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Abstract
We propose tests for homoskedasticity in spatial econometric models, based on joint
or concentrated score functions and an Outer-Product-of-Martingale- Difference (OPMD)
estimate of the variance of the joint or concentrated score functions. Versions of these tests
robust against non-normality are also given. Asymptotic properties of the proposed tests
are formally examined using a cross-section model and a panel model with fixed effects.
Monte Carlo results show that the proposed tests based on the concentrated score function
have good finite sample properties. Finally, the generality of the proposed approach in
constructing tests for homoskedasticity is further demonstrated using a spatial dynamic

panel data model with short panels.

Keywords: Adjusted quasi-scores; Dynamics; Fixed effects; Heteroskedasticity; Non-

normality; Martingale difference; Score tests; Short panels; Spatial effects.

JEL Classifications: C12, C18, C21, C23.

1. Introduction

The spatial dimension in panel data econometrics has attracted a lot of research recently,
see the textbook chapter of Baltagi (2013) and the nice survey by Lee and Yu (2015). Many
panels exhibit a spatial structure, which could be due to network issues, competition be-
tween cross-sectional units, spillover effects, etc. Spatial empirical illustrations in the recent
literature include health care expenditures, house prices, convergence of EU economies, de-

terminants of employment growth, car traffic, contagion problems to mention only a few.
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Generally, the existence of spatial effects could be related to spatial dependence, a specific
case of cross-sectional dependence, or to spatial heterogeneity, which could be considered as
a special case of cross-sectional heterogeneity. It is important to deal with this last point be-
cause cross-sectional units usually vary in size and as a result may exhibit heteroskedasticity.

In this context, the homoskedasticity assumption of the disturbances could often be re-
strictive in many empirical applications. Anselin (1988, pp. 119-120) places great emphasis
on the link between spatial heterogeneity and heteroskedasticity underlying the consequences
of the estimated spatial models for statistical validity (misleading significance levels, subop-
timal forecasts,...). Moreover, for the cross-section spatial autoregressive model with spatial
autoregressive errors (SARAR), Kelejian and Prucha (2010) noted that if the disturbances are
heteroskedastic, the ML estimator considered in Lee (2004) is inconsistent, and the asymp-
totic distribution given in Kelejian and Prucha (1998) for the generalized spatial two-stage
least squares (GS2SLS) estimator is not appropriate. Overall, this means that ignoring het-
eroskedastic disturbances can lead to misleading inference. To ensure proper statistical infer-
ence, it is now standard to use a Heteroskedasticity and Autocorrelation Consistent (HAC)
procedure, based on the influential work of White (1980), and Newey and West (1987). For
the cross-sectional spatial case, see Conley (1999), Kelejian and Prucha (2007), Kim and Sun
(2011), and Driscoll and Kraay (1998), and Arellano (1987), Hansen (2007) and Vogelsang
(2012) for panel data models, to mention a few. Furthermore, for cross-section spatial models,
Kelejian and Prucha (2010), Lin and Lee (2010) and Debarsy, Lin and Lee (2015) developed
generalized method of moments (GMM) estimators that are robust to heteroskedasticity. Nev-
ertheless, when the heteroskedasticity is of an unknown form, these estimators are inefficient
due to the fact that the best set of moment functions is generally not available. Moreover,
the finite sample inference properties are largely unexplored, except by Kelejian and Prucha
(2010). The articles mentioned above reflect that for many spatial models, especially those
of panel data, a specific procedure taking into account heteroskedasticity is not necessarily
available. Thus, the development of tests for heteroskedasticity is highly desirable, so that
the ‘source’ of heteroskedasticity is identified and that the model estimation and inference
proceed with heteroskedasticity being taken into account.

Mazodier and Trognon (1978) seem to be the first to deal with heteroskedasticity using
panel data, see Baltagi (2013) for a textbook treatment of this subject. The homoskedasticity
assumption of the disturbances could be tested in the spirit of Breusch and Pagan (1979),
Verbon (1980), Randolph (1988), Holly and Gardiol (2000), Lejeune (2006), Baltagi, Bresson
and Pirotte (2006), Baltagi, Song and Jung (2010) and Montes-Rojas and Sosa-Escudero
(2011), to mention a few. More specifically, Baltagi, Song and Jung (2010) considered a
panel data regression model with heteroskedastic as well as serially correlated disturbances,
and derived joint and conditional LM tests, whereas Montes-Rojas and Sosa-Escudero (2011)

derived tests for homoskedasticity in the error components model that possess robustness



properties. This panel literature on heteroskedasticty testing ignores spatial correlation.!

This paper contributes to the spatial heteroskedasticity literature by first introducing
general principles in constructing score-type tests for homoskedasticity in a general spatial
econometric model where the disturbances of the model may exhibit potential heteroskedastic
structure, and then giving detailed treatments on two popular spatial models for cross-section
as well as panel data. The tests for homoskedasticity that we propose are based on joint or
concentrated (quasi) score functions and Quter-Product-of-Martingale-Difference (OPMD)
estimate of the variance of the joint or concentrated (quasi) score functions. Finite sample
improved tests are also proposed and their performance is investigated using Monte Carlo
simulations. The unobservable individual heterogeneity in panel data is captured using indi-
vidual fixed effects rather than random effects. The generality of the proposed approach is
further demonstrated using a spatial dynamic panel data model with small 7.

The organization of the paper is as follows. In section 2, we introduce general principles in
constructing score-type tests for homoskedasticity. Section 3 describes these tests as well as
their improved versions to test for homoskedasticity in a spatial cross-sectional model. Section
4 describes these tests as well as their improved versions to test for homoskedasticity in a
spatial panel data model with fixed effects. Section 5 focuses on the Monte Carlo experiments
investigating the finite sample performance of the proposed tests. Section 6 discusses possible
extensions of the proposed methods, in particular, a fixed effects spatial dynamic panel data

model with small 7. Section 7 concludes with suggestions for further work.

2. Tests for Homoskedasticity: General Principle

In this section, we outline the general principles leading to the development of score or

Quasi-Score (QS) based tests for homoskedasticity in a general econometric model:
Q(YnaXna Wlna~~~;Wmn;Ba A) - Vnu (21>

where Y, is an n x 1 vector of observations on the dependent variable, X,, is an n x p
matrix of observations on the p exogenous variables. Wj,, j = 1,...,m, are the given
n x n weighting matrices capturing the interactions among the n spatial units. (3, \) are the
common model parameters representing the covariate and spatial effects, respectively. V,, is
an n x 1 vector of independent disturbances which may exhibit unknown heteroskedasticity. In
particular, the elements {vy;} of Vj, have zero mean but heteroskedastic variances oh(z/,;«)

with the k x 1 vectors z,,; and «a being, respectively, the heteroskedasticity variables and the

'In contrast to the tests for heteroskedasticity, a huge literature exists on testing for spatial autocorrelation,
see Anselin (1988) and Elhorst (2014) for a textbook treatment of this subject. See also, Baltagi, Song and Koh
(2003), Baltagi, Song, Jung and Koh (2007), Baltagi, Song and Kwon (2009), Debarsy and Ertur (2010), Yang
(2010), Baltagi and Yang (2013a,b). More specifically, Baltagi, Song and Kwon (2009) derived LM tests in the
context of a one-way error components random effects model with heteroskedastic random individual effects,
and spatial errors; Debarsy and Ertur (2010), and Baltagi and Yang (2013b) derived LM tests for spatial
dependence in fixed effects panel regressions that are robust against heteroskedasticity and non-normality.



heteroskedasticity parameters. The heteroskedasticity function A(-) is an unknown smooth
function such that h(0) = 1. Thus, when o = 0, the model becomes homoskedastic. A test

for homoskedasticity against heteroskedasticity becomes a test of:
Hy:a=0 vs. Hy : a # 0. (2.2)

See Breusch and Pagan (1979) for the original idea behind this type of tests; Koenker (1981),
Godfrey et al. (2006), and Yang and Tse (2008), among others, for some further developments;
and Anselin (1988, p. 121) for this type of tests in a spatial framework. The variables in
zn; May contain some elements of the x,;, the ith value of the set of regressors. In spatial
models, z,; may contain variables that relate to the spatial weight matrices, e.g., the number
of non-zero elements in each row of Wy, (number of neighbors), etc. This makes the test
of Hy in the context of spatial models more appealing. In certain spatial models such as
models with large group interaction (Lee, 2004), the elements of W,, depend on n and hence
the values z,; of the heteroskedasticity variables may also depend on n. The values of the
exogenous variables x,; are allowed to be n-dependent as well, because the models to be
discussed are allowed to contain spatial Durbin effects (Anselin, 1988, p. 40).

We will develop score-type tests. The score-type tests require only the estimation of the
model under the null, which makes the tests usually simpler to derive. In the current set-
up, we only need to know that the heteroskedasticity is of the general form h(z’a) but the
function h(-) remains unknown. Denote 6 = (3, 02, X)" and ¢ = (#', /). Let 1y be the true
value of 1. The usual expectation operator ‘E’ and variance operator ‘Var’ correspond to the
true parameter values. Let S,,(¢) be the score or QS function of ¢, and S, g(¢) and S, o ()
be its components corresponding to 6 and «, respectively.

Score Test. The central idea that we follow in developing tests of homoskedasticity is

to find ways to decompose S, (1) into a sum of Martingale Differences (MD), i.e.,

Sn(¥o) = 3201 8ni(to), (2.3)

where {g,i(¥o)} form a vector MD sequence with respect to Fy;: the increasing o-field
generated by {vn1,...,vn}. Then, Var[S,(vo)] = Y i Elgni(v0)g),;(¥o)]. It follows that
the average of the estimated OPMD, i.e.,

1 n

w 2im1 Enilni (2.4)
gives a consistent estimate of Var[ﬁSn(z/Jg)], where g,; = gm(z/;n), and 1), is the restricted
Maximum Likelihood (ML) or Quasi ML (QML) estimator under some general linear or
non-linear constraints on 1, including the constraints imposed by Hy in (2.2).

When S,,(19) is indeed the score vector, i.e., when the error distribution is correctly

specified, an OPMD form of score test for a linear or non-linear constraint on 1 is as follows:

T = (i1 80i) it 8nins) ' (Xoimy 8ni)- (2.5)

In a special case where the elements of Y;, are independent, so that S, (1) is automatically



the sum of individual scores or gradients, the test reduces to the well known Outer-Product-
of-Gradients (OPG) test (see, e.g., Wooldridge, 2010). Clearly, this is not the case for the
type of models we consider here, and hence an MD representation for S, (1) is needed.

In the special case of testing for homoskedasticity in (2.1), ¥, = (6,,0})" and Sy, ¢(1b,) = 0,
where 6, is the ML or QML estimator of # of the homoskedastic model and 0y is a k x 1 vector
of zeros. Partitioning gni(10) = (&), 4(¥0), 8 4(10))" according to 6 and «, the OPMD form

of the score test for homoskedasticity given in (2.5) reduces to:

TS = ( Z?Zl g;bi,a) [( Z?:l gmg;m) _1:| aa( Z?Zl gni,o&); (26>
where [ - ]4q denotes the a-a block of the corresponding matrix. In this case,
(i gnigh) e = [Xi BmiaBhia — Kan( Ty 8uio8hia)]
= [Z?:l (gni,a - Kngniﬁ) (gni,a - Kngniﬁ)/] _17

where K,, = (Z?:l 8ni,aB; 9) ( > i1 808 9)_1.2 The validity of this full OPMD form of

the score test lies with the Information Matrix Equality (IME); see, e.g., Cameron and Trivedi

(2.7)

(2005) and Wooldridge (2010). The following discussion offers some simpler and clearer
explanation for the role played by the IME, in the context of tests for homoskedasticity.
Quasi-Score Test. If the error distribution is misspecified, S, (¢) is no longer the true
score function. While the generalized IME, E[—%Sn(z/zg)] = E[S,(v0) S (¢o)], holds as long
as E[S,(¢0)] = 0, it cannot be used since the true score function S¢ (1) is unknown (see,
e.g., Cameron and Trivedi, 2005). Note that the QS test of Hy depends on the subvector
Sma(én, 0x) and its variance. To facilitate the discussion on constructing the QS test and for
the proof of its asymptotic property, let ¥,, = %,,(6p) = —E[(%/Sn(l/}o)\Ho] and Q, = Q,(6p) =
Var[Sy(v0)|m,], both partitioned according to 6§ and « with the distinct submatrices of ¥,
denoted by X, 99, 2,06, and X, 4q, and those of €2, by Q,, g9, .49, and 2, oo. Under mild

conditions, Taylor expansions lead to an asymptotic MD representation:

ﬁSn,a(én; 0r) = ﬁsn,a(eg, 0k) — ﬁvaagZ;}%Snvg(GO, 0) + op(1), (2.8)
= ﬁ Z?zl (gni,a - anni,9> + 0p(1>, (29)

where I'), = ZmagZ;l% and {gni o —'8nip} form a vector MD sequence with respect to Fp, ;.
It follows that Var[ﬁSma(Gn,Ok)] = %Z?Zl E[(8ni,0 — I'n8nio)(8nia — Tn8nip)’] + o(1),
leading immediately to an OPMD estimator of Var[ﬁSma(én, 0x)], and an OPMD form of

the QS test for homoskedasticity robust against non-normality:

0 n ~ N~ ~ =~ -1 ~
TQS - S;L7a(9na 0k>{ Zi:l (gni,a - anniﬁ)(gni,a - anniﬁ)/} Sn,oc(ena 0k>7 (21())

where T,, = f]magf];lee, with imag and inﬁg being either the plug-in estimates of ¥, ¢
and X, g9, or simply —%Sma(én,ok) and —%Smg(én,Ok). When the error distribution

2We prefer to use the term score test instead of LM test as the more general and robust tests are developed
through adjusting the concentrated scores.



is correctly specified, we have ¥, o9 = Qa9 and X, 99 = Q99 by IME. Hence, imag =
Yo gmvaggw and imgg =30, gmﬁg%w can be used, and Tyg reduces to Ts, justifying the
asymptotic validity of the test in (2.6).

Adjusted Score or Quasi-Score Tests. The score test given in (2.6) and the QS
test given in (2.10) may not have satisfactory finite sample properties when there are many
nuisance parameters. However, if 6 contains many linear and scale parameters, of which the
constrained estimates given the ‘other’ parameters possess analytical expressions, then one
can concentrate the joint score S, (1), and then recenter the numerator of the concentrated
score to give a set of unbiased estimation functions for the ‘other’ parameters (see, e.g., Baltagi
and Yang 2013a). To fix ideas, let 6 = (¢’, \'), where given (A, «), the restricted ML estimator
of § has an analytical expression d,(\, a). Let S, () = ( n5(0): S, (W), Sy 6(1))". Then the
concentrated score function of (A, o) has components Sy, A(6(\, @), A, @) and Sy, o (5(, @), \, @)
corresponding to A and «, respectively. Denote the unbiased estimating function obtained
through recentering the numerators of the concentrated score functions by S (), a), and its
components by 57 \ (A, a) and 57 (A, a). Define the adjusted estimator of Ao under Hy as

:\; = arg{S;7/\(/\, 0x) = 0}.
Then, the Adjusted Score (AS) test or the Adjusted Quasi-Score (AQS) test is constructed
based on S;;@(:\;;,O). Assume S’ (Ao, 0) possess an MD representation, i.e, S’(Ag,0) =
o gy, where {g*,} form a vector MD sequence with respect to F,;. Similar to the case of
QS test, let 3% = X" (N\g) = —E[WS;(/\O, a)|m,], partitioned according to A and a with
the distinct submatrices of ¥7 denoted by X 2

S;;@(:\;*L, 0) possesses the following asymptotic MD representation:

and X* It is easy to show that

*
n,a\’ n,aa”

TaSna(i0) = I3 (8hia — Thgin) + 0p(1),; (2.11)
where I'} = »*

o /\Z;_/\l/\ and gr. | and g;*m ., are, respectively, the A\- and a-component of g ..
Thus, Var[S; (s, 0)] = £ 31 (8hi0 — Tiniin) (8hia — Tnghin) + 0p(1). Tt follows that

T n

an OPMD form of the AQS test for homoskedasticity is:

* * (Y * ook T Sk ook T Sk —Lox yx
TQS = Sn:oc(An7 0) [Z?:l (gni,a - anni,)\><gni,a - anni)\)/] Sn,a(An7 0)’ (212>
where g, | and g;; , are the plug-in estimates of g¥.  and i at Ho, and ffl = i;va/\f};&&.

There are in general two choices for I'*: (i) the plug-in estimate, Z;a/\(:\;)Z;_;A(:\;),
and (it) the Hessian estimate, [%527(1(:\;, 0r)] (2% ;/\(:\;, 0x)] 7. The tests based on these
estimates are robust against misspecification of the error distribution, and are referred to
as the AQS tests. If the error distribution is correctly specified, we have a third choice:
=", i a8 Dict g;i7/\g;;7/\]_1, leading to a test that is referred to as the AS test,
and is denoted by Tg for easy reference. This is justified by an IME with respect to the

underlining ‘adjusted likelihood’ that generates the AS function S} (A, a).?

3 Alternatively, the OPMD estimate, I, = o EniaBnin][>or ) Enin&nin] ", can also be used where



The general ideas and principles outlined above are seen to be very simple, and yet quite
general. They are not restricted to the spatial econometric models, and the ideas behind the
score-, AS-; QS-, and AQS-test can readily be generalized to the case of a general estimating
function (EF) in the context of M-estimation or GMM to give an OPMD-form of M-tests
(Cameron and Trivedi, 2005, Wooldridge, 2010). The key is the development of an MD
representation for the EF. One advantage of such an MD representation is that it avoids
the analytical expression of the variance of the EF, which typically involves higher-order
moments making the estimation unstable numerically, or may be difficult to obtain in certain
complicated econometrics models, or may be infeasible in spatial dynamic panel data models
with short panels due to the unobserved past history of the process (see Su and Yang, 2015).
Furthermore, in certain models such as spatial dynamic panel data models, such a plug-in
method may not be applicable. In the subsequent two sections, we use a spatial cross section
model, and a spatial panel data model to demonstrate these ideas and principles in details.
In Section 6, we discuss possible extensions of the methodology to, e.g., higher-order spatial

models and spatial dynamic panel data models.

3. Tests for Homoskedasticity for the SAC Model

In this section, we demonstrate the general ideas and principles outlined in Section 2 using
the spatial autoregressive model with spatial autoregressive errors (SARAR), also termed
Spatial Autoregressive Combined model, or SAC model (see LeSage and Pace, 2009; Vega
and Elhorst, 2015), for easy reference. Four tests for homoskedasticity in the SAC model are
introduced, and formal asymptotic theory for the proposed tests are presented. The proofs

are relegated to Appendix B. The simplest heteroskedastic SAC model takes the form:
Yn - A1‘/Vlnyvn + XnB + Unu Un - A2‘/‘/271[]71 + Vnu (31)

where all the quantities are defined in Model (2.1). It is easy to see that Model (3.1) has the
reduced form: Bay,(A2)[Bin(A)Y, — X,0] =V, where B, (\,) = I, — A\, Wy, 7 = 1,2, This
is a special case of Model (2.1).* The spatial weights matrices W1, and Ws,, are assumed to

be exogenously given with zero diagonal elements. The null hypothesis is given in (2.2).

3.1. ML or QML Estimation of the Cross-Sectional SAC Model

We now outline the ML or QML estimation procedure for the SAC model and the asymp-

totic properties of the estimates at the null as they are essential for the study of the asymptotic

Eni,n is the A-component of g,; defined in the score test corresponding to the original joint score function.
This is because when the error distribution is correctly specified, the generalized IME can be used, i.e.,
X5 = E[S) A (X0, 0k)S; 1 (00)] and X7, ,\ = E[S}, o (Ao, 0x)S5 x (fo)]. See the following sections for details.

“Model (3.1) can be extended by adding higher-order spatial lags in Y5, and U,,, and/or by adding a spatial
Durbin term, W3, X1,7y, where Xi,, is a submatrix of X,,. The former extension incurs some extra algebra
in the subsequent developments, but the latter extension does not. See, e.g., Elhorst (2014) and Lee and Yu
(2016) for discussions on spatial Durbin models and the associated issue of parameter identification.



properties of the tests to be introduced later. Let H,, (o) = diag({h(z],;«)}), where diag(-)
forms a diagonal matrix based on the given elements or a given vector. The full Gaussian
loglikelihood function for v = (3,02, X', /)’ is given by:

lsac()) = —%log(2m0®) +log [Bin(A1)| + log | B2n(A2)| — 5 log[Hn ()
20’2V/(/B7 ) ( )Vn(/Bu A)u

where V,, (58, A) = Y, (A) — X,,(A2) 3, Yo () = Bap(A2)Bin(A) Y, Xn(A2) = Bap(A2) X, and

A = (A1, A2)". Maximizing lspc(1)) gives the ML Estimate (MLE) or QML Estimate (QMLE)

of ¢ of the full model. Maximizing ¢sac(%)) at the null, lspc(t))|m,, gives the MLE or QMLE

for the null model. Given A, lsac(?)|m,, is partially maximized at:

(3.2)

Fu(A) = [X},(A2) Xn(A2)] ' X (A2)Ya(A) and 3(A) = 1Y (A) Ma(A2) Ya(N), (3.3)

where M,,(X\2) = I, — X,(A2)[X] (A2) X5, (A2)] 71X/ (X2). The concentrated null loglikelihood
function for X is obtained by substituting £, () and 2(\) into fsac(¥)| a,:

lsac(N)|1, = —%[log(2m) + 1] — § log(c72(A)) + log | Bin(A1)] + log| Ban(A2)]- (3.4)

Maximizing £§,¢(\)|m, leads to the null MLE or QMLE ), of A.° Upon substitution, the
null (Q)MLEs of 3 and o2 are denoted as 3, = f,(\,) and 2 = 62()\,,). The (Q)MLE of
0o = (B}, 02, \y)’ for the null model is thus 6,, = (8, 52, \,)’.

