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Abstract

We consider the estimation and inference in approximate factor models with random missing

values. We show that with the low rank structure of the common component, we can estimate the

factors and factor loadings consistently with the missing values replaced by zeros. We establish

the asymptotic distributions of the resulting estimators and those based on the EM algorithm. We

also propose a cross-validation-based method to determine the number of factors in factor models

with or without missing values and justify its consistency. Simulations demonstrate that our cross

validation method is robust to fat tails in the error distribution and significantly outperforms some

existing popular methods in terms of correct percentage in determining the number of factors.

An application to the factor-augmented regression models shows that a proper treatment of the

missing values can improve the out-of-sample forecast of some macroeconomic variables.

JEL Classification: C23, C33, C38; C55

Key Words: Cross-validation; Expectation-Maximization (EM) algorithm; Factor models; Ma-

trix completion; Missing at random; Principal component analysis; Singular value decomposition

1 Introduction

Since the seminal work of Geweke (1977), Sargent and Sims (1977), Chamberlain and Rothschild

(1983), factor models have been widely used in economics and finance. Some important theoretical

contributions include Stock and Watson (1998), Forni et al. (2000), Bai and Ng (2002), Bai (2003),

Hallin and Líska (2007), Onatski (2009, 2010, 2012), and Ahn and Horenstein (2013), among others.

Nevertheless, all these authors assume a balanced panel in their asymptotic analyses.

∗The authors sincerely thank Serena Ng, an associate editor and an anonymous referee for many constructive

comments on the paper. Su acknowledges the funding support provided by Tsinghua University. Address Correspon-

dence to: Liangjun Su, School of Economics and Management, Tsinghua University, Beijing, 100084, China; E-mail:

sulj@sem.tsinghua.edu.cn, Phone: +86 10 62789506.
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Empirical data typically contain a variety of irregularities, including occasionally missing obser-

vations, unbalanced panel, and mixed frequency (e.g., monthly and quarterly) data. One simple way

to handle missing data is to omit the cross-sectional units with missing values; see, e.g., Ludvigson

and Ng (2007). But this will result in efficiency loss that can be substantial in some applications.

To handle the missing data problem in factor models effectively, two methods have been proposed:

the expectation-maximization (EM) algorithm and the Kalman filter (KF). These two methods have

been widely used to handle missing data for principal component (PC) estimation with missing data

and state space estimation with missing data. The details on how missing data are handled differ a

lot in PC and state space applications. For the PC estimation with missing data, Stock and Watson

(2002) propose an iterative method based on the EM algorithm that has proved to be easy and effec-

tive. Schumacher and Breitung (2008) apply Stock and Watson’s methodology to nowcast German

gross domestic product (GDP).

The state space framework has been adapted to missing data by either allowing the measurement

equation to vary depending on what data are available at a given time point or keeping the dimension

of the measurement equation to be the same over time by including a proxy value for the missing

observation while adjusting the model parameters so that the Kalman filter places no weights on the

missing observation. See Giannone et al. (2008), Mariano and Murasawa (2010), Doz et al. (2011),

Jungbacker et al. (2011), Pinheiro et al. (2013), Bańbura and Modugno (2014), Bai and Li (2016)

and Marcellino and Sivec (2016) for variations on this latter approach. In particular, Giannone

et al. (2008) propose a two-step procedure that is able to solve the “ragged edge” problem in an

approximate factor model when data are observed at different frequencies. They estimate the model

by PC analysis with truncated balanced panel in the first step and update the estimates of factors

by the KF with unbalanced panel data in the second step. Doz et al. (2011) show the consistency

of the two-step estimators, and Bai and Li (2016) derive the asymptotic distribution of the Kalman

filter estimator. Jungbacker et al. (2011) propose a new state space formulation of the factor model

and apply the KF to estimate the underlying parameters with computational efficiency when the

observations are missing at random. In view of the fact that it is not straightforward to apply

Giannone et al.’s (2008) methodology to mixed frequency datasets with series of different lengths or,

in general, to any pattern of missing data, Bańbura and Modugno (2014) propose a modified EM

algorithm to allow for an arbitrary pattern of missing data where the KF is incorporated to estimate

the factors in the maximization-step. A drawback of their approach is that for large cross-sections,

the dimension of the augmented state vector becomes very large, which leads to computational

inefficiency. Pinheiro et al. (2013) also propose an EM algorithm to estimate a dynamic factor

model for panel data sets with jagged edge without significantly increasing the computation time

relative to the balanced panel case. In addition, Foroni and Marcellino (2013) survey methods for

handling mixed-frequency data, including dynamic factor models and alternative approaches; Stock

and Watson (2016) summarize the advantage and disadvantage of the state space estimation for

factor models with missing observations. During the revision, we found that Bai and Ng (2019b) also

consider factor analysis with missing data and show that in spite of missing values in the data, every

entry of the common component matrix can be consistently estimated using their tall-wide (TW)
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algorithm that involves two applications of principal components.

Despite the popularity of the EM algorithm in empirical researches, the asymptotic properties of

the resulting estimators have been rarely studied. To the best of our knowledge, there is no formal

study of the asymptotic properties for the EM estimators of the factors and factor loadings for the

PC estimation with missing observations. As Bai and Ng (2019b) remarked, “While convergence of

the algorithm can be established, the asymptotic properties of the converged estimates are not well

understood.”

In this paper we consider the EM estimation of approximate factor models with missing observa-

tions. For simplicity, we focus on the case where the missing occurs at random and remark in the end

on the other forms of missing. As Stock and Watson (2016) remark, all the procedures in common

use adopt the assumption that the data are missing at random, that is, whether a datum is missing is

independent of the latent variables, and the missing-at-random assumption arguably is a reasonable

assumption for the main sources of missing data in dynamic factor models in most macroeconomic

applications to date. In the case of random missing, we draw support from the literature on matrix

completion in the computer science. It is well known that the low rank matrix such as the common

component matrix in factor models can be recovered in the presence of missing observations when

the noise matrix exhibit certain sparsity feature; see Cai et al. (2010), Candès and Plan (2010) and

Candès and Li (2011). We show that similar phenomenon occurs when the noise matrix does not

have any sparsity feature but has a lower order spectral norm than the common component matrix.

In computation, we can simply replace the missing observations by zeros and conduct the usual PC

analysis for a scaled version of the data matrix where the scale is determined by the percentage of

observed values in the data. We show that the resulting estimators of factors, factor loadings, and

common components are consistent but not asymptotically normal in general. Following the EM

algorithm, we replace the missing observations by such initial estimators of the common components

and obtain updated PC estimators. This procedure can be iterated until convergence. We show that

the final estimators of the factors, factor loadings, and PCs are asymptotically more efficient than

the initial estimators. We also characterize the efficiency loss for such EM estimators relative to the

PC estimators without missing observations.1

In some sense, the pure approximate factor model possesses the “self-fulfilling” property in that

one does not need to observe all values in the data matrix in order to estimate the factors, factor

loadings and common components and the missing values can be well recovered from the observed

data. Such a self-fulfilling property motivates us to propose a novel method to determine the number

of pervasive factors in approximate factor models no matter whether the original data contains

missing observations or not. Our key insight is that we can draw each observation at random with

probability  to construct the pseudo-data matrix with missing values. The original data are then

divided into two sets, with one set containing the training observations used for the PC estimation for

any prescribed number of factors (say, ) and the other set containing the held-out entries used for

the out-of-sample evaluation. Then we can construct a cross-validation (CV) objective function that

1Recently, Athey et al. (2018) have developed new methods for estimating causal effects in panel data models with

missing values based on the matrix completion methods. But they do not provide any distribution or inference theory.
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is indexed by  and choose  to minimize it. We show that this procedure consistently estimates

the number of true factors. The finite sample performance of this procedure can be improved via

iterations and some design for stability selection (e.g., Meinshausen and Bühlmann (2010)). Monte

Carlo simulations indicate that our new estimator of the number of factors significantly outperforms

some existing popular estimators including those based on either information criterion (Bai and Ng

(2002)), or eigenvalue distribution function (Onatski (2010)), or eigenvalue/growth ratio (Ahn and

Horenstein (2013)). Moreover, our simulations also demonstrate that our new estimators are robust

to fat tails in the error terms.

The paper is organized as follows. Section 2 introduces the EM estimators of factor models with

random missing and their asymptotic properties. Section 3 proposes a novel method to determine

the number of factors in approximate factor models. In Section 4, we report the Monte Carlo

simulation results for our EM estimators of the factors, factor loadings and common components,

and compare our method of determining the number of factors with the methods of Bai and Ng

(2002), Onatski (2010), and Ahn and Horenstein (2013). In Section 5, we apply our method to an

empirical application and show that it helps the out-of-sample forecasts based on factor-augmented

regressions. Final remarks are contained in Section 6. The proofs of the results in Sections 2 and 3

are relegated to Appendices A and B, respectively. The proofs of the technical lemmas and theorems

in Appendices A and B along with some additional simulation results can be found in the online

supplement.

NOTATION. For an ×  real matrix  we denote its transpose as 0 its entrywise ∞ norm

as kk∞ (≡ max ||), its Frobenius norm as kk (≡ [tr(0)]12) its spectral norm as kksp
(≡

p
1 (

0)) and its Moore-Penrose generalized inverse as + where ≡ means “is defined as”

and  (·) denotes the th largest eigenvalue of a real symmetric matrix by counting eigenvalues of
multiplicity multiple times. Note that the two norms are equal when  is a vector. We will frequently

use the submultiplicative property of these norms and the fact that kksp ≤ kk ≤ kksprank()12 
We also use max () and min () to denote the largest and smallest eigenvalues of a symmetric

matrix , respectively. We use   0 to denote that  is positive definite. Let  ≡  (0)+0 and
 ≡  −  where  denotes an × identity matrix. The operator

→ denotes convergence

in probability,
→ convergence in distribution, and plim probability limit. Let ∨ and ∧ denote

the max and min operators, respectively. E.g.,  ∨  = max ( )  Let [ ] = {1 2  } and
[ ] = {1 2  }  We use ( ) → ∞ to denote that  and  pass to infinity jointly. We let

 =
√
 ∧

√
 .

2 Large Dimensional Factor Models with Random Missing

In this section, we consider the PCA estimation of large dimensional factor models with observations

that are missing at random by assuming the true number of factors is known. We will propose a

novel cross validation method to determine the number of factors in the next section.

For simplicity and clarity, we shall work on the approximate factor model of Stock and Watson

(2002), Bai and Ng (2002) and Bai (2003) when missing at random observations are present. In this
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case, Stock and Watson (2002) propose an iterative method based on the EM algorithm that has

proved to be easy and effective. Despite the popularity of the EM algorithm in empirical researches,

there is no formal study of the asymptotic properties of the resulting estimators of the factors and

factor loadings. Below we propose to obtain the initial estimators in the EM algorithm by replacing

the missing values in the data matrix by zeros and show that one can derive the asymptotic distri-

butions of such initial estimators and the resultant iterative estimators. As the iterative estimators

converge to the EM estimators, the asymptotic properties of the EM estimators can be derived.

2.1 EM Estimation

We consider the following factor model

 = 0 +  (2.1)

where  = 1    = 1       and  are ×1 vectors of factors and factor loadings, respectively,
and  is the idiosyncratic error term. Following the lead of Stock and Watson (2002) and Bai et

al. (2015), we study the estimation of the factors and factor loadings when some of the observations,

 are missing at random. Let  = (1 ) and  = (1   ) where  ≡ (1     )
0

and  ≡ (1      )0 for  = 1   We can write (2.1) in matrix form:

 = Λ0 +  (2.2)

where  = (1   )
0 and Λ = (1  )0We will use  0 =

¡
 01   

0


¢0
and Λ0 = (01  

0
)

0 to
denote the true values of  and Λ respectively. Let Ω ⊂ [ ]× [ ] be the index set of the observations
that are observed. That is,

Ω = {( ) ∈ [ ]× [ ] :  is observed} 

Let  denote a  × matrix with ( )th element given by  = 1 {( ) ∈ Ω}  Under the random
missing mechanism, ’s are independently and identically distributed as Bernoulli() with  ∈ (0 1]
and independent of   0 Λ0 and . So the population missing probability is given by 1−  ∈ [0 1)
Let |Ω| denote the cardinality of the set Ω It is easy to see that ̃ ≡ |Ω| ( ) is a

√
 -consistent

estimator of 

2.1.1 The initial estimates

Let ̃ =  ◦  and ̃ =  where ◦ denotes the Hadamard product. Our key observation is
that the common component

0 ≡  0Λ00

is a low rank matrix and  is the noise component. In this case, it is possible to recover 0 even

when a large proportion of elements in the data matrix  are missing at random.

Let 
³
1

̃| 0Λ0

´
denote the  × matrix with a typical element given by 

³
1

̃| 0  0

´


Under the standard condition that 
¡
| 0  0

¢
= 0 we can readily verify that 

³
1

̃| 0Λ0

´
=
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 0Λ002 This motivates us to estimate  0 and Λ0 by minimizing the following least squares objective
function

L0 (Λ) ≡
1


tr

∙µ
1

̃
̃ − Λ0

¶µ
1

̃
̃ − Λ0

¶0¸
(2.3)

under the identification restrictions:  0 =  and Λ
0Λ is a diagonal matrix. By concentrating

out Λ and using the normalization that  0 =  the above minimization problem is identical

to maximizing 1
̃2
tr{ 0̃̃ 0}3 The estimated factor matrix, denoted by ̂ (0) is

√
 times the

eigenvectors corresponding to the  largest eigenvalues of the  ×  matrix 1
̃2

̃̃ 0 :

1

̃2
̃̃ 0̂ (0) = ̂ (0)̂(0) (2.4)

where ̂(0) is an  ×  diagonal matrix consisting of the  largest eigenvalues of
¡
̃2

¢−1
̃̃ 0

arranged in descending order along its diagonal line. Then the estimator of Λ0 is given by

Λ̂(0)0 =
1

̃

³
̂ (0)0̂ (0)

´−1
̂ (0)0̃ =

1

 ̃
̂ (0)0̃ (2.5)

Let ̂
(0)
 denote the th column of ̂ (0)0 and ̂

(0)

 the th column of Λ̂(0)0 We can obtain an initial
estimate of the ( )th element, 0 of 

0 by ̂
(0)
 = ̂

(0)0
 ̂

(0)
  We will show that the initial estima-

tors ̂
(0)
  ̂

(0)

 and ̂
(0)
 are consistent and follow mixture normal distributions under some standard

conditions.

2.1.2 The iterated estimates

Despite the consistency of the initial estimators, they are not asymptotically efficient. To improve

the efficiency, we consider iterative estimators. Let  ≥ 1 be an integer. Suppose that we have

obtained the estimates ̂
(−1)
  ̂

(−1)
 and ̂

(−1)
  In step  we can replace the missing values ()

in the matrix  with the estimated common components ̂
(−1)
  Define the  × matrix ̂() with

its ( )th element given by

̂
()
 =

(
 if ( ) ∈ Ω
̂
(−1)
 if ( ) ∈ Ω⊥

  ≥ 1

where Ω⊥ = {( ) ∈ [ ]× [ ] : ( ) ∈ Ω}  Then we can conduct the PC analysis based on ̂()

under the identification restrictions that  0 =  and Λ
0Λ is a diagonal matrix. The estimated

2The idea of scaling the matrix ̃ can be traced back to the machine learning literature; see, e.g., Negahban and

Wainwright (2012). Their interest focuses on matrix completion in the matrix norms under noisy sampling and for

both exact and near low-rank matrices, while our work focuses on the estimation of the factors and factor loadings.
3Following the lead of Bai and Ng (2002), one can alternatively consider concentrating out  under the identification

restrictions that Λ0Λ =  and  0 is a diagonal matrix, which is computationally more efficient if  À  The

estimates of  and Λ will be different, but the estimate of  = Λ0 would be the same. The theoretical analyses below

can be derived analogously with apparent modifications.
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factor matrix, denoted by ̂ () is
√
 time the eigenvectors corresponding to the  largest eigenvalues

of the  ×  matrix 1


̂()̂()0 :

1


̂()̂()0̂ () = ̂ ()̂()

where ̂() is a diagonal matrix consisting of the  largest eigenvalues of 1


̂()̂()0 arranged in
descending order along its diagonal line. Then the estimator of Λ0 is given by

Λ̂()0 =
³
̂ ()0̂ ()

´−1
̂ ()0̂() =

1


̂ ()0̂()

Let ̂
()
 denote the th column of ̂ ()0 and ̂

()

 the th column of Λ̂()0 We obtain the updated
estimate of 0 by ̂

()
 = ̂

()0
 ̂

()
  We will study the asymptotic properties of ̂

()
  ̂

()

 and ̂
()
 

 = 1 2  below.

