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Abstract

The standard heterogeneous autoregressive (HAR) model is perhaps the most popular bench-
mark model for forecasting return volatility. It is often estimated using raw realized variance
(RV) and ordinary least squares (OLS). However, given the stylized facts of RV and well-known
properties of OLS, this combination should be far from ideal. The aim of this paper is to in-
vestigate how the predictive accuracy of the HAR model depends on the choice of estimator,
transformation, or combination scheme made by the market practitioner. In an out-of-sample
study, covering the S&P 500 index and 26 frequently traded NYSE stocks, it is found that
simple remedies systematically outperform not only standard HAR but also state of the art
HARQ forecasts.
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1 Introduction

Forecasting the volatility of financial asset returns is an important issue in the context of risk
management, portfolio construction, and derivative pricing. As such, a great deal of research ef-
fort has focused on developing and evaluating volatility forecasting models. With the widespread
availability of high-frequency financial data, the recent literature has focused on employing real-
ized volatility (RV) to build forecasting models. The heterogeneous autoregressive (HAR) model
of Corsi (2009) was designed to parsimoniously capture the strong persistence typically observed
in RV and has become the workhorse of this literature due to its consistently good forecasting
performance, and that standard linear regression techniques can be used for its estimation. The
influence of this model is reflected in the fact that as of July 2021, Corsi (2009) has attracted
more than 2100 citations according to Google Scholar. The original HAR model is often esti-
mated using RV and the method of ordinary least squares (OLS). However, given stylized fea-
tures of raw RV (such as spikes/outliers, conditional heteroskedasticity, non-Gaussianity) and
well-known properties of OLS (highly sensitive to outliers, suboptimal in the presence of condi-
tional heteroskedasticity or non-Gaussianity), this combination should be far from ideal, leaving
opportunity for straightforward improvements.

To better deal with the stylized features of RV, a number of straightforward alternatives to
using OLS and raw RV for generating forecasts from the HAR model will be considered. First,
the impact of alternative estimation schemes, employing weighted least squares (WLS) or robust
regression (RR), for the HAR model will be investigated. Second, the impact of alternative Box-
Cox transformations (logarithmic and square root) of RV for the HAR model will be studied.
Third, combinations of different estimation and transformation schemes will be explored. The
potential benefits of these alternative approaches will be investigated in an out-of-sample study
with the HAR model estimated by OLS used as benchmark. For a more complete picture, the
recent HARQ model is also used as a benchmark model as it has been documented to outperform
not only the original HAR model but also some of its numerous extensions in terms of forecasting.
The HARQ model represents the state of the art in volatility forecasting models, and is designed
to directly deal with the estimation error in RV (Bollerslev, Patton, and Quaedvlieg, 2016, 2018b).
It should be emphasized that, in contrast to Buccheri and Corsi (2019) and Cipollini, Gallo, and
Otranto (2021), the goal here is not to extend the original HAR model but instead to investigate
how to get the most out of the existing model. For instance, by carefully selecting its estimator.

The first issue considered is how the predictive accuracy of the HAR model depends on the
choice of estimator. The idea of investigating whether the choice of estimator matters for fore-
casting is not new, and has for instance been considered by Westerlund and Narayan (2012) in the
context of stock return predictability. In the context of volatility forecasting, a few estimators have
been suggested for the HAR model. While Patton and Sheppard (2015) employed a simple WLS
scheme, RR so far does not seem to have been considered. Furthermore, although alternatives to
OLS have been proposed, the impact of the choice of estimator on the predictive accuracy of the
HAR model does not seem to have been systematically examined. The empirical results reveal
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that the choice of the estimation scheme under which the HAR parameter estimates are obtained
is important for volatility forecasting. By simply considering WLS or RR as an alternative to OLS,
considerable reductions in common statistical and economic loss measures are observed. The
benefits of replacing OLS with WLS or RR are particularly clear for longer forecast horizons.

Next, how the predictive accuracy of the HAR model depends on the choice of transformation
of RV is considered. The idea of using transformed, rather than raw, RV for forecasting is not new
and has been considered by Andersen, Bollerslev, Diebold, and Labys (2003), Corsi (2009), Bekaert
and Hoerova (2014) and Taylor (2017) among others. The results of the empirical study show that
HAR models based on transformed RV (and estimated by OLS) offer substantial reductions in the
loss measures compared to the standard HAR based on raw RV. Overall, the logarithmic transfor-
mation does better than the square root transformation. Improvements in forecast accuracy are
often similar to those provided by RR.

Finally, the possible benefits of combination schemes, alternative estimation schemes (WLS or
RR) applied to HAR models based on transformed (logarithmic or square root) RV, is examined.
This idea of combining different transformations with alternative estimators in the context of
return volatility predictability appears to be new. It is found that combination schemes often
do better than HAR models based on transformed RV, estimated by OLS. A HAR model based
on logarithmic RV estimated using RR does best overall. As the loss functions used for forecast
comparison deal with over- and under-prediction differently, the interaction between forecasts
from the alternative approaches and the loss functions is further investigated and discussed.

The results are robust to index and individual stock data, with or without an “insanity filter”
applied to all forecasts, to periods of high and low volatility, and to alternative multi-step ahead
forecast schemes (direct, indirect). The approaches considered here also perform well compared
to some extended HAR models (LHAR, HAR-RSV, HAR-CJ) suggested in the literature. These
findings provide useful practical insights in the application of the HAR model. Improvements
in forecast accuracy can readily be obtained without the need to resort to data beyond publicly
available RV and sophisticated extensions of the HAR model.

The remainder of this paper is organized as follows. Section 2 describes its methodology,
Section 3 reports the results of its empirical study, and Section 4 concludes. Additional results to
complement the main paper are contained in an Online Appendix.

2 Methodology

This section describes the measures and models used to construct volatility forecasts, the esti-
mators and transformations employed, how forecasts are computed, and how their accuracy is
assessed.
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2.1 Realized variance

We consider a single asset for which the log-price process P within the active part of a trading
day evolves in continuous time as

dPt = µtdt + σtdWt, (1)

where µ and σ are the instantaneous drift and volatility processes, respectively, and W is a stan-
dard Brownian motion (Wiener process). The ith ∆-period return within day t is defined as

rt,i = Pt−1+i∆ − Pt−1+(i−1)∆, i = 1, 2, . . . , M,

where M = 1/∆ is the sampling frequency. Hence, the daily logarithmic return for the active
part of trading day t is rt = ∑M

i=1 rt,i.
In the simplest case, we wish to forecast the latent one-day integrated variance defined by

IVt =
∫ t

t−1
σ2

s ds. (2)

Although (2) is unobservable it can be consistently estimated by the one-day realized variance
(RV)

RVt =
M

∑
i=1

r2
t,i,

as M → ∞ (Andersen and Bollerslev, 1998). Hence, the RV measure is defined as the sum of the
squared returns within day t. Given restrictions on the sampling frequency M, Barndorff-Nielsen
and Shephard (2002) show that the estimation error in RV can be characterized by RVt = IVt + ηt,
where

ηt√
2∆IQt

=
RVt − IVt√

2∆IQt

is approximately N(0, 1), or standard normal, and IQt =
∫ t

t−1 σ4
s ds is the integrated quarticity

(IQ) which can be consistently estimated by the realized quarticity (RQ)

RQt =
M
3

M

∑
i=1

r4
t,i. (3)

Analogous results are available for common transformations of RV. See, for example, Corsi,
Mittnik, Pigorsch, and Pigorsch (2008). For square root transformed RV,

√
RVt −

√
IVt√

∆
2

RQt
RVt

(4)
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is approximately N(0, 1). For log transformed RV,

log RVt − log IVt√
2∆ RQt

(RVt)2

(5)

is approximately N(0, 1), where log denotes the natural logarithm.

2.2 The HAR & HARQ models

2.2.1 HAR

With the widespread availability of high-frequency intraday data, the recent literature has focused
on employing RV to build forecasting models for time-varying return volatility. Among these
forecasting models, the HAR model proposed by Corsi (2009) has gained popularity due to its
simplicity and consistent forecasting performance in applications. The formulation of the HAR
model is based on a straightforward extension of the so-called heterogeneous ARCH, or HARCH,
class of models analyzed by Muller, Dacorogna, Dave, Olsen, Pictet, and Weizsacker (1997). Under
this approach, the conditional variance of the discretely sampled returns is parameterized as a
linear function of lagged squared returns over the same horizon together with the squared returns
over longer and/or shorter horizons.

The original HAR model specifies RV as a linear function of daily, weekly and monthly real-
ized variance components, and can be expressed as

RVt = β0 + β1RVd
t−1 + β2RVw

t−1 + β3RVm
t−1 + ut, (6)

where the β j (j = 0, 1, 2, 3) are unknown parameters that need to be estimated, RVt is the real-
ized variance of day t, and RVd

t−1 = RVt−1, RVw
t−1 = 1

5 ∑5
i=1 RVt−i, RVm

t−1 = 1
22 ∑22

i=1 RVt−i denote
the daily, weekly and monthly lagged realized variance, respectively. This specification of RV
parsimoniously captures the high persistence observed in most realized variance series.

2.2.2 HARQ

Bollerslev et al. (2016) recently proposed an easily implemented, and by OLS estimated, extension
of the HAR model dubbed the HARQ model, which accounts for the error with which RV is
estimated by using RQ. The full HARQ (HARQ-F) model can be written as

RVt = β0 + (β1 + β1Q

√
RQd

t−1)RVd
t−1 + (β2 + β2Q

√
RQw

t−1)RVw
t−1 + (β3 + β3Q

√
RQm

t−1)RVm
t−1 + ut,

where (similar to the original HAR model) RQw
t−1, RQw

t−1 and RQm
t−1 denote the daily, weekly,

and monthly lagged realized quarticity, respectively. Bollerslev et al. (2016) find that, at least for
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short-term forecasting, a simplified version

RVt = β0 + (β1 + β1Q

√
RQd

t−1)RVd
t−1 + β2RVw

t−1 + β3RVm
t−1 + ut, (7)

is useful as most of the attenuation bias in the forecasts (due to RV being less persistent than
unobserved IV) is due to the estimation error in RVd

t−1. Overall, this framework allows for less
weight to be placed on historical observations of RV when the measurement error captured by
RQ is higher.

The subsequent study considers the forecasting performance of the original HAR model,
when its parameters are estimated using alternative methods to OLS, and when it is fitted to
transformed rather than raw RV. The standard HAR model (6) and its (state of the art) HARQ
extension (7), both estimated using OLS, are then used as benchmarks models.

2.3 The estimators

The HAR model in (6) is often estimated using RV and the method of OLS. However, given styl-
ized facts of RV (such as spikes/outliers, conditional heteroskedasticity, and non-Gaussianity)
and well-known properties of OLS, this combination should be far from ideal. Instead alternative
methods such as weighted least squares (WLS) and robust regression (RR) seem more appropri-
ate. Next we briefly review the above methods, and the associated estimation schemes used in
our out-of-sample forecasting study.

2.3.1 OLS

For the HAR model, the OLS estimator of β = (β0, β1, β2, β3) given the observations RV1, . . . , RVn

is the solution to the minimization problem

min
b0,b1,b2,b3

n

∑
t=23

(RVt − b0 − b1RVd
t−1 − b2RVw

t−1 − b3RVm
t−1)

2.

It is well-known that if the errors ut in autoregressions such as (6) are independent, normally
(Gaussian) distributed, and homoskedastic the optimal (in a asymptotic efficiency sense) estima-
tor of β is the OLS estimator.

2.3.2 WLS

Weighted least squares attempts to provide a more efficient alternative to OLS. Instead of the sum
of squared deviations, their weighted sum is minimized. For the HAR model, the WLS estimator
of β is the solution to the minimization problem

min
b0,b1,b2,b3

n

∑
t=23

wt(RVt − b0 − b1RVd
t−1 − b2RVw

t−1 − b3RVm
t−1)

2, (8)
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where wt > 0 is the weight of the tth observation. If each weight wt is inversely proportional to the
conditional variance of the corresponding error ut, then the WLS estimator is more efficient than
the OLS estimator. In this way, less weight is given to errors which are likely to be large. While
Patton and Sheppard (2015) employed a simple WLS scheme (described below) for estimating
the HAR model, they never considered alternatives. Here we will examine this method more
thoroughly by introducing a number of different WLS schemes.

