(τ) + vr, vt)

−fτ (Di,j, βn(τ), γn(τ), 0)

)∥∥∥∥
2

≥ ε

 = 0,

where the supremum inside the probability is taken over {j ∈ J, ||v||2 ≤ δ, τ ∈ Υ},

fτ (Di,j, b, r, t) = (τ − 1{yi,j −X>i,jb−W>
i,jr − Φ>i,j(τ)t ≤ 0})Ψi,j(τ),

f̂τ (Di,j, b, r, t) = (τ − 1{yi,j −X>i,jb−W>
i,jr − Φ̂>i,j(τ)t ≤ 0})Ψ̂i,j(τ),

v = (v>b , v
>
r , v

>
t )>, Ψ̂i,j(τ) = V̂i,j(τ)·[Wi,j, Φ̂i,j(τ)]>, and Eĝ(Wi,j) is interpreted as Eg(Wi,j)|g=ĝ

following the convention in the empirical processes literature.

(iii) Denote εi,j(τ) = yi,j − X>i,jβn(τ) − W>
i,jγn(τ), π = (γ>, θ>)> for generic (γ, θ) and

δi,j(v, τ) = X>i,jvb +W>
i,jvr + Φ̂>i,j(τ)vt. Then, for any ε > 0, we have

lim
δ→0

lim sup
n→∞

P
[
sup

∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)Ψ̂i,j(τ)Ψ̂>i,j(τ)− Jπ,π,j(τ)
∥∥∥
op
≥ ε

]
= 0, and

lim
δ→0

lim sup
n→∞

P
[
sup

∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)Ψ̂i,j(τ)X>i,j − Jπ,β,j(τ)
∥∥∥
op
≥ ε

]
= 0,

where the suprema inside the probability are taken over {j ∈ J, ||v||2 ≤ δ, τ ∈ Υ}, v =
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(v>b , v
>
r , v

>
t )>,

Jπ,β,j(τ) = lim
n→∞

Pn,jfεi,j(τ)(0|Wi,j, Zi,j)Ψi,j(τ)X>i,j, and

Jπ,π,j(τ) = lim
n→∞

Pn,jfεi,j(τ)(0|Wi,j, Zi,j)Ψi,j(τ)Ψ>i,j(τ).

(iv) supτ∈Υ

√
n||Pnfτ (Di,j, βn(τ), γn(τ), 0)||2 = Op(1).

(v) Let nj be the size of the j-th cluster. Then we treat the number of clusters q as fixed and

nj/n→ ξj for ξj > 0 and j ∈ J .

(vi) We further write Jπ,π,j(τ) as

(
Jγ,γ,j(τ) Jγ,θ,j(τ)

J >γ,θ,j(τ) Jθ,θ,j(τ)

)
, where Jγ,γ,j(τ), Jγ,θ,j(τ), and Jθ,θ,j(τ)

are dw × dw, dw × dφ, and dφ × dφ matrices. Then, there exist constants (c, C) such that

0 < c < inf
τ∈Υ

λmin

(∑
j∈J

ξjJγ,γ,j(τ)

)
< sup

τ∈Υ
λmax

(∑
j∈J

ξjJγ,γ,j(τ)

)
< C <∞.

Remark 11. First, Assumption 6(i) ensures γn(b, τ) and θn(b, τ) are uniquely defined in the

drifting parameters setting. Second, Assumption 6(ii) is the stochastic equicontinuity of the

empirical process

√
nj(Pn,j − Pn,j)

(
f̂τ (Di,j, βn(τ) + vb, γn(τ) + vr, vt)− fτ (Di,j, βn(τ), γn(τ), 0)

)
with respect to v. Such condition is verified by Chernozhukov and Hansen (2006) when the

data are i.i.d. and V̂i,j(τ) and Φ̂i,j(τ) uniformly converge to their population counterparts in

probability. Their argument can be extended to data with weak dependence. Third, Assump-

tion 6(iii) requires the uniform consistency of the Jacobian matrices, which holds even when

observations are dependent. Fourth, Assumption 6(iv) requires the convergence rate of the

sample mean of the score function to be parametric. In the case that we have a panel dataset

and clusters are defined at the individual level so that observations in each cluster are just

an individual-level time series, Assumption 6(iv) excludes non-stationarity and long-memory

dependence. Fifth, Assumption 6(v) implies that we focus on the case with a small number of

large clusters.

Assumption 7. (i) For j ∈ J and τ ∈ Υ, Jγ,θ,j(τ) = 0.

(ii) There exist versions of tight Gaussian processes {Zj(τ) : τ ∈ Υ}j∈J such that Zj(τ) ∈ Rdφ,

Zj(·) are independent across j ∈ J , EZj(τ)Z>j (τ ′) = Σj(τ, τ
′),

0 < c < inf
τ∈Υ,j∈J

λmin(Σj(τ, τ)) ≤ sup
τ∈Υ,j∈J

λmax(Σj(τ, τ)) ≤ C <∞
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for some constants (c, C) independent of n, and

sup
j∈J,τ∈Υ

||√njPn,j f̃τ (D, βn(τ), γn(τ), 0)−Zj(τ)||2
p−→ 0,

where f̃τ (D, βn(τ), γn(τ), 0) = (τ − 1{εi,j(τ) ≤ 0})Vi,j(τ)Φi,j(τ).

Remark 12. First, we provide below a full-sample projection method to construct IVs that sat-

isfy Assumption 7(i). Such construction forces the Jacobian matrix to be block-diagonal and

thus introduces Neyman orthogonality between the estimators of the coefficients of the endoge-

nous and control variables. Second, we discuss a cluster-level projection method in Appendix

A. Third, consistently estimating Σj(·) in Assumption 7(ii) requires further assumptions on the

within-cluster dependence structure and potential tuning parameters. Instead, the key benefit

of our approach is that it is fully agnostic about the expression of the covariance matrices.

Now we describe the projection method to construct IVs that satisfy Assumption 7(i).

Suppose Φi,j(τ) and Φ̂i,j(τ) are the original (infeasible) IVs and their estimators, respectively,

such that Assumption 7(i) is violated (i.e., lim supn→∞ Pn,jfεi,j(τ)(0|Wi,j, Zi,j)Wi,j(τ)Φ>i,j(τ) 6=
0). We construct Φ̂i,j(τ) as Φ̂i,j(τ) = Φ̂i,j(τ) − χ̂>(τ)Wi,j. To compute χ̂(τ), first let K(·) be

a symmetric kernel function, h be a bandwidth, and ε̂i,j(τ) be some approximation of εi,j(τ),

which will be specified later,

χ̂(τ) =

(∑
j∈J

ξjĴγ,γ,j(τ)

)−1(∑
j∈J

ξjĴ γ,θ,j
(τ)

)
, (21)

Ĵγ,γ,j(τ) = Pn,j
(

1

h
K

(
ε̂i,j(τ)

h

)
V 2
i,j(τ)Wi,jW

>
i,j

)
, and (22)

Ĵ
γ,θ,j

(τ) = Pn,j
(

1

h
K

(
ε̂i,j(τ)

h

)
V 2
i,j(τ)Wi,jΦ̂

>
i,j(τ)

)
. (23)

Next, we discuss how to obtain ε̂i,j(τ). First, for the subvector inference, we require the

original IVs Φi,j(τ) to be valid, that is, Assumptions 5, 6, 8(i)–8(iii) hold with Φi,j(τ) and

Φ̂i,j(τ) replaced by Φi,j(τ) and Φ̂i,j(τ). Then, we construct ε̂i,j(τ) as

ε̂i,j(τ) = Yi,j −X>i,jβ̂(τ)−W>
i,j γ̂(τ), (24)

where (β̂(τ), γ̂(τ)) are the IVQR estimators obtained via (19) and (20) with Φ̂i,j(τ) replaced by

Φ̂i,j(τ). Second, for the full-vector inference, IVs may be weak or invalid, so we define ε̂i,j(τ) as

ε̂i,j(τ) = Yi,j −X>i,jβ0(τ)−W>
i,j γ̂(β0(τ), τ), (25)

where γ̂(β0(τ), τ) is defined in (19) and β0(τ) is the null hypothesis. Then, under the null,

we have supτ∈Υ ||γ̂(β0(τ), τ) − γn(τ)||2 = Op(n
−1/2). In Appendix A, we provide regularity
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conditions under which Φ̂i,j(τ) constructed via the full sample projection as described above

satisfies Assumption 7(i). We also give another procedure based on the cluster-level projection

to construct Φ̂i,j(τ) and show that it satisfies Assumption 7(i) too.

3.1 Subvector Inference

In this and the next sections, we consider the following testing problem. Let λ>β (τ)β0(τ) = λ0(τ)

and µ(τ) = λ>β (τ)µβ(τ), for τ ∈ Υ. Then, define the null and local alternative hypotheses as

H0 : µ(τ) = 0, ∀ τ ∈ Υ v.s. H1,n : µ(τ) 6= 0, ∃ τ ∈ Υ, (26)

where λβ(τ) ∈ Rdx×dr , λ0(τ) ∈ Rdr , and Υ is a compact subset of (0, 1). In Appendix B, we

further study the hypothesis in which each restriction involves two quantile indexes. Consider

the test statistic with a dr × dr weighting matrix Âr(τ), and let

TQRn = sup
τ∈Υ
||
√
n(λ>β (τ)β̂(τ)− λ0(τ))||Âr(τ) (27)

be the test statistic. In the following, we describe the gradient wild bootstrap procedure.

Step 1: We define β̂r(τ) = arg infb∈B,λ>β (τ)b=λ0(τ) ||θ̂(b, τ)||Âφ(τ), where θ̂(b, τ) is defined in (19). Let

γ̂r(τ) = γ̂(β̂r(τ), τ).

Step 2: Let G = {−1, 1}q and for any g = (g1, · · · , gq) ∈ G,

(γ̂∗g(b, τ), θ̂∗g(b, τ)) = arg inf
r,t

[∑
j∈J

∑
i∈In,j

ρτ (yi,j −X>i,jb−W>
i,jr − Φ̂>i,j(τ)t)V̂i,j(τ)

−
∑
j∈J

gj
∑
i∈In,j

f̂>τ (Di,j, β̂
r(τ), γ̂r(τ), 0)

(
r

t

)]
,

β̂∗g(τ) = arg inf
b∈B

[
||θ̂∗g(b, τ)||Âφ(τ)

]
, and γ̂∗g(τ) = γ̂∗g(β̂

∗
g(τ), τ), (28)

where the restricted estimators (β̂r(τ), γ̂r(τ)) are defined in the previous step.

Step 3: Let TQR∗n (g) = supτ∈Υ ||
√
nλ>β (τ)(β̂∗g(τ) − β̂(τ))||Â∗r,g(τ), where Â∗r,g(τ) is the bootstrap

counterpart of the weighting matrix Âr(τ). Let ĉQRn (1 − α) denote the 1 − α quantile of

{TQR∗n (g)}g∈G, and we reject the null hypothesis if TQRn > ĉQRn (1− α).

Denote Jπ,π(τ) =
∑

j∈J ξjJπ,π,j(τ), Jπ,β(τ) =
∑

j∈J ξjJπ,β,j(τ), J π,π(τ) = J −1
π,π(τ), Jθ,β,j(τ) =

ωJπ,β,j(τ), Jθ,β(τ) =
∑

j∈J ξjJθ,β,j(τ), and J θ(τ) = ωJ π,π(τ), where ω = (0dφ×dw , Idφ), 0dφ×dw

is a dφ × dw matrix of zeros, and Idφ is a dφ × dφ identity matrix.

We discuss two cases for the weighting matrix Âr(τ): (1) it has a deterministic limit and

(2) it is the inverse of the CCE. For case (1), we do not bootstrap the weighting matrix and let
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Â∗r,g(τ) = Âr(τ). By abuse of notation, the corresponding test and bootstrap statistics and the

critical value are still denoted as TQRn , TQR∗n (g), and ĉQRn (1− α), respectively.

For case (2), in order to formally define the weighting matrix, we need extra notation. Let

ε̂i,j(τ) = yi,j −X>i,jβ̂(τ)−W>
i,j γ̂(τ),

Ĵπ,β,j(τ) = Pn,j
(

1

h
K

(
ε̂i,j(τ)

h

)
Ψ̂i,j(τ)X>i,j

)
, Ĵπ,π,j(τ) = Pn,j

(
1

h
K

(
ε̂i,j(τ)

h

)
Ψ̂i,j(τ)Ψ̂>i,j(τ)

)
,

Ĵπ,β(τ) =
∑
j∈J

ξjĴπ,β,j(τ), Ĵπ,π(τ) =
∑
j∈J

ξjĴπ,π,j(τ), (29)

Ω̂(τ) =
[
Ĵ >π,β(τ)Ĵ −1

π,π(τ)ω>Âφ(τ)ωĴ −1
π,π(τ)Ĵπ,β(τ)

]−1

Ĵ >π,β(τ)Ĵ −1
π,π(τ)ω>Âφ(τ)ωĴ −1

π,π(τ), and

V̂ (τ, τ ′) =
1

n

∑
j∈J

∑
i∈In,j

((τ − 1{ε̂i,j(τ) ≤ 0})Ψ̂i,j(τ))

∑
i∈In,j

((τ ′ − 1{ε̂i,j(τ ′) ≤ 0})Ψ̂i,j(τ))

> ,
(30)

where K(·) and h are the kernel function and bandwidth as defined above. Then, we denote

Âr(τ) as Âr,CR(τ) and define it as

Âr,CR(τ) =
[
λ>β (τ)Ω̂(τ)V̂ (τ, τ)Ω̂>(τ)λβ(τ)

]−1

. (31)

The corresponding CCE-weighted Wald test statistic is defined as

TQRCR,n = sup
τ∈Υ
||
√
n(λ>β (τ)β̂(τ)− λ0(τ))||Âr,CR(τ).

As q, the number of clusters, is fixed, we will show that Âr,CR(τ) converges to a random limit.

In addition, we use the estimators β̂ and γ̂ to construct the cluster-robust covariance matrix,

and this introduces extra randomness. Therefore, we need to design a bootstrap counterpart

of Âr,CR(τ) to mimic such randomness. Let

f
∗
τ,g(Di,j) = gj f̂τ (Di,j, β̂

r(τ), γ̂r(τ), 0) + f̂τ (Di,j, β̂
∗
g(τ), γ̂∗g(τ), 0)− f̂τ (Di,j, β̂(τ), γ̂(τ), 0),

V̂ ∗g (τ, τ ′) =
1

n

∑
j∈J

∑
i∈In,j

f
∗
τ,g(Di,j)


∑
i∈In,j

f
∗
τ,g(Di,j)


>

. (32)

We let Â∗r,g(τ) in the previous algorithm equal Â∗r,CR,g(τ) which is defined as

Â∗r,CR,g(τ) =
[
λ>β (τ)Ω̂(τ)V̂ ∗g (τ, τ)Ω̂>(τ)λβ(τ)

]−1

,

where β̂∗g(τ) and γ̂∗g(τ) are defined in (28). The bootstrap counterpart of TQRCR,n and critical
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value are defined as

TQR∗CR,n(g) = sup
τ∈Υ
||
√
n(λ>β (τ)(β̂∗g(τ)− β̂(τ)))||Â∗r,CR,g(τ) and ĉQRCR,n(1− α), respectively.

Assumption 8. (i) There are compact subsets R and Θ of Rdw and Rdφ, respectively, such

that Jacobian matrix ∂
∂(b>,r>)

Π(b, r, 0, τ) is continuous and has full column rank, uniformly

in n and over B ×R×Θ×Υ.14

(ii) The image of B ×R under the mapping (b, r) 7→ Π(b, r, 0, τ) is simply connected.

(iii) Suppose supτ∈Υ ||Âφ(τ)−Aφ(τ)||op = op(1), where Aφ(τ) is a symmetric dφ×dφ determin-

istic matrix such that 0 < c ≤ infτ∈Υ λmin(Aφ(τ)) ≤ supτ∈Υ λmax(Aφ(τ)) ≤ C <∞, and

0 < c ≤ inf
τ∈Υ

λmin

(
J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)Jπ,β(τ)

)
≤ sup

τ∈Υ
λmax

(
J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)Jπ,β(τ)

)
≤ C <∞

for some constants c, C.

(iv) Suppose supτ∈Υ ||Âr(τ)−Ar(τ)||op = op(1), where Ar(τ) is a symmetric dr× dr determin-

istic weighting matrix such that 0 < c ≤ infτ∈Υ λmin(Ar(τ)) ≤ supτ∈Υ λmax(Ar(τ)) ≤ C <

∞, for some constants c, C.

Assumptions 8(i) and 8(ii) are Assumptions R5∗ and R6∗ in Chernozhukov and Hansen

(2008a). They, along with Assumption 5, imply that βn(τ) is uniquely defined. Second, by Cher-

nozhukov and Hansen (2006, Theorem 2), under Assumptions 5 and 8(i)–8(iii), (βn(τ), γn(τ))

uniquely solves the system of equations E(τ − 1{yi,j ≤ X>i,jb + W>
i,jr})Ψi,j(τ) = 0. Third, As-

sumption 8(iii) implies Jπ,β(τ) is of full column rank, and thus, βn(τ) is strongly identified.

It requires dφ ≥ dx, which means the number of instruments is no less than the number of

endogenous regressors.

Assumption 9. One of the following two conditions holds: (i) dx = 1 and (ii) there exist

scalars {aj(τ)}j∈J such that Jθ,β,j(τ) = aj(τ)Jθ,β(τ).

Assumption 9 is the same as Assumption 3 to which we refer readers for more discussion.

In particular, it allows for the presence of weak clusters. Define aj(τ) = Ω(τ)Jπ,β,j(τ) when

dx = 1, where

Ω(τ) =
[
J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)Jπ,β(τ)

]−1

J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ). (33)

14For a sequence of matrices An(v) indexed by v ∈ V and n, we say that An(v) is of full column rank uniformly over

v ∈ V and n if infv∈V,n→∞ λmin(A>n (v)An(v)) ≥ c > 0, for some constant c.
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Assumption 10. Suppose there exists a subset Js of J such that infj∈Js,τ∈Υ aj(τ) ≥ c0 > 0 and

aj(τ) = 0 for (j, τ) ∈ J\Js×Υ. Further denote qs = |Js| and cµ = supτ∈Υ ||µ(τ)||2/ infτ∈Υ ||µ(τ)||2.

Then, we have

inf
τ∈Υ

λmin(Ar(τ)) > (1− 2 min
j∈J

ξjc0) sup
τ∈Υ

λmax(Ar(τ))cµ and d|G|(1− α)e ≤ |G| − 2q−qs+1.

Remark 13. As c0 > 0, the inequality in Assumption 10 holds automatically if we consider a

constant local alternative such that µ(τ) = µ for τ ∈ Υ and choose Ar(τ) to be the dr × dr
identity matrix.

Theorem 3.1. Suppose Assumptions 5-9 hold and

sup
τ∈Υ

(||λβ(τ)||2 + ||λ0(τ)||2) ≤ C <∞.

Then under H0, that is, µ(τ) = 0 for τ ∈ Υ,

α− 1

2q−1
≤ lim inf

n→∞
P(TQRn > ĉQRn (1− α)) ≤ lim sup

n→∞
P(TQRn > ĉQRn (1− α)) ≤ α +

1

2q−1
.

In addition, if Assumption 10 holds, then under H1,n,

lim
infτ∈Υ ||µ(τ)||2→∞

lim inf
n→∞

P(TQRn > ĉQRn (1− α)) = 1.

Theorem 3.1 parallels Theorem 2.1. It shows that the gradient wild bootstrap controls size

asymptotically when at least one of the clusters is strong and has power against n−1/2-local

alternatives if further Assumption 10 holds. We conjecture that this procedure is also valid

with a large number of clusters when βn(τ) is strongly identified, under regulatory conditions

similar to those in Hagemann (2017). In Appendix B, we further consider the wild bootstrap

inference for the case when the null hypothesis involves two quantile indexes.

For the subvector inference of IVQR with the CCE, we need the following assumption.

Assumption 11. Suppose (i) q > dr and (ii)

sup
τ∈Υ,j∈J

||Ĵπ,β,j(τ)− Jπ,β,j(τ)||op = op(1) and sup
τ∈Υ,j∈J

||Ĵπ,π,j(τ)− Jπ,π,j(τ)||op = op(1).

Remark 14. Assumption 11(i) guarantees that the CCE Âr,CR(τ) is invertible and the corre-

sponding test statistic TQRCR,n does not degenerate. As Ĵπ,β,j(τ) and Ĵπ,π,j(τ) are just sample

analogues of Jπ,β,j(τ) and Jπ,π,j(τ), respectively, it is expected that Assumption 11(ii) holds

when the dependence of the observations within each cluster is not too strong so that some

version of the uniform weak law of large numbers still holds.

Theorem 3.2. Suppose Assumptions 5–7, 8(i)–8(iii), 9, and 11 hold and

sup
τ∈Υ

(||λβ(τ)||2 + ||λ0(τ)||2) ≤ C <∞.
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Then under H0, that is, µ(τ) = 0 for τ ∈ Υ,

α− 1

2q−1
≤ lim inf

n→∞
P(TQRCR,n > ĉQRCR,n(1− α)) ≤ lim sup

n→∞
P(TQRCR,n > ĉQRCR,n(1− α)) ≤ α +

1

2q−1
.

In addition, suppose there exists a subset Js of J such that infj∈Js,τ∈Υ |aj(τ)| ≥ c0 > 0, aj(τ) = 0

for (j, τ) ∈ J\Js ×Υ, and d|G|(1− α)e ≤ |G| − 2q−qs+1, where qs = |Js|. Then under H1,n,

lim
infτ∈Υ ||µ(τ)||2→∞

lim inf
n→∞

P(TQRCR,n > ĉQRCR,n(1− α)) = 1.

Theorem 3.2 parallels Theorem 2.2 and Remark 7 still applies. In particular, the TQRCR,n test

has power advantage over the TQRn test.

3.2 Full-Vector Inference

In this section, we consider the full-vector inference for βn(τ) when it may be weakly or partially

identified. Recall βn(τ) = β0(τ)+µβ(τ)/
√
n. Under the null, we have µβ(τ) = 0, or equivalently,

βn(τ) = β0(τ). Our test follows the construction by Chernozhukov and Hansen (2008a). Let

ARQR
n = sup

τ∈Υ
||θ̂(β0(τ), τ)||Âφ(τ),

where θ̂(b, τ) is defined in (19) and Âφ(τ) is a dφ× dφ weighting matrix, which will be specified

later. Next, the bootstrap procedure for the full-vector inference is defined as follows.

Step 1: Recall G = {−1, 1}q and for any g = (g1, · · · , gq) ∈ G, let

(γ̃∗g(τ), θ̃∗g(τ)) = arg inf
r,t

[∑
j∈J

∑
i∈In,j

ρτ (yi,j −X>i,jβ0(τ)−W>
i,jr − Φ̂>i,j(τ)t)V̂i,j(τ)

−
∑
j∈J

gj
∑
i∈In,j

f̂>τ (Di,j, β0(τ), γ̂(β0(τ), τ), 0)

(
r

t

)]
, (34)

where we impose the null when computing the bootstrap estimator.

Step 2: The bootstrap test statistic is then defined asARQR∗
n (g) = supτ∈Υ ||θ̃∗g(τ)−θ̂(β0(τ), τ)||Âφ(τ).

Step 3: Let ĉQRAR,n(1 − α) denote the 1 − α quantile of {ARQR∗
n (g)}g∈G, and we reject the null

hypothesis when ARQR
n > ĉQRAR,n(1− α).

It is also possible to studentize θ̂(β0(τ), τ) by the CCE (i.e., let Âφ(τ) = ÂCR(τ) defined in

Assumption 12 below). Define the corresponding test statistic, its bootstrap counterpart, and

critical value as

ARQR
CR,n = sup

τ∈Υ
||θ̂(β0(τ), τ)||ÂCR(τ), ARQR∗

CR,n(g) = sup
τ∈Υ
||θ̂∗g(τ)− θ̂(β0(τ), τ)||ÂCR(τ),

and ĉQRAR,CR,n(1−α), respectively. We reject the null hypothesis when ARQR
CR,n > ĉQRAR,CR,n(1−α).
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Assumption 12. Suppose one of the conditions below holds.

(i) There exists a symmetric dφ×dφ matrix Aφ(τ) such that supτ∈Υ ||Âφ(τ)−Aφ(τ)||op = op(1)

and for some constants c and C,

0 < c ≤ inf
τ∈Υ

λmin(Aφ(τ)) ≤ sup
τ∈Υ

λmax(Aφ(τ)) ≤ C <∞.

(ii) Suppose ÂCR(τ) =
[
ωĴ −1

π,π(τ)Ṽ (τ, τ)Ĵ −1
π,π(τ)ω>

]−1

, where ω = (0dφ×dw , Idφ), Ĵπ,π(τ) is

defined in (29), supτ∈Υ ||Ĵπ,π(τ)− Jπ,π(τ)||op = op(1),

Ṽ (τ, τ) =
1

n

∑
j∈J

∑
i∈In,j

((τ − 1{ε̂i,j(τ) ≤ 0})Ψ̂i,j(τ))

∑
i∈In,j

((τ − 1{ε̂i,j(τ) ≤ 0})Ψ̂i,j(τ))

> ,
(35)

where ε̂i,j(τ) is defined in (25) and γ̂(b, τ) is defined in (19). We further require q > dφ.

Theorem 3.3. Suppose Assumptions 5–7 and 12 hold and βn(τ) = β0(τ) for τ ∈ Υ. Then,

α− 1

2q−1
≤ lim inf

n→∞
P(ARQR

n > ĉQRAR,n(1− α)) ≤ lim sup
n→∞

P(ARQR
n > ĉQRAR,n(1− α)) ≤ α +

1

2q−1
, and

α− 1

2q−1
≤ lim inf

n→∞
P(ARQR

CR,n > ĉQRAR,CR,n(1− α)) ≤ lim sup
n→∞

P(ARQR
CR,n > ĉQRAR,CR,n(1− α)) ≤ α +

1

2q−1
.

Remark 15. Theorem 3.3 holds without assuming strong identification (i.e., Assumption 8).

