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Abstract

We propose a model-free test for structural changes in factor models. The basic idea is to regress the
data on the commonly estimated factors by local smoothing and compare the fitted values of time-varying
factor loadings with those of the time-invariant factor loadings estimated by the principal component
analysis. By construction, the test is powerful against both smooth structural changes and sudden
structural breaks with possibly unknown number of breaks and unknown break dates in the factor
loadings. No restrictions on the form of alternatives or trimming of the boundary regions near the
beginning or ending of the sample period is required for the test. The test has power to detect the usual
nonparametric rate of local alternatives. Monte Carlo studies demonstrate excellent power of the test in
detecting both smooth and sudden structural changes in the factor loadings. In an application to U.S.

asset returns, we find significant evidence against time-invariant factor loadings.
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1 Introduction

Factor models are extensively studied in the economics and finance literature. Since the datasets under
analysis usually span a large number of time periods, the data generating processes for the underlying vari-
ables may undergo significant structural changes during the sampling period. However, the factor loadings,
which capture the relationship between economic/financial variables and the latent common factors, are
usually assumed to be time-invariant by most of the existing literature (e.g., Stock and Watson 2002, Bai
and Ng 2002, Bai 2003). This assumption may stem from Stock and Watson’s (2002, 2009) arguments that
when the factor loadings undergo “small” instabilities, the estimated factors by the principal component
analysis (PCA) are still consistent. In fact, since macroeconomic datasets usually have a long time span, it
is difficult to assume that the factor loadings are time-invariant or only undergo asymptotically negligible
changes during the sampling period. The driving forces such as institutional switching, economic transition,
preference changes and technological progress, may influence the relationship between economic/financial
variables and the common factors significantly. If the assumption of time-invariant factor loadings fails,
the estimated common factors can be inconsistent and the inference and forecasting based on such an
assumption may lead to misleading conclusions.

Recently, many researchers study the issue of structural changes in factor models. Stock and Watson
(2009) examine the forecasting reliability when there exist structural breaks in the factor loadings. Breitung
and Eickmeier (2011) propose LR, LM and Wald statistics to test structural breaks in factor loadings. Chen
et al. (2014) propose a two-stage procedure to detect big breaks in factor loadings by testing the parameter
stability in a regression of one of the factors estimated by PCA on the remaining estimated factors. Corradi
and Swanson (2014) propose a test to check structural stability of both factor loadings and factor augmented
forecasting regression coefficients. Han and Inoue (2015) propose a test for structural breaks of factor
loadings by checking whether the second moments of the estimated factors exhibit a structural change.
Yamamoto and Tanaka (2015) propose a modified version of Breitung and Eickmeier’s (2011) test to ensure
the robustness to the non-monotonic power problem. Cheng et al. (2016) consider the case in which both
the factor loadings and the number of factors may change simultaneously. Baltagi et al. (2016) propose
a sequential procedure to test multiple structural breaks by testing the null of [ change points versus
the alternative of [ + 1 change points. These studies provide appropriate econometric tools to examine the
possible structural breaks in factor loadings. However, all these tests are proposed to check sudden structural
breaks. In fact, such driving forces of structural changes as preference changes, technological progress, and
policy changes usually take effect gradually in a long time. Even some abrupt policy changes also take a
period to take effect. Hence, it seems more realistic to assume smooth changes rather than sudden breaks in
such scenarios. In addition, there is a growing literature on the time-varying factor models; see Stock and
Watson (2002), Banerjee et al. (2008), Del Negro and Otrok (2009), Bates et al. (2013), Eickmeier et al.
(2015), and Mikkelsen et al. (2015). All these papers assume that the time-varying factor loadings follow a
random walk process or a vector autoregressive process and only consider the estimation problem. Recently,
Su and Wang (2017) model the time-varying factor loadings as piecewise smooth functions of scaled time
and estimate the time-varying factor loadings and factors by the local version of PCA. They show that
these estimators are consistent up to a rotation matrix that is time-dependent. This is in sharp contrast

to the fact that the rotation matrix for the conventional PCA is time-independent. For this reason, they



cannot compare the factor loadings estimates from the conventional PCA with those from the local PCA
directly. Instead, they propose an Lo-distance-based test statistic to contrast the estimators of the common
components under the null hypothesis of no structural changes in the factor loadings and the alternative
hypothesis respectively.

In this paper, we propose a simple nonparametric test for the null hypothesis of no structural changes
in large dimensional factor models. Specifically, the test is preceded by two steps. First, we apply the
conventional PCA to the data {X;;, i =1,2,...,N,t =1,2,...,T} to obtain the estimators of the common
factors and time-invariant factor loadings under the null, which are consistent up to a time-independent
rotation matrix under the null and inconsistent in general otherwise. Second, we regress {X;:} on the
estimated common factors by local smoothing to obtain the estimators of time-varying factor loadings.
The test statistic is then constructed by measuring the squared-Lo-distance between these two estimators
of factor loadings. The intuition works as follows. If the null hypothesis is true, both the first-stage
PCA estimator of the factor loadings and the second-stage local PCA estimator of the factor loadings are
consistent with the same true time-invariant factor loadings up to a common rotation matrix and thus the
Lo-distance between them would be small. On the other hand, under the alternative hypothesis of structural
changes in the factor loadings, the two estimators of the factor loadings will differ substantially from each
other, which gives the power for the resulting Lo-distance-based test statistic.

The test complements the nonparametric test of Su and Wang (2017) and generally outperforms existing
parametric tests. It has a number of appealing features. First, like the test of Su and Wang (2017), the new
test does not require one to impose stringent restrictions on the form of alternatives. In particular, our test
is powerful against a large class of smooth structural changes as well as one or multiple sudden structural
breaks in factor loadings. For the sudden structural breaks, we don’t need to know the break dates or the
number of breaks. This is in contrast to existing tests for the stability of factor loadings, all of which focus
on the sudden structural breaks, especially the single structural break. Simulation studies demonstrate
excellent power of our test in detecting various forms of structural changes such as the single structural
break, the multiple structural breaks, and the smooth structural changes. Second, our test does not require
trimming of the boundary regions near the starting or ending of the sampling period and has excellent
power in detecting breaks that occur near the end of the sample. In contrast, all existing parametric tests
for unknown break date such as the supremum-type tests of Breitung and Eickmeier (2011), Chen et al.
(2014), Han and Inoue (2015) and Cheng et al. (2016) rely on a prespecified trimming parameter and
hence would miss the possible structural changes in the boundary regions. Third, the new test shares some
common features as the test of Su and Wang (2017): both tests are of nonparametric nature, have the
asymptotic normal null distribution, and can detect local alternatives that converge to the null at the same
rate that is faster than the usual 7~/2-rate detected by existing parametric tests. The superb performance
of our nonparametric test and that of Su and Wang (2017) is essentially because they explore the information
from both the cross-sectional and time dimensions effectively while existing parametric tests mainly rely
on the information along the time dimension. To simplify the derivation, our asymptotic theory requires
that the error term be the m.d.s. over the time but it allows for cross-sectional dependence. One could
possibly allow for both serial and cross-sectional dependence. In this case, the asymptotic variance of our
test statistic will involve double summations along both the cross-sectional and time dimensions and we are

not aware how to estimate it consistently.



After the first version of the paper was circulated, we found that Mikkelsen et al. (2015) also con-
sider time-varying factor models. They model the time-varying factor loadings as a vector autoregressive
process and propose a two-step maximum likelihood procedure to estimate the parameters in the models.
Nevertheless, they do not consider a specification test for the time-invariant factor models.

The rest of this paper is organized as follows. In Section 2, we state the hypotheses of interest and
construct the test statistic. In Section 3, we investigate the asymptotic properties of our test. In Section
4, we study the finite sample performance of the test via simulations. Section 5 provides an empirical
application. Section 6 concludes. The proofs of the main results and some additional simulation results are
relegated to the Online Supplement.

NOTATION. For an m X n real matrix A, we denote its transpose as A’, its Frobenius norm as || A||
(= [tr(AA")]*/?), and its spectral norm as | Al
i, (+) denotes the sth largest eigenvalue of a real symmetric matrix by counting eigenvalues of multiplicity

o (= Vi (A’A)), where = means “is defined as” and

multiple times. The operator L denotes convergence in probability, 4, convergence in distribution, and
plim probability limit. We use (N,T) — oo to denote that N and T pass to infinity jointly. Let N AT =

min (N, T). Let C € (0,00) denote a generic positive constant that may vary from case to case.

2 Hypotheses and Test Statistic

In this section, we introduce the hypotheses and test statistic.

2.1 Hypotheses

Let {X;,i=1,2,...,N;¢t=1,2,...,T} be an N-dimensional time series with T" observations. The index
i represents the ith cross section unit in panel data set or the ith random variable in a multiple time series

data set. We assume that X;; is generated via the following factor model
Xt = Ny Fy + e, (2.1)

where F; is an R x 1 vector of common factors, A is an R x 1 vector of factor loadings that can admit
sudden and/or smooth structural changes over time, and e;; is the idiosyncratic error term.

The null hypothesis of no structural change in the above factor model could be written as:
Hy: it =Xpfore=1,2,... Nand t=1,2,...,T.
The alternative hypothesis is
H;y : At # Ao for some non-negligible values of (i, 1).

Apparently, under Hy, A;; is time-invariant and model (2.1) degenerates to the factor model with time-
invariant factor loadings. This model has been elaboratively studied by Stock and Watson (2002), Bai
and Ng (2002), and Bai (2003), among others. Nevertheless, it is well known that factor models may
exhibit structural changes over time. For this reason, much recent research has been focusing on testing

for structural changes in factor models. See, e.g., Breitung and Eickmeier (2011), Chen et al. (2014), Han



and Inoue (2015), and Cheng et al. (2016). These authors mainly focus on testing the existence of a single
structural break in the factor loadings by using some supremum-type test statistics. However, usually no
prior information about the structural change alternative is available in practice. It is extremely restrictive
to assume only a single sudden structural break in factor loadings. Most recently, Baltagi et al. (2016)
provide a sequential procedure to detect multiple structural changes, which is also a special case of our
alternative hypothesis.

To capture a wide range of alternatives, we consider a nonparametric local smoothing approach. More
precisely, we follow the nonparametric literature on time-varying models (see, e.g., Cai 2007, Robinson 2012

and Chen et al. 2012) and model A;; as a nonrandom function of ¢/T :
Air = Ni(t/T),

where A;(+) is an unknown piece-wise smooth function on (0, 1] for each ¢ with a finite number of discontinuity
points. By allowing A;(-) to have a finite number of discontinuities, our alternative covers both sudden

structural breaks and smooth structural changes. A special case is:

M(t/T) = )\i(l) ift<Ty
' | N ift>T

for some Ty € (1,T). This is the factor model with a single structural break at the common break date T} for
all individuals, and is the alternative considered by Breitung and Eickmeier (2011), Chen et al. (2014), Han
and Inoue (2015), and Cheng et al. (2016). Apparently, this is a very restrictive alternative. In contrast,
our model under the alternative allows for multiple structural breaks, with possibly unknown break dates
or unknown number of breaks. More importantly, by assuming \;(-) to be a piece-wise smooth function, we
allow for smooth structural changes in the factor loadings. This type of alternative appears more reasonable
and realistic than the single structural break alternative given the fact that the driving forces of structural
changes such as preference changes, technological progress and policy modifications take effect gradually

over a long horizon.

2.2 Test Statistic

Under the null hypothesis, we can follow Bai and Ng (2002) and Bai (2003) and apply the method of PCA
to estimate the following model
Xit = NoFy + el (2.2)
where e;rt = ¢;; under Hy and the two are distinct under Hj.
Let Xy = (Xut,..., Xne) 5 &0 = (ensy---nene), ei = (eJ{t, ...,e}[\”)’, F = (F,...,Fp), and Ay =
(A10s -y Ano) - Let X = (Xy,..,X7) , e = (e1,....er) , el = (e, ...,e})’. Then we can rewrite (2.2) in
matrix form

X =FA) +el.

The PCA method solves the following minimization problem:

T
min tr (X — FAY) (X - FAY =375 (X — Ny F)?

i=1 t=1



under certain identification restrictions. In this paper, we follow Bai (2003) and consider the following
identification restrictions:

T~ 'F'F =1x and A)A is a diagonal matrix.

Let F, and Ao be the principal component estimators of F; and ;g respectively under the above identification

restrictions. Let F = (FI, ..., Fy) and Ay = (5\10, - S\NO)/- It is well known that F is v/T times eigenvectors

corresponding to the R largest eigenvalues of the 7' x T matrix XX’, and A = (F'F)"'F'X =T 'F'X.
After obtaining the restricted estimators F, and )\ of F; and Aio, we now consider the following non-

parametric regression model:
t\ =
Xit =N (T) Fy + ¢}y, (2.3)

where eft is another error term that takes into account the estimation error introduced by replacing F; with

F}. The intuition of our test goes as follows: if Hy is true, then any nonparametric estimate of \; (-) in (2.3)
should not differ much from the restricted estimate A\;o. However, if Hy is false, a typical nonparametric
estimate of \; () can deviate a lot from the restricted estimate 5\¢0~ Hence, we can test Hy by measuring the
distance between a typical nonparametric estimate of \; (-) and the restricted estimate 0.

In this paper, we consider the simple local constant estimate of \; (%) in (2.3). Let h be the bandwidth
and K (-) be a kernel function with compact support [—1, 1] . To avoid the boundary bias problem, we follow
Hong and Li (2005) and Li and Racine (2007, p.31) and apply the following boundary kernel:

WK (S5E) ) L oy K (wdu, — if v € [0,Th)
knr = h™ 'K, <ThT> h K (5E) if r € [Th,T —Th]

h— IK(t )/fl r/T)/hK(u)du, it (T —Th,T]

We note that K,

estimator of \; (

-) equals to K (-) in the interior region but not in the boundary regions. The local constant

(
%) is given by:

-1 7
A = Ay ( ) ( Zkh st Fs F’) 12/{,1,5,5&)@-8. (2.4)

s=1

Under Hy, we have \;; = Ao for all ¢. )\it will be close to >\i0 for each ¢. Under Hy, \;; is not a constant
over time and we would expect large deviations of j\it from 5\1-0 for some t. Therefore, we could test Hy by

measuring the squared distance between 5\“ and 5\1-0:
R ;| NI o, 3
M= Zl ; ()\it - ,\m) ()\it - ,\m) . (2.5)

The test statistic is a standardized version of M in (2.5):
SMyr = Vi (TN1/2h1/2M ]BNT) (2.6)

where the centering factor B ~T and the scaling factor \Y n1 are defined as follows:

h1/2 N T T ~ ~
T2N1/2 Z Z sl (kh,stsj?tl - HR) (kh,stS';tl - ]IR) Fségsu
=1 t=1 s=1

I@NT

2
Vyr = 202Nt Y K(SThT) S SR B FSE S E, (8.8,),
1<s#r<T



with S = 4 X0 ko FL Sp = TS BE, &g = Xig — MgFyy & = (E1,- - éne)/ and K (u) =
f_ll K (v) K (u— v) dv being the two-fold convolution kernel of K (-). For example, if we use the Epanech-
nikov kernel K (u) = 0.75(1 — u?)1(Ju| < 1), then K (u) = (2 — 3u® + 2 Jul® — = lul’)1(Ju| < 2), where 1(-)
is the usual indicator function.

3 Asymptotic Properties of the Test Statistic

In this section, we will establish the asymptotic null distribution of our test and study its asymptotic local
power property. In addition, we also propose a bootstrap procedure to improve the finite sample performance

of the test and establish its asymptotic validity.

3.1 Assumptions

Let vy (s,t) = N7'E(ejer), € = N7 'eher — E(eier)], Vv pr (s,t) = NTVE (FoeeFy) and 7i5,5 =
E (eitejSFt’FS). We use max;, max;, max; ; and max, ; to denote max;<;<n, maxi<¢<7, MaxXi<;< N MAX|<¢<T
and maxi<g (<7, respectively. Throughout, we make the following assumptions.
Assumption A.1 [Factors]

(i) E(FyF]) = X Vt for some R x R positive definite matrix X p.

(i) max; E|| F;||¥T7 < oo for some o > 0.

Assumption A.2 [Factor Loadings]
(i) Ajo are nonrandom such that max;<;<n || Aol < C.
(ii) N"1AjAg = N ! Zf\’:1 Xio\jg — Xa, for some R x R positive definite matrix Xy, .
(iii) The eigenvalues of the R x R matrix XpX,, are distinct.

Assumption A.3 [Error term]

(i) E(eir) = 0, max; ¢ Ele;[° < C and max; 1 E|| Fyex||®T° < C for some o > 0.

(ii) For each i = 1,2,..., N, the process {e;;,t = 1,2,...} is a martingale difference sequence (m.d.s.)
with respect to Fnrt @ E (e¢|Fnri—1) = 0, where Fyp—1 is the o-field generated from (Fy, Fy_1,..., €41,
€t—2y-..).

(iii) For each i = 1,2,..., N, the process {(e;, F;),t = 1,2,...} is strong mixing with mixing coefficients
ai(). a(-) = max; o;(+) satisfies Y220 a(s)?/+9) < C for some § > 0. In addition, there exists an integer
Ty € [1,T) such that T~2 max (T2, TSh=1, T2h=2) — 0 and N2Th2a (Tp)"/ ) — 0 as (N, T) — oo.

(iv) max; 23:1 vy (s,t)] < C, max,s; E ’Nl/Qfst’4 < C, max E\N*l/2 Zi]\il[eft - F (e?t)]|4 <C.

(v) maxe Sy [ (5:8)] < Oy maxier EIN-V2Fecfe, P < Coand N5 5T (il <
C.

(vi) [lell,, = Op (N2 + T2,

Assumption A.4 [Kernel function and Bandwidth]

(i) The kernel function K : R — R is symmetric and continuously differentiable probability density
function with compact support [—1, 1].

(ii) As (N,T) — oo, h — 0, Th? — 0o, Th? /N3 — 0, Nh?/T — 0, Th(InT)~2? — oo, NR*(InT)~* — oo,
TN~ h3(InT)~% — cc.



Assumption A.1 imposes some conditions on the latent common factors. We follow Stock and Watson
(2002), Breitung and Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015) and Su and Wang
(2017) and assume that E (F3F]) = X is homogeneous over ¢t. Motta et al. (2011) make a much stronger
assumption: Fy ~ 4.i.d.(0,2F) with X being diagonal and positive definite. Assumption A.1(i) greatly
facilitates the derivation of the asymptotic results and can be regarded as an identification condition. Since
the latent common factors and the factor loadings are not separately identifiable, it is difficult to distinguish
the structural changes on factor loadings with those on common factors. This explains why researchers have
frequently made some normalization restrictions like E(F;F}) = X in the literature. Otherwise, even if
there is no structural change on the second moment of F; such that E(F,F]) = X is satisfied for all ¢ and

the factor loadings \; are constant over time, we can always write
NF, = XQ(t/T)"" Q(t/T) F, = X}/ F} for any nonsingular matrix Q (¢/T),

where Ff = Q (t/T) F, and X}, = [Q (t/T)”']'A:. That is, \,F; can be equivalently rewritten as the inner
product of a time-varying factor loading A}, with a factor F;* that has time-varying second moment. [Note
that E(FYFY) = Qt/T)2rpQ(t/T)']. The constancy of the second moment of the factor in Assumption
A1(i) aims to rule out this situation even though it is still not sufficient to identify the factors and factor
loadings under the alternative.

Assumption A.2 ensures that each factor has a nontrivial contribution to the variance of X;. Following
Bai (2003) and Breitung and Eickmeier (2011), we assume that the factor loadings are nonrandom for
simplicity.

A.3 imposes moment conditions on the errors and their interactions with the factors and factor load-
ings. A.3(i) and (iv) correspond to Assumptions C.1 and C.5 in Bai (2003). A.3(ii) assumes that the
process {e;,t =1,2,...} is an m.d.s. with respect to the filter {Fnr,} and it allows for cross-sectional
dependence among the error terms. This assumption is essential for the establishment of the asymptotic
distribution of our test statistic under the null hypothesis and a sequence of Pitman local alternatives. It
is possible to allow for both serial dependence and cross-sectional dependence in the error terms. But that
will substantially complicate the asymptotic analysis and we are not sure how to estimate the asymptotic
variance of our raw test statistic in this case. A.3(iii) requires the process {(e;, Fy),t =1,2,...} to be
strong mixing with some algebraic mixing rate. With more complicated notation, one can allow different
individual time series to have different mixing rates and then relax the summability mixing condition to
limsupy + Zivzl papaet (8)6/(1+6) < C < oo. If the processes are strong mixing with a geometric rate
(e.g., a(s) = p* for some p € [0,1)), then the conditions on « (-) can be all met by specifying Ty = |CoInT |
for some sufficiently large positive constant Cp. A.3(iv) and (v) control the cross-sectional dependence
among {e;,i = 1,2,..., N} and {Fie;,i = 1,2,..., N}, respectively. A.3(vi) is widely assumed in the
factor literature; see, e.g., Moon and Weidner (2015), Su and Wang (2017), and Ma and Su (2018).

A .4 imposes regularity conditions on the kernel and bandwidth. The familiar positive bounded kernels,
such as the Epanechnikov, Quartic and Uniform kernels, are allowed. However, it rules out the Gaussian
kernel, which has unbounded support. We allow the choice of a wide range of admissible rates for bandwidth
h. For example, if NV and T are the same order of magnitude as in many applications, one can specify
hoc T~ for 0 < a < 1/3. Thus the optimal rate of bandwidth (77'/%) in terms of minimizing the mean

squared error of the nonparametric estimation for \;(-) would satisfy A4(ii) in this case even though it is



typically not the optimal bandwidth for our test. Moreover, Assumption A.4 also allows for a wide range of
admissible relative magnitudes of N and T'. One can specify h oc T~% and N o T for max{2a, +(1—2a)} <
b < min{1 + 2a,2 — 3a}. For example, if a = %, then % <b< % This includes the most common scenario
in applications where N and T pass to infinity at the same rate.

The nonparametric regression we used in the second step is the time-varying coefficient time series model
given by Cai (2007). Following the analysis in Cai (2007), we can show that the asymptotic bias of the
estimator of \; (¢/T) is O(h?) and the asymptotic variance is O(T~'h~!). Therefore, a popular rule-of
thumb procedure is to choose h = ¢,0,T /5, where o, is the sample standard deviation of the smooth
variable and ¢ is a constant depending on the kernel in use. For the Epanechnikov kernel, ¢, = 2.35.
Here, the smooth variable {t/T}~_; behaves like a uniform random variable on [0, 1] and thus one can set
o5 = 1/4/12. Therefore, we use the bandwidth h = (2.35/1/12)T~'/° as the benchmark bandwidth in our
simulations and check the effect of different bandwidth sequences by setting h = ¢(2.35//12)T /5 for
¢ =0.5,1.5 in the online supplement.