Remark 1 (Connection with Stock and Watson’s (2002) EM estimation) Stock and

Watson (2002, SW hereafter) propose an EM algorithm to conduct the PC analysis for panel data

with missing values. The least squares objective function they consider is given by

 (Λ) =
1


tr
h£¡

 − Λ0
¢ ◦¤ £¡ − Λ0

¢ ◦¤0i = 1



X
=1

X
=1

¡
 − 0

¢2


Minimization of  (Λ) requires iterative methods. SW motivate the EM algorithm by assuming

that ’s are independently and identically distributed (i.i.d.) according to 
¡
0 2

¢
. They suggest

various ways to obtain the initial estimates. For example, when the full dataset contains a subset

constituting a balanced panel, they suggest using estimates of the factors from the balanced subset as

the starting value ̂
(0)
  Given the estimates ̂

(−1)
 at stage −1 our construction of the expectation

object ̂
()
 is the same as SW’s and so is our th stage estimator. But SW do not provide any

theoretical justification for their EM estimates. They study neither numerical convergence of the

EM algorithm nor the asymptotic properties of the EM estimators. In contrast, with our well-

chosen initial estimators, we will show that our proposed procedure attains numerical convergence

and formally establish the asymptotic properties of the resulting EM estimators.

2.2 Asymptotic properties of the initial estimators ̂
(0)
  ̂

(0)

 and ̂
(0)


Let  denote a generic finite positive constant that may vary across lines. We make the following

assumptions.

Assumption A.1 (i) max
°° 0 °°41 ≤  for some 1 ∈ (0 1) and −1 00 0 −→ Σ 0  0 for

some × matrix Σ 0 as  →∞

(ii) max
°°0°°42 ≤ for some 2 ∈ (0 1) and −1Λ00Λ0 −→ ΣΛ0  0 for some × matrix

ΣΛ0 as  →∞

(iii) max[
¡
00  0

¢4
] ≤

(iv) The eigenvalues of ΣΛ0Σ 0 are distinct from each other.
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(v) −1Λ00Λ0 −ΣΛ0 =  (
−12) and −1 00 0 −Σ0 =  (

−12)

Assumption A.2 (i) 
¡
|0   0

¢
= 0 

¡
4
¢ ≤ and kksp =  (max(

√

√
 ))

(ii) max
P

=1 | ( )| ≤ where  ( ) = −1P
=1 |()| 

(iii) max
¯̄̄
−12P

=1 [ − ()]
¯̄̄2
≤

Assumption A.1 parallels Assumptions A-B in Bai (2003) and Assumption A.2 is analogous to

Assumption C in Bai (2003). The major difference is that we require both the factors and fac-

tor loadings have finite moments higher than the usual fourth order. Bai and Ng (2002) and Bai

(2003) assume finite fourth moments for  0 but require that 
0
 be uniformly bounded. Assump-

tion A.1(v) imposes the standard convergence rates for −1Λ00Λ0 and −1 00 0 It implies that
(

1


 0Λ00Λ0 00) − 2 = 

¡
−1

¢
for  = 1   where 2 =  (ΣΛ0Σ 0)  Assumption A.2(i)

is also assumed in Su and Chen (2013), Lu and Su (2016), and Moon and Weidner (2017). In par-

ticular, Moon and Weidner (2017) demonstrate that this condition can be satisfied for various error

processes.

The following theorem establishes the mean squared convergence of ̂
(0)
  Define

̂(0) =
¡
−1Λ00Λ0

¢
−1 00̂ (0)(̂(0))−1

where ̂(0) is asymptotically nonsingular by Lemma A.1.

Theorem 2.1 Suppose Assumptions A.1 and A.2 hold. Then 1


°°°̂ (0) −  0̂(0)
°°°2 = 

¡
−2

¢
where  =

√
 ∧

√
 

Theorem 2.1 reports the mean squared (MS) convergence rate of ̂
(0)
  It implies that we can

estimate the space spanned by the columns of  0 consistently.

To proceed, we assume the following limiting objects exist and are finite:

Γ1 () = lim→∞Var

Ã
1√


X
=1

0 

!
 Γ2 () = plim→∞

1− 



X
=1

0
00


¡
00 

0


¢2


Φ1 () = lim→∞Var

Ã
1√


X
=1

 0 

!
 Φ2 () = plim→∞

1− 



X
=1

 0 
00


¡
00 

0


¢2


Let

Γ () = Γ1 () + Γ2 () and Φ () = Φ1 () + Φ2 () 

Note that Γ2 and Φ2 and therefore Γ and Φ are generally random objects under our as-

sumptions that allow for random factors and random factor loadings. To study the asymptotic

distributions of ̂
(0)
  ̂

(0)

 and ̂
(0)
  we add the following assumptions.

Assumption A.3 (i) Either max
°°° 1√



P
=1 

°°°4 ≤ or 
°°° 1√



P
=1

P
=1 

0
 

°°°2 ≤

where  =  − () 

(ii) 
°°° 1√



P
=1

P
=1 

0
 

00
 

°°°2 ≤
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(iii) Let  =  ()  max
−1P

=1  ≤  max1≤≤ −1P
=1

P
=1 || ≤ 

max1≤≤ −1
P

=1

P
=1 || ≤ and ( )−1

P
=1

P
=1

P
=1

P
=1 || ≤

Assumption A.4 (i) 1√


P
=1 

0
 

→  (0Γ1) 

(ii) 1√


P
=1 

0
 

→  (0Φ1) 

The first part of Assumption A.3(i) strengthens Assumption A.2(iii) and is also assumed in Bai

and Ng (2002, Assumption C.5) and Bai (2003, Assumptions C.5 and F.1). Bai (2003) assumes that

the second part of A.3(i) holds simultaneously with the first part, which we do not need. In the special

case where ( 0 ) 6= 0 for enough ( ) pairs (e.g., when ( 0 ) = 0 but (
0
 ) 6= 0 for all

  ), the second part of A.3(i) is not satisfied. Assumption A.3(ii) is the same as Assumption F.2

in Bai (2003), and Assumption A.3(iii) is comparable with and slightly stronger than Assumption

C.2-C.4 in Bai and Ng (2002) and Assumptions C.2-C.4 and E.1-E.2 in Bai (2003). Assumption

A.4(i)-(ii) is parallel to Assumption F.3-F.4 in Bai (2003) and reduces to the latter in the case when

 = 1 for all ( ) 

Let G = ({  ≤ )Λ0  0 ) the minimal sigma-field generated from {  ≤ } and
(Λ0  0 ) Let G = 

¡∪∞=1G

¢
 Analogously, let G  = 

¡{  ≤ ) 0  
0
¢
 G = 

¡∪∞=1G ¢ 
and G = 

¡G ∪ G¢ 
The following theorem presents the asymptotic distributions of ̂

(0)
  ̂

(0)

 and ̂
(0)
 based on the

notation of stable convergence.

Theorem 2.2 Suppose Assumptions A.1-A.4 hold. Suppose that ( 12 + 12)−2 =  (1)  Let

Π̂
(0)
 =

√
(̂

(0)
 − ̂(0)0 0 ) and Π̂

(0)
 =

√
 (̂

(0)

 − (̂(0))−10 ) Then as ( )→∞
(i) Π̂

(0)
 = (̂(0))−1 1


̂ (0)0 0 1√



P
=1 

0
  + 

¡
12−2

¢ → 
¡
0−1Γ ()0−1

¢ G-
stably,

(ii) Π̂
(0)
 = ̂(0)0 1√



P
=1 

0
  +

¡
 12−2

¢→ 
¡
0 (0)−1Φ ()−1

¢ G-stably,
(iii)

³
1

Σ
(0)
 () +

1

Σ
(0)
Λ ()

´−12 ³
̂
(0)
 −0

´
→  (0 1),

where  = +
00
 

0
 ( − )  Σ

(0)
 () = 00 Σ

−1
Λ0
Γ ()Σ

−1
Λ0
0 and Σ

(0)
Λ () =  00 Σ

−1
 0
Φ ()Σ

−1
 0
 0

signify the contributions of the factor and factor loading estimators to the asymptotic variance of ̂
(0)
 

respectively, and  denotes the diagonal matrix consisting of the eigenvalues of Σ
12

Λ0
Σ 0Σ

12

Λ0
in de-

scending order with the corresponding eigenvector matrix denoted as Υ such that Υ
0
Υ =  and

 = 12Υ0Σ−12
Λ0

.

Theorem 2.2 parallels Theorems 1-3 in Bai (2003). Bai (2003) obtains the asymptotic nor-

mal distributions for his estimators of factors and factor loadings. In contrast, we show that the

sequence
n
Π̂
(0)
   ≥ 1

o
converges G-stably as ( ) → ∞ to a mixture normal whose asymp-

totic variance is random but measurable with respect to certain limit sigma-field, and similarly, the

sequence
n
Π̂
(0)
   ≥ 1

o
converges G-stably as ( ) → ∞ to a mixture normal whose asymp-

totic variance is random but measurable with respect to certain limit sigma-field. We refer the

reader directly to the Häusler and Luschgy (2015) for stable convergence in general and the stable

9



martingale central limit theorem in particular. To understand the limiting distribution of Π̂
(0)
 in

Theorem 2.2(i), we notice that its influence function depends on  through two terms,  and

00  0 ( − )  The first term also appears in the influence function for the factor estimators in the

absence of random missing at time  (i.e.,  = 1 ∀) while the second term is introduced by the

random missing mechanism. Due to the presence of common factor  0 for all cross-sectional units,
1√


P
=1 

0

00
 

0
 ( − ) does not have a limiting normal distribution. Instead, it converges to

 (0Γ2) G-stably as  →∞ where  (0Γ2) can be regarded as a normal random vector with

random variance given by Γ2 In the special case where 
0
 is nonrandom, the limiting distribution

reduces to the usual normal distribution. Similar remarks apply for Π̂
(0)
 in Theorem 2.2(ii). Theorem

2.2(iii) only reports the limiting distribution for the normalized common component estimator. One

can also follow the analyses of parts (i)-(ii) in the theorem and report the stable limiting distribution

of  (̂
(0)
 −0) as ( )→∞

By Corollary 6.3 in Häusler and Luschgy (2015) and the Cramér-Wold device, we can show that£
(−1Γ0−1

¤−12
Π̂
(0)


→  (0 ) as ( ) → ∞ and£
(0)−1Φ−1

¤−12
Π̂
(0)


→  (0 ) as ( ) → ∞

With these results and the result in Theorem 2.2(iii), we could make inference on the factors, factor

loadings, and common component. Since these estimates are not the final estimates, we will study

the asymptotic properties of the iterated estimators of these objects later on.

2.3 Asymptotic properties of the iterated estimators of the factors and factor

loadings

Let ̂() =
¡
−1Λ00Λ0

¢
−1 00̂ ()(̂())−1 To study the asymptotic properties of ̂ ()  ̂

()

 and

̂
()
 , we add the following assumption.

Assumption A.5 (i) max

°°° 1 P
=1 1

°°° = 

¡
( ln)−12

¢
and max

°°° 1 P
=1 

0
 

°°° =


¡
( ln)−12

¢
 where 1 = 0  and 0

00
 

0
 ( − ) 

(ii) max

°°° 1 P
=1 2

°°° = 

¡
( ln )−12

¢
 where 2 =  0  and  0 

00
 

0
 ( − ) 

(iii)max

°°° 1


P
 3

°°° = 

¡
−2 ln

¢
andmax

°°° 1


P


P
=1 6= 

0
 

00
 

0

00
 ( − )( − )

°°°
= 

¡
−2 ln

¢
 where 3 =  0 [ −()]  

0
 

00
 

0
 (−) and 0 00 (−

)

Assumption A.5 imposes some high level conditions that are similar to those imposed in Su et

al. (2015) and Su and Wang (2017). Following these authors, one can verify Assumption A.5 under

some primitive conditions on
©
0  

0
  

ª
 The conditions in Assumption A.5 are needed for the

establishment of the uniform convergence results in Theorem 2.4 below. They still allow weak cross-

section or serial dependence in the error terms or weak serial dependence in the factors but do rule

out unit-root type nonstationary behavior or long-memory behavior along the time dimension in the

error terms and factors. When unit root or long memory is of concern in factor models with random

10



missing, we admit that our assumptions (similar those of BN and Bai (2003)) will be violated and

one needs to specify a different set of assumptions. But this goes beyond the scope of the current

paper and is left for future research.

The following theorem establishes the mean squared convergence of ̂
()
 

Theorem 2.3 Suppose Assumptions A.1-A.5 hold. Then 1


°°°̂ () −  0̂()
°°°2 = 

¡
−2

¢
for each



The following theorem reports the asymptotic distributions of ̂
()
  ̂

()

 and ̂
()
 

Theorem 2.4 Suppose Assumptions A.1-A.5 hold. Suppose that
√
( 14−2 ln +−1+314) =

(1) and
√
 (24−2 ln + −1+324) = (1) Let Π̂

()

 =
√
(̂

()
 − ̂()0 0 ) and Π̂

()

 =√
 (̂

()

 − ̂()−10 ) Then
(i) Π̂

()
 = −1 1√



P
=1 

0
  + (1− ) Π̂

(−1)
 +  (1) uniformly in  and

Π̂
()


→ (0−1Γ1 ()0−1) as (  )→∞

(ii) Π̂
()
 = (

0)−1 1√


P
=1 

0
  + (1− ) Π̂

(−1)
 +  (1) uniformly in  and

Π̂
→ (0 (0)−1Φ1 ()−1) as (  )→∞

(iii) ( 1

Σ1 +

1

Σ1Λ)

−12(̂() − 0)
→  (0 1) as (  )→∞,

where Γ1Φ1  and  are as defined in the last subsection, and Σ1 = 00 Σ
−1
Λ0
Γ1 ()Σ

−1
Λ0
0 

and Σ1Λ =  00 Σ
−1
 0
Φ1 ()Σ

−1
 0
 0 signify the contribution of the factor and factor loading estima-

tors to the asymptotic variance of ̂
()
 for large  respectively.

Remark 2 Note that Γ () = Γ1 ()+Γ2 () and Φ () = Φ1 ()+Φ2 () A comparison

of Theorem 2.4 with Theorem 2.2 indicates that ̂
()
  ̂

()

 and ̂
()
 are asymptotically more efficient

than ̂
(0)
  ̂

(0)

 and ̂
(0)
  respectively. In theory, the distributional results in Theorem 2.4 require

 → ∞ In practice,  can diverge to infinity at an arbitrarily slow rate. To see this point, we take

a close look at the iterative relationship between Π̂
()
 and Π̂

(−1)
  Let  =

1


P
=1 

0
  Note

that the result in Theorem 2.4(i) implies

Π̂
()
 = −1

√


−1X
=0

(1− ) + (1− ) Π̂
(0)
 +  (1)

where the first term is the dominant term and the second term can be made arbitrarily small for

sufficiently large  In practice, we find it is not necessary to iterate too many times so that we can stop

the iteration when (1− ) is small enough. For example, we can iterate ∗ times such that (1− )
∗ ³

 for some small positive number   Simulations suggest that 
∗ = bln( ) ln(1 − )c with

 = 0001 works very well for all data generating processes under our investigation. Note that

∗ = 3 4 and 5 for  = 09 08 and 0.7, respectively. This suggests a small number of iterations is
sufficient.

11



Remark 3 (Comparison with the oracle estimators) We can also compare the asymptotic

variances of our EM estimators with those of the oracle estimators that are obtained in the absence of

missing values (viz.,  = 1). For example, we consider the factor estimation and use ̂ oracle to denote

the oracle estimator of  0 with the corresponding rotational matrix ̂
oracle It is well known that the

asymptotic variance-covariance (Avar) of
√
(̂ oracle − ̂oracle0 0 ) is given by −1Γoracle 0−1

where

Γoracle = lim
→∞

Var

Ã
1√


X
=1

0 

!