The asymptotic size of the ARQR
n and ARQR

CR,n-based bootstrap inference is therefore controlled

up to an error 21−q, even when βn(τ) is weakly or partially identified. This is consistent with

Theorem 2.3 and also in line with the robust inference approach proposed by Chernozhukov and

Hansen (2008a) for i.i.d. data, which is based on chi-squared critical values. Also similar to IV

regressions (Remark 9), we need to implement a projection for the weak-IV-robust subvector

inference, which may be conservative, especially if dx is large or the hypothesis involves multiple

quantile indexes. Instead, we may apply the Wald-type subvector inference methods in Section

3.1 in the main text and Appendix B if we are confident that βn(τ) is strongly identified in at

least one of the clusters.

4 Cluster-Level Variables

In this section, we discuss whether our inference method allows for cluster-level variables,

whose values are invariant within each cluster, in Wi,j, Xi,j, and Zi,j. First, as discussed after

Assumption 2 in the main text and Assumption 13 in the Appendix, for both IV and IVQR,

we allow for cluster-level covariates in the control variable Wi,j. If practitioners are concerned
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about cross-cluster heterogeneity, which may potentially jeopardize Assumptions 2(iv) and

13(iii), they can implement the cluster-level projection as detailed in Appendix A.

Second, for the wild bootstrap Wald tests (Tn, TCR,n, TQRn , and TQRCR,n), we cannot allow

for cluster-level endogenous variables. Taking the IV regression as an example, if Xi,j contains

cluster-level variables, then the within-cluster limiting Jacobian matrix QZ̃X,j may be random

and potentially correlated with the score as Xi,j is endogenous. This may lead to the asymmetry

of the limit distributions of the IV and IVQR estimators, jeopardizing the validity of our

approach. However, the wild bootstrap AR tests (ARn, ARCR,n, ARR,n, ARQR
n , and ARQR

CR,n)

remain valid in this case.

Third, if Zi,j contains cluster-level variables, then in general we cannot allow control variables

Wi,j such as the intercept term.15 In this case, we have to let both the endogenous variable

Xi,j and the IV Zi,j contain the intercept term. Then, Assumptions 3 and 9 would be required

as dx > 1, but they are not likely to be satisfied in such a setup, implying that our Wald tests

are invalid. Instead, our AR tests do not require Assumptions 3 and 9 and still remain valid.

Alternatively, we may consider merging clusters following CRS (Section 4.2) and Canay et al.

(2021, Section B) so that in the merged clusters, the IV is not invariant.

Fourth, for a linear IV regression, we allow for an unobserved cluster-level effect in the

outcome yi,j, or equivalently in εi,j, in the form of εi,j = ηj + vi,j. If Z̃i,j is obtained via the full-

sample projection with the full set of cluster fixed effects as Wi,j, or the cluster-level projection

as detailed in Appendix A, we have
∑

i∈In,j Z̃i,jηj = 0 and

1
√
nj

∑
i∈In,j

Z̃i,jεi,j =
1
√
nj

∑
i∈In,j

Z̃i,jvi,j.

Therefore, Assumption 2(i) is expected to hold. If Z̃i,j is obtained via the full-sample projection

without controlling for the cluster fixed effects, we have

1
√
nj

∑
i∈In,j

Z̃i,jεi,j =
ηj√
nj

∑
i∈In,j

Z̃i,j +
1
√
nj

∑
i∈In,j

Z̃i,jvi,j.

Assumption 2 is violated unconditionally as ηj is random. However, all of the assumptions

and proofs in the paper can be modified to condition on {ηj}j∈J , and the validity of our wild

bootstrap inference for the IV regression still holds. Specifically, here we need 1√
nj

∑
i∈In,j Z̃i,j

and 1√
nj

∑
i∈In,j Z̃i,jvi,j to jointly converge to some normal distribution, conditionally on ηj.

15Similar to Canay et al. (2021, Remark 2.3), if Zi,j contains cluster-level variables and the control variables include the

intercept term, then Assumption 2(iv) in the main text and Assumption 13(iii) in the Appendix are violated. For example,

consider the IV regression when Zi,j = Zj is a scalar. Then, Γ̂n = (
∑
j∈J ξjBj)

−1(
∑
j∈J ξjCjZj), Γ̂cn,j = B−1

j CjZj ,

where Bj = 1
nj

∑
i∈In,j

Wi,jW
>
i,j and Cj = 1

nj

∑
i∈In,j

Wi,j . Suppose that Wi,j is the intercept term, then Bj = Cj = 1,

and Assumption 2(iv) implies Zj −
∑
j̃∈J ξj̃Zj̃

p−→ 0 for j ∈ J , or equivalently, {Zj}j∈J are the same asymptotically. In

general, we will have such issue if the marginal distribution of {Wi,j}i∈In,j is the same across clusters.
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Last, unlike linear IV regression, the cluster-level projection cannot cancel out the cluster-

level fixed effect in εi,j(τ) in the form of εi,j(τ) = ηj(τ) + vi,j(τ) in IVQR. In such a nonlinear

model, to account for the cluster-level fixed effect, in general, one needs both the cluster size

and the number of clusters to be large. See, for example, Kato, Galvao, and Montes-Rojas

(2012), Galvao and Kato (2016), Chetverikov, Larsen, and Palmer (2016), and Galvao, Gu,

and Volgushev (2020). In contrast, we focus on the case with few clusters. However, it is

still possible to use our bootstrap inference for IVQR with cluster-level fixed effects for some

specifications, as illustrated in the following example. Suppose

yi,j = X>i,jβ +W>
i,jγ + ηj + vi,j,

and define u̇i,j = ui,j − 1
nj

∑
i∈In,j ui,j for u ∈ {y,X,W, v}. Then, we have

ẏi,j = Ẋ>i,jβ + Ẇ>
i,jγ + v̇i,j.

Our bootstrap inference is valid if we assume P(v̇i,j ≤ 0|Wi,j, Zi,j) = τ .16

5 Monte Carlo Simulation

5.1 Linear IV Regression

In this section, we investigate the finite-sample performance of the wild bootstrap tests and

alternative methods. We consider a simulation design similar to that in Canay et al. (2021)

and extend theirs to the IV model. The data are generated as

yi,j = γ +Xi,jβ + σ(Zi,j) (aε,j + εi,j) , Xi,j = γ + Z>i,jΠ + σ(Zi,j) (av,j + vi,j) , (36)

for i = 1, ..., n and j = 1, ..., q. The total sample size n equals 500, the number of clusters q

equals 10, and the cluster size nj is set to be the same.17 The disturbances (εi,j, vi,j) and cluster

effects (aε,j, av,j) are specified as follows: (εi,j, ui,j)
> ∼ N(0, I2), vi,j = ρεi,j + (1 − ρ2)1/2ui,j,

(aε,j, au,j)
> ∼ N(0, I2), av,j = ρaε,j + (1 − ρ2)1/2au,j. ρ ∈ {0.2, 0.5, 0.8} correspond to the de-

gree of endogeneity. The IVs are generated by Zi,j ∼ N(0, Idz) and σ(Zi,j) = (
∑dz

k=1 Zi,j,k)
2,

where Zi,j,k denotes the k-th element of Zi,j. The IV strength is characterized by Π =

(Π0/
√
dz, ...,Π0/

√
dz)
>, with Π0 ∈ {2, 1, 1/2, 1/4, 1/8}, and the number of IVs equals dz ∈

{1, 3, 5}. The number of Monte Carlo and bootstrap replications equal 5,000 and 500, respec-

tively. The nominal level α is set at 10%. The values of β and γ are set at 0 and 1, respectively,

and we estimate β using TSLS or LIML with cluster fixed effects included. For Tn and ARn,

16Such condition holds when, for example, τ = 0.5 and {vi,j}i∈In,j are jointly normally distributed with mean zero

conditionally on {Zi,j ,Wi,j}i∈In,j so that P(v̇i,j ≤ 0|Wi,j , Zi,j) = E(P(v̇i,j ≤ 0|{Wi,j , Zi,j}i∈In,j )|Wi,j , Zi,j) = 0.5.
17We also did simulations with heterogeneity in cluster size and cluster-level IV strength, and the patterns are similar

to the simulation results reported here. Results are omitted for brevity but are available upon request.
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we set the weighting matrices Âr = 1 and Âz = Idz , where Idz is the dz × dz identity matrix.

One IV Three IVs Five IVs

ρ\Π0 2 1 1/2 1/4 1/8 2 1 1/2 1/4 1/8 2 1 1/2 1/4 1/8

T TSLSn 0.2 10.0 9.8 10.2 9.9 9.6 10.3 10.5 10.8 10.0 10.6 10.6 10.8 11.3 11.2 11.0

0.5 10.1 9.5 10.7 9.8 10.4 9.4 11.7 12.5 12.7 14.2 11.0 14.1 17.0 17.4 17.9

0.8 10.5 10.0 9.7 9.5 10.2 9.3 11.5 17.0 18.6 19.3 12.5 22.8 29.0 32.4 31.7

TLIML
n 0.2 10.0 9.8 10.2 9.9 9.6 10.5 10.7 10.1 10.2 10.2 9.9 10.2 10.1 10.4 10.9

0.5 10.1 9.5 10.7 9.8 10.4 9.6 10.7 10.6 10.0 11.0 9.8 9.9 10.1 11.1 11.5

0.8 10.5 10.0 9.7 9.5 10.2 9.8 9.7 11.7 11.9 12.0 8.7 11.2 12.4 12.8 12.4

T TSLSCR,n 0.2 10.0 9.9 10.4 11.3 11.9 10.6 11.4 12.5 11.7 11.9 11.2 11.4 12.7 12.5 12.6

0.5 9.8 9.4 10.9 15.5 20.4 9.5 16.1 22.5 23.5 26.1 14.2 21.5 27.5 28.7 29.2

0.8 10.5 9.9 9.9 21.4 37.7 10.8 21.7 43.0 54.0 57.4 20.7 45.2 59.4 65.4 66.5

TLIML
CR,n 0.2 10.0 9.9 10.4 11.3 11.9 10.7 11.5 11.8 12.4 11.1 10.6 10.8 11.5 12.3 12.3

0.5 9.8 9.4 10.9 15.5 20.4 9.3 14.1 20.3 21.2 24.1 11.4 17.8 23.1 24.3 24.6

0.8 10.5 9.9 9.9 21.4 37.7 9.7 15.4 33.0 43.8 47.2 12.4 28.6 42.2 47.7 49.6

CRSTSLS 0.2 8.2 6.6 6.2 6.4 6.2 11.9 14.2 14.1 15.9 14.7 16.8 17.8 18.9 19.3 19.6

0.5 7.5 5.5 9.3 12.7 13.4 23.5 39.7 45.5 46.0 47.2 53.9 61.6 63.0 64.0 64.0

0.8 9.3 5.7 13.6 25.9 33.1 46.4 79.8 88.1 88.6 89.0 92.5 96.9 97.8 97.6 97.9

CRSLIML 0.2 8.2 6.6 6.2 6.4 6.2 5.7 6.2 6.9 7.1 6.8 6.5 7.0 7.2 6.3 6.9

0.5 7.5 5.5 9.3 12.7 13.4 7.0 11.6 13.1 13.6 13.8 10.7 12.9 13.3 14.2 13.9

0.8 9.3 5.7 13.6 25.9 33.1 7.9 22.3 31.8 32.9 35.0 17.6 29.4 32.6 33.9 34.9

IMTSLS 0.2 10.2 10.4 11.2 11.3 11.0 12.7 15.4 15.7 17.7 15.9 17.9 18.8 19.7 19.5 20.4

0.5 10.1 10.1 14.7 19.6 20.2 25.4 41.6 47.3 48.2 48.9 54.2 62.2 64.0 64.7 64.7

0.8 12.0 10.2 20.5 34.9 41.7 49.0 81.0 88.7 88.9 89.4 92.5 96.8 97.8 97.6 97.9

IMLIML 0.2 10.2 10.4 11.2 11.3 11.0 9.6 11.2 11.6 12.0 11.6 11.4 11.5 11.8 11.2 11.7

0.5 10.1 10.1 14.7 19.6 20.2 11.8 17.6 19.9 20.7 20.6 17.0 19.5 20.2 21.6 21.1

0.8 12.0 10.2 20.5 34.9 41.7 13.8 31.5 40.8 42.3 43.9 25.0 38.4 41.9 42.9 43.5

BCHTSLS 0.2 9.7 8.1 5.5 2.9 2.2 7.5 5.5 4.9 4.2 4.4 7.2 6.6 6.7 6.9 7.1

0.5 9.0 8.6 8.4 6.2 6.1 8.9 11.4 12.3 12.4 13.2 13.1 17.0 21.4 21.8 21.6

0.8 10.2 9.9 10.4 14.1 18.7 12.2 22.6 35.0 40.6 43.4 23.9 46.5 56.2 61.4 62.0

BCHLIML 0.2 9.7 8.1 5.5 2.9 2.2 8.3 7.1 7.0 6.4 6.5 11.3 11.8 13.0 13.6 13.6

0.5 9.0 8.6 8.4 6.2 6.1 9.1 11.8 12.7 13.2 14.1 13.7 19.3 23.7 24.4 23.9

0.8 10.2 9.9 10.4 14.1 18.7 11.0 18.3 28.6 34.3 36.9 17.1 33.5 44.0 48.4 50.0

Table 1: Null Rejection Probabilities in Percentage of Wald Tests for IV Regressions

Note: TTSLSn , TTSLSCR,n , CRSTSLS , IMTSLS , and BCHTSLS denote the Tn and TCR,n-based wild bootstrap tests, CRS

tests, IM tests, and BCH tests with TSLS, respectively. TLIML
n , TLIML

CR,n , CRSLIML, IMLIML, and BCHLIML denote

their LIML counterparts.

Tables 1 and 2 study the size properties. Specifically, Table 1 reports the null empirical

rejection frequencies of the Wald tests that are based on TSLS and LIML, respectively, including

the Tn and TCR,n-based wild bootstrap procedures in Section 2.1, the randomization tests of

CRS, the group-based t-tests of IM, and the CCE-based t-tests with Bester et al. (2011, hereafter
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BCH)’s critical values. The TSLS and LIML-based tests are numerically the same with one

IV. We highlight several observations below. First, in line with Remark 3, the Tn-based wild

bootstrap tests have null rejection frequencies very close to the nominal level with one IV.

Except for this case, size distortions increase for all tests in Table 1 when the IVs become weak,

the degree of endogeneity becomes high, or the number of IVs becomes large. Second, CRS

and IM’s tests with LIML show a substantial improvement over their counterparts with TSLS,

perhaps because these tests are based on cluster-level estimates, which could produce serious

finite-sample bias when TSLS is employed, especially in the over-identified case. All the other

LIML-based procedures, including the bootstrap tests, also show size improvement over their

TSLS-based counterparts. Third, overall the wild bootstrap procedures compare favorably with

alternatives in terms of size control, and the Tn-based procedure is found to have the smallest

size distortions among these procedures no matter when TSLS or LIML is used. In particular,

the Tn-based bootstrap tests with LIML have null rejection frequencies close to the nominal

level across different settings of IV strength, degree of endogeneity, and number of IVs.

One IV Three IVs Five IVs

ρ\Π0 2 1 1/2 1/4 1/8 2 1 1/2 1/4 1/8 2 1 1/2 1/4 1/8

ARn 0.2 10.1 9.8 10.2 10.0 9.7 10.8 10.4 10.3 9.9 10.3 10.7 10.2 9.4 10.0 10.2

0.5 10.1 9.6 10.7 9.8 10.4 9.9 11.4 10.4 9.9 10.4 10.5 9.2 9.5 9.9 10.4

0.8 10.5 10.0 9.8 9.6 10.3 11.0 10.7 11.1 9.8 10.2 9.9 10.4 10.2 10.5 10.4

ARCR,n 0.2 10.1 9.8 10.2 10.0 9.7 10.5 10.6 10.5 9.4 9.9 10.6 10.7 9.5 9.6 10.0

0.5 10.1 9.6 10.7 9.8 10.4 10.2 10.2 10.3 9.5 9.2 10.2 10.8 9.8 10.1 10.8

0.8 10.5 10.0 9.8 9.6 10.3 10.1 10.2 10.2 10.3 9.9 9.9 9.9 10.5 10.8 10.5

ARR,n 0.2 9.9 9.7 10.2 9.8 9.6 10.7 10.7 10.9 9.3 10.0 10.7 10.3 9.4 9.7 9.5

0.5 9.9 9.6 10.8 9.8 10.4 10.0 10.2 10.6 9.1 9.1 10.4 10.6 9.2 10.0 10.9

0.8 10.4 10.0 9.5 9.7 10.3 10.5 10.5 10.6 10.2 10.1 9.9 10.4 10.7 10.6 10.3

ARASYCR,n 0.2 9.2 9.3 9.7 9.6 9.5 5.1 5.1 5.4 4.2 4.7 0.8 0.6 0.5 0.6 0.6

0.5 9.1 9.1 10.4 9.4 10.0 5.3 4.9 5.3 4.7 4.3 0.6 0.8 0.6 0.5 0.6

0.8 10.3 9.5 9.3 9.3 9.7 5.0 5.0 5.1 5.5 5.0 0.5 0.6 0.5 0.7 0.6

ARASYR,n 0.2 15.8 15.1 15.5 15.5 15.1 32.0 31.8 32.1 30.7 31.2 56.0 55.3 54.5 54.7 55.5

0.5 15.0 15.1 16.6 15.6 16.5 32.2 32.3 30.7 30.6 30.4 54.6 55.1 53.9 54.6 56.5

0.8 16.2 16.2 15.2 15.4 15.9 32.5 32.4 31.5 30.9 31.0 55.9 55.1 54.6 56.6 55.0

Table 2: Null Rejection Probabilities in Percentage of AR Tests for IV Regressions

Note: ARn, ARCR,n, and ARR,n denote the three wild bootstrap AR tests, and ARASYCR,n and ARASYR,n denote the ARCR,n

and ARR,n-based asymptotic AR tests with chi-squared critical values.

Table 2 reports the null rejection frequencies of AR tests, including the ARCR,n and ARR,n-

based asymptotic tests, which reject the null when the square of the corresponding test statistic

exceeds χ2
dz ,1−α, the 1− α quantile of the chi-squared distribution with dz degrees of freedom.

Additionally, it reports the rejection frequencies of the three wild bootstrap AR tests in Section
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2.2 that are based on ARn, ARCR,n, and ARR,n, respectively. We notice that ARCR,n-based

asymptotic tests control the size but under-reject in the over-identified case.18 On the other

hand, the ARR,n-based asymptotic tests tend to have substantial over-rejections. By contrast,

the three bootstrap AR tests always have rejection frequencies very close to the nominal level.

Figure 1 compares the power properties of the tests that have good size control across

different settings, namely, the Tn-based bootstrap tests, the three bootstrap AR tests, and the

ARCR,n-based asymptotic AR tests. We also include TCR,n-based bootstrap tests for a power

comparison with their Tn-based counterparts. We let the number of IVs be 3 and Π0 be 2 or

1.19 For the Wald tests, we use both LIML and its modified version proposed by Fuller (1977,

hereafter FULL), which has finite moments and is thus less dispersed than LIML.20 First, we

notice that among the AR tests, the ARn-based bootstrap tests have the highest power, the

asymptotic AR tests have the lowest, and the ARCR,n and ARR,n-based bootstrap tests have

almost the same power. Second, the Tn-based bootstrap tests with LIML have power properties

that are very similar to the ARn-based bootstrap tests. Third, the bootstrap tests with FULL

are always more powerful than their LIML counterparts. Fourth, in line with our theory, the

TCR,n-based bootstrap tests are more powerful than their Tn-based counterparts across different

settings and therefore may be preferred when identification is strong.

5.2 IVQR

To examine the performance of the wild bootstrap inference for the IVQR, we consider the

following DGP. Let al,j = (al,1,j, · · · , al,n/q,j)> for l = 1, · · · , K, where K ≥ 1 is the number

of instruments, and vl,j = (vl,1,j, · · · , vl,n/q,j)> for l = 1, 2. Then, {a1,j, · · · , aK,j, v1,j, v2,j} are

independent across j ∈ J , and each of them follow an n/q× 1 multivariate normal distribution

with mean zero and covariance Σ(ρj), where Σ(ρj) is an n/q×n/q toeplitz matrix with coefficient

ρj and ρj = 0.2 + 0.05j. Define u1,i,j = v1,i,j, u2,i,j = ρv1,i,j +
√

1− ρ2v2,i,j,

Yi,j = Xi,jβ +W i,jγ + (0.25 + 0.5W i,j + 0.1Xi,j)u1,i,j, Xi,j = 0.6
√
j +

K∑
k=1

ΠkG(Zk,i,j) +G(u2,i,j),

Z1,i,j = a1,i,j, Zk,i,j = 0.6a1,i,j +
√

0.64ak,i,j,∀k ≥ 2,

18The null rejection probabilities of this AR test decrease toward zero when dz approaches q. When dz is equal

to q, the value of ARCR,n will be exactly equal to dz (or q), and thus has no variation (for f̂ =
(
f̂1, ..., f̂q

)>
and

f̂j = n−1∑
i∈In,j

fi,j , ARCR,n = ι>q f̂
(
f̂>f̂

)−1

f̂>ιq = ι>q ιq = dz as long as f̂ is invertible, where ιq denotes a q-

dimensional vector of ones). By contrast, the ARn-based bootstrap test works well even when dz is larger than q.
19Simulation results for other settings show similar patterns and are available upon request.
20Following the recommendation in the literature, we set the tuning parameter of FULL equal to 1, in which case

FULL is best unbiased to a second order among k-class estimators when the errors are normal (Rothenberg, 1984).
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Figure 1: Power of Wild Bootstrap Wald and AR Tests for IV Regressions

Note: “wb.LIML.US,” “wb.LIML.CR,” “wb.FULL.US,” and “wb.FULL.CR” denote the Tn and TCR,n-based wild boot-

strap tests with LIML and FULL, respectively. “asy.AR.CR” denotes the ARCR,n-based AR tests with asymptotic CVs,

and “wb.AR.US,” “wb.AR.CR,” and “wb.AR.R” denote the ARn, ARCR,n and ARR,n-based wild bootstrap AR tests.

where Wi,j = (1,W i,j)
>, W i,j is distributed following 1

2
χ2

1, and G(·) is the standard normal

CDF. We set β = 0.5, γ = 0, ρ = 0.5, Π1 = · · · = ΠK = Π0, Π0 ∈ (1, 1/2, 1/4, 1/8), n = 500,

q = 10, set the number of bootstrap and simulation replications to be 500, and test the following

hypothesis for K ∈ {1, 5} and τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}:

H0 : β(τ) = 0.5 + 0.1G−1(τ) v.s. H1 : β(τ) = 1 + 0.1G−1(τ).

To implement the IVQR, we let the original IV be Φi,j(τ) = Φ̂i,j(τ) = Zi,j and obtain Φ̂i,j(τ)

as Φ̂i,j(τ) = Φ̂i,j(τ)− χ̂>(τ)Wi,j, where Wi,j = (1,W i,j)
> and χ̂(τ) is computed following (21).

Specifically, when computing TQRn and TQRCR,n, we first use Zi,j as IV, implement the IVQR, and

obtain the preliminary estimator (β(τ), γ(τ)). We then define the residual as

ε̂i,j = yi,j −X>i,jβ(τ)−W>
i,jγ(τ). (37)

When computing ARQR
n and ARQR

CR,n, we let β(τ) be the value imposed under the null and
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alternative and compute γ(τ) via a linear quantile regression of Yi,j −Xi,jβ(τ) on (Wi,j, Zi,j).

Given the estimator γ(τ), we define the residual ε̂i,j as (37). To compute χ̂(τ), we use the

fourth order Epanechnikov kernel and the rule of thumb bandwidth

h = 3.536ŝ(q4
τ − 6q2

τ + 3)−2/9n−1/5,

where qτ is the τ -th quantile of the standard normal distribution and ŝ is the standard error of

{ε̂i,j}i∈Ij ,j∈J .21

To compute TQRCR,n and ARQR
n , we set the weighting matrix Âφ(τ) = Idφ , where Idφ is the

dφ × dφ identity matrix. To compute TQRn , we set Âφ(τ) = Idφ and Âr(τ) = 1. In addition, to

compute the test statistics TQRCR,n and ARQR
CR,n with the CCE, we use the same kernel and band-

width as described above to obtain Âr,CR(τ) and ÂCR(τ) defined in (31) and Assumption 12(ii),

respectively. For comparison, we also compute the rejection probabilities for the randomization

test of CRS, which is based on cluster-level IVQR estimators.

Table 3 collects the simulation results when the nominal rate of rejection is 10%.22 We can

make five observations. First, both ARQR
n and ARQR

CR,n control size regardless of IV strength,

while TQRn , TQRCR,n, and CRS have size distortions under weak identification, especially in the

case with 5 IVs. Second, TQRCR,n is more powerful than TQRn under strong identification, which is

consistent with our theory. Third, similar to the results for IV regression in Table 2, the power

of ARQR
CR,n is weaker than that of ARQR

n as the number of IVs increases. Fourth, when there is

one endogenous variable, full- and subvector inferences coincide. In this case and under strong

identification, ARQR
n is more powerful than TQRCR,n when there is only one IV and less powerful

when there are five IVs. Fifth, the power of CRS is similar to ARQR
n and TQRCR,n, but it has a

larger size distortion under weak identification, multiple IVs, or both.

