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Abstract

We de�ne notions of dominance between two actions in a dynamic

game. Local dominance considers players who have a blurred view of the

future and compare the two actions by �rst focusing on the outcomes

that may realize at the current stage. When considering the possibility

that the game may continue, they can only check that the local com-

parison is not overturned under the assumption of "continuing in the

same way" after the two actions (in a newly de�ned sense). Despite the

lack of forward planning, local dominance solves dynamic mechanisms

that were found easy to play and implements social choice functions that

cannot be implemented in obviously-dominant strategies.
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1 Introduction

The point of view under discussion may be symbolized by the

proverb �Look before you leap�, and the one to which it is opposed

by the proverb �You can cross that bridge when you come to it�.

[...] To cross one�s bridges when one comes to them means to at-

tack relatively simple problems of decisions by arti�cially con�ning

attention to so small a world that the principle of �Look before you

leap�can be applied there. I am unable to formulate criteria for se-

lecting these small worlds and indeed believe that their selection may

be a matter of judgement and experience about which it is impos-

sible to enunciate complete and sharply de�ned general principles.

(Savage, 1954)

Traditionally, game theory has treated any given game as a small world

in which players can scrutinize all possible contingencies and anticipate all

their future decisions. But empirical and experimental evidence have shown

that this accurate analysis of the game may be too hard for real players. Li

(2017) addressed players�di¢ culties with contingent reasoning by introducing

obvious dominance: a strategy obviously dominates another strategy if, at each

decision node from which the two strategies depart, the worst outcome that

is still possible under the �rst strategy is not worse than the best outcome

that is still possible under the second strategy. With this, obvious dominance

explores the idea that dynamic mechanisms may be easier to play because they

allow to compare strategies under smaller outcome sets. Pycia and Troyan

(2022) further address players�di¢ culties with planning by introducing strong

obvious dominance: an action is strongly obviously dominant at a decision node

if the worst outcome that may follow the �rst action is not worse than the best

outcome that may follow any other action. Thus, strong obvious dominance

explores the idea that players compare actions without a forward plan.

In this paper, we take the following perspective on players�choices in dy-

namic games. Instead of planning at the outset, players tackle one choice prob-

lem at a time � they �cross a bridge when they come to it�� and compare
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the available actions by �rst focusing on their possible immediate consequences.

At the same time, players realize that, under some actions, the game may con-

tinue � they �look before they leap�� , but their view of the continuation

game is blurred, so they only look for con�rmation of the local comparison

through simple considerations about the future. We introduce a notion of local

dominance between two actions that captures this perspective on the game.

To illustrate, consider the �Japanese�version of a single-unit, ascending-

price auction with a discrete clock. At each stage, players simultaneously choose

between �leaving�and �bidding�. The object is assigned at the current price

either when one player bids, and then she is the winner, or when no player bids,

in which case the winner is determined at random. Take the viewpoint of a

player who values the object above the current price. Bidding may immediately

yield the object for sure, if no one else bids, or let the auction continue, oth-

erwise. Before considering the latter scenario, which requires foresight, it may

be natural to compare the possible, immediate outcomes of the two actions in

the former scenario. Since leaving only yields the object with some probability,

bidding beats leaving. This comparison is simple because it only involves the

few outcomes associated with the current price. By contrast, in a sealed-bid,

second-price auction, each bid can result in winning the object at many di¤er-

ent prices. In general, comparing actions in a static mechanism may be di¢ cult

because each action can immediately induce a plethora of outcomes. Dynamic

mechanisms, instead, draw players� attention to the few outcomes that can

realize at each stage. Local dominance captures this simplicity factor of dy-

namic mechanisms. By contrast, obvious and strong obvious dominance drag

into the same picture present and future outcomes of a strategy/action. As

a consequence, in the ascending auction, bidding until the price reaches one�s

valuation is not obviously dominant, because it may result in eventually losing

the object, while leaving earlier may result in winning the object at the lottery.

Local dominance, instead, focuses �rst on the possible immediate outcomes of

both actions. This is a coarse form of contingent reasoning, arising from the

separate treatment of present and future of the game in the player�s mind.

Players might base their choices only on their possible immediate conse-
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quences and just ignore the continuation game as too complicated to analyze.1

However, they may also be concerned that the local comparison would be over-

turned if the game continues, in ways they cannot fully scrutinize. Because of

this concern, such players may even settle an action that ranks clearly below

another action in terms of possible immediate outcomes.2 Local dominance en-

sures that players can �nd con�rmation of the local comparison without forward

planning, and yet without careful scrutiny of all possible future outcomes.

Consider �rst the possibility that the game continues after the candidate

dominating action but not after the alternative. In the auction, this occurs

when not just our player but also some opponent bids. In this scenario, while

leaving implies losing the object, the �nal outcome after bidding will depend

on the future moves. However, our player does not reason about how she will

actually play. Instead, she only entertains the idea of leaving at the next stage,

without coming up with any creative alternative. By doing so, she excludes

the possibility of a loss after bidding, con�rming its superiority to leaving. But

what makes �leaving at the next stage� a salient continuation strategy? In

our view, the fact that it �mimics� the alternative under consideration (in a

sense we will make precise). Local dominance will endogenize in this way what

continuation strategy is simple for the player, requiring that it is available and

that it con�rms the local comparison.

In other situations, the game may continue after both actions under com-

parison. To give an example, add action �wait�to the ascending-price auction.

Waiting di¤ers from leaving only in that, if the auction continues, a player

who waited can still move. The opponents will not observe whether our player

waited or bid. But then, which of the two actions she chose makes no di¤erence

whatsover for the future: she can play in the same way after the two actions,

1Our positive results for dynamic mechanisms would obviously hold through if local dom-
inance was de�ned with just the comparison of the outcomes that can realise when both
actions terminate the game.

2For instance, in the dynamic translation of the Top Trading Cycles allocation rule where
players demand one of the still-available objects at a time, a player may be tempted to ask
for a less-preferred object if she fears that the opportunity to obtain it will fade and the
opportunity to obtain a more-preferred one will never arise. We will address this concern
with speci�c game rules and local dominance in Section 5.2.

4



and then she will also get the same outcome. Local dominance will thus require

that the scenario in which the game continues after both actions is irrelevant

for the choice and can be rightfully ignored. Realising that the present choice

cannot have any impact on the continuation game does not truly require to

scrutinize all possible ways in which the game may continue, but just a rough

understanding of the game pattern. Recognizing the invariance of future out-

comes could also be easier than �nding best and worst outcomes across two

heterogenous outcome sets, because it does not require to understand the de-

tails of a possibly complicated outcome rule.3

In static game, local and (strong) obvious dominance coincide. But in a

dynamic game, even a strongly obviously dominant action need not be locally

dominant. Yet, local dominance provides a possible explanation of why some

dynamic mechanisms that are not obviously strategy-proof were found easy

to play, and it yields positive implementation results for relevant social choice

functions that cannot be implemented in obviously dominant strategies. The

�Japanese� ascending-price auction (with the random tie-breaking rule) was

found easy to play in the experimental work of Kagel et al. (1987). Moreover,

we construct a dynamic mechanism that implements the Top Trading Cycles

allocation rule in locally dominant actions, although (as shown by Li, 2017) no

obviously strategy-proof mechanism can implement it.4

Local dominance builds on a more general approach that we develop, whereby

players compare actions rather than strategies, under a partition of the contin-

gencies and without a plan for the future. We start with an exogenously given

partition of the possible states of nature and opponents�strategies, and we call

each partition element a �scenario�. We say that action a dominates action b

given the partition if, for every continuation strategy after b, there is a con-

3In Section 6.3, we consider an example of a maze in which, at the �rst bifurcation, after
going right the player may or may not �nd the exit, whereas after going left she will certainly
not �nd it, but discovering this requires detailed scrutiny of two very complicated subtrees.

4Our mechanism is a special case of the class of �menu mechanisms�de�ned by Mackenzie
and Zhou (2022). In particular, it is very similar to Bo and Hakimov�s (2022) �pick-an-object
mechanism�for the implementation of the TTC rule, the di¤erence being in players�infor-
mation �ow. Bo and Hakimov (2022) also provide experimental evidence for the simplicity
of their mechanism. See Section 6.3 for details.
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tinuation strategy after a that guarantees a better outcome in every scenario.

A distinctive feature of our approach is that our player does not associate the

candidate dominating action with one continuation strategy � continuation

strategies are only used as mental checks and hence can change with the al-

ternative under consideration. Coherently with this idea, we further allow the

�exibility of tailoring the continuation strategy on the scenario under analysis.

We say that action a scenario-by-scenario dominates (s-dominates) action b if,

in each scenario, for every continuation strategy after b, there is a continuation

strategy after a that can only do better. Thus, to establish s-dominance, each

scenario is analyzed in isolation. Because of this, in each scenario, s-dominance

does not truly require to scrutinize the possible continuation strategies after b;

one can just look for the best possible outcome after b and compare it with the

worst possible outcome after a under some good-enough continuation strategy.

Dominance spans between the case of perfect contingent reasoning (with

the �nest partition of the space of uncertainty) and the case of no contingent

reasoning (with the coarsest partition). In the �rst case, we talk of weak domi-

nance between actions, in the second case of obvious dominance. Because of the

lack of global planning, by choosing weakly/obviously undominated actions a

player may follow a weakly/obviously dominated strategy � a form of dynamic

inconsistency. Yet, we show that a strategy is weakly/obviously dominant if

and only if it prescribes a weakly/obviously dominant action at every informa-

tion sets that can be reached when playing that strategy. Thus, in a (obviously)

strategy-proof dynamic game, a player does not have to recognize the existence

of the dominant strategy in advance; by just spotting one dominant action at

a time, she will � perhaps unknowingly � carry it out. In other words, the

�exibility in the use of continuation strategies can be exploited without making

mistakes.

Since a dominant action is s-dominant (given the same partitions), a player

can also discover it without reasoning across scenarios, hence using the most

convenient continuation strategy in each scenario. Perhaps surprisingly, we

show that the following converse implication also holds: when there is an s-

dominant action at every information set, such actions are also dominant. Thus,
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the simpler approach of s-dominance is equally e¤ective to determine whether

there is a dominant action at each decision node. With perfect contingent

reasoning, s-dominance boils down to comparing the best possible outcomes

after the two actions in each contingency. This is a form of wishful think-

ing (we call it wishful dominance) that eliminates the need to even conceive

continuation strategies. Seen from this angle, if players are capable of perfect

contingent reasoning, dynamic strategy-proof mechanisms do not require any

sort of planning, and this could be an explanation for their simplicity.