Jin and Lee (2013) show that under some regularity conditions, \/n(6, — 6p) is asymp-
totically normal with mean 0 and VC matrix nZ;}%QnﬁQZ;I%, where X, g9 and €, 99 are,
respectively, the expected negative Hessian and the variance of the score of the null model.
Note that we will use the same notation as in Section 2 (X,,, 2, and ¥}, and their submatrices

including %, 99 and €2, g9) in subsequent developments.

3.2. Score or Quasi-Score Tests

The (quasi) score function Sgpc()) = %ésAc(dJ) has components for 3, 02, A\, Ao, and a:

7 XA, (@) Va(B, N,
507 Vi (B, VM (@) V(B X) = 5,
Ssac(¥) = $ LVI(B, \H; (@) Ban(A2) WinYa — t2[Gra(A)]4 (3.5)
P V’(B, MHH @) Gan(A2)Va(B, ) = tr[Gan ()],
)

n v2 (B, 2
sez h(21,0) Y0 [(%ufz(;i—a)) —a?) WMF)} ’

ni

where G (\.) = W Bt (M), 7 = 1,2, and h(a:) = %h(w).
Under Hyp : « = 0, h(0) = 1 and h(O) becomes a constant, independent of 7. The score

When n is large, the computational burden in maximizing £5,c(\)|m, can be alleviated by the identity:
[In — AWy | = [T, (1 — Arwyri), where wyy are the eigenvalues of Wy, r = 1,2, which need not be updated in
each iteration of the numerical maximization process; see Griffith (1988).



function at the null, S§,c(0) = Ssac(¥)|H,, simplifies to

=X (M) Va(B, ),

557 Vi (B VVal(B, ) — 5,

sac() = = Vi(8, \) Ban(A2) Wi Yo — tr[Grn (A1), (36)
72V (B, ) G2n(A2) Vi (B, A) = tr[Gn(N2)],

5oz 1(0) iy [(v2i (B, N) = 0®) 2]

To derive the score or QS tests for homoskedasticity in the SAC model, we first develop

an MD representation for Sg,:(6p). For ease of exposition, we drop the arguments of a
quantity evaluated at the true parameter values, e.g., V,, = V,,(5o, Ao), Brn = Brn(Ao),
Grn = Grn(Ao), ete. We have, for the two key quantities in (3.6),

V! (B0, Ao) Ban(A20) Wi, Yy, = V! BoyG1n By, Vi + V) Ba, G, Byt X1 (M20) Bo,
V! (Bo, o) Gan(A20) Vi (Bo, o) =V, Gan Vi,

noting that under Hy the elements of V,, are iid(0, Ug). Using these results, the score vector

Séac(0o) under the true parameter values is further simplified into the following general form:

I Vi,
ViD1V, — B(V®1V),
Ssac(0o) = § Vi @2V — E(V;02V5) + ViTI, (3.7)

V7/L(I)3Vn - E(V/L(I)gvn%

L ﬁhw) >oicy [(vn; — 08) 2nil

where Il; = 75X, (A0), and I = iB2nG'1nBz_n1X (A20)Bo; @1 = ﬁfn, Py = BZnGln o
and 3 = ng, and ‘E’ corresponds to the null model.

Using the Central Limit Theorem (CLT) for Linear-Quadratic (LQ) forms of Kelejian

and Prucha (2001) or its simpler version under homoskedast1c1ty stated in Lemma A.5 of

this paper for easy reference, one can easily prove that \/— aac(00) LN (0, limy,—, 00 %Qn),
where €2, = Var[Sg,c(6p)]. See the proof of Theorem 3.1 in Appendix B. A crucial step in
constructing a score test is to find a consistent estimate of 2,. A popular way is to find
the analytical expression of €2, and then plug-in the null estimates. As we allow for non-
normality of the errors, such an expression would involve skewness and kurtosis of the errors
which need to be estimated. In a more complicated model, such as the panel SAC model to
be considered in the next section, estimation of these quantities may not be trivial, not to
mention the issue of the numerical stability in estimating higher-order moments. Furthermore,
in certain models such as spatial dynamic panel data models, such a plug-in method may
not be applicable due to the unobserved past history of the process (see Su and Yang, 2015).
The proposed method, however, does not require the explicit expression of the variance of

the score. Instead, it decomposes the score at the null into sums of MD sequences, so that an



averaged OPMD gives a consistent estimate. This method is fairly general and the resulting
estimate of €2, is automatically robust against non-normality. The details are as follows:

For a general n-dimensional square matrix ®,, denote its upper, lower, and diagonal
matrices by ®%, ®! and ®¢, respectively, such that ®, = ®% +®! +®%. This gives V/®,V;, =
V(@Y + oL + @)V, = V(W + & + dd)V, = V!¢, + VIDLV,, where &, = (D + DLV,
As V!®UV, is a scalar, we have V) ®UV, = V/®YV, . It follows that,

Vo @,V — E(V,@,V,,) = Z?:l [vmfm + <v72m - U(%)an,u‘] = Z?:l 9ni(00), (3.8)

where {¢, i} are the diagonal elements of ®,. Noting that the elements v,; are iid under
Hy, thus {gn;(0y)} form an MD sequence with respect to the increasing sequence of o-fields
{Fin} generated by (vn1,...,vni). See, e.g., Baltagi and Yang (20130) for details.

Following (3.8), define g, ;(6p), = 1,2,3, corresponding to the three quadratic forms

given in (3.7) associated with ®,,r = 1,2, 3. Using these results, we have

Ssac(fo) = 2231 &ni(6o), (3.9)

where gni(60) = (&,,9(00):81i.0(00))"s 8nio(00) = {;vni, 915 g2i + Ilojvns, g3}, and
8nia(bo) = ﬁh(())(vfm — Ug)zm. Obviously, {gni(0o), Fin}i—; form a vector MD sequence.
Thus, Var[S§,c(0o)] = D7, Elgni(60)g),;(0)], and its sample analogue > 7" | &n;&.,; gives a
consistent estimator in the sense that = " | g8/, — L Var[Sg,c(6o)] = 0,(1). The proof of
this result follows the Weak Law of Large Numbers (WLLN) for MD arrays in, e.g., Davidson
(1994, p. 299), with details given in the proof of Theorem 3.1, Appendix B.

Thus, following (2.6) and (2.7), a score test for testing Hy : a = 0 for the SAC model,
based on Sg,c(0) defined in (3.6) and the MD representation (3.9), has the form:

TSAC - ( Z?:l g;u‘,a) [Z?:l (gni,a - kngniﬁ) (gni,a - f(ngni,@)/] - ( Z?:l gni,a)a (31())

where K,, = (>, gmvag;w)(zgl gmﬁg;w)‘l. As in (2.5), the test in (3.10) can simply
be written as Tspc = S&c(én)(zyzl gmg;n)‘l 2ic(0n).8 Obviously, Tyac is invariant to the
unknown /(0) appearing in g, . (fo), and hence it can be removed or simply set to 1.
When the normality of V,, is in doubt, one can simply replace K,, in (3.10) by T, =
f]magf];lee, where imag = —%S&Qa(én) and imgg = —%SQAQG(@”), noting that 0,; =
Uni (B, An) and (S&Cﬁ(én), é)ﬂc,a(én))/ = S%c(0,), to give a QS-test as in (2.10), robust

against non-normality:

T;AC - (Z?:l g;u‘,oc) [Z?:l (gni,a - fngni,e) (gni,a - fngni,e)/] - ( Z?:l gni,a) . (3'11>

The expressions for %Sg’Acva(G) and %S;’Acﬁ

given in Appendix B following the proof of Theorem 3.1. The asymptotic null distributions

(0) can easily be obtained from (3.5), and are

SNote that g = gm(én),~implicitly indicating that it is obtained from gni(6o) by replacing 6o by 6,, and
Vo = Va(Bo, Xo) by Voo = Vi (Bn, An). Setting Ay = 0 and using expected information matrix instead of OPMD,
the test (3.10) reduces to that of Anselin (1988, p. 121).
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of the tests are established under the following standard regularity conditions:

Assumption 3.1. The disturbances {vni, i = 1,...,n} are independent with means 0,
variances o?h(zl), and Elv,|*T¢ < oo for some € > 0.

Assumption 3.2. The elements of X,, are nonstochastic and are uniformly bounded, and
lim,, s %X;Xn exists and is nonsingular.

Assumption 3.3. Wy, and Wa,, are uniformly bounded in both row and column sums in
absolute value, and their diagonal elements are zero.”
Assumption 3.4. B},! and By} are uniformly bounded in both row and column sums in

absolute value, uniformly in A in a neighborhood of its true value.

Theorem 3.1. Under Assumptions 3.1-3.4, if 0, is Vv/n-consistent for 0y under Hy, and
%ngg and %Qn are positive definite for large enough n, then, Tgyc|m, N Xi when the errors

. D
are either normal or non-normal; Tsac|m, — X% when the errors are normal.

3.3. Adjusted Score or Quasi-Score Tests

The finite sample properties of the score tests Tsac and T3, may be improved by work-
ing with the concentrated score functions for A and «, concentrating out 3 and 2. The
intuition behind this is that the concentrated scores capture the variability inherent from

2. Furthermore, the process of deriving the test statistic involves

the estimation of # and o
the ‘standardization’ (centering and rescaling) of the key quantities in the concentrated score
functions. This standardization makes the quantiles of the resulting statistic closer to the
corresponding asymptotic values, compared with the test statistics Tspc and T35,c. Hence, it
can be expected that such ‘standardized’ tests based on the concentrated scores would have
better finite sample performance; see, e.g., Baltagi and Yang (2013a, b).

Substituting 3,(\) and 52(\) defined in (3.3) into the last three components of (3.5), we
obtain the concentrated scores at the null: &, 2(\)Y;(A) My(X2) Ban(X2)G1n (A1) By, (A2) Vi (A) —
tr[Gin(A1)], 3, ()Y () Min(A2) Gan(A2) M (A2) Yo (X) = tr[Gan(A2)], and &, % (A)A(0) Z1,Ca (),
respectively for A1, Ao and «, which are rewritten in the form

G (MY (V) Ma(A2) [Ban (A2) G1a(M) By, (A2) = Gra(A) 1] Y (M) 1,
SsacA, @)y = § 6,2 (M) { Y (N) M (A2) [Gan(A2) — Gan(A2) In] Mn(X2) Yo (V) },
5 2(MV{R(0) 216 (M) }4
(3.12)
where ,(\) = %{vfm(ﬁn(/\), A) = 2N}, and Grp(Ar) = 2tr(Grp(A)), = 1,2

Under mild conditions, the constrained QMLE ), defined in Section 3.1 is equivalent to

the solution of the following estimating equations: Y, ()M, (A2) [Bgn(A2>G1n(A1>B2_n1(A2> —

"The elements of W;., may be of uniform order h, ', where h,, is a rate sequence such that lim, oo (hn/n) =
0, to reflect the fact that the degree of spatial dependence may grow with the sample size n (Lee, 2004).
While the main results are stated without explicitly accounting for h, to avoid unnecessary complications in
applications, their proofs reflect explicitly the role played by h,, in particular the lemmas in Appendix A.
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C_}'ln(/\l)ln]Yn(/\) = 0 and Y,/ (\) M, ()\2) [ng(/\g) — C_}'gn(/\g)ln]Mn(/\g)Yn(/\) = 0, obtained
from the first two components of (3.12). However, neither estimation functions have an
expectation zero, which constitutes a major source of finite sample bias of An (Yang, 2015;
Liu and Yang, 2015), and a major source of size distortion for the tests constructed, for e.g.,
in Section 3.1 (Baltagi and Yang, 2013b). Noting that 52(\g) - 02, we construct a test that
potentially has better finite sample properties. This is done by working on the numerators
of (3.12) or the quantities in the curling brackets, i.e., 72 (\)S§xc(A, @)|m,- Under Hy and Ao,

(AO> (BQnGlnBQ_n Glnln>Yn(AO> V/ (BQnGlnBQ_n GlnIn>Vn
Vi My (B2nG1n By, — Ginln) Xn(A2)Bo = V@1V, + 1TV,

(AO> (G2n - GZnIn>MnYn(AO> V/ (G2n G2n1n>MnVn = VA‘I’2Vn,
where T = M,,(B2,G1,Bs,) — G1nn) Xn(A20) B0, ®1 = My, (B2nG1nBy,) — Ginly,) and &g =
M, (Goy — Gonl, ) M,. These show that the expectations of the first two components of the
numerator of (3.12) are, respectively, o3tr(®,),r = 1,2. Also, for the numerator of the last
component of (3.12), we have V, (Bn(/\g) ) = M,(A20)Yn(No) = M, V,. It follows that
E[v2,(5n(M0); No)] = E[(MniVin)?] = o Z] 1 m] = ogm;, where M,,; denotes the ith row
of M, and M, ;; the ijth element of M,. Define

GO = Mg 2BV, ) = 2255200 b (3.13)

The set of adjusted concentrated quasi-scores (ACQS) at Hy thus have the simple form:

V(N @1(A)Ya(A) = 22500 (At @1 (V)]
Sac(A) = § Y (M@ (M) Va(N) — 72552 (N)tr[@a(N)], (3.14)
Z,Gh ().

It is easy to see that E[Sg&c(Mo)|m,] = 0, and hence S§,:(Ao) may lead to a potentially im-
proved score-type test. To find its variance estimator, noting that &2(\g) = %VAMnVn, we
have at H() Y/(/\0>‘I)1Yn(/\0> — —U (/\g)tr(<I>1) = Vé‘I’TVn + V/L ns and YA(/\())(I)QYn(/\O) —
pra p 52(Ao)tr(®g) = V/®3V,,, Where oF = o, niptr((bT)Mn,r = 1,2. Similar to the devel-
opments in Section 3.1, we can write V,®*V,, = > | g,:(00),r = 1,2, where {g,:(00), Fin}
form an MD sequence. The elements of é;;(A) are asymptotically independent. Define,

&ni(00) = {91 + Wivni, 921, 21:&0i(No)}- (3.15)
Then, S&yc(Ao) = D1 g (6p), and it can be shown that

7 Var[Sgic(ho)] = 3 31 Elgri (00)g7i(00)] + o(1).

A score-type test statistic, or the AQS test, for testing Hy : o = 0 takes the following form:

TSrEC = ( Zz 1 g;;/z a) [ Z?zl (g;i,a F* gm >\) (g;i,a anm >\) ] ! ( Z?:l g;i,a)’ (316>

where f = Z; a/\Z* /\1/\, e

na>\

% §Ac,a(/~\n>a and i3;7,\/\ = S;AC/\(:\n). These deriva-
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tives can be obtained from (3.14) after some tedious algebra, and their detailed expressions
are given in Appendix B following the proof of Theorem 3.2.8 When the errors are normally

*

distributed, one could simply use ima/\ =2 i1 &hi a8y and 227/\/\ =D i1 &hi A& \» lead-
ing to an adjusted score (AS) test, denoted by 7§, for easy reference.”

The process of deriving Tg,. or T3, starts from the concentrated score where the vari-
ability from the estimation of 3 and o? is captured, then recenters the numerator of the
concentrated scores, and then rescales the ‘recentered’ score. Thus, these tests are expected
to perform better in finite samples than Tsac or 75,.. Note that unlike the case with joint
scores, Sgy¢ /\(:\n) is not identically zero, as A, is not the solution of the estimating equation
S;AQA(/\) = 0. In this case, an adjusted estimator that solves the ACPS equations, i.e.,

A = arg{Sgpc A (A) = 0}, (3.17)
should be used to ensure a good finite sample performance of the AQS test. This is confirmed
by the Monte Carlo results presented in Section 5. The asymptotic null behavior of Tg,. or

&ac 1s summarized in the following theorem:

Theorem 3.2. Under the assumptions of Theorem 3.1, T&ic|m, 2, X3 when the errors

. D
are either normal or non-normal; and Tgyc|H, — X3 when the errors are normal.

4. Tests for Homoskedasticity for the FESAC Model

In this section, we consider the panel SARAR model with fixed effects, which is also called
Fixed Effects (FE) spatial autoregressive combined panel data, or FESAC, model:

Ynt - A1‘/Vlnyvnt + Xntﬁ + pn + Unta Unt - A2‘/‘/v2n[]nt + Vnta t= 17 27 sy T, (41>

where Y},; denotes the n x 1 vector of observations on the dependent variable in period t. X,
denotes the n x p matrix of observations on the exogenous regressors in period ¢ (which may
contain the constant term). The parameters 3, A; and Ay are defined in the same way as in
model (3.1). p, represents the vector of unit-specific effects that are allowed to be correlated
with some of the regressors. The elements {v;;} of V,;; are independent across i and t with
means 0 and variances o2h(z] ). Again, a test for homoskedasticity across the cross-section
dimension corresponds to the test of the null hypothesis Hy : a = 0.1°

Six tests for homoskedasticity in the FESAC model are introduced, and formal asymptotic

theory for the proposed tests is presented with the proofs relegated to Appendix C. At

8Numerical derivatives can be used in place of analytical ones: %S;Ac (A) = [SsacA + (6,0)") — Sgac (V)] /e
and %S;Ac (A) = [Sésc(X + (0,€)") — S&ic(N)] /€, where € is a small positive number, e.g., 0.00001.

9This is justified by an IME with respect to the underlining distribution (adj usted likelihood) that generates
the ACQS (3.14). Alternatively, the generalized IME can be applied to give X = > 1 8hiaBni and

n,a\
Shoan = Doy EninBnix, where gnix is the restricted estimate of the A-element of the full g,; in (3.9).
However, the numerical results show that the former performs better in finite samples.
0Gimilar to the case of the SAC model, the FESAC model can also be extended by adding the spatial
Durbin terms, higher-order spatial lags of the response, and higher-order lags of the disturbances.

13



the end of the section, two important extensions are discussed: (i) allowing for time-wise

heteroskedasticity, and (i7) allowing for time-specific fixed effects.

4.1. ML or QML Estimation of the Panel FESAC Model

The ML or QML estimation of the FESAC model under Hy : @ = 0 proceeds with the
transformation approach followed by Lee and Yu (2010) and Yang et al. (2016). To eliminate
the individual effects, define Jr = (Ip — %ZTZ’T) and let [Frp_q, ﬁlT] be the orthonormal
eigenvector matrix of Jr, where Frp_q is the T' x (T' — 1) submatrix corresponding to the
eigenvalues of one, I is a T' x T identity matrix and I7 is a T x 1 vector of ones. For any

n x T matrix [A,1, ..., Ayr], define the n x (T' — 1) transformed matrix as
[Anys - Apra] = [Ant, - Anrl Frr—a. (4.2)

This leads to the transformed vectors: Y%, Uy, V%,

t=1,...,T—1. Let X, = [X;;t,l?X;;t,% i ~aX;t,k]'

The transformed model takes the form:

and X7, . for the jth regressor, for

Yn*t = /\IWInYr:t + X;tﬁ + U;;tv U;;t = AQWQRU;;t + V.

ot=1,...,T—1. (4.3)
After the transformation, the effective sample size becomes N = n(T — 1). Stacking the

nl> nl>
(Vals - Vilr ), Xy = (X530, -, Xp'p 1)’y and denoting Wiy = Ir—1 @ Wiy, 7 = 1,2, we

have the following compact expression for the transformed model:

vectors and matrices, i.e., letting Yy = (V,{ ...,Y;v’T_l)’, Uy = (U4 ...,U;;’T_l)’, Vy =

Yy =MWinYy +X§NB+ Uy, Uy =MWonUy + Vy, (4.4)

which is identical in form to the cross-sectional SAC model, showing that the QML estimation
of the FESAC model is similar to that of the cross-sectional SAC model. The key difference
is that the elements {v}, } of the transformed error vector V5 may not be totally independent
unless the original errors are independent and normal. When the original errors are inde-
pendent but non-normal, {v};} are independent across i by definition but only uncorrelated

across t, as seen using the identity (V5{,..., V.. ) = (Fpp_y @ L) (Vi .., V),

nl» n
EWVyis . Vi) (Vatls . Vilr )
= 0 (Frp_y © In)(It @ Ho() (Frr-1 @ 1) (4.5)

02(IT_1 ®Hn(a)) = UQHN(CV>,

where H,,(a) is defined in Section 3. It follows that the full quasi Gaussian log likelihood
function for 1) = (8', 02, N, /) (required for the derivation of the score-type tests later) is,
lresac()) = —%5 log(2m0?) + log |Biy ()] + log|Ban (A2)]

—3 log|[Hn(a)| — 52 Vi (8, VHL (@) Vv (8, A),

where VN (8, 1) = YN (A)=Xn(A2) B, YN(A) = Ban(A2) Bin (A1) Y, Xn(A2) = Ban (A2) Xy,
Bin(A1) = In — MiWin, and Bany(A2) = Iy — Ao Woan.