5.3 Practical Recommendations

For both linear IV and IV quantile regressions, we have the following practical recommenda-

tions. First, when conducting the full-vector inference, we suggest using the wild bootstrap

AR tests with deterministic studentization (i.e., ARn and ARQR
n -based tests), which control

size irrespective of the strength of the IVs and have a power advantage over the wild bootstrap

AR tests with the CCE in the over-identified case. Second, to conduct the subvector inference

that is fully robust to weak IVs, one may apply the projection approach after the AR-based

full-vector inference. However, projection may result in a power loss with multiple endogenous

variables or quantile indexes. Third, for conducting the subvector inference with at least one

strong cluster, we may implement the wild bootstrap Wald tests. In particular, those with

21This is the optimal bandwidth that minimizes the MSE of the kernel density estimator at qτ when the underlying

density is Gaussian and the data are i.i.d.
22The rejection probabilities using ARQRn and ARQRCR,n are numerically the same with one IV.
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One IV Five IVs

H0 H1 H0 H1

τ\Π0 1 1/2 1/4 1/8 1 1/2 1/4 1/8 1 1/2 1/4 1/8 1 1/2 1/4 1/8

ARQRn 0.1 7.2 5.4 5.8 8.6 53.8 20.2 12.0 6.8 4.2 5.4 6.0 4.8 54.8 17.8 5.6 3.2

0.25 8.0 5.6 8.4 8.6 76.0 29.0 12.4 7.0 5.2 4.0 5.6 5.4 80.0 22.8 7.6 4.0

0.5 8.8 9.2 7.0 7.2 84.2 41.4 15.4 9.8 4.8 6.4 5.8 5.6 85.8 29.6 8.6 6.0

0.75 8.6 8.2 7.8 6.6 80.6 34.8 14.4 9.6 5.0 3.6 4.6 4.2 72.8 19.8 8.6 4.4

0.9 9.0 9.0 8.4 7.0 59.8 21.4 9.2 4.4 5.4 4.8 6.0 2.6 50.6 15.8 4.0 2.0

ARQRCR,n 0.1 7.2 5.4 5.8 8.6 53.8 20.2 12.0 6.8 1.8 1.4 0.6 0.6 21.2 6.6 1.8 1.8

0.25 8.0 5.6 8.4 8.6 76.0 29.0 12.4 7.0 2.8 2.2 2.8 2.8 11.8 6.8 6.8 2.8

0.5 8.8 9.2 7.0 7.2 84.2 41.4 15.4 9.8 2.2 3.0 2.6 1.4 16.4 11.8 6.0 2.2

0.75 8.6 8.2 7.8 6.6 80.6 34.8 14.4 9.6 3.6 2.2 4.0 4.2 9.6 7.6 5.0 3.2

0.9 9.0 9.0 8.4 7.0 59.8 21.4 9.2 4.4 1.2 1.4 1.8 0.8 13.8 6.2 1.2 1.0

TQRn 0.1 6.4 4.8 7.8 9.6 46.2 19.4 12.0 11.4 1.6 3.8 5.6 7.4 77.8 38.8 18.0 14.8

0.25 5.0 7.0 7.2 9.0 53.2 25.4 14.6 14.2 0.4 2.2 5.6 8.4 84.0 45.8 19.6 15.6

0.5 7.2 8.0 10.4 10.2 51.2 25.2 15.4 12.0 1.2 4.2 9.2 9.8 85.0 46.8 21.6 16.2

0.75 7.4 8.2 9.2 10.4 50.4 24.0 9.8 13.2 2.2 4.0 9.8 8.0 85.8 47.0 20.4 13.8

0.9 9.6 9.8 9.2 11.2 43.8 18.2 11.4 8.0 1.2 5.0 8.8 10.4 77.0 31.0 12.4 10.0

TQRCR,n 0.1 9.4 8.0 11.0 13.2 52.6 22.2 15.2 16.0 7.0 7.6 10.2 12.8 82.6 45.6 23.2 19.2

0.25 7.4 8.6 9.0 11.2 56.2 28.0 17.8 16.6 6.6 7.2 9.4 11.6 90.2 51.2 24.0 18.2

0.5 9.2 11.0 13.2 11.6 56.2 27.4 18.8 14.2 5.8 8.6 11.2 12.6 91.0 52.4 25.0 18.6

0.75 10.0 9.6 11.6 13.6 57.6 27.6 12.2 15.8 7.8 9.8 14.8 12.6 92.0 53.0 24.4 16.6

0.9 12.8 13.2 13.2 13.8 52.0 22.4 14.6 11.8 6.4 10.0 13.0 14.8 82.4 37.8 20.0 16.0

CRS 0.1 8.8 11.6 12.6 14.2 64.4 16.8 8.6 10.6 27.2 37.2 34.2 38.2 60.4 14.4 8.0 15.8

0.25 10.8 10.0 12.6 15.0 82.4 24.2 10.4 12.4 23.2 28.4 35.2 39.4 76.8 16.2 11.2 10.6

0.5 9.2 11.4 13.2 17.0 84.4 26.4 10.8 8.8 23.6 30.8 33.4 35.8 85.0 21.4 10.4 13.8

0.75 10.4 10.4 13.4 14.0 79.8 26.0 7.6 10.4 19.6 29.0 33.6 38.6 81.6 16.8 9.6 14.2

0.9 10.0 11.2 13.6 14.4 66.0 18.4 8.0 11.2 22.2 30.2 39.8 37.8 68.0 12.8 12.8 16.2

Table 3: Rejection Probabilities in Percentage for IVQR

deterministic studentization (i.e., Tn and TQRn -based tests) have relatively good size control.

On the other hand, those with the CCE (i.e., TCR,n and TQRCR,n-based tests) have better power

properties, and we therefore recommend them when we are confident that the identification is

strong. Fourth, in the special case with only one endogenous regressor, the sub- and full-vector

inferences coincide. Additionally, ARn and Tn-based wild bootstrap tests are numerically the

same for the linear IV regression with one IV. However, for IVQR, ARQR
n and TQRn are not

numerically the same. We recommend using ARQR
n with one IV, as it has better size and power

properties in this case, and using TQRCR,n with multiple IVs when identification is strong.
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6 Empirical Application

In an influential study, Autor et al. (2013) analyze the effect of rising Chinese import com-

petition on wages and employment in US local labor markets between 1990 and 2007, when

the share of total US spending on Chinese goods increased substantially from 0.6% to 4.6%.

The dataset of Autor et al. (2013) includes 722 commuting zones (CZs) that cover the entire

mainland US. In this section, we further analyze the region-wise average and distributional

effects of such import exposure by applying IV and IVQR with the proposed wild bootstrap

procedures to three Census Bureau-designated regions: South, Midwest and West, with 16, 12,

and 11 states, respectively, in each region.23

For both IV and IVQR models, we let the outcome variable (yi,j) denote the decadal change

in average individual log weekly wage in a given CZ. The endogenous variable (Xi,j) is the

change in Chinese import exposure per worker in a CZ, which is instrumented (Zi,j) by Chinese

import growth in other high-income countries.24 In addition, the exogenous variables (Wi,j)

include the characteristic variables of CZs and decade specified in Autor et al. (2013) as well

as state fixed effects. Our regressions are based on the CZ samples in each region, and the

samples are clustered at the state level, following Autor et al. (2013). Besides the results for

the full sample, we also report those for female and male samples separately.

The main result of the IV regression for the three regions is given in Table 4, with the number

of observations (n) and clusters (q) for each region, the TSLS estimates, and the 90% bootstrap

confidence sets (CSs) constructed by inverting the corresponding Tn-based (equivalently, ARn-

based) wild bootstrap tests with a 10% nominal level. The computation of the bootstrap CSs

was conducted over the parameter space [−10, 10] with a step size of 0.01, and the number

of bootstrap draws is set at 2,000 for each step. The results in Table 4 suggest that there

may exist regional heterogeneity in terms of the average effect of Chinese imports on wages in

local labor markets. For instance, the TSLS estimates for the South and West regions equal

−0.97 and −1.05, respectively, while that for the Midwest region equals −0.025. That is,

a $1, 000 per worker increase in a CZ’s exposure to Chinese imports is estimated to reduce

average weekly earnings by 0.97, 1.05, and 0.025 log points, respectively, for the three regions

(the corresponding TSLS estimate in Autor et al. (2013) for the entire mainland US is −0.76).

Furthermore, according to the wild bootstrap procedure, the effect on CZs in the South is

significantly different from zero at the 10% level, while the effect on CZs in the other two

regions is not. Compared with that for the South, the wider CSs for the Midwest and West

may be due to relatively weak identification, which our procedure is able to guard against. Table

23The Northeast region is not included in the study because of the relatively small number of states (9) and small

number of CZs in each state (e.g., Connecticut and Rhode Island have only 2 CZs).
24See Sections I.B and III.A in Autor et al. (2013) for a detailed definition of these variables.
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4 also reports the results for female and male samples. We find that across all the regions, the

effects are more substantial for the male samples. Moreover, the effects for both female and

male samples in the South are significantly different from zero.

All Female Male

Region n q Estimate Bootstrap CS Estimate Bootstrap CS Estimate Bootstrap CS

South 578 16 -0.97 [-1.73, -0.58] -0.81 [-1.49, -0.40] -1.08 [-1.95, -0.66]

Midwest 504 12 -0.025 [-0.68,0.78] 0.024 [-0.63,0.74] -0.17 [-1.04,0.77]

West 276 11 -1.05 [-1.47,0.26] -0.6 [-1.49,0.82] -1.26 [-1.99,0.73]

Table 4: IV regressions of Autor et al. (2013) with all, female, and male samples for three US regions

Next, we study the region-wise distributional effects of Chinese import competition by run-

ning IVQR for South, Midwest, and West regions separately. The results are reported in Table

5. The IVQR point estimates are computed using the original IV (Chinese import growth in

other high-income countries) without any projection on the exogenous variables. The weak-IV-

robust 90% bootstrap CSs are computed by inverting the ARQR
n test when the IV is computed

via the projection described in Remark 12 with ε̂i,j(τ) constructed via (25) so that the null

hypothesis is imposed. For the results of Midwest and West regions, some CSs are unbounded

or contain several segments as the identification can be rather weak. We follow Chernozhukov

and Hansen (2008a) and use the maximum and minimum values admitted by the ARQR
n test as

the two endpoints of our CSs. The resulting interval covers all the segments and thus controls

coverage asymptotically. We provide the bootstrap p-values of the ARQR
n tests for all our IVQR

results in Section S.A in the Online Supplement. In line with the results in IV regressions, the

distributional effects of Chinese imports competition are significantly negative for the South

region at all quantiles except 90%, while those for the Midwest and West regions are not sig-

nificant at any of the quantiles. Furthermore, similar to IV regressions, Table 5 shows that the

negative effects of import exposure are more substantial for the male samples at most quantiles.

In addition, the bootstrap CSs report that the effects are significant for males in the South at

the 10%, 50%, and 75% quantiles and significant for females at the 75% and 90% quantiles.

Last, for the South region, whose coefficients are strongly identified, we further test the

distributional homogeneity of the effect of Chinese imports exposure on wages by considering

the following three null hypotheses:

H0 : β(0.1) = β(0.5), H0 : β(0.1) = β(0.9), and H0 : β(0.5) = β(0.9),

where β(τ) is the coefficient of interest and τ ∈ (0, 1) is the quantile index. We conduct the

Wald-test-based subvector inference for IVQR that involves two quantile indexes.25 The boot-

25We refer readers to Appendix B for its implementation detail and theoretical guarantee.
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strap p-values for the three hypotheses are reported in Table 6. We can make three observations.

First, the p-values computed based on the Wald test with the CCE (i.e., TQRCR,n) are all smaller

than those without. This is consistent with our theory that TQRCR,n is more powerful than TQR

in detecting more distant alternatives when there is only one restriction. Second, we reject

the null hypothesis of β(0.1) = β(0.9) for female and male samples at 1% and 5% significance

levels, respectively. Third, although we cannot reject β(0.1) = β(0.9) for the full sample, this

does not contradict the previous significant results because it is not a combination of the female

and male samples. In fact, the samples in Autor et al. (2013) are obtained by averaging data

in a given CZ for all, female, and male individuals, respectively, and therefore they share the

same sample size.

Region South Midwest West

Gender τ Estimate Bootstrap CS Estimate Bootstrap CS Estimate Bootstrap CS

All 0.1 -0.88 [-2.74,-0.01] -0.19 [-1.87,0.97] 0.55 [-6.54,9.76]

0.25 -0.84 [-1.65,-0.16] -0.44 (−∞, 8.00] -0.36 [-8.92,2.72]

0.5 -0.74 [-2.34,-0.42] -0.24 [-1.61,0.39] -1.02 (−∞, 9.39]

0.75 -1.22 [-2.60,-0.39] -0.20 [-0.95,2.04] -0.89 [-7.63,0.26]

0.9 -0.52 [-2.47,0.07] -0.08 [-1.61,2.57] 0.08 [-9.43,3.07]

Female 0.1 -0.22 [-7.06,0.19] 0.01 [-0.54,9.74] 0.43 (−∞, 8.37]

0.25 -0.20 [-1.01,0.27] 0.16 (−∞, 7.49] 0.34 [-7.65,2.99]

0.5 -0.29 [-2.53,0.06] -0.04 [-2.12,1.46] -0.44 [-5.43,7.15]

0.75 -0.69 [-1.76,-0.07] -0.09 [-1.14,1.22] -0.36 [-6.20,1.88]

0.9 -0.54 [-1.48,-0.22] 0.12 [-1.64,1.92] -1.03 (−∞, 1.26]

Male 0.1 -0.44 [-3.52,-0.13] -0.24 [-0.87,3.01] 1.61 [−6.65,∞)

0.25 -0.95 [-2.16,0.08] -0.48 (−∞, 8.10] -0.12 [-9.96,3.36]

0.5 -1.05 [-3.92,-0.73] -0.28 [-4.10,0.57] 0.14 (−∞, 2.54]

0.75 -1.26 [-2.15,-0.53] -0.28 [-0.97,3.30] -0.63 (−∞, 0.85]

0.9 -1.07 [-1.87,0.07] -0.15 [-1.80,2.06] -2.93 [-9.13,2.57]

Table 5: IVQRs of Autor et al. (2013) with all, female, and male samples for three US regions

TQRn TQRCR,n

(τ1, τ2) (0.1, 0.5) (0.1, 0.9) (0.5, 0.9) (0.1, 0.5) (0.1, 0.9) (0.5, 0.9)

All 0.757 0.880 0.778 0.556 0.416 0.334

Female 0.789 0.257 0.554 0.675 0.003 0.272

Male 0.260 0.506 0.945 0.111 0.036 0.894

Table 6: Bootstrap p-values for testing for distributional homogeneity for South region
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Appendices

Appendix A Constructing the IVs

In this section, we discuss how to implement projections at both the full-sample and the cluster

levels for IV regression and IVQR even when the covariate W contains cluster-level variables.

A.1 IV Regression

Suppose Zi,j is the original IV. We can construct Z̃i,j as Z̃i,j = Zi,j − χ̂>j Wi,j, where χ̂j =

Q̂WW,jQ̂
−
WW,jQ̂

−
WW,jQ̂WZ,j, Q̂WW,j = 1

nj

∑
i∈In,j Wi,jW

>
i,j, Q̂WW,j = 1

nj

∑
i∈In,j Wi,jZ

>
i,j, and A−

denotes the pseudo inverse of the positive semidefinite matrixA. We can show that 1
nj

∑
i∈In,j Z̃i,jW

>
i,j =

0 following the same argument in Section A.2.2.

A.2 IVQR

A.2.1 Full-Sample Projection

We first consider the full-sample projection mentioned in the main text.

Assumption 13. Recall Ĵγ,γ,j and Ĵ
γ,θ,j

defined in (22) and (23). Define

Jγ,γ,j(τ) = lim
n→∞

Pn,jfεi,j(τ)(0|Wi,j, Zi,j)V
2
i,j(τ)Wi,jW

>
i,j,

J
γ,θ,j

(τ) = lim
n→∞

Pn,jfεi,j(τ)(0|Wi,j, Zi,j)V
2
i,j(τ)Wi,jΦ

>
i,j(τ),

Jγ,γ(τ) =
∑
j∈J

ξjJγ,γ,j(τ), J
γ,θ

(τ) =
∑
j∈J

ξjJ γ,θ,j
(τ), and χ(τ) = J −1

γ,γ (τ)J
γ,θ

(τ).

(i) Suppose

sup
τ∈Υ

[
||Ĵγ,γ,j(τ)− Jγ,γ,j(τ)||op + ||Ĵ

γ,θ,j
(τ)− J

γ,θ,j
(τ)||op

]
= op(1).

(ii) Recall δi,j(v, τ) = X>i,jvb +W>
i,jvr + Φ̂>i,j(τ)vt. Then,

sup
∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jΦ̂

>
i,j(τ)− J

γ,θ,j
(τ)
∥∥∥
op

p−→ 0,

where the supremum is taken over {j ∈ J, ||v||2 ≤ δ, τ ∈ Υ}, v = (v>b , v
>
r , v

>
t )>.

(iii) For j ∈ J , there exists χn,j(τ) such that

J
γ,θ,j

(τ) = J
γ,γ,j

(τ)χn,j(τ) and Pn,j||W>
i,j(χ(τ)− χn,j(τ))||2op = o(1).

(iv) There exist constants c, C such that

0 < c < inf
τ∈Υ

λmin(Jγ,γ(τ)) ≤ sup
τ∈Υ

λmax(Jγ,γ(τ)) ≤ C <∞.
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First, for the subvector inference, we require the original IVs Φi,j(τ) to be valid, i.e., As-

sumptions 5, 6, 8(i)–8(iii) hold with Φi,j(τ) and Φ̂i,j(τ) replaced by Φi,j(τ) and Φ̂i,j(τ). Then,

we construct ε̂i,j(τ) as

ε̂i,j(τ) = Yi,j −X>i,jβ̂(τ)−W>
i,j γ̂(τ),

where (β̂(τ), γ̂(τ)) are the IVQR estimators obtained via (19) and (20) with Φ̂i,j(τ) replaced

by Φ̂i,j(τ). Note that following the same argument as in Lemma S.K.2, we can show

sup
τ∈Υ

(
||β̂(τ)− βn(τ)||2 + ||γ̂(τ)− γn(τ)||2

)
= Op(n

−1/2).

For the full-vector inference, the IVs may be weak or invalid. Instead, we define ε̂i,j(τ) as

ε̂i,j(τ) = Yi,j −X>i,jβ0(τ)−W>
i,j γ̂(β0(τ), τ),

where γ̂(β0(τ), τ) is defined in (19) and β0(τ) is the null hypothesis. Then, under the null, we

have supτ∈Υ ||γ̂(β0(τ), τ)− γn(τ)||2 = Op(n
−1/2). In both cases, ε̂i,j(τ) is a valid approximation

of εi,j(τ) and Assumption 13(i) holds under mild regularity conditions. Second, Assumption

13 requires the nonparametric estimation of Jγ,γ,j(τ) and J
γ,θ,j

(τ) via kernel smoothing. We

discuss the choice of kernel function and bandwidth in Section 5. Third, Assumption 13(ii) holds

under mild smoothness conditions. Fourth, Assumption 13(iii) parallels Assumption 2(iv) so

that the same comments still apply.

Proposition A.1. Suppose Assumption 13 holds and Φ̂i,j(τ) = Φ̂i,j(τ)− χ̂>(τ)Wi,j where χ̂(τ)

is defined in (21). Then, Jγ,θ,j(τ) defined in Assumption 7 is zero for j ∈ J and τ ∈ Υ, i.e.,

by letting n→∞ followed by δ → 0, we have

sup
∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jΦ̂

>
i,j(τ)

∥∥∥
op

p−→ 0,

where the supremum is taken over {j ∈ J, ||v||2 ≤ δ, τ ∈ Υ} for v = (v>b , v
>
r , v

>
t )>.

A.2.2 Cluster-Level Projection

Suppose Φi,j(τ) and Φ̂i,j(τ) are the original (infeasible) IV and its estimator, respectively, such

that Assumption 7(i) is violated, i.e.,

lim sup
n→∞

Pn,jfεi,j(τ)(0|Wi,j, Zi,j)Wi,j(τ)Φ>i,j(τ) 6= 0.

We construct Φ̂i,j(τ) as Φ̂i,j(τ) = Φ̂i,j(τ) − χ̂>j (τ)Wi,j such that Assumption 7(i) holds with

Φ̂i,j(τ) as the instrument. Let

χ̂j(τ) = Ĵγ,γ,j(τ)Ĵ −γ,γ,j(τ)Ĵ −γ,γ,j(τ)Ĵ
γ,θ,j

(τ) (38)
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where Ĵγ,γ,j(τ) and Ĵ
γ,θ,j

(τ) are defined in Section 3.26

Assumption 14. (i) Suppose

sup
τ∈Υ

[
||Ĵγ,γ,j(τ)− Jγ,γ,j(τ)||op + ||Ĵγ,θ,j(τ)− J

γ,θ,j
(τ)||op

]
= op(1).

(ii) Recall δi,j(v, τ) = X>i,jvb +W>
i,jvr + Φ̂>i,j(τ)vt. Then,

sup
∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jΦ̂

>
i,j(τ)− J

γ,θ,j
(τ)
∥∥∥
op

p−→ 0,

where the supremum is taken over {j ∈ J, ||v||2 ≤ δ, τ ∈ Υ}, v = (v>b , v
>
r , v

>
t )>.

(iii) Define the kth largest singular value of Jγ,γ,j(τ) as σk(Jγ,γ,j(τ)) for k ∈ [dw]. Then there

exist constants c, C and integer R ∈ [1, dw] such that

0 < c ≤ inf
τ∈Υ

σR(Jγ,γ,j(τ)) ≤ sup
τ∈Υ

σ1(Jγ,γ,j(τ)) ≤ C <∞.

The use of generalized inverse in (21) accommodates the case that Jγ,γ,j(τ) is not invertible.

Assumption 13(iii) only requires that the minimum nonzero eigenvalue of Jγ,γ,j(τ) is bounded

away from zero uniformly over τ ∈ Υ.

Proposition A.2. Suppose Assumption 14 holds and Φ̂i,j(τ) = Φ̂i,j(τ)−χ̂>j (τ)Wi,j where χ̂>j (τ)

is defined in (21). Then, Jγ,θ,j(τ) defined in Assumption 7 is zero for j ∈ J and τ ∈ Υ, i.e.,

by letting n→∞ followed by δ → 0, we have

sup
∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jΦ̂

>
i,j(τ)

∥∥∥
op

p−→ 0,

where the suprema are taken over {j ∈ J, ||v||2 ≤ δ, τ ∈ Υ} for v = (v>b , v
>
r , v

>
t )>.

Appendix B Wald Test with Two Quantile Indexes

In this section, we consider the following hypothesis. Let λ>1 β0(τ1) + λ>2 β0(τ2) = λ0. Then, the

null and local alternative hypotheses can be written as

H0 : λ>1 µβ(τ1) + λ>2 µβ(τ2) = λ0 v.s. H1,n : λ>1 µβ(τ1) + λ>2 µβ(τ2) 6= λ0,

where λ1, λ2 ∈ Rdx×dm and λ0 ∈ Rdm . We define Υ = {τ1, τ2}. Let Âr be some weighting

matrix and

TQR2,n = ||
√
n(λ>1 β̂(τ1) + λ>2 β̂(τ2)− λ0(τ))||Âr .

26For a symmetric and positive semidefinite matrix A, we define A− as its generalized inverse. The expression for

χ̂j(τ) is inspired by the minimum norm least squares solution of the normal equation that 1
n

∑n
i=1 Xi(Yi − X

>
i b) = 0

when 1
n

∑n
i=1 XiX

>
i is not invertible.
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We consider the gradient wild bootstrap procedure below.

Step 1. Compute

(β̂r(τ1), β̂r(τ2)) = arg inf
(b1,b2)∈B(τ1,τ2)

[
||θ̂(b1, τ1)||Âφ(τ1) + ||θ̂(b2, τ2)||Âφ(τ2)

]
where B(τ1, τ2) = {b1, b2 ∈ B : λ>1 b1 + λ>2 b2 = λ0}. Last, let γ̂r(τ) = γ̂(β̂r(τ), τ) for

τ = τ1, τ2.

Step 2. For G = {−1, 1}q and any g = (g1, · · · , gq) ∈ G, compute β̂∗g(τ) and γ̂∗g(τ) via (28).

Step 3. Compute the 1− α quantile of TQR∗2,n = ||
√
n(λ>1 (β̂∗g(τ1)− β̂(τ1)) + λ>2 (β̂∗g (τ2)− β̂(τ2)))||Âr

as

ĉQR2,n (1− α) = inf

{
u ∈ R :

1

|G|
∑
g∈G

1
{
TQR∗2,n ≤ u

}
≥ 1− α

}
.

We reject the null hypothesis if TQR2,n > ĉQR2,n (1− α).

Theorem B.1. Suppose Assumptions 5–7, 8, 9 hold. We further define µ = λ>1 µβ(τ1) +

λ>2 µβ(τ2) and further impose that aj(τ1) = aj(τ2) for j ∈ J . Then under H0, i.e., µ = 0,

α− 1

2q−1
≤ lim inf

n→∞
P(TQR2,n > ĉQR2,n (1− α)) ≤ lim sup

n→∞
P(TQR2,n > ĉQR2,n (1− α)) ≤ α +

1

2q−1
.

In addition, suppose minj∈J,τ∈{τ1,τ2} aj(τ) > 0. Then, under H1,n,

lim
||µ||2→∞

lim inf
n→∞

P(TQR2,n > ĉQR2,n (1− α))→ 1.

Next, we consider the Wald test with the CCE. We compute the Wald statistic as

TQR2,CR,n = ||
√
n(λ>1 β̂(τ1) + λ>2 β̂(τ2)− λ0(τ))||Âr,CR ,

where Âr,CR is the cluster-robust covariance matrix defined as

Âr,CR =

[
λ>1 Ω̂(τ1)V̂ (τ1, τ1)Ω̂>(τ1)λ1 + λ>2 Ω̂(τ2)V̂ (τ2, τ2)Ω̂>(τ2)λ2

+ λ>1 Ω̂(τ1)V̂ (τ1, τ2)Ω̂>(τ2)λ2 + λ>2 Ω̂(τ2)V̂ (τ2, τ1)Ω̂>(τ1)λ1

]−1

, (39)

where V̂ (τ1, τ2) is defined in (30) in Section 3.1.

The corresponding wild bootstrap statistic is

TQR∗2,CR,n = ||
√
n(λ>1 (β̂∗g(τ1)− β̂(τ1)) + λ>2 (β̂∗g(τ2)− β̂(τ2)))||Â∗r,CR,g ,

where Â∗r,CR,g is the bootstrap counterpart of Âr,CR defined as

Â∗r,CR,g =

[
λ>1 Ω̂(τ1)V̂ ∗g (τ1, τ1)Ω̂>(τ1)λ1 + λ>2 Ω̂(τ2)V̂ ∗g (τ2, τ2)Ω̂>(τ2)λ2
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+ λ>1 Ω̂(τ1)V̂ ∗g (τ1, τ2)Ω̂>(τ2)λ2 + λ>2 Ω̂(τ2)V̂ ∗g (τ2, τ1)Ω̂>(τ1)λ1

]−1

and V̂ ∗g (τ1, τ2) is defined in (32). We compute the critical value as the 1−α quantile of TQR∗2,CR,n,

i.e.,

ĉQR2,CR,n(1− α) = inf

{
u ∈ R :

1

|G|
∑
g∈G

1
{
TQR∗2,CR,n ≤ u

}
≥ 1− α

}
.

