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Abstract: We apply the factor approach to the correlation matrix to forecast large covariance matrix of asset 
returns using high-frequency data, using the principal component method to model the underlying latent factors 
of the correlation matrix. The realized variances are separately forecasted using the Heterogeneous 
Autoregressive model. The forecasted variances and correlations are then combined to forecast large covariance 
matrix. Our proposed method is found to perform better in reporting smaller forecast errors than some selected 
competitors. Empirical application to a portfolio of 100 NYSE and NASDAQ stocks shows that our method 
provides lower out-of-sample realized variance in selecting global minimum variance portfolio. 

Keywords: Dimension reduction, Eigenanalysis, Factor model, High-frequency data, Large correlation matrix, 
Nonlinear shrinkage 

 

1. Introduction 

Modeling time varying covariance matrix of asset 
returns plays a crucial role in modern financial risk 
management and asset allocation. Multivariate 
GARCH (MGARCH) models are useful tools to deal 
with this problem. These models, however, are usually 
applied to low-dimension portfolios and problems 
arise when the number of assets is large. Aielli (2013) 
proposes a consistent corrected Dynamic Conditional 
Correlation (cDCC) method for high dimension 
portfolios. Pakel et al. (2020) propose a composite 
quasi-likelihood estimate to tackle the computational 
issue. 

MGARCH models are typically applied to daily, 
weekly or monthly data. With the availability of high-
frequency intraday data, researchers can model and 
forecast the variance and covariance of asset returns 
using tick-by-tick transaction or quotation data. 
Johnstone (2001), among others, point out that as the 
size of the portfolio covariance matrix goes to infinity, 
the naive sample covariance/correlation estimator is 
inconsistent and the eigenvalues and eigenvectors of 
the estimated covariance matrix may deviate 
substantially from the true values. Fan et al. (2016) 
review some large covariance matrix estimation 
methods. Compared against the MGARCH family of 
models, these methods can deal with the curse of 
dimensionality quite successfully. Although these 
methods can provide good estimates of 
covariance/correlation matrices, how to model the 
dynamics of the large covariance matrices and 

produce reliable out-of-sample forecasts is still a very 
challenging task. 

The focus of this paper is to examine the performance 
of a dynamic method to forecast large covariance 
matrix with high-frequency data using a factor 
approach for the correlation matrix. First, we modify 
the latent factor model of Tao et al. (2011) and apply 
it to correlation matrix. The dynamic high-dimension 
correlation matrix is assumed to be driven by a low-
dimension latent process. We model the dynamic 
structure of the latent factors using a vector 
autoregressive (VAR) model. This captures the short-
memory dynamics of the latent factors. Forecasts for 
these factors are then used to generate forecasts for the 
full correlation matrix. Second, we forecast the 
volatility of individual asset returns using the 
Heterogeneous Autoregressive (HAR) model of Corsi 
(2009). This model approximates well the long-
memory properties of realized variances. Finally, we 
combine the realized volatility forecasts with the large 
correlation matrix forecasts to obtain large covariance 
matrix forecasts. 

Our method differs from current large covariance 
forecast methods in the literature in two aspects. First, 
we model the correlation matrix process and the 
univariate volatility processes separately. We assume 
a short-memory structure for the vectorized latent 
factors of the correlation matrix and a long-memory 
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structure for the volatility processes. In contrast, existing papers
often assume short-memory dynamic structures for the covari-
ance (see Tao et al. (2011) and Callot et al. (2016)), while we
allow for a more flexible set-up. For each univariate volatility
process, we can adopt models with persistent dynamics and/or
asymmetric effect in positive versus negative returns. For the cor-
relation matrix process, we adopt factor models as currently used
for large covariance matrices. The idea of separately modeling the
correlation matrix process and the univariate volatility processes
dates back to the Dynamic Conditional Correlation (DCC) model of
Engle (2002) and the Time-Varying Correlation model of Tse and
Tsui (2002). In this paper, instead of using the MGARCH models,
we explore whether we can obtain better large covariance matrix
estimates with high-frequency data by using the factor approach.