While a (s-)dominance relation between actions may be easy to spot, a

priori there is no guarantee of this. First, even the coarsest scenarios that

allow to establish dominance may be hard to identify. Second, the continuation

strategies that allow to establish dominance may be hard to identify as well;

the optimal continuation strategy may even be the only one that does the job.

Therefore, with local dominance, we endogenize the scenarios from the local

viewpoint, and we impose a simple use of continuation strategies.

The partition associated with local dominance, which we call �local par-

tition�, is driven by the natural separation in a player�s mind between the

scenario in which an action terminates the game, and hence yields an imme-

diate consequence, and the scenario in which it does not, and hence one must

look ahead. With this, our player identi�es the four scenarios in which each of

the two actions either terminates her game or not.5 These scenarios are �local�,

in the sense that they only depend on the moves of the opponents before the

next decision nodes of our player, avoiding any consideration on their future

moves. In terms of continuation strategies, in the scenarios where the candi-

date dominating action a terminates the game, a player does not actually need

to entertain any continuation strategy. In the scenarios where action a does

not terminate the game, compared to s-dominance, local dominance restricts

the use of continuation strategies by only allowing to compare action a with

5Both in the ascending-price auction (without waiting action) and in our TTC mechanism,
local dominance only requires to distinguish the two scenarios in which the dominant action
terminates the game or not. This is particularly convenient in the TTC mechanism, because
it allows to use the same unique partition of the contingencies across all comparisons with
many alternatives.
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action b under the hypothesis of continuing in the same way. By doing so, our

player defers any consideration about the optimality of her future moves. In

the scenario where b terminates the game, �continuing in the same way�after

a translates into playing b or an action that terminates the game � in the

auction, �leaving�. In the more complicated scenario where the game contin-

ues after both actions, local dominance departs from s-dominance by requiring

that the �nal outcome is invariant to the present choice.

With the idea of �continuing in the same way�, our player compares the

two actions ceteris paribus with respect to all other decisions she will make.

This can be seen as an adaptation of the classical one-shot deviation check for

a player who does not have a plan. More importantly, the idea of continuing in

the same way allows to apply the sure thing principle (STP) to the scenario in

which the game continues after both actions. We �nd this application of STP

simple because such a scenario is already isolated in our player�s mind � we

contrast this with a classical violation of STP in Section 4.

The paper is organized as follows. In Section 2 we describe the game. In

Section 3 we introduce and analyze our baseline notion of dominance and the

notion of s-dominance. Section 4 is devoted to local dominance. Section 5 is de-

voted to applications of local dominance: we solve the ascending auctions and

design our dynamic TTC mechanism. Section 6 concludes with a �nal com-

parison with Li (2017) and Pycia and Troyan (2022), along with a discussion

of other related literature and an avenue for future research. The Appendix

collects the formal proofs of some of the results and an example of a relaxation

of local strategy-proofness (on-path strategy-proofness) that could be natural

and more appropriate in some contexts.

2 Framework

We consider a �nite multistage game in which players possess payo¤-relevant

private information, which we represent as the asymmetric observation of an

initial move of nature. Nature has a �nite set � of possible moves, and each

player i 2 I has a �nite set Ai of actions that are available at some point of the
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game; let A = �i2IAi. Without loss of generality, we assume that, after the
move of nature, the game always lasts exactly T stages, and that all players

simultaneously choose an action at every stage. (When a player is not truly

active, only a dummy action will be available.) Thus, the set X1 of stage-1

histories is �, and for each t = 2; :::; T , the set X t of stage-t histories is a

subset of �� At�1; the set of terminal histories Z is a subset of �� AT . Let

X = [Tt=1X t and X = X [Z; X is endowed with the �pre�x of�partial order,

denoted by ���. An information set of player i collects histories of the same
stage that player i cannot distinguish (players know the stage); the set of i�s

information sets Hi partitions X and satis�es perfect recall, and thus it inherits

the precedence order � from X. For each h 2 Hi, let Ahi � Ai denote the set

of actions available to player i at h. Let H�
i collect the information sets h 2 Hi

where player i is active, that is,
��Ahi �� > 1.

For each player i, there is a set of possible outcomes Yi. Let gi : Z ! Yi

denote the function that associates each terminal history with i�s �nal outcome,

and let ui : Z ! R denote player i�s payo¤ function.
A reduced strategy of player i (henceforth, just �strategy�) is a map si

that assigns an action ai 2 Ahi to each information set h 2 Hi that can be

reached given the actions assigned to the previous information sets. Note that

a strategy prescribes a dummy action also at every information set where player

i is not active. Let Si denote the set of strategies of player i, and let S�i =

�� (�j2InfigSj). For each (si;s�i) 2 Si � S�i, let �(si;s�i) denote the induced

terminal history. For each h 2 Hi, let Si(h) and S�i(h) denote, respectively,

the elements of Si and S�i that allow to reach h. For each ai 2 Ahi , let Si(h; ai)
denote the set of strategies si 2 Si(h) such that si(h) = ai. Although, formally,

an element of Si(h; ai) is a strategy for the entire game, we will use Si(h; ai)

to describe the continuation strategies of i after choosing ai at h. Let H�
i (si)

denote the set of active information sets of i that are consistent with strategy

si, i.e., that can be reached by playing si.
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3 Dominance between actions

3.1 Baseline notion of dominance

We take the viewpoint of a player who compares two available actions ai; ai
at an information set h 2 H�

i . As we are mainly interested in the existence of

a dominant action, we only consider comparisons between pure actions. The

relevant state for player i�s choice is s�i, which includes the move of nature

� and the strategies of the opponents (sj)j 6=i.6 Given the current information

set h, the set S�i(h) is thus the set of relevant states that are still possible

at h. A scenario is a subset of S�i(h) under which player i compares the

two actions. We assume that player i considers a collection of scenarios that

partitions S�i(h). For example, a player could ask herself �will my opponent go

left or right at the current stage?�, and compare actions under each of the two

scenarios of the corresponding bipartition. Our baseline notion of dominance

postulates how a player compares the two actions under a given partition.

De�nition 1 Fix an information set h 2 H�
i , an action pair (ai; ai) 2 Ahi �Ahi ,

and a partition S of S�i(h). Action ai dominates action ai given S if for every
si 2 Si(h; ai), there exists si 2 Si(h; ai) such that

8S�i 2 S; min
s�i2S�i

ui (�(si; s�i)) � max
s�i2S�i

ui (�(si; s�i)) : (1)

Action ai is dominant (at h) if it dominates every other ai 2 Ahi given the

partition associated with (ai; ai).

Action ai dominates action ai if for every possible continuation strategy

after ai, there exists a continuation strategy after ai that does better in every

scenario. Local dominance does not require player i to �nd one continuation

strategy after ai that beats all continuation strategies after ai � such a con-

tinuation strategy may not even exist. Rather, the continuation strategy after

6For coherence with the view that player i does not formulate a global plan, the strategies
of the opponents are best interpreted not as plans either, but just as sets of conditional
statements about behavior: how a player would behave upon reaching an information set.
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ai conceived by player i can change with the continuation strategy after ai
that player i is considering. As we will see in Section 4, this is particularly

convenient when for every continuation strategy after ai, there is a �mimick-

ing�continuation strategy after ai which does the job. Our baseline notion of

dominance does not allow, instead, to change the continuation strategy after

ai depending on the scenario under consideration � we will formalize a notion

of dominance with this additional �exibility in the next subsection.

To establish that a continuation strategy after ai �does better� than a

continuation strategy after ai within a scenario, we employ the comparison of

the worst and the best outcome that can realize under, respectively, the former

and the latter continuation strategies. This conservative approach, borrowed

from obvious dominance, makes our notions of dominance robust to possible

ways in which players compare actions within a scenario.

It is easy to see that the �ner is the partition into scenarios, the weaker is

the notion of dominance associated with the partition.

Remark 1 Fix two partitions S; eS of S�i(h) where eS re�nes S. If ai dominates
ai given S, then ai dominates ai given eS.
Consider now the �nest and the coarsest partitions of S�i(h): the singleton

partition S = ffs�ig js�i 2 S�i(h)g, and the trivial partition S = fS�i(h)g.
Under these two partitions, in light of Remark 1, we obtain the weakest and

the strongest notions of dominance we can establish by just varying the level

of detail in contingent reasoning. We formalize these two extreme notions of

dominance between actions and call them �weak dominance� and �obvious

dominance�because in static games they coincide with the corresponding no-

tions of dominance between strategies.7

De�nition 2 Fix an information set h 2 H�
i .

7As common in mechanism design but not in game theory, we de�ne weak dominance
without requiring strict inequality under some contingency � in game theory, this notion is
called very weak dominance (Marx and Swinkels, 1997).
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Action ai 2 Ahi weakly dominates action ai 2 Ahi if for every si 2
Si(h; ai), there exists si 2 Si(h; ai) such that

8s�i 2 S�i(h); ui (�(si; s�i)) � ui (�(si; s�i)) : (2)

Action ai 2 Ahi obviously dominates action ai 2 Ahi if for every si 2 Si(h; ai),
there exists si 2 Si(h; ai) such that

min
s�i2S�i(h)

ui (�(si; s�i)) � max
s�i2S�i(h)

ui (�(si; s�i)) : (3)

Action ai is weakly/obviously dominant if it weakly/obviously dominates every

other ai 2 Ahi .

We now compare weak/obvious dominance between actions with

weak/obvious dominance between strategies (in dynamic games). We �rst re-

port the de�nitions of the latter. Given two strategies si; si 2 Si, let D(si; si)
be the set of their points of departure, that is, the information sets h 2
H�
i (si) \H�

i (si) such that si(h) 6= si(h).8

De�nition 3 Strategy si weakly dominates strategy si if

8s�i 2 S�i; ui (�(si; s�i)) � ui (�(si; s�i)) : (4)

Strategy si obviously dominates strategy si if

8h 2 D(si; si); min
s�i2S�i(h)

ui (�(si; s�i)) � max
s�i2S�i(h)

ui (�(si; s�i)) : (5)

A strategy is weakly/obviously dominant if it weakly/obviously dominates every

other strategy.