Theorem B.2. Suppose Assumptions 5–7, 8(i)–8(iii), 9, and 11 hold. If Assumption 9(ii)

holds, we further assume aj(τ1) = aj(τ2) for j ∈ J . Define µ = λ>1 µβ(τ1) + λ>2 µβ(τ2). Then

under H0, i.e., µ = 0, we have

α− 1

2q−1
≤ lim inf

n→∞
P(TQR2,CR,n > ĉQR2,CR,n(1− α)) ≤ lim sup

n→∞
P(TQR2,CR,n > ĉQR2,CR,n(1− α)) ≤ α +

1

2q−1
.

Appendix C Wild Bootstrap for Other Weak-IV-Robust Statistics

In this section, we discuss wild bootstrap inference with other weak-IV-robust statistics. To

introduce the test statistics, we define the sample Jacobian as

Ĝ =
(
Ĝ1, ..., Ĝdx

)
∈ Rdz×dx , Ĝl = n−1

∑
j∈J

∑
i∈In,j

Z̃i,jXi,j,l, for l = 1, ..., dx,

and define the orthogonalized sample Jacobian as

D̂ =
(
D̂1, ..., D̂dx

)
∈ Rdz×dx , D̂l = Ĝl − Γ̂lΩ̂

−1f̂ ∈ Rdz ,

where Ω̂ = n−1
∑

j∈J
∑

i∈In,j

∑
k∈In,j fi,jf

>
k,j, and Γ̂l = n−1

∑
j∈J
∑

i∈In,j

∑
k∈In,j

(
Z̃i,jXi,j,l

)
f>k,j,

for l = 1, ..., dx. Therefore, under the null βn = β0 and the framework where the number of

clusters tends to infinity, D̂ equals the sample Jacobian matrix Ĝ adjusted to be asymptotically

independent of f̂ .

Then, the cluster-robust version of Kleibergen (2002, 2005)’s LM statistic is defined as

LMn = nf̂>Ω̂−1/2PΩ̂−1/2D̂Ω̂−1/2f̂ ,

where PA = A(A′A)−A′ for any matrix A. In addition, the conditional quasi-likelihood ratio

(CQLR) statistic in Kleibergen (2005), Newey and Windmeijer (2009), and Guggenberger,

Ramalho, and Smith (2012) are adapted from Moreira (2003)’s conditional likelihood ratio

(CLR) test, and its cluster-robust version takes the form

LRn =
1

2

(
ARCR,n − rkn +

√
(ARCR,n − rkn)2 + 4LMn · rkn

)
,

where rkn is a conditioning statistic and we let rkn = nD̂>Ω̂−1D̂.27

27This choice follows Newey and Windmeijer (2009). Kleibergen (2005) uses alternative formula for rkn, and Andrews
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The wild bootstrap procedure for the LM and CQLR tests is as follows. We compute

D̂∗g =
(
D̂∗1,g, ..., D̂

∗
dx,g

)
, D̂∗l,g = Ĝl − Γ̂∗l,gΩ̂

−1f̂ ∗g ,

Γ̂∗l,g = n−1
∑
j∈J

∑
i∈In,j

∑
k∈In,j

(
Z̃i,jXi,j,l

)
f ∗k,j(gj)

>, l = 1, ..., dx,

for any g = (g1, ..., gq) ∈ G. Then, compute the bootstrap analogues of the test statistics as

LM∗
n(g) = n(f̂ ∗g )>Ω̂−1/2PΩ̂−1/2D̂∗g

Ω̂−1/2f̂ ∗g ,

LR∗n(g) =
1

2

(
AR∗CR,n(g)− rkn +

√(
AR∗CR,n(g)− rkn

)2
+ 4LM∗

n(g) · rkn
)
.

Let ĉLM,n(1−α) and ĉLR,n(1−α) denote the (1−α)-th quantile of {LM∗
n(g)}g∈G and {LR∗n(g)}g∈G,

respectively. We notice that with at least one strong cluster,

LMn
d−−→
∥∥∥∥
D̃>(∑

j∈J

ξjZε,jZ>ε,j

)−1

D̃

−1/2

D̃>

(∑
j∈J

ξjZε,jZ>ε,j

)−1∑
j∈J

√
ξjZε,j

∥∥∥∥2

,

where D̃ =
(
D̃1, ..., D̃dx

)
, and for l = 1, ..., dx,

D̃l = QZ̃X −

{∑
j∈J

(
ξjQZ̃X,j,l

) (√
ξjZε,j

)}{∑
j∈J

ξjZε,jZ>ε,j

}−1∑
j∈J

√
ξjZε,j.

Although the limiting distribution is nonstandard, we are able to establish the validity results by

connecting the bootstrap LM test with the randomization test and by showing the asymptotic

equivalence of the bootstrap LM and CQLR tests in this case. We conjecture that similar

results can also be established for other weak-IV-robust statistics proposed in the literature.

Theorem C.1. If Assumptions 1-2 hold, βn = β0, and q > dz, then

α− 1

2q−1
≤ lim inf

n→∞
P{LMn > ĉLM,n(1− α)} ≤ lim sup

n→∞
P{LMn > ĉLM,n(1− α)} ≤ α +

1

2q−1
;

α− 1

2q−1
≤ lim inf

n→∞
P{LRn > ĉLR,n(1− α)} ≤ lim sup

n→∞
P{LRn > ĉLR,n(1− α)} ≤ α +

1

2q−1
.

and Guggenberger (2019) introduce alternative CQLR test statistic.
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Abstract

This document gathers together the supplementary material to the main paper. Section S.A

provides additional empirical results. Sections S.B–S.D provide the proofs of results in Section 2.

Sections S.E–S.G provide the proofs of results in Section 3. Section S.H provide the proofs of results

in Appendix A. Section S.I provides the proofs of results in Appendix B. Section S.J provides the

proofs of results in Appendix C. Sections S.K collects the Lemmas used in the proofs.

S.A Additional Empirical Results

In this section, we report the p-values of the ARQR
n tests with all, female, and male samples for

midwest, west, and south regions. In Figures 2–10, the X-axis represents the value of effect of

Chinese imports on wages under the null while the Y-axis represents the corresponding p-values.

S.B Proof of Theorem 2.1

The arguments follow those in Canay et al. (2021). Let S ≡ Rdz×dx×Rdz×dz×⊗j∈JRdz×Rdr×dr

and write an element s ∈ S by s = (s1, s2, {s3,j : j ∈ J}, s4) where s3,j ∈ Rdz for any j ∈ J .

Define the function T : S→ R to be given by

T (s) =

∥∥∥∥λ>β (s>1 s−1
2 s1

)−1
s>1 s

−1
2

(∑
j∈J

s3,j

)∥∥∥∥
s4

(40)

for any s ∈ S such that s2 and s>1 s
−1
2 s1 are invertible and let T (s) = 0 otherwise. We

also identify any (g1, ..., gq) = g ∈ G = {−1, 1}q with an action on s ∈ S given by gs =

(s1, s2, {gjs3,j : j ∈ J}, s4). For any s ∈ S and G’ ⊆ G, denote the ordered values of {T (gs) :

g ∈ G’} by T (1)(s|G’) ≤ . . . ≤ T (|G’|)(s|G’). Given this notation we can define the statistics

Sn, Ŝn ∈ S as

Sn =

Q̂Z̃X , Q̂Z̃Z̃ ,


√
nj√
n

1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J

 , Âr

 ,

1



Figure 2: ARQRn -based Bootstrap p-values for Midwest Region

Figure 3: ARQRn -based Bootstrap p-values for South Region

Figure 4: ARQRn -based Bootstrap p-values for West Region

Figure 5: ARQRn -based Bootstrap p-values for the Female Sample in Midwest Region

Figure 6: ARQRn -based Bootstrap p-values for the Male Sample in Midwest Region

2



Figure 7: ARQRn -based Bootstrap p-values for the Female Sample in South Region

Figure 8: ARQRn -based Bootstrap p-values for the Male Sample in South Region

Figure 9: ARQRn -based Bootstrap p-values for the Female Sample in West Region

Figure 10: ARQRn -based Bootstrap p-values for the Female Sample in West Region

Ŝn =

Q̂Z̃X , Q̂Z̃Z̃ ,


√
nj√
n

1
√
nj

∑
i∈In,j

Z̃i,j ε̂
r
i,j : j ∈ J

 , Âr

 . (41)

Let En denote the event En = I
{
Q̂Z̃X is of full rank value and Q̂Z̃Z̃ is invertible

}
, and As-

sumption 1 implies that lim infn→∞ P{En = 1} = 1.
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Note that whenever En = 1 and H0 is true, the Frisch-Waugh-Lovell theorem implies that

Tn =

∥∥∥∥√n(λ>β β̂ − λ0

)∥∥∥∥
Âr

=

∥∥∥∥√nλ>β (β̂ − βn)∥∥∥∥
Âr

=

∥∥∥∥λ>β Q̂−1Q̂>
Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

1√
n

∑
i∈In,j

Z̃i,jεi,j

∥∥∥∥
Âr

= T (Sn). (42)

Similarly, we have for any action g ∈ G that

T ∗n(g) =

∥∥∥∥√nλ>β (β̂∗g − β̂r)∥∥∥∥
Âr

=

∥∥∥∥λ>β Q̂−1Q̂>
Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

1√
n

∑
i∈In,j

gjZ̃i,j ε̂
r
i,j

∥∥∥∥
Âr

= T (gŜn). (43)

Therefore, for any x ∈ R letting dxe denote the smallest integer larger than x and k∗ ≡
d|G|(1− α)e, we obtain from (42)-(43) that

I {Tn > ĉn(1− α)} = I
{
T (Sn) > T (k∗)(Ŝn|G)

}
. (44)

Furthermore, let ιq ∈ G correspond to the identity action, i.e., ιq = (1, ..., 1) ∈ Rq, and

similarly define −ιq = (−1, ...,−1) ∈ Rq. Since T (−ιqŜn) = T (ιqŜn), we obtain from (43) that

T
(
−ιqŜn

)
= T

(
ιqŜn

)
=

∥∥∥∥λ>β Q̂−1Q̂>
Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

1√
n

∑
i∈In,j

Z̃i,j

(
yi,j −X>i,jβ̂r −W>

i,j γ̂
r
)∥∥∥∥

Âr

=

∥∥∥∥λ>β Q̂−1Q̂>
Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

1√
n

∑
i∈In,j

Z̃i,j

(
yi,j −X>i,jβ̂r

)∥∥∥∥
Âr

=
∥∥√nλ>β (β̂ − β̂r)

∥∥
Âr

= T (Sn) , (45)

where the third equality follows from
∑

j∈J
∑

i∈In,j Z̃i,jW
>
i,j = 0. (45) implies that if k∗ > |G|−2,

then I{T (Sn) > T (k∗)(Ŝn|G)} = 0, and this gives the upper bound in Theorem 2.1. We therefore

assume that k∗ ≤ |G| − 2, in which case

lim sup
n→∞

P{T (Sn) > T (k∗)(Ŝn|G);En = 1}

= lim sup
n→∞

P{T (Sn) > T (k∗)(Ŝn|G \ {±ιq});En = 1}

≤ lim sup
n→∞

P{T (Sn) ≥ T (k∗)(Ŝn|G \ {±ιq});En = 1}, (46)

where the equality follows from (45) and k∗ ≤ |G|−2, and the inequality follows by set inclusion.

Then, to examine the right hand side of (46), first note that by Assumptions 1-2, 4, and the

continuous mapping theorem we haveQ̂Z̃X , Q̂Z̃Z̃ ,


√
nj√
n

1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J

 , Âr

 d−−→
(
QZ̃X , QZ̃Z̃ ,

{√
ξjZj : j ∈ J

}
, A
)
≡ S,

(47)

where ξj > 0 for all j ∈ J by Assumption 2(ii). We further note that whenever En = 1, for
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every g ∈ G,∣∣∣T (gSn)− T (gŜn)
∣∣∣ ≤ ∥∥∥∥λ>β Q̂−1Q̂>

Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jX
>
i,j

√
n(βn − β̂r)

∥∥∥∥
Âr

+

∥∥∥∥λ>β Q̂−1Q̂>
Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jW
>
i,j

√
n(γ − γ̂r)

∥∥∥∥
Âr

. (48)

Note that whenever λ>β βn = λ0 it follows from Assumption 1 and Amemiya (1985, Eq.(1.4.5))

that
√
n(β̂r−βn) and

√
n(γ̂r−γ) are bounded in probability. Also, we have

∑
i∈In,j Z̃i,jW

>
i,j/nj =

op(1) by using Assumptions 1(i), 2(iv), and the same argument as in Lemma A.2 of Canay et al.

(2021). Therefore,

lim sup
n→∞

P


∥∥∥∥λ>β Q̂−1Q̂>

Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jW
>
i,j

√
n(γ − γ̂r)

∥∥∥∥
Âr

> ε;En = 1

 = 0.

(49)

Moreover, Assumption 3(ii) yields for any ε > 0 that

lim sup
n→∞

P


∥∥∥∥λ>β Q̂−1Q̂>

Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jX
>
i,j

√
n(βn − β̂r)

∥∥∥∥
Âr

> ε;En = 1


= lim sup

n→∞
P

{∥∥∥∥λ>β (Q>Z̃XQ−1

Z̃Z̃
QZ̃X

)−1

Q>
Z̃X
Q−1

Z̃Z̃

∑
j∈J

ξjgjajQZ̃X

√
n(βn − β̂r)

∥∥∥∥
Âr

> ε;En = 1

}

= lim sup
n→∞

P

{∥∥∥∥∑
j∈J

ξjgjaj
√
n(λ>β β − λ>β β̂r)

∥∥∥∥
Âr

> ε;En = 1

}
= 0, (50)

where the last equality holds because λ>β β̂
r = λ0 under H0. Furthermore, under Assumption

3(i), λβ = 1 and βn = β̂r, so that (50) holds immediately.

Note that T (gŜn) = T (gSn) whenever En = 0 as we have defined T (s) = 0 for any s =

(s1, s2, {s3,j : j ∈ J}, s4) whenever s2 or s>1 s
−1
2 s1 is not invertible. Therefore, results in (48),

(49) and (50) imply that T (gŜn) = T (gSn) + oP (1) for any g ∈ G, and we obtain from (47)

that (
T (Sn),

{
T (gŜn) : g ∈ G

})
d−−→ (T (S), {T (gS) : g ∈ G}) . (51)

Moreover, since lim infn→∞ P{En = 1} = 1, it follows that
(
T (Sn), En, {T (gŜn) : g ∈ G}

)
converge jointly as well. Hence, Portmanteau’s theorem implies that

lim sup
n→∞

P{T (Sn) ≥ T (k∗)(Ŝn|G \{±ιq});En = 1}

≤ P{T (S) ≥ T (k∗)(S|G \{±ιq})} = P{T (S) > T (k∗)(S|G \{±ιq})}, (52)
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where the equality follows from P{T (S) = T (gS)} = 0 for all g ∈ G\{±ιq} since the covariance

matrix of Zj is full rank for all j ∈ J , and the limit of Q̂−1Q̂>
Z̃X
Q̂−1

Z̃Z̃
is of full rank by Assumption

1. Finally, since T (ιqS) = T (−ιqS), we obtain that T (S) > T (k∗)(S|G \ {±ιq}) if and only if

T (S) > T (k∗)(S|G), which yields

P{T (S) > T (k∗)(S|G \{±ιq})} = P{T (S) > T (k∗)(S|G)} ≤ α, (53)

where the final inequality follows by gS
d
= S for all g ∈ G and the properties of randomization

tests. This completes the proof of the upper bound of part (i) in the theorem.

For the lower bound, first note that k∗ > |G| − 2 implies that α − 1
2q−1 ≤ 0, in which case

the result trivially follows. Now assume k∗ ≤ |G| − 2, then

lim sup
n→∞

P{Tn > ĉn(1− α)} ≥ lim inf
n→∞

P{T (Sn) > T (k∗)(Sn|G)} ≥ P{T (S) > T (k∗)(S|G)}

≥ P{T (S) > T (k∗+2)(S|G)}+ P{T (S) = T (k∗+2)(S|G)} ≥ α− 1

2q−1
, (54)

where the first inequality follows from (44), the second inequality follows from Portmanteau’s

theorem, the third inequality holds because P{T (z+2)(S|G) > T (z)(S|G)} = 1 for any integer

z ≤ |G| − 2 by (40) and Assumption 2(i)-(ii), and the last equality follows from noticing that

k∗ + 2 = d|G|((1 − α) + 2/|G|)e = d|G|(1 − α′)e with α′ = α − 1
2q−1 and the properties of

randomization tests. This completes the proof of the lower bound of part (i) in the theorem.

For part (ii) in the theorem, the power of the Tn-based wild bootstrap test, notice that

||
√
n(λ>β β̂ − λ0)||Âr = ||

√
nλ>β (β̂ − βn) +

√
nλ>β (βn − β̂r)||Âr

=
∥∥∥λ>β Q̂−1Q̂>

Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

∑
i∈In,j

Z̃i,jεi,j√
n

+
√
nλ>β (βn − β̂r)

∥∥∥
Âr

=
∥∥∥λ>β Q̂−1Q̂>

Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

∑
i∈In,j

(
Z̃i,jεi,j√

n
+
Z̃i,jX

>
i,j

n

√
n(βn − β̂r)

)∥∥∥
Âr
. (55)

Notice that Assumption 1, Amemiya (1985, Eq.(1.4.5)), and
√
n(λ>β βn−λ0) = λ>β µβ = µ imply

that
√
n(β̂r − βn) and

√
n(γ̂r − γ) are bounded in probability. Therefore, we have for the

bootstrap analogue,

||
√
nλ>β (β̂∗g − β̂r)||Âr

=
∥∥∥λ>β Q̂−1Q̂>

Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

∑
i∈In,j

gj

(
Z̃i,jεi,j√

n
+
Z̃i,jX

>
i,j

n

√
n(βn − β̂r) +

Z̃i,jW
>
i,j

n

√
n(γ − γ̂r)

)∥∥∥
Âr

=
∥∥∥λ>β Q̂−1Q̂>

Z̃X
Q̂−1

Z̃Z̃

∑
j∈J

∑
i∈In,j

gj

(
Z̃i,jεi,j√

n
+
Z̃i,jX

>
i,j

n

√
n(βn − β̂r)

)∥∥∥
Âr

+ oP (1), (56)

where the last equality follows from
∑

i∈In,j Z̃i,jW
>
i,j/nj = op(1) by Assumptions 1(i) and 2(iv).
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Furthermore, we notice that

β̂r = β̂ − Q̂−1λβ

(
λ>β Q̂

−1λβ

)−1 (
λ>β β̂ − λ0

)
= β̂ − Q̂−1λβ

{(
λ>β Q̂

−1λβ

)−1

λ>β (β̂ − βn) +
(
λ>β Q̂

−1λβ

)−1

(λ>β βn − λ0)

}
. (57)

Therefore, employing (57) with
√
n(λ>β βn − λ0) = λ>β µβ, we conclude that whenever En = 1,

∑
i∈In,j

Z̃i,jX
>
i,j

n

√
n(βn − β̂r) =

∑
i∈In,j

Z̃i,jX
>
i,j

n

{(
Idx − Q̂−1λβ

(
λ>β Q̂

−1λβ

)−1

λ>β

)√
n(βn − β̂)

+Q̂−1λβ

(
λ>β Q̂

−1λβ

)−1

λ>β µβ

}
. (58)

Together with (56), this implies that

lim sup
n→∞

P


∥∥∥√nλ>β (β̂∗g − β̂r)− λ>β Q̂−1Q̂>

Z̃X
Q̂−1

Z̃Z̃

×
∑

j∈J
∑

i∈In,j gj

(
Z̃i,jεi,j√

n
+ ξjQ̂Z̃X,jQ̂

−1λβ

(
λ>β Q̂

−1λβ

)−1

λ>β µβ

)∥∥∥
Âr
> ε;En = 1


= lim sup

n→∞
P


∥∥∥√nλ>β (β̂∗g − β̂r)− λ>βQ−1Q>

Z̃X
Q−1

Z̃Z̃

×
∑

j∈J gj

[√
ξjZj + ξjajQZ̃XQ

−1λβ
(
λ>βQ

−1λβ
)−1

µ
] ∥∥∥

Âr
> ε;En = 1


= lim sup

n→∞
P
( ∥∥∥√nλ>β (β̂∗g − β̂r)−

∑
j∈J gj

[√
ξjλ
>
βQ
−1Q>

Z̃X
Q−1

Z̃Z̃
Zj + ξjajµ

] ∥∥∥
Âr
> ε;En = 1

)
= 0.

In addition, let Gs = G\Gw, where Gw = {g ∈ G : gj = gj′ , ∀j, j′ ∈ Js}. We note that

|Gs| = |G|−2q−qs+1 ≥ k∗. Therefore, to establish the result in part (ii), it suffices to show that

as ||µ||2 →∞,

lim inf
n→∞

P{Tn > max
g∈Gs

T ∗n(g)} → 1, (59)

which follows under similar arguments as those employed in the proof of Theorem 3.2 in Canay

et al. (2021). �

S.C Proof of Theorem 2.2

The proof for the asymptotic size of the TCR,n-based wild bootstrap test follows similar argu-

ments as those for the Tn-based wild bootstrap test in Theorem 2.1 and the arguments in the

proof of Theorem 3.3 in Canay et al. (2021), and is thus omitted.

For the power analysis, we define

TCR,∞(g) =

∥∥∥∥∥λ>β Q̃
[∑
j∈J

gj
√
ξjZj

]
+ c0,gµ

∥∥∥∥∥
Ar,CR,g

, (60)
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where Q̃ = Q−1Q>
Z̃X
Q−1

Z̃Z̃
, c0,g =

∑
j∈J ξjgjaj, and

Ar,CR,g =

∑j∈J ξj

{
λ>β Q̃

[
gjZj − aj

√
ξj
∑

j̃∈J
√
ξ j̃gj̃Zj̃

]
+
√
ξj(gj − c0,g)ajµ

}
×
{
λ>β Q̃

[
gjZj − aj

√
ξj
∑

j̃∈J
√
ξ j̃gj̃Zj̃

]
+
√
ξj(gj − c0,g)ajµ

}>
−1

.

We order {TCR,∞(g)}g∈G in ascending order: (TCR,∞)(1) ≤ · · · ≤ (TCR,∞)|G|.

By the Portmanteau theorem, we have

lim inf
n→∞

P{TCR,n > ĉCR,n(1− α)} ≥ P
{
TCR,∞(ιq) > (TCR,∞)(k∗)

}
.

We aim to show that, as ||µ||2 →∞, we have

P
{
TCR,∞(ιq) > max

g∈Gs

TCR,∞(g)

}
→ 1. (61)

Then, given |Gs| = |G| − 2q−qs+1 and d|G|(1 − α)e ≤ |G| − 2q−qs+1, (61) implies that as

||µ(τ)||2 →∞,

P
{
TCR,∞(ιq) > (TCR,∞)(k∗)

}
> P

{
TCR,∞(ιq) > max

g∈Gs

TCR,∞(g)

}
→ 1.

Therefore, it suffices to establish (61).

By (60), we see that

TCR,∞(ιq) =

∥∥∥∥∥λ>β Q̃
[∑
j∈J

gj
√
ξjZj

]
+ µ

∥∥∥∥∥
Ar,CR,ιq

,

and Ar,CR,ιq is independent of µ as c0,ιq = 1. In addition, we have λmin(Q̃>λ>βAr,CR,ιqλβQ̃) > 0

with probability one. Therefore, for any e > 0, we can find a constant c > 0 such that

TCR,∞(ιq) ≥ c||µ||22 −Op(1). (62)

On the other hand, for g ∈ Gs, we can write TCR,∞(g) as

TCR,∞(g) =

{
(N0,g + c0,gµ)>

[∑
j∈J

ξj(Nj,g + cj,gµ)(Nj,g + cj,gµ)>

]−1

(N0,g + c0,gµ)

}
, (63)

where for j ∈ J , N0,g = λ>β Q̃
[∑

j∈J gj
√
ξjZj

]
, Nj,g = λ>β Q̃

[
gjZj − aj

√
ξj
∑

j̃∈J
√
ξ j̃gj̃Zj̃

]
, and

cj,g =
√
ξj(gj − c0,g)aj.

We claim that for g ∈ Gs, cj,g 6= 0 for some j ∈ Js (suppose it does not hold, then it implies

that gj = c0,g for all j ∈ Js, i.e., for all j ∈ Js, gj shares the same sign and thus contradict the

definition of Gs), which, together with the assumption that minj∈Js |aj| > 0, implies that

min
g∈Gs

∑
j∈J

ξjc
2
j,g > 0.
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In addition, we note that∑
j∈J

ξj(Nj,g + cj,gµ)(Nj,g + cj,gµ)>

=
∑
j∈J

ξjNj,gN
>
j,g +

∑
j∈J

ξjcj,gNj,gµ
> +

∑
j∈J

ξjcj,gµN
>
j,g + (

∑
j∈J

ξjc
2
j,g)µµ

>

≡ M1 +M2µ
> + µM>

2 + c2µµ>,

where we denote M1 =
∑

j∈J ξjNj,gN
>
j,g, M2 =

∑
j∈J ξjcj,gNj,g, and c2 =

∑
j∈J ξjc

2
j,g. For

notation ease, we suppress the dependence of (M1,M2, c) on g. Then, we have

M1 +M2µ
> + µM>

2 + c2µµ> = M1 −
M2M

>
2

c2 +

(
M2

c
+ cµ

)(
M2

c
+ cµ

)>
.