Second, to obtain raw large covariance matrix using high-
frequency data for the eigen-analysis, we calculate the raw large
correlation matrix by regulating the eigenvalues of the matrix
using the nonlinear shrinkage method of Ledoit and Wolf (2012).1
The nonlinear shrinkage method is a successful approach even in
the absence of any knowledge about the structure of the latent
covariance matrix. In contrast, the threshold averaging realized
volatility matrix (TARVM) method of Tao et al. (2011) imposes
sparsity assumption on elements of the covariance matrix, which
may be inappropriate as stock returns are largely correlated due
to the presence of market risks.

We perform an empirical comparison of our method against
the following methods: the factor covariance matrix method of
Tao et al. (2011), the cDCC method of Aielli (2013), and the DCC-
shrinkage method of Engle et al. (2017). Our method has better
performance in terms of out-of-sample portfolio allocation for
constructing both the global minimum variance (GMV) portfolio
and the Markowitz portfolio with momentum signal using a
portfolio of NYSE and NASDAQ stocks. Also, it performs the best
in reporting smaller forecast errors in our Monte Carlo simulation
study.

The plan of the rest of this paper is as follows. In Section 2,
we describe the construction of our latent factor approach of
the large correlation matrix. Section 3 describes an empirical
investigation of the performance of different large covariance
matrix forecasts in terms of out-of-sample asset allocation. Some
concluding remarks are given in Section 4. A summary of the
implementation procedure of our method and some Monte Carlo
results for the performance of our method are separately reported
in the Online Appendix.

2. Forecasting large covariance matrix

2.1. Model set-up

Let X(t) = (X1(t), . . . , Xd(t))′ be an Itô process given by

dX(t) = µ(t)dt + σ ′(t)dBt , t ∈ (0, T ], (1)

where the stochastic processes Bt , µ(t), and σ(t) are defined on
the filtered probability space denoted by (Ω,F, {F t , t ∈ [0, T ]},
P). Bt is a d-dimensional standard Brownian motion with respect
to F t , µ(t) is a d-dimensional drift vector, σ(t) is a d × d matrix,
and µ(t) and σ(t) are assumed to be predictable processes with
respect to the filtration F t . We assume d to be large, typically in
the hundreds.

The integrated covariance matrix of Xt for the tth period (from
time t − 1 to time t) is defined as the d × d matrix

Σt =

∫ t

t−1
σ(s)′σ(s) ds, t = 1, . . . , T , (2)

1 We thank Ledoit and Wolf for providing the codes (www.econ.uzh.ch/en/
people/faculty/wolf/publications.html).

and the integrated correlation matrix Γt for the tth period is the
correlation matrix transformation (CMT) of Σt as follows

Γt = Σ̃
−

1
2

t ΣtΣ̃
−

1
2

t , t = 1, . . . , T , (3)

where Σ̃t is obtained from Σt by replacing the off-diagonal ele-
ments of Σt by zero.

Empirically, we observe the trading price that is the contami-
nated price of the efficient price X(t) due to market microstruc-
ture noise. Our objective is to forecast the integrated covariance
matrix of X(t) using high-frequency data.

2.2. Estimation of latent factors of the correlation matrix

We adopt the matrix factor model of Tao et al. (2011) for
high-frequency covariance matrix estimation and apply it to large
correlation matrix. Specifically, we assume

Γt = AΓf
tA

′
+ Γ0, (4)

where Γ
f
t , t = 1, . . . , T , are r × r (r ≪ d) positive definite

matrices treated as dynamical latent factors of the correlation
process, A is a d × r factor loading matrix with A′A = Ir , and Γ0
is a d × d positive definite time invariant matrix. The dynamical
structure of the d×d correlation matrices Γt is driven by a lower-
dimensional r×r latent process Γf

t , while Γ0 represents the static
part of Γt . Thus, to capture the dynamics of Γt , we control the
parametric dimension by modeling Γ

f
t .2

We first estimate the covariance matrix Σt , from which the
correlation matrix Γt can be calculated using the CMT. To esti-
mate Σt , we adopt the nonlinear shrinkage method proposed by
Ledoit and Wolf (2012), which rectifies the overfitting problem of
the sample covariance matrix by recovering the population eigen-
values from the sample eigenvalues using a nonlinear shrinkage
formula.3 The corresponding estimate of the correlation matrix
through the CMT will then be denoted by Γ̂t .