The first scheme uses RQ to directly capture the heteroskedasticity in RV, defining wt in (8) as
wt = 1/

√
RQt−1. This approach is closest in spirit to the HARQ model (7), and places less weight

during estimation on periods where volatility is less precisely estimated.1 This scheme will here-
after be denoted by WLSRQ-HAR. Given the strong positive empirical correlation between RV and
√

RQ, the second scheme uses RV directly with weights wt = 1/RVt−1. This specification is use-
ful for the many instances where RV is publicly available but RQ is not. This scheme is denoted
WLSRV-HAR. The third WLS scheme is the approach briefly discussed in Patton and Sheppard
(2015). This scheme, denoted WLSR̂V-HAR, uses weights wt = 1/R̂Vt, where R̂Vt is the fitted
value from the standard HAR model (6) estimated using OLS. Given the positive relationship
between volatility and RQ, this scheme places less weight during estimation on periods where
volatility is less precisely estimated without requiring RQ directly. Corsi et al. (2008) analyse the
residuals of HAR models estimated by OLS and find evidence of conditional heteroskedasticity,
which motivates the authors to consider HAR-GARCH specifications. Influenced by their find-
ings, the fourth scheme considers a three-step estimation approach for the HAR model: The first
step is to estimate its parameters using OLS and compute residuals. The second step is to esti-
mate a GARCH(1,1) on the OLS residuals. The third step is to use these estimates to fit the HAR
model by WLS with weights wt = 1/ĥt, where ĥt is the fitted value of the conditional variance of
the GARCH(1,1). The final step is partially motivated by Romano and Wolf (2017) who find that
WLS can be superior to OLS even when the model used to estimate the heteroskedastic function
is misspecified. The weighting scheme outlined above is denoted WLSG-HAR. As the previous
two estimation schemes, this final scheme has the practical benefit of employing WLS without
resorting to RQ.

Although four different WLS schemes have been described above, only results for the WLSRQ-
HAR and WLSG-HAR will be reported in the empirical study. This is mainly for the sake of
brevity as quite a number of estimation, transformation and combination schemes, as well as
benchmarks, will be considered. Because of the strong correlation between RV and

√
RQ, the

performance of the WLSRV-HAR is very similar to that of the WLSRQ-HAR. Accordingly, results
for the WLSRV-HAR will not be reported. Unreported results show that while the WLSR̂V-HAR
generally does better than the OLS-HAR, its forecasting performance typically is somewhat be-
hind that of the WLSRQ-HAR and WLSG-HAR. Consequently, the WLSR̂V-HAR will not be used

1Alternatively, wt = 1/
√

RQt could be used here, as the weights are used only for parameter estimation and not
for forecasting. In practice, however, using RQt instead of RQt−1 makes very little difference to estimation. Instead,
it is the time variation in the weights reflecting the heteroskedasticity that is important. Given the persistence in RQ,
there is no practical difference between the relative levels through time of either RQt or RQt−1.
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in the empirical study.

2.3.3 RR

Although optimal under ideal conditions, the OLS estimator is also well-known to be highly
sensitive to outliers (unusual observations) in the data. For this reason more robust estimators,
such as the commonly used M-estimator, have been proposed as alternatives. For the HAR model,
the M-estimator of β is the solution to the minimization problem

min
b0,b1,b2,b3

n

∑
t=23

ρ(RVt − b0 − b1RVd
t−1 − b2RVw

t−1 − b3RVm
t−1),

where ρ is a prespecified symmetric function with a unique minimum at zero. An important
special case is the least absolute deviations (LAD) estimator, with loss function ρ(e) = |e|. For
this case the sum of absolute instead of squared deviations is minimized. Hence, by comparison,
OLS gives more weight to large deviations (outliers) than LAD.

For many cases, the robust M-estimate of β is computed using iteratively reweighted least
squares (IRLS) with the weight function w(e) = ρ′(e)/e, where ρ′ is the derivative of ρ. In our
empirical study, we use Tukey’s bisquare (or biweight) estimator for which

ρ(e) =


k2

6

{
1−

[
1−

( e
k

)2
]3
}

, |e| ≤ k

k2

6 , |e| > k
and w(e) =


[
1−

( e
k

)2
]2

, |e| ≤ k

0, |e| > k

where k is the tuning constant.2 This approach will hereafter be denoted by RR-HAR. The popular
bisquare and LAD M-estimators are considered resistant, or robust. That is, they are relatively
unaffected by outliers.

2.4 The transformations

An alternative to employing estimation methods other than OLS is to use transformations. The
logarithmic transformation, for example, is known to be appropriate for series whose standard
deviation increases linearly with the mean (Brockwell and Davis, 1991). Numerous alternative
transformations have been proposed. The best known perhaps being the Box-Cox transformations
(Box and Cox, 1964), which is a family of variance-stabilizing transformations. Transformations
belonging to this family are often used in practice to obtain a model with a simple structure, and
(close to) normally distributed errors with constant variance. The Box-Cox transformation of a
time series variable yt is

yt(λ) =

{
yλ

t −1
λ , λ 6= 0,

log yt, λ = 0,

2We use Matlab’s robustfit function, with its default tuning constant, to compute the bisquare estimates. We
also tried the LAD estimator, but were not able to improve upon our results reported for the bisquare estimator.
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Figure 1: Top panel: Kernel density estimate of the S&P 500 RV observations used in Section 3.2.
Bottom panel: Kernel density estimates of the log-RV observations (solid), qr-RV observations
(dashed), and sqr-RV observations (dotted).

where λ is the power parameter. In the context of modeling and forecasting RV, important special
cases include the logarithmic transformation (λ = 0), the quartic root transformation (λ = 1/4),
and the square root transformation (λ = 1/2). See Corsi (2009), Taylor (2017), and the references
therein.

To highlight the impact of such transformations, Figure 1 shows the distribution of raw RV
for the S&P 500 series used in Bollerslev et al. (2016), along with the distributions of sqr-, qr- and
log-transformed RV. The top panel illustrates well-known features of the RV, which is nonnegative
with a distribution exhibiting substantial skewness and excess kurtosis. It is clear from the lower
panel that all three transformations result in more symmetric, approximately Gaussian, distribu-
tions. The sample skewness of raw RV exceeds 10, while the skewness of the sqr-transformed
RV is 3.2, 1.5 for the qr-transformed data, and 0.5 for the log-transformed data. In sum, all three
transformations appear useful for reducing skewness, and hence the possible effect of outliers
and potential heteroskedasticity in the RV series. Nonetheless, for the sake of brevity, only log-
and sqr-transformed RV will be used in the empirical study.
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2.5 Combinations

A natural question that arises in this context is if there are benefits to combination schemes, that
is, to alternative estimation schemes applied to HAR models based on transformed RV. Here the
RR and two WLS schemes will be used to examine how the predictive accuracy of HAR models
based on logarithmic or square root transformed RV depends on the choice of estimator. For log-
arithmic RV, the resulting combination schemes are denoted RR-log-HAR, WLSRQ-log-HAR and
WLSG-log-HAR. Similarly, for square root transformed RV, the schemes are denoted RR-sqr-HAR,
WLSRQ-sqr-HAR and WLSG-sqr-HAR. The weights for WLSRQ-sqr-HAR, wt =

√
RVt−1/RQt−1,

are based on (4), and the WLSRQ-log-HAR weights, wt = RVt−1/
√

RQt−1, are based on (5). The
purpose of the above six combination schemes is to investigate if the alternative estimators can
correct for possible shortcomings of the transformations, such as remaining heteroskedasticity in
the transformed RV.

2.6 Forecasting

2.6.1 Raw RV

The optimal (in the MSE sense) forecast of RVt for the HAR model (6) given the information set
at time t− 1 can be expressed as

Ft = β0 + β1RVt−1 +
β2

5

5

∑
i=1

RVt−i +
β3

22

22

∑
i=1

RVt−i.

Similarly, for the HARQ model (7)

Ft = β0 + (β1 + β1Q

√
RQd

t−1)RVt−1 +
β2

5

5

∑
i=1

RVt−i +
β3

22

22

∑
i=1

RVt−i.

Following Bollerslev et al. (2016), weekly or monthly direct forecasts are obtained by replacing the
daily RVs on the left-hand-sides of (6) and (7) with the weekly or monthly RVs.

2.6.2 Box-Cox transformed RV

From Table 1 in Proietti and Lütkepohl (2013), a bias-corrected forecast of RVt for the HAR model
applied to logarithmic (instead of raw) daily RV is

Ft = exp

{
β0 + β1 log RVt−1 +

β2

5

5

∑
i=1

log RVt−i +
β3

22

22

∑
i=1

log RVt−i +
σ2

t
2

}
, (9)
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where σ2
t is the conditional variance of the errors ut. Moreover, a bias-corrected forecast of RVt

for the same model applied to square root daily RV is

Ft = Nt

(
1 +

1
4

σ2
t

Nt

)
, (10)

where Nt denotes the naı̈ve forecast,

Nt =

[
1 +

β0

2
+ β1

(√
RVt−1 − 1

)
+

β2

5

5

∑
i=1

(√
RVt−i − 1

)
+

β3

22

22

∑
i=1

(√
RVt−i − 1

)]2

.

The forecasts in (9) and (10) are optimal if the transformed series is normally distributed. For the
sake of simplicity, we use the sample variance of the residuals from the estimation window to
estimate the variance terms in (9) and (10).

2.6.3 Insanity filter

The HARQ model may on rare occasions generate implausibly large or small forecasts. For
this reason, Bollerslev et al. (2016) follow Swanson and White (1997) in applying an “insanity
filter” (IF) to all forecasts. Different IFs have been suggested in the related literature (Patton
and Sheppard, 2015, Bollerslev, Hood, Huss, and Pedersen, 2018a). Here the IF specification of
Bollerslev et al. (2016) will be used. With this filter, any forecast greater than the maximum, or
less than the minimum, of the dependent variable observed in the estimation period is replaced
by the sample average over that period. That is, “insanity” is replaced by “ignorance”.

2.7 Comparing forecast accuracy

2.7.1 Loss measures

Following the literature on volatility forecast comparison (Patton, 2011, Patton and Sheppard,
2009), the empirical quasi-likelihood (QLIKE) and mean squared error (MSE) will be used to
assess out-of-sample forecast accuracy. For daily RV, these statistical measures are defined as

QLIKE =
1
T

T

∑
t=1

(
RVt

Ft
− log

RVt

Ft
− 1
)

, (11)

and

MSE =
1
T

T

∑
t=1

(RVt − Ft)
2 , (12)

where T is the number of forecasts and Ft denotes a forecast of RVt (which proxies for IVt) from
the different models or approaches.3 Equations (11) and (12) are easily modified for weekly, or

3Simulation based evidence by Patton and Sheppard (2009) suggests the use of QLIKE rather than MSE due to
the superior power of QLIKE in Diebold and Mariano (1995) and West (1996) type tests for equal predictive accuracy
(EPA).
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longer horizon volatility forecasts.
Bee, Dupuis, and Trapin (2016) among others use HAR models to forecast risk estimates such

as Value-at-Risk (VaR), a critically important issue in the context of prudential regulation. Here,
forecasts will also be compared under an economic loss function directly related to VaR. The
conditional VaR is given by

VaRα
t = µt + Φ−1(α)

√
Ft (13)

where µt is the conditional mean of the return (which for simplicity here is taken to be time-
invariant), and Φ−1 is the inverse of the standard normal cdf. A quantile estimation based loss
function that penalizes VaR violations more heavily will be used to evaluate all forecasts. Specif-
ically, the smoothed loss function proposed by González-Rivera, Lee, and Mishra (2004) is used,

Q̃ =
1
T

T

∑
t=1

[
α− 1

1 + eδ(rt−VaRα
t )

]
(rt −VaRα

t ), (14)

where the parameter δ > 0 controls the smoothness. Lower values of Q̃ indicate more accurate
forecasts. Following Fameliti and Skintzi (2020), values of δ = 25 and α = 0.05 are used in the
subsequent empirical analysis. For ease of interpretation, the VaR-based loss measure (14) will
hereafter be denoted by VaR.