In practice, one could also consider a data-driven bandwidth using the leave-one-out cross-validation
(CV) method. That is, we can choose h as

N T
. i\ =
h= arg cln*WI%nl"}Llczn*W Z Z[th - >\1'77 <T> Ft]2
- = i=1 t=1

where \;_ (%) = (% Zs# kh,stﬁsﬁ}f)_l + Dot kh’SthXis is the leave-one-out estimator, v = 1/5 and
0 < ¢1 < cg < o0 are two pre-specified constants. Although the above cross-validated bandwidth is
asymptotically optimal for the estimation of the time-varying nonparametric regression model in terms of
mean squared error, it is not optimal for our test. For testing problems, the essential concern is the Type I
and Type II errors. Based on the Edgeworth expansion of the asymptotic distribution of a test statistic in a
different but related nonparametric context, Gao and Gijbels (2008) show that the choice of h affects both
the Type I and Type II errors, and usually there exists a tradeoff between these two. A sensible optimal
rule is to choose h to maximize the power of a test given a significant level. Gao and Gijbels (2008) derive
the leading terms of the size and power functions of their test and then choose a bandwidth to maximize
the power under a class of local alternatives with a controlled significance level. Unfortunately, Gao and
Gijbels’s (2008) results cannot be directly applied to our test, because the higher order terms of size and
power functions depend on the form of test statistic, the DGP, the kernel and the bandwidth, among other
things. In another different but related context, Sun, Phillips and Jin (2008) also consider a data-driven
bandwidth by minimizing a weighted average of the Type I and Type II errors of a test. It is possible to
extend these approaches to our test, but the analytical expressions for the leading terms of the size and
power functions or the two type errors of our test are rather involved and is beyond the scope of the present

paper. We will pursue this important issue in a subsequent study.

3.2 Asymptotic Null Distribution

Under the above regularity conditions, we now state the asymptotic distribution of SM ~n7 under Hy.

Theorem 3.1 Suppose Assumptions A.1-A.4 hold. Then S/’]\\4NT 4, N(0,1) under Hp.



Remark 1. The test statistic is based on a sample quadratic form, which measures the distance between
the local smoothing estimator i+ and the principal component estimator \;o. Under Hy, \ig converges to
the true factor loadings coupled with an unknown rotation matrix with a faster rate than that of the
local smoothing estimator 5\“. As a result, the limiting behavior of SM N7 is solely determined by 5\“.
In particular, by subtracting the bias term, the quadratic form statistic yields a dominant degenerate U-
statistic, which determines the asymptotic distribution of our test. Since a large value of M is in favor of
the alternative, our test is a one-sided test.

Remark 2. The test is asymptotically pivotal and has a convenient asymptotic N(0,1) distribution
under Hy. Consequently, we can compare our test statistic with the one-sided N(0,1) critical value z, at
the significance level «, and reject Hy when SM NT > Zo. In contrast, the limiting distributions of the
existing tests for structural changes with unknown break date, namely the supremum-type tests of Breitung
and Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015), rely on a tied-down Bessel process, which
depends on a prespecified trimming parameter and the degree of freedom. As a result, one should either

simulate or refer to Andrews’ (1993) tabulated critical values.

3.3 Asymptotic Local Power

To gain more insight into the asymptotic power property of the test SM NT, we now consider a class of local
alternatives as follows: .
H; (anT) : it = Nio + anT9i (T) for each 7 and t,

where ayt — 0 as (N, T) — oo. ayr controls the speed at which the local alternative converges to the null
hypothesis, and g; (%) is a piecewise smooth function with a finite number of discontinuity points. Noting
that Ao +an79; (%) =

that

Xio + ¢i.NT) + ant(gi (T) —¢; nr/anT] for any ¢; y7 € RE, below we will assume

/Olgi(u)duzo

for location normalization purpose. It turns out this normalization will greatly simplify the local asymptotic
power analysis. With such a normalization, both \;q and g; (-) can be dependent on the sample sizes N and
T. But for notational simplicity, we continue to write them as A;o and g; (+) instead of Ajo n7 and g; N7 (+) .

To study the asymptotic power property of SM N1, we add the following assumption:

Assumption A.5
(i) For each 4 = 1,2,..., N, g¢;(-) is piecewise continuous with a finite number of discontinuous points
n (0,1]. maxi<;<n sup,, |g; (u)| < C.

(i) maxs < <r || 1y S bnsr Foeisgly | = Op (NTR/I(NT))™/%) whete g = gi (r/T).

A.5(i) allows for both sudden breaks and smooth changes under the local alternative. A.5(ii) can be
verified as in Su et al. (2015).
The following theorem studies the asymptotic local power property of SM NT-

Theorem 3.2 Suppose that Assumptions A.1-A.5 hold. Then under Hy (anT) with anyr = T-Y2N-1/4p=1/4

P S/]\\4NT > zq|H;y (aNT)} —1—=® (2o —m0)
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as (N, T) — oo, where ®(+) is the standard normal CDF, z, is the one-sided normal critical value at the

significance level a, and mo = limy 1) HlNT/V}\{:,% with

B L N y N
iyt = tr WZZQO% <f>gz (T) Qo | and

i=1 t=1

2
_ 14— =~ (S—T _ _ _ _
Vnr 2T 2N~'h™t ) K< 7 ) E[FS:'Q0QoE s FoFIS ' QhQoEr Frelhes)?]

1<s#r<T

where Qg = Vol/zTgEX;/Q, Vo is an RX R diagonal matriz containing the R largest eigenvalues ofE}X/OQEFZ}\{)Q

in decreasing order, and Y is the corresponding eigenvector matriz such that T{Yo = Ig.

Remark 3. Theorem 3.2 shows that the test has nontrivial power against Hj (ay7) with ayr =
T—1/2N-1/4p=1/4 Although the test shares the same convergence rate with Su and Wang (2017) theoreti-
cally, the test has better finite sample performance for most cases (see Section 4). We conjecture that this
is mainly due to the fact that our test focuses exclusively on the time variation in factor loadings while Su
and Wang’s (2017) test is based on the contrast between the estimates of the common components under
the null and alternative hypotheses, respectively. Note that Assumption A.5 allows the presence of a finite
number of unknown discontinuity points in factor loadings. As a result, the test is powerful in detecting
smooth structural changes as well as sudden structural breaks, with possibly unknown break dates or un-
known number of breaks in the factor loadings. In addition, for the sample size (N,T) sufficiently large,
SM ~NT can detect any fixed structural changes that occur close to the starting and ending points of the
sampling period, because no trimming is required for out test. This is rather appealing because no prior
information about the alternative is available in practice. It avoids blind searches of possible alternatives of
structural changes. In contrast, the tests of Breitung and Eickmeier (2011), Chen et al. (2014), Han and
Inoue (2015), Yamamoto and Tanaka (2015) and Cheng et al. (2016), all rely on a prespecified trimming
parameter € to trim out the first and last €T observations in the sample and hence would miss the possible
structural changes in the boundary regions.

1/4_rate local

Remark 4. To ensure our test to have non-trivial power against the T—1/2N—1/4p~
alternatives, we need 7o > 0, which would require Iy = limy 1) IIy7 > 0 as one can show that the limit
of V7 is bounded away from 0. This requires that the factor loadings should not be time-varying only for
an asymptotically negligible set of individuals or time periods. Let N = {1,2,.... N} and 7 ={1,2,...,T}.

Let |-| denote the cardinality of a set -. Define the following subsets of A" and 7
SN:{iGNSAit = Ao for all t} and St; :{tGT:git :O}

Let 8§= N\Sw, the complement of Sy relative to N. Define 8%, = 7\Sr; analogously. It is easy to verify
that if either
SK1/N =o(1) or max [S5.l/T = 0(1),

then ITy = 0, and our test does not have power against the 7—/2N~1/4p=1/4_rate local alternatives in this
case. Similar phenomenon occurs in Su and Chen’s (2013) test for slope homogeneity and Su and Wang’s

(2017) test for structural changes in factor loadings. In general, as long as a fixed proportional of individuals
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N either undergo abrupt structural change (one break or multiple breaks), or have a fixed proportion of T
periods of smooth structural changes, ITy > 0 and our test has asymptotic power to detect them.

Remark 5. We note that, by assuming a;(-) to be a piecewise smooth function with a finite number of
discontinuity points, we allow various types of local alternatives, including the one-time structural breaks,
the multiple abrupt changes, and smooth structural changes. The case of one-time structural breaks overlaps
with the alternative hypothesis considered by some parametric tests given by Breitung and Eickmeier (2011),
Chen et al. (2014) and Han and Inoue (2015). To avoid the comparison between two large dimensional
factor loadings matrix estimates, the previous parametric tests all reduce the infinite dimensional problem
to a finite dimensional one in different ways. For example, Breitung and Eickmeier (2011) propose three
test statistics based on certain time series regressions for each cross sectional unit i; Chen et al. (2014)
run the regression of one estimated factor on the remaining ones and then test for the structural changes
in such a linear regression by constructing the sup-Wald and sup-LM statistics of Andrews (1993); Han
and Inoue (2015) construct their sup-Wald and sup-LM statistics by comparing the pre- and post-break
subsample second moments of the estimated factors. In any case, the test statistics have the same asymptotic
distribution and the same convergence rate as the conventional sup-Wald statistic of Andrews (1993). As a

result, they could only detect local alternatives that converge to the null at the rate 7—1/2

, which is slower
than the rate ayr by noticing that Nh — oo under our assumptions.

Moreover, we want to mention that, for some types of structural changes that are not identifiable under
the alternative, all of existing tests including our test will have no power to detect them. For example,
consider a specific structural change process for the factor loadings: Aix = Q(t/T) N0, where Q(u) is an
R x R orthogonal matrix for all w € [0,1] with Q(0) = Ig. Then E(X,X]) = ME(F.F))A, + X, =
AL+ X = AoQ(t/T)' Q(/T)Ay + Ee = AoAj + X for t = 1,---,T. Thus, the time path {Q(u)}ue(0,1
is entirely unidentified, and no structural break test can have nontrivial power against this specific class of
time-varying alternatives. This occurs mainly because the orthogonal matrix Q(¢/T') is not heterogeneous
across i and we can rewrite \;,F; as NyFf with F = Q(t/T) F,. In this case, the conventional PCA
estimator of the factor is consistent with a rotational version of F}* instead of F;. However, if the orthogonal
function Q(u) exhibits individual heterogeneity, say, iy = Q;(t/T)N\j0, we cannot associate Q;(t/T) as a
part of the factor any more and our test still has power to detect such deviations from the null hypothesis.

Remark 6. The exact number R of common factors is typically unknown in practice and one should
determine the number of common factors before estimating and testing. This is not actually a concern under
the null hypothesis because many popular methods such as those of Bai and Ng (2002), Ahn and Horenstein
(2013) and Onatski (2009, 2010) could estimate the number of common factors consistently. Unfortunately,
these methods typically break down under the alternative. One exception is Su and Wang’s (2017) local-
PCA-based information criterion that proves to work under both the null and alternative hypotheses. So
we recommend the use of Su and Wang’s (2017) local-PCA-based information criterion to determine the
number of factors. Of course, in many applications, applied researchers may have a strong prior on the
reasonable number of factors to be included into the model (say, R < 4), and one can also conduct our
nonparametric test for each of these prior values. The presence of smooth structural changes can typically
cause the rejection of the null. In any case, as a referee remarks, a model with few factors and time-varying
loadings can be a more parsimonious, useful, and interpretable model than a conventional factor model with

a very large number of factors and constant factor loadings. So it is worthwhile to explore the time-varying
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factor models as advocated by Su and Wang (2017) once one rejects the null.

3.4 A Bootstrap Version of the Test

Since kernel-based nonparametric tests may not perform well in finite samples and they can be sensitive to
the choice of bandwidth, we propose a bootstrap procedure to improve the finite sample performance of our
test.

As mentioned in Su and Wang (2017), the wild bootstrap works well if the error terms {e;;} do not
exhibit cross-sectional dependence or only exhibit fairly weak cross-sectional dependence, but it tends to
be oversized in the presence of moderate or strong cross-sectional dependence in the error terms. Hence,
we follow Su and Wang (2017) and propose a modified parametric bootstrap procedure that tries to mimic
the cross-sectional dependence in {e;;}. Let e; = (e1t,...,ent)’, €& = (€1t, ..., Ent)", Xe =Var(e) = {0e¢,ij}»
and 30 = T2 S°T &, Let &7; denote the (i, j)th element of 3:°. Define the shrinkage version of 30 as ¥
whose (7, j)th element is given by

Gij =05 (1— = forij=1,..,N,

where € is a small positive number (e.g., 0.01) to ensure the maximum absolute column/row sum norm of
¥ to be stochastically bounded provided max; ; ]6%‘ is. By construction, 3 is also symmetric and positive
semi-definite. The stochastic boundedness of max; ; |&?j’ is sufficient but not necessary for the justification

of the asymptotic validity of our bootstrap procedure below:

1. Estimate the restricted model X;; = )\goFt + e;+ to obtain the principal component estimates 5\1-0 and
ﬁ't and the corresponding residuals é;; = X;; — S\Iioﬁ’t. Obtain the nonparametric kernel estimates j\it

and calculate the test statistic 5’]\7 N7 as in Section 2.2.

2. Fori=1,2,..,Nandt=1,2,...,T, obtain the bootstrap error e; = $1/2¢, where ¢; = (S1ts---,Snt)
with ¢;; being i.4.d. N (0,1) across ¢ and t. Generate X}, = 5\;013} +ej, for i = 1,2,...,N and
t=1,2,...,T.

3. Use {X};} to run the restricted model to obtain the bootstrap versions {5\:0, F*} of { Ao, Fi} respec-
tively. Run X}, on F to obtain the local constant estimate of it Calculate the bootstrap test statistic
SM n, the bootstrap version of SM yr.

4. Repeat steps 2 and 3 for B times and index the bootstrap test statistics as {S’/]\\4 *NT, }£ .. The bootstrap
p-value is calculated by p* = B~! 2;3:1 1(§J\\4j\7T,z > §J\\4NT).

The following theorem establishes the asymptotic validity of the above bootstrap method.

Theorem 3.3 Suppose that Assumptions A.1-A.4 hold. Suppose that (i) max; \&?j\ = Op (Enp) with
8 8 — g
Enr = o(TY?) | (i) T ‘ 2l ) ‘ = Op (1). Then My & N (0,1)

= Op (1) and (i) £ SN, Mo

in probability, where &, denotes weak convergence under the bootstrap probability measure conditional on the
observed sample Wyt = {Xi,i=1,...., N, t=1,....,T}.
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Remark 7. Theorem 3.3 shows that the modified parametric bootstrap provides an asymptotic valid
approximation to the limit null distribution of SM ~7. This holds as long as we generate the bootstrap
data by imposing the null hypothesis. If the null hypothesis does not hold in the observed sample, then we
expect SM yr to explode at the rate TV/2N1/4p1/4, which delivers the consistency of the bootstrap-based
test SM ;,T.

Remark 8. Theorem 3.3 only establishes the first-order asymptotic validity of the bootstrap procedure.
We cannot expect that the bootstrap delivers a second order asymptotic refinement relative to the asymptotic
normal approximation. Note that the justification of Theorem 3.3 does not require 3 to be consistent with
the N x N variance-covariance matrix Y. of e; in terms of spectral norm. In fact, due to the normalization
nature of our test statistic, one does not need to mimic the exact structure in X.. Even so, it is desirable to
generate the bootstrap errors {ej} that share the variance-covariance structure as {e;} asymptotically. In
principle, we can follow Fan et al. (2013, FLM hereafter) to obtain a consistent estimate of 3. in terms of

spectral norm under some additional conditions. Let 0;; = = Zt 1[€iéje — ] Define 7 = { ;‘;} with

Oi; = &?jl(i =J) + si; (67 D10 #7),
where s (2) = sgn (2) (|2] — 7)., is the soft thresholding function, 7;; = Co((N A T) M log T)Y2(8;;)"/2,

and Cj is a positive constant. Following the asymptotic analysis in FLM, if

T
|max o Z € —ei)> = Op((NAT) 'logT) and [Dax max |t —eir] = op (1), (3.1)

= Op([(N AT) " log T)*=70/2)) = op (1) provided that there

then we can readily show that Hf)T - %,
sp

exists some v, € [0,1) such that

max E loe.ij|7° < C for some C < .
1<i<N

The last condition strengthens the typical weak cross-sectional dependence condition maxi<;<n Zfil |oe,ij| =
O (1) and can be met if e;; satisfies certain m-dependence condition cross-sectionally or the correlation be-
tween e;; and ej; shrinks to zero sufficiently fast as the “distance” between ¢ and j, perhaps after re-ordering
the cross-sectional units, increases. The fundamental problem is that we cannot verify the two conditions in
(3.1) under the global alternative despite the fact that they can verified under the local alternatives. For this

1/2¢, in our bootstrap procedure. Even if we generate the bootstrap

reason, we do not generate e as (37)
errors from (37)/2¢, and restrict our attention to the local alternatives, we are not sure whether the boot-
strap inference can achieve any refinement over the inference based on the asymptotic normal distribution.
In fact, to the best of our knowledge, there is no formal study on the bootstrap refinement in the factor
literature even for the inference on single factors or factor loadings. Our nonparametric test is involved with
the contrast of the factor loadings estimates for all cross-sectional units under the null and alternative. A
formal higher order refinement study that involves Edgeworth expansions would become much harder and

thus be beyond the scope of this paper.
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4 Monte Carlo Simulations

In this section, we study the finite sample performance of the test through Monte Carlo simulations. We
also compare our test with the parametric tests of Breitung and Eickmeier (2011), Chen et al. (2014) and
Han and Inoue (2015) for a single structural break with an unknown break date in the factor loadings and
the nonparametric test of Su and Wang (2017) that also allows for both single or multiple abrupt breaks

and smooth changes under the alternative.

4.1 Data Generating Processes

We generate data under the framework of large factor models with R = 2 common factors:
X = N Fy + e,

where i = 1,...,N, t = 1,..,T, F; = (Fi4, Fys), with Fy; = 0.6Fy ;1 + uys, ugg ~ 4.i.d. N(0,1 — 0.6%);
Foy = 0.3F2 1 + uat, ugt ~ i.i.d. N(0,1 — 0.3%).

To examine the size and power, we consider the following setups for the factor loading Aiy = (A1, )\im)/
and the error term e;;:
DGP.S1:  A\jy = Ajp ~ i.i.d. N(0,12), e;z ~ i.i.d. N(0,1);
DGP.S2: A\t = Ajo ~ i.i.d. N(0,11), e;+ = o;v;t, where o; ~ 1.5.d.U(0.5,1.5), v;z ~ i.i.d. N(0,1);
DGP.S3: it = Xip ~ i.i.d. N(0,I2), e;s = 0;(Fy)vir, where 02 = (0.2 + ;) + 0.1F% + 0.2F%, §; ~ i.i.d.
U(-0.1,0.3), v;s ~ i.3.d. N(0,1);
DGP.S4:  \jy = A\jp ~ i.4.d. N(0,12), e = (exy, ...ent) ~i.i.d. N(0,2.);
Xi0, k) fort=1,2,...,7/2
Xiogp+02, fort=T/2+1,...,T
where o; ~ i.0.d. U(0.5,1.5), vy ~ i.i.d. N(0, 1);

Aio.1, for 0.1T <t<0.2T or 0.7T <t <0.8T

DGP.P2:  Aiy1 =4 Xo1+0.5, for 04T <t <0.5T y itz = Nio2 ~ 4.i.d. N(0, 1),

Xio,1 — 0.5, otherwise

DGP.P1: /\it,k = 5 /\i07k ~ 1.0.d. N(l, 1) for k = 1,2, €it = O3V,

et ~ i.i.d. N(0,1);
DGP.P3: A1 = Mo, ~ i.6.d. N(0,1), A\ 2 = 0.5G (10t/T;2,5i/N +2), ey ~ i.3.d. N(0,1);
DGP.P4:  Aiq = p; + 0.5G(10¢/T;0.1,(1,3,7,9)), p; ~ d.i.d. N(0,1), Niro = Aoz ~ i-i.d. N(0,1),
eir ~ i.i.d. N(0,1);
Ai0 ks fort=1,2,...,7/2
Nog+02, fort=T/2+1,...,T
(e1ty...ent)’ ~ i.i.d. N(0, X.);
Aio,1, for 0.17T <t <0.2T or 0.77T <t < 0.8T
DGP.P6: )\it,l = )\iO,l + 0.5, for 04T <t <0.5T s )\it,2 = /\7;072 ~ 1.1.d. N(O, 1)7
Xio,1 — 0.5, otherwise
et = (e, ...ent) ~ i.4.d. N(0,%,);
DGPP7: A1 = X1 ~ d.i.d. N(0,1), Airo = 0.5G (10t/T;2,5i/N +2), e = (e1t,...ent) ~ i.i.d.
N(0, Ze);

DGP.P5:  Ayy = s Niog ~ ddd. N(1,1) for k = 1,2, e, =

15



Aio,1, for 0.17T <t <0.2T or 0.7T <t < 0.8T

DGP.P8: A1 = Aiog + v,  for 04T <t <0.5T y Ait2 = Nio,2 ~ i.i.d.N(O, 1),
Xio,1 — Vi, otherwise

eix ~1.3.d.N(0,1), v; ~ U0, 1];

where Y. = (¢ij)ij=1,...n with ¢;; = 0.5 G(z;k,7) = {1 + exp[—& ﬁ (z — )]} 7! denotes the Logistic

function with tuning parameter x and location parameter v = (v, ..., 'yp)'.

DGP.S1-54 satisfy the null hypothesis of time-invariant factor loadings and are used to study the size of
our test. Specifically, DGP.S2 - S4 examine the performance of the test under heteroskedasticity, conditional
heteroskedasticity and cross-sectional dependence respectively. DGP.P1-P8 describe various time-varying
factor loadings. Among them, DGP.P1-P2 have a single sudden structural break and multiple sudden
structural breaks, respectively. DGP.P3-P4 describe two kinds of smooth structural changes. In particular,
the factor loadings generated by DGP.P3 are monotonic function while the factor loadings given by DGP.P4
are smooth transition functions with multiple regime shifts. DGP.P5-P7 parallel DGP.P1-P3 but allow for
cross-sectional dependence. DGP.P8 has heterogenous time variation. Some path plots for DGP.P1-P4 are
shown in the online supplement.