In contrast, by the law of iterated expectations

Γ1 () = lim
→∞

(
Var

"


Ã
1√


X
=1

0 |Λ0 
!#

+

"
Var

Ã
1√


X
=1

0 |Λ0 
!#)

= lim
→∞

(
Var

Ã
1√


X
=1

0 

!
+
1− 




Ã
1



X
=1

0
00
 

2


!)
≥ Γoracle 

The difference, Γ1 () − Γoracle  given by lim→∞ 1−


³
1


P
=1 

0

00
 

2


´
 reflects the cost of

missing (1− ) proportion of observations. The larger proportion of missing observations, the larger

value Γ1 () is. In the absence of cross-sectional correlation among
©
0 

ª
 it is easy to verify that

Γ1 () =
1


lim

→∞


Ã
1



X
=1

0
00
 

2


!
=
1


Γoracle 

So  reflects the relative asymptotic efficiency of the EM estimator compared to the oracle estimator.

Analogous remarks hold for our EM estimators of the factor loadings.

With the results in Theorem 2.4, we can make inference on the factors, factor loadings, and

common component. Below we focus on the inference on the factors due to the widespread use of

estimated factors, say, in various factor-augmented regression or forecasting models.

2.4 Inference on the factors

Let ̂ ̂ and ̂ denote ̂
()
  ̂

()

  and ̂
()
 respectively, when  → ∞ To make inference on the

factors, we need to estimate the asymptotic variance  ≡ −1Γ1 ()0−1 consistently. By
Lemma A.1 in the appendix, we can consistently estimate  by the diagonal matrix ̂ = ̂(∞) that
contains the  largest eigenvalues of ( )−1 ̂(∞)̂(∞)0 arranged in descending order. So the key
is to estimate Γ1

0 consistently.
To estimate Γ1 ()

0 we consider two cases: (1)
©
0 

ª
are cross-sectionally uncorre-

lated; (2)
©
0 

ª
are cross-sectionally correlated. In Case (1), we have a simplified expression for

Γ1 () :

Γ1 () = lim→∞
1

2

X
=1

Var
¡
0 

¢
= lim→∞

1

2

X
=1


h
0

00
 (


)
2
i
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where 

 =  Noting that with ̃ ≡ ̂(∞) ̃−1 →  by Lemma A.4(iii) in the appendix, it is

easy to show that a consistent estimator of Γ1 ()
0 is given by

Γ̂
(1)
1 =

1

̃2

X
=1

̂̂
0
(̂


)
2

where ̂

 = ( − ̂)

In Case (2), for simplicity we consider the case where the factor loadings are nonrandom and the

process {  ≥ 1} is covariance stationary. Let · =
¡


1 


2  




¢0
 Let Σ ≡ (


·

0
· ) = {}

which is an  × matrix. Then Γ1 () =lim→∞ 1
2

Var
¡
Λ00·

¢
=lim→∞ 1

2
Λ00ΣΛ0 Suppose

that Σ̃ is a consistent estimator of Σ in the sense
°°°Σ̂ −Σ°°°

sp
=  (1)  Then we can readily show

that a consistent estimator of Γ1
0 is given by

Γ̂
(2)
1 ≡

1

̃2
Λ̂0Σ̂Λ̂

Fortunately, a feasible consistent estimator of Σ is available as 

 can be estimated by ̂


 and

there is no need to estimate the error terms corresponding to those missing observations. To see this,

define

̂

 =

1



X
=1

̂

̂


 and ̂ =

1



X
=1

³
̂

̂


 − ̂




´2


We follow the lead of Fan, Liao and Mincheva (2013, FLM hereafter) and propose to estimate Σ by

Σ̂ =
n
̂
T


o
 where

̂
T
 =

(
̂

 if  = 

(̂

) if  6= 



where  (·) is the soft thresholding function:  () ≡  () (||−  )+    = 0 (̂)
12

 = [max(
−1+22 −1 ln )]12 and 0 is a positive constant.4 We will show that

°°°Σ̂ −Σ°°°
sp
=

 (1) under some additional conditions.

When Λ0 is random, the above procedure also works under the additional restriction that Var
¡


·|Λ0

¢
=Var(


·) = Σ

 To see this, we notice that by the variance decomposition formula, we have

Γ1 () = lim→∞
1

2

£
Var

¡
Λ00·|Λ0

¢¤
+ lim→∞

1

2
Var

¡

¡
Λ00·|Λ0

¢¢
= lim→∞

1

2

£
Λ00Var

¡


·|Λ0

¢
Λ0
¤
+ 0 = lim→∞

1

2

£
Λ00ΣΛ0

¤


1
2


£
Λ00ΣΛ0

¤
can be estimated in the same procedure as outlined above.

To allow for possible cross-sectional dependence, we recommend using Γ̂
(2)
1 and will justify the

consistency of this estimator below. To proceed, we add the following assumption.

4 In our simulations and applications, we let 0 = 1 In most situations, when 0 = 1 Σ̃ is positive definite.

Otherwise, we choose 0 to be the smallest value such that Σ̃
 is positive definite. For details, see FLM’s Section 4.
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Assumption A.6 (i) The process {·  ≥ 1} is covariance-stationary with covariance matrix Σ =
(


·

0
· ) =

n




o
.

(ii) There exists 3 ∈ [0 1) such that max
P



¯̄̄




¯̄̄3 ≤

(iii) Let  = [max(−1+22 −1 ln )]12 −12+14(24 +  14)(ln )12 → 0 and

−1+141−3 12 → 0 as ( )→∞

Assumption A.6(i) is typically assumed in the literature when there is no missing value. Assump-

tion A.6(ii) strengthens the standard weak cross-sectional dependence condition max
P



¯̄̄




¯̄̄
=

 (1); see, e.g., FLM. It is satisfied if 

·’s satisfy certain -dependence condition cross-sectionally

or the correlation between 

 and 


 vanishes sufficiently fast as the “distance” between  and  in-

creases, perhaps after reordering of the data along the cross-sectional dimension. Assumption A.6(iii)

imposes further restrictions on the relative magnitude of  and 

The following theorem reports the consistency of ̂−1Γ̂1̂−1

Theorem 2.5 Suppose that Assumptions A.1-A.6 hold. Then ̂−1Γ̂1̂−1
→ −1Γ1 ()0−1

where Γ̂1 = Γ̂
(2)
1

Given the above result, we can make inference on the global factors. The procedure is standard

and omitted for brevity.

3 Determining the Number of Factors via Cross Validation

In this section, we propose a novel method to determine the number of factors via cross-validation

(CV). In comparison with existing methods, our method has the following features. First, our method

is inspired by the results in Section 2. With the theories in Section 2, it seems natural to consider a

CV method to determine the number of factors. The key insight for such a method to work is that

we can consistently estimate the common component for the factor models with random missing.

Therefore we can randomly hold some observations for the out-of-sample evaluation and use the

remaining observations to estimate the common component. Second, our method can be used no

matter whether there are random missing observations in the original data matrix or not. In contrast,

all popular existing methods for the determination of the number of factors do not allow for missing

values without suitable modifications. Third, as our simulations show, our method works well in

a variety of scenarios in comparison with existing methods adjusted to incorporate missing values.

Fourth, like many existing methods, our CV method is easy to implement and computationally

efficient.

For notational simplicity, we first focus on the CV method when the original dataset does not

have missing value problems and then study the case with missing values.
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3.1 The cross validation method

Let  denote the generic number of factors with the true value given by 0 The key insight for

our CV method is that one can consistently estimate the common component for the factor models

with random missing. Given the  × matrix of observations  we propose to randomly sample

elements in  with a fixed probability  ∈ (0 1) and leave the rest (1− )-proportion of observations

as held-out entries for the out-of-sample evaluation.

As before, let Ω∗ ⊂ [ ]× [ ] be the index set of the training entries and Ω∗⊥ the index set of the
held-out entries. Define the operator Ω∗ : R× → R× by

(Ω∗) = 
∗
 = 1 {( ) ∈ Ω∗} 

where ∗ = 1 {( ) ∈ Ω∗}  Let ∗ denote a  × matrix with ( )th element given by ∗ Now we
can regard Ω∗ as the  × data matrix with missing values replaced by zeros. Given Ω∗ we

apply the proposed EM algorithm to recover the data via estimating the common component matrix

 for any given number of factors.

To proceed, we consider the full singular value decomposition (SVD) for 1

Ω∗ :

1


Ω∗ = ̃Σ̃̃ 0 =

∧X
=1

̃̃
0
̃

where ̃ = (̃1  ̃ ) and ̃ = (̃1  ̃ ) are respectively the  ×  matrix of left singular vectors

and  ×  matrix of right singular vectors of 1

Ω∗, and Σ̃ is the  ×  ‘diagonal’ matrix that

contains the singular values, ̃1 ̃2  ̃∧  arranged in descending order along the main diagonal
line. Given any  ≤  ∧ and the training entries in Ω∗ we can estimate the common component

 by the singular value thresholding procedure:

̃ = 

µ
1


Ω∗

¶
= ̃Σ̃̃

0
 =

X
=1

̃̃
0
̃ (3.1)

where  (· ) is the rank- truncated SVD of · the subscript  stands for hard thresholding,

̃ = (̃1  ̃) ̃ = (̃1  ̃) and Σ̃ =diag(̃1  ̃)  We can regard ̃ as a matrix-

completion version of Ω∗ Let ̃ denote the ( )th element of ̃ for  ≥ 1 Let ̃0 = 0 for
all ( )  We propose to choose  to minimize the following CV criterion function

g () = X
()∈Ω∗⊥

h
 − ̃

i2
 (3.2)

Let ̃ = argmin0≤≤max g () where max is a fixed integer that is no less than 0We will show
the consistency of ̃ under some regularity conditions.

Note that the CV function in (3.2) is based on the initial estimator ̃ of the common component

matrix 0 As demonstrated in the last subsection, one can update the estimator of 0 via the EM

algorithm and obtain a more efficient estimator of  It is expected that using such a more efficient
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estimator would yield better finite sample performance for the choice of the correct number of factors.

As before, let ̂
(0)
 = ̃ and  ≥ 1 be an integer. Suppose that we have obtained the estimates

̂
(−1)
  In step  we can replace the zero elements in ∗ ≡ Ω∗ with the estimated common

components ̂
(−1)
max

5 Define the  × matrix ̂∗() with its ( )th element given by

̂
∗()
 =

(
 if ( ) ∈ Ω∗
̂
(−1)
max

if ( ) ∈ Ω∗⊥
  ≥ 1 (3.3)

where Ω∗⊥ = {( ) ∈ [ ]× [ ] : ( ) ∈ Ω∗}  Then we can conduct the singular value thresholding
procedure:

̂
()
 = 

³
̂∗() 

´
= ̂

()
 Σ̂

()
 ̂

()0
  (3.4)

where ̂
()0
 ̂

()
 =  ̂

()0
 ̂

()
 =  and Σ̂

()
 is a diagonal matrix that contains the  largest

singular values of ̂∗() arranged in descending order along its diagonal line. Following Remark
2, we recommend repeating the above procedure for  = 1  ∗ ≡ bln( ) log()c where, e.g.,
 = 0001 Let ̂ = ̂

(∗)
 and ̂ = argmin0≤≤max d ()  where

d () = X
()∈Ω∗⊥

h
 − ̂

i2
 (3.5)

We will show the consistency of ̂ under some regularity conditions.

Remark 4. Recently, Zeng, Xia, and Zhang (2019, ZXZ hereafter) proposed a double CV method

to determine the number of factors consistently. Our approach differs from theirs in two aspects.

First, ZXZ’s method applies CV twice, first along the directions of observations (i.e., along  in our

notation by -fold CV) and then variables (i.e., along  in our notation by leave-one-out CV). In

contrast, our CV method applies CV only once over random splitting of the  observations and

tends to be relatively more straightforward to implement. Second, ZXZ only consider balanced panels

and their method does not apply for factor models with missing values. We show below that our

method also works for factor models with missing values.

3.2 The consistency of the CV method

Let ̃ and ̃ denote the th left and right singular vectors of 
∗ respectively, associated with its

th largest singular value. We add one assumption.

Assumption A.7. (i) For  = 0+1  max  (k̃k∞ k̃k∞ ≤ 1(0
p
( +  ) log( +  )))→

1 for some fixed 0 ∞ as ( )→∞, k̃k∞ =  (1)  and k̃k∞ =  (1) ;

5We conjecture that one can replace ̂
(−1)
max

by ̂
(−1)
 in which case ̂

∗()
 becomes

̂
∗()
 =


 if ( ) ∈ Ω∗

̂
(−1)
 if ( ) ∈ Ω∗⊥

  ≥ 1

But the justification for this method is far more complicated than the proof of Theorem 3.2 below because of the

dependence of ̂
∗()
 on  and the inconsistency of ̂

(−1)
 for   0
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(ii) max()∈Ω∗⊥
P
()∈Ω∗⊥ | [|Ω∗Ω∗]| =  (

2
 )

Assumption A.7(i) is a high level condition that restricts the spikeness of singular vectors of .

A similar condition is also imposed in Negahban and Wainwright (2012). Since k̃k2 = k̃k2 = 1
on average each entry of ̃̃

0
 is of the order ( )−12. We require the maximum entry is bounded

by the order (( +  ) log( +  ))−12. We can show that ̃ and ̃ are asymptotically equal to

the ( −0)th singular vector of 
∗ ≡  ◦ ∗ +  0Λ00 ◦ [∗ − (∗)] where each entry has zero

mean. As we do not have the explicit form of ̃ and ̃, it is difficult to show its spikeness. It is

well known that for an i.i.d. Gaussian random matrix, the elements of its right and left eigenvectors

are uniformly distributed on the unit spheres −1 and −1 respectively. Then Assumption A.7(i)
is satisfied in this case. It is expected that the singular vectors of a general random matrix behave

similarly. Assumption A.7 (ii) is a higher level condition that requires low degree of correlations

among {} conditional on kept-in information. It is satisfied when  is i.i.d. and the factors and

factor loadings are nonrandom. When we have | [|Ω∗Ω∗] | ≤|−|+|−| for some ∞
and   1 perhaps after reordering the data along the cross-sectional direction, the condition is also

satisfied.

The next two theorems establish the selection consistency of our CV method based on g ()
and d () 
Theorem 3.1 Suppose Assumptions A.1-A.3 hold, and Assumptions A.4-A.5 hold with  ≡ 1

Then 
³
̃  0

´
→ 0 as ( ) → ∞ If Assumption A.7 also holds, then 

³
̃  0

´
→ 0 as

( )→∞

Theorem 3.2 Suppose Assumptions A.1-A.3 hold, and Assumptions A.4-A.5 hold with  ≡ 1

Then 
³
̂  0

´
→ 0 as ( ) → ∞ If Assumption A.7 also holds, then 

³
̂  0

´
→ 0 as

( )→∞

Theorems 3.1 and 3.2 indicate that the CV estimators ̃ and ̂ consistently estimate the true

number of factors 0 in large samples when Assumptions A.1-A.5 and A.7 hold. As we show in the

proof of Theorem 3.1, the consistency of ̃ is established by demonstrating that

g ()−g (0) = (1− )

0X
=+1

2 +

¡
−1

¢
when   0 and

plim( )→∞
2


hg ()−g (0)i ≥ 1− 

256
(−0)   0 when   0

where  is the lower probability bound of 
2
 ( )−1̃2 for  ∈ {0 + 1  max} Note that

̃2 diverges to infinity in probability at the rate  for  ∈ {1  0} and ( )−1̃2 converges
to zero in probability at the rate −2 when  ∈ {0 + 1  max} Similar remarks hold true ford ()−d (0) 
3.3 CV in the presence of random missing

From the proof of Theorem 3.1 we can see that the same result holds with some modifications when

the original data matrix  contains random missing values. To see the modifications, we continue to
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use Ω ⊂ [ ]×[ ] to denote the index set of the observations that are observed. Let  = 1 {( ) ∈ Ω}
and ̃ ≡ |Ω| ( ) As before,  ( = 1) =  ∈ (0 1] and  is independent of   0 Λ0 and . In

this case, we consider the SVD for 1
̃
Ω∗Ω :

1

̃
Ω∗Ω = ̃Σ̃̃ 0

where ̃ is now the  ×  matrix of left singular vectors of 1
̃
Ω∗Ω ̃ is the  × matrix of

right singular vector of 1
̃
Ω∗Ω and Σ̃ contains the singular values of

1
̃
Ω∗Ω arranged in

descending order along its diagonal line. Then we estimate the common component  by the singular

value thresholding procedure:

̃ = 

µ
1

̃
Ω∗Ω

¶
= ̃Σ̃̃

0
 (3.6)

where ̃, ̃ and Σ̃ are defined as before. Let ̃ ∈ {0 1 2  max} minimize the following CV
function g () = X

()∈Ω∗⊥∩Ω

h
 − ̃

i2
 (3.7)

where ̃ denote the ( )th element of ̃ Following the proof of Theorem 3.1, we can also show

that  (̃ = 0)→ 1 as ( )→∞ in this case.