This paper follows the standard practice of estimating model parameters with respect to loss
functions that differ from the loss functions used to assess forecast performance, that is, from the
intended use of the model forecasts. Hansen and Dumitrescu (2018) show that likelihood-based
estimation is preferred over estimation under the intended loss function whenever the likelihood
is correctly specified. However, when the likelihood is misspecified, it is not clear if this remains
to be the case. Here, OLS amounts to likelihood-based estimation under the assumption of
normality, which is far from the case for RV. Hence, further improvements in predictive accuracy
could be made by using the same loss function that is used to assess out-of-sample performance
for parameter estimation. A thorough examination of the conflict between the loss function used
for estimating model parameters and that used to assess forecast performance is beyond the scope
of this paper. Here, a range of well-known estimation methods (OLS, WLS, RR) are used to obtain
HAR model parameter estimates. These different approaches are then compared under a range
of widely-used loss functions (QLIKE, MSE, VaR).

2.7.2 The model confidence set

Statistically significant differences in forecast performance will be assessed using the model con-
fidence set (MCS) introduced by Hansen, Lunde, and Nason (2011).4 The MCS procedure avoids
the specification of a benchmark model, and starts with a collection of competing models (or
approaches), M0, indexed by i = 1, . . . , m0. For each of the loss functions in Section 2.7.1, loss

4The MCS results presented here were obtained using the mcs function from the Oxford MFE Toolbox developed
by Kevin Sheppard, https://www.kevinsheppard.com/code/matlab/mfe-toolbox/.
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differentials dij,t between models i and j are computed, and H0 : E(dij,t) = 0 for all i, j (the null
hypothesis of EPA) is tested. If the null hypothesis is rejected at the significance level α, the worst
performing model is eliminated and the process is repeated until non-rejection occurs with the
set of surviving models being the MCS, M̂∗

1−α. By using the same significance level for all tests,
M̂∗

1−α contains the best model(s) fromM0 with a limiting (1− α) level of confidence.5 Here the
tests for EPA employ the range statistic described in Hansen, Lunde, and Nason (2003). Since
the MCS should be used with caution when forecasts are based on estimated parameters and
models are nested (Hansen et al., 2011), a 90% MCS will be complemented with loss ratios of the
standard HAR to alternative approaches.

3 Empirical results

3.1 Data

The empirical study here is based on the Standard & Poor’s 500 (SPX) index and 26 frequently
traded NYSE stocks. For the S&P 500, the same series of RV and RQ used in Bollerslev et al.
(2016) are employed.6 This dataset spans 21 April 1997 to 30 August 2013 representing 4096 daily
observations and was chosen as the HARQ model is one of the benchmarks considered here,
and as it was central to the original work of Bollerslev et al. (2016). In addition to the SPX, 26

individual stocks (all constituents of the Dow Jones index) are used. Estimates of RVt and RQt

are also here based on 5 minute intraday returns downloaded from Thomson Reuters Datascope
(new version of Tick History). The data spans 22 July 2002 to 27 June 2019 representing 4193

trading days. A list of ticker symbols and company names for the stocks is provided in the
Online Appendix.

3.2 In-sample results

While the practical use of the HAR model in terms of forecasting is the focus of this paper, this
section outlines various in-sample estimation results to provide some insights into the important
features of the estimation and transformation schemes. The results are for the full SPX sam-
ple, and a 1-day forecast horizon, so that the HAR and HARQ in-sample estimation results of
Bollerslev et al. (2016) can be used a benchmark for comparative purposes.

Table 1 presents the in-sample estimation results for the RR, WLSRQ, and WLSG estimation
schemes. The benchmark HAR and HARQ models, both estimated by OLS, reproduce the results
of Bollerslev et al. (2016). Bollerslev et al. (2016) find that the HARQ model generally places
greater weight on the daily lag, and lesser weight on the weekly and monthly lags, compared
to the HAR model. This is reflected in the HAR and HARQ estimation results in Table 1, with
an increase in β1 and decrease in β2 and β3 estimates moving from the HAR to the HARQ

5In this sense, the MCS at level α is similar to a (1− α)% confidence interval for an unknown parameter.
6The two series were obtained from Andrew Patton’s research page, http://public.econ.duke.edu/~ap172/

research.html.
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HAR HARQ RR-HAR WLSRQ-HAR WLSG-HAR

β0 0.1126 (0.0615) -0.0099 (0.0617) 0.1126 (0.0057) 0.0517 (0.0117) 0.0223 (0.0113)
β1 0.2273 (0.1104) 0.5929 (0.0838) 0.3713 (0.0035) 0.5781 (0.0253) 0.4310 (0.0317)
β2 0.4904 (0.1352) 0.3586 (0.1284) 0.2257 (0.0059) 0.2391 (0.0277) 0.4758 (0.0466)
β3 0.1864 (0.1010) 0.0976 (0.1052) 0.1165 (0.0052) 0.1548 (0.0225) 0.0972 (0.0314)
β1Q -0.3602 (0.0637)

R2
0.5224 0.5624 0.4933 0.4773 0.4944

MSE 2.5728 2.3482 2.7802 2.8163 2.7254

QLIKE 0.1439 0.1358 0.1512 0.1340 0.1331

Table 1: In-sample daily model estimates and measures of fit for some selected (RR, WLSRQ,
WLSG) estimation schemes. Results based on the full SPX sample. The benchmark HAR and
HARQ models are estimated by OLS. Robust standard errors are reported in parentheses, together
with the R2 and empirical MSE and QLIKE.

model. By design, the (OLS-)HARQ with its four predictors has the highest in-sample R2 and
lowest in-sample MSE, followed by the (OLS-)HAR. Results in the subsequent columns show that
the choice of estimation scheme has a considerable impact on the estimates for the β0 through
β3 parameters of the HAR model. M-estimation (RR) has a similar effect to HARQ regression,
with an increase in β1 and corresponding decreases in β2 and β3 estimates relative to the HAR
model. In contrast to the HARQ model, this comes at the expense of in-sample fit relative to
the HAR model. The WLS schemes have a similar impact on the weighting of past RV, placing
greater weight on the daily lag, and lesser weight on the weekly and monthly lags, compared
to the HAR model. WLSRQ-HAR produces a weighting of past RV that is relatively similar to
HARQ, with an increase in β1 and decrease in β2 and β3 estimates relative to the HAR. While the
WLSG-HAR also places greater weight on the daily lag relative to the HAR, the effect is not as
strong as for the HARQ or WLSRQ-HAR. In contrast to OLS, WLS (and RR) does not by design
minimize in-sample MSE. Therefore it is not surprising to see inferior R2 and MSE values for the
WLS schemes. Superior in-sample QLIKE values are, however, observed for both WLS schemes
compared to the HAR(Q). While the in-sample results for the alternative estimation schemes
are mixed, their practical benefit will become clear in the subsequent out-of-sample forecasting
exercise.

While not the focus here, a brief discussion of how WLS deals with the heteroskedasticity in
RV is still worthwhile. To economise on space, plots of the weights used for the four different
schemes in Section 2.3.2 are presented in the Online Appendix. Each of these WLS schemes
are based on the reciprocal of a quantity related to financial volatility. Consequently, weights
are smaller during periods of market stress and high volatility in 2008–2009, and larger during
periods of low volatility. While WLS is clearly a different approach, it is similar in spirit to the
HARQ. The HARQ model directly adjusts the parameter on daily lagged RV in proportion to the
magnitude of

√
RQ. Instead of allowing parameters to vary as a function of

√
RQ, WLSRQ places

less weight on days with high
√

RQ during estimation. The other three weighting schemes work
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in a similar fashion. The wt = 1/RVt−1 weights for the WLSRV scheme closely resemble those for
WLSRQ. This is not surprising given the strong positive correlation observed between RVt and
√

RQt. While displaying the same general pattern, the weights for the WLSG and WLSR̂V schemes
are more muted. The similarity between the WLSRQ, WLSRV and WLSG weights has an important
practical implication. As RQ estimates are not always publicly available, and as IQ is notoriously
difficult to estimate in finite samples, the two latter schemes offer viable alternatives for dealing
with the heteroskedasticity in RV using WLS.

HAR HARQ log-HAR sqr-HAR

β0 0.1126 (0.0615) -0.0099 (0.0617) -0.0204 (0.0089) -0.0092 (0.0010)
β1 0.2273 (0.1104) 0.5929 (0.0838) 0.3924 (0.0217) 0.3968 (0.0183)
β2 0.4904 (0.1352) 0.3586 (0.1284) 0.4082 (0.0321) 0.3857 (0.0284)
β3 0.1864 (0.1010) 0.0976 (0.1052) 0.1531 (0.0242) 0.1616 (0.0231)
β1Q -0.3602 (0.0637)

R2
0.5224 0.5624 0.5362 0.5268

MSE 2.5728 2.3482 2.4994 2.5500

QLIKE 0.1439 0.1358 0.1336 0.1437

Table 2: In-sample daily model estimates and measures of fit for some selected (log, sqr) transfor-
mation schemes. Results based on the full SPX sample. The benchmark HAR and HARQ models
are estimated by OLS on raw RV. Robust standard errors are reported in parentheses, together
with the R2 and empirical MSE and QLIKE.

Table 2 reports the in-sample estimation results for the logarithmic (λ = 0) and square root
(λ = 1/2) transformation schemes. The HAR and HARQ results are reproduced here for refer-
ence. While it is not meaningful to directly compare HAR parameter estimates for transformed
RV to those obtained for raw RV, comparing estimates for a specific transformation is. Here
the (OLS-)log-HAR places greater weight on more recent RV, with its first two AR parameter
estimates being considerably larger than the last. The AR parameter estimates for the sqr-HAR
model are similar to those for the log-HAR model. Given the similarities observed in Figure 1 this
is unsurprising. However, in contrast to the log-HAR, the sqr-HAR offers only small improve-
ments in in-sample measures of fit over the HAR. The measures were calculated using equations
(9) and (10), respectively.

Finally, Table 3 presents in-sample estimation results for two combination schemes to highlight
any benefits of employing alternative estimation schemes, here WLSRQ, to transformed RV. The
log- and sqr-HAR results are reproduced for ease of comparison. While only a selection of
all possible combination schemes are presented here for the sake of brevity (results for RR-log
and WLSG-sqr are, for example, not reported), the results highlight the general outcome for the
combination schemes. The first two columns of Table 3 show that there are only minor changes in
the estimates of the AR parameters of the log-HAR model after WLS (WLSRQ-log-HAR) is used
in place of OLS for estimation. Moreover, there is virtually no change in the in-sample measures
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log-HAR WLSRQ-log-HAR sqr-HAR WLSRQ-sqr-HAR

β0 -0.0204 (0.0089) -0.0112 (0.0085) -0.0092 (0.0010) 0.0025 (0.0089)
β1 0.3924 (0.0217) 0.4149 (0.0187) 0.3968 (0.0183) 0.4685 (0.0203)
β2 0.4082 (0.0321) 0.3835 (0.0284) 0.3857 (0.0284) 0.3252 (0.0280)
β3 0.1531 (0.0242) 0.1569 (0.0221) 0.1616 (0.0231) 0.1619 (0.0222)

R2
0.5362 0.5365 0.5268 0.5213

MSE 2.4994 2.4976 2.5500 2.5796

QLIKE 0.1336 0.1335 0.1437 0.1433

Table 3: In-sample daily model estimates and measures of fit for some selected combinations of
transformation and estimation schemes. Results based on the full SPX sample. The log-HAR
and sqr-HAR models are estimated by OLS. Robust standard errors are reported in parentheses,
together with the R2 and empirical MSE and QLIKE.

of fit. The results for square root transformed RV in the last two columns (sqr-HAR and WLSRQ-
sqr-HAR) are similar. Overall, these results suggest that there is little impact from employing
transformation schemes to RV in combination with alternative HAR estimation schemes. Either a
transformation scheme or an alternative estimation scheme is impactful, but not both. Of course,
the possible benefits of combination schemes in the context of volatility prediction is the main
focus here, an issue which will be addressed below.