Weak/obvious dominance between two actions at an information set is

equivalent to the following relationship between strategies that reach the in-

8Given our focus on reduced strategies, and thanks to perfect recall, every point of de-
parture is an earliest point of departure in the sense of Li (2017).
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formation set: every strategy that prescribes the dominated action is weakly/

obviously dominated by some strategy that prescribes the dominating action.9

Proposition 1 Action ai 2 Ahi weakly/obviously dominates action ai 2 Ahi if

and only if every si 2 Si(h; ai) is weakly/obviously dominated by some si 2
Si(h; ai).

The �only if�part of Proposition 1 implies that weak dominance between

actions has the following foundation: if action ai is weakly dominated by some

action ai (but not the other way round), then choosing ai is not optimal under

any full-support belief over S�i(h). Moreover, the �if� part guarantees that

action ai is (weakly/obviously) dominated by action ai if every strategy that

prescribes ai is dominated by a strategy that prescribes ai. Note however that a

dominated strategy need not prescribe a dominated action. It can even be the

case that all the actions prescribed by a dominated strategy are undominated.

This is a consequence of the lack of global planning. As an example, consider

the following perfect information game:

Ann �! Bob �! Ann �! Bob �! (3; 3)

# # # # �! = across

(2; 0) (0; 1) (1; 0) (0; 1) # = down

The strategy of Ann that prescribes across at the initial history and down

at history (across; across) is weakly/obviously dominated by strategy down.

Nonetheless, it is easy to see that both action across at the initial history and

action down at history (across; across) are not weakly/obviously dominated.

Thus, when players do not follow a global plan, by choosing undominated

actions they might still end up playing a dominated strategy. As a consequence,

fewer patterns of behavior can be ruled out with dominance between actions

in place of dominance between strategies. In light of this, it seems harder

to achieve �(obvious) strategy-proofness� without assuming global planning.

9Shimoji and Watson (1998) introduce the notion of conditional (strict) dominance be-
tween strategies at an information set. Proposition 1 essentially relates weak and obvious
dominance between actions to the weak and obvious counterparts of conditional dominance.
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But this is not true: when a player has a weakly/obviously dominant strategy,

all the actions it prescribes are weakly/obviously dominant, so weak/obvious

dominance between actions does rule out any other behavior. Thus, we obtain

the following characterization.

Theorem 1 A strategy si is weakly/obviously dominant if and only if si(h) is
weakly/obviously dominant at every h 2 H�

i (si).

Theorem 1 implies that (obvious) strategy-proofness can be broken down

into a collection of local conditions, each requiring the existence of a

weakly/obviously dominant action. This local property may be key to un-

derstand why some (obviously) strategy-proof dynamic mechanisms are easier

to play than their static, direct counterparts. Dynamic mechanisms decom-

pose the problem of revealing players�entire preferences into a series of smaller

partial-revelation problems, but this advantage is lost if all such problems must

be jointly solved at the outset � to what extent can players really tackle them

in isolation? Theorem 1 says that players do not necessarily have to plan

globally if the decomposition preserves the existence of a dominant strategy;

instead, they can �nd one dominant action at a time. We build our simplicity

theory precisely on this ground: with local dominance we will identify a natural

way of tackling each choice problem in isolation.

3.2 Scenario-by-scenario dominance

Now we explore the possibility that, for the comparison of two actions, players

analyze each scenario in isolation. This means that players may use di¤erent

continuation strategies while considering di¤erent scenarios.

De�nition 4 Fix an information set h 2 H�
i , an action pair (ai; ai) 2 Ahi �Ahi ,

and a partition S of S�i(h). Action ai scenario�by-scenario dominates (s-

dominates) action ai given S if, for every S�i 2 S,

8si 2 Si(h; ai); 9si 2 Si(h; ai); min
s�i2S�i

ui (�(si; s�i)) � max
s�i2S�i

ui (�(si; s�i)) :

(6)
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Action ai is s-dominant if it s-dominates every other ai 2 Ahi given the partition
associated with (ai; ai).

As for the baseline notion of dominance, the �ner the partition, the weaker s-

dominance. Given the same partition, s-dominance is weaker than dominance,

because the continuation strategy after the s-dominating action can change

with the scenario. When the partition is trivial s-dominance and dominance

coincide. The following remark summarizes these observations.

Remark 2 1. For any two partitions S; eS of S�i(h) such that eS re�nes S,
if ai s-dominates ai given S, then ai s-dominates ai given eS.

2. If action ai dominates action ai given S, then ai s-dominates ai given S.

3. Action ai obviously dominates ai if and only if it s-dominates ai given the

trivial partition S = fS�i(h)g.

Since a dominant action is also s-dominant, to discover a dominant action

a player can also analyze every scenario in isolation. Typically, this simpli-

�es her task, because it allows to tailor the continuation strategy after the

dominant action on the scenario under consideration.10 Perhaps surprisingly,

when there are s-dominant actions everywhere, the converse implication holds

as well: the s-dominant actions are also dominant. Thus, the simpler approach

of s-dominance is equally e¤ective to determine whether there is a dominant

action at each decision node.

Theorem 2 For each strategy si 2 Si, si(h) is dominant at every h 2 H�
i (si)

if and only if si(h) is s-dominant at every h 2 H�
i (si).

Of course, Theorem 2 assumes that, for every information set and every

alternative action, dominance and s-dominance are established under the same

partition. Instead, surprisingly, Theorem 2 does not require any discipline

across the partitions used at di¤erent information sets. One could expect that,

10Whether players actually reason in this way is a question for experimental/empirical
research.
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to guarantee that an s-dominant action is dominant, the existence of a dominant

action at every future information set must be established under su¢ ciently

coarse partitions. This is not the case.

De�nition 4 highlights the key di¤erence between s-dominance and domi-

nance by simply changing the order of quanti�ers: �rst the scenario is �xed,

then di¤erent continuation strategies are considered. But s-dominance can be

checked without actually scrutinizing all possible continuation strategies after

the dominated action. Given a scenario, among the continuation strategies af-

ter ai that verify condition (6) against the continuation strategies after ai, at

least one works against all the continuation strategies after ai: the one that

gives the highest worst-case payo¤ within the scenario. But then, condition

(6) boils down to checking that such a payo¤ is larger than the best possible

payo¤ after ai. This yields a convenient operational de�nition of s-dominance.

To formalize, let Z(h; ai; S�i) denote the terminal histories that can be reached

under S�i � S�i(h) if i chooses ai at h.

Remark 3 Action ai s-dominates action ai given S if and only if for every
S�i 2 S, there exists si 2 Si(h; ai) such that

min
s�i2S�i

ui (�(si; s�i)) � max
z2Z(h;ai;S�i)

ui (z) :

In the case of perfect contingent reasoning, s-dominance does not even re-

quire to come up with a continuation strategy after the dominating action:

tailoring the continuation strategy to each contingency is equivalent to just

identifying the best possible payo¤ given each contingency. The following def-

inition formalizes this special case.

De�nition 5 Action ai 2 Ahi wishfully dominates action ai 2 Ahi if

8s�i 2 S�i(h); max
z2Z(h;ai;s�i)

ui (z) � max
z2Z(h;ai;s�i)

ui (z) ; (7)

Action ai is wishfully dominant if it wishfully dominates every other ai 2 Ahi .

Remark 4 Action ai wishfully dominates ai if and only if ai s-dominates ai
given the singleton partition S = ffs�ig js�i 2 S�i(h)g.

16



We will illustrate wishful dominance by example in our dynamic TTCmech-

anism of Section 5.2. The term �wishful�is justi�ed by the fact that the player

looks at the best payo¤s she could obtain under each contingency, although,

typically, no single continuation strategy can achieve the best outcome in all

contingencies. This observation also highlights a fundamental inconsistency

between planning and wishful dominance: a player cannot, at the same time,

be a planner and reason according to wishful dominance.11

Wishful dominance allows us to provide a characterization of strategy-

proofness that does not involve continuation strategies. By theorem 1, strategy-

proofness is equivalent to the existence of a weakly dominant action at every

information set that is consistent with the dominant strategy. Thus, by Theo-

rem 2, the same equivalence holds with wishful in place of weak dominance.

Theorem 3 A game is strategy-proof if and only if, for each player i, there

exists a strategy si such that si(h) is wishfully dominant at every h 2 H�
i (si).

Theorem 3 says that the search for a weakly dominant strategy can be de-

composed into local problems that do not even require to conceive continuation

strategies. In other words, strategy-proofness is robust to the inability to plan

forward, if players analyze each contingency in isolation. The possibility to dis-

cover the dominant actions without even entertaining continuation strategies

strengthens our argument for the simplicity of strategy-proof dynamic mech-

anisms � in our dynamic TTC mechanism, searching for wishfully dominant

actions will be particularly easy.

4 Local Dominance

The notions of dominance we introduced so far are silent as to whether the

two actions can be ranked using a partition and continuation strategies that

are truly easy to identify. In this section, we endogenize the partition of the

11Games with perfect and complete information are an exception, in that looking for the
best outcome in each contingency pins down a well-de�ned plan. We conjecture that in this
class of games, wishful dominance, weak dominance, and even obvious dominance coincide.
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contingencies and restrict the use of continuation strategies according to the

simplicity principles outlined in the introduction. While doing so, as in s-

dominance, we maintain the idea that players consider each scenario separately.

This is a natural choice given that, with local dominance, we aim to capture

the separate treatment of present and future of the game in the player�s mind.

Endogenizing the partition Fix an information set h 2 Hi. For each action

ai 2 Ahi , let S
ai;h
�i denote the set of contingencies in which the game will end for

player i after choosing ai at h, i.e., there is no further information set where i

is active after playing ai at h:

Sai;h�i = fs�i 2 S�i(h) : 8z 2 Z(h; ai; s�i); /9h0 2 H�
i ; h � h0 � zg :

Given an action pair (ai; ai) 2 Ahi � Ahi , let

Sai;ai(h) = Sai;h�i \ S
ai;h
�i Saiai (h) = Sai;h�i nS

ai;h
�i

Saiai (h) = Sai;h�i nS
ai;h
�i Sai;ai(h) = S�i(h)n(Sai;h�i [ S

ai;h
�i ):

In words, each of these sets contains the strategies of the opponents that ter-

minate our player�s game if she chooses the action(s) at the superscript, and

do not terminate it if she chooses the action(s) at the subscript. Let

S`(h; ai; ai) =
�
Sai;ai(h); Saiai (h); S

ai
ai
(h); Sai;ai(h)

	
:

We call S`(h; ai; ai) the local partition.
The local partition seems natural from a local viewpoint, for various reasons.