To calculate the time invariant matrices A and Γ0 in (4), we
use the method of Tao et al. (2011) for covariance matrices and
apply it to our model. Thus, we define

Ŝ =
1
T

T∑
t=1

(̂Γt − Γ̂)2, (5)

where Γ̂ =
1
T

∑T
t=1 Γ̂t . We use the r orthonormal eigenvectors

corresponding to the r largest eigenvalues of Ŝ as the columns of
the factor loading matrix A, and denote this estimate by Â. The
estimated factor matrix is then computed as

Γ̂
f
t = Â′Γ̂t Â, (6)

and the estimate of Γ0 is

Γ̂0 = Γ̂ − ÂÂ′Γ̂ÂÂ′. (7)

2.3. Forecasting factor matrix and large correlation matrix

We use the Vector Autoregressive (VAR) Model to capture the
short-run dynamics of the latent factors. For a r × r matrix Γ,
let vech(Γ) denote the vector obtained by stacking together all

2 Note that Γ
f
t need not be a well-defined correlation matrix. We assume,

however, this is a latent factor matrix generating the large correlation matrix
Γt .
3 Engle, Ledoit and Wolf (2012) show that the nonlinear shrinkage method

has superior out-of-sample properties when applied to the Dynamic Conditional
Correlation (DCC) Model. An alternative method to calculate Σt is the TARVM
estimator proposed by Tao et al. (2011). This method will also be considered in
our empirical application.

https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html
https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html
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elements on and below the diagonal of Γ. The VAR model for Γ
f
t

is given by

vech(Γf
t ) = α0 +

q∑
j=1

αjvech(Γ
f
t−j) + et , (8)

where α0 is a r̃ × 1 vector with r̃ = r(r + 1)/2, and αj, for
j = 1, . . . , q, are r̃ × r̃ square matrices. et is a r̃ × 1 vector
white noise process with zero mean and finite fourth moments.
Empirically, we fit equation (8) using Γ̂

f
k as observed values of

Γ
f
k, for k = 1, . . . , t − 1, to obtain the estimated coefficients

α̂j for j = 0, 1, . . . , q, and then α̂j are used to compute the
out-of-sample forecasted latent factors matrix for the tth period.

We denote the forecast of Γf
t conditional upon information up

to time t − 1 using the estimated VAR model by Γ̌
f
t . Then, the

forecast of the d × d large correlation matrix Γ̌t is computed as

Γ̌t = ÂΓ̌f
t Â

′
+ Γ̂0. (9)

Note that Γ̌t may not be a well defined correlation matrix
(positive definite matrix with unit diagonal elements).4 To re-
solve this problem, we apply the CMT on Γ̌t to obtain Γ̌∗

t as
the forecasted correlation matrix. On the other hand, if Γ̌t is not
positive definite, we project the matrix onto the space of positive
definite matrices using methods in Fan et al. (2016).

2.4. Forecasting realized variance and large covariance matrix

We further forecast the variance of individual assets sepa-
rately using the Heterogeneous Autoregressive (HAR) model of
realized volatility proposed by Corsi (2009). We estimate the HAR
equation as follows

RVi,t = ωi+αiRVi,t−1+βiRVw
i,t−1+γiRVm

i,t−1, i = 1, . . . , d, (10)

where RVi,t is the calculated realized variance of asset i in period
t , RVw

i,t−1 =
1
5

∑5
s=1 RVi,t−s, RVm

i,t−1 =
1
22

∑22
s=1 RVi,t−s. To compute

RVi,t , we use the subsampling method of Zhang et al. (2005) at
3-min intervals. The estimated models in Eq. (10) are used to
forecast the realized variances. These forecasts are then collected
to form the matrix Ďt , which is a d×d diagonal matrix with its ith
diagonal element being the forecasted realized variance of asset
i.