As in the last subsection, we can consider iterative estimates of  Let ̂
(0)
 = ̃. Suppose

that we have obtained the estimates ̂
(−1)
  In step  we can replace the zero elements in Ω∗Ω

with the estimated common components ̂
(−1)
max

6 Define the  ×  matrix ̂∗() with its ( )th
element given by

̂
∗()
 =

(
 if ( ) ∈ Ω ∩Ω∗
̂
(−1)
max

if ( ) ∈ (Ω ∩ Ω∗)⊥
  ≥ 1 (3.8)

Then we can conduct the singular value thresholding procedure:

̂() () = 

³
̂∗() 

´
= ̂

()

 Σ̂
()

 ̂
()0
  (3.9)

where ̂
()0
 ̂

()

 =  ̂
()0
 ̂

()

 =  and Σ̂
()

 is a diagonal matrix that contains the  largest

singular values of ̂∗() arranged in descending order along its diagonal line. Following Remark 2,
let ̂ = ̂

(∗)
 and ̂ = argmin0≤≤max d ()  where

d () = X
()∈Ω∗⊥∩Ω

h
 − ̂

i2
 (3.10)

Following the proof of Theorem 3.2, we can also show that  (̂ = 0) → 1 as ( ) → ∞ in this

case.

6We conjecture that one can replace ̂
(−1)
max

by ̂
(−1)
 in which case ̂

∗()
 becomes

̂
∗()
 =


 if ( ) ∈ Ω ∩Ω∗

̂
(−1)
 if ( ) ∈ (Ω ∩Ω∗)⊥

  ≥ 1
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3.4 Averaging CV and stability selection

The CV method in Sections 3.1 and 3.3 is based on a single random draw for the training set of

observations. The resulting performance of the CV method can be affected by the quality of such a

draw. In practice, we can always average g () or d () over a large number (say, ) of draws.
Recognizing the notorious difficulty in the estimation of discrete structures, such as in variable

selection and cluster analysis, Meinshausen and Bühlmann (2010) introduce stability selection based

on subsampling in combination with some selection algorithms. The procedure serves as a general

method to reduce noise by repeating the model selection many times over random splits of the data.

Our CV procedure can benefit from the stability selection since it relies on random data splits. An

additional benefit of stability selection in our context is that it is more robust to the choices of  and

 The algorithm is given below.

Algorithm 1 (The CV procedure)

1. For ( ) ∈ [ ]× []

(a) Randomly choose a subset of training observations Ω ⊂ [ ]× [ ] where each observation
in  can be chosen with probability .

(b) Apply the thresholding SVD in (3.1) or (3.6) to obtain ̃ or that in (3.4) or (3.9) to

obtain ̂ for  = 0 1  max respectively. Here ̃0 and ̂0 are  ×  matrices of

zeros.

(c) For each  ∈ {0 1  max}  calculate the CV value via (3.2) or (3.7) and denote it asg () () or that via (3.5) or (3.10) and denote it as d () () 
2. Let g  () =

1


P
=1

g () () and d  () =
1


P
=1

d () () for  = 1  Let

̃ = arg min
0≤≤max

g  () and ̂ = arg min
0≤≤max

d  () for  = 1 

Let ̃ and ̂ denote the modes in {̃1  ̃} and {̂1  ̂} respectively. ̃ and ̂ serve

as the estimator of the true number of factors without and with iterations.

We will evaluate the finite sample performance of ̃ and ̂ through simulations by setting  = 10

and  = 5.

3.5 Modification of existing methods

There are many methods developed for determining the number of factors in econometrics. Popular

examples are Bai and Ng’s (2002) PC and IC method, Onatski’s (2010) ED method, and Ahn and

Horenstein’s (2013) GR and ER methods. However, these methods are not directly applicable when

the panel is unbalanced. Inspired by the results in Section 2, we propose some modifications to the

existing methods in this subsection. Specifically, we can modify these methods in the following two

ways:
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• With missing observations, the balanced panel  is not directly observed. We cannot directly

calculate the eigenvalues of  0( ), on which ED, GR and ER depend. However, our

analysis in Section 3 suggests that eigenvalues of ̃ 0̃(̃2 ) should have similar asymptotic

properties to that of  0( ), where ̃ =  ◦  is observed. Then one potential valid

modification of these methods is to work on the eigenvalues of ̃ 0̃(̃2 ) directly. The idea

can also be applied to modify PC and IC methods of Bai and Ng (2002). It is well known that

the IC and PC methods are also closely related to the eigenvalues of  0( ). The objective

function  ( ̂ ) given by equation (7) of Bai and Ng (2002) has the property that

 ( ̂ ) =

∧X
=+1

[
0( )]

Accordingly, we can also modify PC and IC to work on ̃ 0̃(̃2 )

Although directly working on ̃̃ is asymptotically valid, this approach is not efficient and

its finite sample performance can be very poor when the proportion of missing observations is

high.

• To reduce the information loss, we consider the matrix completion with iterative estimates.
However, we have to estimate factors and factor loadings with  = max in this case, since

the number of factors is unknown. Then we work on ̌ which is completed by our proposed

iterative estimates with max factors. According to the analysis in the proof of Theorem 3.2,

the first 0 singular values of ̌
√
 should be bounded below by some constants and its

(0 + 1)th  maxth singular values are  (
−1
 ).

In this case, it is easy to justify that the PC and IC methods continue to work. However, it is

difficult to see whether the ED, GR and ER methods can continue to work on the completed

matrix because they have more requirements on the (0 + 1)th  maxth singular values.

4 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to evaluate the finite sample performance of our

proposed EM estimators and CV method.

4.1 Data generating processes

In this subsection, we introduce the data generating processes (DGPs). Although we are considering

a static factor model, the factors can be a dynamic vector process in practice (Ludvigson and Ng,

2007). In our Monte Carlo experiments, we generate the factors according to

 −   =  (−1 −  ) + (1− 2 )
12  = 1  

where  is an  × 1 vector of ones,  is a scalar,  is independent and identically distributed
(i.i.d.) from (0 (1− 2 )) and  ∈ (0 1). To avoid the start-up effect, we throw away the first
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1000 observations of {} and use the next  observations for the estimation below. For the factor
loadings, we let ,  = 1   and  = 1   be i.i.d. draws from  · (1 1) where  is a

constant controlling the signal strength.

Next, we introduce the generation of the idiosyncratic error terms  in DGPs 1—5:

DGP 1. (Errors without serial or cross-sectional correlation) We let

 =
£
09 + 01(0)

2(0)
2
¤


where  is i.i.d. from  (5)  the Student’s t-distribution with 5 degrees of freedom. Apparently,

we allow for conditional heteroskedasticity but no serial or cross-sectional correlation among

’s.

DGP 2. (AR(1) errors across time) We generate  via an AR(1) process:  = −1+, where

 is i.i.d. 
¡
0 1− 2

¢
and  = 05. To eliminate the start-up effect of the initial value, we

throw away the first 100 observations.

DGP 3. (MA(1) errors across individuals) We generate  =  + −1, where  is i.i.d.

(0 1
√
2).

DGP 4. (Errors with both serial and cross-sectional dependence) We generate  = + −1+
−1 + 2−1−1, where  is i.i.d.  (0 1) and  = 03.

DGPs 1-4 satisfy all assumptions in the paper. We employ them to evaluate the finite sample

performance of the proposed estimators and CV methods under various scenarios. With the

presence of cross-sectional dependence in the error terms in DGPs 3-4,
©
0 

ª
are also

cross-sectionally correlated. The covariance estimator Γ̂
(1)
1 introduced in Section 2.4 is invalid.

We can use these two DGPs to check the performance of robust inference procedure using the

estimator Γ̂
(2)
1.

DGP 5. (Errors with a fat-tailed distribution) The setting for  is the same as DGP 1 except

that  is i.i.d. from Student’s t-distribution with 3 degrees of freedom.

In this case, the error term  does not have a finite fourth moment, which violates Assumption

A.2(i). DGP 5 can be used to check the robustness of the proposed estimators and the CV

method in the fat-tailed error scenario.

In all experiments, we fix the number of factors to be 3 We set  = 06  = 03 and choose

 such that the signal to noise ratio (SNR) equals 4 for each DGP. Specifically, we define SNR

as var(0)var(). For each DGP, we consider  = 50 100 and  = 50 100. The number of

replications is 1000 in all cases.
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Table 1: Under/Over-estimation rate (%) with complete data

DGP N T g ED GR ER PC IC

1 50 50 2.9/0.0 0.0/4.9 27.8/0.0 78.6/0.0 0.0/9.9 0.0/3.2

50 100 0.1/0.0 0.0/3.4 6.9/0.2 63.1/0.0 0.0/3.5 0.0/2.4

100 50 0.1/0.0 0.0/3.1 8.7/0.0 59.1/0.0 0.0/2.8 0.0/1.7

100 100 0.0/0.0 0.0/2.2 0.2/0.0 24.2/0.0 0.0/1.0 0.0/0.6

2 50 50 0.8/0.0 0.0/2.8 41.4/0.0 86.7/0.0 0.0/85.0 0.0/17.7

50 100 0.1/0.0 0.0/0.1 10.2/0.0 67.6/0.0 0.0/2.1 0.0/0.1

100 50 0.0/0.0 0.0/0.5 21.6/0.0 80.0/0.0 0.0/74.0 0.0/10.4

100 100 0.0/0.0 0.0/0.0 0.5/0.0 40.1/0.0 0.0/0.3 0.0/0.0

3 50 50 0.8/0.0 0.0/0.3 3.0/0.0 47.2/0.0 0.0/28.1 0.0/0.5

50 100 0.0/0.0 0.0/0.0 0.0/0.0 21.3/0.0 0.0/1.1 0.0/0.0

100 50 0.0/0.0 0.0/0.0 0.0/0.0 17.2/0.0 0.0/0.0 0.0/0.0

100 100 0.0/0.0 0.0/0.0 0.0/0.0 2.1/0.0 0.0/0.0 0.0/0.0

4 50 50 1.4/0.0 0.0/0.3 26.7/0.0 77.4/0.0 0.0/9.2 0.0/0.1

50 100 0.0/0.0 0.0/0.1 7.1/0.0 59.1/0.0 0.0/0.1 0.0/0.0

100 50 0.1/0.0 0.0/0.0 6.9/0.0 59.3/0.0 0.0/0.0 0.0/0.0

100 100 0.0/0.0 0.0/0.0 0.2/0.0 23.5/0.0 0.0/0.0 0.0/0.0

5 50 50 4.7/3.0 0.0/35.1 44.2/3.2 84.4/0.6 0.0/59.6 0.0/38.6

50 100 0.4/3.2 0.0/33.4 27.7/4.5 76.9/1.0 0.0/43.4 0.0/32.6

100 50 0.4/3.5 0.0/33.4 27.1/4.8 73.5/1.5 0.0/45.0 0.0/33.0

100 100 0.1/1.9 0.0/32.6 13.6/3.7 52.5/1.3 0.0/36.6 0.0/29.8

Note: We report the under/over-estimation rate with complete data. We consider  with leave-out

probability  = 09, ED of Onatski (2010), GR and ER of Ahn and Horenstein (2013), and PC and IC of Bai

and Ng (2002). The number of replications is 1000.

4.2 Simulation results

In this subsection, we present our simulation results in two parts. In the first part, we examine

the accuracy of the CV method proposed in section 3, measured by the empirical rate of correct

determination of the number of factors. In the second part, we estimate the model with the estimated

number of factors and report the finite sample performance of the proposed estimators in Section 2.

4.2.1 Determining the number of factors

In this subsection, we use the CV method to determine the number of factors for data with or without

random missing observations. For both cases, we let max = 5 and use the leave-out probability

 = 09. To implement the averaging CV and stability selection method in Section 3.4, we set

 = 10 and  = 5. For the case of incomplete data, we consider two random missing probabilities:

 = 07 09

When the original data forms a balanced panel, there are existing methods including the growth

ratio (GR) and eigenvalue ratio (ER) of Ahn and Horenstein (2013), the edge distribution (ED) of

Onatski (2010) and the PC and IC methods of Bai and Ng (2002), among others. We also report the

performance of these methods for comparison. Table 1 presents the under/over-estimation rate with

complete data. We summarize some important findings from Table 1. First, for DGP 1 where the

error terms have neither serial nor cross-sectional dependence, all the methods under investigation
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show a pattern of convergence as both  and  increases, and the CV method with  = 09 obviously

outperforms all the other methods. Second, for DGPs 2-4 with serial or cross-sectional dependence

in errors, the performance of various methods are similar to that for DGP 1. Among all the methods

under study, ER, PC and IC tend to be outperformed by the CV and ED methods. Third, for DGP

5, with fat-tail distributed errors, our CV method tends to outperform all existing methods by a big

margin. Specifically, ED, PC and IC over-estimated more than 29.8% times for all four combinations

of  and  and GR and ER tend to under-estimate the number of factors. From the performance

of these five existing methods, we observe slow rate of convergence. The result for DGP 5 indicates

the CV method is somewhat robust to error terms with fat tails.

When the original data has random missing observations, we follow the discussion in Section 3.5

to modify the existing methods and compare them with our CV method. In our simulation studies,

we have explored both approaches introduced in Section 3.5. To save space, we only report the results

of the best performed approach. Specifically, we modify these methods as follows:

M-ED,M-GR, andM-ER: We directly use ED, GR and ER algorithms to work on the eigenvalues

of ̃ 0̃(̃2 )

M-PC and M-IC: We adopt an approach which is slightly different from what is introduced in

Section 3.5. The algorithms are given by:

1. Fix  = 1  max and conduct the following steps:

(a) Obtain the iterated estimates ̂
(∗)
 as in Section 2.2;

(b) Calculate the modified objective function: ̃ () = 1
|Ω|
P
()∈Ω( − ̂

(∗)
)

2;

(c) The criteria functions are of the form ̃ ()+ ·( ), where ( ) is the penalty

function for PC and IC in Bai and Ng (2002).

2. Choose  that minimizes the criterion function.

Table 2 presents the under/over-estimation rate with incomplete data over 1000 Monte Carlo

replications for  = 07. The case for  = 09 is reported in Table A1 in the additional online

supplement. We consider the two CV methods discussed in Section 3.4, namely,g () andd ()
with ̂

(−1)
max

used in the th iteration. As in Remark 2, we stop the iterations when  = ∗ The
results are reported in the ‘g ’ and ‘d ’ columns of Table 2.