(4.6)
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Maximizing rgsac(1)) gives the (Q)MLE of ¢ for the full model and maximizing lresac()| m,
gives the (Q)MLEs of the parameters in the null model. Now, similar to the SAC model, for

a given A, lresac(v)|m, is partially maximized at:
An(A) = [Xy(A2)Xn(A2)] ' Xy (A2) Y (A) and 63(N) = Yy (AMy(A2) Y (N),

where MN(/\2> = IN — XN(/\2>[X/N(/\2>XN(/\2>]_1XIN(/\2>. Substituting BN(/\> and &]2\/(/\)
back into (4.6) gives the null concentrated log likelihood function of A:

Crssac(Ml, = =5 (log(2m) + 1) + log By (A1)] + log [Ban (M) = FIna%(A).  (4.7)

Maximizing £igs,c(N)] 2, gives the null QMLE Ay of A, which upon substitutions gives the null
QMLEs of 8 and 02 as Oy = Bv(\y) and 6% = 6%, (Ax).!* The QMLE of = (8,02, XY,
the parameter vector of the null model, is thus Oy = (By, 5%, Ny)'-

Lee and Yu (2010) show that, as n goes large (where T can go large or stays fixed),
VN (6 —0) is asymptotically normal with mean 0 and VC matrix N 2]_\,71999 N,60 2]_\,7199, where
YN0 and Qg9 are, respectively, the expected negative Hessian matrix and the variance of
the score of the null model.'? Note that a similar set of notation, ¥, Qy and 3y for the
full model at Hy with Xy g9 and 2y g9, etc., being their submatrices, will be followed in the

subsequent developments. The use of bold face to reflect that the underlining model is panel.

4.2. Score or Quasi-Score Tests

The same idea as in the earlier subsection can be followed to give a score or QS test of
homoskedasticity in the FESAC model. However, it should be noted that when the original
errors are non-normal, the transformed errors are independent along the cross-sectional di-
mension only, not along the time dimension although they are still uncorrelated. While this
makes the proof of the theorems more difficult, it emphasizes the advantage of the proposed
OPMD method. This is because under the transformed QML approach, the explicit VC
matrix of the score vector involves the unknown 3rd and 4th moments of the original errors
vit, but only the estimated residuals on the transformed scale are available.

The score function Spesac(v)) = %eFEsAC(dJ) has the form:

2 Xy (A2)Hy (@) VN (B, ),
204V’ (8, VHY () VN (8, A) — 55,
Sresac(¥) = { 2 Vi (8, VH () Ban (A2) Win Yy — tr[Gin (A1), (4.8)
2= Vi (8, VHY (@) Gan (A2) VN (B, A) — tr[Gan (A2)],
sz h(2),0) S Y [7{1(/82)) — 7] EATE
USimilarly, numerical maximization of £ggsyc(A)| 17, can be made easier by [Brn (Ar)| = ([In — AW | )T~
(10, (1 = Arwys)) T, where wy; are the eigenvalues of Wi, see Lee and Yu (2010) and Griffith (1988).

=1
2Tn general, the tests to be introduced in the subsequent sections would require only the v/N-consistency

of On (the y/n-consistency of 0,, for the SAC model), which is implied by the asymptotic normality result.

15



where G, n(A) = Ir—1 @G (A), r = 1,2. Under Hy, h(0) =1 and h(O) becomes a constant

free of ¢ and ¢. Hence, the score function at the null, Sgggac(0) = Sresac(¥)|m,, simplifies to

ZXN () V(B N),

st V(B N V(B A) = 5,

resac(0) = ¢ HVL(6, \)Ban(A2) WinY v — tr[Gin (A1), (4.9)
LV, 0)Gan(X2) VN(B, A) — tr[Gan (A2)],

\ #MO) tT:_11 Z?:l [v;?(ﬂa A) — 02] Zni -

At the null and the true parameter values 0y = (3}, 03, \})’, H]_Vl(()) = In, VN(Bo, No) =

Vi, Ban(A20) = Bon, and G,n(Ng) = Gn. To derive a variance estimator, we again

express Sgesac(fo) in terms of Vy and 6y, in a form identical to (3.7):

IV,

Vi@ Vy — E(V @ Vy),

Stesac(fo) = { Vy @2,V y — E(V @,V y) + V11, (4.10)
V@3V y — E(Vi @3V y),

i T-1
L ﬁh(m 1=t 2oie1 (Vi = 08) 2ni,

where II; = a_lg’XN(/\2>’ Iy = 0—1332NG1NB§]%[XN(/\2)57 P, = %IN; Py = O_LSBQNGINBQ_]%h

b3 = O__ISG'Q ~, and the expectation ‘E’ corresponds to the null model. In an identical way

leading to (3.9), we can write Sgesac(%0)|H, = Zjvzl gn;j(6p), where j (= 1,...,N) is the
combined index for (i,¢) withi =1,...,nforeacht = 1,...,T—1, and the detailed expression
of gn; (o) is given in (C.1) of Appendix C.

If the original errors {v;;} are 7id normal, then the transformed errors {v;;} or {v;} are
itd normal, and based on the same reasoning as for the cross-sectional SAC model, {gn;(f)}
form an MD sequence with respect to the increasing o-fields {F;n} generated by (v, ..., v}).

Thus, a consistent estimator for @y = - Var[Sggssc(6o)] is

Qy = %Zj\; gNjé?Vju (4~11>

where gn; =g Nj(éN). In a similar manner as for the cross-sectional SAC model, asymptotic
normality of Sggsac(fo) can be established using the CLT for LQ forms given in Lemma
A.5, and the consistency of the variance estimator can be established using the WLLN for
martingale difference arrays in Davidson (1994, p. 229). A score statistic for testing Hy :

a = 0 has an identical form as (3.10):

Teesac = (301 8hvia) [ 01 (ENja—KNEN;0) (ENja—KNENjo) ] N > i1 BNja), (412)

where Ky = (>0 ENjoBly; o) ( Z;‘:l ENj,08N; 9)_1; or an identical form as the one below
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(3.10): Tresac = SﬁésAc(éN)[ijzl gNj{;;Vj] SSecac(On)."?  Again, the unknown constant

h(O) appearing in the score element for o cancels out, and hence it can simply be set to 1.
If {vit} are éid but not normal, however, {vj;} or {vj} are not guaranteed to be totally
independent in the sense that there may exist higher-order dependence among {v}}. If this
higher-order dependence does not affect the asymptotic properties of the OPMD estimate
given in (4.11), then, similar to the QS test given in (3.11), a QS test for homoskedasticity
in the FESAC model, allowing the errors to be non-normally distributed, can be obtained
by replacing Ky in (4.12) by Iy = EN@@EJ_V,I%’ where Xy a9 = —%S{:’ESAC@@N) and
> N, = —% 1fq’ES‘1&C7(77(9~]\/). The resulting test is denoted by Tgggsc for easy reference. The

analytical expressions for %SgESAC,a(§N> and -2 EESAC,0(§N> can easily be obtained from

(4.9), which are given in Appendix C.
However, we show in Appendix C that the correlation between v}, and v;f and the corre-

lation between v;f and v2

*2, in particular the latter, induce correlation between gy ;+(6y) and

gn,is(fo), t # s, which may not be ignored when the skewness and excess kurtosis of v;; are
not zero. An extended OPMD estimate of Var[Sggeac(6o)], taking into account the possible

correlation between gy ;+(6p) and gn is(6o), t # s, is given as follows:

Or N ~ ~ 7 30

Qy = Zj:l (gNjg§Vj +dn; ]\/fj)7 (4.13)
where gy ; is given in (4.11), and &Nj and &?V] are the null estimates of dy; and d?vj, with
dyit = {Hll,itv:tv (vf7 = 08)brits (07 — 08) P20t + Mo vy, (V57 — 08) P3.s ﬁ%i(vff - U(%)}lv
and dy;,;, = ZST(;;ZI dys. The coefficients ¢, ;; represent the diagonal elements of ®,,
r =1,2,3. Now, the asymptotic representation of the form (2.8) leads to Var[ngSAC,a(éN” =

QN aa — 29N 00Ty + TN Q00T +0(N). A test statistic fully robust against non-normality
thus takes the form:

rr N - Or Or T T Or T -1 N
Tegsac = (ijl g?\fj,a) (QN,aa - QQN,aGF/N + FNQN,GGFIN) ( ijl gNJ}oc)v (4.14)
where ﬁiﬂw, ﬁﬁv o> and ﬁﬁv go are the submatrices of ﬁﬁv

Theorem 4.1. Eztending Assumption 3.1 to {vy} and Assumption 3.2 to Xy, and keep-
ing Assumptions 3.3 and 3.4, if U is V' N-consistent, and +En,00 and + Var[Sgesac(0o)] are
positive definite for large enough N, then as n goes large (where T' can be large or fized),

. D
(i) Tresaclm, — X3 when the errors are normal;
g D .
(1) TegsaclHy — X% when the errors are either normal or non-normal.
4.3. Adjusted Score or Quasi-Score Tests

Following the same idea of Section 3.3, treating the elements of Vy completely indepen-

dent (recall: they are independent across ¢, but in general are only uncorrelated across ¢ unless

13This latter form is simpler and in fact more general as it can be applied to test other linear or nonlinear
constraints on parameters under normality, e.g., testing jointly homoskedasticity and lack of spatial effects.
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the original errors are normal), one can derive a potentially improved test of homoskedasticity
for the FESAC model. Referring to Sections 4.1 and 4.2 for the notation, define

EJV(A> = %{m]%)\Q)v%V](BN(A% A) - NL_Z;&?V(A>7 .7 = 17 e ’N}NXI’ (415>

where m;(\g) = Zévzl M3, ;o(A2). Define the set of adjusted concentrated quasi-scores at Ho:

Yy (A)@1(N)YN(A) — 7503 (Atr[@1(V)],

Stesac(A) = { Yiy(N)@2(0) Y v (A) — 52503 (A tr[@a(A2)], (4.16)
Ziy S (),

where ‘I)l(/\> = MN /\2)[BQN(/\2>G1N(/\1>B2_]%I(/\2>—GlN(/\1>IN], ‘I’Q(/\Q) = MN(/\2>[G2N(/\2>—
Gon (M) IN]Mpy(X2), and Gy (A) = +tr[Gyn(Ar)], 7 = 1,2. Then, one can easily see that
E[Spgsac(Ao)|m,] = 0. Similarly, at the true parameter values, we can write the first two com-
ponents of Sggsac(No) as VA @1V y + VI and V3 @5V y, where TT = My [BonGiyBoy —
GinIN]Xn(A20)B0, and ®F = &, — ﬁtr(@T)MN, r=1,2. Define g};(0),j =1,..., N, in
the same way as g*;(6) in (3.15), we have an AQS test for Hy for the FESAC model:
T N  ~x N Sk P ok Sk sk ok -1 N  ~x

Teesac = ( ijl g]\;j,a) [ijl (gNj,a - FNgNj,/\) (gNj,a - FNgNj,/\) ] ( ijl gNj,oc)’ (4.17)
where Iy = 23 2 EN A0 Ehvar = — 25 Stasaca(AV), and B3 3\ = =& Sppqica(An). These
derivatives can be easily obtained from (4.16), and are given in Appendix C. Numerical
derivatives may provide much simpler and yet quite accurate alternatives, as indicated in
Footnote 8 for the SAC model. When the errors are normally distributed, one may simply
use I | = Zjvzl ENjaBN; . and Ty = S & ;28N based on an IME corresponding
to an ‘adjusted likelihood’, leading to an adjusted score test, denoted by Tgggac for easy

reference.'* Again, to ensure good finite sample properties of the tests based on the AS or

QS functions, the adjusted estimator:

:\7V = arg{SF*ESAC,A(/\> =0} (4.18)

may be used in place of the regular estimator Ay as it is typical that SrEs A, /\(:\ ~N) # 0.
Again, the statistic Tgggac may not be fully robust against non-normality. Similar to the

developments leading to Tigsac, @ robust estimator of Q3 = Var[Sggsac(Ao)] is
O N =% =%, % J*o0
Oy = Zj:l(gNjgN/j + dedN]/‘>7 (4.19)

x T-1
wheredy ;, = { (UJ*VZ,it - U§> CReTe 8 T (UJ*VZ,it - U(%) P35 Zm‘CN,it>}7 and dy;, = Zs(#):l diy ;-
The coefficients ¢; ;, represent the diagonal elements of ®7, r = 1,2. A test statistic fully

' Alternatively, the generalized IME can be applied to give ZNJTV’Q,\ = E;VZI gNjaBnja and f]fV’,\,\ =

Eyzl g}k\m,\gﬁ\,j’,\, where gn; x is the A-component of gn; defined in (4.11), but Monte Carlo results show
that the early version works better in finite samples.
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robust against non-normality thus takes a similar form as TFggc:
N - o~ o~ = S O S\ —l =N =~
Tl%‘.;AC = ( Zj:l g?\;j,a) (Ql]“\*;,aoc B QQ%,aAF}(\/f + F}(VQIX;,AAF}(\//) ( ijl g?\fj,a)’ (420>

where QY ., QO ,,, and Q} ,, are the submatrices of Q7.

Theorem 4.2. Under the assumptions of Theorem 4.1, Tigsac|m, 2, X7 when the errors

D
are normal or non-normal; Tggsaclm, — X% when the errors are normal.

4.4. Time-wise heteroskedasticity and heterogeneity

As a panel data model may allow for a much richer structure than a cross-section model,
it is necessary to extend the above theory and method to a richer FESAC model to allow
for at least the following two additional features: (i) time-wise heteroskedasticity and (%)
time-specific fixed effects 7 in addition to the individual-specific fixed effects pu.

The time-wise heteroskedasticity can be introduced by simply allowing {v;;} to be inde-
pendent (0, 02h(z;7ita)) with the values of the heteroskedasticity variable z, ;; being allowed

to change with both i and ¢. In this case, (4.5) becomes,
E( ;{7 SRR 7:,/T—1>/( 7:{7 SRR 7:,/T—1> = 02(F7/“,T—1 ® In>HnT(a> (FT7T—1 ® In) = U2HN(Q>7

where Hy,r(a) = {h(z, ;) }. Thus, introducing time-wise heteroskedasticity induces time-
wise non-zero correlation among {v}} although the cross-sectional independence is kept.
Changes will occur on the expressions for the a-components of the score functions. However,
there will be no additional technical complications as under the null, Hy(«)|g, = In and
{vit} become independent across both ¢ and uncorrelated across t.

When the individual-specific FE p and time-specific FE 7 appear in the model additively,
and when the spatial weight matrices are row-normalized, another layer of orthonormal trans-
formation can be applied to wipe out the 7. Let F}, ,,_1 be the orthonormal eigenvector matrix
of J, =1, — %lnl% corresponding to the eigenvalues of one. For nx 1 vectors A, t=1,...,T,

where A,; can be Y,;, Vi, and a column of X,,;, define
* * _
(A 11> A1) = Fp A, - A1l Frir-1,

and W) = F7’L7n_1Wan7n_1. Let N = (n—1)(T — 1) and define Yy, Xy, Uy and Vy
accordingly. Then, the transformed model takes an identical form as (4.4). We have, when

heteroskedasticity exists along both cross-section and time dimensions,
E(VNV) =0*(Frr 1 ® F) 1 ) Hor(a) (Frr-1 ® Frpo1) = 0”Hy(a).

Clearly, at the null we again have Hy(a)|m, = In. Model estimation and the construction
of the tests proceed as above. Additional complications will occur in the derivation of the
non-normality robust tests, due to the lack of independence among the elements of V in

both cross-section and time dimensions when the original errors are non-normal. For the
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same reason, proofs of the asymptotic properties of these tests will be more complicated as

well. To save space, formal studies for the extended FESAC model are not pursued here.

5. Monte Carlo Study

Extensive Monte Carlo experiments are performed for assessing the finite sample perfor-
mance of the four tests proposed in Section 3 for the SAC model and the six tests proposed
in Section 4 for the FESAC model with individual-specific fixed effects. An important pur-
pose is to solicit accurate and reliable tests based on the Monte Carlo results, and to make

recommendations to practitioners.

5.1. General Settings

Cross-Sectional Case (CSC). We use the SAC model (3.1) which includes a spatial
autoregressive structure for the disturbance vector U,. The matrix X,, contains a constant
(1) and one regressor (z,). Throughout the experiment the parameters are set at Gy = 5,
61 =1, A1, Ao = 0.2, 0.8, and n = 50,100, 200 and 500. For the spatial matrices, we
assume that Wy,, = Wy, = W,,. We have taken the spatial matrix W,, proposed by Kelejian
and Prucha (1999), which is labelled “J ahead and J behind” with the non-zero elements
being 1/2J. Clearly, as J increases, the number of non-zero elements in the spatial weight
matrix increases, which is in turn increases the ‘degree’ of the spatial dependence. The
reported results correspond to J = 5. Moreover, following Baltagi and Yang (2013b), we
have also considered three other schemes for generating the spatial weights matrices: (1)
Rook contiguity, (ii) Queen contiguity and (i) Group interactions. In the last one, the
degree of spatial dependence grows with the sample size, which is achieved by relating the
number of groups k to the sample size n, e.g., k = n%?, see Lee (2004). Two Data Generating
Processes (DGP) are considered to generate the elements {z;} of the regressors z,,. The first
one (DGP1) assumes that {z;} are iid N(0, 1), whereas the second one (DGP2) considers
that there might be systematic differences in {z;} across the different ‘sets’ of spatial units,
see Baltagi and Yang (2013b) and Lee (2004). In this case, the ith value in the jth group,
{;} of z,, are generated according to {z;;} = (2; + €;;)/V/2 where {z;} ~ iid N(0,1), {e;;}
are iid N (0, 1), and z; and €;; are independent. This second scheme gives non-iid {z;} values
in contrast to the first one, or different group means in terms of group interaction, see Lee
(2004). The heteroskedasticity is generated according to o7 == o2 exp(azpi), where zy; is
taken to be x,;, o is set to 1, and o = 0,1, 2. If o = 0, the disturbances are homoskedastic.

For the DGP of disturbances, we assume that v,; = JQM_ei, where {e;} are generated from

v

either N (0, 1), or a chi-square distribution with 3 degrees of freedom.

Panel Data Case (PDC). The FESAC model (4.1) is retained. It includes a SAR
structure for the disturbance vector U,; and a regressor X,;:. The fixed effects are generated

by setting ju, = %Zthl Xnt + wy, where w, ~ N(0,1,). Two DGPs are also considered for
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generating the regressors’ values. In DGP1, we have z;; = z; + 0.1t, where {z;;} are iid
N(0,1). Thus the regressor includes a time trend 0.1¢. In DGP2, we first generate X,,; for
each t according to the DGP2 for the SAC model and then add a time trend 0.1¢ on each X,
t=1,...,T. Four individual dimensions are considered n = 50, 100, 200 and 500 combined
with the time dimension T' = 5. Throughout the experiment the parameters are set at § = 1,
A1, Ao = 0.2, 0.8. The spatial matrices are those that have been defined for the SAC model.
The heteroskedasticity is generated according to o2 = = 02 exp(azp;), where z; = % Zthl x},
o=1,and o = 0,1,2. If & = 0, the disturbances are homoskedastic. For the DGP of the

disturbances, we assume that v, j+ = 02 e;, where {e;;} are generated from either N (0, 1) or
) ni g

v
a chi-square distribution with 3 degrees of freedom.

The regressors are treated as fixed in all the experiments. Each set of results, correspond-
ing to a combination of the value of n, the values of A1 and A3, a DGP, a set of spatial weight
matrices and an error distribution. Results are based on 5,000 Monte Carlo replications.

Three nominal sizes of the tests are considered: 10%, 5% and 1%.

5.2. Monte Carlo Results

Cross-Sectional Case (CSC). Tables 1-4 summarize the empirical sizes of the four
tests: Tsac, Taac, T3ac and Tgpc, introduced in Section 3 for the SAC model, with Tables 1
and 2 corresponding to DGP1 and Tables 3 and 4 corresponding to DGP2. From the results,

the following general observations are in order:

(1) Among the four tests, the AQS test T§x. performs the best in the sense that its empirical
size is in general quite close to its nominal level. The score test Tgyc performs the worst,

much worse than the other three in terms of size;

(77) Non-normality can have a big impact on the finite sample performance of the tests —
size distortion can be much bigger when the errors are non-normal than when they are
normal, except for the AQS test T§;; where the size distortions are at an ‘acceptable’

level even when n = 50;

(i41) When errors are normal, the size of all tests converges to its nominal level as the
sample size n increases. When the errors are non-normal, the two robust tests converge
as expected. For the two non-robust tests, the score test Tsyc still has a large size
distortion even when sample size is 500, but the AS test 7g,; has size quite close to
its nominal level when n is large enough, showing that it is fairly robust against non-

normality;

(tv) Neither the values of spatial parameters nor the spatial weight matrices have a sig-
nificant effect on the finite sample performance of the tests. One exception, is under
normality, when sample size is not large, the last three tests can be slightly under-sized.

(v) The way the regressor was generated (DGP1 vs DGP2) does not seem to have a signif-

icant impact on the finite sample performance of the tests.
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Comparing the quasi score test Tg,c with the score test Tsyc (see Section 3.2), we see that
the simple changes on Tgyc not only offer robustness against non-normality but also lead to
huge improvements in its finite sample performance. Comparing the adjusted score test 7§
with the score test Tspc, we see that some simple adjustments on the concentrated scores can
lead to huge improvements in the finite sample performance of the test. Thus, a combination
of the idea leading to the AS test and the idea leading to the QS test, we obtain an AQS test
that not only is robust against non-normality but also has the best finite sample properties.

We have also studied the power properties of the four tests. The results (not reported
for brevity) show that the size-adjusted power of the two non-robust tests is comparable,
and that of the two robust tests are also comparable. Other Monte Carlo results include
the empirical mean and standard deviation of the test statistics under the null. In light of
the overall performance of the four tests, the AQS test T5). is recommended for practical

applications. In case where n is fairly large, the QS test and the AS test can also be used.
[Insert Tables 1-4]

Panel Data Case (PDC). Tables 5-8 show the empirical size of the six tests introduced
in Section 4 for the FESAC model: Trgsac, Trgsacs Lresac: Lresacs Lrmsac and Tpgsac, with
Tables 5 and 6 relating to DGP1 and Tables 7 and 8 relating to DGP2. The case of (A1, \2) =
(0.2,0.8) and the power of the tests are not reported to save space. Monte Carlo experiments
are also carried out under different values of 7', and the results (not reported due to space
constraints) reveal similar patterns.