Finally, we compute the forecasted large covariance matrix as

Σ̌t = Ď
1
2
t Γ̌

∗

t Ď
1
2
t . (11)

This forecast procedure will be called M1. We conduct a Monte
Carlo study to investigate the performance of this method against
some other alternatives in the literature. Our method performs
the best in reporting smaller Frobenius norm errors and spectral
norm errors. These results and a summary of the method M1 can
be found in the Online Appendix.

3. Empirical comparison of portfolio selection

We compare the performance of various forecasts of the vari-
ance matrix based on out-of-sample asset allocation. We select
100 largest market capitalization stocks (as of 2015) that are
listed in NYSE or NASDAQ, with at least 200 trading days in
any calendar year between 2004 and 2016 (3171 trading days).
Tick-by-tick millisecond transaction data are compiled and down-
loaded from the WRDS Daily TAQ (DTAQ) database.

4 Note that this problem exists for all covariance/correlation matrix forecast
methods.

We calculate the forecasted covariance matrices using our pro-
posed method M1. For comparison, we also vary M1 by modeling
the covariance matrix process instead of the correlation matrix
process, and call this method M2. Similar to M1, M2 uses a VAR
model to capture the dynamics of the latent covariances (not
correlations). It differs from M1 in that the HAR forecast for the
realized variance of individual assets is not performed and the
dynamic covariances are directly modeled. For further compari-
son, we also include the TARVM method of Tao et al. (2011) and
denote this estimate as M3, which is the same as M2 except for
the method in estimating the raw large covariance matrix. Finally,
we include the DCC model with nonlinear shrinkage of Engle et al.
(2017) and the cDCC model of Aielli (2013), which are denoted as
DCC-shrinkage and cDCC, separately.

3.1. Portfolio selection

We compare the performance of various covariance forecast
methods based on the selection for the global minimum variance
(GMV) portfolio and the Markowitz portfolio with momentum
signal.

For the GMV portfolio, we choose the portfolio weights to
minimize the portfolio variance. We also investigate the problem
of choosing portfolio weights such that the portfolio variance
is minimized given a specific expected rate of return rp. We
follow Engle et al. (2017) and treat the momentum factor as the
required portfolio return rp. We construct portfolios based on
the calculated out-of-sample optimal weights, and then evaluate
different methods by comparing the corresponding portfolio’s re-
alized variance and information ratio. The latter is defined as the
ex-post realized portfolio return divided by the realized portfolio
volatility and is particularly relevant as a performance measure
for the Markowitz portfolio with momentum signal.5

3.2. Out-of-sample comparison of portfolio selection

We compare the performance of different covariance matrix
estimates in terms of their ability to select portfolios with the
lowest variance for the GMV portfolio and higher information
ratio for the Markowitz portfolio with momentum signal. We
calculate the optimal portfolio weights using the out-of-sample
forecasted covariance matrices, and then construct optimal port-
folios of the next period based on the calculated optimal weights.
To avoid an excessive amount of turnover and thus transaction
costs, we update all portfolios at biweekly frequency, that is,
every 10 consecutive trading days.6 We calculate all large co-
variance/correlation matrix at 15-min frequency and calculate
volatility at 3-min frequency.7 To calculate the volatility of the
constructed portfolio, we use the subsampling method of Zhang
et al. (2005) with portfolio returns at 15-min frequency.