We summarize some important findings from Table 2. First, both CV methods yield decreasing

percentage of under/over-estimation rate as either  or  increases, andd has better finite sample

performance than g . Therefore, using iterations to complete missing observations helps improve
the finite sample performance of the CV method. Second, for the other competing methods, only

M-ED performs well for all DGPs with large  and  , but its finite sample performance is not as

good asd . Under the random missing case and the assumptions in Onatski (2000), it is possible to
justify M-ED theoretically. Third, M-GR and M-ER severely under-estimate the number of factors

for all DGPs whereas M-PC and M-IC slightly over-estimate the number of factors in small samples
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Table 2: Under/Over-estimation rate (%) with missing data ( = 07)

DGP N T g d M-ED M-GR M-ER M-PC M-IC

1 50 50 63.8/0.0 9.2/0.0 49.5/9.5 99.4/0.0 99.8/0.0 0.0/67.8 0.0/31.4

50 100 26.4/0.1 0.1/0.0 26.8/4.9 99.4/0.0 100.0/0.0 0.0/30.7 0.0/11.9

100 50 33.2/0.1 0.4/0.0 30.0/6.7 98.9/0.0 99.7/0.0 0.0/27.9 0.0/10.5

100 100 1.8/0.0 0.0/0.0 4.1/1.3 98.7/0.0 99.8/0.0 0.0/9.2 0.0/4.7

2 50 50 55.3/0.0 3.4/0.0 43.7/6.5 98.9/0.0 99.7/0.0 0.0/74.7 0.0/44.1

50 100 17.3/0.1 0.1/0.0 20.2/1.9 99.2/0.0 99.8/0.0 0.0/30.9 0.0/5.9

100 50 24.3/0.0 0.2/0.0 24.1/3.3 98.1/0.0 99.8/0.0 0.0/63.0 0.0/34.4

100 100 0.9/0.0 0.0/0.0 1.8/0.6 98.4/0.0 99.9/0.0 0.0/19.2 0.0/2.6

3 50 50 58.8/0.0 3.3/0.0 46.3/6.7 99.4/0.0 100.0/0.0 0.0/59.2 0.0/23.6

50 100 20.1/0.0 0.2/0.0 21.0/1.7 98.3/0.0 99.6/0.0 0.0/37.0 0.0/6.7

100 50 29.0/0.0 0.2/0.0 26.9/5.4 98.8/0.0 99.8/0.0 0.0/12.2 0.0/0.7

100 100 0.9/0.0 0.0/0.0 1.7/0.9 99.1/0.0 99.8/0.0 0.0/1.0 0.0/0.0

4 50 50 57.5/0.1 4.3/0.0 43.3/7.4 98.6/0.0 99.7/0.0 0.0/45.7 0.0/12.3

50 100 20.3/0.0 0.0/0.0 20.5/2.9 99.3/0.0 99.9/0.0 0.0/10.6 0.0/0.8

100 50 26.4/0.0 0.4/0.0 23.8/4.6 98.6/0.0 99.9/0.0 0.0/10.3 0.0/0.9

100 100 0.9/0.0 0.0/0.0 2.1/1.1 98.4/0.0 99.9/0.0 0.0/0.0 0.0/0.0

5 50 50 63.1/1.1 12.9/1.8 47.6/13.8 99.0/0.1 99.6/0.1 0.0/87.2 0.0/71.2

50 100 27.2/2.7 0.8/2.1 27.6/10.2 99.7/0.0 100.0/0.0 0.0/79.2 0.0/63.0

100 50 33.2/2.7 1.6/2.7 29.9/11.7 99.1/0.1 99.8/0.0 0.0/73.9 0.0/60.7

100 100 2.6/4.4 0.0/1.3 5.1/8.0 98.7/0.2 99.9/0.0 0.0/69.0 0.0/59.5

Note: We report the under/over-estimation rate with missing data, where each entry is observed with probability

 = 07. We consider  and  with leave-out probability  = 09. For comparison, we also consider the

M-ED,M-ER, M-PC, and M-IC, which are modified from ED of Onatski (2010), GR and ER of Ahn and

Horenstein (2013), and PC and IC of Bai and Ng (2002), respectively. The number of replications is 1000.

in DGPs 1-4 and severely over-estimate the number of factors in DGP 5. Fourth, when the proportion

of missing observations is small ( = 09 in Table A1 in the online supplement), the performance

of all methods improved remarkably but our d method still outperforms all other methods in all

cases. To sum up, our CV methods have great finite sample performance compared to the modified

existing methods.

4.2.2 Estimation of Λ and 

In this subsection, we work on the scenario with random missing observations where  = 07 and

09. We estimate the factors and factor loadings using the method introduced in Section 2 and make

inferences on the factors. Specifically, we consider the initial estimates ( = 0) and the ∗th step
estimates. For comparison, we also report the oracle estimate that is obtained with the knowledge

of missing observations and the correct number of factors.

Tables 3 reports the feasible estimation results for  = 07 where the number of factors is

determined by d . As Table 2 indicates, the d -based estimate, ̂, is quite accurate. But we still
have both nonnegligible percentages of under- and over-estimation when ( ) = (50 50).

To measure the consistency of our estimates, we calculate the mean squared error (MSE) of

̂’s. The results are reported in the ‘MSE’ columns of Table 3. We observe that the MSE of the
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Table 3: Mean squared error and coverage probability of confidence intervals with missing data ( = 07)

MSE of ̂ CP of Standard CI CP of Robust CI

DGP N T ̂
()
 ̂

(0)
 ̂

(∗)
 ̂

()
 ̂

(0)
 ̂

(∗)
 ̂

()
 ̂

(0)
 ̂

(∗)


1 50 50 0.250 1.445 0.437 91.1% 96.2% 86.9% 93.4% 98.3% 91.2%

50 100 0.186 0.993 0.290 91.3% 94.3% 89.6% 93.3% 96.4% 92.5%

100 50 0.187 1.039 0.294 91.6% 95.9% 91.2% 92.8% 97.7% 92.2%

100 100 0.124 0.613 0.185 94.0% 95.5% 91.8% 95.2% 96.6% 94.1%

2 50 50 0.284 1.390 0.420 87.6% 94.8% 84.2% 90.6% 97.8% 88.7%

50 100 0.197 0.932 0.282 89.4% 95.7% 87.7% 92.3% 97.0% 91.0%

100 50 0.229 0.996 0.312 88.3% 96.0% 87.8% 88.6% 98.1% 91.0%

100 100 0.142 0.604 0.193 92.3% 96.9% 92.0% 92.9% 98.1% 93.4%

3 50 50 0.248 1.369 0.392 82.5% 93.4% 80.5% 89.1% 97.2% 85.9%

50 100 0.192 0.926 0.278 81.8% 92.8% 82.3% 91.1% 96.3% 88.3%

100 50 0.176 0.962 0.263 80.2% 94.3% 80.1% 86.5% 96.8% 84.4%

100 100 0.121 0.588 0.173 83.5% 93.1% 86.4% 90.7% 96.1% 90.4%

4 50 50 0.255 1.367 0.398 82.3% 93.7% 81.8% 86.5% 97.9% 86.6%

50 100 0.187 0.934 0.273 84.1% 94.4% 85.1% 87.9% 97.6% 89.2%

100 50 0.193 0.975 0.280 86.4% 95.8% 87.9% 89.0% 97.4% 90.3%

100 100 0.127 0.591 0.179 86.4% 93.4% 87.0% 89.8% 95.4% 90.1%

5 50 50 0.319 1.547 0.524 91.9% 96.9% 87.1% 93.0% 98.5% 91.4%

50 100 0.255 1.123 0.375 92.1% 94.4% 90.2% 93.3% 96.2% 93.1%

100 50 0.258 1.160 0.375 92.4% 96.1% 91.2% 93.7% 98.2% 92.1%

100 100 0.156 0.689 0.230 94.6% 95.7% 92.4% 95.3% 96.9% 93.8%

Note: We report the mean squared errors (MSE) of ̂ and the coverage probabilities (CP) of the 95% confidence

intervals (CIs) for  0 ’s. Each entry is observed with probability  = 07. We consider the feasible estimates with  = 0

and  = ∗, and the oracle estimate that is obtained using the information of 0 and missing observations. The standard
CIs and the robust CIs are constructed using Γ̂

(1)
1 and Γ̂

(2)
1 in Section 2.4, respectively.
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∗th-step estimator is smaller than that of the initial estimator. However, as expected, the feasible
estimators that use random missing data are less efficient than the oracle estimator. This is consistent

with Remark 3 in Section 2.3. In fact, despite the presence of serial dependence, or cross-sectional

dependence, or both in DGPs 2-4, the MSE of the ∗th step estimator is approximately equal to
that of the oracle estimator multiplied by 1 in DGPs 1-4. DGP 5 is an exception because of the

violation of the moment conditions on the error terms.

Applied researchers are often interested in obtaining the estimates of the first eigenvector of

 0Λ00Λ0 0, which asymptotically equals to the first column of  0 when the associated eigenvalues

are ordered in descending order. In our simulations, we conduct inference on ( 0)∗1, which is the

∗th entry of the first column of  0 In each replication, we randomly choose a ∗ and construct
confidence intervals of ( 0)∗1 Following the results of Theorem 2.2 and Theorem 2.4, the 95%

confidence interval (CI) is given by

[̂
()
∗1 − 196([Σ̂() ]11)12

√
 ̂

()
∗1 + 196([Σ̂

()

]11)

12
√
 ]

To estimate the covariance matrix, we consider both the standard covariance matrix estimate based

on Γ̂
(1)
1 and the robust one based on Γ̂

(2)
1 introduced in Section 2.4.

We refer to the 95% confidence intervals constructed using Γ̂
(1)
1 and Γ̂

(2)
1 as standard CI and

robust CI, respectively. In Table 3, we report the coverage probability (CP) of the standard CIs

and robust CIs for both the oracle estimate and our feasible estimates for  = 07. We summarize

the main findings. First, for DGPs 1—2 and 5 where there is no cross-sectional dependence in the

error terms, both standard and robust covariance estimators provide asymptotically valid inferences.

The CP approaches the nominal CP as the sample size increases. Second, for DGPs 3-4 where there

is cross-sectional dependence in the error terms, the standard CIs are invalid, and the standard

CIs based on both the oracle estimates and the ∗th step estimates tend to under-cover the true
parameters. In contrast, the robust CI method provides asymptotically valid inference and yields

remarkably better performance. This suggests that ignoring the cross-sectional dependence may lead

to the incorrect estimation of the standard errors of the factor estimator and one should incorporate

the cross-sectional dependence in the estimation of the standard errors. Third, the CP for the CIs

based on the initial estimates tend to over-cover the true values. However, we should refrain from

making an inference based on the initial estimates in large samples. This is because the initial

estimates tend to have a larger variance than the ∗th step estimates, leading to much wider CIs
compared to those based on the ∗th step estimates.

In Table A2 of the online supplement, we also report the simulation results for the feasible

estimates that are associated with the case  = 09 i.e., only 10% observations are missing at

random. In addition, we report the estimation and inference results of the infeasible estimates, which

are obtained by using the correct number of factors, in Tables A3 and A4 of the online supplement.
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5 Empirical Application: Forecasting Macroeconomic Variables

In this section, we show the usefulness of the proposed method by considering factor-augmented

regressions to forecast macroeconomic variables. The procedure starts from estimating a set of

latent factors using panel data. In practice, some variables have missing observations due to a

short collection history or lagged publications. A simple and frequently used method to deal with

this problem is to delete those units/variables with missing observations to obtain a balanced panel

and the PC estimators of latent factors (PC-F). Inevitably, we lose some useful information by

doing so. To fully exploit the information of predictors with missing observations, we can use the

EM estimators to estimate the latent factors (EM-F). In our application, we use EM-F or PC-F

to forecast macroeconomic variables, respectively. Then we show that EM-F outperforms PC-F in

terms of predictive MSE.

Below we consider the forecasts of the U.S. real gross domestic product (RGDP), gross domestic

product (GDP), industrial production (IP) and real disposal personal income (RDPI) at 1, 2 and 4

quarter horizons. These four time series are collected from the Federal Reserve Bank website.

5.1 Implementation

We use a panel dataset FRED-QD, which is an unbalanced panel at the quarterly frequency. FRED-

QD is a quarterly frequency companion of FRED-MD that is introduced by McCracken and Ng

(2016, MN hereafter). The dataset consists of 248 quarterly U.S. indicators from 1959Q1 to 2018Q2.

We use 125 time series that are used in SW to estimate the latent factors. Despite the fact that

the missing is not exactly random in this application, we demonstrate that the appropriate use of

the EM algorithm can outperform the simple approach by deleting those individuals with missing

observations in terms of out-of-sample prediction.

We take 1960Q1 as the start of the sample. Then we lose two periods of observations due to

data transformations as in MN and obtain an unbalanced panel with () = (236 125). There

are 37 variables containing 1594 missing observations in total. Following the lead of MN, we check

for outliers in each variable where an outlier is defined as an observation that deviates from the

observed sample median by more than 10 times interquantile range. The outliers are removed and

treated as missing observations. As a result, the total number of missing observations becomes 1602

(̂ = 0946). All columns of the data matrix  are standardized to have zero mean and unit standard

deviation before estimating EM-F. To estimate PC-F, we drop 37 variables with missing observations

to obtain a balanced panel with () = (236 88). We also standardize the balanced panel before

estimating PC-F. We estimate the first factor by PC and EM and use them to do the out-of-sample

forecasting.

Next, we consider the forecast based on the following factor-augmented autoregression (FA-AR)

models:

+ = 
(1)

 + 
(2)

 ()̂ + 
(3)

 () + +  = 1 2 4 (5.1)

where  is one of the four macro-variables (i.e., RGDP, GDP, IP, and RDPI), ̂ is the estimated
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Table 4: Comparison of forecast results

Real GDP GDP IP RDPI

MSE ratio MSE ratio MSE ratio MSE ratio

period horizon AR PC-F AR PC-F AR PC-F AR PC-F

1987 h=1 4.571 0.923 0.985 6.665 0.921 1.004 11.488 0.911 0.929 11.896 0.958 0.988

| h=2 2.986 0.853 0.968 5.349 0.874 1.003 13.091 0.896 0.922 4.505 0.888 0.985

2016 h=4 2.683 0.948 0.927 5.727 0.940 0.996 13.489 0.969 0.994 2.565 0.841 0.989

1997 h=1 4.734 0.870 1.009 6.745 0.892 1.000 12.131 0.853 0.896 14.982 0.957 0.987

| h=2 3.246 0.813 0.957 5.531 0.851 0.998 15.583 0.875 0.918 5.085 0.856 0.995

2016 h=4 3.020 0.924 0.955 5.924 0.916 0.997 16.964 0.948 0.983 2.832 0.809 0.983

2007 h=1 5.049 0.746 0.982 8.170 0.794 0.984 16.818 0.805 0.862 20.446 0.941 0.982

| h=2 4.247 0.749 0.922 7.167 0.801 1.004 23.777 0.851 0.886 6.565 0.785 0.985

2016 h=4 4.445 0.901 0.950 8.145 0.923 1.011 26.810 0.904 0.936 4.047 0.777 0.973

Note: We report the MSE of forecasts using EM-F and its ratios to the MSEs associated with the AR or FA-AR using PC-F.

vector of factors, 
(1)

 is the intercept term,  is the lag operator, and 
(2)

 () and 
(3)

 () are finite-

order polynomials of the lag operators. For all four variables to be forecasted, we treat them as (1)

series and define the dependent variable as average annualized quarterly growth rate. As an example,

for IP, we define

+ = (400) ln(+) and  = 400 ln(−1).

All the models are estimated recursively by ordinary least squares (OLS). We use BIC to select the

number of autoregressive lags (from 0 to 6) and lags of the first factor (from 1 to 6) in EM-F and

PC-F, respectively.

5.2 Forecast results

We consider three out-of-sample periods, namely, 1987Q1-2016Q4, 1997Q1-2016Q4 and 2007Q1-

2016Q4. Table 4 reports the MSE of forecasts using EM-F and its ratio to the MSE associated

with the autoregression (AR) or FA-AR using PC-F, where the AR model is used with ̂ absent

in (5.1) and the number of lags are also determined by the Bayesian information criterion (BIC).

Ratios smaller than one are in favor of the method using EM-F. For all the four macroeconomic

variables under investigation, the forecasts using EM-F outperforms those only using autoregression.

Therefore, we can conclude that the estimated latent factors contain some predictive power. For

Real GDP, IP and RDPI, the forecast using EM-F provides smaller MSE for almost all horizons

and periods compared to that using PC-F. For GDP, we can see that the forecasts using EM-F and

PC-F have comparable performance. In short, the EM estimation of the factors generally help the

out-of-sample forecast of some major macroeconomic variables.

6 Conclusion

In this paper we study the asymptotic properties of the EM estimators of factors and factor loadings

in an approximate factor model with random missing. Based on the asymptotic results, we also

propose a novel cross-validation method to determine the number of factors in factor models with or
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without random missing observations. Simulations demonstrate the good finite sample performance

of the proposed method and empirical applications suggest the usefulness of our method.

The paper can be extended in various directions. First, we only consider random missing and it

is possible to extend our method to allow for heterogenous missing or missing with certain patterns.

Second, we focus on a pure approximate factor model and one may consider the extension to the

panel data models with multi-factor error structure and random missing values (see, Bai et al. (2015)

and Athey et al. (2018)) or factor-augmented vector-autoregressive (FAVAR) models with missing

values. We are exploring some of these topics in ongoing works.
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APPENDIX

A Proofs of the main results in Section 2

In this appendix, we prove the main results in Section 2 by calling upon some technical lemmas

whose proofs can be found in the online supplement. For notational simplicity, we use ̃  Λ̃ ̃ ̃

̃ ̃ ̃ and ̃ to denote ̂
(0) Λ̂(0) ̂(0) ̂(0) ̂(0) ̂

(0)
  ̂

(0)

 and ̂
(0)
  respectively.

To prove Theorem 2.1, we need the following lemma.