To examine the asymptotic local power property, we also consider the local alternative: \;; = Ajo +
cantg; (%), where ¢ = 1,2,4, ayp = T7V2N"V4R=1/4 Ny ~ i.i.d. N(0, 1) and the setups of the g;(-) =
(961 (-, 9i2 (-)) axe given by:

DGP.P9:  gix(u) = 1(|u| < 3) for k = 1,2, e;y = o;v;, where o; ~ i.i.d. U(0.5,1.5), vy ~ i.i.d. N(0,1);
DGP.P10:  gi1(u) =0, gia(u) = G (1;20,0.5), e;x ~ i.i.d. N(0,1).

As mentioned above, our test does not require the trimming parameter used to control the minimum
length of each subsample under the alternative. To check the performance of our test near the end of the
sample, we follow the advice of a referee and consider the following DGP:

Ai0, ks fort=1,2,...,cT

Xiog +0b, fort=cT'+1,....,T
where 0; ~ i.i.d. U(0.5,1.5), vy ~ i.i.d. N(0, 1), and Xjo.1, Aio,2, 0; and v;; are mutually independent of each
other. We consider the cases where b = 0.2, 0.5 and ¢ = 0.5, 0.6, 0.7, 0.8, 0.9. Apparently, the structural

break point moves from the middle to the end of the sample as ¢ increases from 0.5 to 0.9.

DGP.P11: )\it,k = 5 )\iO,k ~ i.4.d. N(l, 1) for k = 172,6” = 0;V;t,

4.2 Tests Statistics and Implementation

For each DGP, we simulate 500 data sets with N = 100, 200 and 7" = 100, 200, respectively. Since the
factor loadings are assumed to be nonrandom, we generate them once for all and fix them across the Monte
Carlo replications.

To implement our SM Nt test, we apply the Epanechnikov kernel and the Silverman’s rule-of thumb
bandwidth h = (2.35//12)T~1/5. [Note that {£, 2, ..., T2, 1} behave like a U(0, 1) random variable with
variance 1/12.] We have also tried the Uniform kernel and the Quartic kernel, and the rule-of thumb
bandwidth with different tuning parameters. Our simulation studies show that the choice of kernel function
has little impact on the performance of our test. However, the empirical sizes and powers are a bit sensitive
to the bandwidth selection. To alleviate this problem, we follow the nonparametric literature and apply the

bootstrap procedure proposed in Section 3.4. We consider 500 replications with B = 200 bootstrap number

16



for the bootstrap-based test. Moreover, we also examine the performance of our nonparametric for different
choices of bandwidth sequences by setting h = ¢(2.35/v/12)T~'/° for ¢ = 0.5, 1 and 1.5. Nevertheless, due
to the space constraint, we only report the results with ¢ = 1 in the paper and relegate the results for other
choices of ¢ to the online supplement.

In addition to our test, we also consider Breitung and Eickmeier’s (2011) sup-LM N-variable-specific
test, Chen et al.’s (2014) sup-LM test, and Han and Inoue’s (2014) sup-LM test. Following these papers,
we choose the trimming parameter 7 = 0.15 that restricts the one-time break, if it exists, to occur within
the time interval [0.157, 0.857]. We also examine the performance of these tests with 7 = 0.1 and 0.25
and find the results are quite similar. The tests of Chen et al. (2014) and Han and Inoue (2015) involve
the long-run variance estimation. We follow the HAC literature by choosing the Bartlett kernel and setting
the truncation parameter to be LTl/ 3| to estimate the long-run variance. The critical values presented in
Andrews (1993) are applied for the tests of Breitung and Eickmeier (2011), Chen et al. (2014) and Han
and Inoue (2015). Note that Breitung and Eickmeier’s (2011) sup-LM tests are implemented for each one
of the N cross-sectional units and we can only report the average rejection frequency for this test where
the averages are taken over these N cross-sectional units and the designated number of simulations. The
number of replications is set to be 500.

Moreover, we also implement the bootstrap-version of Su and Wang’s (2017) nonparametric test which
contrasts the local-PCA estimates of the common components under the alternative with the conventional
PCA estimates under the null. To implement their test, we follow their recommendation to choose the
bandwidth parameter. Here, we also consider 500 replications with 200 bootstrap resamples for each repli-

cation.

4.3 Simulation Results

In this section we first report the comparison of the size behavior of various tests and then report the
comparison of the power behavior of these tests under the global alternatives when the number of factors
is set to be the true value and determined from the data, respectively. Then we study the local power
performance of our test. Finally, we compare the performance of different tests when the one-time break

date is near the end of the sample.

4.3.1 Size comparison with correctly specified R

Table 1 reports the size performance of our test as well as that of the parametric tests of Breitung and
Eickmeier (2011), Chen et al. (2014) and Han and Inoue (2015) and the nonparametric test of Su and Wang
(2017) at the 5% and 10% significance levels when the number of common factors are fixed as the true
value R = 2. For our test, we report the results using the bootstrap critical values. As shown in this table,
our test has reasonable sizes using bootstrap critical values. Su and Wang’s (2017) test tends to overreject
slightly but is still acceptable. The sup-LM tests of Han and Inoue (2015) and Chen et al. (2014) tend
to under-reject slightly. In addition, Breitung and Eickmeier’s (2011) N-variable-specific sup-LM test also
suffers from slight under-rejection for DGP.S1-S2 and S4 but severe over-rejection for DGP.S3. It may not
be difficult to understand the bad size performance of Breitung and Eickmeier’s (2011) test, as their tests

require the independence between common factors and the error term, which is violated in DGP.S3.
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Table 1: Size of tests under DGP.S1-S4 when the number of factors is fixed to the true value
DGP N T SMp SW1T7 HIp v CDGprm BE v

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

S1 100 100 5.0 10.8 6.6 13.4 0.6 3.8 3.4 8.2 2.8 6.5
100 200 5.8 124 7.4 13.0 2.4 6.8 4.8 7.4 3.4 7.5

200 100 4.8 8.8 5.2 10.2 1.6 4.4 1.4 7.0 2.7 6.3

200 200 5.4 10.8 5.8 12.0 1.6 6.8 3.6 8.8 3.4 7.5

S2 100 100 5.2 9.6 7.4 12.0 0.4 2.4 2.0 8.2 2.7 6.4
100 200 4.6 9.8 5.0 11.4 1.0 5.8 2.0 6.6 3.7 7.8

200 100 5.4 10.6 6.4 14.0 0.4 1.8 1.0 4.6 2.8 6.4

200 200 6.6 11.2 7.0 14.0 0.6 5.4 2.6 6.8 3.6 7.7

S3 100 100 5.6 10.8 7.2 11.2 0.4 2.2 2.2 8.8 11.9 20.3
100 200 4.8 9.8 6.0 114 1.6 5.2 2.0 6.0 15.2 24.5

200 100 6.8 12.2 7.8 11.6 0.4 1.8 1.2 5.0 11.9 20.2

200 200 7.4 13.4 8.2 13.0 0.8 5.2 2.4 7.0 15.2 24.7

S4 100 100 5.2 12.0 6.2 12.2 0.4 4.6 2.8 8.0 2.8 6.4
100 200 5.2 10.4 4.2 104 2.0 6.8 4.6 8.6 3.4 7.5

200 100 6.0 12.0 6.8 12.0 1.6 3.2 2.6 6.6 2.8 6.3

200 200 5.0 9.6 5.6 10.2 2.2 7.0 4.0 8.4 3.4 7.4

Note: (i) SM p denotes the results of our WNT test using bootstrap critical values; (i) SW17 denotes the
results of Su and Wang’s (2017) bootstrap-based test; (ili) HIpps denotes Han and Inoue’s (2014) sup-LM test;
(iv) CDGprar denotes Chen et al.’s (2014) sup-LM test; (v) BEpa denotes Breitung and Eickmeier’s (2011) N
variable-specific sup-LM test. The main entries report the average percentage of rejection.

4.3.2 Global power comparison with correctly specified R

Table 2 reports the power performance of the tests under DGP.P1-P8 at the 5% and 10% significance
levels when the number of common factors is fixed as the true value R = 2. Our bootstrap-based test is
powerful in detecting all forms of time-varying factor loadings given by DGP.P1-P8 and its power increases
as either T" or IV increases. Recall that DGP.P1-P2, P5-P6 and P8 are factor models with sudden structural
breaks, while DGP.P3-P4 and P7 are factor models with smooth structural changes. The simulation results
are consistent with our theoretical claim that the test is able to detect both a finite number of sudden
structural breaks and smooth structural changes. In addition, Su and Wang’s (2017) test is also powerful
in detecting the deviation from the null in these DGPs. Moreover, the power of the new test is usually
higher than that of Su and Wang’s (2017) test in all cases except DGP.P3 and DGP.P7, which consider the
monotonic smooth structural changes in factor loadings. Hence the power ranking of these two tests are
ambiguous. In contrast, Han and Inoue’s (2015) sup-LM test has relatively low power against DGP.P1-P2
and P4-P6. However, it is most powerful in detecting DGP.P3 and P7. This is because the factor loadings
under DGP.P3 and P7 are monotonic functions of the scaled time ¢/T for each 4. If we apply the method of
PCA to estimate the factor model, the estimated factor series would behave like an explosive process with
increasing volatility over time. Since Han and Inoue’s (2015) test checks the time-invariance property of the
second order moment of common factors, it is able to capture such smooth structural changes as in DGP.P3.
In addition, both Chen et al.’s (2014) sup-LM test and Breitung and Eickmeier’s (2011) N-variable-specific
sup-LM test have quite low power against DGP.P1-P8, which exhibit either sudden structural breaks or

smooth structural changes in factor loadings.
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Table 2: Power of tests under DGP.P1-P8 when the number of factors is fixed to the true value

DGP N T SMp SW17 HIp v CDGrm BErm

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P1 100 100 722 814 674 794 0.8 4.4 2.4 7.2 5.9 11.1
100 200 984 99.6 984 994 4.2 10.6 2.0 6.8 11.2 17.8

200 100 940 972 922 964 0.8 4.0 24 6.6 5.7 10.7

200 200 100 100 100 100 5.0 12.2 2.2 6.6 11.1 17.5

P2 100 100 294 414  26.0 404 0.6 2.2 2.2 8.6 3.9 8.3
100 200 822 86.8 76.8 84.0 1.6 6.4 2.2 6.4 6.7 12.7

200 100 41.0 51.8 276  40.6 0.8 2.8 1.8 8.6 3.7 8.1

200 200 93.0 958 8.2 916 1.6 5.8 1.8 7.6 6.5 12.4

P3 100 100 372 478 412 552 358  67.0 6.8 16.8 4.9 10.3
100 200 648 738 77.0 8.6 974  99.8 10.2 18.4 9.8 17.2

200 100 424 538 452 602 374 714 6.6 15.4 5.2 10.7

200 200 76.0 822 84.2 920 99.2 100 10.2  20.0 9.8 17.7

P4 100 100 250 38.0 25,6  36.8 0.4 1.6 1.0 4.0 3.5 7.9
100 200 742 836 722 816 0.6 4.0 3.0 5.6 5.4 10.6

200 100 40.6  52.8 344  45.2 0.4 14 1.0 5.8 3.5 7.8

200 200 92.0 944 868 928 0.2 3.8 3.2 6.4 5.5 10.7

P5 100 100 678 79.8 63.0 75.6 1.4 5.8 3.2 8.8 4.9 10.1
100 200 974 992  96.8  99.0 6.0 12.8 4.4 8.4 9.8 16.6

200 100  90.0 942 8.0 920 2.0 6.6 1.2 6.6 4.9 9.9

200 200 100 100 99.6  99.8 3.8 11.4 4.8 10.6 9.4 15.8

P6 100 100 296 386 27.2  36.2 0.8 5.0 3.6 9.2 3.7 8.1
100 200 81.2 8.0 758 82.8 3.2 10.4 5.6 10.8 6.2 12.1

200 100 384 526 274  38.2 1.4 4.6 1.6 7.6 3.6 7.9

200 200 924 958 8.2 908 3.0 9.8 4.6 11.0 6.2 11.9

P7 100 100 34.0 458 37.0 546 324  65.0 7.4 14.6 5.0 10.5
100 200 624 722 744 86.2 982  99.6 12.0 18.0 9.5 16.9

200 100 440 53.0 440 60.2 36.6 68.8 7.0 15.2 5.0 10.5

200 200 788 8.0 8.4 926 99.0 99.8 108 19.6 9.7 17.5

P8 100 100 38.2 506 352 47.6 0.6 24 2.0 8.6 5.2 10.4
100 200 91.2 948 88.6  92.2 1.6 6.2 2.2 6.6 10.7  18.1

200 100 494  60.8 328 438 0.8 2.8 1.8 8.8 4.7 9.5

200 200 97.8 99.0 932 954 1.6 5.8 2.0 7.6 9.3 15.9

Note: See the note in Table 1.
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4.3.3 Size and global power comparison with R determined from the data

As the exact number R of common factors is typically unknown in practice, one should determine the
number of common factors before estimating and testing. In the literature on testing for structural breaks
in factor loadings, the number of common factors is either determined by Bai and Ng’s (2002, BN hereafter)
information criteria (e.g., Han and Inoue, 2015) or specified by some fixed numbers, which may be equal
to, less than, or greater than the correct number of factors (e.g., Chen et al., 2014). Of course, one can also
consider applying Onatski’s (2009, 2010) or Ahn and Horenstein’s (2013) testing procedures to determine
the number of factors, which work well in the presence of moderate or strong cross-sectional dependence.
Alternatively, one can apply Su and Wang’s (2017) nonparametric method to determine the number of
factors that is robust to the presence of structural changes in the factor loadings. In general, all the
aforementioned methods can select the correct number of factors consistently under the null hypothesis, but
only Su and Wang’s (2017) method has been proven valid under the alternative too. Indeed, if we apply
Su and Wang’s (2017) method to determine the number of factors, the size and power performance of all
tests will be similar to that in Tables 1 and 2 (see Tables A.3 and A.4 in the online supplement). To allow
the possible misspecification of the number of factors under the alternative, here we follow Han and Inoue
(2015) and select the number of factors based on BN’s information criteria ICp1 and ICpe. To implement
1C},1 and ICpa, we need to prescribe the maximum number of factors, Rmax. Given the true value of R is
2, we set Rpyax = 6 in our simulations. We find that the results based on I/C},; and IC), are quite similar
and thus we only report the results using /Cp1 below to save space.

Tables 3 and 4 report the size and power performance of various tests at the 5% and 10% significance levels
when the number of factors is determined by BN’s IC},1. The results are similar to those reported in Tables
1 and 2. In fact, for all DGPs, our simulation results show that BN’s /C),; only tends to overparameterize
slightly, and the problem alleviates as the sample size increases. Moreover, we also examine the performance
of various tests by setting the number of common factors as 3. The power of our bootstrap-based test is a
little bit lower than that in the case of correctly specified factors as reported in Table 2. However, our test
still has reasonable power that increases as either N or T increases; and more importantly, it is still the
most powerful test among all tests for most DGPs under consideration. To save space, we do not report the

results for this case here.

4.3.4 Local power performance of our test

We now study the local power property of our test by using DGP.P9-P10. Table 5 reports the empirical
rejection frequency of our test at the 5% and 10% significance levels when the number of factors is fixed to
be the true value or determined by BN’s ICy,;, respectively. As shown in the table, the power of our test

increases fast in both cases as ¢ increases.

4.3.5 Performance of various tests when the break date is near the end of the sample

Finally, we compare the performance of various tests when the break date is near the end of the sample by
using DGP.P11. Tables 6 and 7 report the empirical rejection rate under this DGP when the number of
common factors is fixed as the true number and determined from the data respectively.

We summarize the findings from Tables 6-7. First, all of the parametric tests considered by Breitung
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Table 3: Size of tests under DGP.S1-S4 when the number of factors is determined from the data
DGP N T SMp SW1T7 HIp v CDGprm BE

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

S1 100 100 5.0 10.8 6.6 13.4 0.6 3.8 3.4 8.2 2.8 6.5
100 200 5.8 124 7.4 13.0 2.4 6.8 4.8 7.4 3.4 7.5

200 100 4.8 8.8 5.2 10.2 1.6 4.4 1.4 7.0 2.7 6.2

200 200 5.4 10.8 5.8 12.0 1.6 6.8 3.6 8.8 3.4 7.5

S2 100 100 5.2 9.6 7.4 12.0 0.4 2.4 2.0 8.2 2.8 6.5
100 200 4.6 9.8 5.0 11.4 1.0 5.8 2.0 6.6 3.7 7.8

200 100 5.4 10.6 6.4 14.0 0.4 1.8 1.0 4.6 2.8 6.4

200 200 6.6 11.2 7.0 14.0 0.6 5.4 2.6 6.8 3.6 7.7

S3 100 100 5.6 10.8 7.2 11.2 0.4 2.2 2.2 8.8 11.9 20.1
100 200 4.8 9.8 6.0 114 1.6 5.2 2.0 6.0 15.3 24.5

200 100 6.8 12.2 7.8 11.6 0.4 1.8 1.2 5.0 11.8 20.2

200 200 7.4 13.4 8.2 13.0 0.8 5.2 2.4 7.0 15.2 24.7

S4 100 100 5.2 12.0 6.2 12.2 0.4 4.6 2.8 8.0 2.8 6.4
100 200 5.2 10.4 4.2 104 2.0 6.8 4.6 8.6 3.4 7.5

200 100 6.0 12.0 6.8 12.0 1.6 3.2 2.6 6.6 2.7 6.3

200 200 5.0 9.6 5.6 10.2 2.2 7.0 4.0 8.4 3.3 7.5

Note: See the note in Table 1.

and Eickmeier(2011), Han and Inoue (2015) and Chen et al. (2014) have extremely low power against this
DGP for both choices of ¢ when b = 0.2, and the rejection frequency is close to the nominal level in most
cases. As b increases to 0.5, the powers of these parametric tests increase but are still significantly lower
than the powers of the two nonparametric tests. Second, when the structural break point moves from the
middle to the end of the sample, the empirical rejection rates of the parametric tests decrease significantly
and almost lose power for b = 0.5 when ¢ = 0.9. Third, both our test and Su and Wang’s (2017) test have
reasonably high power to detect the structural changes near the end of the sample and the power increases
as either T or N increases. However, the empirical rejection rates of these nonparametric tests also decrease
when the structural break point moves from the middle to the end. This simulation result is as expected in
the structure change literature and is consistent with our theoretical claim. We note that when the break
point moves from the middle to the end, the post-break period gets shorter and shorter, and “the cumulative
effect of structural changes” is smaller. That is, my given by Theorem 3.2 gets smaller despite the fact it is

still significantly different from zero as along as ¢ does not tend to 1 as (N,T) — oc.

5 An Empirical Application

In this section, we apply our test to check whether the factor loadings for asset returns suffer from structural
changes. Factor models for asset returns have received extensive attention in the finance literature. Since the
factor loadings depend on the nature of the information available to investors at any given time, they may
vary over time. Li and Yang (2011) and Ang and Kristensen (2012) consider the conditional factor models
when the number of assets/portfolios is fixed and small. Li and Yang (2011) model the factor loadings as
smooth functions of time; Ang and Kristensen model them as smooth functions of some macroeconomic and

financial variables that are thought to capture systematic risks as observable factors. Both devise Wald-
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Table 4: Power of tests under DGP.P1-P8 when the number of factors is determined from the data

DGP N T SMp SW17 HIp v CDGrm BErm
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P1 100 100 728 80.8 70.0 788 0.8 4.4 2.4 7.2 5.9 11.1
100 200 988 99.6 984 994 4.2 10.6 2.0 6.8 11.2 17.8
200 100 942 972 924  97.2 0.8 4.0 24 6.6 5.7 10.7
200 200 100 100 100 100 5.0 12.2 2.2 6.6 11.1 17.5

P2 100 100 298 416 264 408 0.4 1.6 1.8 7.8 3.7 8.0
100 200 85.2 88.6 80.0 858 1.0 5.2 24 6.4 5.3 11.7
200 100 378 500 276  41.2 0.6 2.2 1.6 7.6 3.4 7.6
200 200 924 946 832 89.0 1.0 3.8 2.0 8.4 4.7 9.7

P3 100 100 36.0 41.0 520 63.0 354 66.2 6.8 16.6 5.0 10.4
100 200 652 748 762 8.6 974  99.8 10.2 18.4 9.8 17.2
200 100 424 520 456 604 374 714 6.6 15.4 5.2 10.7
200 200 76.0 81.6 8.0 920 99.2 100 10.2  20.0 9.8 17.7

P4 100 100 254 358 264 352 0.4 1.6 1.0 4.0 3.5 7.9
100 200 734 836 702 814 0.6 4.0 3.0 5.6 5.4 10.6
200 100  40.0 52.6 322 452 0.4 14 1.0 5.8 3.5 7.8
200 200 91.0 946 8.6 922 0.2 3.8 3.2 6.4 5.5 10.7

P5 100 100 69.0 80.2 632 76.2 1.4 5.8 3.2 8.8 4.9 10.1
100 200 976 994  96.8 98.8 6.0 12.8 4.4 8.4 9.8 16.6
200 100 904 948 87.0 918 2.0 6.6 1.2 6.6 4.9 9.9
200 200 100 100 99.6  99.6 3.8 11.4 4.8 10.6 9.5 15.8

P6 100 100 278 39.8 27.0 35.6 0.8 4.8 3.2 8.4 3.6 7.9
100 200 80.8 852 76.2  82.2 3.2 8.6 4.8 10.0 5.0 10.2
200 100 404 526 276  38.6 1.0 4.0 1.4 6.8 3.4 7.5
200 200 924 954 8.2 908 1.2 6.0 2.8 7.6 4.5 9.2

P7 100 100 33.2 460 356 54.0 322 64.2 7.4 14.4 5.0 10.4
100 200 63.6 722 742 864 982  99.6 12.0 18.0 9.5 16.9
200 100 448 522 406 594 36.6 68.8 7.0 15.2 5.0 10.5
200 200 782 844 8.4 934 99.0 998 108 19.6 9.7 17.5

P8 100 100 386 512 364 47.0 0.2 1.8 1.6 6.4 3.6 8.0
100 200 906 954 88.0 92.6 0.2 1.4 2.2 9.8 4.3 8.8
200 100 494 60.8 33.0 444 0.6 1.6 1.4 5.2 3.4 7.5
200 200 97.8 99.2 928 958 0.2 1.8 2.6 8.6 4.0 8.6

Note: See the note in Table 1.
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Table 5: Local power performance of our test

R : fixed to the true value R : determined from BN’s ICy,;
DGP N T c=1 c=2 c=4 c=1 c=2 c=4
5% 10% 5% 10% 5% 10% |5% 10% 5% 10% 5% 10%
P9 100 100|8.0 14.0 14.8 234 550 66.4|6.6 10.8 11.0 19.8 54.4 68.0
100 200 6.6 12.8 19.2 29.2 652 774 |68 144 158 224 63.8 76.2
200 100|8.0 14.8 13.0 22.0 478 60.2|6.2 134 132 222 60.2 724
200 200|8.0 13.6 156 274 56.0 69.8]9.2 148 16.6 27.0 69.4 788
P10 100 100|7.6 15.2 15.0 242 524 628 |72 10.2 102 20.2 494 64.4
100 200|5.4 12.8 11.8 21.6 56.0 67.0|6.6 13.2 12.6 20.8 524 66.6
200 100| 76 15.6 13.0 222 522 66.0 |82 144 13.8 23.2 50.8 65.0
200 200|8.0 13.8 142 212 582 70.6 |84 142 158 232 60.0 728

Note: The main entries report the average percentage of rejection; c signifies the magnitude of local deviation from
the null hypothesis.

type tests for the significance of long-run conditional alphas and find substantial variation in the conditional
factor loadings. More recently, Ma et al. (2019) propose a high-dimensional alpha test to assess whether
there exist abnormal excess returns on high-dimensional assets by allow the factor loadings to evolve over
time. In all these studies, the factors are assumed to be observed. When the factors are not observed, we
can also check whether the factor loadings are time-varying by using the method developed in this paper.