Note for any dr × 1 vector u, by the Cauchy-Schwarz inequality,

u>
(
M1 −

M2M
>
2

c2

)
u =

∑
j∈J

ξj(u
>Nj,g)

2 −

(∑
j∈J ξju

>Nj,gcj,g

)2∑
j∈J ξjc

2
j,g

≥ 0,

where the equal sign holds if and only if there exist (u, g) ∈ <dr ×Gs such that

u>N1,g

c1,g

= · · · = u>Nq,g

cq,g
,

which has probability zero if q > dr. Therefore, the matrix M ≡M1 − M2M>2
c2

is invertible with

probability one. Specifically, denote M as M(g) to highlight its dependence on g. We have

supg∈Gs
(λmin(M(g)))−1 = Op(1). In addition, denote M2

c
+ cµ as V, which is a dr × 1 vector.

Then, we have[∑
j∈J

ξj(Nj,g + cj,gµ)(Nj,g + cj,gµ)>

]−1

= [M + VV>]−1 = M−1 −M−1V(1 + V>M−1V)−1V>M−1,

where the second equality is due to the Sherman Morrison Woodbury formula.

Next, we note that

N0,g + c0,gµ = N0,g + c0,g

(
V
c
− M2

c2

)
≡M0 +

c0,g

c
V,

where M0 = N0,g − c0,gM2

c2
= N0,g −

c0,g(
∑
j∈J ξjcj,gNj,g)∑
j∈J ξjc

2
j,g

. With these notations, we have

(N0,g + c0,gµ)>

[∑
j∈J

ξj(Nj,g + cj,gµ)(Nj,g + cj,gµ)>

]−1

(N0,g + c0,gµ)

=
(
M0 +

c0,g

c
V
)>

(M−1 −M−1V(1 + V>M−1V)−1V>M−1)
(
M0 +

c0,g

c
V
)

≤ 2M>0 (M−1 −M−1V(1 + V>M−1V)−1V>M−1)M0

9



+
2c2

0,g

c2 V>(M−1 −M−1V(1 + V>M−1V)−1V>M−1)V

≤ 2M>0 M−1M0 +
2c2

0,g

c2

V>M−1V
1 + V>M−1V

≤ 2M>0 M−1M0 +
2c2

0,g

c2

≤ 2(λmin(M(g)))−1

∥∥∥∥∥N0,g −
c0,g(

∑
j∈J ξjcj,qNj,g)∑
j∈J ξjc

2
j,g

∥∥∥∥∥
2

+
2c2

0,g∑
j∈J ξjc

2
j,g

≡ C(g),

where the first inequality is due to the fact that (u+ v)>A(u+ v) ≤ 2(u>Au+ v>Av) for some

dr×dr positive semidefinite matrix A and u, v ∈ <dr , the second inequality holds due to the fact

that M−1V(1 + V>M−1V)−1V>M−1 is positive semidefinite, the third inequality holds because

V>M−1V is nonnegative scalar, and the last inequality holds by substituting in the expressions

for M0 and c and denoting M as M(g).

Then, we have

max
g∈Gs

TCR,∞(g) ≤ max
g∈Gs

C(g). (64)

Combining (62) and (64), we have, as ||µ||2 →∞,

lim inf
n→∞

P{TCR,n > ĉCR,n(1− α)} ≥ P
{
TCR,∞(ιq) > (TCR,∞)(k∗)

}
≥ P

{
TCR,∞(ιq) > max

g∈Gs

TCR,∞(g)

}
≥ P

{
c||µ||22 −Op(1) > max

g∈Gs

C(g)

}
→ 1,

where the last convergence holds because maxg∈Gs C(g) = Op(1) and does not depend on µ. �

S.D Proof of Theorem 2.3

The proof for the ARn-based wild bootstrap test follows similar arguments as those in Theorem

2.1, and thus we keep exposition more concise. Let S ≡ ⊗j∈JRdz×Rdz×dz and write an element

s ∈ S by s = ({s1j : j ∈ J}, s2) where s1j ∈ Rdz for any j ∈ J . Define the function TAR: S→ R

to be given by

TAR(s) =

∥∥∥∥∑
j∈J

s1j

∥∥∥∥
s2

. (65)

Given this notation we can define the statistics Sn, Ŝn ∈ S as

Sn =


√
nj√
n

1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J, Âz

 , Ŝn =


√
nj√
n

1
√
nj

∑
i∈In,j

Z̃i,j ε̂
r
i,j : j ∈ J, Âz

 , (66)

where ε̂ri,j = yi,j −X>i,jβ0 −W>
i,j γ̄

r. Note that by the Frisch-Waugh-Lovell theorem,

ARn =

∥∥∥∥∑
j∈J

1√
n

∑
i∈In,j

Z̃i,jεi,j

∥∥∥∥
Âz

= TAR(Sn). (67)
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Similarly, we have for any action g ∈ G that

AR∗n(g) =

∥∥∥∥∑
j∈J

1√
n

∑
i∈In,j

gjZ̃i,j ε̂
r
i,j

∥∥∥∥
Âz

= TAR(gŜn). (68)

Therefore, letting k∗ ≡ d|G|(1− α)e, we obtain from (67)-(68) that

I {ARn > ĉAR,n(1− α)} = I
{
TAR(Sn) > T

(k∗)
AR (Ŝn|G)

}
. (69)

Furthermore, similar to the arguments in the proof of Theorem 2.1, we have

TAR

(
−ιqŜn

)
= TAR

(
ιqŜn

)
=

∥∥∥∥∑
j∈J

1√
n

∑
i∈In,j

Z̃i,j
(
yi,j −X>i,jβ0 −W>

i,j γ̄
r
) ∥∥∥∥

Âz

=

∥∥∥∥∑
j∈J

1√
n

∑
i∈In,j

Z̃i,j
(
εi,j +W>

i,j(γ − γ̄r)
) ∥∥∥∥

Âz

= TAR (Sn) . (70)

(70) implies that if k∗ > |G|− 2, then I{TAR(Sn) > T
(k∗)
AR (Ŝn|G)} = 0, and this gives the upper

bound in Theorem 2.3. We therefore assume that k∗ ≤ |G| − 2, in which case

lim sup
n→∞

P{TAR(Sn) > T
(k∗)
AR (Ŝn|G)} = lim sup

n→∞
P{TAR(Sn) > T

(k∗)
AR (Ŝn|G \ {±ιq})}

≤ lim sup
n→∞

P{TAR(Sn) ≥ T
(k∗)
AR (Ŝn|G \ {±ιq})}. (71)

Then, to examine the right hand side of (71), first note that by Assumption 2(i) and the

continuous mapping theorem we have
√
nj√
n

1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J, Âz

 d−−→
{√

ξjZj : j ∈ J,Az
}
≡ S, (72)

where ξj > 0 for all j ∈ J by Assumption 2(ii). Furthermore, by Assumptions 1(i), 2(iii)-(iv)

and βn = β0, we have for every g ∈ G,

TAR(gŜn) = TAR(gSn) + oP (1). (73)

We thus obtain from results in (72)-(73) and the continuous mapping theorem that(
TAR(Sn),

{
TAR(gŜn) : g ∈ G

})
d−−→ (TAR(S), {TAR(gS) : g ∈ G}) . (74)

Then, the upper and lower bounds follow by applying similar arguments as those for Theorem

2.1. The proof for the ARCR,n and ARR,n bootstrap tests follows by using similar arguments

as those for ARn and the proof of Theorem 3.3 in Canay et al. (2021), and is thus omitted. �
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S.E Proof of Theorem 3.1

Let

Ω̃(τ) =
[
J >θ,β(τ)J −1

θ,θ (τ)Aφ(τ)J −1
θ,θ (τ)Jθ,β(τ)

]−1 J >θ,β(τ)J −1
θ,θ (τ)Aφ(τ)J −1

θ,θ (τ) (75)

Because Jπ,π(τ) is a block matrix, we have

J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)Jπ,β(τ) = J >θ,β(τ)J −1
θ,θ (τ)Aφ(τ)J −1

θ,θ (τ)Jθ,β(τ)

and

J θ(τ)fτ (Di,j, βn(τ), γn(τ), 0) = J −1
θ,θ (τ)f̃τ (Di,j, βn(τ), γn(τ), 0).

Therefore, by Lemma S.K.2, we have

√
n
(
β̂(τ)− βn(τ)

)
= Ω̃(τ)

[∑
j∈J

√
ξj
√
nj(Pn,j − Pn,j)f̃τ (Di,j, βn(τ), γn(τ), 0)

]
+ op(1),

where the op(1) term holds uniformly over τ ∈ Υ.

Then we have

√
n(λ>β (τ)β̂(τ)− λ0(τ)) = λ>β (τ)

√
n
(
β̂(τ)− βn(τ)

)
+ µ(τ)

= λ>β (τ)Ω̃(τ)

[∑
j∈J

√
ξjZj(τ)

]
+ µ(τ) + op(1),

where the op(1) term holds uniformly over τ ∈ Υ.

By Lemma S.K.4, we have

√
nλ>β (τ)(β̂∗g(τ)− β̂(τ))

= λ>β (τ)Ω̃(τ)
√
n

∑
j∈J

gjξj
nj

∑
i∈In,j

f̃τ (Di,j, βn(τ), γn(τ), 0)


− λ>β (τ)

∑
j∈J

Ω(τ)ξjgjJπ,β,j(τ)
√
n(β̂r(τ)− βn(τ)) + op(1)

= λ>β (τ)Ω̃(τ)
√
n

∑
j∈J

gjξj
nj

∑
i∈In,j

f̃τ (Di,j, βn(τ), γn(τ), 0)

+ a∗g(τ)µ(τ) + op(1)

where op(1) term holds uniformly over τ ∈ Υ, a∗g(τ) =
∑

j∈J ξjgjaj(τ), and the last equality

holds because

λ>β (τ)
∑
j∈J

Ω(τ)ξjgjJπ,β,j(τ)
√
n(β̂r(τ)− βn(τ))

= λ>β (τ)
∑
j∈J

Ω̃(τ)ξjgjJθ,β,j(τ)
√
n(β̂r(τ)− βn(τ))
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= a∗g(τ)
√
nλ>β (τ)(β̂r(τ)− βn(τ)) = −a∗g(τ)µ(τ). (76)

Let TQR∞ (g) = supτ∈Υ

[
‖λ>β (τ)Ω̃(τ)

[∑
j∈J gj

√
ξjZj(τ)

]
+
∑

j∈J gjξjaj(τ)µ(τ)‖Ar(τ)

]
. Then,

we have, uniformly over τ ∈ Υ

{TQRn , {TQR∗n (g)}g∈G} (TQR∞ (ιq), {TQR∞ (g)}g∈G),

where ιq is a q× 1 vector of ones and we use the fact that 1 =
∑

j∈J ξjaj(τ). In addition, under

H0, TQR∞ (g)
d
= TQR∞ (g′). Let k∗ = d|G|(1 − α)e. We order {TQR∗n (g)}g∈G and {TQR∞ (g)}g∈G in

ascending order:

(TQR∗n )(1) ≤ · · · ≤ (TQR∗n )(|G|) and (TQR∞ )(1) ≤ · · · ≤ (TQR∞ )|G|.

Then, we have

ĉQRn (1− α)
p−→ (TQR∞ )(k∗)

and

lim sup
n→∞

P{TQRn > ĉQRn (1− α)} ≤ lim sup
n→∞

P{TQRn ≥ ĉQRn (1− α)}

≤ P
{
TQR∞ (ιq) ≥ (TQR∞ )(k∗)

}
≤ α +

1

2q−1
,

where the second inequality is due to Portmanteau’s theorem (see, e.g., (van der Vaart and

Wellner, 1996), Theorem 1.3.4(iii)), and the third inequality is due to the properties of ran-

domization tests (see, e.g., (Lehmann and Romano, 2006), Theorem 15.2.1) and the facts that

the distribution of TQR∞ (g) is invariant w.r.t. g, TQR∞ (g) = TQR∞ (−g), and TQR∞ (g) 6= TQR∞ (g′) if

g /∈ {g′,−g′}. Similarly, we have

lim inf
n→∞

P{TQRn > ĉQRn (1− α)} = lim inf
n→∞

P{TQRn > (TQR∗n )(k∗)} ≥ P
{
TQR∞ (ιq) > (TQR∞ )(k∗)

}
≥ α− 1

2q−1
.

To see the last inequality, we note that TQR∞ (g) = TQR∞ (−g), and TQR∞ (g) 6= TQR∞ (g′) if g /∈
{g′,−g′}. Therefore, ∑

g∈G

1{TQR∞ (g) ≤ (TQR∞ )(k∗)} ≤ k∗ + 1.

Then, with |G| = 2q, we have

|G|E1{TQR∞ (ιq) > (TQR∞ )(k∗)} = E
∑
g∈G

1{TQR∞ (g) > (TQR∞ )(k∗)}

= |G| − E
∑
g∈G

1{TQR∞ (g) ≤ (TQR∞ )(k∗)} ≥ |G| − (k∗ + 1)

≥ b|G|αc − 1 ≥ |G|α− 2,
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where the first equality holds because TQR∞ (ιq)
d
= TQR∞ (g) for g ∈ G.

Under H1,n, we still have

lim inf
n→∞

P{TQRn > ĉQRn (1− α)} ≥ P
{
TQR∞ (ιq) > (TQR∞ )(k∗)

}
.

Let Gs = G\Gw, where Gw = {g ∈ G : gj = gj′ ,∀j, j′ ∈ Js}. We aim to show that, as

infτ∈Υ ||µ(τ)|| → ∞,

P{TQR∞ (ιq) > max
g∈Gs

TQR∞ (g)} → 1. (77)

In addition, we note that |Gs| = |G| − 2q−qs+1 ≥ k∗. This implies as infτ∈Υ ||µ(τ)|| → ∞,

P{TQR∞ (ιq) > (TQR∞ )(k∗)} ≥ P{TQR∞ (ιq) > max
g∈Gs

TQR∞ (g)} → 1.

Therefore, it suffices to establish (77). Note TQR∞ (ιq) ≥ infτ∈Υ ||µ(τ)||Ar(τ) −Op(1) and

max
g∈Gs

TQR∞ (g) ≤ sup
τ∈Υ,g∈Gs

|
∑
j∈J

gjξjaj(τ)| sup
τ∈Υ
||µ(τ)||Ar(τ) +Op(1).

Because when g ∈ Gs, the signs of {gj}j∈Js cannot be the same. In addition, we have∑
j∈J ξjaj(τ) =

∑
j∈Js ξjaj(τ) = 1, and infτ∈Υ,j∈Js aj(τ) ≥ c > 0. These imply

max
g∈Gs,τ∈Υ

|
∑
j∈J

gjξjaj(τ)| ≤ 1− 2 min
j∈J

ξjc < 1.

Then, as infτ∈Υ ||µ(τ)||2 →∞, we have

inf
τ∈Υ
||µ(τ)||Ar(τ) − (1− 2 min

j∈J
ξj) sup

τ∈Υ
||µ(τ)||Ar(τ)

≥ ( inf
τ∈Υ

λmin(Ar(τ))− (1− 2 min
j∈J

ξjc) inf
τ∈Υ

λmin(Ar(τ))cµ) inf
τ∈Υ
||µ(τ)||2 →∞

This concludes the proof. �

S.F Proof of Theorem 3.2

Recall Ω̃(τ) defined in (75),

TQRCR,n = sup
τ∈Υ
||
√
n(λ>β (τ)β̂(τ)− λ0(τ))||Âr(τ)

and

TQR∗CR,n(g) = sup
τ∈Υ
||
√
n(λ>β (τ)(β̂∗g(τ)− β̂(τ)))||Âr,CR,g(τ).

Following the proof of Theorem 3.1, we have

√
n(λ>β (τ)β̂(τ)− λ0(τ)) = λ>β (τ)Ω̃(τ)

[∑
j∈J

√
ξjZj

]
+ µ(τ) + op(1)
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and

√
n(λ>β (τ)(β̂∗g(τ)− β̂(τ)))

= λ>β (τ)Ω̃(τ)

[∑
j∈J

gj
√
ξjZj(τ)

]
− λ>β (τ)

∑
j∈J

Ω(τ)ξjgjJπ,β,j(τ)
√
n(β̂r(τ)− βn(τ)) + op(1)

= λ>β (τ)Ω̃(τ)

[∑
j∈J

gj
√
ξjZj(τ)

]
+ a∗g(τ)µ(τ) + op(1),

where the op(1) terms in these two displays hold uniformly over τ ∈ Υ.

Next, we derive the limits of Â−1
r,CR(τ) and (Â∗r,CR,g)

−1(τ). Note

Â−1
r,CR(τ)

= λ>β (τ)Ω̂(τ)V̂ (τ, τ ′)Ω̂>(τ)λβ(τ)

=
∑
j∈J

ξjnjλ
>
β (τ)Ω̂(τ)

[
Pn,j f̂τ (Di,j, β̂(τ), γ̂(τ), 0)

] [
Pn,j f̂τ ′(Di,j, β̂(τ ′), γ̂(τ ′), 0)

]
Ω̂>(τ)λβ(τ).

By Lemma S.K.6, we have

√
njλ

>
β (τ)Ω̂(τ)

[
Pn,j f̂τ (Di,j, β̂(τ), γ̂(τ), 0)

]
= λ>β (τ)

[
Ω̃(τ)

√
njPn,j f̃τ (Di,j, βn(τ), γn(τ), 0)− aj(τ)Ω̃(τ)

√
njPnf̃τ (Di,j, βn(τ), γn(τ), 0)

]
+ op(1)

= λ>β (τ)Ω̃(τ)

Zj(τ)− aj(τ)
√
ξj
∑
j̃∈J

ξj̃Zj̃(τ)

+ op(1),

where the op(1) term holds uniformly over τ ∈ Υ. Because q > dr,

inf
τ∈Υ

λmin

λ>β (τ)Ω̃(τ)
∑

j∈J ξj

[
Zj(τ)− aj(τ)

√
ξj
∑

j̃∈J
√
ξ j̃Zj̃(τ)

]
×
[
Zj(τ)− aj(τ)

√
ξj
∑

j̃∈J
√
ξ j̃Zj̃(τ)

]>
Ω̃>(τ)λβ(τ)

 > 0

with probability one, we have

Âr,CR(τ) =

λ>β (τ)Ω̃(τ)
∑

j∈J ξj

[
Zj(τ)− aj(τ)

√
ξj
∑

j̃∈J
√
ξ j̃Zj̃(τ)

]
×
[
Zj(τ)− aj(τ)

√
ξj
∑

j̃∈J
√
ξ j̃Zj̃(τ)

]>
Ω̃>(τ)λβ(τ)

−1

+ op(1)

≡Ar,CR(τ) + op(1).

Similarly, we have

(Â∗r,CR,g)
−1(τ) = λ>β (τ)Ω̂(τ)V̂ ∗g (τ, τ ′)Ω̂>(τ)λβ(τ)

=
∑
j∈J

ξjnjλ
>
β (τ)Ω̂(τ)

[
Pn,jf

∗
τ,g(Di,j)

] [
Pn,jf

∗
τ,g(Di,j)

]>
Ω̂>(τ)λβ(τ).
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Furthermore, Lemma S.K.6 shows

√
njλ

>
β (τ)Ω̂(τ)

[
Pn,jf

∗
τ,g(Di,j)

]
=
√
njλ

>
β (τ)

[
gjΩ̃(τ)Pn,j f̃τ (Di,j, βn(τ), γn(τ), 0)− gjaj(τ)(β̂r(τ)− βn(τ))

− Ω̃(τ)aj(τ)
∑
j̃∈J

gj̃ξj̃Pn,j f̃τ (Di,j, βn(τ), γn(τ), 0) + aj(τ)a∗g(τ)(β̂r(τ)− βn(τ))

]
+ op(1)

= λ>β (τ)Ω̃(τ)

gjZj(τ)− aj(τ)
√
ξj
∑
j̃∈J

gj̃

√
ξj̃Zj̃(τ)

+
√
ξj(gj − a

∗
g(τ))aj(τ)µ(τ) + op(1),

where the op(1) term holds uniformly over τ ∈ Υ, a∗g(τ) =
∑

j∈J ξjgjaj(τ), and the second

equality holds because

−√njλ>β (τ)
(
gj − a∗g(τ)

)
aj(τ)(β̂r(τ)− βn(τ)) =

√
ξj(gj − a

∗
g(τ))aj(τ)µ(τ).

Then, as q > dr,

Â∗r,CR,g(τ) = Ar,CR,g(τ) + op(1),

where the op(1) term holds uniformly over τ ∈ Υ and

Ar,CR,g(τ)

=

∑j∈J ξj

{
λ>β (τ)Ω̃(τ)

[
gjZj(τ)− aj(τ)

√
ξj
∑

j̃∈J
√
ξ j̃gj̃Zj̃(τ)

]
+
√
ξj(gj − a∗g(τ))aj(τ)µ(τ)

}
×
{
λ>β (τ)Ω̃(τ)

[
gjZj(τ)− aj(τ)

√
ξj
∑

j̃∈J
√
ξ j̃gj̃Zj̃(τ)

]
+
√
ξj(gj − a∗g(τ))aj(τ)µ(τ)

}>
−1

.

Let

TQRCR,∞(g) = sup
τ∈Υ

∥∥∥∥∥λ>β (τ)Ω̃(τ)

[∑
j∈J

gj
√
ξjZj(τ) +

∑
j∈J

gjξjaj(τ)µ(τ)

]∥∥∥∥∥
Ar,CR,g(τ)

 .
Because a∗ιq(τ) = 1 and a∗−ιq(τ) = −1, we have,

{TQRCR,n, {T
QR∗
CR,n(g)}g∈G  {TQRCR,∞(ιq), {TQRCR,∞(g)}g∈G}.

In addition, because q > dr, under the null, TQRCR,∞(g)
d
= TQRCR,∞(g′) for any g, g′ ∈ G and

TQRCR,∞(g) = TQRCR,∞(g′) if and only if g ∈ {g′,−g′}. Then following the exact same argument in

the proof of Theorem 3.1, we have

α− 1

2q−1
≤ lim inf

n→∞
P{TQRCR,n > ĉQRCR,n(1− α)} ≤ lim sup

n→∞
P{TQRCR,n > ĉQRCR,n(1− α)} ≤ α +

1

2q−1
.

For the power analysis, we still have

lim inf
n→∞

P{TQRCR,n > ĉQRn } ≥ P
{
TQRCR,∞(ιq) > (TQRCR,∞)(k∗)

}
.
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In addition, we aim to show that, as infτ∈Υ ||µ(τ)|| → ∞, we have

P
{
TQRCR,∞(ιq) > max

g∈Gs

TQRCR,∞(g)

}
→ 1. (78)

Then, given |Gs| = |G|−2q−qs+1 and d|G|(1−α)e ≤ |G|−2q−qs+1, (78) implies, infτ∈Υ ||µ(τ)|| →
∞,

P
{
TQRCR,∞(ιq) > (TQRCR,∞)(k∗)

}
> P

{
TQRCR,∞(ιq) > max

g∈Gs

TQRCR,∞(g)

}
→ 1.

Therefore, it suffices to establish (78). Note that

TQRCR,∞(ιq) = sup
τ∈Υ

∥∥∥∥∥λ>β (τ)Ω̃(τ)

[∑
j∈J

√
ξjZj(τ)

]
+ µ(τ)

∥∥∥∥∥
Ar,CR,ιq (τ)

 ,
where

Ar,CR,ιq(τ) =

∑j∈J ξj

{
λ>β (τ)Ω̃(τ)

[
Zj(τ)− aj(τ)

√
ξj
∑

j̃∈J
√
ξ j̃Zj̃(τ)

]}
×
{
λ>β (τ)Ω̃(τ)

[
Zj(τ)− aj(τ)

√
ξj
∑

j̃∈J
√
ξ j̃Zj̃(τ)

]}>
−1

.

We see that Ar,CR,ιq(τ) is independent of µ. In addition, with probability one, we have

inf
τ∈Υ

λmin(Ω̃>(τ)λ>β (τ)Ar,CR,ιq(τ)λβ(τ)Ω̃(τ)) > 0.

Therefore, for any e > 0, we can find a constant c > 0 such that with probability greater than

1− e,

TQRCR,∞(ιq) ≥ c inf
τ∈Υ
||µ(τ)||2 −Op(1). (79)

On the other hand, for g ∈ Gs, we can write TQRCR,∞(g) as

TQRCR,∞(g) = sup
τ∈Υ

{
(N0,g(τ) + c0,g(τ)µ(τ))>

[∑
j∈J

ξj(Nj,g(τ) + cj,g(τ)µ(τ))(Nj,g(τ) + cj,g(τ)µ(τ))>

]−1

× (N0,g(τ) + c0,g(τ)µ(τ))

}
,

where

N0,g(τ) = λ>β (τ)Ω̃(τ)

[∑
j∈J

gj
√
ξjZj(τ)

]
,

Nj,g(τ) = λ>β (τ)Ω̃(τ)

gjZj(τ)− aj(τ)
√
ξj
∑
j̃∈J

√
ξ j̃gj̃Zj̃(τ)

 , j ∈ J,

c0,g(τ) = a∗g(τ), and cj,g(τ) =
√
ξj(gj − a

∗
g(τ))aj(τ), j ∈ J.

We claim that for g ∈ Gs, cj,g(τ) 6= 0 for some j ∈ Js. To see this claim, suppose it does not

17



hold. Then, it implies gj = a∗g(τ) for all j ∈ Js, i.e., for all j ∈ Js, gj shares the same sign. This

contradicts with the definition of Gs. This claim and the fact that infτ∈Υ,j∈Js |aj(τ)| ≥ c0 > 0

further imply that

inf
τ∈Υ,g∈Gs

∑
j∈J

ξjc
2
j,g(τ)

≥ (c2
0 min
j∈J

ξ2
j ) max((1− a∗g(τ))2, (1 + a∗g(τ))2)

≥
c2

0 minj∈J ξ
2
j

2

[
(1− a∗g(τ))2 + (1 + a∗g(τ))2

]
≥ c2

0 min
j∈J

ξ2
j > 0.

In addition, we have∑
j∈J

ξj(Nj,g(τ) + cj,g(τ)µ(τ))(Nj,g(τ) + cj,g(τ)µ(τ))>

=
∑
j∈J

ξjNj,g(τ)N>j,g(τ) +
∑
j∈J

ξjcj,g(τ)Nj,g(τ)µ(τ)>

+
∑
j∈J

ξjcj,g(τ)µ(τ)Nj,g(τ)> + (
∑
j∈J

ξjc
2
j,g(τ))µ(τ)µ(τ)>

≡M1 +M2µ(τ)> + µ(τ)M>
2 + c2µ(τ)µ(τ)>,

where we denote

M1 =
∑
j∈J

ξjNj,g(τ)N>j,g(τ), M2 =
∑
j∈J

ξjcj,g(τ)Nj,g(τ), and c2 =
∑
j∈J

ξjc
2
j,g(τ) > 0.