To fit the factor correlation/covariance matrices we let the
number of factors r be 3, 4 and 5. The number of coefficients of
the VAR model increases quickly as the lag parameter q or the
number of factors r increases. Thus, we fit the diagonal-VAR(q)
models for the vectorized factor matrices, with q = 1. For com-
parison, We fit the cDCC model of Aielli (2013) and the shrinkage

5 Note that focusing on the out-of-sample standard deviation is now
inappropriate due to estimation error in the momentum signal.
6 As there are 3171 trading days in our sample, we have a total of T = 317

periods. We start to calculate the out-of-sample portfolio weights at t = 251.
To calculate the forecasted biweekly variance, we use a model similar to HAR
and select daily RV, weekly RV and monthly RV as explanatory variables.
7 See the Online Appendix for further discussions on this setting.
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Table 1
Comparison of constructed portfolios.
Method r GMV Markowitz portfolio with a signal

Volatility (%) Information ratio Volatility (%) Information ratio

M1 3 9.7373 1.4246 9.8131 1.5702
4 9.6986 1.5344 9.7853 1.6455
5 9.6904 1.5157 9.7846 1.6292

M2 3 9.8345 0.9158 9.9533 1.0761
4 10.1826 0.7693 10.2871 0.9157
5 10.1832 0.7730 10.2874 0.9195

M3 3 10.9701 1.1198 11.0449 1.1279
4 10.9777 1.1083 11.0519 1.1179
5 10.9741 1.1298 11.0484 1.1379

DCC-Shrinkage 11.0258 1.1662 11.0845 1.1918

cDCC 20.0295 0.8213 27.1846 0.8643

Notes: The figures are the mean realized daily volatility (annualized standard deviation) and information ratio of
the constructed portfolios. Out-of-sample optimal portfolio weights are calculated for the global minimum variance
(GMV) portfolio and the Markowitz portfolio with momentum signal.

DCC method of Engle et al. (2017) using the biweekly close-to-
close returns. For the cDCC model, we compute the DCC coeffi-
cients using the bivariate composite quasi-likelihood method of
Pakel et al. (2020) based on contiguous pairs.8

We report the calculated mean portfolio realized variance
and information ratio in Table 1, for both the GMV portfolio
and the Markowitz portfolio with momentum signal. We observe
that empirically M1 performs the best in reporting smaller mean
portfolio realized variance and larger mean portfolio informa-
tion ratio. The cDCC estimates have rather poor performance.
The factor correlation/covariance matrix models are robust with
respect to the choice of r , which coincides with the finding
of Fan et al. (2013) that the covariance estimate is robust to
the overestimation of r . The results confirm the advantage of
using the factor model for the correlation matrix rather than
the covariance matrix, as well as the use of high-frequency data.
We also achieve better results by using the nonlinear shrinkage
estimate for the covariance matrices. Interestingly, although the
DCC-Shrinkage estimate of Engle et al. (2017) does not utilize
high-frequency data, it performs quite well compared against
M2 and M3 for the Markowitz portfolio with momentum signal.
This may further suggests the good performance of the nonlinear
shrinkage estimate of Ledoit and Wolf (2012) and the DCC struc-
ture.9 Apart from the volatility and information ratio, we also
calculate other statistics of the out-of-sample optimal portfolios
as in Brito et al. (2018). The results are reported in Table A.6
of the Online Appendix. The cDCC portfolios have extreme short
positions and our proposed method M1 tends to generate very
balanced portfolios.

4. Conclusions

We apply the factor approach to the correlation matrix to
model and forecast large covariance matrices using high-
frequency data. The dynamical structure of the correlation ma-
trices is assumed to be driven by a low-dimension latent process.
The realized variance of individual assets is forecasted using
the HAR model. We forecast the large covariance matrix by
combining the short-memory estimated correlation matrix and
the HAR realized volatilities. Our empirical study shows that our
method performs the best among some alternative methods in
the literature.

8 We also fit these models using daily close-to-close returns. But poorer
results are obtained.
9 We perform some additional robustness checks for our empirical findings.

We fit the diagonal-VAR(q) models for the vectorized factor matrices with q = 2.
Results are similar to the case for q = 1 and can be found in the Online
Appendix. Results are very poor if we let r be 1 or 2.
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