Lemma A.1 Suppose that Assumptions A.1-A.2 hold. Then −1̃ 0
¡
 ̃2

¢−1
̃̃ 0̃ = ̃ =  +


−(1−2)
  where  = 1 ∨ 2 ̃ is an × diagonal matrix consisting of the  largest eigenvalues

of
¡
 ̃2

¢−1
̃̃ 0 and  is an  × matrix consisting of the  eigenvalues of ΣΛ0Σ 0  arranged

in descending order along the diagonal line.

Proof of Theorem 2.1. From the principal component analysis, we have the identity
¡
 ̃2

¢−1
̃̃ 0

̃ = ̃ ̃ By Lemma A.1 and Assumption A.1, ̃ is asymptotically nonsingular so that we can post-

multiply both sides by ̃−1 to obtain ̃ =
¡
̃2

¢−1
̃̃ 0̃ ̃−1 Recall that ̃ =

¡
−1Λ00Λ0

¢−1
−1 00̃ ̃−1 Noting that the ( )th element of ̃ is given by ̃ =

¡
00  0 + 

¢
 = 00  0  +

 + 00  0 ( − )  we have

̃ − ̃ 0 0 =
1

̃2
̃−1

X
=1

̃

X
=1

{ ()  + [ − ()] 

+ 00 0  +  00 0  +  00 
0

00
 

0
 ( − ) 

+ 00 0
00
 

0
 ( − )  +  00 

0

00
 

0
 ( − ) ( − )}+(( )−12)

≡ 1 + 2 + + 7+(( )−12) (A.1)

where, e.g., 1 =
1

̃2
̃−1

P
=1 ̃

P
=1 ()  and the first equality used the fact ̃−  =

(( )−12) It follows that −1
P

=1

°°°̃ − ̃ 0 0
°°°2 ≤ 7P7

=1 
−1P

=1 kk2+(( )−12) by
the Cauchy-Schwarz (CS) inequality. For 1 we have

−1
X
=1

k1k2 ≤
°°°̃−1°°°2 −1 X

=1

°°°°° 1

 ̃2

X
=1

̃
1



X
=1

 () 

°°°°°
2

≤ 1

 ̃4

°°°̃−1°°°2 1


X
=1

°°°̃°°°2 1


X
=1

X
=1

¯̄̄̄
¯ 1

X
=1

 () 

¯̄̄̄
¯
2

≤ 

̃4

°°°̃−1°°°2 1


X
=1

X
=1

| ( )|2 = 

¡
−1

¢


where the second inequality follows from the CS inequality and the third inequality follows from the

fact that 1


P
=1

°°°̃°°°2 = 1

tr(̃ 0̃ ) =tr() =  and that || ≤ 1 and the last equality holds by

Assumption A.2. Similarly, for 2 we have −1
P

=1 k2k2 ≤ 
 ̃4

°°°̃−1°°°2 1 P
=1

P
=1 

2
1
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where 1 =
1


P
=1 [ − ()]  Noting that 1 =

1


P
=1 [ − ()]©

2 + ( − ) + ( − ) + ( − )( − )
ª ≡ P4
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1


P
=1[
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To prove Theorem 2.2, we need the following lemma.

Lemma A.2 Suppose that Assumptions A.1-A.3 hold. Then
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Proof of Theorem 2.2. (i) By the decomposition in (A.1) and Lemma A.1, it suffices to

show that  = ̃ = 
¡
−12¢ for  = 1 2 4 5 7 and

√
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This completes the proof of (i).
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=
̃ 0

 ̃

X
=1

 0  +
1

 ̃

X
=1

³
̃ − ̃ 0 0

´
 +

1

 ̃

X
=1

̃

³
̃ 0 0 − ̃

´0
̃−10 

+
1

 ̃

X
=1

̃̃
0
̃

−10 ( − ) +
 − ̃

̃
̃−10 ≡

5X
=1



By Lemma A.2(ii)-(v) and (vii),
√
1 = ̃ 0 1√



P
=1 

0
 + (1) and

√
 = 

¡
 12−2

¢
=

 (1) for  = 2 3 By Lemma A.2(ii) and (vii),
√
4 = ̃ 0 1√



P
=1 

0
 

00
 

0
 (−)+

¡
 12−2

¢


Noting that ̃ −  =  (( )−12) we have
√
5 =  (

−12) Therefore we have shown that

√

³
̃ − ̃−10

´
= ̃ 0 1√



X
=1

 0
£
 +  00 0 ( − )

¤
+ (

12−2 ) (A.3)

Recall that G  = 
¡{  ≤ ) 0  

0
¢
denotes the sigma-field generated from {{  ≤ )} and

(0  
0) and G = 

¡∪∞=1G ¢  Following the analysis at the end of the proof of part (i), we can
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show that
√

³
̃ − ̃−10

´
→ 

¡
0 (0)−1 (Φ1 +Φ2) ()−1

¢ G-stably as  → ∞ where we

use Lemma A.2(ii) and the fact Cov( 1√


P
=1 

0
 

1√


P
=1 

0
 

00
 

0
 ( − )) = 0

(iii) Let   =  + 00  0 ( − )  By the proofs of (i) and (ii),

̃ − 0 = 00 (̃
0)−1(̃ − ̃ 0 0 ) + ̃ 0(̃ − ̃−10 )

= 00 (̃
0)−1(̃ − ̃ 0 0 ) +  00 ̃(̃ − ̃−10 ) + (( )−12)

= 00 (̃
0)−1̃−1(

1


̃ 0 0)

1



X
=1

0   +  00 ̃̃ 0 1


X
=1

 0   +

¡
−2

¢
= 00 (

1


Λ00Λ0)−1

1



X
=1

0   +  00 (
1


 00 0)−1

1



X
=1

 0  +

¡
−2

¢


where the second equality follows from the fact that ̃ − ̃ 0 0 = 

¡
−12¢ and ̃ − ̃−10 =



¡
−12

¢
 the third equality holds by the results in (i) and (ii), and fourth equality holds because

(̃ 0)−1̃−1 1

̃ 0 0 = ( 1


Λ00Λ0)−1 by the definition of ̃ and ̃̃ 0 = ( 1


 00 0)−1 + 

¡
−2

¢
by

Lemma A.2(viii). Following the proof of Theorem 3 in Bai (2003), we can readily show that ( 1

Σ1+

1

Σ2)

−12
³
̃ − 0

´
→  (0 1)  where Σ1 = 00 Σ

−1
Λ0
ΓΣ

−1
Λ0
0 and Σ2 =  00 Σ

−1
 0
ΦΣ

−1
 0
 0  ¥

To prove Theorems 2.3-2.4, we introduce some notations. Recall that ̂() =
¡
−1Λ00Λ0

¢−1
×−1 00̂ ()̂()−1 Define

̂
(0)

 = ̂(0)−1 1

̂ (0)0 0

1



X
=1

0
£
 + 00 

0
 ( − )

¤


̂
(0)

Λ = ̂(0)0 1


X
=1

 0
£
 +  00 

0
 ( − )

¤


̂
()

 = ̂()−1 1

̂ ()0 0

1



X
=1

0 
()
 for  ≥ 1 and

̂
()

Λ = ̂()0 1


X
=1

 0 
()
 for  ≥ 1

where 
()
 is defined sequentially in (A.6) below, and ̂

()

 and ̂
()

Λ denote the leading influence

functions of ̂
()
 − ̂()0 0 and ̂

()

 − (̂())−10  respectively. Let ̂
()
 = ̂

()
 − ̂()0 0 − ̂

()

 and

̂
()
Λ = ̂

()

 − (̂())−10 − ̂
()

Λ where  ≥ 0 Then

̂
()0
 ̂

()
 =

h
(̂())−10 + ̂

()

Λ + ̂
()
Λ

i0 h
̂()0 0 + ̂

()

 + ̂
()


i
= 00 

0
 + 

()
  (A.4)

where 
()
 = 

()
1 + 

()
2


()
1 =  00 ̂

()̂
()

Λ + 00 (̂
()0)−1̂

()

 + 00 (̂
()0)−1̂() +  00 ̂()0̂()Λ and


()
2 = ̂

()0
Λ ̂

()

 + ̂
()0
Λ ̂

()
 + ̂

()0
 ̂

()
Λ + ̂

()0
Λ ̂

()
 (A.5)
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Let ̄ = 1−  and


()
 =  + 

(−1)
 ̄  ≥ 1 (A.6)

By (A.4) and (A.6), we have

̂
()
 =

¡
00 

0
 + 

¢
+ ̂

(−1)0
 ̂

(−1)
 ̄ =

¡
00 

0
 + 

¢
+

¡
00 

0
 + 

¢
̄ = 00 

0
 +

()
  (A.7)

This expression will be used repeatedly in the following derivation.

The following three lemmas are used in the proofs of Theorems 2.3 and 2.4. When Lemmas A.3-

A.5 hold for  = 1 Theorems 2.3 and 2.4 also hold for  = 1 With the results in Lemmas A.3-A.5

and Theorems 2.3 and 2.4 for  = 1 we can show that they also hold for  = 2 This procedure is

repeated until convergence which requires  to be at most of order ln

Lemma A.3 Suppose that Assumptions A.1-A.5 hold. Then for any  ≥ 1 we have
(i) max

°°°̂(−1)

°°° =  (( ln)−12) and max
°°°̂(−1)Λ

°°° =  (( ln )
−12)

(ii) max

°°°̂(−1)

°°° =  (
14−2 ln + −1+314) and max

°°°̂(−1)Λ

°°° =  (
24−2 ln)

(iii) max

°°°(−1)1

°°° =  (
−1+2
 ln) and max

°°°(−1)2

°°° = 

¡
−2 ln

¢


(iv) max

°°° 1 P
=1 ̂

(−1)
Λ 

°°° = 

¡
−1+14 + −2 ln

¢

°°° 1 P

=1 ̂
(−1)
Λ 00 ̄

°°° =  (
−1+14

+24−2 ln) and max

°°° 1 P
=1 ̂

(−1)
Λ 00 ̄

°°° = 

¡
−2 ln

¢


(v) max

°°° 1 P
=1 ̂

(−1)
  00 ̄

°°° = 

¡
−2 ln +−1+22

¢
and max

°°° 1 P
=1 ̂

(−1)
  00 ̄

°°° =


¡
−2 ln

¢


(vi) max
1


P
=1

°°°(−1)

°°°2 =  (
−1+12+−1 ln) andmax 1

P
=1

°°°(−1)

°°°2 =  (
−1+22

+−1 ln)
(vii) 1



P
=1

P
=1(1 +

°° 0 °°2)((−1) )2 = 

¡
−2

¢


(viii) 1


P
=1 

0


P
=1 

00
 

(−1)
 ̄ = 

¡
−2 ln

¢


(ix) max

°°° 1


P
=1 

0


P
=1 

(−1)
 ̄

°°° =  (
−1+14 + ( ln)−12)

(x) max

°°° 1


P
=1 

0


P
=1 

(−1)
 ̄

°°° = 

¡
−1+14 + −2 ln

¢


Lemma A.4 Suppose that Assumptions A.1-A.5 hold. Then for any  ≥ 1 we have
(i) −1̂ ()0 ( )−1 ̂()̂()0̂ () = ̂() =  +

¡
−1 ln

¢


(ii) −1̂ ()0 0 = +

¡
−1 ln

¢


(iii) ̂() = −1 +

¡
−1 ln

¢


(iv) 1


P
=1(̂

()
 − ̂()0 0 ) 00 = 

¡
−2

¢


(v) max

°°° 1 P
=1(̂

()
 − ̂()0 0 )

()


°°° = 

¡
−12+24−1 + −2 ln

¢


Lemma A.5 Suppose that Assumptions A.1-A.5 hold. Then

(i) ̂
()

 = −1 + (1− )̂
(−1)
 +

¡
 14−2 ln + −1+14

¢


(ii) ̂
()

Λ = (
0)−1Λ + (1− ) ̂

(−1)
Λ +

¡
24−2 ln +−1+324

¢


where  =
1


P
=1 

0
  and Λ =

1


P
=1 

0
 

36



The proof of Theorem 2.4 below suggests that ̂
()

 and ̂
()

Λ are associated with the leading

influence functions of ̂
()
 − ̂()0 0 and ̂

()

 − (̂())−10  respectively.

Proof of Theorem 2.3. The proof follows closely from that of Theorem 2.1 and we only outline the

main differences. From the identity ̂ () = ( )−1 ̂()̂()0̂ ()̂()−1 where ̂() is asymptotically

nonsingular by Lemma A.4(i), we have by (A.7),

̂
()
 − ̂()0 0 =

1


̂()−1

X
=1

̂ ()

X
=1

n

()
 

()
 +  00 

0
 
()
 +  00 

0
 
()


o
≡ ̂

()
1 + ̂

()
2 + ̂

()
3  (A.8)

Then −1
P

=1

°°°̂ () − ̂()0 0
°°°2 ≤ 3P3

=1 
−1P

=1(̂
()

 )
2 by the CS inequality. For ̂

()
1  using


()
 =  + 

(−1)
 ̄ and the CS inequality, we have

−1
X
=1

°°°̂()̂
()
1

°°°2 ≤ 4−1
X
=1

⎧⎨⎩
°°°°° 1

X
=1

̂ ()

1



X
=1



°°°°°
2

+

°°°°° 1
X
=1

̂ ()

1



X
=1


(−1)
 ̄

(−1)
 ̄

°°°°°
2

+

°°°°° 1
X
=1

̂ ()

1



X
=1


(−1)
 ̄

°°°°°
2

+

°°°°° 1
X
=1

̂ ()

1



X
=1


(−1)
 ̄

°°°°°
2
⎫⎬⎭

≡ 4(̂11 + ̂12 + ̂13 + ̂14)

where we suppress the dependence of ̂1’s on  Following the analyses of −1
P

=1 k1k2 and
−1

P
=1 k2k2 in the proof of Theorem 2.1, we can readily show that ̂11 = 

¡
−2

¢
 For ̂12

and ̂13 we can apply the fact ̂
()0̂ () =  the CS inequality, and Lemma A.3(vii) to obtain

̂12 ≤ 

 2

X
=1

X
=1

Ã
1



X
=1


(−1)
 ̄

(−1)
 ̄

!2
≤ 

(
1



X
=1

X
=1

(
(−1)
 )2

)2
= 

¡
−4

¢
 and

̂13 ≤ 

 2

X
=1

X
=1

Ã
1



X
=1


(−1)
 ̄

!2
≤ 



X
=1

X
=1

||2 1



X
=1

X
=1

(
(−1)
 )2 = 

¡
−2

¢


Analogously, ̂14 = 

¡
−2

¢
 It follows that ̂1 = 

¡
−2

¢
 For ̂

()
2  we have

−1
X
=1

°°°̂()̂
()
2

°°°2 = −1
X
=1

°°°°° 1
X
=1

̂ ()

1



X
=1

 00 0 
()


°°°°°
2

≤ 

 2

X
=1

X
=1

Ã
1



X
=1

 00 
0
 
()


!2

≤ 2

 2

X
=1

X
=1

Ã
1



X
=1

 00 
0
 

!2
+
2

 2

X
=1

X
=1

Ã
1



X
=1

 00 
0
 
(−1)
 ̄

!2


By the analysis of −1
P

=1 k3k2 in the proof of Theorem 2.1, the first term is  (
−2
 ) For the sec-

ond term, by the CS inequality and Lemma A.3(vii) it is bounded above by 2


P
=1

P
=1

°° 00 0°°2
× 1



P
=1

P
=1(

(−1)
 )2 =  (

−2
 ) Then 

−1P
=1

°°°̂()2 °°°2 =  (
−2
 )Analogously, we can show

that −1
P

=1

°°°̂()̂
()
3

°°°2 =  (
−2
 ) In sum, we have shown that 

−1P
=1

°°°̂ () − ̂()0 0
°°°2

=  (
−2
 ) ¥
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Proof of Theorem 2.4. (i) Let ̂
()

 = ̂()̂
()

 for  = 1 2 3 By the decomposition in (A.8) and

Lemma A.4(i), we will bound ̂
()

 for  = 1 3 and find the leading influence function for ̂
()
2  For

̂
()
1  we use ̂

()
 = (̂

()
 − ̂()0 0 ) + ̂()0 0 to make the decomposition

̂
()
1 =

1



X
=1

(̂ () − ̂()0 0 )
X
=1


()
 

()
 + ̂()0 1



X
=1

 0

X
=1


()
 

()
 ≡ ̂

()
11 + ̂()0̂()12

It is easy to show that ̂
()
11 is of smaller order than ̂

()
12 We focus on the study of ̂

()
12 By (A.6),

we have ̂
()
12 =

1


P
=1 

0


P
=1(+ 

(−1)
 