Monthly data between 2000.1-2015.9 are available for 9145 stocks traded on the New York Exchange,
AMEX, and NASDAQ), which are obtained from the WIND data base. The data include live stocks whose
suspensions are no more than two years between this period. Finally, we get a balanced panel with T' = 189,
N = 2684.

We use BN’s four information criteria (namely, PCy1, PCp2, ICy1, ICy2), Ahn and Horenstein’s (2013)
two criterion functions (ER for eigenvalue ratio and GR for growth ratio) and Onatski’s (2009) sequential
testing procedure to determine the number of common factors. The maximum number of factors is set to
be 8 in this empirical study. The estimated number of factors by PC,; and PC); is 3, the other two BN’s
information criteria (ICp1,ICp2) and Onatski’s (2009) procedure all choose 2 common factors, while Ahn
and Horenstein’s (2013) testing procedures choose 1 common factor. Therefore, in the following context,
we report the test results for the cases of one, two and three common factors, respectively.

We apply our nonparametric test SM ~T, Han and Inoue’s (2014) sup-LM and sup-Wald tests, as well
as Chen et al.’s (2014) sup-LM and sup-Wald tests to investigate the possible structural changes in factor
loadings. The smooth parameter, kernel functions and other presettings for these tests are all the same to
those used in the simulation studies. For our test, we focus on the bootstrap results based on B = 500
bootstrap replications. Since the one-sided N(0, 1) critical values at the 5% and 10% levels are 1.64 and
1.28, respectively, it is obvious that we can reject the null hypothesis of time-invariant factor loadings at
the 5% significance level by using asymptotic critical value.

Table 8 reports the results of the tests and the corresponding critical values at the 5% and 10% signif-
icance levels. Our test rejects the null hypothesis for all the cases of one, two, and three common factors.
In contrast, both the results of Han and Inoue (2015) and Chen et al. (2014) are mixed. Han and Inoue’s
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Table 6: Empirical rejection rates under DGP.P11 when the number of factors is fixed to the true value

N T SMp SW17 HIpy CDGrm BErm
5% 10% 5% 10% 5% 10% 5%  10% 5% 10%

c=05 100 100 722 814 676 794 0.8 44 24 7.2 5.9 11.1
b=0.2 100 200 984 996 984 994 4.2 10.6 2.0 6.8 11.2 17.8
200 100 940 972 922 964 0.8 4.0 24 6.6 5.7 10.7
200 200 100 100 100 100 5.0 12.2 2.2 6.6 11.1 17.5

c=06 100 100 688 77.8 66.0 77.0 0.8 5.2 24 7.6 5.8 10.9
b=0.2 100 200 98.2 988 984  99.0 5.6 116 2.0 7.0 11.1 17.3
200 100 928 954 916  95.0 1.0 5.0 2.6 6.8 5.6 10.6
200 200 100 100 99.8  99.8 6.0 122 24 6.8 10.9 17.3

c=07 100 100 542 682 56.0 684 1.2 5.8 2.8 7.4 5.3 10.3
b=0.2 100 200 952 982  96.0 97.8 5.6 124 2.0 7.0 10.0 16.1
200 100 804 89.8 81.2 878 14 6.0 3.0 7.2 5.2 10.1
200 200 99.2 994 994 994 6.6 134 24 6.4 9.9 16.1

c=0.8 100 100 30.2 422 354 476 1.4 5.8 3.0 7.8 4.5 9.1
b=02 100 200 732 832 770 842 5.2 11.6 2.2 6.6 8.1 13.8
200 100 498 61.8 552 684 1.6 6.4 24 7.6 4.5 9.0
200 200 90.8 93.8 91.0 95.0 6.0 124 2.2 6.6 8.0 13.9

c=09 100 100 9.8 18.2 12.8  21.6 0.8 3.2 1.8 7.4 3.4 7.4
b=0.2 100 200 23.0 338 282 388 1.8 8.4 2.0 6.2 5.1 9.9
200 100 134  25.2 18.8 278 0.8 3.2 1.8 7.6 3.3 7.2
200 200 31.0 444 382 498 2.6 8.4 2.2 6.0 5.0 9.8

c=05 100 100 100 100 100 100 3.8 11.0 2.8 9.2 21.1 28.5
b=0.5 100 200 100 100 100 100 228 398 3.4 7.6 36.6  44.1
200 100 100 100 100 100 4.0 13.6 4.2 8.8 18.9  26.2
200 200 100 100 100 100 26.0 446 4.2 9.2 33.3 408

c=0.6 100 100 100 100 100 100 5.0 146 34 9.8 20.8  28.5
b=05 100 200 100 100 100 100 29.2 444 4.0 9.4 36.5 439
200 100 100 100 100 100 4.8 174 3.8 9.6 19.0  26.1
200 200 100 100 100 100 33.2 498 5.0 100 334  40.8

c=07 100 100 100 100 99.8 100 7.4 176 4.0 9.6 19.2  26.7
b=0.5 100 200 100 100 100 100 304 442 38 9.8 34.0 416
200 100 100 100 100 100 8.0 198 44 10.0 179 248
200 200 100 100 100 100 348 488 5.0 106 315  38.7

c=08 100 100 986 99.0 972 98.6 7.4 170 3.6 8.4 154 224
b=0.5 100 200 100 100 100 100 276 400 3.6 9.6 28.6  36.0
200 100 100 100 99.6  99.8 8.6 192 4.6 9.4 149  21.5
200 200 100 100 100 100 304 448 44 100 270 34.1

c=09 100 100 482 614 564 68.6 24 8.2 3.2 7.8 7.7 13.4
b=05 100 200 914 942 938 96.6 8.0 16.6 2.2 7.4 153 221
200 100 672 782 628 748 3.0 8.0 24 8.2 7.9 13.2
200 200 972 986 97.2 986 9.4 182 24 7.4 155 219

Note: See the note in Table 1.
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Table 7: Empirical rejection rates under DGP.P11 when the number of factors is determined from the data

N T SMp SW17 HIp CDGrm BE M
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
c=05 100 100 722 814 676 794 0.8 44 24 7.2 5.9 11.1
b=0.2 100 200 984 996 984 994 4.2 10.6 2.0 6.8 11.2 17.8
200 100 940 972 922 964 0.8 4.0 24 6.6 5.7 10.7
200 200 100 100 100 100 5.0 12.2 2.2 6.6 11.1 17.5
c=06 100 100 688 77.8 66.0 77.0 0.8 5.2 24 7.6 5.8 10.9
b=0.2 100 200 98.2 988 984  99.0 5.6 11.6 2.0 7.0 11.1 17.3
200 100 928 954 916 950 1.0 5.0 2.6 6.8 5.6 10.6
200 200 100 100 99.8  99.8 6.0 12.2 24 6.8 10.9 17.3
c=07 100 100 542 682 56.0 684 1.2 5.8 2.8 7.4 5.3 10.3
b=0.2 100 200 954 982 96.0 97.8 5.6 124 2.0 7.0 10.0  16.1
200 100 804 89.8 812 878 1.4 6.0 3.0 7.2 5.2 10.1
200 200 99.2 994 994 994 6.6 13.4 24 6.4 9.9 16.1
c=08 100 100 30.2 422 354 476 14 5.8 3.0 7.8 4.5 91
b=02 100 200 732 832 770 842 5.2 11.6 2.2 6.6 8.1 13.8
200 100 498 61.8 552 684 1.6 6.4 2.4 7.6 4.5 9.0
200 200 90.8 938 91.0 950 6.0 12.4 2.2 6.6 8.0 13.9
c=09 100 100 9.8 18.2 128  21.6 0.8 3.2 1.8 7.4 3.4 7.4
b=0.2 100 200 230 33.8 282 3838 1.8 8.4 2.0 6.2 5.1 9.9
200 100 134 252 188 278 0.8 3.2 1.8 7.6 3.3 7.2
200 200 31.0 444 382 498 2.6 8.4 2.2 6.0 5.0 9.8
c=05 100 100 916 93.8 934 96.0 24 102 254 316 159 228
b=05 100 200 100 100 100 100 89.0 918 872 87.8 119 18.2
200 100 100 100 100 100 2.0 10.0 740 778 6.3 11.3
200 200 100 100 100 100 99.6 996 994 994 5.3 10.7
c=06 100 100 914 93.0 930 958 3.6 126 276 334 153 222
b=05 100 200 100 100 100 100 89.6 926 8.0 8.8 11.5 17.8
200 100 100 100 100 100 2.2 146 748 78.0 6.4 11.2
200 200 100 100 100 100 99.8 998 998 99.8 5.1 10.4
c=0.7 100 100 944 958 936 96.2 5.8 182 214  26.2 153 223
b=05 100 200 100 100 100 100 75.2 802 712 726 149 215
200 100 100 100 100 100 5.4 246  60.0 63.2 8.0 13.1
200 200 100 100 100 100 972 976 972 974 5.6 10.8
c=08 100 100 966 972 94.0 96.2 7.6 18.6 9.4 14.2 14.0  20.9
b=05 100 200 100 100 100 100 418 492 312 338 214 283
200 100 100 100 100 100 9.8 264 328 364 10.2 15.9
200 200 100 100 100 100 724 766 704 722 104 159
c=09 100 100 50.8 652 60.0 71.0 2.2 7.6 4.0 8.0 7.5 13.1
b=05 100 200 916 946 932 96.2 8.0 17.2 5.0 10.2 14.7  21.6
200 100 648 762 608 73.0 24 6.4 6.2 12.8 7.1 12.2
200 200 96.0 976 93.0 950 138 238 134 278 134 19.6

Note: See the note in Table 1.
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Table 8: Tests for Structural Changes for the Stock Returns

Our test: bootstrap Han and Inoue (2015) Chen et al. (2014)

SM 5% 10% | sup-LM sup-Wald 5%  10% | sup-LM sup-Wald 5%  10%
r=1]|21.45 299 2.7 3.61 9.75 8.85  7.17 - - - -
r=2121.08 812 6.25 24.78 16.06 14.15  12.27 14.65 9.35 8.85  7.17
r=3] 2660 862 6.62 25.28 17.61 20.26 18.12 6.27 21.50 11.79 10.01

Notes (i) SM denotes the results of our SM np test using the bootstrap critical value based on B = 500 iterations;
(ii) entries below 5% and 10% denote the corresponding critical values.

(2014) sup-Wald test cannot reject the null for the case of three common factors, and their sup-LM test
cannot reject the null for the case of one common factor, while Chen et al.’s (2014) sup-LM test cannot
reject the null for the case of three common factors. This is consistent with the results of our simulation
studies that the tests of Han and Inoue (2015) and Chen et al. (2014) have relatively low power.

As suggested by one anonymous referee, it is interesting to study the structural change features of the
factor loadings. However, we want to mention that the factor loadings estimated in the second step is
inconsistent under the global alternative, due to the inconsistent PCA estimation of common factors in
the case of non-local structural changes. Figure A.2 in the online supplement plots Su and Wang’s (2017)
local PCA estimates of the time-varying factor loadings for some representative stocks. From the figure we
can see that the estimated factor loadings show significant structural changes that appear very likely to be

smooth changes.

6 Conclusion

Conventional factor models assume the factor loadings, which capture the relationship between random
variables and the latent common factors, to be time-invariant. In fact, shocks induced by policy switch,
preference change, and technology progress may cause structural changes in the relationship. Therefore,
the assumption of time-invariant factor loadings may not hold in practice. In this paper, we propose a
nonparametric test for structural changes in large dimensional factor models. Our test follows a convenient
asymptotic N (0, 1) distribution under the null hypothesis. By construction, it is powerful in detecting both
smooth structural changes and sudden structural breaks with possibly unknown break dates or unknown
number of breaks. Unlike existing tests such as Breitung and Eickmeier (2011), Chen et al. (2014), Han
and Inoue (2015), Yamamoto and Tanaka (2015), and Cheng et al. (2016), our test does not require any
trimming of the boundary regions and hence could detect any structural changes that occur close to the
starting and ending points of the sample period. We also study the local power property and propose a
bootstrap procedure to improve the finite sample performance of our test. Monte Carlo studies show that
our test has reasonable size and excellent power in detecting various time-varying factor loadings. In an

application to the U.S. asset returns, we find significant evidence against time-invariant factor loadings.
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This Online Supplement contains two appendices. Appendix A is a mathematical appendix that contains
some technical lemmas and the proofs of the theorems and lemmas in the paper. Appendix B contains some
additional simulation and application results.

A Mathematical Appendix

This Mathematical Appendix is composed of three parts. Section A.1 provides some technical lemmas that
are used in the proof of the theorems in Section 3. Section A.2 provides the proofs of the theorems in
Section 3. Section A.3 gives the proofs of the technical lemmas in Section A.1.

A.1 Technical Lemmas
Let Vi denote the R x R diagonal matrices of the first R largest eigenvalues of (N T) ' XX' arranged
in decreasing order along its diagonal line. Let H = (AjAo/N)(F F/T)Vyz, Cnr = min{v/T,V/N},

Tijs = Eleisejs FLFs), Srr = %Zil Ep.or FyF} and 57(92 = %Zil kpr FLF]. We state some technical
lemmas whose proofs are relegated to Section A.3.

Lemma A.1 Suppose Assumptions A.1-A.3 and A.5 hold. Then under Hy (anyt) with anp = T-Y2N-Y4p=1/4
(i) T-'F' (NT) "' XX'F = Vyr 5 V4,
(ii) (T7VF'F) (N"*ApAo) (T F'F) £ v,

where VT is an R X R diagonal matriz consisting of the R largest eigenvalues of (NT)f1 XX, and Vy is

an R x R matriz consisting of the R eigenvalues of ¥, X, both arranged in descending order.

Lemma A.2 Suppose that Assumptions A.1-A.3 and A.5 hold. Then under Hy (ayT) with anT = T-Y2N-1/4p=1/4,
(i) % |F - FH| Co0p(C2).
(i) =(F — FH)'FH = Op (Cy%) + op (anT) »
(iti) L(F — FH)'F = Op (Cx%) + op (anT) ,
(iv) H(F'F — H'F'FH) = Op (Cy3) + op (ant),
() Vvt = Vo + Op (Cy¥) s
(vi) H=Qy" + Op (CyT)
where Qg = Vol/QTalEXS/Q and Yo denotes the probability limit of T 1 defined in the proof of (v).

Lemma A.3 Suppose that Assumptions A.1-A.5 hold. Then under H; (anT) with ant = T-Y2N-V4p=1/4,
(i) max, | Sy b (B~ H'E)(F — H'EY || = 0p(T= 0T 4 N7,

(ii) max, H% ST e (B — H'Ft)FtH’H = Op(T~'InT + N~Y) + op (ant) ,
SE) = Su|| = 0p (T2 T)V2),

(i) max,




(iv) max, ||St, = (Q5") Br@Q5"| = Op((TH) ™ D)2 + NV2),
(v) e, ||, S5 H' = 35! QQo¥5! || = Op((Th) ™/ (In )2 + N2,

Lemma A.4 Suppose that Assumptions A.1-A.5 hold. Then under Hy (ant) with ayp = T~Y/2N—1/4p=1/4,

(i) max;, ||& S0 ke FeFlgi|| = Op (1),

(ii) max; . | & S0 ko Flei| = Op(T~/2h=1/21n (NT)),
N ~ 2 _

(iii) % % |+ S (F — HE)eL | = 0r (CR1).

~ 2
(iv) i I X0 |3 S0 (B~ B Feiskn| = Op (N2 4 T2) 4 0p (air) -

Lemma A.5 Suppose that Assumptions A.1 and A.8-A.5 hold. Suppose that H; (ant) holds with ayT =
T—Y2N-YVAR=Y4 Then uniformly in (i,7),
(i) Zthl ki FyFlgie = Srgi () +op (1),
U T T
(i) 7Yy FeF{git = Xr5 Y1 9i (%) +op (1) = 0p (1)
Lemma A.6 Suppose that Assumptions A.1-A.5 hold. Then under Hy (anyt) with ant = T-Y2N-Y4p=1/4
- _ 2
(i) £ XN, ’ Xio—H N =0p (CNTF) 5
_ !
(i) =7 ] Bl =0p@) fori=4,8,
T _
(i) max % D=1 kizi,st = 9 £h~ 1) )
(iv) % Zf:l Zstl F{LyFyFF, =0 (hil) )
_ -2
W) 13T, H(Ft —H'F)E| =0p (C32 +TN-2),
- 2
(vi) w7 S [ S XoH ™ (F = B Fea| = 0p (CR3).
(vii) 57 iy Samy (Fs — H'F,)FLHe2, = Op (anT) -

In addition, we need the following lemma from Sun and Chiang (1997).

t, de-
note the distribution function of (Vi,,...,V4,,). For any integer m > 1 and integers (t1,...,tm) such that
1 <ty <ty < ... < ty, let ¥ be a Borel measurable function such that maz{|[ |9 (1, o)
dGy, .1, (U1, ,05) dGey 11, (Vigts e Um), J 19 (v1,... ,vm)|1+ﬁ dGy, .. t,.} < M for somen) > 0. Then
| [0 (1, 0m) dGyy e (V15 0m) = [0 (1,0 0m) dGy e, (V1 -2, 05) AGeg, o, (Vg1 - Um)| <
AMY (A7) g, (tjs1 — tj)ﬁ/(1+f7) )

Lemma A.7 Let {Vi,t > 1} be a strong mizing process with mizing coefficient « (-). Let Gy, .

A.2 Proof of the Theorems in Section 3

Proof of Theorem 3.1. The result in Theorem 3.1 follows as a special case of Theorem 3.2 with ¢;(¢t/T) =0
for each ¢ and ¢t. W

Proof of Theorem 3.2. Under H; (anT) : A\it = Aio + anTg:i(t/T), we can decompose TNY2pY2 N[ as



follows:

TNV2RV2N = N2 ii | (=" 20) = (i = B " x0) H2

=1 t=1
N—1/2p1/2 ii (;\n — H_lx\io)/ (5\,,5 — H_lAio)
1=1 t=1
3 - . ! N. _ - .
) (Ai _H uzo) (Al H um)

N T ,
— 2N~ 1/2h1/222( zt_H_l)\iO) (S\i—H_l)\io)

= M1 + M2 — 2M3, say,

M=
M=

+ N71/2h1/2
1

<.
I

where for notational simplicity we suppress the dependence of Ml on (N,T) for I = 1,2,3. We complete the
proof by showing that under H; (an7), (i) Ml—IB%lNT MinT 4N (0, Vo), (i ) My —Bonr—Tont = 0p (1),
and (iii) M3 — Bsyr — U3yt = op (1), (iv) Byr = Byr + op (1), and (v) Vnr = Vo + op (1), where
Byt = Bint + Bont — 2B3nr, and

pliz N TT / L
Binr = T2N1/2 ZzzkhstFHSTtSTtHFezm
i=1 t=1 s=1
h1/2 al ZT: / / 2
BQNT = 172 FSHHFQZS,
TN/ i=1 s=1
h1/2 N T T
Bsnr = T2N1/2zzzkh5tF HS7 H'Fyel,,
=1 t=1 s=1
1 N T " ¢ /
— . — . — /
ILinyr = ﬁ;;tr<Qng <T>gz <T) Qo>,
1 & 1 /7
_ —1y\/
R O CEES G G ER
N T T /
1 1 ry 1 t
v = 30 (130 (2) 150 (4) 5],
3NT N;f T;Q T T;Q <T) F

Va1 are defined in Theorem 3.2, and Vo = lim( N.T)—oo YNT. We prove these claims in Propositions A.8-
A.12 below. Noting that Zf 19 (%) = fo gi(u)du + O (1/T) = O(1/T) under the normalization
rule fo gi (u)du = 0, we have Iyt = O(1/T) for I = 2,3. Combining these results yields §]\\4NT =
VN1T/2(TN1/2h1/2M — Brr) % N (70, 1), where 70 = lim(y.1) 00 Tin7/Vie. B

Proposition A.8 Suppose that the conditions in Theorem 8.2 hold. Then Mi—Binr—IlinT 4N (0,Vy) under
Hl ((LNT> .

Proof. Using X;; = F/\it + e;x = F{HH *Njo + e + antF/gi = F{H *Nio + eir + anrFlgit — (Fy —



H/Ft)/HilAio, we have
1

T T
N 1 _ 1 5
Xit — H "o = —E kp. st FsF' —E knstFsXis — H M)\,
t 0 (T 2 h,st s) T h,st 0

s=1

T T
_ 1 .1 -
= STtlH/T § kh,stheis + aNTSTtlf E kh,sthFs/gis
s=1 s=1

T T
1 -~ / 1 N
= St D kP (B = H'E) H™'No+ Sp) 22 > ke (B = H'EL) ess
s=1

s=1
=D (i, t) + Dg(i, t) — Dg(i, t) + D4(i, t), say, (Al)

where Sy = % Zstl kh,sthEﬁ- By (A.1) we decompose M; as follows:

N T
My = h2NTY2N N Dy (i, t) + Da(ist) — Da(i, t) + Dali t)]|?
i=1 t=1
N T
= BENTYEN N D (6 )1+ D2 D) + 1D )P + [1Dali, 1))
i=1 t=1

+ 2D+ (i,t) Da(i,t) — 2D1(i,t) D3(i,t)) + 2D1 (i, ) Dy(i,t)
—2Ds(i,t) D3 (i,t) + 2D2(i,t)' Dy(i,t)) — 2D3(i,t) Dy (i, t)]
=M1+ Mo+ Mg+ Mya+2M 5 —2M ¢+ 2My 7 —2M; g+ 2My g — 2M; 10, say.