For a player who compares the current actions with a blurred view of the

future, it is natural to �rst focus on their possible immediate consequences.

This requires the player to understand in what circumstances each action will

be the last action she plays and hence will directly yield the �nal outcome.

This way of partitioning is indeed �local�, in that the scenarios only depend

on the moves of the opponents before our player�s next active stage, and can

be identi�ed as long as she can conceive her next moves. Formally, the local

partition is measurable with respect to the information our player receives at
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the next decision nodes. For each eai = ai; ai, call H�(h;eai) the set of the �rst
active information sets of i after choosing eai at h, and let S�(h;eai) denote the
collection fS�i(h0)jh0 2 H�(h;eai)g [ fSeai;h�i g. The local partition, S`(h; ai; ai),
is weakly coarser than the meet of the partitions S�(h; ai) and S�(h; ai).

Mimicking strategies Next, we formalize the idea of comparing two actions

�ceteris paribus�with respect to the future moves, that is, under the hypothesis

of �continuing in the same way� after the two. Coherently with analysing

each scenario in isolation, we are going to talk of continuing in the same way

conditional on the particular scenario under consideration.

Let �(eh) denote the stage of an information set eh. Fix si; si 2 Si(h) and

a scenario S�i � S�i(h). We say that si mimics si given h and S�i when,
for every s�i 2 S�i, the following condition holds: For every h 2 H�(h; si(h))

and for every h
0
; h0 2 Hi such that h � h

0 � �(si; s�i), h0 � �(si; s�i), and

�(h
0
) = �(h0), we have si(h

0
) = si(h

0). In words, under every element of S�i,

once player i becomes active again after choosing si(h) at h, the mimicking

strategy prescribes the same action as the mimicked strategy at each subsequent

stage. Note that mimicking only starts at the next active information set

because, before that, a player is forced to play a dummy action.

Mimicking is a strong requirement because it is formulated �ex-post�: for

each realization of s�i in S�i, the actual sequence of moves of player i (from

the �rst active stage after ai) must be the same under si and its mimicker si.

Irrelevance Now we introduce our version of �sure thing principle�for the

problem at hand, that is, the idea that a scenario is �irrelevant�for the com-

parison of two actions. Our player will conclude that a scenario is irrelevant

when, by continuing in the same way after the two actions, she would obtain

the same outcome. This observation is di¤erent in nature from the comparison

of best and worst outcomes we considered so far. Typically, it follows from a

symmetric structure of the game that is easy to spot without actual scrutiny

of all the possible ways she and the opponents may continue playing, and of

the consequent outcomes.
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Formally, we say that a scenario S�i is irrelevant for (ai; ai) at h when,
for every si 2 Si(h; ai), there exists si 2 Si(h; a) that mimics si given h and

S�i such that

8s�i 2 S�i; gi (�(si; s�i)) = gi (�(si; s�i)) : (8)

We de�ne irrelevance for an ordered pair of actions because we have in mind a

player who has already concluded that ai is better than ai in terms of possible

immediate consequences. To check that this ranking is not overturned when

looking at the possible future consequences, it is enough to conclude that for

any outcome that she can obtain after ai, she can also obtain it after ai.

Ignoring an irrelevant scenario is an application of the sure thing principle

in which the irrelevant states are obtained under the hypothesis of continuing in

the same way. The sure thing principle is sometimes violated in other contexts,

and one of the reasons could be that, in the problem at hand, the irrelevant

states are naturally pooled with relevant ones into a non-irrelevant scenario in

the decision-maker�s mind. For instance, in Ellsberg�s problem with 30 red balls

and 60 yellow or blue balls, the state �blue� is irrelevant for the comparison

of �bet on red�and �bet on yellow�, but it is naturally pooled with the other

losing state �yellow�under the �rst bet and with the other losing state �red�

under the second bet. In our context, we expect a player to identify the scenario

�the game continues after both actions�before she recognizes its irrelevance,

for the reasons we outlined before, which have nothing to do with the outcome

function.

Local dominance We are now ready to formalize the idea of comparing

actions under the local partition and the hypothesis of �continuing in the same

way�.

De�nition 6 Fix an information set h 2 H�
i and an action pair (ai; ai) 2

Ahi �Ahi . Action ai locally dominates action ai if for each non-empty S�i 2
S`(h; ai; ai), for each si 2 Si(h; ai), there exists si 2 Si(h; ai) that mimics si
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given h and S�i such that:

if S�i 6= Sai;ai(h), min
s�i2S�i

ui (�(si; s�i)) � max
s�i2S�i

ui (�(si; s�i)) ;

if S�i = Sai;ai(h), gi (�(si; �)) jS�i = gi (�(si; �)) jS�i
(i.e., Sai;ai(h) is irrelevant).

(9)

Action ai is locally dominant if it locally dominates every other ai 2 Ahi .

Local dominance builds on s-dominance by considering each scenario of the

local partition in isolation. While s-dominance assumes that, in each scenario,

a player can always �nd a good-enough continuation strategy after the domi-

nating action, local dominance does not assume this ability; it only requires to

entertain the salient continuation strategy that �continues in the same way�

as after the dominated action, i.e., the mimicking strategy. In the way out-

comes are compared, local dominance departs from (s-)dominance in the sce-

nario where the game continues after both actions: instead of assuming that a

player can �nd worst and best outcomes after the two actions, it assumes that

a player can realize that the current choice has no impact on the continuation

game. Of course, a cognitively limited player could also ignore this scenario

simply because it seems too complicated � local dominance is robust to these

considerations.

Local dominance can be interpreted as a new kind of one-shot deviation

check. In particular, local dominance evaluates a switch from the dominating

to the dominated action not under a �xed continuation strategy, which may

prescribe di¤erent future moves after the two actions, but under the idea of

�continuing in the same way�after the two actions, no matter how. In this

sense, local dominance is a game theoretical translation of the �ceteris paribus�

principle. For the scenario in which the game continues after both actions,

the invariance of �nal outcomes typically requires the continuation play of

the opponents to be the same as well. In turn, this typically requires that

the opponents do not observe (and hence cannot condition their choices on)

whether our player chose one action or the other. Indeed, like weak dominance

and unlike obvious dominance, local dominance is sensitive to how informed the
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opponents are of a player�s moves: roughly speaking, the more they observe,

the more the opportunities to strategize, the more di¢ cult for the player to

identify a dominant choice.

A peculiarity of local dominance is not being transitive. The reason is

that the local partition changes with the action pair under comparison. We

do not �nd this intransitivity undesirable for a notion of dominance that aims

to capture an idea of simplicity: �similar�enough alternatives may be easy to

rank, too �dissimilar�ones may not.

De�nition 6 formalizes the idea of comparing actions under the view of

continuing in the same way. In particular, it matches each continuation strat-

egy after the dominated action with a mimicking continuation strategy after

the dominating action, mirroring De�nition 4 of s-dominance. But just like

s-dominance, a player can assess local dominance without scrutinizing the con-

tinuation strategies after the dominated action (see Remark 3); moreover, under

the local partition, in the scenarios where the dominating action terminates the

game, there is clearly no need to entertain any continuation strategy after the

dominating action either. Thus, by the very nature of the local partition, our

player can analyze each scenario as follows.

Remark 5 Action ai locally dominates action ai if and only if the following
conditions hold (when the respective scenario is non-empty):

1. (comparison of immediate consequences)

min
z2Z(h;ai;Sai;ai (h))

ui (z) � max
z2Z(h;ai;Sai;ai (h))

ui (z) ; (10)

2.

min
z2Z(h;ai;S

ai
ai
(h))

ui (z) � max
z2Z(h;ai;S

ai
ai
(h))

ui (z) ; (11)

3. there exists si 2 Si(h; ai) that mimics any si 2 Si(h; ai) given h and

Saiai (h) such that

min
s�i2S

ai
ai
(h)
ui (�(si; s�i)) � max

z2Z(h;ai;S
ai
ai
(h))

ui (z) ; (12)
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4. Sai;ai(h) is irrelevant.

To see the equivalence between conditions (10),(11) and condition (9), note

that in scenarios Sai;ai(h) and Saiai (h) there is no active information set of player

i after ai. Therefore, the only �continuation strategy�after ai (the one that

prescribes the dummy actions until stage T ) trivially mimics any continuation

strategy after ai � recall that mimicking is only required to start from the

next active information sets onwards. As for scenario Saiai (h), there is just one

mimicking strategy to consider, because, within this scenario, all si 2 Si(h; ai)
induce the same dummy continuation strategy after ai.

We say that a game is locally strategy-proof when each player has a
locally dominant action at every information set that can be reached if she

always chooses her locally dominant actions. In Section 5.1, we show that the

ascending auctions we considered in the introduction are locally strategy-proof,

and we construct a locally strategy-proof mechanism that implements the TTC

allocation rule.

Comparison with other notions of dominance between actions We

start by comparing local dominance with the weakest notion of dominance we

introduced, wishful dominance. Suppose that action ai locally dominates action

ai; then, under each contingency s�i, compared to the best outcome after ai,

after ai one can achieve an outcome that is at least as good (in particular, the

same outcome if s�i 2 Sai;ai(h)). Therefore, local dominance re�nes wishful

dominance. With this, Theorem 3 implies that local strategy-proofness re�nes

strategy-proofness.

Proposition 2 If ai locally dominates ai, then it wishfully dominates ai. There-
fore, if a game is locally strategy-proof, it is strategy-proof.

Local dominance is neither weaker nor stronger than s-dominance if we �x

the local partition. The reason why it is not stronger, despite the restrictions

on the use of continuation strategies, is that, as we observed, irrelevance is just

a di¤erent criterion from the comparison of worst and best payo¤s.
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Similarly, local dominance is not weaker or stronger than obvious dominance

between actions. In static games, the two notions actually coincide, because

the only non-empty scenario is the one in which the game ends after every

action. In our framework, a game is static if T = 1, so there is stage 0 for the

move of nature and only stage 1 for players�moves.