Similar patterns are observed for the FESAC model as for the SAC model. In particu-
lar, the score test Trgsac can have a large size distortion when n is small and the errors are
non-normal, irrespective of the values of the spatial parameters, the spatial weight matrix
structures, and the way the regressor was generated. Similar patterns are observed for the
tests Trgsac, Lresac, and Tgpsac, though the size-distortions are on a smaller scale when com-
pared with the score test. The size of these four tests do not seem to converge to the nominal
levels as the large size distortions remain even when n = 500 with T = 5.

In contrast, the two fully robust tests Tggqac and Tggsac in general offer a great reduction
in size distortion. The empirical size of these two tests converge to their nominal levels as n
goes large where T' can go large with n or stay fixed. Hence the two fully robust tests are

both recommended for practical applications.
[Insert Tables 5-8]

A final discussion is given to the power of the tests. The proposed tests can be further
compared once the ‘size-adjusted power’ of the similar tests is computed (i.e., score vs AS, and
QS vs AQS). A small set of Monte Carlo results show that, once the tests are size-adjusted,
their power performance is similar. This is expected as the tests are derived from the same
set of ‘score’ functions. In this regard, the results on power are not reported to conserve

space, but are available upon request from the authors.
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6. Extensions

The methods considered in this paper have wide applicability. As discussed earlier (see,
e.g., Footnotes 4 and 10), the methods developed for the cross-sectional SAC model and
panel FESAC model can be extended to include spatial Durbin terms, higher-order spatial
lags and higher-order spatial errors. Also, the SAR error in the model can be replaced by the
spatial moving average error with simple changes in the relevant expressions. The methods
can also be extended to spatial dynamic panel data (SDPD) models. The former extensions
are straightforward, but the latter is not, due to the dynamic nature of the SDPD model. In
this section, we will focus on the fixed effects SDPD model with short panels studied recently
by Yang (2018a). We demonstrate that the OPMD method provides a consistent estimator of
the variance but the traditional methods do not. This is due to the unobserved past history
of the process (see Su and Yang, 2015). This point has been stressed throughout the paper
for the usefulness of the OPMD method. The SDPD model (or the dynamic FESAC model)

takes the following form:

Ynt = pYn,t—l + A1‘/Vlnyvnt + A2‘/VQnYVn,t—1 + Xntﬂ + bn + Untu (61)
Unt = X3W3,Upt + Ve, t=1,2,...,T.

which extends Model (4.1) by adding the dynamic term pY;,;—1, and the space-time lag term
XoWop Yy 1—1. It extends the model considered in Yang (2018a) by allowing for cross-sectional
heteroskedasticity, i.e., Viy ~ (0,0%H,(a)),t = 1,...,T. Hence, a test for cross-sectional
homoskedasticity corresponds to the test of null hypothesis Hy : a = 0.

The model specification implies that the data is available from ¢ = 0. First-differencing

(6.1) to eliminate the fixed effects p,,, we have

AYnt = pAYn,t—l + Alu/vlnAYvnt + A2W27LAY7L7t—1 + AXntB + Auta (62>
AUp = W3, AUpt + AV, t=2,...,T.

When T is fixed, the model (full or null) cannot be estimated consistently based on the
conditional likelihood, conditional on the initial difference AY,,;. Yang (2018a) proposes an
M-estimator for the null model that is consistent and asymptotically unbiased whether T' is
fixed or grows with n. The M-estimator is obtained by solving a set of unbiased estimating
equations obtained by modifying the conditional score functions. This method can readily
be extended to the SDPD model with cross-sectional heteroskedasticity H,, ().

Stacking the vectors and matricesin (6.2) fort = 2,...,T,ie., AY Ny = {AY),, ..., AY .},
AYy 1 = {AY),,.. .,AYAT_I}’, and similarly for AXy and AVy. Let Wy = I 1 ®
Win, = 1,2,3. Define By, (\,) = I, — AW, 7 = 1,3, and Bay(p, A2) = pl, + \oWa,. Let
B.n(Ar) = It—1 @ Bpp(Ar), 7 = 1,3, and Ban(p, A2) = Ir—1 ® Ban(p, A2). Let Z,; be the
diagonal matrix formed by the jth column Z,,; of Z,,, where Z,, is the n x k matrix of the k het-
eroskedasticity variables. Let A = (A1, Ao, A3)" and 0 = (3,02, p, ). Let Cy = Cp_1 ® I,
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where Cr_y is a (T'— 1) x (T' — 1) constant matrix defined as

2 -1 0 0 0 0

-1 2 -1 0 0 0
Cro1 = :

0 0 0 -1 2 -1

0 0 0 0o -1 2

If V,,; are independent N (0, 0?H,,(c)), then AVy ~ N[0,0%Cr_1 ® H,()]. From this,
one can easily obtain the conditional (quasi) Gaussian likelihood for (6, «), given AY,,;, and
the conditional (quasi) Gaussian score function. Extending the results of Yang (2018a), we
obtain a set of AQS functions for the full model.’® To construct a test of Hy : a = 0, we have
the AQS functions at Hy,

7 AXBY v (A3)CR AV N (3, 6),

507 AV (8,8)C AV N (B,6) — 505,

LAVY(8,6)Cy'Bsn(A3)AY y_1 + tr(Cy'Dy,—1),

Spresac(0) = LAV (B,6)Cy'Bsn (A ) WinAY y + tr(CR'DyWiy), (6.3)
LAVY(8,6)Cy'Bsn (As) WanAY y 1 + tr(Cy' Dy -1 Wan),

57 AV (8,0)(Crl, ® G, (A3) AV N(B, 6) — (T — 1)tx(Gsn(As)),

| 22 AV(3, O)(Crly ® Znj) AVN(B,8) = (T = 1) 210, i =1,.. .k,

where AVN(ﬂ, 5) = B3N(/\3>[B1N(/\1>AYN — BQN(p, /\2)AYN7_1 — AXNﬂ], (5 = ((5, /\/>/, the
unknown constant /(0) in the a-components of SSpgsac(6) is dropped, Ga,(A3) = Wa, Byl (A3),

I, 0, ... 0, 0
Dy = | n T 7 By (M),
ég—mn - B,)?, 35—5(In - B,)?, . én —2I,, In
B, —2I,, I, .. 0
and Dy = .(In - Bn)Q’ Bn 2 . 0 Bl_]%/(/\ﬂa
éf—S(In —B,)?, 35—4(In - B,)?, . én —2I,

and B,, = B,,(p, A\1, A2) = Bl_nl(/\l)Bgn(p, A2). Note that B, and hence Dy, 1 and Dy depend
on (p, A1, A2). The same notation will be used when they are evaluated at the true parameter

values (po, A0, A2g). For other parametric quantities, e.g., Bix (A1), shorthand notation will

15S0lving the resulting AQS equations leads to consistent and asymptotically unbiased estimators of the full
model. However, the tests to be developed depend only on the estimation of the null model, and thus the the
estimation of the full model will not be pursued in detail.
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be used when evaluated at the true parameter values, e.g., B1x for Biy(A1g).
Now, from Lemma 3.2 of Yang (2018a) we have

AYyNy = RAYnl—i-n—l-SAVN, (64)
AYN7_1 = R_lAYnl—l-n_l +S_1AVy, (65)

where AY ;1 = 17 1®AY,,1, R = blkdiag(B,, B2, ..., B~ R_; = blkdiag(I,, By, ..., BL72),
n=BB;'AXf3, n-1 =B_1B;'AXf3,, S=BB;'B;',S_; =B_B;'B;",

I, 0 .. 0 0 0 0 .. 0 0
B, I, .. 0 I, 0 .. 00
B=| . : ... |, and B, = : .
BI=2 pI=3 ... B, I, BI=3 pI=4+ ... I, 0

With (6.4) and (6.5), one immediately obtains

I, AV y,

AV @AV y — 55,
AVNEIAY ) +TTHAV Ny + AV BAV y + tr(Cy' Dy 1),

Spresac(00) = § AVNTLAY, + AV Y + AV 83AV ) + tr(C R DhWiy), (6.6)
AV U3AY 1 + AV N + AVAB,AV N + tr(CR'Dy 1 Way),

AV @AV y — (T — 1)tr(Gs,),

AVN®5 AVN — (T = 1) 2010, j=1,...k,

where
1 ~—1 1 ~—1
Hl:a_gCN BsnyAXp, <I>1:QCN,

M, = ULSCJ_VIBSNU—M P, = ULSC]_VIBSNS_M

I3 = JLSC]_VIBSNWINUa P3 = ULSCJ_VIBSNWWS’

Iy = ULSC]_VIBSNW2N77—17 @, = ULSC]_VIB:gNWQNS_l

¥, = U—ISC]_VIBSNR—I; ®;5 = ﬁ(ci_“il ® G3,,),

U, = U—ISC]_VlBgNwlNR; P54y = ﬁ(C;L@an),j: L.,k
U3 = J—%C]_VIBSNW2NR—17

The expression for SSgpeac(fo) given in (6.6) shows clearly that the usual plug-in method for
estimating X = Var[SSegsac(60)] does not work as the analytical expression of ¥y involves
the unobservables contained in AY,,1, n_1 and . We show that an OPMD estimate of 3
can be derived when T is fixed, following the methods of Yang (2018a).

Now, for the general matrices II, ® and ¥ appearing in (6.6), denote by II;, ®;; and
U, their submatrices partitioned according to t,s = 2,...,T. Define ¥, = ZSTZQ Wy,
t=2,...,T, 0 = Uy, (BsByo)~!, AY? = B3gB1gAY,y, and AYY, = U, AY,. Let {Go,}

be the increasing sequence of o-fields generated by (vji,...,vjr,j = 1,...,4),i = 1,...,n,
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n > 1. Let F,, o be the o-field generated by (vg, Ayp), and define F,, ; = Fy, 0 ® Gp ;. Clearly,
Frji—1 C Fni, 1., {Fni}, is an increasing sequence of o-fields, for each n > 1. Using
Lemma 3.3 of Yang (2018a), the linear, quadratic and bilinear terms appearing in (6.6)
can all be written as, I'AVy = > g1, AVy®AVy = > g9;, and AVTUAY,; —
E(AVUAY 1) = > g3, so that {(g1;, 92is 93i), Fn,itie; form a vector MD sequence,

where

g = Yo Avy, (6.7)
92i = ZtT:g(AvitA&t + Avy Avy, — 02ydi), (6.8)
g3 = AvyuAG+ 05 (AvyAys; + o)) + 3004 Avie Ayt (6.9)

{A&;} = AG = ZSTZQ(Q)?;{ + OL)AV,s, AV, = ZSTZQ ®¢ AV, {d;s} = diagonal elements of
Cr_1®, {AG) = AC = (0% + ©H)AY?S, AY,?, = B3, B1,AYy, and diag{©;;} = 0%

Finally, for each II,,r = 1,2, 3,4, appearing in (6.6), define g1,; according to (6.7); for
each ®,,7 = 1,...,5+ k, define go,; according to (6.8); and for each ¥,,r = 1,2, 3, define
g3ri according to (6.9). Let

8ni = (114> 921i> 9310 + g12i + G226, g32i + 913 + 92305 933i + G14i T G24ir G250, - - > Ga(54k)i) -

Then, SSeesac(60) = D iy 8ni, and {gn;, Fni} form a vector MD sequence. It follows that
3N = Var[SSepsac(fo)] = > E(gnigl,;)- The ‘average’ of the outer products of the esti-
mated g/,;s at Hy, i.e., % Yo 8nigl;, gives a consistent estimate of %EN. For the same

reasoning, we obtain a robust test statistic

T[?FESAC = (Z?:l g;m‘,a) [Z?:l (gni,a - ngni,G) (gni,a - ngni,G)/] - ( ?:1 gni,a)a (61())

where fN = iN,aei]_V}gga iN,aG = _%SDFESAC,a(§N>; and iN,ea = —%SDFESAC,Q@N)- These
derivatives can be easily obtained from (6.3). The fy is the M-estimator of Yang (2018a) for
the null model, which solves Sprgsaco(¢) = 0. Under regularity conditions of Yang (2018a)
and additional conditions on Z,, given earlier, one can show that under Hoy, T{ppsac L, X
when the errors are normal or non-normal. We note that even when the errors are normal,
the test does not have a simplified version as for SAC or FESAC model. In this case the AQS
function is not the true score function so that the information matrix equality (IME) does
not hold, and the generalized IME cannot be applied as the true score function is unknown.

Tests for homogeneity can be developed in the same manner for the several interesting
submodels, i.e., models obtained by dropping some A terms. For details on the M-estimation
of these submodels, see Yang (2018b).

Further Adjusted Test. To improve the finite sample performance, the test given
above can be further adjusted by working with the concentrated AQS function with 3 and
0? being concentrated out. The constrained M-estimators of 3 and o2 given 6§ = (p, \')’ are
An(6) = [AXy (A3) O AX N (A3)] T AX Yy (A3)C ' Ban (A3) Bin(A3) Y —Ban (p, Ao) Y v 1),

and 6% (6) = LAV (§)CH AV N(3), where AV () = AV n(Gn(6),8). Substituting Gy (6)
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and 6%(8) back into the last five components of the AQS function in (6.3) gives the concen-
trated AQS functions of § and « evaluated at Hy:

§1§E5Ac(5 ) -

\

It is easy to

;AV
N

O
RO

AV’ () CHBan(A3)AY N 1 +tr(Cy'Dy 1),

AV’ () CH'Bsn(A3)WinAY y + tr(C' Dy Wiy),
AV’ () CA'Bsn(A3)WanAY n 1 + tr(Cy' Dy, -1 Wan),
0)(Crty ® G, (X3)) AV N(6) = (T = 1)tr(Ga(A3)),

w(
VOO, ® 20) AV N(S) — (T = 1) Z0 10,5 = 1,.... k,

(6.11)

see that Cy/2AV)(6) = MyCRy/*Vy and 6%(5) = LV Cy'Vy,

where C}f is a asquare-root matrix of Cy and My = Iy — AXN(AX’NAXN)_lAX’N with
AXy = C]_\,1/2B3NAXn. At the true 9y, we have

(50>SDFESAC(5O>

where M?V = C]_Vl/2MNC]_Vl/27 Hp = %UA(C]_VIDN,—I% Xy = Wtr

AV MSBsvAY y 1 + 1, AVAMS, Vi,

AV MSBsyWiyAY y + 11y, AVAMS,Vy,

AV NMBsnWanAY v 1 + pun, AVIMQ Vi,
LAV MS, (Cr1 ® G )MGAV Y — 110, AVAMS, Vi,

\

%tIA(CJ_\[IDN,—IWQN% Mg = %tr(ng(A:g)), and MOC]' = %Z;Ulnuj = 17 c '7k'
Using the results of Lemma 3.1 of Yang (2018a): E(AY y,_1AVy) = —agDM_lBg]%, and
E(AYNAVy) = —02DnBjy, one can easily find 1y = E[5%(50) S5gesac(d0)] with elements,

s = odtr(M3BsyDn, _1B3y — 1,Cy®1),

i, = odtr(M3BsyWinDyB;y — i, Cy®2),
1y, = ogtr (M3 BsyWayDy 1Biy — 102, Cn®s),
13y = O5kr t1(CnBa),

ph, = 0B, tr(CN®ayy), G=1,...,k,

leading to unbiased AQS functions at dg:

AVNWIAY 1 + T AV Y + AV @AV Y — 15,
AVNTEAY 1 + T AV y + AVABSAV Y — 415,

presac(00) = ¢ AVAWIAY y + YAV + AV @AV Y — 115,

where

AVR®IAV Yy — 415,
AVN®; AV — i, j=1,....k,

27

SAVAMY (Cro1 ® Z,))MYAV N — 1o, AVAMQ Vi, j=1,...,

(CN'DNWiN), pa, =

(6.12)



M =M3Bsyn-1, )= 5Cy BavRoy, T =My BsnS_1 + 1, My,

II5 = M{BayWiyn, P35 = O.LSC]_VIBSNWINRa 5 = MYB3nWinS + py, MY,
II5 = M BayWann_1, ¥5 = ULSC]_VIBSNWZNR—I; ®3 = MYBasnyWanS_1 + py, M3,
@} = 1M3/(Cr-1 @ G5, ) MY, — My,

;= sMR(Cro1 © Z,)) MYy — po, M3y, =1, k.

A potentially improved test statistic can be constructed based on Sgggsac(do) in an iden-

tical manner as for T pggac:
~ ~ Tk~ ~ Sk ~ */7—1 ~
Toresac = ( i1 g;;;,a) [ ?:l(g;;i,a - F}kvg:u‘,&) (g:u‘,a - Ffvgni,é) ] ( ?:1 g:n,oc)7 (6.13)
~ ~ 1l = P - ~ -
where T = 3% (53N o5 Zhas = — a5 SorEsaca (O8), and B3 55 = — 5 Sieraiq 5(On). These
derivatives can be easily obtained from (6.11). It can be shown that under Hy, T3fgsac L, X

whether the errors are normal or non-normal. Similarly, improved tests can be developed for

various submodels discussed in Yang (2018b).

7. Conclusion

In this paper, we have developed new diagnostic tests for homoskedasticity in cross-
sectional and panel data spatial econometric models. We have also suggested general method-
ologies to robustify these tests against non-normality and finite sample dimensions. Theoreti-
cal asymptotic properties of the testing procedures are formally examined whereas their finite
samples are investigated through Monte Carlo experiments. We show that our procedures
can easily take into account the time-wise heteroskedasticity and a more complex structure of
heterogeneity, i.e. time and individual fixed effects. In addition, these homoskedastic testing
procedures can also be extended to include spatial Durbin terms, higher-order spatial lags,
higher-order spatial errors and SDPD models. The former extensions are straightforward, but
the latter is not. This is due to the dynamic structure of the SDPD model. We have demon-
strated that the OPMD method provides a consistent estimator of the variance. Furthermore,
our Monte Carlo results show that our testing procedures perform well in the context of finite
samples and non-normality of the disturbances, especially for the robust versions of the tests.

Moreover, the tests can be repeatedly run with different choices of the heteroskedasticity
variables. In this sense, our tests provide tools for identifying the ‘source’ of heteroskedas-
ticity: the heteroskedasticity variables with which the test is rejected. In this case, one may
proceed with a heteroskedastic model by ‘specifying’ a form for the unknown function h(-),
e.g., the popular exponential form, or non-parametrically estimating it. This is an important
point to overpass the fact that specific procedures taking into account heteroskedasticity are
not necessarily available. Last, an interesting extension of these testing procedures could be
to apply them to nested and non-nested multi-dimensional panels. This is part of our ongoing

research agenda.
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Appendix A: Some Basic Lemmas

The proofs of the main results depend on the following lemmas. The results state explicitly
that the degree of spatial dependence may grow with the sample size, i.e., elements of W,.,,, r =
1,2, are of uniform order O(h;;!) where h,, is such that lim, .o (h,/n) = 0. See Lee (2004).

Lemma A.1l. (Kelejian and Prucha, 1999; Lee, 2002): Let {A,} and {B,} be two se-
quences of n X n matrices that are uniformly bounded in both row and column sums. Let Cp,
be a sequence of conformable matrices whose elements are uniformly O(h;'), where {h,} is

a sequence of constants bounded or divergent with n. Then,

(i) the sequence {A, By} are uniformly bounded in both row and column sums,
(ii) the elements of A, are uniformly bounded and tr(A,) = O(n), and
(iii) the elements of A,C, and C,A, are uniformly O(h,').

Lemma A.2. (Lee, 2004, Appendiz A): For Wy, and B, (\.), r = 1,2, defined for the
SAC model, if |Wyn|| and || B at true Ao are uniformly bounded, where || - || is a matriz

norm, then ||B,L(1,)| is uniformly bounded for I, in a neighborhood of Ao.

Lemma A.3. (Lee, 2004, Appendiz A): Let X,, be an nxp matriz. If the elements X,, are
uniformly bounded and lim,, %X;LX” exists and is nonsingular, then P, = X, (X! X))~ ' X/,

and M, = I,, — P,, are uniformly bounded in both row and column sums.

Lemma A.4. (Lemma B.4, Yang, 2015, extended): Let {®,} be a sequence of n X n
matrices that are uniformly bounded in either row or column sums. Suppose that the elements
On,ij of ©p are O(h,Y) uniformly in all i and j. Let Vi, be a random n-vector of id elements
with mean zero, variance o® and finite 4th moment, and b, a constant n-vector of elements
of uniform order O(h;lﬂ), where hy, is such that lim, .~ (h,/n) = 0. Then,

(i) E(Va®@nVa) =O(%), (i1) Var(V,®,V,) = O(#-),
(i) Var(Vy®n Vi + b, Vi) = O(3%), (iv) Vi@V = Op(7%),

N[

(0) Vi@,V — E(Vi®,V,) = Op((2)7),  (vi) V/®yby = Op((

n

)%),

Lemma A.5. (Lee, 2004, Appendiz A): Consider the linear-quadratic form of V,, =

(Un1, Un2y -« oy Unn) s Qun = UL,V + V@, V,,, where {vy;} are iid with mean zero and variance

Tl

o2, {®,} is a sequence of symmetric matrices with row and column sums being uniformly
bounded in absolute value,'® and {b,} is a sequence of constant vectors with its elements
being uniformly bounded. Let U%n be the variance of Q. Assume that U%n is O(n/hy,) with
(hn/n)aén being bounded away from zero, the elements of ®,, are of uniform order O(h,'),
the elements of by, are of uniform order O(h;lﬂ), and the moment E(|v,|*T2°) exists for
some 6 > 0. If limn_,oo(h}bw/(s/n) =0, then (Qn, — o*tr(®y,)) /00, 2, N(0,1).