We prove the proposition by showing that (i) Mi 1 — Binr 4N (0,Vq), (i) M2 =iy 4+ 0p (1), and
(iii) M1 ; = op (1) for j = 3,...,10.
We first prove (i). We decompose the M; ; term as follows:

h1/2 2

My =2 ZZ

plz N T T

T T2N1/2 ZZZ h,stE eZSHSTtlSTtlH’Zkh i Freir

pl/2 7_" opL/2 T
T2N1/ Z Z Z kh,sthlHS’thIS;tlHlFSezzs + T2N1/2 Z Z Z kh,stkh,'rtFS/SFreiseir

1s=1 i=1 t=1 1<r<s<T

1 T
IH/T ZFseiskh,st

ont/2 XL
- 3 Z kn, stk FL (HSpi ST H' —S) Freigesr = MY + M) + M,
3 r<s<T

where S EE}lQ{)QOE;l. Apparently, M1(1) = Bin7. For Ml(Ql) , we make the following decomposition
2n/? L&

M1(21) = sz > knstkn o FISFeiseir
i=1 t=1 1<r<s<T

TNl/th/QZ Z (

i=1 1<r<s<T

2 b T B
+WZ > [7 Zkh,stkh,ﬁ—K( — )

i=1 1<r<s<T t=1

) FS/SFreiseir

FISF,eise;r = M1( 11) + M:E212)v




where K (v) = [, K (u) K (u — v) du. Let Zng,s = T-'N"Y2p=1/2 5371 K (557) FISFele,, then M{%Y =
23, Znrs and E(Znro|Fnrs—1) = T N"Y2R Y2551 K (55) FISF,E (¢, |Fnr,s—1) er = 0. By

the martingale central limit theorem (e.g., Pollard, 1984, p.171), it suffices to prove V;VlT/QMl(i’l) 4, N(0,1)
by showing that

T

T
Z = ZE (Zj4\[T7s|fNT,s—1) = o0op (1) and Z Z]2VT,s — VNT = 0op (1) . (AQ)
=2 5=2

First, we verify the first part of (A.2). Observing that Z >0, it suffices to show Z = op (1) by showing that

E(Z) = 0(1) by Markov inequality. Let ks, = K (55%) and ¢,, = F/SF,e,e,. We have

T s—1 4
9 _
E(2) :ZE Wzksr¢sr

=1

16 7.4 44 1.2 1.2 2 2
= T4N2h2 ZE ZkST¢ST’ + 2 Z ksrl k5r2¢sr1¢sr2

s=2 r=1 1<r;<re<s—1

+4 Z Z Egtl_csﬁ ];;57‘2 ¢§t¢sr1 ¢sr2 +4 Z ET15ET2SEtlsl_€t25¢sr1 (bsrg (bstl (bstg

t=11<r;<ro<s—1 1<r;1<re<s—1,1<t; <to<s—1

= Zl —|—Zg +Zg+Z4, say.

Noting that max, . ||N71/2¢Sr}|i < C under Assumption A.3(v), we can readily show that under Assump-
tion A4

1 16 T s—17
2 < max N~Y2,, 4@221@:0(7’72”1)
2 o< oma| v, ALY YRR -0
- r<s STlla TAR2 S o sr1Vsrg ’
4 64 T s—1 o B
z, < max N2 4WZZ Z k2 kg ks, = O ().

s=2t=11<r;<ro<s—1

For Z,, we can apply Assumptions A.3(iii) and (v) and A.5 along with the Davydov inequality to show that

T
64 - - -
Z4 - W Z Z krlSkTQSktlsthSE (¢sr1¢sr2¢st1 ¢st2) = O (h) .
5=2 1<r;1<re<s—1,1<t1<ta<s—1
Thus E(Z) =0(1) and Z =op (1).
To verify the second part of (A.2), it suffices to show (I) ZSTZQE (ij\fT,s) = VNt + 0o(1), and (II)

Var(zz:2 ZIQVT,S) = op(1) by Chebyshev inequality. These two claims can be easily proved if we also
assume independence of {e;. = (ej1,...,e;r)'} across ¢ conditional on the factor. Here we prove them



without imposing such a cross-sectional independence condition. We first prove (I). Observe that

T T s—1
Var(M3Y) = 3" B (Z3p,) = 4T N0 ST k2 B (FISF cle,)’
s=2 s=2r=1

T
+AT PN > ke ke, E (FISF, e, F,SFe). e.)
s=2 1<r;#r,<s—1

=Vn7 + bnT-

To study by, let S = Z;lQ{)QOZ}l = {S$mn}. Then ¢, = FISF,.ele, = 22:1 Zle SmnFsm Frn€ser,
and

T
by =AT2N'R'Y " > ke ke B (FISF eler, FY,SFee) )

5§=21<r1#r2<s—1

T
—2a7—13—1 E E E E 1. I. / 4
= 4T N h ks’rl ksrg Smlnl Smgan (Fsm1 F’I“1n1 6567«1 Fsm2 F”‘27l2 €s€r2)
1<mi,ma<R1<ni,na<R s=21<r;#ro<s—1

=4 E E Sminy Smans ONT (M1, M2, N1, N2)

1<mi,m2<R1<ni,n2<R

where by (m1, ma, n1,n2) = T2N~"'h~t ZST:Q Zlgrl;ﬁrzgs—l sz\il Z;V:1 I%sn%sr2E<Fsm1anleisethsmz
X Fryn,€is€jr, ). Since R is fixed and s,,y’s are finite, byr = o(1) provided byr(mi,ma,ni,n2) = o(1) for
each quadruple (my,ma,n1,n2). We consider three cases (1) |s—ra| > Ty, (2) |s—r2| < Tp and |ra—r1| > To,
and (3) |s —re| < Tp and |ro — r1| < Tp. We use bg\l,)T(ml,mg,nl,ng) to denote by7(mi, ma,n1,n2) when
the time indices are restricted to case (1) for [ = 1,2,3. In case (1), we apply Lemma A.7 and the fact that
E(F,, F] eir €ir,) =0 for r1 # ro under Assumption A.3(iii) to obtain

1+ ro

N N
B (ma, mam,m2)] < CTNTR 30 373 ko kara(Ty)Y 049 = 0 (NTha(TO)5/<1+5>) = o(1)

r1<re<si=1 j=1

In case (2), we apply Lemma A.7 and the fact that E(F,, e;,) = 0 to obtain

N N
B (ma,mz,ni n2)| < CT 2N 30 3OS Ky R al(T0)/ 0149 = O (NTha(To) 049 ) = o(1)

r1<re<s =1 j=1

In case (3), we have

bg\?)T(ml, ma,ny,n2)| =T 2N"th~! Z ksp, ksry | E (FoFyel. el esFr Fr,)|

r1<re<s, case (3)

< max max N71/2FTF56/T€S

m,n r<s

2 _ _
, T—2p~! > ksriksry, = O (T7'T3R) = 0(1),

r1<ro<s, case (3)

where we use the fact that the total number of terms in the summation over the three time indices for bg\?,’zf
are of order O (TT§) . In sum, we have shown that by = o (1) and ZEF:Q E(Z¥ps) =Vnr+o0(1).



Now, we want to prove (II) by showing that E(ZZ:2 Z%7.s)° = Vi +o0(1). Noting that
T 2 1 T [s—1 2\ ?
) B _
E (Z ZNT,S> = v | 2 [Z ’“ﬁ}
s=2

T 2
1 Y o
Tz (Z k¢> + TN N2h2 Z S ke ke Gor Gory

5s=21<r;#ro<s—1

9 T s—1 B ) T B B
+WE (Z k3T¢ST> Z Z kSTIkST2¢sr1¢sr2

5§=21<r;#ro<s—1
= binT + bant + b3nT, Say,

it suffices to show that (a) by = VX +0p (1) and (b) bayr = op (1), because then b3yt < 2 {b1yrbanT} 1/2
= op (1) by Cauchy-Schwarz (CS) inequality. Note that binT = Frrz D 1< <5y <T1<r<s:<T k2 . k2.
XE(¢§1T1 ¢§2T2) and V%’T = W Zl§r1<51§T,1§r2<52§T k;n kgﬂz (¢§1T1) B (¢82T2) Let 83 - {7‘1, 51,
r9, 82 }. We consider two cases: (1) for each t € Ss, [t — | > Ty for all | € S5 with [ # ¢, and (2) all the other
remaining cases. Let S31 and Sz 2 denote the subsets of Ss corresponding to these two cases, respectively.
For [ = 1,2, let byn7 (1) and V%1 (1) denote by yr and V%, when the time indices are restricted to lie in
831, respectively. Note that by = biyr (1) + binT (2) and Vi = Vi (1) + V%1 (2) . In case (2), we
have by Assumptions A.3(iii), (v) and A.4

- 1 -
binr(2) < max||N 1¢§r||§T4_hQ > keir Ky, = O (T0T™1) = 0(1),
1<r1<s1<T,1<r2<s2<T,
case (2)
- 1 _
Vir(2) < max[E(N 1¢§r)]2T4h2 > k2 k2, =0 (TT™1) =o(1),
1§r1<31£’£’c,1(§)7“2<82§T

where we use the fact that there are at most 73Ty terms in the above displayed summations. In case (1),
we consider six subcases: (la) r1 < 1 < 12 < 8g, (1b) ro < 89 < 11 < 51, (1lc) r1 < r9 < 81 < 89, (1d)
Ty <11 < 51 < 82, (le) 11 <712 < 8g < 51, and (1f) 7y < 71y < 593 < 51. We use biy7 (1,v) and Vi, (1,v)
to denote byn7 (1) and V4 (1), respectively, when the summation over the time indices are restricted to
satisfy the conditions in subcase (1v) for v = a,b,¢,d, e, f. First, we study subcase (1la). By Lemma A.7,
Assumptions A.3(iii), (v) and A.4

1
. 2
binT (1,a) = TiNe E ksl'r‘l sara (¢S1T’1¢82T2)
r1<si<ra<sz, S3,1
1
= TA4N2h2 : : z : ks17’1 SaT2 (fe17’1621s16217"1631 "’16]17“1fSQT'zeZQ“2612T2€]232632r2)
r1<s1<ra2<sa, 53,1 11,J1,%2,72
1 Z 2
< W 2 : k51r1 szrz (fslrleilsleilrlejlslejlrl)

r1<s1<r2<sz2, S3,191,J1,%2,J2

6/(1+6
xE (fszr261252€22rzejzszejzrz) + C’a( ) /at )}

1
= TiAN2p2 Z Z ksm Soro (¢81T1)E(¢52T2)+0< (To)é/(1+5))

r1<s1<r2<sz2, S3,1 91,J1,2,j2

— Vir(La)+o(1),

— N N N N T
where fo = F{SF,, >, 5, denotes 35 >0 1> 1> g0, and 3o oo, indicates the
summation is done over the four time indices satisfying the condition in case (1) (corresponding to Sz 1).



By the same token, byn7 (1,0) = V& (1,b) + o(1). Now, consider subcase (1c). For notational simplicity,
we assume that R = 1 so that each term in F.SF; is a scalar. [Otherwise, we need to utilize F.SF; =
ZR 25:1 SmnFs,mFsn as in the analysis of Part (I) ]. By applying Lemma A.7 three times, we have

m=1
b 1
INT (17 C) - T4N2h2 § : slrl 527'2 (¢51r1¢52'r2)
T1<’l"2<51<52,$3,1
84 2 2 12 12
= TAN2,2 E E kslrl SoTo (F F32 Frl Fr261151ei17“1 €j151€5171€iz52Ciars€losy ejQTQ)
r1<ra<s1<s2,83,1 11,j1,%2,J2
S4
2
< T4N2,2 E E kalrl 527“2 (Fr1 Frg €i1r1€517r1 Ciara ejoQ)

r1<re<s1<s2,53,1 i1,j1,42,j2

§/(146
XE<F2 F el1816j181€i2826j252) +Ca( ) [+ )}

S17 82

S4
S T4N2h2 Z Z k517‘1 527’2 (F2 6117’16]17’1) E (F 622T26J2T2)
r1<r2<s1<52,53,1 11,J1,%2,J2
x B (F ellslehsl) E (F 612526J252) +2Ca (T )6/(1+6)}
S4
= T4N2h2 Z Z kslﬁ S2T2 (F 6217“1 6]17“1) E (F 6127“26]27“2)
r1<re<s1<s2,53,1 1,J1,i2,J2
XE (F2 eiys1€j,5.) E (F2 €iysy€j5s,) +0(1).
Similarly,
1
Vir (Le) = TiNT2 Z k2 k2, E(63,) E(62,,,)
r1<r2<s1<s2,531
S4
= TAN2)2 Z Z k‘nm saT2 (Fr21 F7’226117’1€j17’16i27’2ej27’2)

r1<r2<s1<s2,53,1 11,J1,%2,j2
2
XE (F F 611816]151622826J282)
Sk 5
TANZ]2 § § kslrl szrz{E< eiﬂlejﬂl) E (F 612T26J2T2)
r1<r2<s51<82,83,1 91,71,12,J2

XE (F2ei5ej,6) E(F2eiyse,s,) + Ca(T; Ty)3/ G+

S4
= WQhQ Z Z kslﬁ S2T2 (F ellTlelel)E(F 6127“26]27“2)

r1<ra<s;<s2,531 91,j1,12,]2

xE (F 611‘316]131) E (F ew@zejzsz) +o(1).

IN

It follows that by (1,¢) = V%1 (1,¢)+0(1) . Analogously, we can show that by 7 (1,v) = V4, (1,v)+o0 (1)
for v = d, e, f. Consequently, we have by yr (1) = V%1 (1) +0(1) and byyr = Vi1 +0(1). Using arguments
as used in the analysis of by y7 and Lemma A.7, we can also show that

1 T T B
b2NT = W Z Z Z Z k81T1k51T2k82T3 8274 (¢51r1¢81T2¢82T3¢82T4)

81=282=21<r1#r2<s1—11<rz#ry3<so—1

0 (T—lh—2 + N2Th2a (Tp)™ ) 4 72T + 2730 + T‘QTOQh‘Q) =o(1).

It follows that E(ZZ:2 Z37.s)° =Vir+o(l) and Var(zz;z Z%r.s) = 0(1). Then the second part of (A.2)
follows by Chebyshev inequality. In addition, by straightforward moment calculations, we can show that



Mﬁm = op (1). It follows that Ml(l) — N (0,Vy). For Ml(?’l), by the matrix version of Cauchy-Schwarz
1nequahty, Jensen inequality, and Lemma A.3(v), we have

h1/2 T N
‘Ml(?l)’ = T2N1/2 Z tr (Hs;tls’l_“tlHl - S) Z Z kh,stkh,rtFrFsleiseir
=1 i=1 1<s<r<T
B1/2 N
< m?.X HHS;;S;?HI — SH W Z Z Z kh,stkh,TtF’rFs/eiseiT’
t=1 ||i=1 1<s<r<T
9y 1/2
< max HHSTIS LH - SH T?N Z Z Z En,stkn i FrFoeiseir

t=1 ||i=1 1<s<r<T

= 0p () T)* + N7Y2) 0p (1) = 0p (1),

= O(1) by using

Lemma A.7 and arguments as used in the above study of by 7. Consequently, we have shown that M; ; —
d

Binr — N (0, Vo).

Next, we prove (ii). Using ayp = T~ V/2N-V4p=1/4 F, = H'F, + (F, — H'F,), and Lemmas A.3(i), (v)
and A.5(i), we have

2
where we also use the fact that <% Z;F:l HZZ\; dr<s<r<t knsthn e FrFleiser

h1/2 N T aNTh 1/2 N T . 1
Mz = N1/2 ZZ [ Da(i D) = N2 Z Z St Zkh aFFigis
i=1 t=1 i=1 t=1
1 L& 1 ~ 1 ~
= TFar Z Z tr S'l_"tl_ Z kh7sthFS/gis_ Z kh,rtgz/‘rFrF;S’j_ﬂt:l)
TN i=1 t=1 ( T s=1 T r=1
] T
= 7w SN e <HsTgsTt1 gL Z st P FLgis Z knregh o F, ) +0p (Cy%)
=1 t=1 s=1 r=1
1 N T ¢ ¢ /
= TN > (EFI%QOEFIEF% (:7) 9i (T) 2F) +op (1)
i=1 t=1
1 N T ¢ ¢ /
= ==> > tr|Qog <—> i <—) Q6> +op (1) =iyt +op(1).
TN Pt ( T T

Now, we prove (iii). For M; 3, we apply Lemmas A.3(i)-(ii) and (iv) and triangle inequality to obtain
h1/2 N T N T

< TNY2RV2|H- 1HmaxHST {NZMM }max

=1

2

TtTZkhstF (7 - HF) H '\

TZkhstF (F HF)

= TNY2h20, (1) (op (T 'InT+N")* +op (a?w)) = op(1).




By Lemma A.4(iv) and triangle inequality, we obtain

p1/2 h/2 N T
Mg = N1/QZZ”D4Zt /ZZ

i=1 t=1 i=1 t=1

2

T
SJ_“ll Z (Fs - HlFs) eiskh,st

T T 2
< TNV R max]|S7, || NT Z =3 (R R ek
t=1 =1
= TNY2RY20, (1) (op (N‘3/2 +T ) +op (a?VT)) = op(1).
For M, 5, we have
aNTh1/2 N T T 5
|Mys| = TENIZ Zzzkh,stFéeisHSq:tls;tl Zkh,rtFrFr/gir
i=1 t=1 s=1 r=1
N T
< max Zkh Bl g T5/2N5/4 Z ZZFéeiskhvStHSftlsftl
t=1||i=1 s=1
By Lemma A.4(i), max; % Zle kh,rtFTF;giT = Op (1). In addition,
h1/4 a / 1 1y ryr—1
T3/2N3/4 Z ZZ kst Fseis H S Sy H H
t=1||i=1 s=1
ht/4 4 1 1 1
/ — / — /—
S T3/2N3/4 Z szh,StheiSEF QOQOEF H H
= 1=1 s=1
p1/a TI|IN T
“1a-1 -1 -1
AT Z DD knsFleis (HSpy Sy H' = X' QuQo¥r')
t=1 ||i=1 s=1
= {IL+IL}Y||[H' Y|, say
Noting that under Assumptions A.S(ii) (v) and A4
p I N TN
T2N ZE ZZFel.skhst — TQNZZZZkhStE F/Fseisejs)
i=1 s=1 t=1 i=1 s=1 j=1
s N N T
SR S ST NS O WRE
t=1 i=1 j=1s=1

0 1/2
} = Op (1) and

/
we have 7 SO || S0, Fleiskne| < {m S |2t S ki Pl
1I; = Op (an7) . For 115, we have by Lemmas A.4(ii) and A.3(v)

h1/4 T
= T3/2N3/4 Z

IT, Z Z knstFleis (HSp St H — L' Q0QoEr")

i=1 s=1

1
T Z kh,sth/eis
s=1

— PVATVEINYAO, (T—Wh—l/2 In (NT)) Op (T—Wh—l/2 (InT)"? + N‘l/Q)

1 d o B
NT ZZ [HS7 S5 — 5! QoQuZE

< RYATYV2NVA pax
it
i=1 t=1

= Op (T—1/2h—3/4N1/4 In(NT)(InT)/2 + N~1/4p-1/4 ln(NT)) — op (1).
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It follows that My 5 = op (1).
For M g, we have by Lemmas A.3(i)-(ii) and (iv),

hl/2 N T T T ) ] /
= T2N12 Z Z Z FS/eiSkh7StHS;t1S;t1 Z Kyt Fy (Fr _ H'FT) H )\
i=1 t=1 s=1 —l
hl/2 T N T . o /
= qayiE [ KZZAioFéeiskh,st> S St ki (B~ H'F) HlH
t=1 i=1 s=1 )

IN

1 T
= > knky (B~ H'F,)

T:l

PR s 2y 1/2
X { —— NioFieiskn s
TN; ;; 0 host

= [Op (T7'ImT+N"") +op (anT)] O(T"?) = op (1),

P
where we also use the fact that under Assumptions A.3(ii), (v) and A.4

maXHST Nzl ||HHmax

| ‘

2

h - v / h = al 2 / /
ﬁ ; E ; ; )\iOFseiskh,st = ﬁ ; ; pa ; kh,stE (FSFSeiSejS) )‘jO)‘iO
h N N T
< CT(IH;%X?Z hqt> NTZZZ\T”S|
t=1 i=1 j=1s=1
= TO(1)O(1)=0(T).

For M 7, we apply (A.8) in the supplementary appendix to make the following decomposition

h1/2 N T
M = a7 > Fleiskn«HSy, Zkh reeir(Fy — H'F,)
=1 t=1

pre N T
= T2N1/2 Z Z F; s€iskn stHSTt Z kn, rtezr Al + As (7“) + As (7”) + A4(7")]

=1 t=1

= MY+ MP) + M+ M say.

By straightforward calculations, we can show that Ml(l% =op (1) for I = 1,2,3,4. It follows that M; ; =
op (1) .

Finally, M; g < {MLle,s}l/2 =op (1), M1g < {]\/1'1,2]\4174}1/2 =op (1), and M; 10 < {]\/1'1,3]\41,4}1/2
= op (1) by CS inequality and the fact that M; o = Op (1) and M; ; = op (1) for j = 3,4. Consequently,

M1 *BlNT 7H1NT i N(O,Vo) | ]

Proposition A.9 Suppose that the conditions in Theorem 3.2 hold. Then Ma—Ban1—TonT = op (1) under
Hl ((LNT> .

Proof. Using X;; = F/\is + e;s = F/\jo + (e + anTFlgit) = F{/\io + e;-ft with eIt = e;t + anTF/g;+ and
by Bai (2003, p.165), we have

T T
% 1 1~ =
R & S S = T T _ -1 _ .
No— H ™o = H' ;:1 Fael, + = ;: (Fy = HF)el, = = F/(FH™ = F)\ig
= D5 (i) + Dg(i) — D7(i), say. (A.3)

11



By (A.3), we make the following decomposition for Mj :

N T _ 2 N
= NT12p123 "% ] Xio — H "N = TN"Y2h12> " D5 (i) + De(i) — Dz (i)
=1 t=1 =1
N
= TN 2N [IDs )P + D@ + 1D7(0)|* + 2D5(i) De(i) — 2Ds (i) D=(i) — 2Ds(3) D (i)
i=1

= Moy + Moo+ Moz +2My 4 —2Ms 5 — 2M> 6, say.