Proposition 3 Fix a static game, an information set h 2 H�
i , and an action

pair (ai; ai) 2 Ahi �Ahi . Then, action ai locally dominates action ai if and only
if ai obviously dominates ai.

Proposition 3 allows to establish a connection between local and obvious

strategy-proofness, which we discuss in Section 6.1.

5 Applications

5.1 Ascending-price auctions

We analyze with local dominance the ascending-price auction we outlined in

the introduction, and its variant with the waiting option. The one without

the waiting option is the auction format that was shown easy to play by the

experiment of Kagel et al. (1987). There are n bidders with private valuations

for the object, which for simplicity we assume to be integer.12 At each stage

t = 1; :::; T (with T larger than any possible valuation), player only observe

whether the object was already assigned or not, and if not, the players who

have not left before simultaneously choose between bid (b) and leave (`); in

presence of the additional waiting option, they can also wait (w). Formally,

the players who left before stage t are forced to play `, and all players must play

` once the object is assigned. The �stage-t outcome rule�is the following: if no

player bids, the object is assigned at random at price p = t among the bidders

who have not left before stage t; if only one player bids, she wins the object

at price p = t; if more than one player bids, the auction moves to round t+ 1.

12With non-integer valuations, the valuation of a bidder may be higher than the current
price but lower than the next price, and then bidding would not locally dominate leaving.
Nonetheless, we could still claim that players will bid at least up to that price.
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If waiting is allowed, the stage-t outcome rule makes no distinction between

waiting and leaving. Thus, the only di¤erence between waiting and leaving is

that, if the auction continues, a player who waited can move at the next stages,

while a player who left must play ` forever.

Proposition 4 The ascending-price auction is locally strategy-proof (also with
the waiting option). In particular, for every player, it is locally dominant to

bid as long as the price is below her valuation and then leave when the price

reaches her valuation.

Here we provide a sketch of the proof, which is formalized in the Appendix.

Take �rst the viewpoint of a player at a stage where the price is still below

her valuation. What makes the decision to bid easy to take? We start from the

comparison with leaving. It is probably natural for a player to �rst focus on the

scenario in which bidding terminates the game and immediately yields the �nal

outcome. This occurs when no other player bids. In this scenario, the outcome

of bidding is winning the object, the outcome of leaving is the lottery. Thus,

in terms of possible immediate consequences, bidding is better than leaving.

Then, our player also realizes that if she bids and the game continues, her

outcome will be determined in the future. To restrict the realm of the possible

future outcome after bidding, it is probably natural to entertain the idea of

leaving at the next stage. With this continuation strategy, our player cannot

incur a loss after bidding at the current stage, therefore the comparison of local

outcomes is not overturned. So, bidding locally dominates leaving.

Now we move to the comparison between bidding and waiting. In the

scenario where bidding terminates the game (i.e., no one else bids), waiting is

equivalent to leaving, and thus bidding is better than waiting. When bidding

does not terminate the game, waiting may or may not terminate the game.

When only one opponent bids, waiting terminates the game. Then, also for the

comparison between bidding and waiting, it is probably natural to entertain

the idea of leaving (and thus terminating the game) at the next stage. So,

for the same argument of the comparison with leaving, bidding is better than

waiting. When more than one opponent bids, the game continues also after
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waiting. In this scenario, it is easy to recognize that the choice between bidding

and leaving has no impact whatsover on the �nal outcome. In greater detail,

bidding or waiting does not alter what the opponents observe, and hence what

they will do, nor what our player will observe and be allowed to do. Note also

that the outcome of a stage only depends on players�moves at that stage. Thus,

the scenario in which the auction continues after both bidding and leaving is

irrelevant for the comparison. Hence, bidding locally dominates waiting.

Take now the viewpoint of a bidder at the stage where the price reaches her

valuation. What makes the decision to leave easy to take? If the auction ends,

not matter our player�s action, her surplus will be zero. Leaving can only have

this immediate consequence, while bidding and waiting can also entail that our

player�s outcome will be determined in the future. However, no matter what

this outcome will be, it cannot bring a positive payo¤ to our player. Thus,

leaving locally dominates bidding and, if available, waiting.

5.2 Top Trading Cycles

Consider the classical object allocation problem without monetary transfers.

There are n agents and N objects. Each agent initially owns an object and has

a strict preference ranking over all objects. A rule speci�es for every preference

pro�le a reallocation of the objects to the agents such that each agent gets

exactly one object. A prominent rule that has been extensively studied in the

literature is the TTC rule. It adopts an iterative algorithm proposed by Gale.

At every iteration, the algorithm generates a directed graph in which the nodes

are the agents who are yet to be assigned an object and the arrows link each

agent to the owner of her highest-ranked object that is still available. Such a

graph always has at least one cycle, and the agents that end up in a cycle are

assigned the object they are pointing to.

The TTC rule is known to be strategy-proof: in the direct mechanism,

reporting the true preferences is weakly dominant. However, the direct mech-

anism is known to be di¢ cult to play in practice. In particular, a player might

be tempted to rank an object b above an object a despite preferring a to b,

because she fears that she might miss her chance to get object b while the algo-

26



rithm keeps pointing her to object a unsuccessfully. To address these concerns,

we translate Gale�s TTC algorithm into a dynamic mechanism with three sim-

plicity features. First, at each stage, players are only asked to name one of the

still-available objects. In this way, we decompose the problem of revealing your

own preferences into a sequence of smaller partial-revelation problems. Second,

players cannot move until the last object they named is assigned to someone

else. This reassures players that whenever an opportunity for trade pops up

(i.e., some other player points to her directly or indirectly),13 it remains intact

through time and can be exploited later. Third, our mechanism carefully re-

leases information to players so to reassure them that, if the game continues

after both a and b, they can continue in the same way, and then will also get

the same outcome. To allow players to continue in the same way, we let them

observe the set of available outcomes also when they do not move, so that

their available information does not depend on how long they have to wait.14

To guarantee the same �nal outcome, we do not reveal players�choices to the

opponents, so that one does not have to worry that her choices may a¤ect the

opponents�future choices, in a way that negatively a¤ects her �nal outcome.

With this, we show that in our mechanism naming the favorite object is al-

ways locally dominant, whereas in the direct mechanism submitting the true

preference ranking is not locally dominant (i.e., by Proposition 5, obviously

dominant). Therefore, we obtain the following positive result, which contrasts

with Li�s (2017) impossibility of obvious strategy-proof implementation of the

TTC rule.

Theorem 4 The TTC rule can be implemented with a locally strategy-proof

mechanism.

To prove the theorem, we explicitly construct such a mechanism, which

13We say that player j points to the object of player i indirectly if there is a sequence of
players starting with j and ending with i such that each player in the sequence names the
object owned by the next player.
14Formally, as we give the traditional representation of information �ows just at the infor-

mation sets where players are active, they observe the past history of available objects once
they get to move again. The observability of such history, and not just of the current menu
of available objects, distinguishes our mechanism from that of Bo and Hakimov (2022).
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we call dynamic TTC mechanism. At stage 1, every player names one object.

The players who end up in a cycle are assigned the object they named. At

each stage t = 2; :::; N , players only observe which objects are still available,

i.e., which objects have not been assigned in the previous stages. If the last

object a player named is still available, then the player cannot modify her

choice � to comply with our formalism, she is obliged to play the dummy

action of renaming the same object. Analogously, a player who has already

been assigned an object keeps naming that object. If instead the last object a

player named becomes unavailable at the current stage, then she must name

one of the available objects. Again, the players who end up in a cycle trade

their objects. Since at least one cycle occurs at every stage, by stage N the

assignment is complete and players leave with their assigned object.

In the dynamic TTC mechanism, naming your favorite available object is

locally dominant at every information set. In the next paragraph we provide a

skectch of the proof, which we formalize in the Appendix.

Take the point of view of a player at an information set where she must name

a new object. Let a be her favorite available object and b another available

object. Is naming a better than naming b? If naming a immediately yields a

� without a doubt. Now suppose that after naming a our player must move

again at some stage t, because a was assigned to someone else. Then, she

may wonder whether she will still be in time to catch up with b or any other

object she would name after b at stage t, and then continue in the same way,

so to obtain the same object (the object one gets is always the �nal object

one names). The answer is yes: whatever object our player would be naming

at stage t after b will still be available after a. As long as our player is not

assigned an object, her moves do not a¤ect the set of available objects, and

thus do not a¤ect the moves of the opponents. Therefore, if after naming b

our player is not assigned an object before stage t, she will face the same set

of available objects at stage t after naming a and after naming b. If instead

after b our player ends up in a cycle and is assigned an object at a stage t� < t,

that object must remain available until stage t also after a, because the other

members of the cycle cannot modify their choices between stages t� and t.
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Note that our dynamic TTC mechanism actually requires a simpler form

of contingent reasoning than the local partition. The above argument only

requires our player to distinguish the scenario in which the locally dominant

action a terminates the game from the scenario in which it does not, and deem

the latter scenario irrelevant, i.e., she can get the same object by continuing in

the same way. This bipartition is entirely driven by the dominant action, which

is very easy to recognize as the right candidate choice based on the comparison

of the possible immediate consequences. Then, our player can use the same

(bi)partition to �nalize the comparison with all the alternatives.

If players are capable of perfect contingent reasoning, they can also �nd

their optimal actions by reasoning according to wishful dominance. In our

dynamic TTC game, player i can ask herself: �Suppose that after playing b

the best object I can obtain is c. Can I get something at least as good after

playing a?�The answer is yes. If player i does not get a (which is the best

she can get), she will have the opportunity of naming c next, and then she will

actually get c. The reason is that, as long as player i does not get an object,

she does not a¤ect what the opponents observe, and hence she does not a¤ect

their moves. So, in a contingency where she can get c after naming b, all the

opponents in the cycle that gives her c make the same moves also when she

names a in place of b, so she can close that cycle by naming c after naming a,

if she does not get a.

Proving that naming the favorite object is wishfully dominant is somewhat

simpler than proving that it is locally dominant, because it does not require

to check that the object c obtained after naming b can also be obtained after

naming a by continuing in the same way. That proving local dominance requires

more work is natural, since it is a stronger notion than wishful dominance (see

Proposition 2); nonetheless, the two notions capture the same intuition that we

expect players to have in this game: there is nothing to lose from naming the

favorite object. In other games, there could be wishfully dominant actions that

are not locally dominant. In such a case, local dominance, which is a stronger

simplicity standard, deems the intuitions captured by wishful dominance too

di¢ cult for real players.
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6 Comparison with the literature

6.1 Local dominance versus obvious dominance

In static games, local strategy-proofness and obvious strategy-proofness coin-

cide. This is a consequence of Proposition 3 and Theorem 1: by Proposition

3, at an information set of a static game (i.e., given a �type�), an action is

locally dominant if and only if it is obviously dominant, and hence, by Theo-

rem 1, a strategy is obviously dominant if and only if it prescribes an obviously

dominant action at every information set.