181f ®,, is not symmetric, it can be replaced by %(@n + @), as V@, V, = %(V,{@nvn + (Vi ®,V4)").
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Lemma A.6. Let Q, = (Qrpn,7 = 1,...,m), where Q. = b.,,Vyy + V) ®,.,V,, with V,,,
brn and @, satisfying the conditions of Lemma A.5. Write ®,, = ®% + &L + &%  the sum

of the upper triangular, lower triangular, and diagonal matrices of ®,. Define

_ . . . 2 2 .. _
9rni = vmfrn,z + brn,zvm + (vm — 0 )¢Tn,zz; r= 1, e, My

where {&m i} = &n = (P}, + @fnn)Vn. Let gni = (9rn,ism = 1,...,m)". Then, {8ni, Fni} form
a vector martingale difference sequence with respect to the increasing o-fields F,; generated
by {vn1,- -+, vni}, such that (i) Qn — E(Qn) = Y2111 8nis (i1) Var(Qn) = >°1L; E(gnign),
and (iii) "2 [377 ) guig,; — Var(Qn)] = 0p(1).

Proof of Lemma A.6: We have for each Qj,,j =1,---,m,

Qrn — E(Qrn) = b1 Vo + Vi@ Vi — 0%t1(®1n)
= b, Vo + V(@4 + ®L + 4 )V, — o2tr(D;)
= V(W + @fnn)Vn + b,V + VA‘I’;‘ann — 02tr ()
= V)&, + 0.,V + VA‘I’;‘ann — 02tr(®,)
= i1 [Vni&rnsi + brnivni + (V3 — 02)brnjiil = D1 Grni-
As & is Fpi—1 measurable, E(gjni|Fpni—1) =0 for j =1,--- m. It follows that {gn:, Fni}
form a vector MD sequence with respect to Fp,, and that Var(Q,) = > 7", E(8.g,,), as

{gni} are uncorrelated. It left to show (iii). It is easy to show that, for r,s=1,--- m,

COV(an, an) = 204 ?:1 ?:1 ¢7“n,ij¢sn,ij + 02 2?11 brn,ibsn,i
+(M(4) - 3) Z?:I ¢Tn7ii¢sn7ii + M(S) Z?:I (brn,z¢sn,ii + bsn,i¢rn,ii>u

where p(3) = E(v3,) and uY) = E(v?,). This gives, for r,s = 1,--- ,m,

Z?:1 gm,iggn,i - COV(ana an)
= Y i1 (V2 ibeni — 202 Y51 i Drnijbenis) + 2oim1 [Vpi (Erniibsni + Esnibrni)]

+ Z?:l[(vfm‘ - U2vni>(§rn,i¢sn,ii + fsn,i¢rn,ii>] + Z?:l (’U72m - U2>brn,ibsn,i

+ Z?:l (vfm - M(3)>(brn,i¢sn,i + bsn,t‘@“ml‘)

+ 2 (w3 = p® = 20%(02; = 02))brmiiBsniis
where each of the six terms can be shown to be the sum of one or several MD sequences.
Under Assumptions 3.1-3.4 and using Lemmas A.1-A.5, the conditions for the weak law of
large numbers (WLLN) for martingale difference arrays in Davidson (1994, p. 299) can be
verified, leading to %"[Z?:l 9rn,iGsn,i — Cov(Qrn, Qsn)] = 0p(1), for r,s = 1,- -, m. Tt follows
that %[Z?:l gm‘g;u‘ — Var(Q,)] = Op(1>~17 u

17Details are lengthy and are made available from the authors upon request. Under an additional condition

that the smallest eigenvalue of Var(Q,,) is strictly positive, the joint asymptotic normality of the LQ vector,
Qn, can be established using Lemma A.5 and the Cramer-Wold devise.
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Appendix B: Proofs for Cross-Sectional SAC Model

Proof of Theorem 3.1: To show T5,¢|m, 2, X%, it suffices to show
8) 2=Sgic.a(fn) L N(Op, limy—co 27,,), where T, = Var[Sgyc o(6n)]-
b) LY gui60)gl(60) — Var[Sgucl6o)] = op(1);

€) 7 2 izt [8ni&n; — 8ni(00)8r;(60)] = 0p(1);

d) ( naf — Xm,a0) = 0p(1) and %(inﬁg — Yn.00) = 0p(1).

To show (a), consider the score function at the null S§,.(f) given in (3.6) and simplified
at the true 6y to (3.7). Under Assumptions 3.1-3.4, it is easy to show by Lemma A.1 that

®,,r = 1,2,3, defined below (3.7) are uniformly bounded in both row and column sums

1
n
1
n

in absolute value. Thus, the CLT for LQ form given in Lemma A.5 is applicable to give
asymptotic normality for the middle three LQ forms in (3.7). The asymptotic normality of
the first and last components of (3.7) can be proved by verifying the conditions of Linderberg-
Feller CLT. Finally, Cramer-Wold device leads to the asymptotic normality of Sg,:(6p).
Now, consider the a-component of Sgy(o), Ssc. o(0) = 31| 8nio evaluated at 0,,. The
joint asymptotic normality of S§,c(6p) and the asymptotic representation of the form (2.8)
applied to SSAC,a(9~7L> show that T), = Qp aa — 2 a0l + TnQneel, + o(n), and that

\/LﬁsgAC,a(én> ~ N(Ok, 11mn—>oo %Tn>; (Bl)

where I, = ZmagZ;lee, and Qy, aa, Qn.00 and Qy, gg are the submatrices of €2, = Var[Sg,¢(6o)].

The result in (b) follows from Lemma A.6. To show (c), it is easy to see that -2;g,,;(0y) =
O,p(1) for all i. A Taylor series expansion of g,; = gm(ﬁ ) at 6y, and the \/n-consistency of 0,
lead to the result (c). The results in (d) are proved in a similar manner with ¥, ¢ and %, g¢
corresponding to either the expected information matrix or the negative Hessian matrix, and

imag and inﬁg being their plug-in estimates. Finally, define the estimator of T,, as,
Yn - Z?:1 gni,ag;m‘@ - 2(2?:1 gni,ag%iﬁ)f% + fn(Z?:1 gni,eg;iﬁ)f%
- Zzlzl (gni,a - fnéni,@)(éni,a - fngni,9>/~
With the results (b)-(c), it is easy to show that %(Yn —T,) = o0p(1). Positive definiteness of

%Yn (for large enough n) follows from the positive definiteness of ¥, g9 and 2, stated in the

(B.2)

theorem, completing the proof of the result for the robust test.
If V, is normally distributed, X, o6 = Qnap and X, 09 = Qy09. Hence, I',, can be
consistently estimated by (311 8ni.a8l: o) (D or 1 &ni o€ g) ', leading to the test Tgac and

the second part of the results in Theorem 3.1. [ |
Estimation of 3, .9 and X, g9. The negative Hessian matrix, HY o = % sac.a(0),
for estimating ¥, o0 has elements: Jx[Vi(8,)) © Z,]'Xn(\2), 522, diag(Va(B8, V(5. A)),

L Z0,[(Ban(A2) W1nYn) © Vi(B, A)], and 5 2, (Wi Bin(A1) Yo — Win X0n8) © Vi (B, A)]; and the
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negative Hessian matrix, H° ,, = —-2,52 0), required for estimating ,, gg equals:
g » 1y, 00 36" Psac,o\V), r'eq g 2mn,600 €4

Hn,ﬁﬁa #X;L ()\2)‘/n (ﬁa )‘)a #X;L ()\2)B2n ()\2)Wlny;u #X;LAH ()\2)Un (ﬁa )\1)
~, %H‘/n(ﬁ? )‘)“2 - #a ﬁv;;(ﬁa A)B27l()\2)Wanl7 %‘/;)/‘(57 )\)G2n()\2)‘/n(ﬁa )‘)
~ ~ %HB%()Q)WMYH‘P +tr[G%n()‘1)], %K:W{HA"()\2)U”(B? A1)
~y ~y ~y #HGQU()Q)‘/H(B’ )\)“2
where ® denotes the Hadamard product, || - | the Euclidean norm, and diag(-) forms a

vector by the diagonal elements of a square matrix; H,, gg = %X;L(/\Q)Xn(/\g), An(Ne) =
Wéntn(/\2> + Bén(/\gﬂ/vgn and Un(ﬂ, /\1) = Bln(/\1>Yn — Xnﬂ

Proof of Theorem 3.2: Similar to the proof of Theorem 3.1. [ |

Estimation of Xy oy and ¥¥ . To facilitate the derivations of the Hessian matrices

required for estimating ¥* | and X7 ,,, write the first two components of (3.14) as

V() 21(NYa(A) — 22500 (At @1(N)] = Y, By, (M) M (A2) Win Y,

_m

—5trGn(A1) = XDy (A2) X Cr(A2) G 1 (A)]Y B, (M) My (A2) B (A1) Yo,
Vi (N @2(N)Y,(A) = 250 (M) tr[@2(N)] = Y, B, (M) M, (A2) Bin (M) Yy

n—p N

— 5 tr[Gan(N2) = By, (A2) Wan Xn Dy (A2) XY, B, (M) Ms (A2) Bia (A1) Yo,

where Cy,(A2) = Bj,, (A2)Ban(A2), Dy = X/ Cr(A2) Xy, M(N2) = B),,(A2) My(A2) Ban(A2),
and M*(A2) = B),,(A2) My(A2)Gan(A2) My (A2) Bap (A2).

To simplify the presentation, we write B, = B, (\.),r = 1,2, G, = Br(\), 7 = 1,2,
Cn = Cn(X2), Dy, = Dyp(Na), My, = My, (N2), M = M7 (\s), and M} = M} ()\a). Let C,, M
and M;;* be, respectively, the derivatives of C,,, M and M*, and D,, the derivative of Dt

with respect to A2.'®. The negative Hessian matrix, H | = —% sac.a(A), takes the form
[ S (BRI, + WM B
ma = 1ot [ % 1 TR Ve
22n [q2i T n—p YnBlnMnBlnYn)}(nxl)’

where gf = —2V,(\) © (BynWinYa), ¢5 = [ — quﬁii(/\) + minﬁni(A”(nXl)a wy =
(M, ©Q)tn, ¢ = WananlX;LBén+BannD;1X7’LW2n—BannDnX;LBén, wy = =2V, (\)®
The negative Hessian matrix, H¥,, = —%S;AC 1(A) has the elements:
Hinn, = YaWLMiWiYe + 5 t0(GR, — X, D X0 CGR) Y, By, M B Yy,
— Lo t2(Gin — XDy X0,CoGrn) Y (B, M Wiy + W1, M;: By, Y,
—Y) B}, MW, Y, + = t1(Gr, — X, Dyt X1, C, G, Y, B, M By, Y,

]H[;kLA1>\2 = —-p
— i (X Do X}, CnGin + X0 D' X1,CoGrn) Yy By, My Bry Yo,

_(BénW%L + W2/nB?7L)7 Dn = —D;anCnX;LD;l, M;: = Cn - Can‘Dng;LCn =+

BWe have .C" = - .
.+ CnXnDp X, Cy, and M* can easily be expressed in terms of Cy,, D, and M.

C7LX7LD7:1X7/LC7
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Hy 0, = —Yu (B, My Wi, + Wi, M3* By, )Y,
o 6r(Gan — By Won XDy ' XY (B, MW, + Wi, M; i)Y,
Hisone = YaBi My BinYn — piste(Gon — W3, Bop X, Dt X)), B, My Bin Yo
—tr(G3,, + W3, Wan X D X, — Wi, Bon XDy X,) Y, BY,, Myt By V.

Appendix C: Proofs for Panel FESAC Model

Proof of Theorem 4.1: To show Trgsac|#, L, X% when the original errors {v; } are iid
normal, with the help of Lemmas A.1-A.6, using the fact that the elements {v}} of Vy are
totally independent (iid normal), and referring to the increasing o-fields F;n generated by

(1, ,v}), one can easily show, in the same way as the proof of Theorem 3.1, the following:

(2) = Seasac.alf) L N(Op, limy—oo =T, where Ty = Var[Sgzsac.a(0n)].
(b) % Zjvd gNj(e())g?Vj(eU) - %Var[SEESAch)] = op(1);
() % 200 [BNj&l; — 85 (60)gly;(60)] = op(1).

The result, Tresac|m, L, X%, thus follows when {v;} are iid normal.

The proof of Tgggac| 2, X7 is much trickier when the original errors {v;} are allowed to
be nonnormal (though still iid), since in this case it is not guaranteed that {v;} will be again
totally independent. It amounts to show that (a)-(c) still hold when {v;;} are iid nonnormal,
and that (d) %(2]\[7&9 — 2]\[7&9) = Op(1> and %(2]\[799 — 2]\[799) = Op(l).

To show (a), noting that Viy = (F7. 7y ® I,)Vir, the components of the score function
Sgesac(0o) given in (4.10) can all be written as linear, or quadratic, or linear-quadratic forms
of V,,7, a vector of iid elements. Lemma A.5 and Cramer-Wold device lead to the asymptotic

normality of \/—INS{?ESAC(GO), and hence the asymptotic normality of \/_INSEESAC,a(éN>'
To prove (b), note that Sgggac(f0) = Z;VZI gnj(bo) = Z;VZI gn;, where

Iy 07,
vitij + (vF* = 05) b1 ,
gNj = | i + (V% — 08)¢2; + I, (C.1)
viEsj + (v — 08)daj,
L 21221(1)]*2 - Ug)a

where {&.} = & = (@Y + ®L)Vy, and ¢,; are the diagonal elements of ®,,r = 1,2, 3.
All quantities are defined in (4.10), and 7(0) in the last element of gy; is dropped as it is

canceled out in the final expression of the test statistic. We have,

Var|[SEgsac(6o)] ZVar gN;) + ZZ Cov(gn;, 8Ne)- (C.2)
J=1 t#£j5

33



Let ® denote the Hadamard product. A vector raised to rth power is operated elementwise.
Let f; be the jth column of Frr_1 ®1,, and q,; be the jth column of (Frr_1 ®I,)(®%+®Y),
for j = 1,...,N. We have v; = fiV,r and &; = q;;Var; 07§ = V) p(f5q;;)Var; and
v 2= V%T(fjfj)VnT. Using the following easily proved results:

Cov(cyVur, VL AV, 1) = u(()g)c’NaN, and
Cov(V! p ANVyr, V! - By Vor) = (u$Y — 308)alyby + odtr[An(By + BY)),

for conformable matrices A and By and vector ¢y, with ax and by being the vectors formed

(3) (4)

by the diagonal elements of Ay and By, respectively, and 5 and p5” being, respectively,

the 3rd and 4th moments of v;;, we have the key elements in Cov(gn;, gne):

Cov(vj,vefrg) = u(()g)f]((fe(DqTé)a
Cov(vj,v ) = (S)f{(fZQfé%
Cov(vi&s, vi&re) = (ub) = 308d)(E; © ary) (£ © are) + otr((Bal;) (Bl + aret))],
Cov(v?, &) = (S = 308) (£ © 1)/ (Fr © are) + odta[(E]) (Foatly + cref))],
Cov(v?,0/2) = (u —308) (5 © £ (£, © £2) + ot (58] (£f] + £.£))],

r=1,2,3. It is easy to see that (i) £if, = 0 for all j # ¢, (i7) fiq,, = 0 for £ < j, and
(iii) f; © qr; = 0.1 Thus, all terms vanish except fi(fe © fr) and (f; © £;)'(f, © £), and

subsequently all covariances vanish except,

Cov(vf,v72) = p Ei(f, © f) and Cov(v2v;?) = (1" — 308)(F; O £) (@ £).  (C.3)

] )

Note that (i) the vector f; has only (T' — 1) nonzero elements, and (i¢) for integers £ > 1 and
m > 1, f]’? © ;" # 0,, only when the indices j = (i,t) and £ = (i, s), t # s. These show that,

N N n T—1 n T—1
>3 Covlens gv) = . > ( Z B(dnudy)) = D0 > B(dnudi),  (C4)
J=1 4] i=1 t=1  s(£t)= i=1 t=1

where dy it = {Hl Vi (V5 zt - >¢1 ity (U} zt - UO>¢2 it + o v, (U;t2 - U(%)qj&itv ﬁ%i(vf -

UO } , and deit = 23(7;):1 dys. Letting dNJt and deit be the estimates of dy ;; and d?\ut

at the null, one can show (details are available from the authors upon request) that

n T-1
N ZZCOV BN gNZ ZZ szthzt - Op( ) (C5>
J=1 {#£j i=1 t=1

It left to prove %{ Z;VZI gN;8N;— Z;VZI E(gNjgg,j)} = 0p(1), which can be done by referring
to the proof of Lemma A.6.
The proofs of (c¢) and (d) can be carried out by referencing to the proofs of (c) and (d) of

Theorem 3.1, with details being available from the authors upon request. [ |

""The result (i) is due to the fact that v} is uncorrelated with & for £ < j, and (i7i) follows from (Fr,r—1®
L) (@Y +®Y) = Frr_1 (¥ +®Y) and hence (Fr,r—1®1,)O[(Fr,r—1®(®*+®Y)] = 0, where ®, = Ir_1QP,..
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Estimation of Xy .9 and Xy 9. The corresponding negative Hessian matrices take
identical forms as these for the SAC model mode given in Appendix B except that n is replaced
by N and the relevant quantities are replaced by the corresponding bold-faced quantities for

the panel SAC model, and hence are not repeated here.

Proof of Theorem 4.2: Similar to the proof of Theorem 4.1. [ |

Estimation of X% , and X7 ,,. The corresponding negative Hessian matrices take
identical forms as these for the SAC model mode given in Appendix B except that n is replaced
by N and the relevant quantities are replaced by the corresponding bold-faced quantities for

the panel SAC model, and hence are not repeated here.
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Table 1 — Empirical Sizes of the Tests for SAC Model, DGP1 — Normal disturbances