(−1)
 ̄̄ + 

(−1)
 ̄ + 

(−1)
 ̄) ≡P4

=1 ̂
()

12 By the analysis of 12 and 22 in the proof of Theorem 2.2(i), max

°°°̂()121°°° =


¡
−1+14 + −2 ln

¢
 By Lemma A.3(vi)-(vii) and the CS inequality,

max


°°°̂()122°°° ≤
(
max


1



X
=1

(
(−1)
 )2

)12(
1



X
=1

X
=1

°° 0 °°2 ((−1) )2̄

)12
= 

³
−1 (

−12+14 + ( ln)−12)
´


By Lemma A.3(ix)-(x), ̂
()
123+̂

()
124 = 

¡
−1+14 + −2 ln

¢
 Thus ̂

()
12 = 

¡
−1+4 + −2 ln

¢
and ̂

()
1 = 

¡
−1+14 + −2 ln

¢


For ̂
()
3  we apply (A.6) and ̂

()
 = (̂

()
 − ̂()0 0 ) + ̂()0 0 to make the decomposition

̂
()
3 =

1



X
=1

̂ ()

X
=1

0 
0


00
 +

1



X
=1

(̂ () − ̂()0 0 )
X
=1

00 
(−1)
 ̄

0


+̂()0[
1



X
=1

 0

X
=1

00 
(−1)
 ̄]

0
 ≡

³
̂
()
31 + ̂

()
32 + ̂()0̂()33

´
 0 

Following the analysis of 41 and 42 in the proof of Theorem 2.2(i), we can show that ̂
()
31 =



¡
−2

¢
 For ̂

()
32 we have by the CS inequality, Theorem 2.3 and Lemma A.3(vii)-(vii)

°°°̂()32°°° ≤ 1

 12

°°°̂ () −  0̂()
°°°
⎧⎨⎩ 1

X
=1

°°°°° 1
X
=1

00 
(−1)
 ̄

°°°°°
2
⎫⎬⎭
12

≤ 

¡
−1

¢( 1


X
=1

°°0°°2 1



X
=1

X
=1

(
(−1)
 )2̄

)12
= 

¡
−2

¢


and
°°°̂()33°°° ≤ °°° 1



P
=1

P
=1 

0
 

00
 

(−1)
 ̄

°°° = 

¡
−2

¢
 It follows thatmax

°°°̂()3 °°° = max °° 0 °°
× (

−2
 ) = 

¡
 14−2

¢


It follows that

Π̂
()
 ≡

√
(̂

()
 − ̂()0 0 ) =

√
̂

()

 + (
√
( 14−2 ln + −1+314))

=
√
 [̂(−1)]−1

1


̂ (−1)0 0

1



X
=1

0 
()
 ̄ + (

√
( 14−2 ln + −1+314))

= −1
√
 + (1− )

√
̂

(−1)
 + (

√
( 14−2 ln + −1+314))
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where the remainder term  (
√
( 14−2 ln + −1+314)) holds uniformly in  This, in con-

junction with Lemma A.5(i), implies that

Π̂
()
 = −1

√
 + (1− )Π̂

(−1)
 + (

√
( 14−2 ln + −1+314))

= −1
√


−1X
=0

(1− ) + (1− ) Π̂
(0)
 +  (1)

→ 
¡
0−1Γ1 ()0−1

¢
as ( )→∞

(ii) Let () be the × matrix with ( )th element given by 
()
  Noting that Λ̂

()0 = 1

̂ ()0̂()

̂() =  0Λ00 + () and 1


P
=1 ̂

()
 ̂

()0
 =  we have

̂
()

 − ̂()−10 =
1

 ̃

X
=1

̂
()


n

()
 +

h
̂
()0
 ̂()−1 + ( 00 − ̂

()0
 ̂()−1)

i
0

o
− ̂()−10

=
̂()0



X
=1

 0 
()
 +

1



X
=1

( 00 − ̂
()0
 ̂()−1)() +

1



X
=1

̂
()
 (̂()0 0 − ̂

()
 )0̂()−10

≡ ̂
()
1 + ̂

()
2 + ̂

()
3 

By Lemma A.4(iv)-(v), we have max

°°°̂()2 °°° = 

¡
−12+24−1 + −2 ln

¢
and max

°°°̂()3 °°° =
max

°°0°°

¡
−2

¢
= 

¡
24−2

¢
. It follows that

Π̂
()
 ≡

√

³
̂
()

 − ̂()−10
´
=
√
̂

()
1 + (

√
 (24−2 ln +−1+324))

= (0)−1
√
Λ + (1− )

√
 ̂

(−1)
Λ +  (1)

where the remainder term  (
√
 (24−2 ln +−1+324)) holds uniformly in  This, in con-

junction with Lemma A.5(ii), implies that

Π̂
()
 = (0)−1

√
Λ + (1− )Π̂

(−1)
 + (

√
24−2 ln)

= (0)−1
√
Λ

−1X
=0

(1− ) + (1− ) Π̂
(0)
 + (

√
 (24−2 ln +−1+324))

→ 
¡
0 (0)−1Φ1 ()−1

¢
as ( )→∞

(iii) By the proof of (i) and (ii) and as in the proof of Theorem 2.2(iii), we have

̂
()
 − 0 = ̂

()0
 ̂

()
 − 00 

0
 = 00 (̂

()0)−1(̂ () − ̂()0 0 ) + ̂
()0
 (̂

()

 − ̂()−10 )

=
1√

00 (̂

()0)−1
√
(̂

()
 − ̂()0 0 ) +

1√

 00 ̂

()
√
 (̂

()

 − ̂()−10 )

+ ((
24 +  14)( )−12)

=
1√

00 (̂

()0)−1Π̂() +
1√

 00 ̂

()Π̂
()
 +  (1)

Then we have ( 1

Σ1 +

1

Σ1Λ)

−12(̂() − 0)
→  (0 1) as ( ) → ∞ where Σ1 =

00 Σ
−1
Λ0
Γ1 ()Σ

−1
Λ0
0 and Σ1Λ =  00 Σ

−1
 0
Φ1 ()Σ

−1
 0
 0  ¥

To prove Theorem 2.5, we need the following lemma.
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Lemma A.6 Suppose that Assumptions A.1-A.6 hold. Then

(i) max
1


P
=1 |̂ − |2 =  (

−1+22 + −1 ln )
(ii) max |̂ − | = 

¡
(−12+14 +−12+24)(ln )12

¢
=  (1) 

(iii)
°°°Σ̂ −Σ°°°

sp
=  (1) 

Proof of Theorem 2.5. To show ̂−1Γ̂(2)1̂
−1 → −1Γ1 ()0−1 it suffices to show that (i)

̂−1
→ −1 and (ii) Γ̂(2)1

→ Γ1
0. (i) holds by Lemma A.4(i) and positive definiteness of 

To show (ii), we recall that Γ̂
(2)
1 =

1
̃2
Λ̂0Σ̂Λ̂ and Γ1 () = lim→∞Γ1 ()  where Γ1 () =

1
2
Λ00ΣΛ0. Then by the triangle inequality, we have°°°Γ̂(2)1 −Γ1

0
°°°
sp
≤ 1

̃2

°°°Λ̂0Σ̂Λ̂−Λ00ΣΛ00
°°°
sp
+
1



°°Λ00ΣΛ00°°
sp

µ
1

2
− 1

̃2

¶
+
°° (Γ1 ()− Γ1 ())0°°sp 

The last term on the right hand side (rhs) of the last expression is  (1) and the second term is

 (( )−12) by noting that ̃ −  =  (( )−12) For the first term, we have°°°Λ̂0Σ̂Λ̂−Λ00ΣΛ00
°°°
sp
≤
°°°[Λ̂− Λ00]0Σ̂Λ̂°°°

sp
+
°°°Λ00(Σ̂ −Σ)Λ̂°°°

sp
+
°°°Λ00Σ[Λ̂− Λ00]°°°

sp


It is standard to show 1


°°°Λ̂− Λ0°°°2 ≤ 1


°°°Λ̂− Λ0̂()−1
°°°2+ 1



°°°Λ0(̂()−1 −)
°°°2 =  (1) by using

the expression of ̂ − ̂()−10 in the proof of Theorem 2.4(ii) and Lemma A.4(iii). In addition,°°°Σ̂°°°
sp
≤ kΣksp +

°°°Σ̂ −Σ°°°
sp
=  (1) +  (1) =  (1) by Lemma A.6. It follows that

1



°°°[Λ̂− Λ00]0Σ̂Λ̂°°°
sp
≤

°°°Σ̂°°°
sp

1

12

°°°Λ̂°°°
sp

1

12

°°°Λ̂− Λ0°°°
sp

≤  (1)
1

12

½°°°Λ̂− Λ0(̂()0)−1
°°°
sp
+
°°°Λ0 h(̂()0)−1 −0

i°°°
sp

¾
=  (1) 

Similarly, by Lemma A.6, we have 1

||Λ00(Σ̂ − Σ)Λ̂||sp ≤ kksp 1

12

°°Λ0°°
sp

1
12 ||Λ̂||sp||Σ̂ −

Σ||sp =  (1)  By the same token, we have
1

||Λ00Σ[Λ̂ − Λ00]||sp =  (1)  It follows that

1

||Λ̂0Σ̂Λ̂−Λ00ΣΛ00||sp =  (1)  ¥

B Proofs of the main results in Section 3

In this appendix, we prove the main results in Section 3 by calling upon some technical lemmas and

theorems whose proofs can be found in the online supplement.

To proceed, we introduce some notations. Note that the true number of factors is assumed to be

0 but the working model is given by  =  ()Λ ()0 +  ()  where we make the dependence of

 and Λ on the assumed number of factors () explicit and  () ≡  −  ()Λ ()0. As in Bai
and Ng (2019a), we want to establish the connection between the usual principal component (PC)

estimators of the factors and factor loadings and the SVD estimators.

Let ∗ = Ω∗ Note that ̃ = (
1

Ω∗) = ̃Σ̃̃

0
 ̃ and ̃ are respectively

the eigenvector matrices of 1
2
∗∗0 and 1

2
∗0∗ associated with their  largest eigenvalues, and
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the diagonal elements of Σ̃2 are the  largest eigenvalues of 1
2
∗∗0 Let ̃ and Λ̃ denote

the conventional principal component (PC) estimators of  () and Λ () under the normalization

restrictions that −1 ()0  () =  and Λ ()
0 Λ () =diagonal matrix. It is well known that ̃

is given by
√
 times the normalized eigenvector matrix of 1

2
∗∗0 associated with its  largest

eigenvalues and Λ̃0 = (̃0̃)−1̃0 1

∗ = ̃0 1


∗. This indicates that

̃ =
√
̃ (B.1)

In addition, we consider the full SVD of 1

∗ : 1


∗ = ̃Σ̃̃ 0 =

P∧
=1 ̃̃

0
̃ Then

1

∗0̃ =

̃ Σ̃0̃ 0̃ = ̃ Σ̂0 This implies that

̃Σ̃ =
1


∗0̃ =

√



∗0̃ =

√
 Λ̃ (B.2)

(B.1) says that ̃ is a scaled version of ̃
 and (B.2) says that each column of ̃ is a scaled version

of the corresponding column of Λ̃ It is easy to see that

̃Σ̃̃
0
 = ̃Λ̃0 (B.3)

That is, both the SVD and the PCA yield the same estimates of the common component once 

is given. Following the lead of Bai and Ng (2002), we consider a rotational version of ̃ : ̆ =¡
2

¢−1
∗∗0̃ Let ̆1 = (

−1Λ00Λ0)(−1 00̃) The properties of ̆ can be established

along the lines of proofs in Bai and Ng (2002) and those in the proof of Theorem 2.1 in the presence

of random missing values.

Alternatively, we can consider the PC estimation under the normalization restrictions that−1Λ ()0

Λ () =  and  ()
0  () =diagonal matrix. Let ̄ and Λ̄ denote the conventional PC estima-

tors of  () and Λ () in this case. Then following the above arguments, we can show that

Λ̄ =
√
̃ ̃Σ̃ =

√
̄ and ̃Σ̃̃

0
 = ̄Λ̄0 (B.4)

Following the lead of Bai and Ng (2002), we consider a rotational version of Λ̄ : Λ̆
 =

¡
2

¢−1
∗0∗Λ̄

Let ̆2 = (
−1 00 0)(−1Λ00Λ̄)

Finally, let ̃ denote the  ×  diagonal matrix that contains the  largest eigenvalues of

(2)−1∗∗0 arranged in descending order along its diagonal line. Note that ̃ = ( )−1 Σ̃2
Recall that ̄∗ = 1 {( ) ∈ Ω∗⊥} and ∗ = 1 {( ) ∈ Ω∗}  Let ̄∗ be the  × matrix with ( )th

element given by ̄∗. Define 
∗ analogously. Let  denote the th column of the  ×  identity

matrix  Similarly,  and  denote the th column of  and   respectively. Note that ̃ ≡
̃ and ̃ ≡ ̃  = 1   denote the th column of ̃ and ̃, respectively. In addition,

̃ =
P

=1 ̃̃
0
̃

The proof of Theorem 3.1 needs the following three lemmas.

Lemma B.1 Suppose that all the conditions but Assumption A.7 in Theorem 3.1 hold. Then

(i) 1


°°°√̃̃ −  0̆1

°°°2 = 

¡
−2

¢


(ii) 1


°°°√̃̃ − Λ0̆2

°°°2 = 

¡
−2

¢
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Lemma B.2 Let ̆ = ( )−12̃ Let 2 denote the th largest eigenvalue of Σ 0ΣΛ0 for  =

1  0 Suppose that all the conditions but Assumption A.7 in Theorem 3.1 hold. Then

(i) ̆2 = 2 +

¡
−1

¢
for  = 1  0

(ii) ̆20+ = 

¡
−2

¢
for  ≥ 1

(iii) 2 ̆
2
0+

≥  +  (1) for some positive constant  and any  ≥ 1 with 0 +  ≤ 

Lemma B.3 Let ̃ and ̃ be the th left and right singular vector of 1

∗. Suppose that all the

conditions but Assumption A.7 in Theorem 3.1 hold. Then for  = 0+1  max we have ̃
0


0 =

 (
−1
 ) and ̃0Λ0 =  (

−1
 )

To proceed, we define some notations. For a real matrix Γ, recall that kΓk and kΓk∞ denote its

Frobenius norm and entrywise ∞ norm, respectively. We use kΓk∗ to denote the nuclear norm of

Γ which is defined as the summation of the singular values of Γ For a nonzero matrix Γ ∈ R× ,
we define two measures to control its spikeness and rank. First, we define the spikeness ratio as

(Γ) ≡
√
kΓk∞
kΓk  which satisfies 1 ≤ (Γ) ≤

√
 . The lower bound can be reached when all

the entries of Γ are the same, and the upper bound can be reached when there is only one nonzero

entry in Γ. Next, we define a tractable measure of how close Γ is to a low-rank matrix via the ratio

(Γ) ≡ kΓk∗
kΓk  Note that 1 ≤ (Γ) ≤  ≡

√
 ∧

√
  Let  = ( +  )2 Define the constraint

set

C (0) ≡
(
Γ ∈ R× Γ 6= 0 | (Γ)(Γ) ≤

1

0

s


 log 

)
 (B.5)

where 0 is a universal constant. For a low rank matrix Γ ∈ C (0), the constraint requires it to be

not very spiky.

The following two theorems are needed to show that the probability of overselecting the number

of factors is approaching zero.

Theorem B.4 Let  be a × random matrix with all entries i.i.d. from the Bernoulli distribution

with parameter  ∈ (0 1)  There are universal constants 0 1 2 and 3 such that°°°° 1√Γ ◦
°°°° ≥ 18 kΓk

½
1− 3(Γ)√



¾
for all Γ ∈ C (0)

with probability greater than 1− 1 exp(−2 log ).