Proposition 5 A static game is obviously strategy-proof if and only if it is

locally strategy-proof.

Thus, like obvious dominance, local dominance rules out most direct mech-

anisms as too complicated.

In dynamic games, in one dimension, local dominance adopts a stricter

simplicity standard than obvious dominance, in that it imposes the use of

mimicking continuation strategies, rather than admitting the use of the optimal

continuation strategy. In the dimension of contingent reasoning, instead, local

dominance is more permissive than obvious dominance, in that it introduces the

local partition. For this reason, local dominance is not stronger than obvious

dominance, as shown by our dynamic TTC mechanism. Similarly, because of

the complete lack of contingent reasoning, obvious dominance cannot explain

why the ascending-price auction with simultaneous moves was found easy to

play by Kagel et al. (1987), as we show next.

Di¤erently from local dominance, obvious dominance assumes that the bid-

der can formulate at the outset the plan of bidding until the price reaches her

valuation. Yet, according to obvious dominance, she cannot establish the supe-

riority of this �sincere strategy�over a �stingy strategy�that leaves at a lower

price p. This is because, when she compares the two strategies, she considers

at the same time the chance of winning the object with the stingy strategy

(when all the opponents leave at price p), and the possibility of not winning

the object with the sincere strategy (when some opponent bids up to a higher
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price than our bidder�s valuation). According to local dominance, instead, the

chance of winning after leaving is liquidated in the primary scenario where the

auction ends also after bidding, and in this scenario bidding is clearly better

than leaving, as it guarantees winning the object. The experimental �ndings

of Kagel et al. (1987) suggest that players do not mix up this �local�scenario

with the alternative scenario in which bidding does not terminate the auction.

6.2 Comparison with Pycia and Troyan (2022)

The paper that is closest to ours is Pycia and Troyan (2022), who introduce

the notion of simple dominance. At each decision node, players can only plan

for a given set of �simple� future nodes and consider a �strategic plan� for

those nodes. A strategic plan is simply dominant when the worst outcome

that is consistent with it is not worse than the best outcome that the player

may obtain after any alternative action at the current node. Thus, compared

to obvious dominance, simple dominance considers the larger set of outcomes

that are consistent not only with all the possible future moves of the opponents,

but also with all possible own moves at the non-simple future nodes.

Among our notions of dominance, the closest to simple dominance is obvious

dominance between actions, because, like simple dominance, it does not rely

on any form of contingent reasoning. To facilitate the comparison, we provide

the following characterization of our notion.

Remark 6 Fix an information set h 2 H�
i . Action ai 2 Ahi is obviously dom-

inant if and only if, for every ai 2 Ahi n faig, there exists si 2 Si(h; ai) such

that

min
s�i2S�i(h)

ui (�(si; s�i)) � max
z2Z(h;ai;S�i)

ui (z) :

Remark 6 is a corollary of Remark 3, as obvious dominance between actions

coincides with s-dominance under the trivial partition.

The di¤erence between the notion of simply dominant strategic plan and

the notion of obviously dominant action is that the �rst speci�es not just the

current action but also the actions at the future decision nodes the player can
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plan for. This (partial) continuation plan has to beat all the alternatives at the

current node. Instead, an obviously dominant action is not associated with one

�xed continuation strategy: as shown by Remark 6, our player can entertain

di¤erent continuation strategies for the comparison with di¤erent alternatives.

But even if we allow for �exibility in the use of continuation strategies, the issue

with both notions is that �nding the optimal (partial) continuation strategy

may be the only way to establish dominance.

Pycia and Troyan (2022) eradicate this problem by focusing on strong obvi-

ous dominance, the special case of simple dominance in which the player does

not perceive any future decision as simple, and thus does not plan at all. Thus,

an action ai is strongly obviously dominant when the worst outcome that fol-

lows it is not worse than the best outcome that follows any alternative action.

Such outcomes are computed across all the possible future moves of the player

herself, because she has no clue of how she herself will play.

With local dominance, we let our player compare �rst the possible outcomes

in case the game immediately ends, which do not depend on the future moves.

This separation between present and future outcomes is a coarse form of contin-

gent reasoning. When it comes to comparing the possible future outcomes, we

introduce some simple considerations about the continuation game that ease

the task. For the scenario in which the game continues after the candidate

dominating action a but not after the alternative action b, our player simpli-

�es her view of the possible future outcomes after a with a salient �mimicking

strategy�, such as terminating the game at the next stage, or reverting to b.

While any continuation strategy is a legitimate way of restricting the realm of

possible outcomes after the candidate dominating action, by using the mimick-

ing strategy we endogenize which continuation strategy is simple to conceive

for the player, without requiring any consideration on the optimality of future

moves. For the most complicated scenario in which the game continues after

both actions, our player only checks whether the current choice may matter

at all for the �nal outcome � the notion of irrelevance. Overall, compared to

strong obvious dominance, we also consider a player who has no clue of how

she will play in the future, but we radically di¤er in the way the player tackles
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this problem.

Because of irrelevance, local dominance is not weaker than strong obvi-

ous dominance. Indeed, irrelevance is just a di¤erent, not a weaker criterion

than the comparison of the best and the worst possible future outcomes. The

following example illustrates this point.15

In this one-player game (called maze), the player has to enter at the top-left

corner and exit at the bottom-right corner. Suppose that the player can never

turn back, and getting stuck yields a payo¤ of 0, whereas reaching the exit

yields a payo¤ of 1. At the �rst decision node, the player can go left (green

arrow) or right (red arrow). Going right strongly obviously dominates going

left. This is because, after going right, the player may reach the exit or not,

depending on her future moves, whereas after going left the player always gets

stuck. However, going right does not locally dominate going left. This is

because, in the unique scenario in which the game continues after both actions,

the continuation game is completely di¤erent after the two actions. Indeed, the

choice between the two actions is not irrelevant for the �nal outcome.

6.3 Other related literature

Our theory of simplicity is related to the literature on limited foresight and

coarse contingent reasoning. While we tackle the issue of foresight in a very

di¤erent way than in the literature, our representation of contingent reasoning

is in line with recent contributions on this topic. Like us, Zhang and Levin

15This image is borrowed from https://www.youtube.com/watch?v=yuf8cd1eypA.
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(2021) model coarse contingent reasoning in games with a partition of the

contingencies. However, Zhang and Levin take a global view of the game and �x

a partition for the entire game exogenously at the outset, whereas our partitions

depend on the information set, and even on the action pair under comparison.

Chew and Wang (2022) only �x a cardinality k for the partition and stipulate

that a strategy k-dominates another strategy when there exists a partition

of cardinality k such that the usual �worst vs best�outcome comparison goes

through within each partition element. Their notion of dominance is motivated

by the sure thing principle as �rst described by Savage (1954) in his motivating

example: if an agent �nds that under each of two complementary events one

option is better than the other, then she should �nd the former option better

before the resolution of the uncertainty. In contrast, our notion of irrelevance

of a scenario is inspired by Savage�s (1954) formal axiom, which says that a

decision-maker should ignore a scenario under which all the alternatives yield

the same outcome. Saponara (2022) considers a decision maker who evaluates

each available act under a speci�c partition of the contingencies. For each

element of the partition, the act is assigned the minimum attained utility. The

decision maker then computes the expectation of these utilities with respect

to a belief over the partition elements. Following Li (2017), instead, we adopt

a belief-free approach and we require dominance to hold when the dominated

action is assigned the best possible outcome in each non-irrelevant scenario.

Karni and Viero (2013) consider a decision maker who progressively constructs

a state space from the feasible acts she encounters. In particular, if two acts

f and g can give the same two consequences c and d, she will recognize the

existence of (at most) four possible states: the state where f and g give c,

the state where they give d, the state where f gives c and g gives d, and vice

versa. Let f and g be our two actions under comparison and let c and d be the

consequence that the game ends or not: the induced state space coincides with

our partition of the true state space.

Going in an opposite direction compared to our work and the literature on

obvious dominance, Borgers and Li (2019) de�ne a more permissive simplicity

standard than strategy-proofness. In particular, they identify a class of �sim-
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ple mechanisms� that only depend on the �rst-order beliefs about the types

of the opponents. Dworczak and Li (2021) relax (obvious) strategy-proofness

by allowing for multiplicity of (obviously) undominated strategies, provided

that they all induce the desired outcome. In this way, they can implement

social choice functions that cannot be implemented in (obviously) dominant

strategies. This relaxation of (obvious) strategy-proofness allows, for each pro-

�le of players�types, a multiplicity of undominated behaviors outside of the

path that leads to the desired outcome. This is akin to requiring the existence

of dominant actions for all players only along a path, a notion of �on-path

strategy-proofness�which is natural in our framework and has some desirable

properties: we illustrate it by example in the Appendix.

In simultaneous and independent works, Bo and Hakimov (2022) andMacken-

zie and Zhou (2022) introduce two classes of mechanisms (respectively, �pick an

object mechanisms�and the more general �menu mechanisms�) that encom-

pass our dynamic TTC mechanism as a special case. Bo and Hakimov (2022)

provide experimental evidence of the simplicity of a version of their mechanism

(very similar to ours) precisely for the TTC rule, and justify it theoretically with

a notion of �robust truthful equilibrium�; Mackenzie and Zhou (2022) prove

the existence of versions of dominant-strategy equilibrium in their mechanisms.

It would be interesting to investigate whether some of their mechanisms yield

locally strategy-proof implementation of other social choice functions than the

TTC rule. This is far from guaranteed, because a player�s moves may a¤ect her

future menus and the opponents�menus; in this case, one cannot guarantee to

a player that her current choice, if it does not yield an immediate outcome, will

not a¤ect the �nal outcome, making it impossible to satisfy local dominance.