Circular world

Rook contiguity

Queen contiguity

Group interaction

(A, A) n Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
(02,02) 50  Tguc 23.68 1502 5.04 21.16 13.18  4.06 2136 12.96 4.30 2272 1486  4.62
50 T&. 8838 4.60 092 812 398 052 710 360 0.76 11.74 590 1.20
50  Téac 1424 7.42 166 12.62 588 0.66 1282 592 072 1338 7.70 158
50  Tgac 1156 578 1.06 10.44 434 0.36 10.48 4.48 0.30 11.06 552  1.00
100  Tgac 16.70 956  2.90 17.68 10.14  2.66 17.72 1062  3.20 17.30 9.98 2.88
100 T 876 410 092 802 376 0.6 894 420 0.86 9.12 454 084
100  Téac 11.74 538 094 11.80 564 0.82 1200 590 1.00 11.64 582 1.08
100  Tdic 1060 456 0.74 10.28 460 0.56 10.68 498  0.66 990 498 0.76
200  Tguc 13.86 8.06 2.14 13.86 7.44 186 1330 7.18  1.82 13.86 7.82 2.26
200 T 9.28 476 0.96 9.64 456 0.98 852 436 098 10.74 546 120
200 Tsac 10.82 542 0098 10.76 530 0.86 10.26 5.00 0.88 11.00 534 1.06
200 TSac 1040 500 0.82 10.16 472 076 9.72 452 0.74 1022  4.98  0.90
500 Tguc 1256 678 164 11.12 578 1.10 1198 6.08 162 1226 654  1.40
500 Ty 10.66 554 1.24 946 436 0.84 10.08 4.82 1.08 10.08 512  0.98
500 Tuc 11.02 546 118 9.76 460 0.88 1042 482 1.02 10.78 536  0.98
500  Tdic 10.80 542 112 9.52 448 0.84 1026 468  1.00 10.42 518 098
(02,08) 50  Tgac 21.80 13.86 4.98 2224 1352  3.98 21.88 14.00 4.48 22.82 1504 5.16
50 Tl 1030 566 1.16 1230 648 126 1260 694 126 14.04 800 1.68
50  Téac 1258 594 074 13.04 614 0.60 1350 6.18 0.74 1458 732 110
50 Tsic 1040 4.04 0.42 1034 428 0.38 1040 424  0.26 9.32 400 0.28
100  Tgac 1642 9.96 2.74 13.18 7.78 1.92 16.44 10.02 2.98 16.64 954 284
100  Toc 11.86 628 138 528 216 044 11.28 610 1.42 12.48 660 1.58
100 Téuc 10.08 496  0.60 1240 6.02 1.04 11.52 598  0.92 10.04 476 0.72
100 SAc 9.04 410 0.44 7.76 328  0.52 1034 482 056 738 310 0.32
200 Tsuc 1432 7.80 184 1408 7.96 2.14 13.72 7.88 2.04 1404 764 216
200 T 1148 574 110 1038 548 114 10.74 568 1.04 11.84 6.00 1.38
200 Tsac 11.14 528 0.82 1092 508 0.82 1056 528 0.76 11.12 544 086
200 SAc 1054 490 0.70 10.22 468 0.66 9.76 5.10 0.58 9.88 4.62 0.68
500  Tsuc 11.70 574 136 1210 6.62 160 11.72 624 142 1132 618 124
500 Ty 10.62 506 1.20 10.06 532 112 1022 512 112 10.38 544 1.04
500  Teuc 1036 476  1.02 11.10 552  1.04 1036 516  1.00 10.14 496 0.78
500 Tsac 10.00 456 0.98 10.80 5.18 0.94 10.00 5.02 0.96 938 428 0.64
(0.8,02) 50  Tsuc 2228 13.06 3.86 21.04 1294 3.84 2112 1312 418 22.26 13.88  4.04
50 Tl 850 452  0.80 10.22 522 098 990 558  1.02 11.28 558  1.08
50  Téuc 11.60 524 0.6 1222 502 074 12.02 578 0.80 12.48 552  0.52
50 Tgac 9.50 3.54 0.30 9.32 340 036 9.58  4.44  0.40 9.16 378 0.26
100 Teuc 16.08 972 2.64 26.28 17.64  8.00 16.82 10.02 2.72 16.62 962 274
100 T 9.70 482 0.88 1054 592 164 852 4.18 0.58 9.62 446 1.8
100 Téuc 1138 530 0.62 1234 596 076 1124 526 0.82 1146  4.88  0.80
100 Tdac 10.02 456  0.50 6.44 282 0.36 10.00 444 050 9.80 4.08 0.60
200  Tguc 1294 7.10 2.20 1334 710 174 14.48 816 2.06 1344 730 154
200 Tie 1020 5.06 1.38 806 3.84 0.82 9.76 524 098 10.14 486 1.04
200  Tiac 10.68 5.04 0.98 10.00 452 0.90 1144 554 092 10.58 478  0.72
200 Tdic 10.00 464 0.82 952 404 0.74 10.82 510 0.76 9.76  4.08  0.62
500  Tsuc 1190 6.06 1.26 11.82 622 144 11.44 582 1.48 1134 580 148
500 Ty 9.68 456  0.82 760 372 072 932 462 1.20 9.74 476 118
500 Tgac 10.66 5.00 0.72 1050 514 094 10.16  5.02  1.00 990 472 110
500 Tsac 10.26 4.82 0.64 10.26 498  0.90 9.86 4.90 0.96 9.76 454  0.96
(0.8,0.8) 50  Tguc 2132 1336 3.86 21.60 13.62 4.18 2232 13.80 4.06 2258 1458 474
50 T&. 13.14 696 1.24 13.12  6.66 148 13.74 7.48 156 1398 7.76 1.84
50  Téac 12.16 598  1.12 11.82 548 084 1330 576  0.66 14.06 7.60 1.28
50  Tgac 9.02 4.00 0.72 9.20 3.78 0.0 9.68 4.08 0.38 9.26 432 050
100  Tgac 17.50 10.08  3.00 16.76 9.88  2.76 16.60 9.64 2.44 16.86 9.74 3.18
100  T&e 1258 656  1.52 1252 652 158 11.86 624  0.96 1280 678 1.78
100 Téac 1152 596 0.88 1062 494 0.70 1148 506 0.68 1032 492 086
100  Tdic 9.86 4.76  0.52 9.08 4.02 058 10.00 412 0.36 7.64 328 054
200  Tguc 13.66 7.54  2.22 1420 7.80 2.44 14.18 7.58 158 14.14 828 202
200 T 1122 590 1.42 11.72 596  1.58 1150 5.82 1.04 11.62 648 1.32
200 Tiac 10.74 516 0.88 11.16 528 094 10.80 4.96 0.64 1138 570 0.78
200 TSac 1012 470 0.78 1032 484 072 9.96 4.52 0.54 1038 474 064
500 Tguc 11.44 610 1.18 12.02 626 158 1196 640 160 1136 6.00 1.42
500 Ty 10.62 540 0.88 1074 574 134 1056 5.80 1.34 1032 542  1.10
500  Tguc 1036  4.94  0.60 1056 528  1.02 1038 550 1.16 10.12 510 0.92
500 Tl 1006 4.84 056 1026 502 0.92 10.10 534 110 9.66 4.70 0.78
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Table 2 — Empirical Sizes of the Tests for SAC Model, DGP1 — Non-normal Disturbances

Circular world

Rook contiguity

Queen contiguity

Group interaction

(A,4) n Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
(0.2,0.2) 50 Tsac 4190 3234 17.84 41.08 31.84 17.14 40.78 31.26 17.00 42.08 3248 17.94
50 TSac 17.02 10.04 3.72 15.48 9.32 3.16 15.08 9.22 3.06 18.04 11.22 3.98
50 Tsac 20.06 11.82 3.00 19.02 9.72 1.90 19.44 10.36 1.66 20.44 11.74 3.18
50 Tsac 15.28 8.12 1.00 14.30 6.64 1.02 13.98 6.68 0.82 14.58 7.58 1.44
100 Tsac 38.90 29.64 17.00 38.30 29.60 16.50 37.86 29.00 15.42 38.12 2952 15.84
100 Toac 14.94 8.98 2.98 13.94 8.20 2.74 13.76 7.62 2.36 14.92 9.28 3.30
100 Tsac 16.64 8.84 1.96 16.18 8.64 1.68 15.86 7.56 1.62 16.38 9.36 2.18
100 Tsac 12.92 6.82 1.26 12.54 6.56 1.18 12.28 5.56 1.16 12.68 7.06 1.20
200 Tsac 3420 2542 13.94 34.00 25.66 14.02 33.80 25.52 14.20 33.30 2478 12.60
200 Téac 13.68 7.76 2.26 13.38 7.48 2.08 13.28 7.62 2.26 13.76 7.42 2.18
200 Tsac 13.82 7.30 1.36 14.04 7.04 1.30 13.54 7.00 1.18 13.02 6.72 1.26
200 T§ac 12.02 5.64 1.02 11.22 5.74 0.94 11.48 5.58 1.02 10.80 4.90 0.74
500 Tsac 29.86 21.06 9.94 29.68 20.94 9.76 29.42  20.70 9.34 30.54 2138 10.12
500 Téac 12.32 6.26 1.70 11.90 6.08 1.58 11.82 6.18 1.32 12.20 6.66 1.48
500 Tsac 11.52 5.84 1.16 11.66 5.42 0.98 11.24 5.74 1.02 12.06 6.02 1.06
500 Tdac 10.64 5.14 0.98 10.66 4.90 0.74 10.28 5.22 0.88 11.08 5.34 0.80
(0.2,0.8) 50 Tsac 42.12 33.00 18.62 4130 33.04 18.28 41.80 32.76 18.46 41.00 3258 17.94
50 Téac 18.36 12.26 4.70 20.96 13.64 5.04 21.10 14.18 4.86 19.62 12.92 4.48
50 Tsac 18.58 9.26 1.48 18.86 9.50 1.46 19.90 9.84 1.48 20.68 11.22 2.28
50 TSac 13.20 5.86 0.72 13.36 5.74 0.60 13.68 6.04 0.68 12.02 5.38 0.60
100 Tsac 38.14 29.06 16.44 21.74 14.24 5.08 37.921 29.10 15.66 38.02 2842 16.18
100 TSac 18.14 10.96 3.62 6.14 2.86 0.48 7.50 10.64 3.90 18.70 11.70 3.92
100 Tsac 14.32 7.26 1.90 16.10 8.16 1.72 15.60 7.74 1.68 14.72 8.02 1.80
100 SAC 11.06 5.40 1.26 8.58 4.06 0.74 12.06 5.20 0.96 10.74 4.78 0.82
200 Tsac 33.02 2440 12.26 3298 24.28 1232 3410 25.42 13.30 32,72 2398 12.20
200 TSac 14.26 7.90 221 13.96 7.92 2.34 15.20 8.38 2.36 14.04 8.32 2.40
200 Tsac 12.36 5.78 1.12 12.84 6.50 1.24 13.26 6.72 1.30 13.34 6.92 1.32
200 T§ac 10.18 4.34 0.78 10.22 4.84 0.76 10.98 5.30 0.94 10.24 4.86 0.78
500 Tsac 30.88 21.80 10.42 27.90 19.42 8.56 27.84 19.28 8.66 28.54 20.00 9.22
500 Toac 13.20 7.54 1.64 11.44 5.84 1.56 11.56 6.02 1.18 11.68 6.20 1.24
500 Tsac 12.12 6.02 0.94 11.46 5.66 1.18 11.44 5.62 0.88 11.48 5.72 0.82
500 Tsac 11.00 5.26 0.68 9.94 4.56 0.78 9.92 4.76 0.64 9.76 4.50 0.48
(0.8,0.2) 50 Tsac 40.48 30.98 16.98 40.82 3130 16.52 4232 3220 1832 40.72 3136 17.12
50 Toac 16.26  10.68 3.66 18.26 11.54 3.98 19.58 12.28 4.00 18.38 11.58 3.92
50 Tsac 17.46 8.78 1.54 17.32 8.90 1.32 18.40 10.60 2.54 17.80 9.32 1.74
50 T§ac 12.26 5.44 0.70 12.26 5.44 0.54 13.66 7.22 1.22 12.02 4.94 0.62
100 Tsac 3836 29.22 16.18 28.16 20.34 8.94 38.00 29.46 16.32 3830 29.32 1592
100 Téac 16.04 9.34 3.06 10.86 6.20 1.76 15.38 9.08 2.94 15.80 9.36 3.02
100 Tsac 16.44 8.38 1.42 16.46 8.66 1.60 15.56 7.66 1.46 15.90 8.32 1.50
100 T§ac 12.88 6.12 0.86 7.12 3.48 0.58 12.10 5.56 0.96 12.26 5.76 0.70
200 Tsac 35.02 26.58 13.66 34.00 25.18 13.04 3272 24.00 1236 35.80 26.58 13.78
200 Téac 14.76 8.56 2.54 12.52 6.90 1.96 12.08 6.74 1.72 15.02 8.08 2.28
200 Tsac 13.54 6.68 1.20 12.74 6.40 1.06 12.48 6.20 1.22 14.06 6.82 1.18
200 TSac 11.42 5.26 0.76 10.54 5.04 0.86 10.64 5.38 0.88 11.00 5.46 0.88
500 Tsac 30.54 21.60 10.14 28.66 20.90 9.40 29.08 21.00 10.50 29.86 20.72 9.62
500 Téac 11.82 6.40 1.46 9.92 5.22 1.16 11.74 6.24 1.34 11.48 6.16 1.82
500 Tsac 11.88 5.66 0.98 11.22 5.18 0.94 11.92 5.86 1.00 11.54 5.56 1.32
500 Tsac 10.90 4.90 0.72 10.12 4.44 0.88 10.84 5.04 0.86 10.26 4.96 1.06
(0.8,0.8) 50 Tsac 43.24 3440 19.38 40.64 31.22 16.56 4190 3254 1824 4230 3334 19.20
50 TSac 21.56 13.70 5.18 21.16 13.30 4.40 21.76  14.08 4.80 22.36  14.56 6.20
50 Tsac 20.36  11.48 2.96 17.40 8.46 1.40 18.12 9.06 1.86 21.18 12.22 3.60
50 Tsac 13.94 7.16 1.44 11.24 4.94 0.48 11.66 4.98 0.92 14.34 7.74 1.66
100 Tsac 38.06 28.96 16.42 28.36 19.80 8.92 37.02 2830 15.46 40.16 3140 17.14
100 Toac 18.44 11.34 3.64 19.94 12.40 4.28 1736 10.52 3.24 19.16 11.74 3.88
100 Tsac 14.14 7.90 2.20 16.14 8.10 1.52 15.74 8.20 1.32 15.54 8.54 2.40
100 Tsac 10.90 5.74 1.36 9.78 4.08 0.78 11.74 5.66 0.62 10.62 5.20 1.40
200 Tsac 33.28 24.44 1252 33.90 25.68 12.92 3466 25.46 13.00 3494 2548 13.28
200 Toac 14.86 8.40 2.48 15.62 8.98 2.34 14.82 8.80 2.62 15.62 8.98 2.54
200 Tsac 13.28 6.54 0.98 13.72 7.34 1.42 13.38 6.40 1.40 15.12 7.86 1.64
200 Tsic 11.04 4.78 0.78 10.92 5.28 0.92 10.86 5.06 0.90 11.68 5.58 0.78
500 Tsac 29.76  20.80 9.84 28.76  20.14 9.52 28.22 19.72 9.28 29.28 2190 10.62
500 Téac 13.14 6.70 1.88 12.94 7.02 1.82 11.84 6.14 1.36 12.70 6.72 1.86
500 Tsac 11.98 6.00 1.04 12.90 6.32 1.34 11.48 5.60 0.84 12.08 5.96 1.04
500 T§ac 10.86 5.12 0.82 10.76 5.10 0.90 10.02 4.40 0.70 12.48 4.86 0.70
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Table 3 — Empirical Sizes of the Tests for SAC Model, DGP2 — Normal Disturbances

Circular world Rook contiguity Queen contiguity Group interaction

Ap,2) n Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
(0.2,0.2) 50 Tsac 2242  14.06 4.74 22.02 14.40 4.66 22.54 14.38 4.82 23.26 14.68 5.26
50 Téuc 10.12 5.48 1.20 9.84 5.24 1.10 9.62 5.18 0.88 7.80 4.06 0.82
50 Tsac 13.70 6.52 0.72 13.66 7.16 1.38 13.50 7.60 1.56 14.34 7.28 1.02
50 SAC 11.52 5.18 0.46 11.34 5.74 0.90 11.66 5.80 1.02 12.00 5.60 0.50
100 Tsac 16.68 9.96 2.88 17.12 10.32 3.16 15.80 9.84 3.20 16.16 9.48 2.72
100 Téuc 8.22 4.16 1.06 10.22 5.04 1.04 7.98 4.38 1.02 7.66 3.84 0.68
100 Tsac 11.76 5.32 0.92 9.90 5.00 1.20 9.44 5.34 1.46 11.12 5.32 0.84
100 SAC 10.50 4.54 0.74 9.08 4.44 1.04 8.62 4.60 1.28 10.16 4.70 0.64
200 Tsac 13.72 7.44 2.18 13.64 7.58 1.94 14.40 8.12 2.16 13.36 6.96 1.62
200 Téac 7.94 3.84 0.82 9.02 4.52 0.66 10.04 5.34 1.18 9.12 4.18 0.98
200 Tac 10.66 5.32 0.86 10.78 5.34 0.74 11.34 5.78 1.10 10.34 4.54 0.84
200 T§ac 10.20 4.98 0.76 10.14 4.88 0.74 10.72 5.24 0.92 9.56 4.34 0.68
500 Tsac 11.52 5.76 1.72 11.14 5.74 1.24 11.88 6.42 1.60 11.46 5.94 1.46
500 Téac 7.04 3.56 0.76 9.24 4.38 0.90 9.84 5.30 1.14 9.82 5.18 1.04
500 Tsac 10.20 5.02 1.22 9.64 4.46 0.92 10.40 5.22 1.08 9.88 4.84 0.98
500 T§ac 9.98 4.94 1.20 9.42 4.24 0.90 10.26 5.10 1.06 9.76 4.72 0.96
(0.2,0.8) 50 Tsac 23.04 14.50 4.94 23.04 14.04 4.26 2236 14.18 4.22 20.74 12.78 4.42
50 Téuc 9.72 5.20 0.90 9.68 4.96 0.90 10.64 5.12 1.18 12.32 7.14 1.52
50 Tsac 13.70 6.86 0.82 13.30 5.68 0.54 13.24 5.56 0.74 5.82 3.40 0.78
50 TSac 11.54 5.22 0.60 10.54 3.58 0.22 10.00 3.82 0.44 4.34 1.76 0.32
100 Tsac 17.82 10.90 3.06 15.62 9.00 2.58 17.48 10.10 2.80 16.76 10.00 3.08
100 Téuc 11.60 5.70 1.36 8.10 3.80 0.82 10.56 5.36 1.12 11.44 6.06 1.44
100 Tsac 12.66 5.86 0.90 10.44 4.62 0.72 10.88 5.48 0.96 12.10 5.84 0.92
100 TSac 11.14 4.78 0.56 9.28 3.96 0.60 9.80 4.44 0.76 9.86 4.50 0.52
200 Tsac 13.44 7.06 1.82 13.66 7.76 1.98 14.28 7.96 1.94 13.80 7.50 1.76
200 Téuc 9.50 4.78 0.92 10.20 5.30 1.06 11.08 5.76 1.00 10.68 5.38 1.02
200 Tsac 10.56 5.06 0.74 8.66 4.56 1.06 9.38 4.76 0.94 10.22 4.68 0.70
200 TSac 10.08 4.58 0.70 8.08 4.02 0.96 8.74 4.32 0.70 9.16 4.08 0.44
500 Tsac 11.20 6.28 1.40 12.02 6.64 1.64 11.78 6.26 1.84 11.14 5.72 1.50
500 Téac 10.16 5.20 1.12 10.36 5.34 1.18 10.78 5.46 1.30 9.98 5.06 1.10
500 Tsac 10.20 5.08 0.90 10.44 5.20 1.06 10.58 5.06 1.22 9.78 4.74 0.92
500 TSac 9.92 4.76 0.84 10.12 4.88 1.00 10.30 4.90 1.12 9.34 4.46 0.76
(0.8,0.2) 50 Tsac 22.20 14.00 4.64 22.98 14.92 4.50 21.34 1342 4.56 20.44  12.80 4.58
50 Téac 10.14 5.40 1.20 9.82 5.40 1.18 10.96 5.84 1.24 6.98 3.70 0.86
50 Tsac 13.54 6.10 0.80 13.94 6.40 0.88 12.94 5.66 0.72 11.82 5.96 1.06
50 T§ac 11.54 4.92 0.48 11.18 4.60 0.52 9.82 4.41 0.34 10.16 4.96 0.58
100 Tsac 16.22 9.64 2.88 17.10 10.02 3.14 16.88 10.20 3.16 17.28 10.46 2.42
100 Téac 8.10 4.32 0.90 11.18 5.50 1.16 11.46 5.94 1.32 8.46 3.88 0.80
100 TSac 11.44 5.28 0.86 11.04 4.98 1.04 10.58 5.12 0.92 10.68 5.42 1.36
100 T§ac 10.08 4.58 0.68 9.60 4.36 0.78 9.26 4.38 0.66 9.80 4.94 1.18
200 Tsac 13.24 7.12 1.86 14.68 8.20 2.20 14.08 8.04 2.00 13.48 7.54 1.98
200 Téac 8.82 4.10 0.92 9.36 4.72 0.98 9.80 4.86 0.96 8.18 4.04 0.94
200 TSac 10.26 4.60 0.78 11.10 5.46 0.78 10.72 5.00 0.62 10.62 5.18 1.00
200 TSac 9.92 4.32 0.74 10.36 4.92 0.74 9.98 4.52 0.52 10.20 4.78 0.92
500 Tsac 11.70 6.46 1.64 11.96 6.02 1.28 12.06 6.20 1.34 12.00 6.10 1.36
500 Téuc 10.28 5.36 1.30 8.42 4.20 0.72 8.70 4.48 0.86 10.76 5.22 1.12
500 Tsac 10.34 5.50 1.18 10.20 4.88 0.94 10.60 5.22 0.98 10.24 4.78 0.88
500 TSac 10.26 5.38 1.10 9.86 4.74 0.90 10.24 5.14 0.90 10.04 4.66 0.84
(0.8,0.8) 50 Tsac 21.88 14.20 5.20 21.16 13.60 4.24 21.76 1334 3.76 23.36 14.82 5.34
50 Téuc 12.56 7.12 1.66 13.72 7.38 1.58 12.98 6.32 1.08 14.56 8.10 1.96
50 Tsac 13.10 6.70 1.64 11.38 5.28 0.52 10.78 4.76 0.64 14.78 7.30 1.00
50 TSac 10.36 4.80 0.96 8.38 3.44 0.22 7.66 3.02 0.34 10.54 4.88 0.44
100 Tsac 16.98 10.32 2.52 16.86 10.08 3.16 17.02 10.44 3.06 17.22 10.42 3.02
100 Téac 10.16 5.24 1.14 12.50 6.76 1.68 12.72 7.18 1.76 13.28 7.00 1.82
100 Tsac 11.76 5.42 0.86 11.24 5.36 1.10 11.38 5.76 1.02 12.42 6.02 1.16
100 TSac 10.56 4.60 0.70 9.94 4.50 0.86 9.94 4.76 0.76 10.48 4.60 0.72
200 Tsac 14.42 8.28 2.30 14.22 7.70 2.16 13.66 7.32 2.08 13.56 7.30 1.96
200 Téac 10.66 5.44 1.30 11.74 5.84 1.46 11.40 5.76 1.40 10.44 5.40 1.18
200 Tsac 11.00 5.20 1.08 10.78 5.04 0.96 10.26 4.84 0.82 10.78 5.28 0.78
200 TSac 10.48 4.82 0.88 10.02 4.72 0.76 9.68 4.50 0.64 9.86 4.72 0.64
500 Tsac 12.32 6.52 1.62 12.06 6.12 1.12 12.14 6.06 1.52 11.50 5.68 1.46
500 Téac 11.10 5.88 1.30 11.02 5.40 0.84 10.96 5.36 1.28 10.18 5.06 1.04
500 TSac 10.40 5.44 1.10 10.16 4.78 0.76 10.64 5.08 1.08 10.18 4.94 0.88
500 T§ac 10.08 5.26 1.02 9.90 4.60 0.70 10.30 4.84 1.06 10.02 4.72 0.76
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Table 4 — Empirical Sizes of the Tests for SAC Model, DGP2 — Non-normal Disturbances