Theorem B.5 Let  be a × random matrix with all entries i.i.d. from the Bernoulli distribution

with parameter  ∈ (0 1)  Then

sup
Γ∈C1

kΓ ◦ [−()]ksp = 

³
1 + 2 + 3

p
( +  ) log log ( +  ) + 1 log( +  )

´


where C1 ≡ C1 (1  2  3 ) ≡ {Γ ∈ R×  | Γ =  0  ∈ R and  ∈ R are vectors

such that kk = k k = 1 kk∞ ≤ 1  k k∞ ≤ 2  kk∞ kk k∞k ≤ 3}
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Proof of Theorem 3.1. Noting that  = 0 +  we have g () = 1


°°°( − ̃) ◦ ̄∗
°°°2

= 1


°°°(0 − ̃) ◦ ̄∗
°°°2 + 1



°° ◦ ̄∗°°2 + 2

tr
nh
(0 − ̃) ◦ ̄∗

i ¡
 ◦ ̄∗¢0o ≡g 1 () +g 2 +

2g 3 ()  where g 2 does not depend on  Then

g ()−g (0) = hg 1 ()−g 1 (0)i+ 2 hg 3 ()−g 3 (0)i  (B.6)

It is sufficient to study the asymptotic properties of g 1 ()−g 1 (0) and g 3 ()−g 3 (0)
under the under-fitted and over-fitted cases, respectively.

We first study the under-fitted case where   0Noting that kk2−kk2 =tr(0−0)
= tr{(−)0 (−)}+ 2tr¡(−)0

¢
 we have

g 1 ()−g 1 (0) =
1



°°°(̃ − ̃0) ◦ ̄∗
°°°2 + 2


tr

½h
(̃ − ̃0) ◦ ̄∗

i0 h
(̃0 − 0) ◦ ̄∗

i¾
≡ g 11 () + 212 ()  (B.7)

Noting that ̃0 − ̃ =
P0

=+1 ̃̃
0
̃ ̃ = ̃00  ̃ = ̃00  and ̆ = ( )−12̃ we

have

g 11 () =
1



°°°°°
Ã

0X
=+1

̃̃
0
̃

!
◦ ̄∗

°°°°°
2

=
1



°°°°°
Ã

0X
=+1

̃00
0
0

̃ 00 ̃

!
◦ ̄∗

°°°°°
2

=
1



°°°°°
Ã

0X
=+1

³√
̃0̃0

´
̃−10 0

0
0

̃−10 (
√
 ̃0̃0)

0̆

!
◦ ̄∗

°°°°°
2

 (B.8)

Let 1 =
√
̃̃ −  0̆1 and 2 =

√
̃̃ − Λ0̆2 Then

√
̃0̃0 =  0̆10 + 10

and
√
̃0̃0 = Λ

0̆20 + 20  It is easy to apply Lemma B.1 to show thatg 11 ()
=

1



°°°°°
Ã

0X
=+1

³
 0̆10 + 10

´
̃0(Λ

0̆20 + 20)
0̆

!
◦ ̄∗

°°°°°
2

=
1



°°°°°
Ã

0X
=+1

 0̆10̃0̆
0
20
Λ00̆

!
◦ ̄∗

°°°°°
2

+

¡
−1

¢
=

1



X
=1

X
=1

Ã
0X

=+1

0
0̆10̃0̆

0
20
Λ00 ̆0

!2
̄∗ +

¡
−1

¢
=

1



X
=1

X
=1

0X
=+1

0X
=+1

tr
n
̆10̃0̆

0
20
Λ000Λ

0̆20̃
0
0

̆ 0
10

 0 
0


00
o
̆̆̄

∗


+

¡
−1

¢
=

0X
=+1

0X
=+1

[vec(̆10̃0̆
0
20
)]0
(
1



X
=1

X
=1

[(Λ000Λ
0)⊗ ( 00 0 00)]̄∗

)
̆̆

×vec(̆10̃0̆
0
20
) +

¡
−1

¢
(B.9)
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where ̃ = ̃−1 
0
̃

−1
  ̄∗ = 1 {( ) ∈ Ω∗⊥}  and the last equality follows from the fact that

tr(1234) = [vec(1)]
0(2 ⊗ 04)vec(

0
3) and the Fubini theorem. Now using ̄∗ = (1 − ) +

[̄∗− (1− )] and the fact that ̄∗ are i.i.d. and independent of
¡
Λ00  00

¢
 we can readily show that

1



X
=1

X
=1

[(Λ00
0
Λ

00)⊗ ( 0 0 00)]̄∗ =
1− 



X
=1

X
=1

[(Λ00
0
Λ

00)⊗ ( 0 0 00)]

+ (( )−12)

It follows that

g 11 () = (1− )

0X
=+1

0X
=+1

[vec(̆10̃0̆
0
20
)]0
(
1



X
=1

X
=1

[(Λ000Λ
00)⊗ ( 00 0 00)]

)
×vec(̆10̃0̆

0
20
)̆̆ +

¡
−1

¢
=

1− 



°°°°°
0X

=+1

̃̃
0
̃

°°°°°
2

+

¡
−1

¢
= (1− )

0X
=+1

( )−1 ̃2 +

¡
−1

¢
= (1− )

0X
=+1

2 +

¡
−1

¢


where the second equality is obtained by reversing the operations in (B.9) and (B.8), the third

equality holds by the fact that ̃ 0̃ =  and ̃ 0̃ =  and the fourth equality follows because

( )−1 ̃2 = 2 + (
−1
 ) for  ≤ 0 by Lemma B.2(i).

Following the proof of Theorem 2.4, we can show that 1


°°°(0 − ̃0) ◦ ̄∗
°°°2 ≤ 1



°°°0 − ̃0

°°°2
= 

¡
−2

¢
. Then

¯̄̄g 12 ()¯̄̄ ≤ ½ 1


°°°³̃ − ̃0

´
◦ ̄∗

°°°2¾12½ 1


°°°³0 − ̃0

´
◦ ̄∗

°°°2¾12 =
 (1)

¡
−1

¢
= 

¡
−1

¢
 It follows thatg 1 ()−g 1 (0) = (1−)P0

=+1 
2
+

¡
−1

¢


Next, g 3 () −g 3 (0) = 1

tr{[(̃0 − ̃) ◦ ̄∗]

¡
 ◦ ̄∗¢0} Noting that 1



°° ◦ ̄∗°°2 ≤
1


kk2 =  (1)  we can apply Lemma B.1 and follow the analysis of g 11 () to show that

g 3 ()−g 3 (0)
=

1


tr

(Ã
0X

=+1

h³
 0̆10 + 10

´
̃0(Λ

0̆20 + 20)
0̆
i
◦ ̄∗

!¡
 ◦ ̄∗¢0)

=
1


tr

(Ã
0X

=+1

h
 0̆10̃0̆

0
20
Λ00̆

i
◦ ̄∗

!¡
 ◦ ̄∗¢0)+

¡
−1

¢
=

1



X
=1

X
=1

0X
=+1

tr
³
0

0̆10̃0̆
0
20
Λ00

´
̆̄

∗
 +

¡
−1

¢
=

0X
=+1

tr

Ã
̆10̃0̆

0
20

1



X
=1

X
=1

Λ000
0̄

∗


!
̆ +

¡
−1

¢
= (1− )

0X
=+1

tr

Ã
̆10̃0̆

0
20

1



X
=1

X
=1

Λ000
0

!
̆ +

¡
−1

¢
= 

¡
−1

¢
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where the last line follows from the fact that 1


P
=1

P
=1Λ

000
0 =

1


P
=1

P
=1 

0


00
  =

 (( )−12)
In sum, we have shown that when   0 g ()−g (0) = (1− )

P0
=+1 

2
 +

¡
−1

¢


This implies that  (̃  0)→ 0 as ( )→∞

Now, we study the overfitted case where   0 We continue to use the decompositions

in (B.6) and (B.7). We first study g 11 ()  When   0 ̃
−1
 6=  (1) and thus ̃ 6=  (1)

This implies that we cannot use similar arguments as used in the case where   0. In addition,

̃ − ̃0 is not independent of ̄
∗ which further complicates the analysis. To tackle the problem,

we call upon Assumption A.7. Let Γ̃ ≡ ̃ − ̃0 . By Assumption A.7(i), we have
°°°Γ̃°°°∞ ≤P

=0+1
̃(0

p
( +  ) log( +  )) with probability approaching 1 (w.p.a.1). In addition, by

the definitions of Frobenius and nuclear norms,
°°°Γ̃°°° = (P

=0+1
̃2)

12 and
°°°Γ̃°°°∗ =P

=0+1
̃.

By the Jensen inequality and the fact that  ≤ max

√


°°°Γ̃°°°∞ °°°Γ̃°°°∗°°°Γ̃°°°2 ≤ max −0

0

s


( +  ) log( +  )
≤ 1

̃0

s


 log 


where  =
1
2
( +  ) and ̃0 =

√
20(max − 0) Therefore, Γ̃ ∈ C (̃0) w.p.a.1. Then we

can apply Theorem B.4 and the fact that
°°°Γ̃°°°∞ 

°°°Γ̃°°° =  (1) to obtain that
°°° 1√

1− Γ̃ ◦ ̄∗
°°° ≥

1
16

°°°Γ̃°°° w.p.a.1. It follows that g 11 () = 1


°°°Γ̃ ◦ ̄∗°°°2 ≥ 1−
256

1


°°°Γ̃°°°2 = 1−
256

P
=0+1

̆2

w.p.a.1, where ̆2 = 

¡
−2

¢
for  = 0 + 1  max by Lemma B.2(ii). Then by Lemma B.2(iii)

we have plim( )→∞2
g 11 () ≥ (−0)

1−
256

  0

Next, we study g 12 ()  Noting that Γ̃ = ̃ − ̃0 =
P

=0+1
̃̃

0
̃ we have

g 12 () =
1


tr

½
(Γ̃ ◦ ̄∗)

h
(̃0 − 0) ◦ ̄∗

i0¾
=
P

=0+1
̃

tr
n
(̃̃

0
)
0
h
(̃0 − 0) ◦ ̄∗

io
≡P

=0+1
12

In addition,

1√


tr
n
(̃̃

0
)
0(̃0 − 0)

o
=
−1√


tr
©
(̃̃

0
)
00
ª
=
−1√


tr
©
̃0

0Λ00̃
ª
=  (

−4
 )

where the first equality holds by the orthogonality between ̃ and ̃0 for   0 and the third

equality holds by Lemma B.3. It follows that 12 =
̃

tr
n
(̃̃

0
)
0
h
(̃0 −0) ◦ ̄∗

io
=  12 +

 (
−4
 ) where  12 = − ̃


tr
n
(̃̃

0
)
0
h
(̃0 − 0) ◦ (∗ −(∗))

io
 Note that

¯̄
 12

¯̄
=

̃√


1√


¯̄̄
tr
n
(̃0 − 0)

£
(̃̃

0
) ◦ (∗ −(∗))

¤o¯̄̄
≤ 

¡
−1

¢ 1√


°°°̃0 − 0
°°°
∗

°°(̃̃0) ◦ (∗ −(∗))
°°
sp

≤ 

¡
−2

¢
sup

Γ∈C1 (1 2 3 )

kΓ ◦ (∗ −(∗))ksp = 
¡
−2

¢


where first inequality follows the fact that ̃√


= 

¡
−1

¢
and |tr ()| ≤ kk∗ kksp  the second

inequality follows because 1√


°°°̃0 − 0
°°°
∗
≤
√
20√


°°°̃0 − 0
°°° = 

¡
−1

¢
and the last equality
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holds by Theorem B.5 with 1 = (1), 2 = (1) and 3 = 1
p
( +  ) log( +  ). Then

we have g 12 () = 
¡
−2

¢


Now, we study g 3 ()−g 3 (0)  Note that
g 3 ()−g 3 (0) =

1


tr
nh³

̃0 − ̃

´
◦ ̄∗

i ¡
 ◦ ̄∗¢0o

= −
X

=0+1

̃


tr
©
(̃̃

0
)
0 ¡ ◦ ̄∗¢ª = − X

=0+1

̃


̃0
¡
 ◦ ̄∗¢ ̃

= −
X

=0+1

̃



X


̃̃(1− ∗) ≡ −
X

=0+1

3

where ̃ and ̃ denote the th and th entries of ̃ and ̃ respectively. Noting that ̃
2
( ) =

 (
−2
 ) we have

D

£
 23

¤
=

̃2


1



X
()∈Ω∗⊥

X
()∈Ω∗⊥

̃̃̃̃D
()

≤  (
−2
 )

1

2

X
()∈Ω∗⊥

X
()∈Ω∗⊥

(̃2̃
2
 + ̃2̃

2
) |D

()|

=  (
−2
 )

1



X
()∈Ω∗⊥

̃2̃
2


X
()∈Ω∗⊥

|D
()|

≤  (
−2
 )

1


max

()∈Ω∗⊥

X
()∈Ω∗⊥

|D
()| =  (

−4
 )

where D
(·) =  (·|Ω∗Ω∗)  the first inequality holds by the CS inequality, the second in-

equality holds by the fact that
P
()∈Ω∗⊥ ̃

2
̃

2
 ≤ k̃k2 k̃k2 = 1 and the last equality holds by

Assumption 7(ii). Hence, 3 = (
−2
 ) for each  ∈ (0 ] and g 3 ()−g 3 (0) = (

−2
 )

It follows that

plim( )→∞
2


hg ()−g (0)i ≥ (−0) (1− )

256
  0 for any   0

This implies that  (̃  0)→ 0 as ( )→∞ This completes the proof of the theorem. ¥

Proof of Theorem 3.2. The proof is essentially the same as that of Theorem 3.1 given the

results in Theorem 2.4. Here, we only outline the major differences. Let ̂∗ = ̂∗(∗) Noting that
̂ = (̂

∗ ) = ̂Σ̂̂
0
 ̂ and ̂ are respectively the eigenvector matrices of ̂

∗̂∗0 and
̂∗0̂∗ associated with their  largest eigenvalues, and the diagonal elements of Σ̂2 are the  largest
eigenvalues of ̂∗̂∗0 Let ̂ and Λ̂ denote the conventional principal component (PC) estimators

of  () and Λ () based on ̂∗ under the normalization restrictions that −1 ()0  () =  and

Λ ()0 Λ () =diagonal matrix. Let ̈ and Λ̈ denote the conventional PC estimators of  () and

Λ () based on ̂∗ under the normalization restrictions that −1Λ ()0 Λ () =  and  ()
0  ()

=diagonal matrix. Let ̈1 = (
−1Λ00Λ0)(−1Λ00̂) and ̈2 = (

−1 00 0)(−1 00Λ̈) Let ̂
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denote the × diagonal matrix that contains the  largest eigenvalues of ( )−1̂∗̂∗0 arranged
in descending order along its diagonal line. Note that ̂ = ( )−1 Σ̂2

Following the proof of Theorem 2.4, we can show that 1


P
=1

P
=1

°°°̂(∗−1)max
− 0

°°°2 = 

¡
−2

¢


With this result, we can show that the results analogous to those in Lemmas B.1-B.2 hold: (i)

1


°°°√̂̂ −  0̈1

°°°2 = 

¡
−2

¢
 (ii) 1



°°°√̂̂ − Λ0̈2

°°°2 = 

¡
−2

¢
 (iii) ̈2 = 2 +



¡
−1

¢
for  = 1  0 (iv) ̈

2
0+

= 

¡
−2

¢
for  ≥ 1 and (v) 2 ̈

2
0+

≥  +  (1) for

some positive constant  and any  ≥ 1 with 0 +  ≤  where ̈ = ( )−12̂ Noting that
 = 0 +  we make the following decomposition

d () =
1



°°°( − ̂) ◦ ̄∗
°°°2

=
1



°°°(0 − ̂) ◦ ̄∗
°°°2 + 1
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≡ d 1 () +d 2 + 2d 3 () 
Then we have d ()−d (0) = [d 1 ()−d 1 (0)] + 2[d 3 ()−d 3 (0)]When   0

we can follow the proof of Theorem 3.1 and apply the above results in (i)-(iii) to show that

d 1 ()−d 1 (0) = (1− )

0X
=+1

2 +

¡
−1

¢
and d 3 ()−d 3 (0) = 

¡
−1

¢


Then d ()−d (0) = (1− )
P0

=+1 
2
 +

¡
−1

¢
and  (̂  0)→ 0 as ( )→∞

Similarly, when   0 we can follow the proof of Theorem 3.1 and apply the above results in

(i)-(ii) and (iv)-(v) and analogous results to those in Theorems B.4-B.5 to show that

d 1 ()−d 1 (0) ≥ (1− )

256

X
=0+1

̈2 +

¡
−3

¢
and d 3 ()−d 3 (0) = 

¡
−2

¢


Then plim( )→∞2 [
d ()−d (0)] ≥ (−0)(1−)

256
  0 and  (̂  0)→ 0 as ( )→∞

This completes the proof of the theorem. ¥
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