7 Appendix

Proof of Proposition 1. Weak dominance. If. Fix si 2 Si(h; ai). By

assumption, there exists si 2 Si(h; ai) that weakly dominates si. Condition (4)
implies condition (2). Hence, ai is weakly dominated by ai.

Only if. Fix si 2 Si(h; ai). By assumption, at h, ai weakly dominates ai,
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and thus by De�nition 2 there exists si 2 Si(h; ai) such that

8s�i 2 S�i(h); ui (�(si; s�i)) � ui (�(si; s�i)) : (13)

De�ne s0i as s
0
i(h

0) = si(h
0) if h0 � h and s0i(h

0) = si(h
0) if h0 6� h. Thus,

8s�i 2 S�i(h); �(s0i; s�i) = �(si; s�i); (14)

8s�i 62 S�i(h); �(s0i; s�i) = �(si; s�i): (15)

By (14), (13), and (15), we have

8s�i 2 S�i; ui (�(s
0
i; s�i)) � ui (�(si; s�i)) ;

i.e., condition (4): si is weakly dominated by s0i.

Obvious dominance. If. Fix si 2 Si(h; ai). By assumption, there exists

si 2 Si(h; ai) that obviously dominates si. Since si(h) 6= si(h), h 2 D(si; si).
Thus, condition (5) implies condition (3). So, ai is obviously dominated by ai.

Only if. Fix si 2 Si(h; ai). By assumption, at h, ai obviously dominates ai,
and thus by De�nition 2 there exists si 2 Si(h; ai) such that

min
s�i2S�i(h)

ui (�(si; s�i)) � max
s�i2S�i(h)

ui (�(si; s�i)) : (16)

De�ne s0i as s
0
i(h

0) = si(h
0) if h0 � h and s0i(h

0) = si(h
0) if h0 6� h. Thus,

8s�i 2 S�i(h); �(s0i; s�i) = �(si; s�i); (17)

8s�i 62 S�i(h); �(s0i; s�i) = �(si; s�i): (18)

By (17) and (16), we have

min
s�i2S�i(h)

ui (�(s
0
i; s�i)) � max

s�i2S�i(h)
ui (�(si; s�i)) ;

that is, s0i and si satisfy condition (5) at h. Since si; s
0
i 2 Si(h) but s0i(h) 6= si(h),

we have h 2 D(si; si). By (18), there is no point of departure between si and
s0i along any path that does not go through h. So, D(si; si) = fhg. Thus, si is
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obviously dominated by s0i. �

Proof of Theorem 1. Weak dominance. Only if. Fix h 2 H�
i (si). Fix

ai 2 Ahi n
�
si(h)

	
. For every si 2 Si(h; ai), since si 2 Si(h; si(h)) is weakly

dominant, it weakly dominates si. Hence, by Proposition 1 (if part) si(h)

weakly dominates ai.

If. Let si be a strategy that prescribes a weakly dominant action at every

h 2 H�
i (si). Fix s�i 2 S�i. Fix h � �(si; s�i) and suppose by way of induction

that, for every h0 2 H�
i such that h � h0 � �(si; s�i),16 for every s0i that departs

from si at h0,

ui (�(si; s�i)) � ui (�(s
0
i; s�i)) :

Fix si that departs from si at h. By Proposition 1 (only if part) there exists

s0i 2 Si(h; si(h)) that weakly dominates si, and thus

ui (�(s
0
i; s�i)) � ui (�(si; s�i)) : (19)

Either �(si; s�i) = �(s0i; s�i), or s
0
i departs from si at some h0 2 H�

i such that

h � h0 � �(si; s�i), and also in this second case, by the induction hypothesis,

ui (�(si; s�i)) � ui (�(s
0
i; s�i)) : (20)

Inequalities (20) and (19) yield ui (�(si; s�i)) � ui (�(si; s�i)). Clearly, the

same holds (with equality) also for all si 2 Si that do not depart from si at

any h � �(si; s�i). Thus, since s�i was arbitrary, si weakly dominates every

si 2 Si.
Obvious dominance. Only if. Fix h 2 H�

i (si). Fix ai 2 Ahi n
�
si(h)

	
. For

every si 2 Si(h; ai), since si 2 Si(h; si(h)) is obviously dominant, it obviously

dominates si. Hence by Proposition 1 (if part) si(h) obviously dominates ai.

If. Let si be a strategy that prescribes an obviously dominant action at

every h 2 H�
i (si). Fix h 2 H�

i (si) and suppose by way of induction that for

16If h is a stage-T information set, or anyway the last active information set along path
�(si; s�i), the induction hypothesis is vacuously satis�ed.
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every h0 2 H�
i (si) that follows h,

17 for every s0i that departs from si at h0,

min
s�i2S�i(h0)

ui (�(si; s�i)) � max
s�i2S�i(h0)

ui (�(s
0
i; s�i)) :

Fix si that departs from si at h. By Proposition 1 (only if part) there exists

s0i 2 Si(h; si(h)) that obviously dominates si, and thus

min
s�i2S�i(h)

ui (�(s
0
i; s�i)) � max

s�i2S�i(h)
ui (�(si; s�i)) : (21)

For each s�i 2 S�i(h), either �(si; s�i) = �(s0i; s�i), or s
0
i departs from si at

some h0 2 H�
i such that h � h0 � �(si; s�i), and also in this second case, by

the induction hypothesis,

ui (�(si; s�i)) � ui (�(s
0
i; s�i)) . (22)

Inequality (22) for all s�i 2 S�i(h), along with inequality (21), yield

min
s�i2S�i(h)

ui (�(si; s�i)) � max
s�i2S�i(h)

ui (�(si; s�i)) :

Since this holds for all h 2 D(si; si), si obviously dominates si. �

Proof of Theorem 2. Only if: by inspection of the de�nitions.
If. Let si be a strategy that prescribes an s-dominant action at every h 2

H�
i (si). First we prove that si is weakly dominant. Fix h 2 H�

i (si) and suppose

by way of induction that for every h 2 H�
i (si) that follows h,

35

8si 2 Si(h);8s�i 2 S�i(h); ui (�(si; s�i)) � ui (�(si; s�i)) : (23)

Fix si 2 Si(h) and s�i 2 S�i(h). Since si(h) is s-dominant, it is wishfully

dominant, and thus there exists s0i 2 Si(h; si(h)) such that

ui (�(s
0
i; s�i)) � ui (�(si; s�i)) :

17When no such h0 exists, the induction hypothesis is vacuously satis�ed.
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Since s0i(h) = si(h), either �(si; s�i) = �(s0i; s�i), or there exists h
0 2 H�

i (si)

that follows h such that s0i 2 Si(h0) and s�i 2 S�i(h0), and also in this second
case, by the induction hypothesis,

ui (�(si; s�i)) � ui (�(s
0
i; s�i)) :

So we have ui (�(si; s�i)) � ui (�(si; s�i)), as desired. Thus, for every si 2 Si,

for each s�i 2 S�i, if there is h 2 H�
i (si) such that si 2 Si(h) and s�i 2

S�i(h), then we have just shown that ui (�(si; s�i)) � ui (�(si; s�i)), otherwise,

�(si; s�i) = �(si; s�i). Hence, si weakly dominates si.

Now, we prove that, for each h 2 H�
i (si) and ai 2 Ai(h)n fsi(h)g, si(h)

dominates ai given the partition Sh of S�i(h) that player i uses for the com-
parison (both with s-dominance and dominance). For every si 2 Si(h; ai) and
S�i 2 Sh, by condition (6), there exists s0i 2 Si(h) such that

min
s�i2S�i

ui (�(s
0
i; s�i)) � max

s�i2S�i
ui (�(si; s�i)) .

Since si is weakly dominant,

min
s�i2S�i

ui (�(si; s�i)) � min
s�i2S�i

ui (�(s
0
i; s�i)) :

The last two inequalities combined yield condition (1): si(h) dominates ai. �

Proof of Proposition 4. Fix an information set h where bidder i has not
left the auction yet. First, we compare b and `, regardless of the presence of w.

The partition S`(h; b; `) features only two non-empty scenarios: the scenario
Sb;`(h) where none of the opponents bid at round t, and the scenario S`b(h)

where at least one does � Sb;`(h) and Sb`(h) are empty because after ` there

is no active information set of player i. We now check local dominance. In

scenario Sb;`(h), the only possible outcome after b is that i wins the auction,

therefore either b, if t � v � 1, or `, if t � v, satis�es condition (10) (with

the role of ai). For the scenario S`b(h), consider �rst t � v. In this case, `

terminates the game with payo¤ 0, while after b the payo¤ cannot be strictly
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positive, therefore ` satis�es condition (11) (with ai = `). Thus, ` locally

dominates b. Consider now t � v � 1. The strategy that prescribes ` at

every information set after b mimicks the dummy continuation strategy that

prescribes ` at every information set after `. With the mimicking continuation

strategy (in the scenario under consideration), i�s payo¤ will be determined at

stage t+ 1, and since t+ 1 � v, it cannot be negative. Player i�payo¤ after `

is always 0 in scenario Sb`(h). Therefore, condition (12) holds. Thus, b locally

dominates `.

Now we compare b with w for t � v � 1. If only one opponent is still in
the auction, w is equivalent to `, because it always terminates the auction.

Otherwise, the partition S`(h; b; w) features three non-empty scenarios: the
scenario Sb;w(h) where none of the opponents bid at round t, the scenario

Swb (h) where only one bids, and the scenario Sb;w(h) where more than one bids

� Sbw(h) is empty because if the auction ends with b, so it does with w. For

the �rst two scenarios, the comparison between b and w is identical to the

comparison between b and `. Note in particular that in scenario Swb (h), player

i is forced to play ` after w, therefore the mimicking continuation strategy after

b prescribes ` as before. For scenario Sb;w(h), we show that it is irrelevant, so

that, as for the comparison with `, b locally dominates w. Thus, for t < v let

(ai; ai) = (b; w), for t � v let (ai; ai) = (w; b). Fix si 2 Si(h; ai). Construct

the mimicking si 2 Si(h; ai) as follows. Fix a stage t0 > t and suppose by

way of induction that, for each s�i 2 Sb;w(h), either the object was assigned

before stage t0 under both si and the si under construction, or it was not

assigned before stage t0 under both si and the si under construction. Under

all s�i 2 Sb;w(h) that fall into the �rst category, si prescribes ` at the stage-t0

information set h0 � �(si; s�i), and we can let si prescribe ` as well, at every

stage-t0 information set that is consistent with si and with the fact that the

auction ended. Under all s�i 2 Sb;w(h) that fall into the second category,

player i reaches the same stage-t0 information set h0 with si, and the same

stage-t0 information set h
0
with si. This is because all that player i learnt in

the previous stages is that the auction did not end.18 Since the auction is still

18To be precise, regarding the behavior of the opponents at stage t, after b player i has less
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ongoing both at h0 and h
0
, all actions are available and we can let si(h

0
) = si(h

0).