While none of the approaches considered here are computationally burdensome, there are
(very) small differences in computational cost between schemes to note. More details relating to
this issue are provided in the Online Appendix. OLS estimation is, of course, fastest to compute
a one-step-ahead HAR forecast. The (non-GARCH) WLS schemes are only marginally slower,
followed by the transformation schemes with their more complicated forecast expressions. Due
to the iterative nature of IRLS, the RR-HAR approach is slower again but still takes only a fraction
of a second to estimate the unknown HAR parameters and generate a forecast. Finally, the WLSG-
HAR is the least computationally efficient approach due to its associated numerical optimization.
While it is clear that there are differences in computational cost, the actual computational times
for all of the schemes are negligible.

The results of this section showed that many of the approaches considered have a similar effect
on HAR parameter estimates, and provided some new insights into the impacts of the alternative
estimation and transformation schemes. While the results for in-sample fit were mixed, the
important practical benefits (as there are no significant costs in terms of computation) of the
approaches will be shown in the following out-of-sample forecasting exercise.

3.3 Out-of-sample results

It is well documented that volatility exhibits changes in levels over time. See, for instance, Cai
(1994) and Engle and Rangel (2008). This implies instability in linear models of RV, which may be
dealt with by introducing time-varying parameters. A successful recent example of this approach
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in the context of the HAR model is Buccheri and Corsi (2019). As mentioned earlier, the goal
of this paper is not to extend the original HAR model but rather to investigate how to get the
most out of it. To this end, a rolling forecasting scheme is relatively attractive when one wishes
to deal with parameter drift that is difficult to model explicitly (West, 2006). The out-of-sample
results reported here in the main paper are based on a rolling scheme with a 1000 day rolling
window as in Bollerslev et al. (2016), and Taylor (2017). Results based on a recursive (increasing
window) forecasting scheme are consistent with those reported here and are available in the
Online Appendix.

Since the original HAR model will be estimated using a rolling scheme, with a limited num-
ber of observations, changes in its parameter estimates are to be expected over time. Before
discussing the out-of-sample forecasting results, it is instructive to investigate these changes for
some selected estimation schemes. Figure 2 shows trajectories of the OLS, RR, WLSG, and WLSRQ

estimators of β0–β3 in the HAR model for daily SPX raw RV, obtained using a rolling window.
The end of the first 1000 day window used for parameter estimation is 6 April 2001, and the
end of the last is 29 August 2013. As expected, there is substantial time variation in the rolling
estimates. It is clear that although the estimates of the alternative estimation schemes often show
a similar pattern, OLS estimates are much more variable than those of RR or WLS. This is most
evident during the period 2006-2008 and then again towards the end of 2012. For these periods,
associated with windows exhibiting both high and low volatility, RR and WLS estimates change
more smoothly. This is due to RR and WLS being less sensitive to outlying observations than
OLS. Whether these more stable HAR parameter estimates are of practical importance remains
an empirical question to be answered in the out-of-sample forecasting exercise below.

The out-of-sample forecasting results are reported in Table 4 for SPX, and Table 5 for the sam-
ple of 26 individual stocks. In both tables, results are grouped by Benchmarks (HAR and HARQ),
Estimators (RR and WLS), Transformations (log and sqr) and Combinations (the combinations of
log, sqr, RR and WLS). Table 4 reports out-of-sample QLIKE, MSE and VaR loss ratios of the
alternative approaches relative to the original HAR model, for 1-, 5-, 10- and 22-day forecast
horizons. These ratios will be used to compare the performance of the alternative estimation,
transformation, and combination schemes to the HAR and HARQ benchmarks (both estimated
by OLS). To highlight the best performing approach, the lowest ratio in each row is shown in bold
and approaches included in M̂∗

90, a 90% MCS, are indicated by asterisks. As discussed earlier,
for ease of comparison to the results of Bollerslev et al. (2016), a set of forecast comparisons with
the IF (described in Section 2.6.3) applied to all forecasts are presented here. Insanity filters for
volatility forecasting have also been used by Patton and Sheppard (2015) and Bollerslev et al.
(2018a). Even so, the vast majority of studies examining the HAR model, and extensions thereof,
do not employ an IF. Examples include Corsi and Renò (2012), Taylor (2017) and Cipollini et al.
(2021). To examine the practical impact of employing an IF, results are reported for the case with
the IF applied to all forecasts (IF on), and the case with no IF (IF off). In the latter case, the
HARQ model is excluded due to its reliance on the IF (Bollerslev et al., 2016). The results for the
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Figure 2: Sample paths of the OLS (solid), RR (dashed), WLSG (dotted), and WLSRQ (dotdash)
estimators of β0–β3 in the HAR volatility model for daily SPX raw RV, obtained using a 1000

day rolling window. Top panels: Trajectories of the estimators of β0 and β1. Bottom panels:
Trajectories of the estimators of β2 and β3.
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individual stocks in Table 5 are structured in the same way with average loss ratios for the stocks
reported, along with the number of times (in parentheses) each approach is included in M̂∗

90.

3.3.1 The estimators

The goal of this section is to study the performance of alternative estimators for the HAR model.
More specifically, to investigate how the predictive accuracy of the HAR depends on the choice
of estimator. We start by comparing the loss ratios for SPX reported under Benchmarks and Esti-
mators in columns 3–7 of Table 4. The first thing to note is that while the use of the IF does have
an impact on the ratios to some degree, it has no substantial impact on the relative performance
of the five approaches. At the 1-day horizon, the IF is not triggered for any approaches other
than the HARQ, and hence has no impact. At the longer horizons, there are a small number of IF
triggers. These occur during large, rapid increases in volatility during the onset of market turbu-
lence where forecasts exceed values observed throughout the preceding estimation window. As
the focus of this paper is on the practical application of the HAR model, a thorough investigation
into how the HAR forecasts respond to rapid changes in volatility is beyond its scope. What is
important here is that the choice of whether or not to use an IF has little overall impact on the
relative performance of the alternative approaches. At the 1-day horizon, the RR-HAR and the
two WLS schemes often offer substantial reductions in the loss measures compared to the HAR.
The WLSG-HAR has the lowest QLIKE. The HARQ has the lowest MSE, with the RR-HAR and
WLSG-HAR approaches not far behind, and the HAR has the lowest VaR. For the longer (5-, 10-
and 22-day) horizons, a systematic pattern emerges. The RR-HAR and the two WLS schemes
generally provide considerable reductions in QLIKE, MSE and VaR loss compared to the HAR.
With the exception of the case with no IF and QLIKE loss, the RR-HAR consistently provides
the lowest loss measures, outperforming both the HAR and HARQ. For the case with no IF, the
WLSRQ-HAR consistently has the lowest QLIKE. The corresponding results for the individual
stocks, reported in columns 3–7 of Table 5, are remarkably similar. Except for the case with no IF
and QLIKE loss, where the WLSRQ-HAR has the lowest average QLIKE at all forecast horizons,
the RR-HAR consistently provides the lowest average QLIKE, MSE and VaR at longer horizons.
In sum, the results here suggest that the choice of the estimation scheme under which the HAR
parameter estimates are obtained is important for volatility forecasting. This is perhaps not sur-
prising given that the HAR parameter estimates obtained under the rolling RR and WLS schemes
are more stable over time compared to the corresponding OLS estimates (cf. Figure 2). This is
often associated with more accurate forecasts.

3.3.2 The transformations

The aim of this section is to investigate whether transforming RV leads to an improvement in
predictive accuracy over the benchmark models. As before, log-HAR denotes the standard HAR
model fitted to the natural logarithm of RV, and sqr-HAR the same model fitted to the square
root transformation of RV. Both of these (non-linear) models for RV are estimated using OLS.
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We first compare the loss ratios for SPX reported under Benchmarks and Transformations in
columns 3–4 and 8–9 of Table 4. At the 1-day horizon, the two transformation schemes often
offer substantial reductions in the loss measures compared to the HAR. The log-HAR has the
lowest QLIKE and MSE, and the HAR has the lowest VaR. At the longer horizons, the log-HAR
and sqr-HAR consistently outperform the benchmarks under all three loss functions. Overall,
the logarithmic transformation does particularly well. The sqr-HAR occasionally does better for
the case with no IF. The corresponding results for the individual stocks, reported in columns 3–4

and 8–9 of Table 5, are much the same. At all four forecast horizons, the log-HAR and sqr-HAR
outperform the HAR and HARQ in terms of average QLIKE, MSE and VaR loss. While the log-
HAR still does particularly well overall, the sqr-HAR often does better for the case with no IF.
To sum up, it is clear that transformations of RV also can have a significant impact on predictive
accuracy.

3.3.3 Combinations

This section considers the possible benefits in predictive accuracy of combinations of different
estimation (RR or WLS) and transformation (log or sqr) schemes. We start by comparing the loss
ratios for SPX reported under Transformations and Combinations in columns 8–9 and 10–15 of
Table 4. Here, for example, WLSG-log-HAR denotes the standard HAR model fitted to the natu-
ral logarithm of RV using the WLSG scheme. At the 1- and 5-day horizons, the six combination
schemes offer only minor reductions, if any, in the loss measures compared to the two transfor-
mation schemes. At the 10- and 22-day horizons, the benefits of the combination schemes are
more clear. The RR-log-HAR does particularly well overall. However, the WLSRQ-sqr-HAR often
does better for the case with no IF. While WLS may be useful for square root transformed RV, the
two combination schemes using WLS and logarithmic RV generally offer minor reductions, if any,
in the loss measures compared to the log-HAR. This indicates that the logarithmic transformation
deals with the heteroskedasticity better than the square root transformation. The corresponding
results for the individual stocks, reported in columns 8–9 and 10–15 of Table 5, are very simi-
lar. At the 1- and 5-day horizons, the combination schemes on average provide only minor to
moderate reductions, if any, in the loss measures compared to the log-HAR and sqr-HAR. At the
10- and 22-day horizons, however, the benefits of the combination schemes are more apparent.
Overall, the RR-log-HAR does particularly well. However, the WLSRQ-sqr-HAR frequently does
better for the case with no IF. In sum, the results here suggest that there can be notable benefits
from estimating HAR models for transformed RV using estimation schemes other than OLS.

3.3.4 Estimators, transformations, or combinations?

Finally a comparison across all of the approaches is presented to determine whether the choice
of estimator, transformation, or combination thereof, provide the greatest benefit for forecasting
volatility with the HAR model. Here the best performing approaches will be discussed in terms
of the loss measures and the MCS. Once again we start with the results for SPX in Table 4, where
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the lowest loss ratio in each row is indicated in bold and asterisks indicate approaches included
in a 90% MCS. Overall, the RR-log-HAR stands out the most. It is typically included in the MCS,
and most often has the lowest loss ratios. The WLSRQ-HAR and its combinations, WLSRQ-log-
HAR and WLSRQ-sqr-HAR, also do well overall. Notably, these approaches all work best at longer
forecast horizons. With the exception of MSE loss, the benchmark HAR and HARQ models are
typically not included in the MCS. The corresponding results for the 26 NYSE stocks in Table 5

are strikingly similar. Once again the RR-log-HAR does best overall, and the WLSRQ-HAR and
its combinations, WLSRQ-log-HAR and WLSRQ-sqr-HAR, also stand out. To conclude, moving
away from OLS in terms of estimation, or transforming RV, generally offers clear improvements
in predictive accuracy. However, the results here show that further improvements (although
typically smaller in magnitude than the initial gains provided by RR, WLS, log or sqr) can be
obtained by estimating HAR models for transformed RV using estimators different from OLS.
Overall, these combination schemes produce the best performing forecasts, with or without an
insanity filter.