Circular world

Rook contiguity

Queen contiguity

Group Interaction

Ap,2) n Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
(0.2,0.2) 50 Tsac 40.44 3182 17.94 41.88 33.00 18.04 4150 32.78 17.86 39.94 32.04 17.26
50 Téac 18.50 11.86 3.84 16.86 11.00 3.96 17.26 10.84 3.98 15.32 9.72 3.44
50 Tsac 19.58 11.06 2.28 19.74 11.70 3.44 1930 10.64 3.50 19.84 10.68 2.18
50 SAC 14.48 7.54 1.30 15.48 8.40 2.22 14.58 7.90 2.02 14.10 7.26 1.02
100 Tsac 37.86 29.70 15.86 36.54 27.54 14.86 37.48 28.80 15.42 38.10 29.18 16.24
100 TSac 14.42 8.36 2.46 15.50 9.48 3.00 12.94 7.70 2.38 14.00 8.28 2.74
100 Tsac 16.04 7.78 1.76 15.02 9.38 3.18 15.04 8.74 3.08 16.00 8.36 1.78
100 SAC 12.50 5.66 1.26 12.60 7.28 242 12.62 7.24 2.26 12.38 6.04 1.20
200 Tsac 3346 25.10 13.22 33.52 2464 1236 33.88 25.48 12.94 33.28 24.24 1294
200 Toac 12.06 6.74 1.84 12.08 6.88 1.78 13.20 7.44 2.32 14.06 8.24 2.32
200 Tsac 13.46 6.50 1.10 13.26 6.26 1.10 13.22 6.82 1.24 13.66 6.98 1.26
200 Tsac 11.28 5.02 0.88 10.94 4.72 0.74 10.78 5.42 0.92 11.38 4.70 0.90
500 Tsac 28.78 20.42 9.74 28.98 21.66 11.16 30.10 21.78 10.36 28.96 20.50 9.08
500 Toac 10.22 5.22 1.50 12.76 7.28 1.80 12.22 6.60 1.76 11.82 6.34 1.76
500 Tsac 11.98 5.82 1.02 12.36 6.54 1.36 11.98 6.14 1.44 11.04 5.52 1.20
500 Tsic 10.96 5.04 0.76 11.32 6.06 1.22 11.20 5.62 1.30 10.04 4.66 1.00
(0.2,0.8) 50 Tsac 4036 31.14 17.26 4190 31.76 16.02 40.82 31.20 16.26 40.04 3130 16.96
50 Téac 16.22 10.34 3.26 16.36 9.82 3.46 17.36 10.84 3.00 20.40 12.70 3.82
50 Tsac 19.18 10.32 2.02 18.06 9.22 1.58 18.16 9.14 1.34 20.16 12.14 3.54
50 T§ac 13.18 6.42 0.98 12.00 5.78 0.74 12.50 5.74 0.80 13.18 6.70 1.22
100 Tsac 37.28 28.80 15.26 36.78 28.78 16.08 38.14 2946 16.44 37.00 2850 15.78
100 Téac 17.18 10.02 2.88 14.52 8.24 2.50 17.62 10.28 3.10 18.44 11.26 3.88
100 Tsac 16.10 7.92 1.42 14.98 8.46 1.70 15.48 8.22 1.66 17.40 9.38 1.92
100 TSac 11.78 5.28 0.92 12.14 5.74 0.96 11.92 6.04 1.10 11.72 5.76 0.88
200 Tsac 31.62 2296 11.66 32,72 2414 1244 33.22 2458 13.04 3412 2536 13.18
200 Téac 12.60 6.86 2.00 14.30 7.64 1.94 14.70 8.34 2.56 15.92 8.52 2.56
200 Tsac 13.84 6.44 1.12 13.24 7.86 2.24 13.62 7.58 2.40 15.68 7.98 1.60
200 T§ac 10.54 4.24 0.70 11.28 6.48 1.56 11.60 6.28 1.78 10.50 4.76 0.90
500 Tsac 26.72 18.94 8.44 28.78 20.46 9.38 28.76  20.32 8.94 29.26  21.22 10.06
500 TSac 11.90 6.42 1.48 12.68 6.86 1.58 12.32 6.38 1.38 13.20 6.96 1.60
500 Tsac 12.52 6.56 1.18 12.50 6.36 1.20 11.52 5.66 1.02 12.00 5.90 1.28
500 Tsac 10.04 4.56 0.70 10.78 5.36 0.84 10.14 4.84 0.76 9.36 4.18 0.76
(0.8,0.2) 50 Tsac 42.04 3336 18.66 41.08 3250 17.16 40.64 31.46 17.04 41.82 3330 18.26
50 TSac 19.44 12.82 5.08 17.60 11.24 3.74 18.72 11.58 4.30 15.10 9.40 3.36
50 Tsac 19.30 10.88 2.30 18.16 9.72 1.46 18.06 8.56 1.30 19.62 10.72 2.34
50 Tsac 14.40 7.28 1.08 12.58 6.10 0.60 12.34 5.34 0.52 14.26 6.84 1.06
100 Tsac 38.68 29.92 16.10 37.86 28.80 15.66 38.92 30.54 17.18 38.72 29.34 16.22
100 Toac 15.94 9.58 3.02 16.72  10.40 3.56 18.02 10.90 3.78 15.12 8.76 2.84
100 Tsac 15.98 9.60 2.92 14.10 7.32 1.94 15.20 8.40 242 16.38 10.02 2.98
100 Tsac 13.46 7.54 2.04 10.62 5.42 1.32 11.88 6.42 1.58 13.82 7.88 2.04
200 Tsac 3424 2526 12.70 3432 2584 13.16 35.94 27.62 14.04 35.26  25.86 12.80
200 Téac 12.92 7.28 2.06 13.12 7.66 2.26 14.40 8.00 2.60 13.22 7.26 1.82
200 Tsac 13.28 6.50 1.28 13.60 7.18 1.16 14.54 7.46 1.26 13.66 6.58 1.50
200 T§ac 11.06 5.16 0.88 11.10 5.62 0.86 12.10 5.80 0.92 11.56 5.38 1.06
500 Tsac 29.88 21.60 9.92 28.90 20.72 9.80 28.50 20.82 9.14 30.22 21.64 10.20
500 Téac 12.72 6.98 1.58 10.88 5.54 1.18 10.38 4.90 1.32 13.34 6.96 1.64
500 Tsac 11.14 5.94 0.92 11.48 5.86 1.08 10.72 5.28 0.94 11.92 5.88 0.88
500 Tdac 10.38 5.10 0.68 10.66 5.12 0.98 9.74 4.74 0.76 10.68 4.94 0.74
(0.8,0.8) 50 Tsac 40.72 3232 1842 40.36 31.92 18.32 42.50 3294 18.30 39.80 30.90 17.10
50 Téac 1932 12.28 4.58 21.90 13.72 5.12 21.82 13.58 4.66 19.20 12.36 4.62
50 Tsac 18.18 10.04 2.62 15.36 8.20 2.02 16.84 8.78 1.94 20.46 11.70 3.18
50 TSac 11.94 5.98 1.34 10.06 5.16 1.06 10.96 5.34 1.12 13.44 6.72 1.12
100 Tsac 37.84 29.28 15.28 38.42 29.84 16.94 36.94 28.84 16.10 36.28 2832 14.92
100 TSac 16.56 9.62 3.02 19.18 12.08 4.26 18.38 11.56 4.02 17.28 10.08 2.70
100 Tsac 17.10 8.90 1.66 16.72 9.04 212 15.66 8.68 2.48 19.00 10.06 1.68
100 Tsac 11.72 5.56 0.96 12.14 6.30 1.44 12.00 6.26 1.52 11.08 4.86 0.54
200 Tsac 3438 25.68 13.02 3442 25.06 12.68 3448 26.02 13.50 33.60 25.66 12.90
200 TSac 14.20 7.74 2.26 15.28 8.88 2.36 15.10 8.86 2.56 14.26 8.56 2.78
200 Tsac 14.68 7.70 1.90 12.98 6.42 1.32 12.90 6.46 1.36 16.94 9.46 2.54
200 Tsac 10.88 5.22 1.10 10.00 4.70 0.88 10.54 4.96 0.96 11.24 5.76 1.20
500 Tsac 28.60 20.02 9.10 28.28 20.54 9.02 29.80 21.38 9.94 29.48 21.26 9.90
500 Toac 12.32 6.58 2.00 12.30 6.62 1.36 13.22 7.04 1.76 12.88 6.54 1.64
500 Tsac 12.86 6.72 1.44 12.60 6.12 1.14 12.60 6.24 1.18 13.86 7.02 1.40
500 Tsac 10.28 5.00 0.96 10.34 4.96 0.72 11.16 5.30 0.80 10.88 4.84 0.62
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Table 5 — Empirical Sizes of the Tests for FESAC Model, DGP1 — Normal Disturbances

Circular world Rook contiguity Queen contiguity Group interaction

(AnA) n Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
(0.2,0.2) 50 Tresac 13.76  7.78  2.00 13.24 7.58 2.06 13.08 7.02 1.74 13.58 7.68  2.02
50 Thesac 9.88 522 118 8.04 424 096 748 384 076 1024 516  1.08
50 TiEsac 9.62 478  0.64 7.78 3.84  0.60 720 354  0.60 9.80 4.60 0.64
50 Tigsac 11.08 560 0.92 10.66 548 0.94 10.68 518 0.88 11.14 550 1.04
50 Trisac 1056 524 0.70 10.00 492 0.84 10.12 476 0.74 10.56 5.06  0.80
50 TiEac 10.70  5.00 0.62 10.02 488  0.68 9.82 464 0.52 1050 4.80 0.66
100 Trgoac 11.20 6.18 1.42 1238 658 1.24 11.12 590 1.22 1146 628  1.32
100 Tlpsac 1000 512  1.02 11.14 530 092 892 470 0.70 9.76 520 0.94
100 TiEsac 1024 516  0.90 11.06 514 0.96 9.24 450 0.80 9.98 510 0.84
100 Trgpsac 10.04 4.88  0.80 10.94 5.08 0.72 9.50 4.76  0.80 10.06 518 0.84
100 Trisac 9.72 474 076 10.54 496 0.66 9.32 464 0.80 9.84 482 078
100 Tiksac 9.86 494 0.76 10.74 466 0.78 9.64 454 0.84 10.08 482 0.78
200 Trgoac 10.86 540 1.26 10.76 572  1.20 10.68 566  1.02 10.04 5.00 1.10
200 Tlesac 10.28 492 1.04 10.12 518 1.04 10.04 5.04 0.80 9.46 448  0.92
200 TiEesc 10.00 5.04 0.92 10.34 516 0.98 10.08 5.06 0.78 9.38 432 0.86
200  Trpsac 10.04 468 0.84 1026 510 0.94 10.00 4.88 0.82 936 438 074
200 Tipsac 990 554  0.80 10.10 5.02  0.90 9.88 4.80 0.80 9.12 434 074
200  TiEsac 9.66 452 0.76 10.12 5.02 0.84 9.98 494 0.70 9.06 4.16 0.64
500 Trgeac 10.74 542 098 11.28 566 0.94 10.38 518 1.16 11.12 562 1.16
500 Tlesac 1048 516 0.88 11.08 540 0.82 9.96 4.90 1.08 1042 500 1.06
500  TiEeac 1044 514 0.88 11.04 552  0.80 9.90 512 1.02 10.28 5.00 1.00
500  Trpsac 10.48 510 0.80 1096 528 0.76 9.94 482 1.08 10.80 534 1.10
500  Tipsac 1040 5.02 0.80 10.86 524 0.74 9.84 474 1.08 10.76 530 1.06
500  TiEsac 1038 508 0.84 10.82 538 0.72 9.86 5.00 1.00 10.68 524 0.88
(0.2,0.8) 50 Trpsac 1252  7.08 1.76 1292 670 1.66 13.80 7.42 1.92 13.00 7.44  2.00
50 Tlesac 10.68 564 1.26 856 4.16  0.80 10.88 536 1.24 11.08 596  1.40
50 TiEsac 10.48 526  1.00 856 422 062 1070 526 0.94 11.28 582 122
50 Tigsac 9.50 4.88 1.14 1030 4.88 0.70 11.22 512 098 9.78 5.08 1.22
50 Trisac 882 450 098 9.60 4.56  0.60 1052 460 0.76 8.84 450  0.90
50 TiESac 858 448  0.84 10.02 464 0.60 10.74 500 0.70 836 3.84 0.50
100 Trgoac 10.74 560 1.34 1264 678 152 12.02 694 1.82 11.76 584  1.08
100 Tlpsac 9.82 498 1.04 10.16 5.06 0.98 10.68 582 1.44 1038 516 0.82
100 TiEsac 9.68 4.80  0.90 1022 478 0.84 1090 554 1.16 1032 478 0.90
100 Trgpsac 9.62 472 068 11.58 562  1.00 10.84 566 1.34 10.28 476  0.64
100 Trisac 9.24 440 062 11.28 544 092 1060 554  1.28 9.44 426 042
100  Tigsac 9.08 448 0.70 11.38 5.02 0.82 10.92 528 1.04 920 3.98 0.52
200 Trpeac 10.90 556 1.38 10.60 556 1.22 10.24 5.04 1.00 11.10 582 1.18
200 Tfsac 1036 514  1.22 9.58 476 0.8 9.56 4.60 0.88 10.68 536  1.08
200 TiEsac 1036 510 1.08 970 478 0.78 9.54 462 0.80 10.56 516 1.04
200  Trpsac 9.94 478 1.02 10.10 4.88 0.92 9.62 4.48 0.80 1010 522 0.92
200  Tiisac 9.82 470 0.92 9.90 4.66 0.90 9.32 436 0.80 9.58 472 0.80
200  Tipsac 9.50 468 0.88 996 476 1.78 946 450 074 9.40 430 074
500 Trgoac 10.14 548 1.18 1052 562 1.06 10.86 598  1.06 1042 542 1.22
500 Tigsac 994 528 114 10.08 532  1.00 1056 580 0.98 10.18 526 1.16
500  TiEsac 9.90 522 1.00 10.06 536 1.02 1022 566 1.04 1012 536 1.18
500  Trpsac 9.88 514 108 10.12 532 094 1040 568  0.90 10.20 514 116
500  Tipsac 9.72 506 1.08 10.06 528 0.94 1036 566  0.90 10.00 5.04 1.10
500  Tibsac 9.74 496 0.92 10.12 526 0.94 10.06 550 0.96 9.96 5.04 098
(0.8,0.8) 50 Trgsac 13.14 7.40 1.82 1294 692 1.66 12.68 670 1.80 14.44 770  2.00
50 Tlesac 11.28 6.06 1.44 10.86 5.66 1.16 10.80 548  1.28 12.64 614 1.48
50 TiEsac 11.06 492  0.80 10.92 528 0.82 10.64 532 072 1262 576 0.96
50 Tigsac 1058 552  1.12 10.18 4.86 0.78 1.00 496 0.84 11.92 562  1.00
50 Trisac 992 486 092 9.48 424 0.64 9.32 454 0.64 10.76 5.00 0.86
50 TiESac 10.06 418 0.70 9.72 422  0.60 9.88 452  0.46 1070 464 0.62
100 Trgoac 1252 634 1.42 11.72 612 1.24 11.24 596 1.16 11.94 656 1.62
100 Tlpsac 1134 554 112 10.94 558  1.06 10.24 516  0.90 11.10 584 1.38
100 Tilsac 11.58 548 098 1120 548 0.88 1060 516 0.84 11.00 572 114
100 Trpsac 10.84 500 0.88 10.66 5.18 0.80 10.02 482 074 1054 526 1.04
100 Trisac 1030 482 0.78 10.20 494 074 9.80 4.58 0.68 9.68 4.60 0.86
100 TiEac 1056 476  0.70 10.42 490 0.64 10.04 464 0.70 9.80 444 0.68
200 Trpsac 11.12 574 140 10.10 5.18 0.98 1034 518 0.92 1072 570 1.36
200 Tlpeac 1066 538  1.30 9.64 494 088 9.62 474 0.74 10.16 524 1.24
200 TiEssc 10.78 520 1.20 9.58 490  0.80 9.92 482 0.76 9.96 5.44 124
200 Tigsac 1038 512  1.08 9.24 474 0.70 9.28 454 0.66 10.00 498 0.98
200 Tiisac 1030 5.04 0.98 9.02 464 064 9.08 432 0.60 9.54 470 0.90
200  Tipsac 1042 486 0.88 9.26 440 0.58 9.64 448 0.66 9.32 450 0.86
500 Trgoac 11.34 538 1.08 1022 544 1.04 1130 5.88 1.20 1092 566  1.22
500 Tfesac 11.12 528 0.98 10.10 534  1.00 11.02 568 1.12 1070 554  1.10
500  TiEesc 1084 520 0.88 10.28 520 0.98 1130 576  1.08 10.80 538 1.22
500  Trpsac 11.00 518 092 10.10 530 0.96 11.00 558  1.06 1058 532 1.10
500  Tirsac 1090 512 0.88 10.00 5.18 0.96 1090 556  1.06 1030 514 1.06
500  TiEsac 1060 504 0.82 10.14 5.06 0.94 11.12 568 1.04 1032 514 1.06
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Table 6 — Empirical Sizes of the Tests for FESAC Model, DGP1 — Non-normal Disturbances

Circular world

Rook contiguity

Queen contiguity

Group interaction

(A,4,) n Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
(0.202) 50  Tpe,c 2434 1610  6.20 2444 1648  7.16 2456 1682  7.20 2422 1580  6.50
50  Tlzeuc 17.54 1046  3.08 16.38 9.68  3.16 1558 9.38  3.30 18.28 10.48  3.00
50  TiEesc 1092 538  0.70 10.46 522  0.92 9.94 494 094 11.02 532 0.82
50  Tppsac 1816  9.66  1.68 18.18 10.16  2.34 18.72 10.52 2.44 1820 9.92  1.66
50  Tlpsac 17.00 876 136 16.92 9.20 2.00 17.10 9.40 214 1694 886 1.28
50  TEEhsac 9.44 340 0.24 9.62 396 0.50 9.48 4.08 0.54 9.32 356 0.30
100 Tpgese 22.50 1436 5.22 22.74 1478 538 2162 14.06 5.0 2238 1460 5.36
100 Tigese 1932 1114 3.60 19.52 11.38  3.64 17.20 10.68  3.70 19.12 1110 3.56
100  Tfrsse 1144 590  1.28 11.54 560 1.00 10.74 532  1.00 1154 576 1.28
100  Tigsac 1874 9.84 274 18.44 1052  2.70 17.30 10.34  2.82 18.78 1030 2.64
100 Tlpsac 18.02  9.26 238 17.86 9.84  2.42 16.56 9.74  2.60 18.02 9.60 2.44
100  Tigsac 9.66 450 0.54 9.80 4.14 052 9.42 422  0.60 9.70 428  0.68
200 Tpgeue 1952 1270 4.90 2054 13.64  4.90 2122 1342 498 20.52 13.44 5.26
200 Tfgeue 17.86 1096 3.72 18.44 1142  3.68 19.42 11.48  3.98 18.66 11.78 4.16
200 Tirse 1072 556 1.20 1092 564 1.14 1140 616 1.04 1168 6.44 118
200  Tpgsac 1712 1016  3.08 18.14 10.52  3.06 18.78 10.28  3.32 17.94 11.06  3.22
200 Tipsac 1658  9.92 284 17.62 10.18  2.88 18.34 10.28 3.14 17.66 10.74  3.12
200 Tigsac 938 434 074 996 4.66 0.88 10.24 538 0.72 1036 534 0.74
500  Tipsae 1918 12.04 404 18.44 11.88 4.26 19.00 11.82 3.94 19.10 12.26  4.10
500  Tigsac 1800 1118  3.40 17.46 10.66  3.68 18.04 11.08  3.28 17.82 1094  3.38
500 Tihe.c 1064 530 114 10.12 542  1.08 10.54 544 0.94 10.74 498 1.10
500 Tpgsac 17.76 10.90  3.02 17.20 10.26  3.24 17.78 10.44  2.84 17.94 1114 3.22
500 Tipsac 17.60 10.78  2.90 17.08 10.14  3.22 17.54 1022 2.78 17.86 11.04  3.12
500 Tigsac 1024 482  0.90 9.48 508 0.84 9.64 490 074 1054 480 0.88
(0.20.8) 50  Tpgeue 2442 1654 7.14 2524 16.86 7.34 2430 1652  7.22 2536 17.00 7.14
50  Tlzeuc 2010 1258  4.48 17.56 11.24  3.68 19.20 1232 4.8 2040 1290 4.82
50  Tireuc 1298 694  1.32 1116 564  1.04 1240 612 1.04 1356 7.10 1.60
50  Tpgsac 17.50 1034  2.96 19.08 1090 2.62 18.00 10.84  2.42 18.40 1052  3.42
50  Tlpsac 1594 934 246 17.48 9.84 194 1692 9.58 1.98 16.12 868 2.44
50  TEhsac 9.16 4.46 0.60 9.88 418 0.28 9.76 3.70 0.36 9.20 446  0.64
100 Tpgeue 2340 1586  6.16 22.84 1454 506 2228 1444 512 2234 1492 578
100 Tigese 21.08 1310 438 18.04 10.58  2.88 19.24 1176  3.36 19.64 12.06 3.88
100  Tfrssc 1310 678 134 10.54 5.08  1.00 1158 546 1.14 1194 594 114
100  Tpgsac 19.68 1160 298 18.86 10.72  2.52 18.84 10.78 254 19.06 1092 2.84
100 Tlpsac 18.80 10.98  2.66 18.12 996  2.18 1798 9.84 228 17.44 924  2.28
100 Tipsac 10.68 486  0.66 9.92 394 0.46 982 420 064 948 402 044
200 Tpgeue 2012 1306 4.70 19.60 12.70 4.44 20.46 1256  4.46 2042 1260  4.36
200 Tigeue 1844 1118 376 17.36 10.58  3.42 18.38 10.96  3.56 18.68 11.00 3.28
200 Tireue 11.04 570  1.32 1032 5.06 0.98 1068 576  1.12 1112 528 1.02
200 Tpgsac 17.60 1030  2.92 17.58 10.22 294 18.28 10.16  2.92 17.78 1012  2.72
200 Tipsac 1710 9.90 2.86 1712 9.84 272 17.68 9.92 274 16.74 910 212
200 Tigsac 958 442 0.84 954 442  0.50 954 480 0.56 878 3.76 0.40
500  Tipsac 1896 12.02  4.08 17.82 11.06 3.86 18.64 11.58  3.92 19.14 12.00 4.44
500  Tipsac 1832 1114 3.66 16.88 9.96 3.44 17.82 10.88  3.58 18.30 11.00  3.80
500 Tihe.c 1070 548  1.28 9.84 496 096 1040 548  1.00 1056 562  1.32
500 Tpgsac 17.98 10.76  3.30 16.70 9.66  3.02 17.38 10.44  3.28 18.06 10.58  3.42
500 Tigsac 17.82 1054  3.22 16.58 9.50 2.94 17.14 1030 3.02 17.66 10.28  3.16
500 Tigsac 10.06 502  0.96 920 460 068 9.90 4.78 0.60 9.92 494 098
(0.80.8) 50  Tpeuc 2520 17.06  7.04 2444 1640 6.82 2532 1698  6.52 2338 16.06 6.22
50  Tlpesc 2110 1294 418 2030 12.76  4.02 2098 12.80 3.48 19.74 1222 3.86
50  Tireuc 1328 624 122 1292 624  0.96 12.68 6.04 0.82 1264 596 1.12
50  Tppsac 1970 1056  2.70 18.40 10.00 2.28 18.48 9.84  2.00 17.86 10.12 2.24
50  Tigsac 1752 952 222 17.10 910 178 17.22 886 1.60 16.10 844 1.62
50  TEEsac 9.54 392 034 9.06 3.64 0.38 9.28 356 0.8 8.88 3.18 0.38
100 Tppeue 2196 1458  5.64 23.06 1490 5.84 2242 1490 6.02 2336 1560 6.24
100 Tigese 1928 1204  3.86 2030 12.36  4.00 19.70 1232 4.8 20.52 13.08 4.12
100  Tihese 1226 610  1.22 1234 642 114 1250 670 132 1256 6.68  1.50
100  Tpgsac 18.04 1034  2.60 19.00 10.58  2.66 18.74 10.94  2.90 19.40 11.54 2.86
100 Tlpsac 17.26  9.70 244 18.26  9.94 238 17.88 10.44 254 17.20 986  2.22
100 TEEsac 9.92 414 048 9.78 458  0.62 10.44 452 0.58 9.70 398 0.6
200 Tupe,e 2024 1324 456 19.80 12.88 4.54 19.52 12.54 454 20.58 1368  5.06
200  Tige,e 1860 11.80  3.62 17.66 11.32  3.46 17.88 10.62  3.36 18.92 1240 3.94
200 TiEsuc 1162 564 1.10 11.00 540 1.10 1050 554 114 1192 636 1.48
200 Tigsac 18.08 10.86  3.00 17.24 1056  2.68 1712  9.62 270 1830 11.46  3.26
200 Tipsac 17.72 1036 2.90 16.68 10.06  2.52 16.64 9.16 254 17.04 10.24  2.80
200 Tigsac 1034 456  0.70 960 426 0.62 9.18 452 0.50 960 450 0.80
500  Tipsac 1866 1174 4.16 19.82 1214 3.72 18.64 11.72  3.60 18.90 11.86  4.00
500  Tigsac 17.90 10.94  3.74 18.78 11.26  3.08 17.76  10.96  3.22 17.94 11.20 3.44
500 Tihe.c 1046 542 112 1066 520 0.84 1032 492 0.86 1054 508  1.00
500 Tpgsac 17.70 10.50  3.24 18.60 10.76  2.72 17.54 10.60  2.82 17.74 10.86  2.98
500 Tigsac  17.44 1040  3.20 1832 10.58  2.66 17.32 1042  2.80 17.30 10.28  2.70
500  Trgsac 9.94 500 0.82 10.12 464 0.60 982 430 0.70 9.80 438 0.72
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Table 7 — Empirical Sizes of the Tests for FESAC Model, DGP2 — Normal Disturbances