Moreover, at stage t0, the opponents reach the same information set regardless

of si or si, because all they observe is that the auction is still ongoing.19 Hence,

just like player i, they make the same move at stage t0 regardless of si or si. So,

at stage t0, if the auction ends under si it also ends under si, and if it continues

under si, it also continues under si: the induction hypothesis for stage t0 + 1

is proven. Moreover, by the same token, if the auction ends at stage t0, the

outcome is the same under si and si. Thus, irrelevance holds.

To conclude the proof, we need to show that ` locally dominates w when

t = v. There two non-empty scenarios: S`;w(h) and S`w(h). In the �rst scenario,

since t = v, both actions always yield payo¤ 0, thus ` satis�es condition (10)

(with the role of ai). In the second scenario, ` terminates the game with payo¤

0, while after w the payo¤ cannot be strictly positive, therefore ` satis�es

condition (11) (with ai = `). �

Proof of Theorem 4. Fix a player i 2 I, a stage t 2 f1; :::; Ng, and a
stage-t information set h 2 H�

i . Let a be i�s favorite still-available object, and

let b be another available objects. Thus, a; b 2 Ahi . We are going to show that
a locally dominates b.

Note that the object assigned to a player coincides with the last object

she names. Therefore, in the scenarios Sa;b(h) and Sab (h), player i gets a after

naming a, so Conditions (10) and (11) are satis�ed.

We will show that, for every si 2 Si(h; b), there exists si 2 Si(h; a) that

mimics si under Sba(h)[Sa;b(h). For every s�i 2 Sba(h)[Sa;b(h), player i moves
again after choosing a at h, therefore si and si prescribe the same last move

along the paths induced by (si; s�i) and by (si; s�i), and hence yield the same

outcome. Thus, Sa;b(h) is irrelevant. Moreover, given that si yields b under all

s�i 2 Sba, so does si, and condition (12) is satis�ed as an equality.
accurate information than after w, because for the auction to continue after waiting it takes
at least two opponents to bid at round t instead of one. Nonetheless, in the scenario where
the auction continues after both actions, there is just one information set per stage also after
w.
19Given that under s�i the choice of i at h is not pivotal to determine whether the auction

continues, it means that i�s opponents cannot infer her choice at h from the fact that the
auction continued.
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Now we construct the mimicking si. We will repeatedly use the fact that

players only observe the history of available objects, therefore as long as player i

does not obtain an object, her moves cannot a¤ect the moves of the opponents,

and hence the history of available items. Fix h0 2 H�(h; a). Let  denote the

history of available objects that player i observes at h0. First we prove the

following fact

Claim 5 For each s�i 2 S�i(h
0), if under si player i is assigned an object by

stage �(h0), then that object is available at h0.

Proof of the claim. Suppose that, under s�i and si, player i is assigned
an object c at some stage t0 � �(h0). Then, until stage t0, under s�i, the moves

of the opponents are the same under si and after choosing a at h. Therefore,

also after choosing a at h, at stage t0 the owner of c is pointing, directly or

indirectly, to player i. Since this player and possibly the other players in the

chain that links them to player i cannot move as long as player i is not assigned

an object, c remains available at h0. �
Now determine si(h0) as follows. For all s�i 2 S�i(h

0), as long as player

i does not get an object, the history of available objects follows  also under

si. Thus, if b is available at h0, under si and all s�i 2 S�i(h
0) either player

i gets b by stage �(h0), or she cannot move until stage �(h0); either way, she

will be naming b at stage �(h0), so we can let si(h0) = b. If instead object b

stops being available along  at some stage t0 � �(h0), by Claim 5 player i did

not obtain b by stage t0 under any s�i 2 S�i(h
0). But then, using si and  ,

we can determine the unique object c player i names at stage t0 under si and

all s�i 2 S�i(h0). Repeating the reasoning we made for b, we can determine if
player i names c at stage �(h0), or will switch to another object d at some stage

t00 � �(h0). Going on in this fashion, we can determine the unique object e

player i names at stage �(h0) under si and all s�i 2 S�i(h0), and let si(h0) = e.

Now �x a stage t00 > �(h0), a stage-t00 information set h00 � h0, and suppose

by way of induction that si was de�ned and mimics si at every eh � h00. Thus,

for all s�i 2 S�i(h00), under both si and si, either before stage �(h00) player i has
already obtained the same object e, and then we can let si(h00) = e, or player

42



i has not obtained any object. In this second case, the history of available

objects at h00 coincides with the one at the unique stage-�(h00) information seteh that is consistent with si and all s�i 2 S�i(h
00), and this also implies that

h00 2 H�
i if and only if eh 2 H�

i . So, we can let si(h
00) = si(eh).

To conclude, note that [h02H�(h;a)S�i(h
0) = Sba(h) [ Sa;b(h), so si mimics si

under Sba(h) [ Sa;b(h). �

Example of on-path strategy proofness

A shepherd dog has to recall the sheep from the top of the hill for the night.

The dog�s goal is to maximize the number of sheep that make it all the way

down to the sheepfold before falling asleep. Then, by contract, the dog has to

guard the sheep from 2=3 of their average sleeping altitude.20 A sheep�s payo¤

is the distance from the dog during the sleep. Because of the fog, the sheep

cannot see where they are going and typically sleep scattered on the slope. To

solve this problem, the dog comes up with the following idea. The dog �rst

stands at altitude 67 (the top of the hill is at altitude 100) and shines a light.

The sheep can see the light through the fog and walk down towards it. Those

who stop along the way (at an altitude between 68 and 100) cannot help falling

asleep. Those who reach the dog at 67 get to see each other and manage to

stay awake. Then the dog moves to altitude 45 and shines a light again for the

sheep that are still awake. The game continues in this fashion until the dog

reaches the sheepfold at altitude 1. Then, if some sheep has not arrived, the

dog looks for his prescribed guarding position and stops there.

Take the viewpoint of a sheep at the initial history or at an information set

where it has reached the dog and sees that all other sheep have reached the

dog as well. Reaching the dog at the next, lower altitude is locally dominant

and obviously dominant. Given any alternative action of stopping at a higher

20This game is a dynamic transformation of �guess 2=3 of the average�, which obviates
the possible distrust in the opponents� rationality by letting players observe whether the
opponents have played rationally. Glazer and Rubinstein (1996) provide general rules to
transform a dominance-solvable static game into a strategy-proof dynamic one.
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altitude, the local partition coincides with the trivial partition, as there is only

one scenario: the one in which the alternative action terminates the game

(the sheep then falls asleep) and reaching the dog does not (unless the dog has

reached the sheepfold, in which case the game ends also after reaching the dog).

The sheep can entertain the continuation strategy (after reaching the dog) of

not moving forward and sleep there. Such a continuation strategy mimicks the

dummy continuation strategy after the alternative action. If the sheep reaches

the dog and sleeps there, the payo¤ will certainly be higher than after the

alternative action: given that all sheep have reached the dog at its old altitude,

the dog will not sleep below its new altitude, which is 2=3 of the old one.

Note that the sheep do not have an obviously dominant strategy, or a strat-

egy entirely made of locally dominant actions. If at some point a sheep observes

that not all others have reached the dog, walking down to the next dog�s al-

titude might not be optimal, because the dog might have to �nally guard the

sheep from a higher altitude. Therefore, the game is not obviously strategy

proof or locally strategy-proof. However, it is on-path strategy proof with both

obvious and local dominance, in the sense that reaching the dog is dominant

when all sheep have reached the dog, i.e., when they have all played their dom-

inant action at the previous information sets. The o¤-path information sets,

though, could be eliminated from the game: after observing that not all sheep

have arrived, the dog could quit the game and move directly to its guarding

position, instead of trying to drag the remaining sheep down to the sheep-

fold. Quitting the game in this way, however, requires the ability of the dog to

commit to a suboptimal behavior given its objective function.

References

[1] Bo, I. and R. Hakimov (2020): �Pick-an-object Mechanisms�, working

paper.

[2] Borgers, T. and J. Li (2019): �Strategically simple mechanisms�,

Econometrica, 87, 2003-2035.

44



[3] Chew, S. H. and W. Wang (2022): �Generalizing obvious dominance

using the sure-thing principle�, working paper.

[4] Dworczak, P., and J. Li (2022): �Are Simple Mechanisms Optimal

when Agents are Unsophisticated?�, working paper.

[5] Kagel, J., Harstad, R., Levin, D. (1987): �Information impact and

allocation rules in auctions with a¢ liated private values: a laboratory

study�, Econometrica, 55, 1275-1304.

[6] Karni, E. and L-M Viero (2013): �Reverse Bayesianism: A Choice-

Based Theory of Growing Awareness�, American Economic Review, 103,

2790-2810.

[7] Li, S. (2017): �Obviously Strategy-Proof Mechanisms�, American Eco-

nomic Review, 107, 307-352, 3257-87.

[8] Mackenzie, A. and Y. Zhou (2022): �Menu mechanisms�, Journal of

Economic Theory, 204, 105511.

[9] Marx, L. and J. Swinkels (1997): �Order Independence for Iterated

Weak Dominance�, Games and Economic Behavior, 18, 219-245.

[10] Pycia, M. and P. Troyan (2022): �A Theory of Simplicity in Games

and Mechanism Design�, working paper.

[11] Saponara, N. (2022):. �Revealed reasoning�, Journal of Economic The-

ory, 199, 105096.

[12] Savage, L. J. (1954): �The foundations of statistics�, John Wiley &

Sons Inc., New York.

[13] Shimoji, M. and J. Watson (1998): �Conditional Dominance, Ratio-

nalizability, and Game Forms�, Journal of Economic Theory, 83, 161-195.

[14] Zhang, L. and D. Levin (2021): �Partition Obvious Preference and

Mechanism Design: Theory and Experiment�, working paper.

45


	Local dominance
	Citation

	tmp.1691385877.pdf.kfstk