3.3.5 Over/under-prediction

The aim of this section is to further investigate the interaction between forecasts from the alterna-
tive approaches and the loss functions in Section 2.7.1 used for forecast comparison. These loss
functions deal with over- and under-prediction differently. While it is difficult to make general
claims about preferences for loss functions, to some practitioners, symmetric loss functions, such
as MSE, may be less attractive than asymmetric ones. Under asymmetric loss functions, such as
QLIKE, negative forecast errors (over-predictions) are penalized differently from positive forecast
errors (under-predictions).

In view of this, we first examine over- and under-prediction. Table 6 reports out-of-sample
proportions of over-prediction (POPs), mean over-predictions (MOPs) and mean under-predictions
(MUPs) for the alternative approaches and 1-, 5-, 10- and 22-day forecast horizons for SPX. The
POPs indicate that while all approaches are more likely to over-predict than to under-predict,
some are less likely to over-predict than others. Replacing OLS with RR or WLS typically leads to
approaches that are less likely to over-predict. The RR-HAR, for example, has lower POP than the
HAR, HARQ and sqr-HAR for all forecast horizons – with or without an insanity filter. Overall,
the POPs increase with the forecast horizon, with the RR-log-HAR exhibiting the lowest POPs.
For the 1-day forecast horizon, the POPs for all approaches remain the same after the insanity
filter has been applied to all forecasts. For the 5-, 10- and 22-day forecast horizons, the IF typ-
ically reduces the POPs, but not for the schemes based on logarithmic RV.7 The MOPs suggest
that the average negative forecast error also varies across the alternative approaches. Replacing

7In most cases, the IF described in Section 2.6.3 changes a small number of very large forecasts: any forecast greater
than the maximum of the dependent variable observed in the estimation period is replaced by the sample average over
that period. Thus POP is generally reduced. An increase in POP after application of the IF is also possible as the IF
in some cases changes a small number of very small forecasts: any forecast less than the minimum of the dependent
variable observed in the estimation period is replaced by the sample average over that period. This can increase POP.
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OLS with RR or WLS typically leads to approaches with lower average absolute negative forecast
errors. The RR-HAR, as an example, has lower average absolute over-prediction than the HAR,
HARQ, log-HAR and sqr-HAR for all forecast horizons – with or without an insanity filter. The
IF reduces the average absolute over-predictions for the 5-, 10- and 22-day forecast horizons in
most cases. The MUPs indicate that the average positive forecast error varies across the alterna-
tive approaches as well. Replacing OLS with RR or WLS typically leads to approaches with lower
average positive forecast errors. Overall, schemes based on logarithmic RV, such as RR-log-HAR,
have the lowest MUPs. In all but one case, the IF employed by Bollerslev et al. (2016) inflates the
MUPs for the 5-, 10- and 22-day forecast horizons.

To better understand the benefits of replacing OLS with a more suitable estimation method,
we next focus on some selected approaches. Figure 3 shows grouped (IF on/off) box plots for
six of the alternative approaches, visualizing five summary statistics (the median, two hinges and
two whiskers) for SPX 5-day horizon forecast errors (target RV − forecast, as in the definition
of MSE) and forecast ratios (target RV/forecast, as in the definition of QLIKE), with respective
MSE and QLIKE loss functions superimposed.8 The box plots provide additional clues to help
explain the good out-of-sample performance of the RR-HAR, WLSRQ-HAR and log-HAR. For
these approaches, the bulk of the forecast errors are shifted closer to zero (top panel, MSE) and
forecast ratios closer to one (bottom panel, QLIKE). That is, into regions of lower loss. Under
QLIKE, the RR-HAR, WLSRQ-HAR and log-HAR have less (more) forecast ratios in the more
(less) heavily penalized region of the domain of the loss function. Results for the 1-, 10- and 22-
day forecast horizons are broadly similar to those reported here and are available in the Online
Appendix. While the (OLS-)HAR excessively over-predicts, in particular for the longer horizons,
the alternative estimation schemes (RR, WLS) partially reduce this asymmetry.

In addition to MSE and QLIKE, a VaR-based loss function was used for forecast comparison.
However, it is not possible to discuss VaR in the same manner as MSE and QLIKE since the
former loss function does not involve target RV. See equations (13) and (14).

3.3.6 Robustness checks

This section presents three robustness checks. First, for the SPX dataset, forecast performance will
be compared over high and low volatility periods. Second, the performance of a few selected ap-
proaches will be compared to some extended HAR models previously suggested in the literature.
As the underlying intraday 5-minute returns are not available for this specific SPX dataset, this
part of the analysis will be based on the 26 individual stocks. Third, indirect forecasts from some
selected approaches for the SPX dataset will be evaluated and compared to the corresponding
direct forecasts.

8In these Tukey style box and whiskers plots, lower and upper hinges correspond to first and third quartiles (Q1
and Q3). Upper whiskers extend from each upper hinge to the largest value no further than 1.5 × IQR from the
hinge, where IQR = Q3 − Q1 is the interquartile range. Similarly, lower whiskers extend from each lower hinge to
the smallest value at most 1.5× IQR from the hinge. For ease of exposition, values beyond the end of the whiskers
(outliers) are not shown.
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Figure 3: Grouped box plots for six alternative approaches, with WLS-HAR indicating the
WLSRQ-HAR. For each group, top box plots represent IF off and bottom IF on (HARQ requires
IF on). Top panel: SPX rolling window 5-day horizon forecast errors, with superimposed MSE
loss function (dashed). Bottom panel: SPX rolling window 5-day horizon forecast ratios, with
superimposed QLIKE loss function (dashed).
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First, two subsamples of the SPX series corresponding to periods of high and low volatility
respectively, were selected to examine the robustness of the results with respect to changing mar-
ket conditions. This will reveal if the performance of the alternative estimation, transformation
and combination schemes reported in sections 3.3.1–3.3.4 are influenced by changes in market
conditions. The two subsamples split the full out-of-sample period nearly exactly in half. The
low volatility subsample starts at the beginning of the out-of-sample period and spans 9 April
2001 to 19 April 2007. The high volatility subsample spans 20 April 2007 to 30 August 2013, a time
period which contains the global financial crisis, a period of market turbulence and record high
levels of volatility. Table 7 presents forecasting results for SPX over the high and low volatility
subsamples. To conserve space, only results for the case with the IF applied to all forecasts are
reported. Overall, the RR-log-HAR performs the best. It is generally included in the MCS, and
most often has the lowest loss ratios. The log-HAR and WLSRQ-HAR also do well overall. As
expected, the RR-HAR stands out over the high volatility subsample. The benchmark HAR and
HARQ models are typically not included in the MCS. The alternative estimation, transformation
and combination schemes are on the whole superior to the benchmarks over both subsamples.
Overall, the results here suggest that these schemes are robust to changes in market conditions in
terms of the level of volatility.

Next, a selection of the approaches considered in sections 3.3.1–3.3.2 together with the HAR
and HARQ are compared to some extended HAR models suggested in the literature. The first
extension is a leverage HAR (LHAR) model considered in Corsi and Renò (2012). The LHAR
model can be expressed as

log RVt = β0 + β1 log RVd
t−1 + β2 log RVw

t−1 + β3 log RVm
t−1 + β4rd−

t−1 + β5rw−
t−1 + β6rm−

t−1 + ut,

where log RVt is the logarithmic RV of day t, and log RVd
t−1 = log RVt−1, log RVw

t−1 = 1
5 ∑5

i=1 log RVt−i,
log RVm

t−1 = 1
22 ∑22

i=1 log RVt−i denote the daily, weekly and monthly lagged logarithmic RV, re-
spectively, rt is the daily return, and rd−

t−1 = min(rd
t−1, 0), rw−

t−1 = min(rw
t−1, 0), rm−

t−1 = min(rm
t−1, 0),

with rd
t−1 = rt−1, rw

t−1 = 1
5 ∑5

i=1 rt−i, rm
t−1 = 1

22 ∑22
i=1 rt−i. The second extension considered is the

HAR-RSV model based on realized semi-variances (RSVs) of Chen and Ghysels (2011). Patton
and Sheppard (2015) also use a similar structure. The RSV estimators

RV+
t =

M

∑
i=1

r2
t,i1rt,i>0, and RV−t =

M

∑
i=1

r2
t,i1rt,i≤0,

split daily RV into semi-variances. The HAR-RSV model can be written as

RVt = β0 + β1RVd+
t−1 + β2RVw+

t−1 + β3RVm+
t−1 + β4RVd−

t−1 + β5RVw−
t−1 + β6RVm−

t−1 + ut,

where RVd+
t−1 = RV+

t−1, RVw+
t−1 = 1

5 ∑5
i=1 RV+

t−i, RVm+
t−1 = 1

22 ∑22
i=1 RV+

t−i, and RVd−
t−1, RVw−

t−1 , RVm−
t−1 are

defined similarly. The third, and final, extension considered is the HAR-CJ model of Andersen,
Bollerslev, and Diebold (2007), which harnesses the continuous component (C) and jump com-
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ponent (J) of RV. With daily, weekly and monthly lagged continuous and jump components, the
HAR-CJ model can be expressed as

RVt = β0 + β1Cd
t−1 + β2Cw

t−1 + β3Cm
t−1 + β4 Jd

t−1 + β5 Jw
t−1 + β6 Jm

t−1 + ut.

Table 8 presents forecasting results for these extended HAR models along with results for
the RR-HAR, WLSRQ-HAR and log-HAR, and the two benchmark models. Here, the analysis
is based on the sample of 26 individual stocks as the underlying intraday returns needed to
compute the RSVs and the C and J components of RV are not publicly available for the SPX
dataset. As expected, forecasts from the state of the art HARQ model, on average, generally
outperform those from the HAR-RSV and HAR-CJ models in terms of QLIKE, MSE and VaR loss.
In fact, at best, these two HAR extensions provide only minor to moderate reductions in the loss
measures on average compared to the standard HAR. The LHAR based on logarithmic (instead
of raw) RV, on the other hand, performs comparatively well. Overall, the log-HAR and RR-HAR
continue to stand out as the best performers. They are both typically included in the MCS, and
mostly have the lowest average loss ratios. WLSRQ-HAR also does comparatively well, in general
outperforming the HAR extensions based on raw RV. The focus of this paper has been on the
benefits of various schemes for the standard HAR model. These last results show that forecasts
generated by these schemes can outperform those from commonly used extensions of the HAR
model, without resorting to using intraday returns. This observation is of practical interest as
RV often is publicly available but the underlying intraday returns needed for computing the
regressors of some of the HAR extensions are not.

For longer forecast horizons, an alternative to the direct method described in Section 2.6.1
is the indirect approach. See, for example, Chevillon and Hendry (2005) and Marcellino, Stock,
and Watson (2006). In our setting, the indirect (iterative) approach first fits a daily RV model
and then iterates over its daily (h-day-ahead) forecasts to obtain weekly, biweekly, or monthly
predictions.9 The aim of this part is to investigate if the indirect approach, similar to the direct
approach, benefits from the alternative combination schemes for the HAR model and, in addition,
if the indirect approach provides more accurate forecasts than the direct approach.

We first examine if the benefits of the alternative combination schemes are still observed under
an indirect forecasting approach. Table 9 reports loss ratios for the 5-, 10- and 22-day forecast
horizons (indirect and direct forecasts are identical at the 1-day horizon) and the RR, WLSRQ, and
WLSG estimation schemes applied to the log-HAR model. Iterative bias-corrected h-day-ahead
forecasts of RV for the log-HAR model were computed using Proposition 1 in Buccheri and
Corsi (2019).10 These daily forecasts were then properly aggregated to obtain the longer horizon

9Direct forecasts are easy to compute and more robust to model misspecification compared to indirect forecasts.
The indirect approach is also much more challenging for the HARQ and other extensions of the HAR model (such as
the LHAR) as these models would require the dynamics of their exogenous variables to be specified. This often makes
direct volatility forecasts preferable for longer forecast horizons.