We prove the proposition by showing that (i) M2 — Boyr — oyt = op(1) and (ii) My ; = op (1) for
j=2.3,..,6.
To prove (i), we use egs = ¢€;5 + anTF!g;s and further make the following decomposition:

h1/2 N T

el FIHH'S  Fpel
271 TN1/2 Z Z Zl

i=1 s=1
h1/2 N T T ) ) NThl 2 N T T / / /
= 77 SN SN FHH'Freicen + R SN N g, HH'F,Flg,,
i=1 s=1r=1 i=1 s=1r=1
2anrh!'/? Y 1 2 3
+ TN1/2 ZZZFSIHH/FrFT/girGis = Mg(l) + M2(1) + 2]\42(71)7 say.
i=1 s=1r=1

For M2(11) we make the following decomposition:

h1/2 N T
1
My = s 2 D FHH'Feel, + 217N ™ Y S RGy 0 P

=1 s=1 i=1 1<s<r<T

N
+20INTYERRNT N F(HE - Q' QY ) Freiseir
i=1 1<s<r<T

= M5 oM oMY say.

) 2,1

Apparently, Méi’l) = Bonr. Using the fact that H — Q' = Op(C’R,lT) under Hy (anr), we can show that
M2(711’2) = op(1) and M(1 ) = op(1) by arguments as used in the analyses of M1(21) and Ml(?’l), respectively.
By Lemmas A.2(vi) and A 5(ii), we have

2 721/2
@ _ anph " / .
My = § j§ FlF.gl HH § :F ! Gir

i=1 s=1

1L (1 & 1 <&
I_ - / X - ! /
HH'S; <T§ FTFrgW> <T§ Fstgm>

|
-+
=

|
=z~
[]=
=+

[

—

O
e
5
|
M 3
B!
S|

)

3
S|
(]~
2.
™

!
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For M2(31) , we have

aNTh

3
}MQ(J)’ - TN/Z

(HH’ S FF Z Z gireisF )

i=1 s=1

T N T
Z: Z Z Gir ezs

i=1 s=1

T N
Z [F.F, — E(F,F)]> > giweisFl| =

=1 s=1

IN

I1H]?

TS/QNS/

h14

— (3 1) (3,2)
T3/2 N3/4 +M2 1=

+1H]*

<.

Noting that under Assumptions A.1(i), A.S(ii)7 (v) and A.5(i),

2 N T T N T
1 /
E <T3/2N3/4 ZZFZZg"e” > = TBN32 ZZZZ Z tr(XrgirTij sGjr, XF)

i=1 s=1 i=1r=1s=1j=1r1=1

1 N N T
< Orner NN sl =02,
=1 j=1 s=1
we have M(d D= | H|? /e ZT 1 2F ZZ 125 1 Yir€is p(N~Y%) = op(1). Similarly,

T3/ZNATT
noting that £ (% Zi:l stTzl eis 'y
= O(T/N), we have

N T T
S > P F — E(FF)] gir Zeist

1
T3/2N3/ =1 r=1
1
{m;dx TZ[FTFT/_E( E)) gir } ||HH
r=1

= Op(TY?InN)Op(hY/*N~Y4) = 0p (1).
Thus M271 = BQNT + 1_IQNT +op (1) .

3,2
M = |H|?

)

IN

Zest/

Now we prove (ii). By Lemma A.4(iii) and Lemma A.2 (iii)-(vi),

N N T 2
1 1 -
]\42,2 — TN_l/th/QZHDG(Z)HQ :TNl/th/QNZ TZ(FS_HFS)ejs
i=1 i=1 s=1
= TN'Y2p20p(Cy%) = op (1) and
N ) 1. - 2 1 N )
Mz = TNZVERYZY |Dr(i)|* < TNV2RY? || F'(FH™! — ~ 2 [aoll
i=1 1=1

= TN'Y2hY20p(Cy%) =op(1).
By CS inequality My < {Ms oM, 3}1/2 =op (1). For M, 4, we apply Lemma A.4(iii) to obtain

N T
S Di(i) Dati) Z%Z LFSHTZ (F,— HF)e,
i=1 s=1

i=1
1/2 9y 1/2

TN/2p1/? iZN: iiv: ZT: — HF))e
N N~ |T &

Z els F;
i=1

TNY2pY20p(T~Y2)0p(CR2) = op (1),

|M2,4| — TN~ 1/2h1/2 :TN—1/2h1/2

IN
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where we use the fact that Zz 1EHTZST 1 Ier/H S%Zz 1E||TZS 1625F/H2 aNT ZZ 1E||TZ
gisFSFs/H2 =0(T~ 1+G’NT) o(r- 1) Now,

N T
1 1., -
Mys = TN Y2p1/2 Ds(i)'D = TN Y2p1/2 — WP H=F' (FH™' — )\,
2,5 ; 5( 7(4) ;TZ;@ st ( ) 0
N T
= TINTY2p12 |4y (HF (FH™! ZZ&OFS’%)
1=1 s=1

N T
N71/2T71/2 Z Z )\iOFsleis

i=1 s=1

< TY2RV2 | H| {T*l HF/(FJ&T*1 - F)H}

= T1/2h1/20p(C’K,QT) = Oop (1) .
Thus we have shown that M, ; = op (1) for j = 2,3,...,6 and the second part of the lemma follows. m

Proposition A.10 Suppose that the conditions in Theorem 3.2 hold. Then M3—Bsnr—Ilsyt = op (1) under
Hl (aNT) .
Proof. By (A.1) and (A.3), we can write Mj3 as follows:

/ s
Ms = ]@11/22 ZZ ( it — Hil)\io) (>\i - Hil)\io)
i=1 t=1
]@11//22 ZZ Dy (i, t) + Dali,t) — Ds(it) + Da(i, t)]' [Ds(i) + Dg(i) — Dz(3)]
h1/2 le tTl
=Nz ZZ[Dl(ivt) D5 (i) + D1 (i,t)' D (i) — D1(i,t)' D7(i) + D2 (i,t) D5 (i)
=1 t=1

+ Da(i,1)' De (i) — D2 (i, 1) D7 (i) — D (i, t)' D5 (i) — D3(i,t)' De (i) + Da(i, t) Dz (i)

We prove the proposition by showing that (i) Ms 1 = Bsyr + op (1), (ii) M3 4 = syt + op (1) and (iii)
My =op (1) for j =2,3,5,6,..., 12.
First, we show (i). We decompose M3 as follows:

h1/2 N T T T

N T
M3, = N1/2 ZDl(i’t)/D5 T2N1/2 Z Z Z Zkh W FLH S H' Freleis

i=1 t=1 i=1 t=1 s=1r=1
N T T T N T T T

1/2
= S b FL S H Freiye, TM]‘V{L S S S S b FHST HF Flg, e,

i=1 t=1 s=1r=1 1=1 t=1 s=1r=1

h1/2 N T T
= N ZZZkh WF HS7 H'F.2, + T2N1 i Z Z > knoFlHSp H'Frepeis

i=1 t=1 s= i=1 t=1 1<s#r<T

aneh? I I L )
+ ey D 2 D D kst FLH ST H'FL Flgivess
=1 s=1r=1

~+

%

=1
= M§}1) + Mfl) + M§31), say.
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Apparently Méll) = Bsnr. Following the analysis of M 1, we can readily show that M§21) = Op(h'/?) and
M) = Op(T~Y/2NV4h=1/4) = op (1) 1t follows that Mz = Byt + op (1)

Next, we show (ii). Using egr = eir + anTF)gir we decompose Ms 4 as follows:

R1/2 aNTh/ N T T .
Msy = N1/2 ;;DQ i,t) D5 (i) = = TNt ;;;kh i P FST H ZF%«
anThY? G o g1 g
= TN 2 2L D knsighh IS H ZFeW
=1 t=1 s=1

a h1/2 N T T
tpaNiE DD nagi FES TtlH/ZF Flgir = M5} + M7, sa

i=1 t=1 s=1 r=1

For Méﬁ, by Lemmas A.2(iv) and A.3(iv) we have

anmhl/2 T N T
)M:»E,lzf‘ < TNZTJ’VI/Z ZZZkhétglsFFHSTtlH’ZFeW +op (1)
t=1 i=1 s=1
anph'/? ) /N T T
= Nz Ztr HSr H ZZZF eirkn,stgisFsFy || +op (1)
i=1 s=1r=1
BL/4 T ||N T
— WHHH max ||/ HZ S kg FoF ZFeW +op (1)
t=1 ||i=1 s=1 r=1
h1/4 1/2mn5/2 1/2
= anaaOr(NAT2h1) +op (1) = op (1).

Noting that HS; H' = Q" ((Qy" EFQal)71 Qo) +op (1) = X3 + op (1) uniformly in ¢ by Lemmas
A.2(vi) and A.3(iv), we have by Lemmas A.2(vi) and A.5(i)-(ii)

N T T T
1 = —
M?E,Qél) = T3N Z Z Z kh,stg;sFSFsISTtlHl Z FTF';gZT
=1 t=1 s=1 r=1
1 N 1 T T 1 T
- N Z T2 Z Z khvstgz{stFéHS:FtlHlf Z F.Flgir +op (1)
=1 t=1 s=1 r=1
1 L& 1 X
— 1y ’ ,
= ﬁ;;tr [HSTtH <TZF gzr> (? ZkhstgisE‘st)
1 N
N N;t r ZFTZQZ( ) Z%( ) +op (1) = l3nr +o0p (1).

It follows that M374 =137 + op (1) .
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Now, we prove (iii). We first consider M3 > and M; 3. Note that by Lemmas A.2(vi) and A.3(iv),

h1/2 N T T 2
Z S knaFLHSE e
=1 ||t=1 s=1
2h1/2 Al — < / 1y i 2h1/2 Al a a 1 1y i
< szh,sthzg‘ Qoeis + T2 Z Z Zkh stF €is (HSTt _2;‘ QO)
=1 || t=1 s=1 i=1 ||[t=1 \s=1
h1/2 N | T T 2
S Z Z Z kh,stFézg‘lQéeis
=1 || t=1 s=1

2

2
1 T T
72 knaeFlen|| || HSH - S5 Qo
s=1 t=1

= Op(NThY2) + hY2NOp(T7*h~ In (NT))Op(T?((Th) " InT + N71)) = Op(NTh'/?).

+2n/2N max

By analogous analysis as used in the study of M1(21) and Ml(sl) and Lemma A .4(ii), we have

1/2 N T T
Mo = ZWZZDHt ) Dg (i TNI/ZZZZkhétFHSTtewTZF —HF,)el
i=1t=1 i=1 t=1 s=1
T T 2) 1/2 | X T 2y 1/2
< TQZ ZZkh,stFéHSileis NZ fZF HF,)
t=1 s=1 i=1 r=1

= OP(N1/2T1/2h1/2)OP(C&§1) = op (1) .
Similarly, noting that

h1/2 T N T L
P
TNIZ Eszmst}\ioFsHSTteis
t=1 i=1 s=
B1/2 T N T ) B1/2 T N T ) )
< i 120 20 D kst ho FLSE Qbeis | + s (120D D ks hioFL (HS7 — B! Qp) e
t=1 i=1 s=1 t=1 i=1 s=1
— OP(T1/2h1/2),
we have by Lemma A.2(iii)
pl/2 N T B1/2 N T T
Mys = 5 0 2 Diit) Drli) = 75 > D Y k.t FIH Sy e L [PH = F) o
=1 t=1 i=1 t=1 s=1

B1/2 N T /
- W ;;;khstAloF "HSL} e“TF [FH F}
T N T
Z Z Z kh stAiOF;HSEtleiS

t=1 1=1 s=1
= Op (C;,T+aNT) Op(TY?hY?) = 0p (1).
For Ms 5, Ms 6, Ms g, M3 g, M3 11, and Ms 12, we apply CS inequality and the fact that My 2 = Op (1),
M, ; =op (1) for I = 3,4, and My ; = op (1) for j = 2,3 to obtain
< {MiaMao}? =o0p (1), Mgl < {MioMos}'? =o0p (1), [Msg| < {Mi3Map}'* = o0p (1),
{M1,3M2,3}1/2 =op (1), |M31i| < {M1,4M2,2}1/2 =op (1), |[Ms2| < {M1,4M2,3}1/2 =op(1).

IN

h1/2
]| 25w

A
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For Ms 7, we have

h1/2 h/ N T T
_ N1/2ZZD3 ity - C;{V;]”Wz SOSTS kX H' 1(F HF)F’ TtlH’ZFeW
i=1 t=1 i=1 t=1 s=1
pl/4 r T
= Ztr Bl (Fy — H'F,) T,}H'ZZFe;/\;O
t=1 =1 r=1
h1/4
= o Zm« st H' ™ (Fy HF)FSTtlH’ZZFe” o
t=1 =1 r=1
2y 1/2 2y 1/2

1 T
N71/4h1/4||H71H TZ

T

= ke (B HE) Y

Z Z F ejr)\;(]

=1 r=1

IN

T2N Z

= N-VARYA0p (CR2) Op (1 + N1/2T1/20«NT> =op(1),

Similarly, we can show that Ms 19 = ]’\’%; Zivzl 23:1 Dy(i,t)' Ds(i) = % vazl 23:1 ZST:1 kp st€is (}7’5
H'Fy) S;tlH’% ZZ;I FrejT = op (1) . Consequently, we have M3 = Bynr + gy +0p(1). B

Proposition A.11 Suppose that the conditions in Theorem 8.2 hold. Then I@NT — Byr = op(1) under

Hl ((LNT> .
Proof. Let Ly = (kn.stSpi — Ir) (knstSri — Ir) . Using &% — €2 = (&is — €i5)” + 2 (Eis — €is) €15, We

have

R h1/2 N T T

Bur —Byr =z 000 Ot [La(FE — HEFUHE,)]

=1 t=1 s=1
B1/2 N T T o
= TaNiTa ZZ Z{tr(L FoF)) (€is — €i5)” 4 2tr(Lst FsFL) (€is — €is) €is

+tr[ Ly (FoF! — H'F,F/H)|e2,}
= B1 + 232 + Bg, say.
It suffices to show that (i1) By = op (1), (i2) B =op (1), and (i3) Bs = op (1).
We first show (i1). We make the following decomposition:

Cis — Eis = NoFs — N Fy = NoFs — NoH' H'F, — an7Flgis

70

= (;\ i0 — H /\10) F =+ )\/OH/ 1(1315 — H/FS) — aNTFS/gis = dyjs + dojs — dgis, say. (A4)

By CS inequality, By < 2 y°N v T 1tr( tﬁsﬁg) (@i + d3, + d2;,) = 3B11 +3B1 2+ 3B13,
say. By Lemmas A.6(i) and (iv),

prz XN T L N R
Bii = Ty ;;Zl (LaFF[(\ — H  Xo)(\i — H Xio)' P
1 N -1 2 1 d I i Al n
TR IRV B 3

= t=1 s=1




Noting that Ly < kj S48+ + 1k, by Lemmas A.3(iv) and A.6(iii) and (v)

2z N LT o B L :
Bia = oy dod b Loty — H'E)H NoNoH'™ (F, — H'F)F]
i=1 t=1 s=1
/2 N T T o o » L ~
< TN ;;;m [(k,%,stsﬂlsﬂl +1Ig) Fy(Fs — H'F)H NoXNoH'™ (Fs — H'F,)F!
N
1
< N1/2h1/2HH_1||2(31NT{NZ”/\1‘0|2} Z) (- mRY|
=1
NY2p20p (B O (1) Op(Cra + T7'N72) = 0p (1),
and
ht/? dApiaEL al g2 (L%\fTh“l/2 ARpigd ! I / 2
Bis = gonm 2 > ) FlLafidi, = 5mm Y 0D Y FlLaks (Flgis)
i=1 t=1 s=1 =1 t=1 s=1
N T T
1 -
— T3N Zzztr |:(kh StSTtlsTt +HR) F S/(F,égls)21|

IN

ARy

2

}ﬂ

3 -

=2

=
0~

1/2
HF | }

~ 112 2 gCINT
TN F s 2 HgisH2 {
1=1 s=1

= Op (Tﬁlhil) Op (1) =op (l) ,

where ¢y = max HS;tl H2 maxg % 23:1 k,%,st +1=0p (h_l).

Next, we show (i2). Using (A.4), we decompose B; as follows

pl2 N T.T o
By = s 2 0 0 (L E) (B — ei) e
i=1 t=1 s=1
B1/2 N

T T
= TNz Z Z Ztr(LstF F) (—dyis — dais + dsis) €is = —Bay — By s + Bas, say.
i=1 t=1 s=1

By (A.3), we further decompose Bs ;:

pl2 N T T

Byy = TeN1/ Z Z Ztr(Lsth 28724 (S\i - H_l/\io) €is

i=1 t=1 s=1

T2N1/2 1=1 t=1 s=1
For Bé’ll), we have
pz LT N T
B = N > te(Ly P F)FLH (T ZZFeTe>
t=1 s=1 ) I/_21 r=1 N N
< | {%z T3 P
pufl| K
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Using Ly < k7 ,,S7, S, + Iz and Lemma A.6(ii),

In addition,

that BY'
A6(0),

2
By

and

)

1 =

IA

3
By

T N T
%Zs IEHLZZ 127“ 1F7’61'L7“eis

2 2
P o i
= T3; Ztr (K7, «tS74 St¢ +1R) FFJF,
— 0p(Th) ).

2
=0 (T '+ NT2+ad(1+N/T)) =0(1). It follows

op (1). For Bfl) and 32 1), we have by Lemmas A.2(iii) and A.6(ii), and the proof of Lemma

N T T

T2N1/2 ZZZu« Lo F,F[)FDg(i)ess

i=1 t=1 s=1

h1/2 T T

T
WZZtI(LStFS 28 NSIZ ! Z (F. — HF}) e +€is

t=1 s=1 =1 7’:1

prz L . N T
TIN1Z ZZtr kh stST¢ STt +]IR) s ] ZTZ(F HEF, )e €is
t=1 s=1 i=1 r=1
W2~y 2 1g—1 E 1 o
T2ZN1/2 Zztr[(kh,stsﬁ Sri + ]IR) F,F Z Z F HEF,) e +€is
s=11t=1 i=1 " r=1
1z Ny T 2y 1/2 L 1/2
e N NY/2p1/2 { Z‘ } NZ TZ(FT—HFr)eIT maX{NZefs}
s=1 i=1 r=1 i=1
Op(N'Y2h=12)0p (1) Op (Cy3) Op (1) = 0p (1),

IN

IN

plz N T T

T2N1/2 SN (L F F)F De(iess

i=1 t=1 s=1

T2N1/2 ZZU‘(L F )F/ FH— Z/\zoezs

1=, = 1
N2 HF’(FH” - F)H max N

NP 1
clNTN1/2h1/2?HF’(FH 1—F)Hm§ux ~

Op(Nl/Qh_l/Q) (OP(CK[%) +op (CLNT)) OP(N_1/2 lnT)Op (1) =op (1) .
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Thus By 1 = op (1) . By Lemma A.6(vi),

pli2 | N T T o
/ !
|Bys| = TN ZZZtr(LStFS WNigH' ™ (Fy — H'Fy)ess
i=1 t=1 s=1
h1/2 L 1 L al / Y E /
< o Z TZtr(LsthFé) Z/\iOH (F, — H'F,)e;s
s=1 =1 i=1
. . 2y 1/2 . 2y 1/2
1 1 -~ 1
< K2 TZ TZtr(LStFS 1) N—Z Z)\OH’ "(F, — H'F,)ess
s=117 =1 =1
| , 1/2 S 2y 1/2
1/2 ) = 7 = "~ )
< anrh T;H s } NT; ;AzOH (F, — H'Fy)ess
— 0p(h™2)0p (1) Op(Cik) = or (1)
In addition,
N T T T T N
aNTh1/2 o N1/4h1/4 o 1
Bos = N Zztr(LsthFé)Fégiseis:WZ tr(Ls Fs I Fy Nzgiseis
i=1 t=1 s=1 t=1 s=1 i=1
1/2
NU/ARL/A 1Y T
< C1NTWH1§%X N;giseis TZHF ;HFsH

= NYAR=3AT-120,(N~Y2InT)Op (1) = op (1).

Thus By = op (1).

Now, we show (i3). For Bs, we use the definition of Ls; and make the following decomposition:
h1/2 o nlnlk ! / 2
By = oy > S [Lst(FSFS ~H FSFSH)] e2,
i=1 t=1 s=1
h1/2 N T T . L s )
— /! !/ !
= e DD DKt { CLSTMEF — H FSFSH)} e
i=1 t=1 s=1
2h1/2 N T T h /2 N T T o )
/ / / !/ /
T T2N1/2 Zzzkh sttr [ Tt FF HFFH)} T2N1/2 ZZZtr(FSFS — H'E FH)ej,
i=1 t=1 s=1 i=1 t=1 s=1

= Bj1+ Bsga+ Bsgs, say.

Using F,F! —H'F,F'H = (Fy— H'F,)(F,—H'F,) +(F,— H'F,)F'H+ H'F,(F,— H'F,)', we can decompose
B3 as follows

h1/2 Y e 2 1 1/ 1 n 2
< o O 2L O [S;t Sz (F, — H'F,)(F, - H’Fs)’] e
i=1 t=1

s=1
N

T T
i=1 t=1

2h1/2
T2N1/2

CADA

= B} + 2B

>

KR tr [ S5 STl (Fy — H'F)FLH| €2,
1

S=
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By Lemma A.2(i) and the fact that max; + LS = Op (1), we have

zlzs

N
(1) 1/23,1/2 4
Bg,l < ClNTN h {maXNX; }{TZ) }
= Op(N'2h™'%)0p (1) Op(Cy7) = op (1).

In addition, by Lemmas A.3(iv), A.6 (iii) and (vii), we can readily show that
2) W21 \- o\ 2
B = mviag Zkh wtt | Sz ST ;; (Fs — H'F,)F/He},
1 T 1 N T

1/231/2 - - i = / 2

< NV {max [ } { X7 ;kh St} 7 ;;(F H'F)F He,

< NY2R'Y20p (1) O (W) Op (1) Op (ant) = Op(T~VAN"Y40=3/%) = 0p (1).

Thus Bs1 = op (1) . Similarly, we have B3 ; = op (1) for I = 2,3. Then Bs = op (1). This completes the
proof of Proposition A.11. m

Proposition A.12 Suppose that the conditions in Theorem 3.2 hold. Then V1 = Vg + op(1) under
Hl (aNT) .