For notation ease, we suppress the dependence of (M1,M2, c) on (g, τ). Then, we have

M1 +M2µ(τ)> + µ(τ)M>
2 + c2µ(τ)µ(τ)> = M1 −

M2M
>
2

c2 +

(
M2

c
+ cµ(τ)

)(
M2

c
+ cµ(τ)

)>
.

Note for any dr × 1 vector u, by the Cauchy-Schwarz inequality,

u>
(
M1 −

M2M
>
2

c2

)
u =

∑
j∈J

ξj(u
>Nj,g(τ))2 −

(∑
j∈J ξju

>Nj,g(τ)cj,g(τ)
)2∑

j∈J ξjc
2
j,g(τ)

≥ 0,

where the equal sign holds if and only if there exist (u, τ, g) ∈ <dr ×Υ× (Gs)) such that

u>N1,g(τ)

c1,g(τ)
= · · · = u>Nq,g(τ)

cq,g(τ)
,

which has probability zero if q > dr. Therefore, the matrix M ≡M1 − M2M>2
c2

is invertible with

probability one. Specifically, denote M as Mg(τ) to highlight its dependence on (g, τ). We have

sup(g,τ)∈Gs×Υ(λmin(M(g, τ)))−1 = Op(1). In addition, denote M2

c
+ cµ(τ) as V, which is a dr × 1
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vector. Then, we have[∑
j∈J

ξj(Nj,g(τ) + cj,g(τ)µ(τ))(Nj,g(τ) + cj,g(τ)µ(τ))>

]−1

= [M + VV>]−1

= M−1 −M−1V(1 + V>M−1V)−1V>M−1,

where the second equality is due to the Sherman-Morrison-Woodbury formula.

Next, we note that

N0,g(τ) + c0,g(τ)µ(τ) = N0,g(τ) + c0,g(τ)

(
V
c
− M2

c2

)
≡M0 +

c0,g(τ)

c
V,

where

M0 = N0,g(τ)− c0,g(τ)M2

c2 = N0,g(τ)−
c0,g(τ)(

∑
j∈J ξjcj,q(τ)Nj,g(τ))∑
j∈J ξjc

2
j,g(τ)

.

With these notations, we have

(N0,g(τ) + c0,g(τ)µ(τ))>

[∑
j∈J

ξj(Nj,g(τ) + cj,g(τ)µ(τ))(Nj,g(τ) + cj,g(τ)µ(τ))>

]−1

× (N0,g(τ) + c0,g(τ)µ(τ))

=

(
M0 +

c0,g(τ)

c
V
)>

(M−1 −M−1V(1 + V>M−1V)−1V>M−1)

(
M0 +

c0,g(τ)

c
V
)

≤ 2M>0 (M−1 −M−1V(1 + V>M−1V)−1V>M−1)M0

+
2c2

0,g(τ)

c2 V>(M−1 −M−1V(1 + V>M−1V)−1V>M−1)V

≤ 2M>0 M−1M0 +
2c2

0,g(τ)

c2

V>M−1V
1 + V>M−1V

≤ 2M>0 M−1M0 +
2c2

0,g(τ)

c2

≤ 2(λmin(M(g, τ)))−1

∥∥∥∥∥N0,g(τ)−
c0,g(τ)(

∑
j∈J ξjcj,q(τ)Nj,g(τ))∑
j∈J ξjc

2
j,g(τ)

∥∥∥∥∥
2

+
2c2

0,g(τ)∑
j∈J ξjc

2
j,g(τ)

≡ C(g, τ),

where the first inequality is due to the fact that (u + v)>A(u + v) ≤ 2(u>Au + v>Av) for

some dr × dr positive semidefinite matrix A and u, v ∈ <dr , the second inequality holds due to

the fact that M−1V(1 + V>M−1V)−1V>M−1 is positive semidefinite, the third inequality holds

because V>M−1V is a nonnegative scalar, and the last inequality holds by substituting in the
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expressions for M0 and c and denoting M as M(g, τ). By taking the supremum over τ ∈ Υ first

followed by g ∈ Gs, we have

max
g∈Gs

TQRCR,∞(g) ≤ sup
(g,τ)∈Gs×Υ

C(g, τ) = Op(1). (80)

Combining (79) and (80), we have, as infτ∈Υ ||µ(τ)|| → ∞,

P
{
TQRCR,∞(ιq) > max

g∈Gs

TQRCR,∞(g)

}
≥ P

{
c inf
τ∈Υ
||µ(τ)||2 −Op(1) > sup

(g,τ)∈Gs×Υ

C(g, τ)

}
− e→ 1− e.

As e is arbitrary, we have established (78). This concludes the proof. �

S.G Proof of Theorem 3.3

We focus on the case when Assumption 12(ii) holds. The proof for the case with Assumption

12(i) is similar but simpler, and thus, is omitted for brevity. We divide the proof into three

steps. In the first step, we derive the limit distribution of ARQR
CR,n. In the second step, we derive

the limit distribution of ARQR∗
CR,n(g). In the third step, we prove the desired result. Throughout

the proof, we impose the null that βn(τ) = β0(τ) for τ ∈ Υ.

Step 1. By Lemma S.K.1 with bn(τ) = βn(τ) = β0(τ), we have

√
nθ̂(β0(τ), τ) = ω [Γ1(β0(τ), τ)]−1√n [In(τ) + IIn(β0(τ), τ) + op(1)− Γ2(β0(τ), τ)(β0(τ)− βn(τ))]

= ω [Jπ,π(τ)]−1√nIn(τ) + op(1), (81)

where the op(1) terms hold uniformly over τ ∈ Υ and

In(τ) = (Pn − Pn)fτ (D, β0(τ), γn(τ), 0).

In addition, note

Â−1
CR(τ) =

∑
j∈J

ξjnjωĴ −1
π,π(τ)

[
Pn,j f̂τ (Di,j, β0(τ), γ̂(β0(τ), τ))

]
×
[
Pn,j f̂τ (Di,j, β0(τ), γ̂(β0(τ), τ))

]>
Ĵ −1
π,π(τ)ω>

Furthermore, we have

Pn,j f̂τ (Di,j, β0(τ), γ̂(β0(τ), τ), 0)

= (Pn,j − Pn,j)f̂τ (Di,j, β0(τ), γ̂(β0(τ), τ), 0) + Pn,j f̂τ (Di,j, β0(τ), γ̂(β0(τ), τ), 0)

= (Pn,j − Pn,j)fτ (Di,j, β0(τ), γn(τ), τ), 0) + Pn,j f̂τ (Di,j, β0(τ), γ̂(β0(τ), τ), 0) + op(n
−1/2)
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= Pn,jfτ (Di,j, β0(τ), γn(τ), 0)− Jπ,π,j(τ)

(
γ̂(β0(τ), τ)− γn(τ)

0

)
+ op(n

−1/2)

= Op(n
−1/2),

where both the Op(n
−1/2) and op(n

−1/2) terms hold uniformly over τ ∈ Υ, the second equality

is due to Assumption 6(ii), the third equality is due to Assumption 6(iii) and the fact that

sup
τ∈Υ
||γ̂(β0(τ), τ)− γn(τ)||2 = Op(n

−1/2)

as shown in Lemma S.K.3, and the last equality is due to Lemma S.K.3.

Recall ω = (0dφ×dw , Idφ×dφ). Then, by Lemma S.K.1, we have

ωĴ −1
π,π(τ)

[
Pn,j f̂τ (Di,j, β0(τ), γ̂(β0(τ), τ))

]
= ωJ −1

π,π(τ)

[
Pn,jfτ (Di,j, β0(τ), γn(τ), 0)− Jπ,π,j(τ)

(
γ̂(β0(τ), τ)− γn(τ)

0

)]
+ op(n

−1/2)

= J −1
θ,θ (τ)

[
Pn,j f̃τ (Di,j, β0(τ), γn(τ), 0)

]
+ op(n

−1/2),

where the op(n
−1/2) terms hold uniformly over τ ∈ Υ and the second inequality holds because

under Assumption 7(i),

ωĴ −1
π,π(τ)Jπ,π,j(τ)

(
γ̂(βn(τ), τ)− γn(τ)

0

)
= 0.

Then we have

√
nθ̂(β0(τ), τ) = J −1

θ,θ (τ)
∑
j∈J

√
ξjZj(τ) + op(1), (82)

√
njωĴ −1

π,π(τ)
[
Pn,j f̂τ (Di,j, βn(τ), γ̂(βn(τ), τ))

]
= J −1

θ,θ (τ)Zj(τ) + op(1),

and

Â−1
CR(τ) =

∑
j∈J

ξjJ −1
θ,θ (τ)Zj(τ)Z>j (τ)J −1

θ,θ (τ) + op(1),

where the op(1) term hold uniformly over τ ∈ Υ. When q > dφ,
∑

j∈J ξjJ
−1
θ,θ (τ)Zj(τ)Z>j (τ)J −1

θ,θ (τ)

is invertible with probability one, we have

ÂCR(τ) =

[∑
j∈J

ξjJ −1
θ,θ (τ)Zj(τ)Z>j (τ)J −1

θ,θ (τ)

]−1

+ op(1), (83)

where the op(1) term hold uniformly over τ ∈ Υ. Then, combining (81), (82), and (83), we
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have

n(ARQR
CR,n)2

= sup
τ∈Υ

[∑
j∈J

√
ξjZ

>
j (τ)

]
J −1
θ,θ (τ)

[∑
j∈J

ξjJ −1
θ,θ (τ)Zj(τ)Z>j (τ)J −1

θ,θ (τ)

]−1

J −1
θ,θ (τ)

[∑
j∈J

√
ξjZj(τ)

]
+ op(1).

Step 2. Next, we consider the limit distribution of the bootstrap test statistic. By the

sub-gradient condition of (34), we have

op(1/
√
n) = Pnf̂τ (Di,j, β0(τ), γ̃∗g(τ), θ̃∗g(τ)) +

1

n

∑
j∈J

gj
∑
i∈In,j

f̂τ (Di,j, β0(τ), γ̂(β0(τ), τ), 0), (84)

where the op(1/
√
n) term on the LHS of the above display holds uniformly over τ ∈ Υ. In

addition,

Pnf̂τ (Di,j, β0(τ), γ̃∗g(τ), θ̃∗g(τ))

= In(τ) + IIn,g(β0(τ), τ)− Γ1,g(β0(τ), τ)

(
γ̃∗g(τ)− γn(τ)

θ̃∗g(τ)

)
, (85)

where

In(τ) = (Pn − Pn)fτ (Di,j, β0(τ), γn(τ), 0),

IIn,g(β0(τ), τ) =
∑
j∈J

ξj(Pn,j − Pn,j)
(
f̂τ (Di,j, β0(τ), γ̃∗g(τ), θ̃∗g(τ))− fτ (Di,j, β0(τ), γn(τ), 0)

)

Γ1,g(β0(τ), τ) =
∑
j∈J

ξj
nj

∑
i∈In,j

Efεi,j(τ)(δ̂i,j,g(τ)|Wi,j, Zi,j)Ψ̂i,j(τ)Ψ̂>i,j(τ),

and

δ̂i,j,g(τ) ∈ (0,W>
i,j(γ̃

∗
g(τ)− γn(τ)) + Φ̂>i,j(τ)θ̃∗g(τ)).

Following the same argument in Step 1 of the proof of Lemma S.K.4, we have

sup
τ∈Υ

(
||γ̃∗g(τ)− γn(τ)||2 + ||θ̃∗g(τ)||2

)
= op(1),

sup
τ∈Υ

√
n||IIn,g(β0(τ), τ)||2 = op(1),

and

sup
τ∈Υ,j∈J

∥∥∥∥∥∥ 1

nj

∑
i∈In,j

Efεi,j(τ)(δ̂i,j,g(τ)|Wi,j, Zi,j)Ψ̂i,j(τ)Ψ̂>i,j(τ)− Jπ,π(τ)

∥∥∥∥∥∥
op

= op(1).
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Note here, to derive the above three displays, we do not need to impose Assumption 8(i)–8(iii)

as did in Lemma S.K.4 because β0(τ) = βn(τ) under the null. In addition, we have

1

n

∑
j∈J

gj
∑
i∈In,j

f̂τ (Di,j, β0(τ), γ̂(β0(τ), τ), 0)

=
1

n

∑
j∈J

gj
∑
i∈In,j

(
f̂τ (Di,j, β0(τ), γ̂(β0(τ), τ), 0)− fτ (Di,j, β0(τ), γn(τ), 0)

)
+

1

n

∑
j∈J

gj
∑
i∈In,j

fτ (Di,j, β0(τ), γn(τ), 0)

=
1

n

∑
j∈J

gj

∑
i∈In,j

fτ (Di,j, β0(τ), γn(τ), 0)− Jπ,π,j(τ)

(
γ̂(β0(τ), τ)− γn(τ)

0

)+ op(n
−1/2).

where the op(n
−1/2) term holds uniformly over τ ∈ Υ. Therefore, we have(

γ̃∗g(τ)− γn(τ)

θ̃∗g(τ)

)

= J −1
π,π(τ)

In(τ) +
1

n

∑
j∈J

gj

∑
i∈In,j

fτ (Di,j, βn(τ), γn(τ), 0)− Jπ,π,j(τ)

(
γ̂(β0(τ), τ)− γn(τ)

0

)
+ op(n

−1/2)

and

√
nθ̃∗g(τ) = ωJ −1

π,π(τ)

 1√
n

∑
j∈J

(1 + gj)
∑
i∈In,j

fτ (Di,j, βn(τ), γn(τ), 0)

+ op(1),

where the op(1) term holds uniformly over τ ∈ Υ and the second display holds because under

Assumption 7(i), we have

ωJ −1
π,π(τ)Jπ,π,j(τ)

(
γ̂(β0(τ), τ)− γn(τ)

0

)
= 0.

Therefore, we have

√
n(θ̃∗g(τ)− θ̂(β0(τ), τ)) = ωJ −1

π,π(τ)

 1√
n

∑
j∈J

gj
∑
i∈In,j

fτ (Di,j, βn(τ), γn(τ), 0)

+ op(1)

= J −1
θ,θ (τ)

 1√
n

∑
j∈J

gj
∑
i∈In,j

f̃τ (Di,j, βn(τ), γn(τ), 0)

+ op(1),

where the op(1) term holds uniformly over τ ∈ Υ.
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Step 3. We further define

ARQR
CR,∞(g)

= sup
τ∈Υ

∑
j∈J

√
ξjgjZj(τ)J −1

θ,θ (τ)

[∑
j∈J

ξjJ −1
θ,θ (τ)gjZj(τ)gjZ>j (τ)J −1

θ,θ (τ)

]−1

J −1
θ,θ (τ)

[∑
j∈J

√
ξjgjZj(τ)

]
1/2

.

Then, we have, under the null,

(
√
nARQR

CR,n, {
√
nARQR∗

CR,n(g)}g∈G) (ARQR
W,∞(ιq), {ARQR

CR,∞(g)}g∈G).

The distribution of ARQR
CR,∞(g) is invariant in g, and ARQR

CR,∞(g) = ARQR
CR,∞(g′) if and only if

g ∈ {g′,−g′}. Then, by the same argument in the proofs of Theorem 3.1, we have

α− 1

2q−1
≤ lim inf

n→∞
P{ARQR

CR,n > ĉQRAR,CR,n(1− α)} ≤ lim sup
n→∞

P{ARQR
CR,n > ĉQRAR,CR,n(1− α)} ≤ α +

1

2q−1
. �

S.H Proof of Propositions A.1 and A.2

For Proposition A.1, we have

sup
∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jΦ̂

>
i,j(τ)

∥∥∥
op

≤ sup
∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jΦ̂

>
i,j(τ)− J

γ,θ,j
(τ)
∥∥∥
op

+ sup
∥∥[Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jW

>
i,j(τ)− Jγ,γ,j(τ)

]
χ̂(τ)

∥∥
op

+ sup
τ∈Υ
‖Jγ,γ,j(τ)(χ̂(τ)− χ(τ))‖op + sup

τ∈Υ
||Jγ,γ,j(τ)χ(τ)− J

γ,θ,j
(τ)||op

where the suprema in the first three lines are taken over {j ∈ J, ||v||2 ≤ δ, τ ∈ Υ} for v =

(v>b , v
>
r , v

>
t )>. We note that, based on Assumption 13, by letting n→∞ followed by δ → 0,

sup
∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jψ̂

>
i,j

(τ)− J
γ,θ,j

(τ)
∥∥∥
op

p−→ 0 and

sup
∥∥[Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jW

>
i,j(τ)− Jγ,γ,j(τ)

]
χ̂(τ)

∥∥
op

p−→ 0.

In addition, Assumption 13 implies supτ∈Υ ‖χ̂(τ)− χ(τ)‖ = op(1). Therefore, in order to show

the result, it suffices to show

sup
τ∈Υ
||J

γ,θ,j
(τ)− Jγ,γ,j(τ)χ(τ)||op = o(1).

We note that

sup
τ∈Υ
||J

γ,θ,j
(τ)− Jγ,γ,j(τ)χ(τ)||op
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= sup
τ∈Υ
||Jγ,γ,j(τ)(χn,j(τ)− χ(τ))||op

= sup
τ∈Υ
|| lim
n→∞

Pn,jfεi,j(τ)(0|Wi,j, Zi,j)Wi,jW
>
i,j(χn,j(τ)− χ(τ))||op

≤ lim sup
n→∞

sup
τ∈Υ

[
Pn,j||fεi,j(τ)(0|Wi,j, Zi,j)Wi,j||22Pn,j||W>

i,j(χn,j(τ)− χ(τ))||2op
]1/2

= o(1).

For Proposition A.2, we have

sup
∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jΦ̂

>
i,j(τ)

∥∥∥
op

≤ sup
∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jΦ̂

>
i,j(τ)− J

γ,θ,j
(τ)
∥∥∥
op

+ sup
∥∥[Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jW

>
i,j(τ)− Jγ,γ,j(τ)

]
χ̂j(τ)

∥∥
op

+ sup
τ∈Υ
||Ĵγ,γ,j(τ)χ̂j(τ)− Ĵ

γ,θ,j
(τ)||op + sup

τ∈Υ
||J

γ,θ,j
(τ)− Ĵ

γ,θ,j
(τ)||op

+ sup
τ∈Υ

∥∥∥[Jγ,γ,j(τ)− Ĵγ,γ,j(τ)
]
χ̂j(τ)

∥∥∥
op

where the suprema in the first three lines are taken over {j ∈ J, ||v||2 ≤ δ, τ ∈ Υ} for v =

(v>b , v
>
r , v

>
t )>. We note that, by Assumption 14, by letting n→∞ followed by δ → 0,

sup
∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jψ̂

>
i,j

(τ)− J
γ,θ,j

(τ)
∥∥∥
op

p−→ 0 and

sup
∥∥[Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)V

2
i,j(τ)Wi,jW

>
i,j(τ)− Jγ,γ,j(τ)

]
χ̂j(τ)

∥∥
op

p−→ 0.

Assumption 14 also implies

sup
τ∈Υ
||J

γ,θ,j
(τ)− Ĵ

γ,θ,j
(τ)||op + sup

τ∈Υ

∥∥∥Jγ,γ,j(τ)− Ĵγ,γ,j(τ)
∥∥∥
op

= op(1).

Therefore, in order to show the result, it suffices to show

sup
τ∈Υ
||χ̂j(τ)||op = Op(1) (86)

and

Ĵγ,γ,j(τ)χ̂j(τ)− Ĵ
γ,θ,j

(τ) = 0. (87)

To see (86), we note that Assumption 14(ii) implies the generalized inverse is continuous at

Jγ,γ,j(τ) uniformly over τ ∈ Υ. Therefore, by the continuous mapping theorem, we have

||Ĵ −γ,γ,j(τ)− J −γ,γ,j(τ)||op = op(1),

and thus

sup
τ∈Υ
||χ̂j(τ)||op ≤ sup

τ∈Υ
||χ̂j(τ)− Jγ,γ,j(τ)J −γ,γ,j(τ)J −γ,γ,j(τ)J

γ,θ,j
(τ)||op
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+ sup
τ∈Υ
||Jγ,γ,j(τ)J −γ,γ,j(τ)J −γ,γ,j(τ)J

γ,θ,j
(τ)||op = Op(1).

To show (87), we define Wj = (W1,jK
1/2
(
ε̂i,j
h

)
h−1/2, · · · ,Wnj ,jK

1/2
(
ε̂nj,j

h

)
h−1/2)> and

Ij = (Φ̂1,j(τ)K1/2
(
ε̂i,j
h

)
h−1/2, · · · , Φ̂nj ,j(τ)K1/2

(
ε̂nj,j

h

)
h−1/2)>. Then, we have

Ĵγ,γ,j(τ) =
1

nj
X>j Xj and Ĵγ,θ,j(τ) =

1

nj
X>j Ij.

Define the singular value decomposition of Xj as Xj = U>j ΣjVj, where Uj and Vj are nj × nj
and dw×dw orthonormal matrices and Σj is a nj×dw matrix with the first R diagonal elements

being positive and all the rest entries in the matrix being zero. Then, we have

Ĵγ,γ,j(τ)χ̂j(τ) =
1

nj
X T
j XjX T

j Xj
(
X T
j Xj

)− (X T
j Xj

)−X>j Ij
=

1

nj
V >j (Σ>j Σj)(Σ

>
j Σj)(Σ

>
j Σj)

−(Σ>j Σj)
−Σ>j UjIj

=
1

nj
V >j

(
IR 0R×(dw−R)

0(dw−R)×R 0(dw−R)×(dw−R)

)
Σ>j UjIj

=
1

nj
V >j Σ>j UjIj

= Ĵγ,θ,j(τ),

where we use the fact that (
IR 0R×(dw−R)

0(dw−R)×R 0(dw−R)×(dw−R)

)
Σ>j = Σ>j .

This concludes the proof. �

S.I Proof of Theorems B.1 and B.2

Define Υ = {τ1, τ2}. Then,

√
n
(
λ>1 β̂(τ1) + λ>2 β̂(τ2)− λ0

)
= λ>1

√
n
(
β̂(τ1)− βn(τ1)

)
+ λ>2

√
n
(
β̂(τ2)− βn(τ2)

)
+ µ

= λ>1 Ω̃(τ1)

[∑
j∈J

√
ξj
√
nj(Pn,j − Pn,j)f̃τ1(Di,j, βn(τ1), γ(τ1), 0)

]

+ λ>2 Ω̃(τ2)

[∑
j∈J

√
ξj
√
nj(Pn,j − Pn,j)f̃τ2(D, βn(τ2), γ(τ2), 0)

]
+ µ+ op(1)

=
∑
j∈J

√
ξj

[
λ>1 Ω̃(τ1)Zj(τ1) + λ>2 Ω̃(τ2)Zj(τ2)

]
+ µ+ op(1),
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where the op(1) term holds uniformly over τ ∈ Υ.

By Lemma S.K.4, we have

√
n
(
λ>1 (β̂∗g(τ1)− β̂(τ1)) + λ>2 (β̂∗g(τ2)− β̂(τ2))

)
= λ>1 Ω̃(τ1)

∑
j∈J

√
ξjgj
√
nj(Pn,j − Pn,j)f̃τ1(Di,j, βn(τ1), γ(τ1), 0)

+ λ>2 Ω̃(τ2)
∑
j∈J

√
ξjgj
√
nj(Pn,j − Pn,j)f̃τ2(D, βn(τ2), γ(τ2), 0)

− λ>1 Ω(τ1)
√
n
∑
j∈J

ξjgjJπ,β,j(τ1)(β̂r(τ1)− βn(τ1))

− λ>2 Ω(τ2)
√
n
∑
j∈J

ξjgjJπ,β,j(τ2)(β̂r(τ2)− βn(τ2)) + op(1)

= λ>1 Ω̃(τ1)
∑
j∈J

√
ξjgj
√
nj(Pn,j − Pn,j)f̃τ1(Di,j, βn(τ1), γ(τ1), 0) + a∗g(τ1)µ (88)

where the last equality holds because

λ>1 Ω(τ1)
√
n
∑
j∈J

ξjgjJπ,β,j(τ1)(β̂r(τ1)− βn(τ1)) + λ>2 Ω(τ2)
√
n
∑
j∈J

ξjgjJπ,β,j(τ2)(β̂r(τ2)− βn(τ2))

= λ>1 a
∗
g(τ1)
√
n(β̂r(τ1)− βn(τ1)) + λ>2 a

∗
g(τ2)
√
n(β̂r(τ2)− βn(τ2)) = −a∗g(τ1)µ. (89)

Let TQR2,∞(g) =
∥∥∥∑j∈J

√
ξjgj

[
λ>1 Ω̃(τ1)Zj(τ1) + λ>2 Ω̃(τ2)Zj(τ2) +

∑
j∈J ξjgjaj(τ1)µ

]∥∥∥
Ar

. We

have, (
TQR2,n , {T

QR∗
2,n (g)}g∈G

)
 
(
TQR2,∞(ι), {TQR2,∞(g)}g∈G

)
.

Then, following the same argument above, we have, under the null,

α− 1

2q−1
≤ lim inf

n→∞
P{TQR2,n > ĉQR2,n (1− α)} ≤ lim sup

n→∞
P{TQR2,n > ĉQR2,n (1− α)} ≤ α +

1

2q−1

and

lim
||µ||2→∞

lim inf
n→∞

P{TQR2,n > ĉQR2,n (1− α)} = 1.