10It appears that closed form expressions for iterative bias-corrected multistep-ahead forecasts under some other
transformation schemes (such as the sqr-HAR) are not currently available. Deriving and evaluating such expressions
may be an interesting avenue for future research.
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predictions. To make the loss ratios directly comparable to those reported in 4, Table 9 reports
QLIKE, MSE and VaR ratios of the (direct forecast) HAR to alternative approaches. Names ending
with -I denote indirect forecast approaches. In all cases with indirect forecasts, one or more of the
alternative estimation schemes offer reductions in the loss measures compared to the log-HAR-I
estimated by OLS (notably WLSG for the 5-day horizon and RR for the 10- and 22-day horizons).
Some of these reductions are substantial. In sum, the results suggest that indirect forecasts from
the HAR model, here applied to logarithmic RV, can benefit at least as much from the alternative
estimation schemes (RR, WLS) as direct forecasts do.

We next focus on forecast accuracy. Table 9 shows that the indirect forecasts generally have
lower QLIKE, but higher MSE, than the corresponding direct forecasts. However, both approaches
are typically included in the MCS for these loss measures. The direct forecasts have lower VaR
than the corresponding indirect forecasts in all cases, and only the direct forecast approaches are
included in the MCS. Overall, under the alternative estimation schemes, the results indicate that
direct forecasts from the log-HAR model perform at least as well as indirect forecasts.

4 Concluding remarks

This paper explored several, easily implemented, ways to improve the forecasting performance
of the standard HAR model. Its main goal was to investigate how the predictive accuracy of the
original HAR model depends on choices of estimation scheme, data transformation, and combi-
nations thereof. In an out-of-sample study, covering the S&P 500 index and 26 frequently traded
NYSE stocks, it was found that RR and simple WLS schemes can yield substantial improvements
to the predictive ability of the HAR model. These simple remedies have the advantage that they
can easily be applied directly to the original, linear, HAR model for raw RV and yield an uncom-
plicated forecast expression. Little evidence in favour of HAR models applied to transformed RV
was found. The benefits of replacing OLS with WLS or RR were particularly clear for longer fore-
cast horizons. The possible benefits in predictive accuracy of combinations of different estimation
and transformation schemes was also examined. Overall, such combination schemes produced
the best performing forecasts, with or without an “insanity filter”. The interaction between fore-
casts from the alternative approaches and the loss functions used for forecast comparison was
investigated in terms of over- and under-prediction. It was found that moving away from OLS to
WLS or RR typically leads to approaches that are less likely to over-predict, with lower average
under-predictions and absolute over-predictions. The results were robust to periods of high and
low volatility, and to alternative multi-step ahead forecast schemes. The proposed approaches
also performed well compared to some extended HAR models suggested in the literature. These
findings provide useful practical insights in the application of the HAR model. Improvements
in forecast accuracy can readily be obtained without the need to resort to data beyond publicly
available RV and sophisticated extensions of the HAR model.

A number of interesting avenues for future research arise. A more detailed examination of
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the link between the loss function under which the HAR model parameters are estimated, and
the loss function under the intended application of the forecasts would be worthwhile. It would
be useful to consider estimating model parameters under a loss function that is coherent with
the final application of the forecasts, such as option pricing or Value-at-Risk forecasting. Another
natural direction to extend this work is toward the multivariate HAR model (Chiriac and Voev,
2011). However, adapting different estimation schemes and/or transformations in this setting
is complicated because of the dimensionality of the problem and the positive definiteness of its
associated covariance matrix forecast.
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HAR HARQ RR-HAR WLSRQ-HAR log-HAR LHAR HAR-RSV HAR-CJ

1-day
QLIKE 1.000(2) 1.032(2) 1.056(0) 0.939(11) 0.934(13) 0.946(21) 1.018(2) 1.037(0)

MSE 1.000(26) 0.958(26) 0.953(26) 0.983(26) 0.867(26) 0.859(26) 1.019(26) 1.022(26)

VaR 1.000(19) 1.001(21) 0.994(26) 0.995(25) 0.993(25) 0.995(24) 1.001(19) 1.003(21)

5-day
QLIKE 1.000(11) 0.936(23) 0.909(19) 0.941(25) 0.845(26) 0.884(25) 1.000(12) 1.051(7)

MSE 1.000(26) 0.962(26) 0.839(26) 0.950(26) 0.803(26) 0.855(26) 0.993(26) 1.023(26)

VaR 1.000(0) 0.988(0) 0.923(25) 0.988(0) 0.932(19) 0.930(22) 0.998(0) 0.996(0)

10-day
QLIKE 1.000(14) 0.934(25) 0.876(24) 0.960(26) 0.862(26) 0.888(23) 0.995(13) 1.028(10)

MSE 1.000(26) 0.981(26) 0.874(26) 1.013(26) 0.870(26) 0.899(26) 0.999(26) 1.040(26)

VaR 1.000(0) 0.994(0) 0.919(22) 0.987(0) 0.923(18) 0.920(22) 0.999(0) 0.995(0)

22-day
QLIKE 1.000(21) 0.957(26) 0.903(26) 0.979(26) 0.922(26) 0.946(23) 0.999(21) 1.012(21)

MSE 1.000(25) 0.985(26) 0.897(26) 1.020(26) 0.919(26) 0.932(26) 1.001(25) 1.019(25)

VaR 1.000(0) 0.995(0) 0.911(20) 0.982(0) 0.911(17) 0.908(23) 0.999(0) 0.997(0)

Table 8: Average relative QLIKEs, MSEs, and VaRs for the out-of-sample volatility forecasts at
1-, 5-, 10- and 22-day horizons obtained using alternative approaches, the “insanity filter” of
Bollerslev et al. (2016), and a rolling window for the 26 NYSE stocks: Average QLIKE, MSE, and
VaR ratios of the HAR to alternative approaches. The lowest ratio in each row is indicated in
bold. Numbers in parentheses indicate how many times each approach is included in M̂∗

90.

log- log- RR-log- RR-log- WLSRQ- WLSRQ- WLSG- WLSG-
HAR HAR HAR-I HAR HAR-I log-HAR log-HAR-I log-HAR log-HAR-I

5-day
QLIKE 1.000 0.795 0.786∗ 0.806 0.788∗ 0.795 0.791 0.820 0.779∗

MSE 1.000∗ 0.843∗ 0.847∗ 0.852∗ 0.858∗ 0.843∗ 0.851∗ 0.868∗ 0.834∗

VaR 1.000 0.932 0.963 0.923∗ 0.948 0.935 0.972 0.926∗ 0.959
10-day

QLIKE 1.000 0.741∗ 0.736∗ 0.675∗ 0.650∗ 0.745∗ 0.816∗ 0.668∗ 0.804∗

MSE 1.000∗ 0.886∗ 0.897∗ 0.837∗ 0.844∗ 0.888∗ 0.930∗ 0.844∗ 0.919∗

VaR 1.000 0.908 0.955 0.898∗ 0.934 0.910 0.972 0.902 0.956
22-day

QLIKE 1.000∗ 0.812∗ 0.798∗ 0.753∗ 0.711∗ 0.810∗ 0.838∗ 0.796∗ 0.783∗

MSE 1.000∗ 0.906∗ 0.893∗ 0.839∗ 0.843∗ 0.905∗ 0.935∗ 0.880∗ 0.872∗

VaR 1.000 0.889 0.960 0.873∗ 0.925 0.892 0.975 0.881 0.951

Table 9: Relative QLIKEs, MSEs, and VaRs for the HAR based out-of-sample volatility forecasts at
5-, 10- and 22-day horizons obtained using alternative combination schemes, the “insanity filter”
of Bollerslev et al. (2016), and a rolling window for SPX: QLIKE, MSE, and VaR ratios of the
direct forecast HAR to alternative approaches. The lowest ratio in each row is indicated in bold.
Asterisks indicate approaches included in M̂∗

90.
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A In-sample results

A.1 Stocks

Symbol Company

AAPL Apple Inc.
AXP American Express
BA Boeing Co.
CAT Catepillar Inc.
CSCO Cisco Systems Inc.
CVX Chevron Corp.
DIS Walt Disney Co.
GS Goldman Sachs Group Inc.
HD Home Depot Inc.
IBM IBM
INTC Intel Corp.
JNJ Johnson & Johnson
JPM JP Morgan Chase & Co.
KO Coca-Cola Co.
MCD Mcdonald’s Corp.
MMM 3M Co.
MRK Merck & Co. Inc.
MSFT Microsoft Corporation
NKE Nike Inc.
PFE Pfizer Inc.
PG Procter & Gamble Co
UNH UnitedHealth Group Inc.
UTX United Technologies Corp.
VZ Verizon Communications Inc.
WMT Walmart Inc.
XOM Exxon Mobil Corporation

Table 1: Ticker symbols and company names for the 26 NYSE stocks.

A.2 Outliers

A popular outlier detection criteria based on Tukey’s fences defines outliers as observations below
Q1 − k(Q3 −Q1) or above Q3 + k(Q3 −Q1), where Q1 and Q3 are the lower and upper quantiles,
respectively, and k is a nonnegative constant. For k = 1.5 observations outside of Tukey’s fences
are considered outliers. Similarly, for k = 3 observations outside of the fences are considered
extreme outliers. Table 2 reports the percentages of outliers for the regressors of the HAR model
for SPX raw RV.
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RVd
t−1 RVw

t−1 RVm
t−1

Outliers 8.865% 8.030% 7.564%
Extreme outliers 4.617% 4.592% 3.339%

Table 2: Percentages of outliers for the regressors of the HAR model for SPX.

A.3 WLS weights

To gain a clearer understanding of how WLS deals with the heteroskedasticity in RV, the weights
used for computing the WLSRQ-HAR and WLSG-HAR estimates in Table 1 of the main paper are
shown in the top panels of Figure 1. While in-sample results for the WLSRV and WLSR̂V schemes
are not reported, the weights for these two WLS schemes are shown in the bottom panels of
Figure 1 in order to highlight their similarity with the top panels. The sample paths of the
wt = 1/

√
RQt−1 (left) and wt = 1/ĥt (right) weights in the top panels of Figure 1 illustrate the

role played by the WLS weighting schemes. During periods of market stress and high volatility
in 2008-2009, weights are smaller. During periods of low volatility weights are larger. Although
the WLSG and WLSRQ weights are visually similar, the former schemes weights are less variable
than the latter. While WLS is clearly a different approach, it is similar in spirit to the HARQ. The
HARQ model directly adjusts the parameter on daily lagged RV in proportion to the magnitude
of
√

RQ. Instead of allowing parameters to vary as a function of
√

RQ, WLSRQ places less weight
on days with high

√
RQ during estimation. The other three weighting schemes work in a similar

fashion. The wt = 1/RVt−1 weights for the WLSRV scheme shown in the bottom left panel of
Figure 1 closely resemble those for WLSRQ. This is not surprising given the strong positive
correlation observed between RVt and

√
RQt. The similarity between the WLSRQ, WLSRV and

WLSG weights has an important practical implication. As RQ estimates are not always publicly
available, and as IQ is notoriously difficult to estimate in finite samples, the two latter schemes
offer viable alternatives for dealing with the heteroskedasticity in RV using WLS.