Proof. Let ksr =K ( ) Observe that VNT — V7 =Vinr + VonT, where

Viny = 2T 2N"'h7t > R [ SHSP RS SEE, (é;és)QfF[,SFsFS/SFT(e’reS)Q},
1<s#r<T

Vonr = 20 °N7'h7' > R [FT/SFSFS’SFT (¢es)” — E(F/SF,FSF, (e;es)Q)].
1<s#r<T

a2 2 s 2 s
Using (€].é5)” — (eles)” = (€L.€s — eles)” +2(€Lés — eles) el.es we can decompose Vi as follows:

Vine = 202N"'h70 YT R ESHSP R ESESEE, (68 — ees)’
1<s#r<T
+4T 2N~ 1p! Z k2 ES IS R FIS IS R, (6Lés — eley) eles
1<s#r<T
+2 AN N R (BRI SE BES S, — FISFLFISE,) ()e,)’
1<s#r<T

= 2Vinta +4VinT2 + 2V iNnT 3, Say.

Using (A.4) and following the analysis in proving (i), we can readily show that Vinr; = op (1) for [ =1, 2.
For Vin73, using @'a — a'a = (a —a)’ (@ —a) + (@ — a) a +a’ (@ — a) , we decompose it as follows:

Vinrs = TN N RL(ESESEE, - FISF)(F/SE'S5!F, — FISF) (ces)’
1<s#r<T

+20 Nt > R (F)SE SR Fy - FSF.)F|SF, (c)e)
1<s#r<T

2

1 2
= Vgl\)fTB + 2V§J\)rT 3, Say.
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Noting that F/Y 'S By~ FISF, = FIX ' S (Fo—H' F)+F H Y (HS ' S 7P H —S) Fo+(E H = — F,)SF,
we have

_ ~ o~ ~ ~ 2
Vips < 3T2NT'W7t N B ESESENE - H'R)|[ (ches)’
1<s#r<T
_ - - - 2
+3TANTIRTY N R | ELHTNHSE SR H - S)E| (ehes)’
1<s#r<T
— ~ 2
+37 AN NT B2 (FIHTY - F)SE| (ehes)’.
1<s#r<T

Using Lemma A.2, we can readily show that each term in the last expression is op (1). Then we have
Vglj\),T)g = op (1) . Similarly, we can show Vg\)fTB =op(1). So Vinyrs =op (1) and Vinr = op (1).

In addition, noting that E (Vonr) = 0 and Var(Vonr) = 0(1), we have Vo = op (1). Thus, Vyr =
Vnr +op(l). =

Proof of Theorem 3.3. Let P* denote the probability measure induced by the modified parametric
bootstrap conditional on the original sample Wyr. Let E* and Var*® denote the expectation and variance
under P*. Let Op+ () and op+ (-) denote the probability order under P*, e.g., byr = op+ (1) if for any
e > 0, P*(||byr| > €) = op (1). The proof is similar to but much simpler than that of Theorem 3.2 for
three reasons: (1) the null hypothesis is satisfied in the bootstrap world, (2) e;’s are independent over
t conditional on Wy, and (3) both X\io and F} are fixed given Wnr. Even though Xio and F} are not
uniformly bounded over ¢ or ¢, we can use arguments as used in the proof of Lemma A.6(i) to demonstrate
that & Zt LIE)® = 0p (1)4+0p(T3CR5) = Op (1) and that + ZZ L Miol[® = Op (1) . These are sufficient
for the analysis of J% NT:

Let 5\:0, Ft*, and )\n denote the bootstrap analogue of )\zo, Ft, and i, respectively. Let M* s INTs
Byt Ve, JNT, IB%}‘VT, and VNT denote the bootstrap analogue of M, Jyr, Bnr, VN1, Iy, IBNT, and
Vnr, respectively. Then Jip = (TNYV2hY2M* — B r)//Vivr and Jir = (N7V2M* — Biyp) /v Vi
Following the proof of Theorem 3.2, we can show that TN'/2p'/2N[* — B, = 23:2 Zxr.stop- (1), where
Zir,s =20 "N=V2R= Y250 FIS* Frellel, e = (€1, €)'y and S* = HS;! ST H'. Then we can
prove the theorem by showing that: (i) 28:2 Zxr.s/VVar bl N(0,1), (i) B%, = B%qp + op- (1), and (iii)

We only outline the proof of (i) as those of other parts are analogous to the corresponding parts in the

proof of Theorem 3.2. Noting that {ZX7,, Fyr .} is an m.d.s., we can continue to apply the martingale
CLT by showing that

T

2°=>"Fp._ | Zigs| =op- (1), and ZZNTt Vg = op-(1). (A.5)

FNT, -1
t=2

As in the proof of Proposition A.8,

E” (Z* T4N2h2 ZE* Z k sr + 2 Z k?rl k.g’[‘g d)srl ¢S’I‘2

1<ri<re<s—1

s—1
+4 Z Z ];,‘?t ksn Esrz ¢:t2 (b:rl (b:rz +4 Z I}TlséTzSI}tlS%tzSd):’rl ¢:r2 ¢:t1 ¢:t2

t=11<r;<ro<s—1 1<r1<re<s—1,1<t1<ta<s—1

= Z} + 23+ 25 + 2,
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where ¢, = F’ S*E, e¥'e’. Using the i.i.d. property of ¢;; and the conditions in Theorem 3.3, we can readily
verify that Z = op (1) for [ =1,2,3,4. For example, noting that E [¢;,sSiysSizsSiss] = 3 if 41 = i3 = i3 = i,
=1if iy =iy # i3 =4, 11 = i3 # iy = 14, O 91 = i4 7# 19 = i4, and zero otherwise, we have for any s # r,

4 i ~ ~ ~ ~
E*(efen)’] = ETUSe) )= Y. Giii0inin0isis0iais B [SiysSinsSissSias]) B [SurSiarS jsrSiar]
S14,J15-504

= QZUU Jrgz Z Uljlaljz +9 Z Zazljal2j

i j1#£J2 i17#i2  J
+ E E (Girjs Girj1 Oinga ings + Ty OirgnTings Tings T Tirjy Ty joTinga Tinjy
11 #4402 j1#£]j2
F041510i9§10i1§2 Oinga + Tirj10inja0inj1 Oinga + Tiyj1 Oings OinjaOingy
F041410i9j1 OinjaOirgo + 0i1j10i2j20i2j10i1j2 + %jlaizjzaizjzo’iljl}

= Z i + 182 Z zgl zgz + 3 Z Z 11]1 12]2 + 2011]1011J2012J10Z2J2]

i j1#£j2 11712 j1#£72
= OP (§NTN + N + N2§?VT) =0Op (NQS?VT) .

Then

S—

T 1
T4N2h2 Z Z = (F;S*F’”y B (efe;)’
=2
ST =
Z k4

s—1

Dk

s=2r=1

T4N2h2 (Fs°F, ) Op (N*€¢xp) = Op (T7*h™*¢xr)

where we use the fact that - S>7_, 571 k4 || Fy||* = Op (1) under Assumption A.3 and the extra condi-
tions in the theorem. Similarly, noting that for any r1 < ry < s,

2 2 < < < S o o
E* [(ef;’eiil) (eer,) } = E* {(ggEgng’nZ§s)(<;2§r2<;12§s)} = E*[¢L 236635 ]
= Z Gi1ji O jriaOinga 0 jaia B [SiysSinsSissSias]
st4,01,02

= 3 E Zjl zgz E : 21.]1 zzjz+2011J10J112011]201212

1,J1,J2 11,12,J1,]2

= Op (N&X7) +0p (N?¢}r) = Op (N?E3p)

where we use the fact that 5;; = 5;; and £y = o (T/2) = 0(N), we have

T
* 64 § : 1. 1. . 1. /Q*  /Q* T /Q* I I/ QI
Z4 = W krlskrzskhsktst;S FTIF;S FrzF‘;S FtlF;S th

s=21<r1<re<s—1,1<t1<t2<s—1

xE" [(eer,) (efer,) (ed'er,) (ed'et,)]

T
- Y B (RSR) (REE.) 00 (Vi) ~0n (),

5=21<r;<ro<s—1

Then Z* = op~ (1) by the conditional Markov inequality. Now Z:ZFZQ E*(Z3p,) =AT >N~ 'h 'E* [Zi:} kg
x F'S*Fe¥'e*]? = Viyp. Straightforward moment calculations yield that E*(ZtT:2 Zxr)? =Vir+op(1).

Thus Var*(Y;_, Zi%,) = op (1) and 3/, Z3%, — Viyy = op(1). This completes the proof of (i). M
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A.3 Proofs of the Technical Lemmas

Recall that max;, max;, and max, ; denote maxi<;<n, maxi<;<7, and maxi <, ¢<7, respectively. Let HAHq =
(B4} for g > 1.

Proof of Lemma A.1. (i) From the principal component analysis, we have the identity (NT)f1 XX'F =
FVxr. Pre-multiplying both sides by 7! F” and using the normalization T—F'F = I yields T—1F' (NT) ™"
XX'F = Vyr. By Bai (2003, Lemma A.3) and following the proof of (ii) below, Vit has probability limit
Vo that is a diagonal matrix consisting of the R eigenvalues of ¥ > under Assumptions A.1-A.3 and A.5.

(ii) Noting that X = FA} + ef, where ef = ¢ + ayrgf, ¢ = (gI, ...,g;)', gZ = (Flg1t, ..., Flgne) and
git = ¢i (t/T), (i) implies that

(T~ F'F) (N AYAo) (T F'F) + dyp = Vi = Vo, (A.6)

where dyp = N~'T2F'etel’ F 4 (T F'F)(N"'T'Abel' F) + (N'T-1F'etAg) (T~ F'F). Noting that

NTT2||Felel Bl < 2N HT | F|)?) (RIIGIIfp +axr HgTHQ)
= Op(T"+ N +aiyp),
NTTH A Il < NTMTTVR{TTVRE] (el + an [9A0]))

NIT1205(1) (N1/2T1/2 + aNTNT1/2) = 0p(N"V2 4 ayy),
and T~Y|F'F|| = Op (1) under Assumptions A.1-A.3 and A.5, we have
ldnrll = Op(N"' + T + axr + N2 +anr) = op (1). (A7)

It follows that (F'F/T) (AyAo/N) (F'F/T) 5 Vy. W

Proof of Lemma A.2. (i) Let ef = (el,,....e Nt) and Ag = (A0, ..., Awo)’. Noting that (NT) ' XX F =
FVyr and Xy = )\;tFt +e; = )\IiOFt —|—ezt with ezt = e;s + an1F} git, we can decompose F; — H' F; as follows:

s=1
T
= Vijlwi ZFS [AOFS + €Z]I |:A(]Ft + QI:I - H/Ft

N
N el /N AR ot
= Vit d =S EE(e! = ‘ef/N — E(el'e}/N)
T{T; TSZ:: [ }
1 d oAl T o / /T
JFT;F Age; /N + TZ: Apel/N
= Au(t) + Az(t) + As(t) + Aa(t),  say. (A-8)

By (A.8) and the inequality (a + b+ ¢ + d)? < 4(a® 4 b* + ¢ + d?), we have
T
1
72|
t=1

By Lemma A.1(i), it suffices to bound %Z;‘F 1 IVNT Ag(t O for I =1,2,3,4. Let gl = (Flgie, ... Flgne)'.

Using el’e] = (e +anrgl) (e: +anrgl) = €.er + anrelgl +anrgl’es + a2 g gl and Cauchy-Schwarz (CS

T

~ ’ 2 4 1112

B—H'F|| < 2 Vb D2 [z @I + [Var Ao + [Vier As@IF + [Vivr Aa(0)
t=1
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hereafter) inequality, we have
T

S (Bl < 3 e R S5 [l ] 1 S5 [kl )

t=1 s=1 t=1 s=1 t=1 s=1 t=1 s=1

N
’ﬂlﬂk

As in Bai (2003), the first term is bounded above by 4max, vy (s,t) max; 23:1 vy (s,t)] = O (1) by
Assumption A.3(iv). By Davydov inequality and Assumptions A.1(ii), A.3(i) and (iii) and A.5(i)

a%\/T T T aNT T T N N )
TZZ{ sgt ] = TN2 ZZZ E ezs tgzt (ejsthjt)
t=1 s=1 t=1 s=1 =1 j=1
- C ) Sa%,T T T N N 5/(2+6
< Cmax B (eiskigin) leisla s 1l s g 2D > > (1t =
t=1 s=11i=1 j=1
< Cmax B (enFlgi) leiass |1 Fill s~ ST $5 0, (67 — (e,
j=1s=1

2
In addition, we can show that Q%V—T ZtT:1 Zle [ (gl’gZ/N)} = O(a}7T) = o(1) under Assumptions

2
A.1(ii) and A.5(i). Tt follows that £ S22 7 [ (el'e] /N)} < AT ST [E(ches/N)*+o(1) = O (1)
under Assumption A.3(~1)—~ (ii). Then by the submultiplicative property of the Frobenius norm, CS inequality,
and the fact that T-'F'F = Iy, we have

a 1
Z VT AL(t)]|” = T Z

[£S

2

<3 {FXlmecdm|}

= ii (2 (ebel/N)]" = 0pmo@) = 0p(x ).

Now we consider the second term. Recall that &, = ele;/N — E(ele;/N). Let &1, = el’e] /N —
E(el’e] /N). Then

1 & 1 &1 & L 1 & Z -
T VA )” = 5 3 | m D Rl =g oD Y FiFnelgl
t=1 t=1 s=1 t=1 s=1r=1
R 1/2 L IT 271/
< T |72 ZZ( ~;Fr)2 [ﬁ ZZ (Zthglt>
L s=1r=1 s=11=1

o 1/2

Il
N[~
N[~

MH

Ly (i gltfit>

In addition, using glt =& t"‘aNTN [ sgt E( €59t )]"‘QNTN Hgl'e:—E (¥ et)]—i—a?VTN_l[gs’gZ—E(gs’gZ)],
we can readily show that - Zs:l lel (thlﬁ tfrt) = O(T?*N~?) under Assumptions A.3 and A.5. It
follows that & Zt VT As()])? = 70p (T/N) = Op(N~1). For the third term, noting that E(eitg;t) =0,
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we have by Assumptions A.1(i)-(ii), A.2(i), A.3(vi) and A.5(i)

T N N
(NT)™ 06t = (NT)AZZZ NoNjoE(e ztejt)
t=1 i=1 j=1
T N N T N N
= (NT)! ZZZ/\ oo E (eiveje) + ar(NT)™! ZZZ/\z AjoE gltgjt)
t=1i=1 j=1 t=1i=1 j=1
N N
< CINT) ' D S S B (eiveje)| + O(T'NV2R~12) = 0 (1)
t=1 i=1 j=1
and
T T T 2 $ T T
1 . 1 1 L or 11 Nel | 1 1 )
TZHVNTAza(t)H = TZ rfz FiAgei /N|| < N?Z i TZ’ s TZHFSH
t=1 t=1 s=1 t=1 s=1 s=1
= Op(N71)

LT I 2 LT (X 2
P3O = 33| 1S Frtsel | < e {3 | el
1 (1 L 2] 1 & >
<N{—QZZ‘ SFY }WZHAE&ZH =N"'0p(1)Op(1)=0p (N7"),
t=1 s=1 s=1

as we have shown that <= Zstl E ||A6€£H2 =O(1+ NY2T=1h=1/2) = O (1) . Combining these results, we
~ , 2 _
have + 20, |7~ H'F|| = 0p(C33).

(ii) By (A.8), we have = (F FH)FH = % Zthl [A1(t)+ A2(t)+ As(t) + Ay (t)) F) H. We first decompose
Vars S [A() + As (¢ )] F!H as follows

T T T
vNT%;[AIaHAz(mF;H = N;;zlﬁsez'emﬂ
L NONTF Rl TTT/T/
- NTQ;;(FS—HFS) eFH+NT2 z::z:: Vel F/H
= A1+A2, say.

For Ay, we apply CS inequality and the result in part (i) to obtain

T 1/2
1 , 2

Op (Cyp) Op(N71/?) = OP(CX/ITN_WL

144 VelF,

IN
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2
provided that w75 Zstl HZZ; ele] F

=0Op (N’l) . To see why the last claim is true, note that

2

IA

2 4 T
aNT
+ N2T3 Z E

T
Z eLgl F

j‘;‘;VngE zg 9] F}

4 T T
W ZE Ze'setFt/

W ZF

4A171 + 4A172 + 4A1,3 + 4A174.

.z T 2
— E E E el’el F/

273 s -t t
N°T s=1 t=1

2

For A; 1, we have by Assumptions A.1(ii) and A.3(iv),

2 2

T
ZfstFt/

t=1

ZEeet H

T
t=1

T
Apq < N2T3 gE
T

T T o I T T
N2TSZZZE€€t (ese)) E(F{FY) + EZZZE Exbali 1)

1t=1 s=1t=1[=1

= ZEH

~
=

max ) w(snﬁ)) max || Fy 13 + 2N ! max [ N1/2€ | max | B3
s 1 t s,t t
=0(T >+ N1

For A; 5, we have under Assumptions A.2-A.3 and A.5(i

2

T T T T 2
A2 = %ZE e;ngFt/ _13]2\[;3 Z ZQZFtI
s=1 t=1 s=1 t=1
1/2
1 I T
< anrN'E ﬁZe;es Z =0 (ayrN7').
s=1 2 =1

Similarly, we can show that 4;3 = O (aNT(N_1 + T_l)) and A1 4 = O (a?VT) . As a result, ﬁ 25:1
2 _ ,

EHZtT:l el'elFl||” = O(N-1) and 4, = Op (czngN—W). Now, let Ay = = 5T ST FeellelF.

Let ag,m»n denote the (m,n)th element of Ay for m,n = 1,..., R. By CS inequality, it is easy to see that

laz, mn| < {a2.mmas2 nn} 1/2 . This, in conjunction with the Markov inequality, implies that it suffices to show
that A, = Op (T~ ) by showing that E |az,mm| = O (T71) . In fact, by CS inequality, Assumptions A.1(ii),
A3(v) and A.5(i), we can readily show that

T T
1
E |a2,mm| = FE (a27mm) = NT2 Z Z L;nE (FseileIFt/) lm

g2 T T
Z U B (Fsese FY) tm + OnT Z Z U 2 (FSQZ/92F1€I> tm

NT?
2 (iv (s t)) + 207 ZT: U E (F gT'gTF’> L
© N,FF\° 2 m sds Ittt m
T s NT P

IA
Sl
N

IN
|
B
I
"

27



where i, is the mth column of R-dimensional identity matrix Ig. It follows that Ay = Op (T’l) and
+ 0 Vivr [Av(t) + 45 ()] FLH = Op (CR7)
Now, we consider VNT% Zthl As(t)F/H. Note that

T ~ T
S EFY  AelF/H
s=1 t=1

0] (CLNT)

T

Z

T
1
VNTfZA:s(t)F{H <|H|

t=1

NTZAE) el F/

provided Hﬁ 23;1 (anT) . To see this, we write

1 T
NT > el F
t=1

06ttt

2 2

NT

N N T T
N2T2 Z Z Z ZE (eitejsFt/Fs) /\;‘0>\i0

i=1 j=1t=1 s=1

20/ N N T T
s 22 D 2 9B (B FIEF]) gaXjohio
1

i=1 j=1t=1 s=
= 2A371+2A372, say.

1 N T
Nr Z Z)\zo €it + aNTthzt) F/
=1t=1

IN

It is easy to show that A3, = O (N_lT_l) under Assumptions A.2(i) and A.3(v). For Az, using
E (F F\F,F)) = E(FsF.) E(F F})+Cov(FsF., F;F]), we have

N N T T
a
- %)) WICLLEIRY
i=1 j=1t=1 s=
N

CL2 N

NT

N2T?2 Z .
=1 e

1
1 2
= A+ AT,

1
T T 2 NN T T
ZZQ}SZFZngt/\;O)\iO‘F NJQV;Q ZZZZQ;SCOV (FyF, FyFY) gieNjohio
1t=1s=1

i=1 j=1t=1 s=1

By local normalization fol gi(u)du = O >‘on Zt 1 9it = >\on Zt 19Nt (8/T) = Ao fo gt (T)dT +
O (%) = o(1) uniformly in i. Thus A3 5 = o(ai7)- By Davydov inequality and Assumptions A.1(ii), A.2(i),

A.3(iii), and A.5(i), we can readily show that A32 = O (a%,T7"). It follows that Az2 = o(a%) and

VNt % ZtT L As(t)F{H = op (aNT)
Now, we consider Vx4 Zt 1AL F/H -
1 A 1 T T
Vi Z AOFH = 5o 3 (B = HE)FAoel FLH + 57 H' Y Y FaF{ Aol F{H
=1 t=1 s=1 t=1 s=1

= A1+ Asp, say.
For A4 1, we apply CS inequality and the result in part (i) to obtain

1
|H| ~= I [ Aoel |

=1 s=1
1/2 T 1/2
1< .| [ 1 2 1 5
IIHII{?t—leFtI }{— 'F, } {NQTgHAéeiH }

= 0p(1)Op (Cx}) Op(NV2 4 anr) = Op (C7)

[Aa]

IN

IA
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as NQT ZS E HAf) T|| =0 (N + aNT) under Assumptions A.2, A.3and A.5. Let Ay = NT2 Zt 1 ZS 1
F.F] Aoe F]. Let a4 mn denote the (m,n)th element of A4 5. Then

T T T
1 1
|a/4,27mn| WZZL;HFSFt/AOeIFt/LW :‘ T2 Z F/Ln F/ZA/ 1- !
t=1 s=1 =1
< TZH Rl ZA’ .|| = op (ant),
because
1 I 2 942 N T 2
N—ZABQT/ < N2T2 ZZ)\WGZH, Ft —|—N21§€E ZZ ir tgth Ft
=1 =1 t=1 =1 t=1

= ON'TY) +o(ady) = o(adr)

by using arguments as used in the analysis of A 5. It follows that A4 5 = op (ayr) and VNT% Zle Ay(t)FH
= op (anT) . Combining the above results yields the claim in part (ii) of the lemma.

(iii) This follows from the results in (i) and (ii) and the triangle inequality.

(iv) Observing that +(F'F—HF'FH) = +(F—FH) (F—FH)++(F-FH)FH+ % (FH) (F-FH),
the results follows from (i) and (ii).