The proof of Theorem B.2 is similar, and thus, is omitted for brevity. �

S.J Proof of Theorem C.1

The proof for the bootstrap LM test follows similar arguments as those for the bootstrap AR

tests. Let S ≡ ⊗j∈JRdz×dx×⊗j∈JRdz , and write an element s ∈ S by s = ({s1,j : j ∈ J}, {s2,j : j ∈ J}).
We identify any (g1, ..., gq) = g ∈ G = {−1, 1}q with an action on s ∈ S given by gs =
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({s1,j : j ∈ J}, {gjs2,j : j ∈ J}). We define the function TLM : S→ R to be given by

TLM(s) =

∥∥∥∥∥
D(s)>

(∑
j∈J

s2,js
>
2,j

)−1

D(s)

−1/2

D(s)>

(∑
j∈J

s2,js
>
2,j

)−1∑
j∈J

s2,j

∥∥∥∥∥
2

, (90)

for any s ∈ S such that
∑

j∈J s2,js
>
2,j and D(s)>

(∑
j∈J s2,js

>
2,j

)−1

D(s) are invertible and set

TLM(s) = 0 otherwise, where

D(s) = (D1(s), ..., Ddx(s)) ,

Dl(s) =
∑
j∈J

s1,j,l −

(∑
j∈J

s1,j,ls
>
2,j

)(∑
j∈J

s2,js
>
2,j

)−1∑
j∈J

s2,j, (91)

for s1,j = (s1,j,1, ..., s1,j,dx) and l = 1, ..., dx.

Furthermore, define the statistic Sn as

Sn =

 1

n

∑
i∈In,j

Z̃i,jX
>
i,j : j ∈ J

 ,

 1√
n

∑
i∈In,j

Z̃i,jεi,j : j ∈ J


 , (92)

and define the statistic Ŝn by replacing εi,j in Sn with ε̂ri,j = yi,j − X>i,jβ0 −W>
i,j γ̄

r. Then, by

Assumptions 1(ii), 2(i)-(ii), and the continuous mapping theorem we have

Sn
d−−→
({
ξjQZ̃X,j : j ∈ J

}
,
{√

ξjZε,j : j ∈ J
})
≡ S, (93)

where ξj > 0 for all j ∈ J . Furthermore, by Assumptions 1(i), Assumptions 2(iii)-(iv), and

βn = β0, we have for every g ∈ G,

TLM(gŜn) = TLM(gSn) + oP (1). (94)

We then obtain from (93)-(94) and the continous mapping theorem that(
TLM(Sn), {TLM(gŜn) : g ∈ G}

)
d−−→ (TLM(S), {TLM(gS) : g ∈ G}) . (95)

Then, the upper and lower bounds follow by using similar arguments as those for Theorem 2.1.

To prove the result for the CQLR test, we note that

LRn =
1

2

{
ARCR,n − rkn +

√
(ARCR,n − rkn)2 + 4 · LMn · rkn

}
=

1

2

{
ARCR,n − rkn + |ARCR,n − rkn|

√
1 +

4 · LMn · rkn
(ARCR,n − rkn)2

}

=
1

2

{
ARCR,n − rkn + |ARCR,n − rkn|

(
1 + 2 · LMn

rkn
(ARCR,n − rkn)2

(1 + oP (1))

)}
= LMn

rkn
rkn − ARCR,n

(1 + oP (1)) = LMn + oP (1), (96)
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where the third equality follows from the mean value expansion
√

1 + x = 1 + (1/2)(x+ o(1)),

the fourth and last equalities follow from ARCR,n − rkn < 0 w.p.a.1 since ARCR,n = OP (1)

while rkn → ∞ w.p.a.1 under Assumption 1(ii). Using arguments similar to those in (96), we

obtain that for each g ∈ G,

LR∗n(g) = LM∗
n(g)

rkn
rkn − AR∗CR,n(g)

(1 + oP (1)) = LM∗
n(g) + oP (1), (97)

by AR∗CR,n(g) − rkn < 0 w.p.a.1 since AR∗CR,n(g) = OP (1) for each g ∈ G. The desired result

for the CQLR test follows. �

S.K Technical Lemmas used in the Proofs of Results in Section 3

S.K.1 Linear Expansion of γ̂(bn(τ), τ)

Lemma S.K.1. Let B(δ) = {b(·) ∈ `∞(Υ) : supτ∈Υ ||b(τ)−βn(τ)||2 ≤ δ}. Suppose Assumptions

5 and 6 hold. Let bn(τ) be a generic point in B(δ). Then, for any ε > 0, there exists δ and

constants c′, c > 0 that are independent of (n, δ, ε, δ) such that for δ ≤ δ, with probability greater

than 1− cε,(√
n (γ̂(bn(τ), τ)− γn(τ))
√
nθ̂(bn(τ), τ)

)
= [Γ1(bn(τ), τ)]−1√n

[
In(τ) + IIn(bn(τ), τ) + op(1/

√
n)− Γ2(bn(τ), τ)(bn(τ)− βn(τ))

]
(98)

where the op(1/
√
n) term on the RHS of the above display holds uniformly over τ ∈ Υ, bn(·) ∈

B(δ),

In(τ) = (Pn − Pn)fτ (D, βn(τ), γn(τ), 0), sup
τ∈Υ
||
√
nIn(τ)||2 = Op(1),

IIn(bn(τ), τ) = (Pn − Pn)
(
f̂τ (D, bn(τ), γ̂(bn(τ), τ), θ̂n(bn(τ), τ))− fτ (D, βn(τ), γn(τ), 0)

)
,

sup
bn(·)∈B(δ),τ∈Υ

||
√
nIIn(bn(τ), τ)||2 ≤ c′ε,

Γ1(bn(τ), τ) = Pnfεi,j(τ)(δ̂i,j(τ)|Wi,j, Zi,j)Ψ̂i,j(τ)Ψ̂>i,j(τ), sup
bn(·)∈B(δ),τ∈Υ

||Γ1(bn(τ), τ)− Jπ,β(τ)||op ≤ ε,

Γ2(bn(τ), τ) = Pnfεi,j(τ)(δ̂i,j(τ)|Wi,j, Zi,j)Ψ̂i,j(τ)X>i,j, sup
bn(·)∈B(δ),τ∈Υ

||Γ2(bn(τ), τ)− Jπ,β(τ)||op ≤ ε,

and δ̂i,j(τ) ∈ (0, X>i,j(bn(τ)− βn(τ)) +W>
i,j(γ̂(bn(τ), τ)− γn(τ)) + Φ̂>i,j(τ)θ̂(bn(τ), τ)).
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Proof. By Assumption 5(vi), the subgradient condition for (γ̂(bn(τ), τ), θ̂(bn(τ), τ)) implies

op(1/
√
n) = Pnf̂τ (Di,j, bn(τ), γ̂(bn(τ), τ), θ̂(bn(τ), τ))

= (Pn − Pn)f̂τ (Di,j, bn(τ), γ̂(bn(τ), τ), θ̂(bn(τ), τ)) + Pnf̂τ (Di,j, bn(τ), γ̂(bn(τ), τ), θ̂(bn(τ), τ))

= (Pn − Pn)fτ (Di,j, βn(τ), γn(τ), 0)

+ (Pn − Pn)
(
f̂τ (Di,j, bn(τ), γ̂(bn(τ), τ), θ̂(bn(τ), τ))− fτ (Di,j, βn(τ), γn(τ), 0)

)
+ Pnf̂τ (Di,j, bn(τ), γ̂(bn(τ), τ), θ̂(bn(τ), τ))

= In(τ) + IIn(bn(τ), τ) + IIIn(bn(τ), τ), (99)

where the op(1/
√
n) term on the LHS of the above display holds uniformly over τ ∈ Υ, bn(·) ∈

B(δ). For the first term, we note that Pnfτ (Di,j, βn(τ), γn(τ), 0) = 0. Then, by Assumption

6(vi), we have,

sup
τ∈Υ
||
√
nIn(τ)||2 = Op(1).

For the second term, note

sup
τ∈Υ
||γ̂(bn(τ), τ)− γn(τ)||2

≤ sup
τ∈Υ,b∈B

||γ̂(b, τ)− γn(b, τ)||2 + sup
τ∈Υ,b,b′∈B,||b−b′||2≤δ

||γn(b, τ)− γn(b′, τ)||2

≤ sup
τ∈Υ,b∈B

||γ̂(b, τ)− γn(b, τ)||2 + sup
τ∈Υ,b,b′∈B,||b−b′||2≤δ

||γ∞(b, τ)− γ∞(b′, τ)||2

+ 2 sup
τ∈Υ,b∈B

||γ∞(b, τ)− γn(b, τ)||2,

where the RHS of the above display vanishes as n → ∞ followed by δ ↓ 0 and it holds by the

same argument in Step 1 of the proof of Lemma S.K.2. Therefore, for any δ′ > 0 and ε > 0,

there exist n and δ such that for n ≥ n and δ ≤ δ, with probability greater than 1− ε,

sup
τ∈Υ
||γ̂(bn(τ), τ)− γn(τ)||2 ≤ δ′.

Similarly, we have

sup
τ∈Υ
||θ̂(bn(τ), τ)− 0||2 ≤ δ′.

Then, for any ε > 0, there exist n and δ such that for n ≥ n and δ′, δ ≤ δ, with probability

greater than 1− ε, we have,

sup
bn(·)∈B(δ),τ∈Υ

||
√
nIIn(bn(τ), τ)||2

≤ sup
||v||2≤2δ′+δ

∥∥∥∥√n(Pn − Pn)

(
f̂τ (Di,j, βn(τ) + vb, γn(τ) + vr, vt)− fτ (Di,j, βn(τ), γn(τ), 0)

)∥∥∥∥
2

.
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Then, by Assumption 6(ii), for any ε > 0, there exist n and δ such that for n ≥ n and δ, δ′ ≤ δ,

we have, with probability greater than 1− cε,

sup
bn(·)∈B(δ),τ∈Υ

||
√
nIIn(bn(τ), τ)||2 ≤ c′ε,

for some constants (c, c′) that are independent of (n, δ, δ′, ε).

For the third term in (99), we have

Pnf̂τ (Di,j, bn(τ), γ̂(bn(τ), τ), θ̂(bn(τ), τ))

=
∑
j∈J

ξjPn,j(τ − 1{yi,j −X>i,jbn(τ)−W>
i,j γ̂(bn(τ), τ)− Φ̂>i,j(τ)θ̂(bn(τ), τ) ≤ 0})Ψ̂i,j(τ)

= −Pn,jfεi,j(τ)(δ̂i,j(τ)|Wi,j, Zi,j)Ψ̂i,j(τ)X>i,j(bn(τ)− βn(τ))

− Pn,jfεi,j(τ)(δ̂i,j(τ)|Wi,j, Zi,j)Ψ̂i,j(τ)Ψ̂>i,j(τ)

(
γ̂(bn(τ), τ)− γn(τ)

θ̂(bn(τ), τ)

)
, (100)

where δ̂i,j(τ) ∈ (0, X>i,j(bn(τ)− βn(τ)) +W>
i,j(γ̂(bn(τ), τ)− γn(τ)) + Φ̂>i,j(τ)θ̂(bn(τ), τ)). For any

ε > 0, there exist n and δ such that for n ≥ n and δ, δ′ ≤ δ, we have, with probability greater

than 1− cε,

sup
τ∈Υ

(
||bn(τ)− βn(τ)||2 + ||γ̂(bn(τ), τ)− γn(τ)||2 + ||θ̂(bn(τ), τ)||2

)
≤ δ + 2δ′.

This implies, with probability greater than 1− cε,

sup
bn(·)∈B(δ),τ∈Υ,j∈J

||Γ2(bn(τ), τ)− Jπ,β(τ)||op

≤
(

max
j∈J

ξj

)
sup

bn(·)∈B(δ),τ∈Υ,j∈J

∥∥∥Pn,jfεi,j(τ)(δ̂i,j(τ)|Wi,j, Zi,j)Ψ̂i,j(τ)X>i,j − Jπ,β(τ)
∥∥∥
op

≤
(

max
j∈J

ξj

)
sup

∥∥∥Pn,jfεi,j(τ)(δi,j(v, τ)|Wi,j, Zi,j)Ψ̂i,j(τ)X>i,j − Jπ,β,j(τ)
∥∥∥
op
,

where the supremum in the second inequality is taken over {(j, v, τ) : j ∈ J, ||v||2 ≤ δ+ 2δ′, τ ∈
Υ}. Then, Assumption 6(iii) implies, with probability greater than 1− cε,

sup
bn(·)∈B(δ),τ∈Υ

||Γ2(bn(τ), τ)− Jπ,β(τ)||op ≤ ε.

Similarly, we have, with probability greater than 1− cε,

sup
bn(·)∈B(δ),τ∈Υ

||Γ1(bn(τ), τ)− Jπ,π(τ)||op ≤ ε.

Then, by Assumption 6 and the fact that ε can be made arbitrarily small, we have, with

probability greater than 1− cε, Γ1(bn(τ), τ) is invertible. Therefore, (99) implies, with proba-
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bility greater than 1− cε,(√
n (γ̂(bn(τ), τ)− γn(τ))
√
nθ̂(bn(τ), τ)

)
= [Γ1(bn(τ), τ)]−1√n

[
In(τ) + IIn(bn(τ), τ) + op(1/

√
n)− Γ2(bn(τ), τ)(bn(τ)− βn(τ))

]
where the op(1/

√
n) term on the RHS of the above display holds uniformly over τ ∈ Υ, bn(·) ∈

B(δ).

S.K.2 Technical Results for the IVQR Estimator

Lemma S.K.2. Suppose Assumptions 5, 6, and 8(i)–8(iii) hold. Then,
√
n
(
β̂(τ)− βn(τ)

)
√
n (γ̂(τ)− γn(τ))
√
nθ̂(τ)


=


[
J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)Jπ,β(τ)

]−1

J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)

J π,π(τ)

[
Idw+dφ − Jπ,β(τ)

[
J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)Jπ,β(τ)

]−1

J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)

]


×
√
nPnfτ (Di,j, βn(τ), γn(τ), 0) + op(1),

where op(1) term holds uniformly over τ ∈ Υ.

Proof. We divide the proof into three steps. In the first step, we show (β̂(τ), γ̂(τ), θ̂(τ)) are

consistent. In the second step, we derive convergence rates of (β̂(τ), γ̂(τ), θ̂(τ)). In the third

step, we derive linear expansions for (β̂(τ), γ̂(τ), θ̂(τ)).

Step 1. We first show the consistency of (β̂(τ), γ̂(τ), θ̂(τ)). Note by construction, we have

γ(βn(τ), τ) = γn(τ), θn(βn(τ), τ) = 0, γ̂(τ) = γ̂(β̂(τ), τ), and θ̂(τ) = θ̂(β̂(τ), τ). By Kato (2009,

Theorem 1) and the fact that both Q̂n(b, r, t, τ) and Qn(b, r, t, τ) are convex, we have

sup
(b,τ)∈B×Υ

(
||γ̂(b, τ)− γn(b, τ)||2 + ||θ̂(b, τ)− θn(b, τ)||2

)
= op(1).

Similarly, we have

sup
(b,τ)∈B×Υ

(||γ∞(b, τ)− γn(b, τ)||2 + ||θ∞(b, τ)− θn(b, τ)||2) = o(1).

This implies

sup
(b,τ)∈B×Υ

∣∣∣||θ̂(b, τ)||Âφ(τ) − ||θ∞(b, τ)||Aφ(τ)

∣∣∣ = op(1)

and 0 = limn→∞ θn(βn(τ), τ) = θ∞(β0(τ), τ), which implies ||θ∞(b, τ)||Aφ(τ) is uniquely mini-
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mized at b = β0(τ). Then, Chernozhukov and Hansen (2006, Lemma B.1) implies

sup
τ∈Υ
||β̂(τ)− β0(τ)||2 = op(1),

and thus,

sup
τ∈Υ
||β̂(τ)− βn(τ)||2 = op(1).

Then, we have

sup
τ∈Υ
||γ̂(β̂(τ), τ)− γn(τ)||2 ≤ sup

τ∈Υ,b∈B
||γ̂(b, τ)− γ∞(b, τ)||2 + sup

τ∈Υ
||γ∞(β̂(τ), τ)− γ∞(βn(τ), τ)||2 = op(1),

and similarly,

sup
τ∈Υ
||θ̂(β̂(τ), τ)− 0||2 = op(1).

Step 2. We derive the convergence rates of β̂(τ), γ̂(τ), and θ̂(τ). Let B(δ) = {b(·) ∈
`∞(Υ) : supτ∈Υ ||b(τ)−βn(τ)||2 ≤ δ}. For any δ > 0, we have β̂(·) ∈ B(δ) w.p.a.1. Let bn(τ) be

a generic point in B(δ). Recall ω = (0dw×dφ , Idφ). Then, Lemma S.K.1 implies, with probability

greater than 1− cε,

||
√
nθ̂(bn(τ), τ)||2

Âφ(τ)

= n [In(τ) + IIn(bn(τ), τ) +Op(1/n)− Γ2(bn(τ), τ)(bn(τ)− βn(τ))]>

× [Γ1(bn(τ), τ)]−1 ω>Âφ(τ)ω [Γ1(bn(τ), τ)]−1

× [In(τ) + IIn(bn(τ), τ) +Op(1/n)− Γ2(bn(τ), τ)(bn(τ)− βn(τ))]>

≥ n(bn(τ)− βn(τ))>
{

Γ>2 (bn(τ), τ) [Γ1(bn(τ), τ)]−1 ω>Âφ(τ)ω [Γ1(bn(τ), τ)]−1 Γ2(bn(τ), τ)

}
(bn(τ)− βn(τ))

−Op(1),

where the Op(1) term on the RHS of the above display holds uniformly over τ ∈ Υ, bn(·) ∈ B(δ).

In addition, Lemma S.K.1 implies that there exists a constant C > 0 such that for any ε > 0,

with probability greater than 1− cε

sup
bn(·)∈B(δ),τ∈Υ

∥∥∥∥Γ>2 (bn(τ), τ) [Γ1(bn(τ), τ)]−1 ω>Âφ(τ)ω [Γ1(bn(τ), τ)]−1 Γ2(bn(τ), τ)

− J >π,β(τ)J −1
θ,θ (τ)TAφ(τ)J −1

θ,θ (τ)Jπ,β(τ)

∥∥∥∥
op

≤ Cε.

Therefore, by Assumption 6, there exists a constant c independent of τ and bn(·) such that

n(bn(τ)− βn(τ))>
{

Γ>2 (bn(τ), τ) [Γ1(bn(τ), τ)]−1 ω>Âφ(τ)ω [Γ1(bn(τ), τ)]−1 Γ2(bn(τ), τ)

}
(bn(τ)− βn(τ))

−Op(1)
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≥ c||
√
n(bn(τ)− βn(τ))||22 −Op(1),

where the Op(1) term on the RHS of the above display holds uniformly over τ ∈ Υ, bn(·) ∈ B(δ).

On the other hand, we have β̂(τ) ∈ B(δ) w.p.a.1 for any δ > 0 and

||
√
nθ̂(β̂(τ), τ)||Âφ(τ) ≤ ||

√
nθ̂(βn(τ), τ)||Âφ(τ) = Op(1),

where the Op(1) term on the RHS of the above display holds uniformly over τ ∈ Υ, b(·) ∈ B(δ)

and the last equality holds by Lemma S.K.1. This implies, for any ε > 0, there exist n and δ

such that for n ≥ n and δ, δ′ ≤ δ, we have, with probability greater than 1− cε,

c||
√
n(β̂(τ)− βn(τ))||22 −Op(1) ≤ ||

√
nθ̂(β̂(τ), τ)||Âφ(τ) ≤ Op(1),

where the Op(1) term on the RHS of the above display holds uniformly over τ ∈ Υ. This further

implies

sup
τ∈Υ
||
√
n(β̂(τ)− βn(τ))||2 = Op(1). (101)

Plugging (101) into (98), we obtain that

sup
τ∈Υ
||
√
n(γ̂(τ)− γn(τ))||2 = Op(1) and sup

τ∈Υ
||
√
n(θ̂(τ)− 0)||2 = Op(1).

Step 3. Next, we derive the linear expansions for β̂(τ) and γ̂(τ). Let û(τ) =
√
n(β̂(τ) −

βn(τ)). Then, Step 2 shows supτ∈Υ ||û(τ)||2 = Op(1). For any ε > 0, there exists a constant

C > 0 such that with probability greater than 1− ε, we have, for all τ ∈ Υ,

û(τ) = arg inf
u:||u||2≤C

||θ̂(βn(τ) + u/
√
n, τ)||Âτ .

Denote bn(τ) = βn(τ) + u/
√
n for ||u||2 ≤ C. Then, by Lemma S.K.1, we have

||θ̂(βn(τ) + u/
√
n, τ)||Âτ

=

[√
nPnfτ (Di,j, βn(τ), γn(τ), 0)− Γ2(βn(τ) + u/

√
n, τ)u+ IIn(βn(τ) + u/

√
n, τ) +Op(1/

√
n)

]>
×
[
Γ−1

1 (βn(τ) + u/
√
n, τ)ω>Aφ(τ)ωΓ−1

1 (βn(τ) + u/
√
n, τ)

]
×
[√

nPnfτ (Di,j, βn(τ), γn(τ), 0)− Γ2(βn(τ) + u/
√
n, τ)u+ IIn(βn(τ) + u/

√
n, τ) +Op(1/

√
n)

]
,

where the Op(1/
√
n) term is uniform over τ ∈ Υ and |u| ≤ C. In addition, by Assumption 6,

we have

sup
τ∈Υ,||u||2≤C

∥∥Γ−1
1 (βn(τ) + u/

√
n, τ)− J −1

π,π(τ)
∥∥
op

= op(1), (102)

sup
τ∈Υ,||u||2≤C

∥∥Γ2(βn(τ) + u/
√
n, τ)− Jπ,β(τ)

∥∥
op

= op(1),
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and

sup
τ∈Υ,||u||2≤C

||IIn(βn(τ) + u/
√
n, τ)||2 = op(1). (103)

Further recall Jθ(τ) = ωJ−1
π,π(τ). Then, we have∣∣∣||θ̂(βn(τ) + u/

√
n, τ)||Âτ − ||Jθ(τ)

[√
nPnfτ (Di,j, βn(τ), γn(τ), 0)− Jπ,β(τ)u

]
||Aφ(τ)

∣∣∣ = op(1).

Then, Chernozhukov and Hansen (2006, Lemma B.1) implies

û(τ) =
[
J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)Jπ,β(τ)

]−1

× J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)
√
nPnfτ (Di,j, βn(τ), γn(τ), 0) + op(1), (104)

where op(1) term holds uniformly over τ ∈ Υ. Plugging (104) into (98), we have(√
n (γ̂(τ)− γn(τ))
√
nθ̂(τ)

)
=
[
Γ1(β̂(τ), τ)

]−1√
n
[
In(τ) + IIn(β̂(τ), τ) + op(1/

√
n)− Γ2(β̂(τ), τ)(β̂(τ)− βn(τ))

]
= J −1

π,π(τ)

[
Idw+dφ − Jπ,β(τ)

[
J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)Jπ,β(τ)

]−1

J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)

]
×
√
nPnfτ (Di,j, βn(τ), γn(τ), 0) + op(1),

where both op(1/
√
n) and op(1) terms hold uniformly over τ ∈ Υ. This concludes the proof.

Lemma S.K.3. If Assumptions 5 and 6 hold, then(√
n (γ̂(βn(τ), τ)− γn(τ))
√
nθ̂(βn(τ), τ)

)
= J −1

π,π(τ)
√
n(Pn − Pn)fτ (D, βn(τ), γn(τ), 0) + op(1),

where the op(1) terms hold uniformly over τ ∈ Υ.

Proof. By Lemma S.K.1 with bn(τ) = βn(τ), we have(√
n (γ̂(βn(τ), τ)− γn(τ))
√
nθ̂(βn(τ), τ)

)
= [Γ1(βn(τ), τ)]−1√n

[
In(τ) + IIn(βn(τ), τ) + op(1/

√
n)
]
,

where the op(1/
√
n) term holds uniformly over τ ∈ Υ. Then, by (102) and (103), we have(√

n (γ̂(βn(τ), τ)− γn(τ))
√
nθ̂(βn(τ), τ)

)
= J −1

π,π(τ)
√
nIn(τ) + op(1),

where the op(1) terms hold uniformly over τ ∈ Υ. This concludes the proof.
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S.K.3 Technical Results for the Bootstrap IVQR Estimator

Lemma S.K.4. Suppose Assumptions 5–7, 8(i)–8(iii) hold. Then,

√
n(β̂∗g(τ)− β̂(τ))

= Ω̃(τ)
∑
j∈J

√
ξjgj
√
nj(Pn,j − Pn,j)f̃τ (D, βn(τ), γn(τ), 0)

−
∑
j∈J

Ω(τ)ξjgjJπ,β,j(τ)
√
n(β̂r(τ)− βn(τ)) + op(1),

where op(1) term holds uniformly over τ ∈ Υ and

Ω(τ) =
[
J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)Jπ,β(τ)

]−1

J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ).

Proof. We divide the proof into three steps. In the first step, we show the consistency of

(β̂∗g(τ), γ̂∗g(τ), θ̂∗g(τ)). In the second step, we show

sup
τ∈Υ
||
√
n(β̂∗g(τ)− βn(τ))||2 = Op(1),

sup
τ∈Υ
||
√
n(γ̂∗g(τ)− γn(τ))||2 = Op(1),

sup
τ∈Υ
||
√
n(θ̂∗g(τ)− 0)||2 = Op(1). (105)

In the third step, we show the desired result.

Step 1. Note∥∥∥∥∥∥ 1

n

∑
j∈J

gj
∑
i∈In,j

(
f̂τ (Di,j, β̂

r(τ), γ̂r(τ), 0)− fτ (Di,j, βn(τ), γn(τ), 0)
)∥∥∥∥∥∥

2

≤
∑
j∈J

ξj

∥∥∥(Pn,j − Pn,j)(f̂τ (Di,j, β̂
r(τ), γ̂r(τ), 0)− f̂τ (Di,j, βn(τ), γn(τ), 0))

∥∥∥
2

+
∑
j∈J

ξj

∥∥∥Pn,j f̂τ (Di,j, β̂
r(τ), γ̂r(τ), 0)

∥∥∥
2
. (106)

Because (β̂r(τ), γ̂r(τ), 0) are consistent as shown in Lemma S.K.5, Assumption 6 implies

sup
τ∈Υ

∑
j∈J

ξj

∥∥∥(Pn,j − Pn,j)(f̂τ (Di,j, β̂
r(τ), γ̂r(τ), 0)− f̂τ (Di,j, βn(τ), γn(τ), 0))

∥∥∥
2

= op(n
−1/2).