Deeper insights into the interaction between the estimation and transformation schemes, and
the important role of the measurement error, can be gained from examining the actual weights
used for estimating the HAR model by WLS on transformed RV. See Figure 2. WLS schemes have
been employed here to deal with the heteroscedasticity present in transformed RV. The weights
shown in Figure 1 follow similar patterns driven by the heteroskedasticity in raw RV. In contrast,
the WLSRQ-log-HAR weights (based on Equation 5 in the main paper), wt = RVt−1/

√
RQt−1 (top

left panel) are close to having constant mean over time. This indicates that the estimation error
in the logarithm of RV is nearly constant through time, highlighting the ability of the logarithmic
transformation to deal with the heteroscedasticity observed in raw RV. This effect is also observed
in the weights for WLSG-log-HAR, wt = 1/ĥt (top right panel), which are very different from
those for raw RV (top right panel of Figure 1), exhibiting little structure over time. A different
pattern is observed under the square root transformation shown in the bottom row in Figure
2, the plots of the weights for WLSRQ-sqr-HAR, wt =

√
RVt−1/RQt−1 (based on Equation 4 in
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Figure 1: WLS weights used for estimating the HAR volatility model for SPX raw RV over the
full sample period. Top left panel: WLSRQ-HAR weights, wt = 1/

√
RQt−1. Top right panel:

WLSG-HAR weights, wt = 1/ĥt. Bottom left panel: WLSRV-HAR weights, wt = 1/RVt−1. Bottom
right panel: WLSR̂V-HAR weights, wt = 1/R̂Vt.
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Figure 2: WLS weights used for estimating the HAR volatility model for SPX log- and sqr-RV
over the full sample period. Top left panel: WLSRQ-log-HAR weights, wt = RVt−1/

√
RQt−1. Top

right panel: WLSG-log-HAR weights, wt = 1/ĥt. Bottom left panel: WLSRQ-sqr-HAR weights,
wt =

√
RVt−1/RQt−1. Bottom right panel: WLSG-sqr-HAR weights, wt = 1/ĥt.
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the main paper), and WLSG-sqr-HAR are both broadly similar to those observed for raw RV.
These differences between the sets of weights across the two transformations show that while the
logarithm successfully deals with the heteroscedasticity in raw RV, the square root transformation
still leaves a degree of heteroskedasticity in the transformed RV.

B Out-of-sample results

B.1 The estimators

See tables 3 and 4 for the rolling (rolling window) forecasting scheme, and tables 5 and 6 for the
recursive (increasing window) forecasting scheme.

B.2 The transformations

See tables 7 and 8 for the rolling forecasting scheme, and tables 9 and 10 for the recursive fore-
casting scheme.

B.3 Combinations

See tables 11 and 12 for the rolling forecasting scheme, and tables 13 and 14 for the recursive
forecasting scheme.

B.4 Estimators, transformations, or combinations?

See tables 4 and 5 in the main paper for the rolling forecasting scheme, and tables 15 and 16 for
the recursive forecasting scheme.

B.5 Over/under-prediction

Figures 3 and 4 show grouped (IF on/off) box plots for six of the alternative approaches, visual-
izing five summary statistics (the median, two hinges and two whiskers) for SPX rolling scheme
1-, 5-, 10- and 22-day horizon forecast errors (target RV− forecast, as in the definition of MSE)
and forecast ratios (target RV/forecast, as in the definition of QLIKE), with respective MSE and
QLIKE loss functions superimposed.
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HAR HARQ RR-HAR WLSRQ-HAR WLSG-HAR

1-day
QLIKE IF on 1.000 1.017 1.004 0.900∗ 0.890∗

IF off 1.000 - 1.004 0.900∗ 0.890∗

MSE IF on 1.000∗ 0.827∗ 0.873∗ 0.958∗ 0.878∗

IF off 1.000∗ - 0.873∗ 0.958∗ 0.878∗

VaR IF on 1.000∗ 1.010∗ 1.060 1.006∗ 1.003∗

IF off 1.000∗ - 1.060 1.006∗ 1.003∗

5-day
QLIKE IF on 1.000 0.921∗ 0.853∗ 1.055∗ 0.930∗

IF off 1.000 - 0.941 0.810∗ 0.972
MSE IF on 1.000∗ 1.017∗ 0.864∗ 1.059∗ 0.981∗

IF off 1.000∗ - 0.699∗ 0.802∗ 0.829∗

VaR IF on 1.000 0.985 0.918∗ 0.977 0.963
IF off 1.000 - 0.908∗ 0.967 0.956

10-day
QLIKE IF on 1.000 0.931∗ 0.735∗ 0.938∗ 0.959∗

IF off 1.000 - 0.956 0.812∗ 0.981
MSE IF on 1.000∗ 0.999∗ 0.862∗ 1.013∗ 0.999∗

IF off 1.000∗ - 0.635∗ 0.723∗ 0.762∗

VaR IF on 1.000 0.993 0.902∗ 0.971 0.959
IF off 1.000 - 0.891∗ 0.964 0.949

22-day
QLIKE IF on 1.000∗ 0.886∗ 0.799∗ 0.950∗ 0.981∗

IF off 1.000 - 1.007∗ 0.829∗ 0.961
MSE IF on 1.000∗ 0.969∗ 0.861∗ 1.014∗ 1.015∗

IF off 1.000∗ - 0.749∗ 0.933∗ 0.889∗

VaR IF on 1.000 0.991 0.887∗ 0.959 0.952
IF off 1.000 - 0.864∗ 0.963 0.951

Table 3: Relative QLIKEs, MSEs, and VaRs for the HAR(Q) based out-of-sample volatility forecasts
at 1-, 5-, 10- and 22-day horizons, obtained using alternative estimation schemes and a rolling
window for SPX: QLIKE, MSE, and VaR ratios of the HAR to alternative approaches. The lowest
ratio in each row is indicated in bold. IF on/off indicates if the “insanity filter” of Bollerslev et al.
(2016) was applied or not. Asterisks indicate approaches included in M̂∗

90.
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HAR HARQ RR-HAR WLSRQ-HAR WLSG-HAR

1-day
QLIKE IF on 1.000(2) 1.032(7) 1.056(0) 0.939(26) 0.944(22)

IF off 1.000(1) - 1.064(0) 0.946(26) 0.952(22)

MSE IF on 1.000(26) 0.958(26) 0.953(26) 0.983(26) 0.923(26)

IF off 1.000(26) - 0.924(26) 0.951(26) 0.894(26)

VaR IF on 1.000(18) 1.001(23) 0.994(26) 0.995(25) 0.993(25)

IF off 1.000(19) - 0.994(26) 0.995(24) 0.993(25)

5-day
QLIKE IF on 1.000(11) 0.936(23) 0.909(24) 0.941(25) 0.969(13)

IF off 1.000(0) - 1.032(1) 0.913(26) 1.061(0)

MSE IF on 1.000(26) 0.962(26) 0.839(26) 0.950(26) 0.907(26)

IF off 1.000(26) - 0.826(26) 0.878(26) 0.884(26)

VaR IF on 1.000(0) 0.988(0) 0.923(26) 0.988(0) 0.961(0)

IF off 1.000(0) - 0.916(26) 0.988(0) 0.957(0)

10-day
QLIKE IF on 1.000(12) 0.934(25) 0.876(26) 0.960(26) 0.970(15)

IF off 1.000(1) - 1.033(2) 0.895(26) 1.045(0)

MSE IF on 1.000(26) 0.981(26) 0.874(26) 1.013(26) 0.977(26)

IF off 1.000(26) - 0.775(26) 0.827(26) 0.836(26)

VaR IF on 1.000(0) 0.994(0) 0.919(26) 0.987(0) 0.963(0)

IF off 1.000(0) - 0.904(26) 0.986(0) 0.956(0)

22-day
QLIKE IF on 1.000(18) 0.957(26) 0.903(26) 0.979(26) 0.968(24)

IF off 1.000(5) - 1.025(14) 0.900(26) 1.015(6)

MSE IF on 1.000(25) 0.985(26) 0.897(26) 1.020(26) 0.985(26)

IF off 1.000(25) - 0.816(26) 0.916(25) 0.862(25)

VaR IF on 1.000(0) 0.995(0) 0.911(26) 0.982(0) 0.964(0)

IF off 1.000(0) - 0.894(26) 0.986(0) 0.959(0)

Table 4: Average relative QLIKEs, MSEs, and VaRs for the HAR(Q) based out-of-sample volatility
forecasts at 1-, 5-, 10- and 22-day horizons, obtained using alternative estimation schemes and
a rolling window for the 26 NYSE stocks: Average QLIKE, MSE, and VaR ratios of the HAR to
alternative approaches. The lowest ratio in each row is indicated in bold. IF on/off indicates if the
“insanity filter” of Bollerslev et al. (2016) was applied or not. Numbers in parentheses indicate
how many times each approach is included in M̂∗

90.
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HAR HARQ RR-HAR WLSRQ-HAR WLSG-HAR

1-day
QLIKE IF on 1.000 0.881 0.953 0.856∗ 0.832∗

IF off 1.000 - 0.953 0.856 0.832∗

MSE IF on 1.000∗ 0.894∗ 1.022∗ 1.038∗ 0.975∗

IF off 1.000∗ - 1.022∗ 1.038∗ 0.975∗

VaR IF on 1.000∗ 1.004∗ 1.060 1.005∗ 0.998∗

IF off 1.000∗ - 1.060 1.005∗ 0.998∗

5-day
QLIKE IF on 1.000 0.940 0.847∗ 0.867∗ 0.912

IF off 1.000 - 0.848 0.776∗ 0.944
MSE IF on 1.000∗ 1.024∗ 0.931∗ 1.018∗ 0.983∗

IF off 1.000∗ - 0.954∗ 0.972∗ 1.051∗

VaR IF on 1.000 0.986 0.919∗ 0.968 0.961
IF off 1.000 - 0.917∗ 0.970 0.960

10-day
QLIKE IF on 1.000 0.933 0.855∗ 0.883∗ 0.952

IF off 1.000 - 0.831∗ 0.788∗ 0.976
MSE IF on 1.000∗ 0.990∗ 0.983∗ 1.023∗ 1.020∗

IF off 1.000∗ - 0.923∗ 1.009∗ 1.053∗

VaR IF on 1.000 0.990 0.915∗ 0.965 0.959
IF off 1.000 - 0.912∗ 0.969 0.957

22-day
QLIKE IF on 1.000 0.977 0.848∗ 0.963∗ 0.958

IF off 1.000 - 0.851∗ 0.813∗ 0.974
MSE IF on 1.000∗ 1.007∗ 0.908∗ 1.071∗ 1.008∗

IF off 1.000∗ - 0.921∗ 1.025∗ 1.050∗

VaR IF on 1.000 0.992 0.904∗ 0.953 0.964
IF off 1.000 - 0.901∗ 0.966 0.963

Table 5: Relative QLIKEs, MSEs, and VaRs for the HAR(Q) based out-of-sample volatility forecasts
at 1-, 5-, 10- and 22-day horizons, obtained using alternative estimation schemes and an increasing
window for SPX: QLIKE, MSE, and VaR ratios of the HAR to alternative approaches. The lowest
ratio in each row is indicated in bold. IF on/off indicates if the “insanity filter” of Bollerslev et al.
(2016) was applied or not. Asterisks indicate approaches included in M̂∗

90.
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HAR HARQ RR-HAR WLSRQ-HAR WLSG-HAR

1-day
QLIKE IF on 1.000(5) 1.128(4) 1.014(0) 0.950(25) 0.956(2)

IF off 1.000(6) - 1.020(0) 0.957(25) 0.962(22)

MSE IF on 1.000(26) 0.940(26) 0.957(26) 0.966(26) 0.922(26)

IF off 1.000(26) - 0.949(26) 0.956(26) 0.912(26)

VaR IF on 1.000(15) 1.001(20) 0.992(25) 0.996(21) 0.995(20)

IF off 1.000(16) - 0.992(26) 0.996(21) 0.995(21)

5-day
QLIKE IF on 1.000(17) 0.965(22) 0.929(25) 0.973(24) 1.000(10)

IF off 1.000(10) - 1.007(15) 0.955(26) 1.066(1)

MSE IF on 1.000(26) 0.958(26) 0.893(26) 0.990(25) 0.961(26)

IF off 1.000(26) - 0.905(26) 0.949(26) 0.969(25)

VaR IF on 1.000(0) 0.980(0) 0.934(26) 0.989(0) 0.967(0)

IF off 1.000(0) - 0.931(26) 0.989(0) 0.965(0)

10-day
QLIKE IF on 1.000(17) 0.952(23) 0.904(26) 0.980(25) 0.991(14)

IF off 1.000(12) - 1.015(16) 0.949(26) 1.060(0)

MSE IF on 1.000(26) 0.982(26) 0.887(26) 1.013(26) 0.979(26)

IF off 1.000(26) - 0.909(26) 0.958(26) 0.964(25)

VaR IF on 1.000(0) 0.986(0) 0.931(26) 0.984(0) 0.968(0)

IF off 1.000(0) - 0.923(26) 0.984(0) 0.964(0)