Circular world Rook contiguity Queen contiguity Group interaction
(A,1,) n Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
(0.202) 50  Tpee 1316 7.28  1.92 13.20 7.80 2.02 1336 7.80 2.02 1318 7.20 1.84
50  Tlgeac 1098 582  1.26 1110 626  1.30 1124 614 114 10.72 558 1.22
50  Tjrsac 11.06 520  1.00 1122 578 0.92 11.08 560 0.92 1060 5.16 1.08
50  Tpgsac 1092 518 098 10.78 566 0.74 1068 562 0.66 10.78 540 0.96
50 Tfpsac 1020 484 0.82 10.00 5.08 0.64 10.10 5.18 0.56 9.86 498 0.80
50 Tirsac 1046 460  0.66 1038 516 0.58 1012 4.86 0.52 10.28 462 0.64
100 Tppsne 1198 614 134 11.82 624 1.54 11.92 6.06 1.22 1196 612 136
100 Tlze.c 1074 542 100 10.82 542 118 10.76  5.08  0.80 10.74 552 1.06
100  TiEs.c 1116 518  0.96 1082 538 0.86 10.70 510 0.68 11.00 514 1.18
100  Tpgsac 1054 5.00 0.78 1028 512 0.86 1032 492 0.70 1034 514 084
100  Tfgsac 1022 476  0.66 10.04 486 0.76 10.02 468 0.64 9.96 484 0.76
100 Trgsac 10.64 480  0.72 1040 494  0.70 1036 4.48  0.56 10.44 466  0.82
200 Tuggac 1104 576 136 10.70 6.08 0.96 11.64 622 1.00 10.68 530 1.22
200 Tjpgac 1044 526 114 10.20 552  0.88 11.02 574 0.88 1018 492 1.10
200 TfEgac 1054 538  1.08 10.50 534  0.92 1128 572 094 9.86 5.00 1.06
200 Tigsac 1040  5.08  0.96 9.90 508 0.80 10.82 558 0.74 10.12 486 0.98
200 TEisac 1026 4.94  0.90 9.78 496 0.80 10.70 540 0.70 9.90 472 094
200 TiEsac 1032 530  0.82 9.94 476 0.70 1064 514 0.66 9.42 480 094
500  Tuggac 10.04 540  1.04 9.48 462 1.04 10.02 520 0.98 1018 536 1.24
500  Tlpsac 9.74 522 0.98 9.26 448  1.02 9.66 5.02 0.8 9.90 520 1.16
500  TiEac 9.82 494 0.92 9.20 458 1.00 958 490 0.84 10.00 514 0.96
500  Tiesac 9.44 502 084 9.26 440 096 9.60 4.98 0.82 9.58 4.83  1.00
500  Tigsac 9.44 498 0.84 9.20 438 092 956 4.92 0.82 9.50 4.80 0.98
500  TiEsac 9.30 466 0.82 9.08 444 092 944 486 078 9.26 484 0.84
(0.2,0.8) 50  Tpe.c 1332 7.08 176 1344 696 1.50 1166 642 174 1246 7.14  1.82
50  Tlgeac 1106 562 118 10.44 486 0.98 938 472 116 10.78 6.06 1.44
50  TiEsac 1122 546 064 9.86 468 0.82 9.52 448 0.82 10.78 546  1.22
50  Tppsac 1048 504  0.82 10.72 448 0.58 9.48 448 068 9.72 494 092
50  Tipsac 9.90 456 0.66 1002 396 0.52 884 3.86 0.2 7.98 350 0.58
50  TiEéac 9.98 462 042 9.68 4.18 0.58 9.18 4.04 058 750 324 0.50
100 Tppgne 1126 624 134 1196 652  1.48 1130 610 1.60 11.60 584 1.48
100 TPz, 1046 542  1.00 1062 564 1.18 1132 524 134 1058 530 1.16
100 Tihe.c 1086 496 084 1058 548  0.98 1058 512 0.10 10.76 5.02 1.06
100  Tpgsac  10.00 498 0.82 10.44 524 0.98 9.88 478 1.02 9.90 460 0.88
100 Tisac 9.64 462 068 10.12 504 0.94 9.58 456 098 9.00 390 0.0
100 Trgsac 1010 434 062 10.26 500 0.76 9.70 474 0.82 874 352 0.64
200 Tupgac 1068 550 140 1058 522  1.00 10.24 550 1.18 10.34 528  1.02
200 Tl 1014 510 120 9.90 4.80 084 9.70 510 1.02 9.88 496 0.94
200 TFEgac 1038 516 118 9.76 476 0.78 9.82 524 094 9.88 483 0.74
200 Tiesac 9.84 462 1.08 9.90 470 0.72 9.40 490 094 9.64 472 0.88
200  Thisac 9.70 450  0.94 9.74 448 0.70 9.28 478 084 9.14 406 0.74
200  TiEsac 9.68 454 096 9.58 454 0.70 946 5.04 0.86 892 394 050
500  Tuggac 10.60 504 126 10.18 538 1.10 10.86 544 112 10.58 516 1.06
500  Tjpsac 1030 492 116 9.92 520 1.02 1054 524 1.06 10.28 494  1.00
500 TiEsac 1044 504 114 1010 522  1.00 1054 512 110 10.14 498 0.98
500 Tigsac  10.06 458  1.02 9.92 514 096 1054 512 1.04 10.12 494 0.92
500  Trisac 9.94 448 098 9.88 506 092 1040 5.06 1.02 9.92 480 0.90
500  TiEsac 9.88 474 0.96 990 507 1.02 1044 492 1.00 9.80 472 0.86
(0.8,08) 50  Tup,. 1370 772 152 1326  7.22 184 13.14 7.08 158 1320 690 1.60
50  Tigeac 1204 632 1.06 1142 612 1.34 1132 580 1.16 1150 5.60 0.96
50  TiFsac 1164 588 076 1050 562 0.82 11.04 500 0.76 1094 554 0.84
50  Tpgsac 1114 542 074 10.80 532 0.98 1068 522 0.76 10.84 490 0.72
50 Tfpsac 1028 476 0.60 10.06 504 0.84 9.88 4.68 0.66 9.68 4.06 0.50
50  Tipsac 1048 498  0.42 9.78 460 0.70 10.18 418 0.52 9.42 4.02 036
100 Tppene 1162 6.06 138 12.28 630 146 12.22 658 1.60 11.74 616  1.40
100 Tlze.c 1062 538 116 11.00 560 1.20 1142 574 130 10.74 546  1.06
100  Tiheac 1094 548 094 1086 548  1.06 11.26 554 112 10.72 550 1.00
100 Tpgsac 1022 512 074 10.78 520 1.04 11.10 530 1.00 1058 512 0.82
100 Tfisac 9.80 4.80 0.68 1046  4.92  0.92 1068 512 0.96 9.06 3.92 046
100 Trgsac 1022 480  0.66 1040 494 0.76 1068 5.08  0.90 832 372 046
200 Tpggac 1126 556 1.22 1040 528 1.26 10.88 546  1.08 1110 592 146
200 Tigsac 1084 524  1.06 9.98 492 112 1058 510 0.94 1056 560 1.30
200 TiFgsc 1070 5.06  0.84 10.14 528 0.94 10.24 5.02 0.90 1090 534 116
200 Tfgsac 1010 480 0.86 9.84 480 1.06 1030 476 0.82 10.14 526 1.22
200  Thpsac 9.96 468 0.82 9.70 470 0.94 10.16  4.68  0.80 9.54 462 096
200  TiEsac 9.80 452 0.66 974 476 0.84 990 472 0.76 9.28 434 076
500  Tuggac 1048 522 110 1014 516  1.20 1012 492 0.90 1086 570 1.26
500  Tlggac 1016 502  1.04 9.98 490 1.14 9.98 460 0.90 10.70 564 1.06
500 Tfrsac 1016  5.02  1.06 9.88 504 1.10 9.92 486 094 10.66 548  1.16
500 Tpgsac 10.08 492 094 9.74 472 1.04 9.92 452 084 10.62 548 1.04
500  Trpsac 9.98 480 0.90 9.70 466 1.04 9.88 442 082 1046 526  1.02
500  TiEsac 9.92 482 1.02 9.70 486 1.06 9.72 464 0.90 10.32 512 1.00
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Table 8 — Empirical Sizes of the Tests for FESAC Model, DGP2 — Non-normal Disturbances

Circular world

Rook contiguity

Queen contiguity

Group interaction

(A1) n Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
(0.20.2) 50 T, 2538 1694  6.84 2470 17.40  7.36 2466 17.24  7.14 2536 16.78 6.84
50  Tlzeuc 2078 1256  3.60 2042 1270  4.42 20.18 12.74  4.34 2042 1226  3.88
50  TiEeuc 1278 642  1.04 1282 664 1.28 12.78 630 1.34 1266 630 1.06
50  Tppsac 19.16 10.14  1.98 19.02 10.26  2.64 18.90 10.56  2.66 19.32 1010 2.18
50  Tlpsac 1778 886  1.62 17.28 942 220 17.20 934 222 17.62 880 1.72
50  Tigsac 9.36 352 042 9.64 440 044 9.40 4.28  0.48 9.44 366 0.38
100 Tpgese 22.78 1498  5.80 2264 1476  5.42 2138 13.82 5.42 2340 1578  6.02
100 Tlgese 20.06 1224  3.92 19.86 11.92  3.26 18.50 11.20  3.50 20.54 1246 412
100  Tfrssc 11.88  6.04 156 1210 562 0.92 11.34 574 110 12.72 646 158
100  Tigsac 1890 1078  2.76 18.70 10.48  2.22 17.60 10.24  2.48 19.32 1118  3.12
100 Tlpsac 1828 10.02  2.54 17.98 978 1.92 16.90 9.78 2.14 18.40 10.08  2.80
100  TiEsac 9.70 436 0.80 952 386 0.32 930 3.94 056 10.30 472  0.90
200 Tpge,e 2060 1294 434 20.70 1332 494 20.46 13.04 4.78 20.14 1290 4.70
200 Tlgeue 1896 11.22  3.58 19.04 11.70 3.84 18.68 11.34  3.36 18.62 11.44  3.80
200 Tirsuc 11.04 548  1.06 1168 610  1.00 1092 578  0.90 1098 564 136
200 Tigsac 1824 1054  2.90 17.94 10.82 3.12 17.64 1036  2.54 18.08 10.88  3.22
200 Tipsac 17.92 1018  2.78 17.40 1030 2.98 17.42 9.88 242 17.48 1034  3.06
200  Tigsac 9.72 456 0.60 10.14 490 0.62 950 4.38 0.70 9.60 4.80 0.72
500 Tipsae 1914 1210 4.00 20.02 1264 432 19.46 1222  3.70 18.74 1140  3.68
500  Tigsac 1842 1108  3.62 19.14 11.92 3.68 18.66 11.32 3.14 18.06 10.68  3.26
500 Tihe.c 1056  5.28  1.20 1124 554  1.02 11.06 4.94 0.72 10.48 5.02 1.00
500 Tpgsac 17.44 10.34  3.10 1896 11.76  3.34 18.48 11.00  2.90 17.40 1022  2.80
500 Tipsac 17.22 1014  3.04 18.78 11.52  3.24 18.24 10.90 2.84 17.20 10.06 2.78
500 TiEsac 948 472 0.86 1080 5.06 0.84 1050 430 0.56 9.62 446 0.68
(0.2,0.8) 50  Tppsue 2538 16.82  7.22 2414 16.14  6.76 2414 1596  6.54 2418 1622  7.56
50  Tlzesc 2076 1330  4.60 18.14 1112  4.02 18.98 11.84 3.92 19.52 12.00 4.56
50  Tirc.c 1382 674 148 1126 554  1.18 12.02 622 0.98 1272 672 134
50  Tppsac 18.18 1016  3.02 17.68 9.78  2.64 18.04 10.06  2.18 18.20 1056 3.34
50 Tlpsac 1640  9.06 238 16.08 862  2.08 16.66 8.68 1.64 1468 7.22 164
50  Tigsac 9.82 428 0.56 9.16 3.70 0.42 920 3.76 0.14 736 274 0.22
100 Tpgese 2180 1458  5.56 23.00 1494 6.26 22.44 1488 5.64 22.02 1458  5.02
100 Tlgese 1944 1204  3.88 19.88 11.64 4.16 19.48 12.42 3.76 19.68 11.90 3.52
100  Tfrsse 1212 646 136 11.70 640 1.28 11.90 6.08 0.96 12.00 582 1.26
100  Tpgsac 17.80 10.50  2.68 18.68 10.54  2.88 17.88 10.14 254 18.08 10.06  2.28
100 Tlpsac 16.88  9.28  2.40 17.68 9.60 2.48 17.02 9.48 2.24 16.26 850  1.48
100  Tigsac 9.22 410 0.70 968 438 0.58 9.46 3.92 0.6 7.94 306 0.42
200 T, 1938 1234 4.82 2024 1248  4.32 20.08 12.80 4.26 19.22 1218 4.76
200  Tigeue 17.66 1088  3.84 18.14 10.84 3.04 18.40 11.04  3.18 17.14 1082 3.86
200 Tirsc 1064 580  1.16 1052 5.06 0.94 10.72 4.98 0.98 1062 562 112
200 Tigsac 1724 1012 3.14 17.72 1028  2.68 17.92 10.16  2.50 16.84 10.26  3.26
200 Tipsac 1674 992 2.90 17.28 9.88  2.44 17.54 9.80  2.30 15.44  9.06  2.48
200  Tigsac 936 458 0.76 9.22 424 0.46 956 3.86 0.8 838 410 042
500  Tupsae 2024 1258 436 19.66 12.10 3.94 19.20 12.02 432 19.22 1214 4.04
500  Tipsac 1924 1176 3.64 18.74 11.44  3.52 18.26 11.12  3.78 18.46 11.42  3.56
500 Tihe.c 1116 554 072 10.78 546  1.34 1060 5.52  1.18 1092 540 118
500 Tpgsac 1878 1140  3.00 18.50 11.08  3.20 18.16 10.74 3.34 18.20 11.06 3.24
500 Tigsac 18.64 11.16  2.98 18.42 10.84  3.10 17.92 10.60  3.32 17.68 10.60  2.98
500 Tigsac 1052 494  0.50 1022 500 1.02 10.06 5.06 0.96 9.88 458 0.88
(0.8,0.8) 50  Tppsye 2508 17.24  7.42 2440 1548  6.00 25.10 17.58  7.46 2552 16.86  7.28
50  Tlpesc 2126 1338 4.90 19.98 12.18  3.80 21.46 13.46  4.90 21.48 1324 454
50  Tirc.c 1338 7.04 162 12.08 612 0.98 1340 7.18 1.18 13.48 7.06 1.20
50  Trpsac 1892 1034  2.60 1838 9.84 1.94 19.66 11.20  2.50 19.28 1076  2.32
50  Tigsac 17.24 922 2.08 16.76 868  1.54 18.10 10.10 1.92 17.24 858  1.68
50  Tigsac 10.04  4.06  0.50 898 394 042 10.14 440 0.34 9.26 348 0.42
100 Tpgeue 2188 1410 538 22,70 1512 574 2220 1436  5.92 21.70 1434 5.28
100 Tigesc 1946 1174  3.86 20.06 1250  4.02 19.34 11.74 3.96 19.06 11.86  3.92
100  TfFese 12.00 576  1.08 1250 656  1.42 11.64 6.06 1.18 11.82 588  1.22
100  Tpgsac 17.96 10.06  2.40 19.38 1098  2.86 18.26 10.38  2.52 18.06 10.34  2.80
100 Tlgsac 1720 958  2.16 18.42 1022 2.48 17.38 9.68  2.22 1538 7.74 164
100 TEEsac 942 386 0.50 1046 452 0.74 9.14 3.70 0.46 750 3.14 0.38
200 Tup, 2160 1368  5.00 20.24 13.10 4.66 20.68 13.26  4.56 20.84 1334 4.98
200 Tigeue 1964 1204 3.78 1856 11.46  3.30 18.82 11.66  3.80 18.80 11.10 3.72
200 Tirsuc 11.88 578  0.94 11.20 554  1.08 11.28 5.86  1.12 11.02 562 1.04
200 Tpgsac 1858 1090  3.20 18.08 10.68  2.88 18.44 10.62  2.90 17.82 1068  3.22
200 Tipsac 18.14 1038  2.98 17.64 1032 2.78 18.04 10.26  2.80 16.36  9.26  2.40
200 Tigsac 1000 486 0.74 990 434 072 10.00 4.80 0.74 886 4.12 054
500  Tupsae 19-04 1174 4.04 18.96 11.58  3.82 19.02 1230  3.90 1836 11.68  4.28
500  Tigsac 1830 1122 3.56 18.08 10.74  3.36 18.20 11.44  3.44 17.48 1094 3.70
500 Tihe.c 1050 520  0.92 10.10 540 1.04 10.84 528 1.14 1048 562  1.22
500 Tpgsac 17.98 10.76  3.06 17.70 1024  2.92 17.76 10.88  3.04 17.44 1060 3.24
500 Tigsac 17.68 10.54  3.00 17.42 1014 2.84 17.58 10.74  3.02 16.76 10.08  2.92
500  Trgsac 9.84 482 078 954 492 0.80 1012 462 0.84 9.46 472 0.84
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