(107)

In addition, due to Assumption 6 and Lemma S.K.5, following the same argument in (100), we

can show that

sup
τ∈Υ

∥∥∥∥∥Pn,j f̂τ (Di,j, β̂
r(τ), γ̂r(τ), 0) + Jπ,β,j(τ)(β̂r(τ)− βn(τ)) + Jπ,π,j(τ)

(
γ̂r(τ)− γn(τ)

0

)∥∥∥∥∥
2
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= op(n
−1/2). (108)

This further implies

sup
τ∈Υ

∑
j∈J

ξj

∥∥∥Pn,j f̂τ (Di,j, β̂
r(τ), γ̂r(τ), 0)

∥∥∥
2

= op(1). (109)

Note that

(γ̂∗g(b, τ), θ̂∗g(b, τ)) = arg inf
r,t

[∑
j∈J

∑
i∈In,j

ρτ (yi,j −X>i,jb−W>
i,jr − Φ̂>i,j(τ)t)V̂i,j(τ)

−
∑
j∈J

gj
∑
i∈In,j

f̂>τ (Di,j, β̂
r(τ), γ̂r(τ), 0)

(
r

t

)]
= arg inf

(r,t)×B×R
Q̂n(b, r, t, τ)

− 1

n

∑
j∈J

gj
∑
i∈In,j

(
f̂>τ (Di,j, β̂

r(τ), γ̂r(τ), 0)− f>(Di,j, βn(τ), γn(τ), 0)
)(r

t

)
.

Based on (107) and (109), uniformly over (τ, b) ∈ Υ× B,

Q̃n(b, r, t, τ)

≡Q̂n(b, r, t, τ)− 1

n

∑
j∈J

gj
∑
i∈In,j

(
f̂>τ (Di,j, β̂

r(τ), γ̂r(τ), 0)− f>(Di,j, βn(τ), γn(τ), 0)
)(r

t

)
p−→Q∞(b, r, t, τ).

Then, because Q̃n(b, r, t, τ) is convex in (r, t), by Kato (2009, Theorem 1), we have

sup
(b,τ)∈B×Υ

(
||γ̂∗g(b, τ)− γ∞(b, τ)||2 + ||θ̂∗g(b, τ)− θ∞(b, τ)||2

)
= op(1).

The rest of the proof is the same as that in Step 1 of the proof of Lemma S.K.2. We can show

sup
τ∈Υ
||β̂∗g(τ)− βn(τ)||2 = op(1),

which further implies

sup
τ∈Υ
||γ̂∗g(τ)− γn(τ)||2 = op(1) and sup

τ∈Υ
||θ̂∗g(τ)− 0||2 = op(1).

Step 2. For any bn(·) ∈ B(δ), the sub-gradient condition for (γ̂∗g(bn(τ), τ), θ̂∗g(bn(τ), τ)) is

op(1/
√
n) = Pnf̂τ (Di,j, bn(τ), γ̂∗g(bn(τ), τ), θ̂∗g(bn(τ), τ), τ) +

1

n

∑
j∈J

gj
∑
i∈In,j

f̂τ (Di,j, β̂
r(τ), γ̂r(τ), 0),

(110)

where the op(1/
√
n) term on the LHS of the above display holds uniformly over τ ∈ Υ, bn(·) ∈
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B(δ).

Following the same argument in Lemma S.K.1, for any ε > 0, there exists δ such that for

δ, δ′ ≤ δ, we have, with probability greater than 1− ε,

Pnf̂τ (Di,j, bn(τ), γ̂∗g(bn(τ), τ), θ̂∗g(bn(τ), τ), τ)

= In(τ) + IIn,g(bn(τ), τ)− Γ2,g(bn(τ), τ)(bn(τ)− βn(τ))− Γ1,g(bn(τ), τ)

(
γ̂∗g(bn(τ), τ)− γn(τ)

θ̂∗g(bn(τ), τ)

)
,

(111)

where

In(τ) = (Pn − Pn)fτ (Di,j, βn(τ), γn(τ), 0),

IIn,g(bn(τ), τ) =
∑
j∈J

ξj(Pn,j − Pn,j)
(
f̂τ (Di,j, bn(τ), γ̂∗g(bn(τ), τ), θ̂∗g(bn(τ), τ), τ)− fτ (Di,j, βn(τ), γn(τ), 0)

)
such that supbn(·)∈B(δ),τ∈Υ

√
n||IIn,g(bn(τ), τ)||2 ≤ ε,

Γ1,g(bn(τ), τ) =
∑
j∈J

ξj
nj

∑
i∈In,j

Efεi,j(τ)(δ̂i,j,g(τ)|Wi,j, Zi,j)Ψ̂i,j(τ)Ψ̂>i,j(τ),

Γ2,g(bn(τ), τ) =
∑
j∈J

ξj
nj

∑
i∈In,j

Efεi,j(τ)(δ̂i,j,g(τ)|Wi,j, Zi,j)Ψ̂i,j(τ)X>i,j,

δ̂i,j,g(τ) ∈ (0, X>i,j(bn(τ)− βn(τ)) +W>
i,j(γ̂

∗
g(bn(τ), τ)− γn(τ)) + Φ̂>i,j(τ)θ̂∗g(bn(τ), τ)),

sup
bn(·)∈B(δ),τ∈Υ,j∈J

∥∥∥∥∥∥ 1

nj

∑
i∈In,j

Efεi,j(τ)(δ̂i,j,g(τ)|Wi,j, Zi,j)Ψ̂i,j(τ)Ψ̂>i,j(τ)− Jπ,π,j(τ)

∥∥∥∥∥∥
op

≤ ε,

and

sup
bn(·)∈B(δ),τ∈Υ,j∈J

∥∥∥∥∥∥ 1

nj

∑
i∈In,j

Efεi,j(τ)(δ̂i,j,g(τ)|Wi,j, Zi,j)Ψ̂i,j(τ)X>i,j − Jπ,β,j(τ)

∥∥∥∥∥∥
op

≤ ε.

In addition, by (106), (107), and (108), we have

1

n

∑
j∈J

gj
∑
i∈In,j

f̂τ (Di,j, β̂
r(τ), γ̂r(τ), 0)

=
1

n

∑
j∈J

gj
∑
i∈In,j

(
f̂τ (Di,j, β̂

r(τ), γ̂r(τ), 0)− fτ (Di,j, βn(τ), γn(τ), 0)
)

+
1

n

∑
j∈J

gj
∑
i∈In,j

fτ (Di,j, βn(τ), γn(τ), 0)
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=
1

n

∑
j∈J

gj

∑
i∈In,j

fτ (Di,j, βn(τ), γn(τ), 0)− Jπ,β,j(τ)(β̂r(τ)− βn(τ))− Jπ,π,j(τ)

(
γ̂r(τ)− γn(τ)

0

)
+ op(n

−1/2).

where the op(n
−1/2) term holds uniformly over τ ∈ Υ. Combining this with Assumption 6 and

Lemma S.K.5, we have

sup
τ∈Υ

∥∥∥∥∥∥ 1

n

∑
j∈J

gj
∑
i∈In,j

f̂τ (Di,j, β̂
r(τ), γ̂r(τ), 0)

∥∥∥∥∥∥
2

= Op(n
−1/2).

In addition, (110) implies

op(1) = −Γ2,g(bn(τ), τ)
√
n(bn(τ)− βn(τ))− Γ1,g(bn(τ), τ)

(√
n(γ̂∗g(bn(τ), τ)− γn(τ))
√
nθ̂∗g(bn(τ), τ)

)
+Op(1),

(112)

where the op(1) and Op(1) terms hold uniformly over {bn(·) ∈ B(δ), τ ∈ Υ}. Then,

||
√
nθ̂∗g(bn(τ), τ)||2

Âφ(τ)
= ||ω [Γ1,g(bn(τ), τ)]−1 [Γ2,g(bn(τ), τ)

√
n(bn(τ)− βn(τ)) +Op(1)

]
||2
Âφ(τ)

.

Let bn(τ) = β̂∗g(τ), we have β̂∗g(τ) ∈ B(δ) w.p.a.1 for any δ > 0. Therefore,

||ω
[
Γ1,g(β̂

∗
g(τ), τ)

]−1 [
Γ2,g(β̂

∗
g(τ), τ)

√
n(β̂∗g(τ)− βn(τ)) +Op(1)

]
||2
Âφ(τ)

≤ ||
√
nθ̂∗g(βn(τ), τ)||2

Âφ(τ)
.

Because, w.p.a.1,

inf
τ∈Υ

λmin([Γ2,g(β̂
∗
g(τ), τ)]>

[
Γ1,g(β̂

∗
g(τ), τ)

]−1

ωT Âφ(τ)ω
[
Γ1,g(β̂

∗
g (τ), τ)

]−1

Γ2,g(β̂
∗
g(τ), τ)) ≥ c > 0

we have

cn||β̂∗g(τ)− βn(τ)||22 −Op(1) ≤ sup
τ∈Υ
||
√
nθ̂∗g(βn(τ), τ)||2

Âφ(τ)
≤ Op(1),

where the Op(1) term holds uniformly over {τ ∈ Υ}. Therefore, we have

sup
τ∈Υ

√
n||β̂∗g(τ)− βn(τ)||2 = Op(1).

Plugging this into (112), we have

sup
τ∈Υ

√
n||γ̂∗g(τ)− γn(τ)||2 = Op(1) and sup

τ∈Υ

√
n||θ̂∗g(τ)||2 = Op(1).

Step 3. Let bn(τ) = βn(τ) + u/
√
n in the above step, we have

op(1) =
√
nIn(τ)− Jπ,β(τ)u− Jπ,π(τ)

(√
n(γ̂∗g(βn(τ) + u/

√
n, τ)− γn(τ))

√
nθ̂∗g(βn(τ) + u/

√
n, τ)

)
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+
√
nIn,g(τ)−

∑
j∈J

gjξjJπ,β,j(τ)
√
n(β̂r(τ)− βn(τ))

−
∑
j∈J

gjξjJπ,π,j(τ)

(√
n(γ̂r(τ)− γn(τ))

0

)
− op(1),

where

In,g(τ) =
∑
j∈J

ξjgj(Pn,j − Pn,j)fτ (Di,j, βn(τ), γn(τ), 0)

such that
√
nIn,g(τ) =

∑
j∈J
√
ξjgj
√
nj(Pn,j − Pn,j)fτ (Di,j, βn(τ), γn(τ), 0) and the op(1) term

holds uniformly over τ ∈ Υ, |u| ≤M . This implies

√
nθ̂∗g(βn(τ) + u/

√
n, τ)

= ωJ −1
π,π(τ)

[
In(τ) + In,g(τ)− Jπ,β(τ)u−

∑
j∈J

gjξjJπ,β,j(τ)
√
n(β̂r(τ)− βn(τ))

−
∑
j∈J

gjξjJπ,π,j(τ)

(√
n(γ̂r(τ)− γn(τ))

0

)
− op(1)

]
= Gn(u, τ) + op(1),

where

Gn(u, τ) = ωJ −1
π,π(τ)

[√
nIn(τ) +

√
nIn,g(τ)− Jπ,β(τ)u−

∑
j∈J

gjξjJπ,β,j(τ)
√
n(β̂r(τ)− βn(τ))

−
∑
j∈J

gjξjJπ,π,j(τ)

(√
n(γ̂r(τ)− γn(τ))

0

)]
and the op(1) term holds uniformly over τ ∈ Υ, |u| ≤ M . Let û∗g(τ) =

√
n(β̂∗g(τ) − βn(τ)).

Because supτ∈Υ ||ûg||2 = Op(1), for any ε > 0, there exists an integer n such that for n ≥ n,

there exists a sufficiently large constant M > 0 such that

û∗g(τ) = arg inf
||u||2≤M

||
√
nθ̂∗g(βn(τ) + u/

√
n, τ)||2

Âφ(τ)
.

Because

sup
τ∈Υ,||u||2≤M

∣∣∣∣||√nθ̂∗g(βn(τ) + u/
√
n, τ)||2

Âφ(τ)
− ||Gn(u, τ)||2Aφ(τ)

∣∣∣∣ = op(1),

Chernozhukov and Hansen (2006, Lemma B.1) implies

û∗g(τ) =
[
J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)Jπ,β(τ)

]−1

J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)

×
[√

nIn(τ) +
√
nIn,g(τ)−

∑
j∈J

gjξjJπ,β,j(τ)
√
n(β̂r(τ)− βn(τ))
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−
∑
j∈J

gjξjJπ,π,j(τ)

(√
n(γ̂r(τ)− γn(τ))

0

)]
+ op(1), (113)

where the op(1) term holds uniformly over τ ∈ Υ. Subtracting (104) from (113), we have

√
n(β̂∗g(τ)− β̂(τ))

= Ω(τ)

[√
nIn,g(τ)−

∑
j∈J

gjξjJπ,β,j(τ)
√
n(β̂r(τ)− βn(τ))−

∑
j∈J

gjξjJπ,π,j(τ)

(√
n(γ̂r(τ)− γn(τ))

0

)]
+ op(1).

Assumption 7(i) implies Jπ,π,j(τ), and thus, [Jπ,π(τ)]−1Jπ,π,j(τ) are block diagonal, i.e.,

[Jπ,π(τ)]−1Jπ,π,j(τ) =

(
Jdw×dw 0dw×dφ
0dφ×dw Jdφ×dφ

)
.

Then,

J θ(τ)Jπ,π,j(τ)

(√
n(γ̂r(τ)− γn(τ))

0

)
= ω[Jπ,π(τ)]−1Jπ,π,j(τ)

= [0dφ×dw , Idφ ]

(
Jdw×dw 0dw×dφ
0dφ×dw Jdφ×dφ

)(√
n(γ̂r(τ)− γn(τ))

0dφ×1

)
= 0.

In addition, for the same reason, we have

Ω(τ)fτ (Di,j, βn(τ), γn(τ), 0) = Ω̃(τ)f̃τ (Di,j, βn(τ), γn(τ), 0).

Therefore, we have

√
n(β̂∗g(τ)− β̂(τ))

= Ω(τ)
√
nIn,g(τ)−

∑
j∈J

gjξjΩ(τ)Jπ,π,j(τ)
√
n(β̂r(τ)− βn(τ)) + op(1),

= Ω̃(τ)
∑
j∈J

√
ξjgj
√
nj(Pn,j − Pn,j)f̃τ (Di,j, βn(τ), γn(τ), 0)

−
∑
j∈J

gjξjΩ(τ)Jπ,π,j(τ)
√
n(β̂r(τ)− βn(τ)) + op(1),

where the op(1) term holds uniformly over τ ∈ Υ.
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S.K.4 Technical Results for the Restricted Estimator

Lemma S.K.5. Suppose Assumptions 5, 6, 8(i)–8(iv) hold. Then,

sup
τ∈Υ

[
||β̂r(τ)− βn(τ)||2 + ||γ̂r(τ)− γn(τ)||2

]
= Op(n

−1/2).

Proof. Suppose h0(τ) satisfies λ>β (τ)h0(τ) = λ0(τ), L = dx − dr, and (h1(τ), · · · , hL(τ)) be L

dx × 1 vectors that are the bases of a linear space that is orthogonal to the column space of

λβ(τ). Then, we have β̂r(τ) = h0(τ) +
∑

l∈[L] ŝl(τ)hl(τ) and ŝ(τ) = (ŝ1(τ), · · · , ŝL(τ))> ∈ RL,

where

ŝ(τ) = arg inf
s∈RL,||s||2≤C

||θ̂(h0(τ) +
∑
l∈[L]

slhl(τ), τ)||Âφ(τ).

In addition, we can write β0(τ) = h0(τ) +
∑

l∈[L] s
∗
l (τ)hl(τ) such that ||s∗||2 ≤ C with s∗ =

(s∗1, · · · , s∗L)>. 28 Following the same argument in Step 1 in the proof of Lemma S.K.2, we have

sup
s:||s||2≤C

∣∣∣∣∣∣||θ̂(h0(τ) +
∑
l∈[L]

slhl(τ), τ)||Âφ(τ) − ||θ∞(h0(τ) +
∑
l∈[L]

slhl(τ), τ)||Aφ(τ)

∣∣∣∣∣∣ = op(1).

As ||θ∞(h0(τ) +
∑

l∈[L] slhl(τ), τ)||Aφ(τ) is uniquely minimized at s∗(τ), by Chernozhukov and

Hansen (2006, Lemma B.1), we have

sup
τ∈Υ
||ŝ(τ)− s∗(τ)||2 = op(1),

which implies

sup
τ∈Υ
||β̂r(τ)− βn(τ)||2 = op(1) and sup

τ∈Υ
||γ̂r(τ)− γn(τ)||2 = op(1).

Next, we turn to the convergence rate of β̂r(τ). By Step 2 in the proof of Lemma S.K.2

with bn(·) = β̂r(·), we have

c||
√
n(β̂r(τ)− βn(τ))||22 ≤ ||

√
nθ̂(β0(τ), τ)||2

Âφ(τ)
,

because β0(τ) = h0(τ)+
∑

l∈[L] s
∗
l (τ)hl(τ) satisfies the constraint. In addition, because supτ∈Υ ||β0(τ)−

βn(τ)||2 = Op(n
−1/2). By Step 3 in the proof of Lemma S.K.2, we have

||
√
nθ̂(β0(τ), τ)||Âφ(τ) ≤ ||

√
nθ̂(βn(τ), τ)||2

Âφ(τ)
+Op(1) = Op(1),

where the Op(1) terms hold uniformly over τ ∈ Υ. This implies

c||
√
n(β̂r(τ)− βn(τ))||22 = Op(1),

28It is w.o.l.g. to impose that ||s∗||2 ≤ C for some constant C > 0. We have already shown the unrestricted estimator

β̂(τ) is uniformly convergent over τ ∈ Υ. Then, the constant C can be calibrated by the length of the projection of

β̂(τ)− h0(τ) onto M(τ).
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which further implies

sup
τ∈Υ
||β̂r(τ)− βn(τ)||2 = Op(n

−1/2).

S.K.5 Lemma used in the Proof of Theorem 3.2

Lemma S.K.6. Suppose Assumptions 5–7, 8(i)–8(iv), and 11 hold. When Assumption 9(i)

holds, we define aj(τ) = Ω(τ)Jπ,β,j(τ) = Ω̃(τ)Jθ,β,j(τ), which is a scalar. When Assumption

9(ii) holds, aj(τ) is as defined in Assumption 9(ii). Then,

Ω̂(τ)Pn,j f̂τ (Di,j, β̂(τ), γ̂(τ), 0)

= Ω̃(τ)Pn,j f̃τ (Di,j, βn(τ), γn(τ), 0)− aj(τ)Ω̃(τ)Pnf̃τ (Di,j, βn(τ), γn(τ), 0) + op(n
−1/2),

Ω̂(τ)Pn,j f̂τ (Di,j, β̂
∗
g(τ), γ̂∗g(τ), 0)

= Ω̃(τ)Pn,j f̃τ (Di,j, βn(τ), γn(τ), 0)− Ω̃(τ)aj(τ)Pnf̃τ (Di,j, βn(τ), γn(τ), 0)

− Ω̃(τ)aj(τ)
∑
j̃∈J

gj̃ξj̃Pn,j f̃τ (Di,j, βn(τ), γn(τ), 0) + aj(τ)a∗g(τ)(β̂r(τ)− βn(τ)) + op(n
−1/2).

Ω̂(τ)Pn,j f̂τ (Di,j, β̂
r(τ), γ̂r(τ), 0) = Ω(τ)Pn,jfτ (Di,j, βn(τ), γn(τ), 0)− aj(τ)(β̂r(τ)− β(τ)) + op(n

−1/2),

Ω̂(τ)Pn,jf
∗
τ,g(Di,j) = gjΩ̃(τ)Pn,j f̃τ (Di,j, βn(τ), γn(τ), 0)− gjaj(τ)(β̂r(τ)− βn(τ))

− Ω̃(τ)aj(τ)
∑
j̃∈J

gj̃ξj̃Pn,j̃ f̃τ (Di,j̃, βn(τ), γn(τ), 0) + aj(τ)a∗g(τ)(β̂r(τ)− βn(τ))

+ op(n
−1/2),

where all the op(n
−1/2) terms hold uniformly over τ ∈ Υ and a∗g(τ) =

∑
j∈J ξjgjaj(τ).

Proof. Recall

Ω(τ) =
[
J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ)Jπ,β(τ)

]−1

J >π,β(τ)J >θ (τ)Aφ(τ)J θ(τ).

We have supτ∈Υ ||Ω̂(τ)− Ω(τ)||op = op(1). For the first result, we have

Pn,j f̂τ (Di,j, β̂(τ), γ̂(τ), 0)

= Pn,j f̂τ (Di,j, β̂(τ), γ̂(τ), 0) + (Pn,j − Pn,j)f̂τ (Di,j, β̂(τ), γ̂(τ), 0)

= Pn,j f̂τ (Di,j, β̂(τ), γ̂(τ), 0) + (Pn,j − Pn,j)fτ (Di,j, βn(τ), γn(τ), 0) + op(n
−1/2)

= Pn,jfτ (Di,j, βn(τ), γn(τ), 0)− Jπ,β,j(τ)(β̂(τ)− βn(τ))− Jπ,π,j(τ)

(
γ̂(τ)− γn(τ)

0

)
+ op(n

−1/2)

= Pn,jfτ (Di,j, βn(τ), γn(τ), 0)− Jπ,β,j(τ)Ω̃(τ)Pnf̃τ (Di,j, βn(τ), γn(τ), 0)
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− Jπ,π,j(τ)

(
γ̂(τ)− γn(τ)

0

)
+ op(n

−1/2), (114)

where the op(n
−1/2) terms hold uniformly over τ ∈ Υ, the second equality is by Assumption

6(iii), the third equality is by Assumption 6(ii) and the fact that

sup
τ∈Υ

(
||β̂(τ)− βn(τ)||2 + ||γ̂(τ)− γn(τ)||2

)
= Op(n

−1/2)

as shown in Lemma S.K.2, and the last equality is by Lemma S.K.2 and the fact that, by

Assumption 7(i),

Ω(τ)fτ (Di,j, βn(τ), γn(τ), 0) = Ω̃(τ)f̃τ (Di,j, βn(τ), γn(τ), 0).

In addition, due to the argument in Step 3 in the proof of Lemma S.K.4, under Assumption

7(i), we have

J θ(τ)Jπ,π,j(τ)

(
γ̂(τ)− γn(τ)

0dφ×1

)
= 0.

This implies

Ω(τ)Jπ,π,j(τ)

(
γ̂(τ)− γn(τ)

0

)
= 0,

and thus,

Ω̂(τ)Pn,j f̂τ (Di,j, β̂(τ), γ̂(τ), 0)

= Ω(τ)Pn,jfτ (Di,j, βn(τ), γn(τ), 0)− Ω(τ)Jπ,β,j(τ)Ω̃(τ)Pnf̃τ (Di,j, βn(τ), γn(τ), 0) + op(n
−1/2)

= Ω̃(τ)Pn,j f̃τ (Di,j, βn(τ), γn(τ), 0)− aj(τ)Ω̃(τ)Pnf̃τ (Di,j, βn(τ), γn(τ), 0) + op(n
−1/2),

where the op(n
−1/2) terms hold uniformly over τ ∈ Υ and the last equality holds due to the

fact that

Ω(τ)Jπ,β,j(τ) = Ω̃(τ)Jθ,β,j(τ) = aj(τ)Iβ,β.

For the second result, we have

Pn,j f̂τ (Di,j, β̂
∗
g(τ), γ̂∗g(τ), 0)

= Pn,jfτ (Di,j, βn(τ), γn(τ), 0)− Jπ,β,j(τ)(β̂∗g (τ)− βn(τ))− Jπ,π,j(τ)

(
γ̂∗g(τ)− γn(τ)

0

)
+ op(n

−1/2)

= Pn,jfτ (Di,j, βn(τ), γn(τ), 0)− Jπ,β,j(τ)Ω(τ)
∑
j̃∈J

gj̃ξj̃Pn,jfτ (Di,j, βn(τ), γn(τ), 0)

− Jπ,β,j(τ)(β̂(τ)− βn(τ)) + Jπ,β,j(τ)a∗g(τ)(β̂r(τ)− βn(τ))
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− Jπ,π,j(τ)

(
γ̂∗g(τ)− γn(τ)

0

)
+ op(n

−1/2),

where the first equality is due to the same argument in (114) and the second equality is due to

Lemma S.K.4. Then, we have

Ω̂(τ)Pn,j f̂τ (Di,j, β̂
∗
g(τ), γ̂∗g(τ), 0)

= Ω̃(τ)Pn,j f̃τ (Di,j, βn(τ), γn(τ), 0)− Ω̃(τ)aj(τ)Pnf̃τ (Di,j, βn(τ), γn(τ), 0)

− Ω̃(τ)aj(τ)
∑
j̃∈J

gj̃ξj̃Pn,j̃ f̃τ (Di,j̃, βn(τ), γn(τ), 0) + aj(τ)a∗g(τ)(β̂r(τ)− βn(τ)) + op(n
−1/2).

For the third result, we have

Pn,j f̂τ (Di,j, β̂
r(τ), γ̂r(τ), 0)

= Pn,jfτ (Di,j, βn(τ), γn(τ), 0)− Jπ,β,j(τ)(β̂r(τ)− βn(τ))− Jπ,π,j(τ)

(
γ̂r(τ)− γn(τ)

0

)
+ op(n

−1/2)

Then,

Ω̂(τ)Pn,j f̂τ (Di,j, β̂
r(τ), γ̂r(τ), 0)

= Ω̃(τ)Pn,j f̃τ (Di,j, βn(τ), γn(τ), 0)− aj(τ)(β̂r(τ)− βn(τ)) + op(n
−1/2).

Combining the previous three results, we have

Ω̂(τ)Pn,jf
∗
τ,g(Di,j) = gjΩ̃(τ)Pn,j f̃τ (Di,j, βn(τ), γn(τ), 0)− gjaj(τ)(β̂r(τ)− βn(τ))

− Ω̃(τ)aj(τ)
∑
j̃∈J

gj̃ξj̃Pn,j̃ f̃τ (Di,j̃, βn(τ), γn(τ), 0) + aj(τ)a∗g(τ)(β̂r(τ)− βn(τ))

+ op(n
−1/2).

All the op(n
−1/2) terms in this proof hold uniformly over τ ∈ Υ.
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