22-day
QLIKE IF on 1.000(22) 0.972(24) 0.901(26) 0.985(25) 0.972(24)

IF off 1.000(16) - 1.000(22) 0.933(25) 1.014(16)

MSE IF on 1.000(25) 0.998(26) 0.889(26) 1.030(25) 0.991(25)

IF off 1.000(25) - 0.929(26) 1.002(25) 0.990(25)

VaR IF on 1.000(0) 0.988(0) 0.916(26) 0.975(0) 0.967(0)

IF off 1.000(0) - 0.906(26) 0.978(0) 0.964(0)

Table 6: Average relative QLIKEs, MSEs, and VaRs for the HAR(Q) based out-of-sample volatility
forecasts at 1-, 5-, 10- and 22-day horizons, obtained using alternative estimation schemes and an
increasing window for the 26 NYSE stocks: Average QLIKE, MSE, and VaR ratios of the HAR to
alternative approaches. The lowest ratio in each row is indicated in bold. IF on/off indicates if the
“insanity filter” of Bollerslev et al. (2016) was applied or not. Numbers in parentheses indicate
how many times each approach is included in M̂∗

90.
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HAR HARQ log-HAR sqr-HAR

1-day
QLIKE IF on 1.000 1.017 0.898∗ 0.988

IF off 1.000 - 0.898∗ 0.988
MSE IF on 1.000∗ 0.827∗ 0.792∗ 0.848∗

IF off 1.000∗ - 0.792∗ 0.848∗

VaR IF on 1.000∗ 1.010∗ 1.018 1.003∗

IF off 1.000∗ - 1.018 1.003∗

5-day
QLIKE IF on 1.000 0.921∗ 0.795∗ 0.849∗

IF off 1.000 - 0.871∗ 0.872∗

MSE IF on 1.000∗ 1.017∗ 0.843∗ 0.890∗

IF off 1.000∗ - 0.667∗ 0.704∗

VaR IF on 1.000 0.985 0.932∗ 0.970
IF off 1.000 - 0.918∗ 0.962

10-day
QLIKE IF on 1.000 0.931 0.741∗ 0.860∗

IF off 1.000 - 0.894∗ 0.859∗

MSE IF on 1.000∗ 0.999∗ 0.886∗ 0.952∗

IF off 1.000∗ - 0.600∗ 0.624∗

VaR IF on 1.000 0.993 0.908∗ 0.958
IF off 1.000 - 0.893∗ 0.947

22-day
QLIKE IF on 1.000 0.886∗ 0.812∗ 0.883∗

IF off 1.000 - 0.930∗ 0.872∗

MSE IF on 1.000 0.969∗ 0.906∗ 0.964∗

IF off 1.000∗ - 0.743∗ 0.741∗

VaR IF on 1.000 0.991 0.889∗ 0.941
IF off 1.000 - 0.863∗ 0.931

Table 7: Relative QLIKEs, MSEs, and VaRs for the HAR(Q) based out-of-sample volatility forecasts
at 1-, 5-, 10- and 22-day horizons, obtained using alternative transformation schemes and a rolling
window for SPX: QLIKE, MSE, and VaR ratios of the HAR to alternative approaches. The lowest
ratio in each row is indicated in bold. IF on/off indicates if the “insanity filter” of Bollerslev et al.
(2016) was applied or not. Asterisks indicate approaches included in M̂∗

90.
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HAR HARQ log-HAR sqr-HAR

1-day
QLIKE IF on 1.000(3) 1.032(6) 0.934(26) 0.964(6)

IF off 1.000(2) - 0.941(26) 0.971(6)

MSE IF on 1.000(26) 0.958(26) 0.867(26) 0.893(26)

IF off 1.000(24) - 0.840(26) 0.865(25)

VaR IF on 1.000(17) 1.001(20) 0.993(26) 0.997(19)

IF off 1.000(19) - 0.993(26) 0.997(19)

5-day
QLIKE IF on 1.000(8) 0.936(23) 0.845(25) 0.884(26)

IF off 1.000(1) - 0.967(10) 0.928(26)

MSE IF on 1.000(26) 0.962(26) 0.803(26) 0.868(26)

IF off 1.000(25) - 0.800(26) 0.793(26)

VaR IF on 1.000(0) 0.988(0) 0.932(26) 0.970(0)

IF off 1.000(0) - 0.923(26) 0.965(0)

10-day
QLIKE IF on 1.000(3) 0.934(25) 0.862(26) 0.898(26)

IF off 1.000(5) - 0.997(7) 0.923(26)

MSE IF on 1.000(25) 0.981(26) 0.870(26) 0.940(26)

IF off 1.000(26) - 0.757(26) 0.739(26)

VaR IF on 1.000(0) 0.994(0) 0.923(26) 0.962(0)

IF off 1.000(0) - 0.906(26) 0.954(0)

22-day
QLIKE IF on 1.000(12) 0.957(25) 0.922(24) 0.922(26)

IF off 1.000(22) - 1.060(9) 0.954(26)

MSE IF on 1.000(22) 0.985(21) 0.919(26) 0.959(26)

IF off 1.000(25) - 0.850(26) 0.825(26)

VaR IF on 1.000(0) 0.995(0) 0.911(26) 0.952(0)

IF off 1.000(0) - 0.888(26) 0.944(0)

Table 8: Average relative QLIKEs, MSEs, and VaRs for the HAR(Q) based out-of-sample volatility
forecasts at 1-, 5-, 10- and 22-day horizons, obtained using alternative transformation schemes
and a rolling window for the 26 NYSE stocks: Average QLIKE, MSE, and VaR ratios of the HAR
to alternative approaches. The lowest ratio in each row is indicated in bold. IF on/off indicates
if the “insanity filter” of Bollerslev et al. (2016) was applied or not. Numbers in parentheses
indicate how many times each approach is included in M̂∗

90.
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HAR HARQ log-HAR sqr-HAR

1-day
QLIKE IF on 1.000 0.881 0.841∗ 0.961

IF off 1.000 - 0.841∗ 0.961
MSE IF on 1.000∗ 0.894∗ 0.917∗ 0.944∗

IF off 1.000∗ - 0.917∗ 0.944∗

VaR IF on 1.000∗ 1.004∗ 1.018 1.005∗

IF off 1.000∗ - 1.018 1.005∗

5-day
QLIKE IF on 1.000 0.940 0.740∗ 0.826∗

IF off 1.000 - 0.788∗ 0.817∗

MSE IF on 1.000∗ 1.024∗ 0.847∗ 0.925∗

IF off 1.000∗ - 0.956∗ 0.930∗

VaR IF on 1.000 0.986 0.917∗ 0.961
IF off 1.000 - 0.914∗ 0.959

10-day
QLIKE IF on 1.000 0.933 0.839∗ 0.840∗

IF off 1.000 - 0.808∗ 0.805∗

MSE IF on 1.000∗ 0.990∗ 0.992∗ 0.978∗

IF off 1.000∗ - 1.000∗ 0.955∗

VaR IF on 1.000 0.990 0.896∗ 0.948
IF off 1.000 - 0.890∗ 0.945

22-day
QLIKE IF on 1.000 0.977 0.842∗ 0.830∗

IF off 1.000 - 0.841∗ 0.823∗

MSE IF on 1.000∗ 1.007∗ 0.940∗ 0.935∗

IF off 1.000∗ - 1.019∗ 0.971∗

VaR IF on 1.000 0.992 0.872∗ 0.935
IF off 1.000 - 0.865∗ 0.931

Table 9: Relative QLIKEs, MSEs, and VaRs for the HAR(Q) based out-of-sample volatility forecasts
at 1-, 5-, 10- and 22-day horizons, obtained using alternative transformation schemes and an
increasing window for SPX: QLIKE, MSE, and VaR ratios of the HAR to alternative approaches.
The lowest ratio in each row is indicated in bold. IF on/off indicates if the “insanity filter” of
Bollerslev et al. (2016) was applied or not. Asterisks indicate approaches included in M̂∗

90.
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HAR HARQ log-HAR sqr-HAR

1-day
QLIKE IF on 1.000(7) 1.128(5) 0.948(26) 0.975(12)

IF off 1.000(7) - 0.954(26) 0.982(11)

MSE IF on 1.000(24) 0.940(24) 0.894(26) 0.904(25)

IF off 1.000(24) - 0.886(26) 0.895(25)

VaR IF on 1.000(16) 1.001(23) 0.994(24) 0.998(18)

IF off 1.000(17) - 0.994(26) 0.998(20)

5-day
QLIKE IF on 1.000(6) 0.965(15) 0.898(26) 0.916(26)

IF off 1.000(4) - 1.001(7) 0.945(26)

MSE IF on 1.000(26) 0.958(25) 0.854(26) 0.908(26)

IF off 1.000(25) - 0.909(26) 0.873(26)

VaR IF on 1.000(0) 0.980(0) 0.926(26) 0.970(0)

IF off 1.000(0) - 0.921(26) 0.968(0)

10-day
QLIKE IF on 1.000(11) 0.952(20) 0.880(25) 0.910(26)

IF off 1.000(12) - 1.030(4) 0.941(26)

MSE IF on 1.000(25) 0.982(25) 0.844(26) 0.934(26)

IF off 1.000(26) - 0.939(26) 0.880(26)

VaR IF on 1.000(0) 0.986(0) 0.915(26) 0.961(0)

IF off 1.000(0) - 0.904(26) 0.956(0)

22-day
QLIKE IF on 1.000(16) 0.972(23) 0.897(25) 0.900(26)

IF off 1.000(16) - 1.055(5) 0.936(26)

MSE IF on 1.000(22) 0.998(24) 0.853(26) 0.932(26)

IF off 1.000(25) - 0.997(26) 0.933(26)

VaR IF on 1.000(0) 0.988(0) 0.900(26) 0.949(0)

IF off 1.000(0) - 0.883(26) 0.943(0)

Table 10: Average relative QLIKEs, MSEs, and VaRs for the HAR(Q) based out-of-sample volatility
forecasts at 1-, 5-, 10- and 22-day horizons, obtained using alternative transformation schemes and
an increasing window for the 26 NYSE stocks: Average QLIKE, MSE, and VaR ratios of the HAR
to alternative approaches. The lowest ratio in each row is indicated in bold. IF on/off indicates
if the “insanity filter” of Bollerslev et al. (2016) was applied or not. Numbers in parentheses
indicate how many times each approach is included in M̂∗

90.
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Figure 3: Grouped box plots for six alternative approaches and SPX rolling scheme 1-, 5-, 10-
and 22-day horizon forecast errors, with superimposed MSE loss function (dashed). WLS-HAR
indicates the WLSRQ-HAR. For each group, top box plots represent IF off and bottom IF on
(HARQ requires IF on).
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Figure 4: Grouped box plots for six alternative approaches and SPX rolling scheme 1-, 5-, 10-
and 22-day horizon forecast ratios, with superimposed QLIKE loss function (dashed). WLS-HAR
indicates the WLSRQ-HAR. For each group, top box plots represent IF off and bottom IF on
(HARQ requires IF on).
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C Computational costs

In addition to differences in forecasting performance, differences in computational cost between
schemes are also often of interest. While none of the schemes considered here are computationally
expensive, there are some things to note. The HAR and HARQ are the most efficient approaches
as they both are estimated by OLS, and take less than 1ms to compute a one-step-ahead forecast
for in Matlab. Next are the WLSRQ-HAR, WLSRV-HAR, and WLSR̂V-HAR schemes that each take
about 5ms to compute a forecast (around 5 times slower than OLS-HAR). The computational costs
for the log-HAR and sqr-HAR approaches are similar because of their associated transformations,
taking about 9 and 12ms (around 10 times slower than OLS-HAR) respectively. The RR-HAR
scheme takes around 180ms due to its iterative nature. While this is clearly slower than the OLS,
WLS and transformation schemes, a computation time of a fraction of a second still means that
RR-HAR is a completely feasible approach. Finally, the WLSG-HAR is the least computationally
efficient approach due to its associated numerical optimization, taking about 2s. While it is clear
that there are differences in computational cost, the actual computational times for all of the
schemes are negligible.
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