(v) By (A.6) in the proof of Lemma A.1(ii),

(T7'F'F) (NT*AYAo) (T F'F) + dnr = V.
Premultiplying both sides by (N~!A{ Ao)l/2 (T~'F'F) and using the fact that T-'F'F = I, we have

(N A A) 2 (T2 F F) (N ApAo) (T F'F) + dyr = (N ApAe) " (T F F)Vir

where dyr = (T~LF'F) (N"1A)Ao) dyr = Op(N~Y/2). Let Dyr = (N"1ApAg) "/ (T-1F'F) (N"1ApA0) 2,

Ryt = (N"'ApA0) "> (T-1F'F), and Dy = £/?Sp2}/% Then as in Bai (2003, p.161),

[Dnt + dntRyt] Yvr = YnrVar

where Yy = RNTVK,;/ % with Vi being a diagonal matrix that contains the diagonal elements of

RyrRnt. That is, Vyr contains the eigenvalues of Dyp + dnTRyT with the corresponding normalized
eigenvectors contained in Y 7. It is trivial to show that

[Py + dnr Ryr = Dol| = Or (Cyr) - (A.9)
By the perturbation theory for eigenvalue problem,
\1; (Dnr + dyrRyt) — 1y (Do)| < || Dnt + dveByr — Dol = Op (Cyrp) S

where f1; (A) denotes the jth largest eigenvalue of a symmetric matrix A. That is, Vyr — Vo = Op (C;,lT) .
(vi) Let Ty denote the probability limit of T yr. By (A.9) and the eigenvector perturbation theory
that requires distinctness of eigenvalues (see, e.g., Steward and Sun (1990), ||Yn7 — Yol = Op (Cy¥)-

[Let (¢j, uj) and (q~5j, ﬂj) be the eigenvector-eigenvalue pairs of a symmetric matrix A and its symmetric
perturbation version A = A + AA, respectively, where the eigenvectors are properly normalized. Then (i)

Py = p + ¢;AA¢j +0(HAA||2)7 and (ii) &j =¢; + Zj;ﬁi [¢;AA¢2/(¢] - ¢)z)} b; + O(HAA”Q) if p; # p; for
all j # 4.] This, in conjunction with the definition of Ry, implies that

TUF F = (N"'AA) Y2 nr Vil ? = 32TV + Op (Cr1) -
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It follows that H = (N7 A{Aq)(T~F' PYWyr = ZAOZAl/QTOVUQV + Op (Cyp) = E}\/OQTOVO—lm
+O0p (CirlT) = Qal +Op (C’ ) where Qo = V1/2T 12—1/2. -
Proof of Lemma A.3. (i) The proof parallels that of Lemma A.2(i) and we only sketch it. By (A.8)

1 T
T Z kh,tr
T t=1

We prove (i) by find the bound for A;nr (r),1 = 1,2, 3,4, uniformly in 7. Using the fact that max; Zstl [E(el!
el /N)]2 = O (1) and that

T T
1 1 t— 1
T él kp tr = T EZ ( T) =140 (Th) uniformly in r under Assumption A.4,

~ ' 2 4 1 T 4
F—H FtH <4Vl Yo 7 D ke IVar At = 4 [V IS Aiwe (1), say.
=1 t=1

=1

we have

~

T
max Ay yr (1) = max — Zkh i [Vvr A (B)]° <m Z hotr {—

ol

_T{Tzu H}maxZ[ wv] e zw}
=T71'0(1)0 (1) 0(1) = Op(T™).

For Asyr (r), using notations defined in the proof of Lemma A.2(i) and by CS inequality, we have

2

T T
A2NT(7"):%Z hotr Ve Aa(t) Zkhtr %Zﬁth
=1 = -
2 i L2 : 1 & A
!/

= 2A2NT,1 (r) + 2AzNT,z (r), say.

For Aant1 (r) we apply Lemma A.2(i) to obtain the rough bound

1 <& 1 <&

— 0p(Cy2)0(1)Op (1) = Op (C3%)

IN

mS,X AQNT,l (7”)

. T T T
as we can readily show that max, £ Y"1, ||¢5,|[* < max; % 37— B¢l |2 +max; |2 30 (€512 = B¢l ]1)] =
O(1)+op(1) by a bimple application of Bernstein inequality for strong mixing processes. Let Aanr o (1) =

A S ke S S FoFJEL €], Observing that Asnrs (1) =tr(HH' Aoy (1)) , we can bound Aayr,s (1)
by bounding each element of Asnr2 (r). Let @y, (1) denote the (m,n)th element of AQNTQ( ). Noting

that amn (1) < {amm (7) @nn (r)}l/2 , it suffices to bound @y, () for m =1, ..., R. Observe that

T T 2
1 1
Amm (T) = T3 Z htr Z Z U F. Fl ng tgzrt = T Z k’h“’ {T Z L;nFsgit}
t=1 s=1

s=11=1

1
T Z L;nFsgit
s=1

2
1 _
max — ;kw =O0p (T'InT +ad7) O (1).

IN

max
t
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It follows that max, Aonr2 (1) = Op (T*1 lnT) and max, Aoyt (r) = Op (T’1 InT + Nfl) . To study

_ A/ T 2
Agnr (r), we first study Asnr () = 5 Yo kar || 5

T T

B 1 2 2 2

Asnr (r) = NT Zkh,tr AgeIH < NT Z En,tr ||A~(/)et||2 + NT Z Entr || Ao94 H
t=1 t=1

= 2A3NT,1 ('I") + ABNT,Q (T) , say.

For Asn7.1 (1), we have under Assumptions A.2-A.4

T
- 1
max Agnr (1) < max [NTUB [ Aped* + N7 (e = B[ Ape] )| max 7 D knar
t=1

= O(1+0op(1)O(1)=0p(1).
Similarly, max, Asyr2 (r) = Op (aNT ) Then max, Azn7 (1) = Op (1) and

2

T
- Z EF,F!Ajel /N

T
max Asnr ( =max Z h,tr
t=1 =1
T
1
Ak
s=1

%iﬂ A —0p(N).

1 _
< N max Asnt (1)

For the fourth term, we have

T/N

([ *»1}2

T
?Z WA
: —
S—ma { Z Ener || 2| }

=N"'0p(1)0Op (1

T
max Aynt (1) = max T g kb tr

< max ——3 N2T3 Zkh tr {
1 ’ ot 2
WZ [[Age?]
s=1

2
Op(N

as we can show that max, £ Zle Enor |Fy])? < max, = Zle knorE | Fi||” + max, |4 Zf Lkn tr[||Ft||2
E||F;||’]} = Op (1). Combining these results, we have max, Ik Zle Enir(Fr — H'F,) (F H'F, ) || =

Op(T~'InT 4+ N°1).
(i) The proof of (ii) is analogous to that of (i) with some modifications similar to those used in the proof
of Lemma A.2(ii).

(iil) Write S%) = LAS°7 kpo B (FF) + 2 S0 b [RF, — E(FF)] = S50 + S5, say. Using
E (FiF{) = ¥F and the Riemann sum approximation of integral, we have

%i & () 1| =0 (7).

By Bernstein inequality for strong mixing processes, we can readily show that max;. | |Sq(f N =0p (T=Y2(InT)/?).
It follows that max, HSPE,??? —Xp|| = O0p (T7Y*(InT)V?).

0
maXHSrfprl) - EFH = max
. :
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(iv) Using F, = H'F, + (F, — H'F.), we make the following decomposition:

T

1 ~ ~

Ste = & Z knr FL T
T

- HS$2H+ Zk,mH F,(F,— H'F,Y Z ner(Fy — H'F)F/H
1 & . s :
5 D ke (Fy — H'F)(Fy — H'F)’
t=1

= STT,l + STT,2 + ST’I‘,3 + STTAa say.

By Lemmas A.2(vi) and A.3(iii), max, ||St,1 — (Qal)/Eanlﬂ = Op((Th)_l/2 (InT)'/2 4 N~1/2). By
Lemma A.3(i)-(ii), max, ||Str2|| = max, ||S7r3|| = Op(T'InT + N~! + anr) and max, ||St,4|| =
Op(T~'InT + N—1). Combining these results yield the desired result.

(v) This follows from Lemmas A.2(vi) and A.3 (iv) above. B

Proof Lemma A.4. (i) First, using F}F] = H'F,F} + (F, — H'F,)F] = H'Sp + H' (F;F] — Yp) + (F; —
H'F,)F{, we have:

T T
1 .
Tzkh,trFtFt/git = HYp= Zkh it + H — Zkh w (FLF] —3F) git + Z Bt ( Ft H'F,)F/gi

t 1 t 1 =
= I (’i,?“) + Lo (i,’f‘) + L3 (i,’/‘) ; Say.

By the uniform approximation property for Riemann integral and Bernstein inequality for mixing processes,
we have that under Assumptions A.1 and A.3-A.5

H}%X||L1(i,7")” < |HEF|cgmax—Zkhtr—|HEF||cg{1+O<Th)}0(1),

. 1
max || Lz (3,7)] < [H'|| max —Zkh,tr (FF, — 3F) git| = 0p (1).
@,r r T P

In addition, by arguments as used in the proof of Lemma A.3(i), we can readily show max; . | Ls (i,7)|| =
op (1). Alternatively, we can apply CS inequality and Lemma A.2(i)

1/2 T 1/2
. 1 _ 2
max |[Ls (i, 7)[| < max Zkh o | Frgac])? T F,—HF,

= Op(h 1/2)OP (CNT) =op(1).

(ii) It is standard to show that max;, ||+ Zthl kn.iFleir| = Op(T~1/2h=Y/21n (NT)) by using Bern-

stein inequality for strong mixing processes.
(iii) Using ejs = e;s + anTFlgis and CS inequality,

1 N T 2N
N; Z:F — HF),) SN;

It is standard to show that the first term is Op (C’X,élp) and % va 1 Hl Z 1(FS — HF,)Flgis

=0p (CNT)

2 2

T
TZF — HF,)Fg;s

2a’NT Z

T
TZ (F, — HF,)e;s

2
—0r (Cy4)+

op (a%7) . It follows that + ZZ 1 H 23:1(155 - HFS)e;-r
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(iv) By (A.8) and CS inequality

1 N T

Using F, = (FS — H'F,) + H'F; and CS inequality,

1 N T
L= FEl

2 2

1 < 1 &
T Z (Ft H Ft) eitkn, ir T Z A (8) etk ir

t=1

4
=4 Z I, say.
1=1

2

) N Ty L 1 X
< 2l e A S A Y - R /N>}eukw
=1 r=1 t=1 .s:l
01l |1 &1 ’
+2HV]\7’11"H/H WZZ TZ{?ZFSE( 1 T/N)}eitk;%tr 5211714»2[172, say.
=1 r=1 t=1 s=1
For I; 1, we have
T 1 X . 2
— ! - 1-/
Ly = |ved|® NTl 2 ZlF H'F,) (T;E( /N)eztkht,)

IN

HVJG%Hz%Z’ , {%ZE( 1 T/N)enkhtr}

= 04 (Cx3) 0p (V) = 0p (N'C53).

as one can readily show that —= Zl 1 Zr LT Zg L El% Zthl E(el'el IN)eikn ]2 = O (Nt +a%p).
For I 2, by straightforward moment calculations, we can show that

2

1
{5 > F.E(el T/N)} €ithn i
1 N T T
= w37% SN Eele))Eell el )E (FLFs eieir,) knarkn iy

N T T T T
= N31T5 SN NS Eele))E(ell e E (FIFyel) k7 = O (TT'NT*h™" + aXp T 'h71) .

So Lo = O (T!N2h ' +ad ;T 'h71) and I; = Op (N"*Cx% + TIN72h7t + a3, T~ *h~Y) . For I,
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we have
2

1 & 1 (1K
L = WZZ VJG%TZ TZ S{T/ T/N E(el'e /N)]}eitkh,tr

i=1 r=1 t=1 s=1

4 S —11 = 1 = I ! l ’
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It is trivial to show that I ; = op (a%) for j =2,3 and I 4 = Op (aky) . To bound I 1, notice that
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One can readily show that Iéll) =0p (C;,%Nfl) . Noting that under Assumptions A.1(ii), A.3(iv) and A.4,

1
{T Z Fsgst} eitkh,tr

s=1

) T T T T
= N3T5 Z Z Z Z Z E (gstgsltleéetlF;Fm) kh,trkh,tlr
=1
LT T
= EZZZ Z Z [E (Estborts St FoFsy) + B (Estbsye, FoFsy) v (881)] Knerkon, ey

2

3 LI r.r T

TEO D0 0 O NFFu s knerkn e,

2 L T L T T

TEO DD O un (bt IFLFully Rnerknay

AN
=
w
~
)
=
~
el
=
~
o

ot r=1t=1s=1¢t=1s=1
= ON32 4 N1,
we have
T I s 2
18 < |Vt | 5= >3 75 {T S By feler/N — E(e’set/N)]} citkner| = Op(N~¥2 4 NTIT71),
=1 r=1 t=1 s=1

34



It follows that I 1 = Op(CNy5N ') and I, = Op(Cy7N 1) 4+ op(ak). In addition, we can readily show
that
2
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and
2

I =

1 .
{T Z FngA{)el/N} eithn,tr
T T
Vel lz(ﬁ — H'F,) el Ao Fy/N b eirk
T T s s s oLt itivh,tr

2

A
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-
W

i=1r=1 t=1 s=1
9 N T T 1 T 2
—1 g/ = 1 .
TNT Z ; Vet ; {T ;Fses AOFt/N} €itkn,ir

1
= Op(Cyy)+0p(N73/2 4 0% N~1/?)
It follows that i SN SN (|A ST (Fy — H'Fy)eisknsl)? = Op(N~3/2 + T71) + op(ap). B

Proof Lemma A.5. (i) Using FiF} = E (FiF}) + F1F} — E(F;F}]), we have

T T T
1 1 1
T > knanFiFlgi = XFT > knirgin + T > knar (FiF = SF) gir-
=1 =1 =1

The second term is op (1) uniformly in (7,7) under Assumptions A.1(ii), A.3(iii), A.4 and A.5(i). For the
first term, we consider three cases: (i1) r € (Th,T(1 — h)], (i2) r € (1,Th], and (i3) r € (T'(1 — h),T]. In
case (il), by the fact that the kernel function K has compact support on [—1, 1], the uniform approximation
of Riemann integral, and the dominated convergence theorem, we have

1 T 1 ) t—r t—r—+r
sep St = S5 () (S5)

t=1 t=1
1 Tk t—r t—r+r
= Yr7r K i
Th Th T
=r—Th

r 1
= Sr | K(u)g (uh—&—f) du+0<ﬂ)
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In case (i2),
T T

1 1 t—r t—r+r
Yr— knirgit = XFmr K, i

FT; htrGit FTh; (Th>g< T )

r+Th
1 Z t—r t—r+r
Thf vy K () du (= (Th) T

= Yp— 1K(u)du/_1r/(Th)K() (uh+ )du+O<Th>

ffr/(Th)
r
= Yrg; (T) + 0(1).
Similar result holds in case (i3). It follows that = Zt 1kn trFtFt git = Xrg; (%) +op (1) uniformly in (i,7).
(ii) As in the above analysis, =+ thl F,Flgi = Sp+ thl git +op (1) =op (1 )

Proof Lemma A.6. (i) By (A.3) and CS inequality,
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By straightforward moment calculations and Chebyshev inequality,
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Using ejs = e;s + anTF!gis, we can readily show that
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4 5 4
(ii) By the C'S inequality, 4 Z;‘ll ) Ell <3 Z;‘ll ) F; — H’FtH 4+ 2 Zle |H'F,||*. Apparently, the

second term is bounded from above by 8 || H||* = Zle |Fy|* = Op (1) under Assumption A.1(ii). For the
first term, we apply Lemma A.2(i) to obtain a rough bound

S L. 4 21 L. 2
D A e > Lo
t=1 t=1

1 <& 2)”
< T{TZHEMH} — 0p (TC5).
t=1

36



It follows that 457, | A"
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By the uniform approximation property of Riemann integral, Th tLTE}FhT)J K (t 5) = f_ll K(u)2 du +
0] (ﬂ) uniformly in s under Assumption A.4. So the first term is O (ﬂ) uniformly in s. Similar results
hold for the other two terms. Thus max, = Zle k}ist =0 (h™).

(iv) Observe that Le = (kn«tSzy —Ir) (kn,steSpi —Ir) < ki S7e St + g, we have

1TT~ o 1TT 5 o 1T~~~~
5 OO FLuFFE < 3 % K W FiSq Syl B EF + 5 Y FIRFIF,
t=1 s=1 t=1s=1 s=1
12 1 rz 2 -4 1 -4
=< m?XHSTtH ﬁzzkh,st F. +TZ’F3
s=1
T 1 4
< |max szl ma,x< ; ) TE‘F

= [orMO(ET) +1]0r 1) =0 ().

(v) First + 5L, (B~ HR)(F ~ H'EY|P < T} S, |IF ~ HEIP)? = 0(TCx}). By (A8)
L5 (B R FHP < [V 12 S [Vier (e + Aag) U242 550 War AscElI 243 50

37



Va1 AsF|*}. We bound each term in the last pair of curly brackets. The first term satisfies
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For A;, we only consider its rough bound. Noting that == 23:1 Z;F:l Ellel’el F/||2 = O (1), we have by
Lemma A.2(i),
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Noting that under Assumptions A.1(ii) and A.3(iv)
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For A1 2, A1 3, and Aj 4, one can readily obtain their rough bounds given by O(a%1), O(a37), and O(a%1),
respectively. It follows that Ay = Op(Cy7) and % Zthl |Vnr (Ary + Agy) Fl||? = Op(Cy2). In addition,
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noting that —i> 37 E||Abel F||*> = O(N~! + a34) = O(N~1), we have
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One can readily show that 11171 = Op(Til), IILQ = OP(CZNTNil IH(NT)), 11173 = OP(CLNTNil IH(NT)),
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and IT, 4 = Op(a3.4). It follows that 1T, = Op(CxL.). Similarly,
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Consequently, xS/, ||, N H'™ (Fy — H'Fy)eul| = Op (Cy%) .
(vii) The proof is analogous to that of Lemma A.2(ii) and thus omitted. W

l ZFS <€l/A0/N

B Some Additional Simulation and Applications Results

In this appendix, we report some additional simulation and applications results.
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Figure 1: The factor loadings’ paths for DGP.P1-P4 when T = 100

B.1 Some additional simulation results

First, following the suggestion of an anonymous referee, we plot A;; for DGP.P1-P4 as a function of ¢ for a
representative cross-sectional unit. As we mentioned in the paper, DGP.P1-P2 have a single and multiple
structural breaks, respectively, while DGP.P3-P4 describe two kinds of smooth structural changes. Among
them, the factor loadings given by DGP.P3 are monotonic functions of ¢/T (or t), while the factor loadings
given by DGP.P4 are smooth transition functions of ¢/T" with multiple regime shifts. Figure 1 plots the
paths of factor loadings under DGP.P1-P4 as functions of ¢ when T" = 100.

Second, to examine the sensitivity of our nonparametric test to the choice of the bandwidth parameter
h, we set

h=c- ﬁT*I/ 5
V12

for ¢ = 0.5, 1 and 1.5. Tables A.1 and A.2 report the empirical rejection rates of our test at the 5% and
10% significance levels when the number of common factors is fixed as the true value and determined by
BN’s information criterion, respectively. As shown in Table A.1, the size of our test is robust to the choice
of bandwidth. However, the power of our test reported in Table A.2 is a bit sensitive to the choice of
bandwidth. For DGPs P1, P3, P5, and P7, the larger the bandwidth, the higher the power. In contrast,
the power of the test for DGPs P2, P4, P6 and P8 tends to decrease as the bandwidth increases. Moreover,
the power increases quickly as either NV or T increases.

Third, we consider the tests when the number of factors are estimated by using Su and Wang’s (2017)
local-PCA-based information criterion. As mentioned in the paper, Su and Wang’s (2017) information
criterion can consistently estimate the true number of breaks under both the null and alternative hypotheses.
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Figure 2: Some representative factor loadings estimated by local PCA

Tables A.3 and A.4 report the empirical rejection rates of several tests considered in the paper. As expected,
the results in these two tables are quite similar to those in Tables 1 and 2.

B.2 Some additional application results

Following the suggestion of an anonymous referee, we use Su and Wang’s (2017) local PCA to estimate the
time-varying factor loadings in the empirical study. Since there are N = 2684 stocks and the factor loadings
for these stocks are quite different from each other, it is impossible to plot them one by one. For this reason,
we only plot the estimates of some representative factor loadings in Figure 2. From the figure we can see
that the estimated factor loadings show significant structural changes that very likely appear to be smooth
structural changes.
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Table A.1 The size of our test with different bandwidth sequences under DGP.S1-S4

R is fixed to the true value R is determined from the data
DGP N T c=0.5 c=1 c=1.5 c=10.5 c=1 c=1.5

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

S1 100 100 6.6 120 5.0 10.8 44 10.8 6.6 120 50 10.8 44 10.8
100 200 4.8 10.2 5.8 124 58 13.2 48 102 58 124 58 13.2

200 100 46 104 48 88 44 10.6 46 104 48 88 44 106

200 200 5.0 100 54 10.8 54 104 50 10.0 54 108 54 104

S2 100 100 6.2 116 52 96 48 104 6.2 11.6 5.2 9.6 48 104
100 200 6.4 96 46 98 5.0 10.0 6.4 96 46 98 50 10.0

200 100 6.8 132 54 106 6.6 10.6 6.8 132 54 106 6.6 10.6

200 200 6.0 114 6.6 11.2 64 12.0 6.0 114 6.6 11.2 64 12.0

S3 100 100 4.4 100 5.6 108 4.6 10.6 44 100 56 10.8 4.6 10.6
100 200 5.0 98 48 98 56 108 50 98 48 98 56 108

200 100 4.8 11.0 6.8 122 7.2 13.0 48 11.0 6.8 122 7.2 13.0

200 200 5.6 116 74 134 7.8 134 56 11.6 74 134 7.8 134

S4 100 100 6.8 11.0 5.2 120 5.6 10.0 6.8 11.0 52 120 5.6 10.0
100 200 6.4 124 52 104 48 11.2 6.4 124 52 104 48 11.2

200 100 6.2 134 6.0 120 58 11.6 6.2 134 6.0 120 58 11.6

200 200 5.2 9.2 50 9.6 4.6 10.8 5.2 9.2 50 96 4.6 10.8

Note: (i) The results are obtained by setting h = ¢(2.35/4/12)T /% for ¢ = 0.5, 1, and 1.5; (ii) R is the number
of common factors.
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Table A.2 The power of our test with different bandwidth sequences under DGP.P1-P8

R is fixed to the true value

R is determined from the data

DGP N T c=0.5 c=1 c=15 c=0.5 c=1 c=15

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P1 100 100 47.8 604 722 814 814 878 46.0 60.8 72.8 80.8 81.2 87.6
100 200 91.6 974 984 99.6 99.4 100 91.2 96.6 98.8 99.6 994 99.8

200 100 73.0 84.4 94.0 97.2 98.0 98.8 72.8 83.0 942 972 98.0 98.8

200 200 98.8 99.6 100 100 100 100 98.6 99.8 100 100 100 100

P2 100 100 52.2 620 29.4 414 10.0 18.0 51.2 61.6 29.8 416 9.6 17.0
100 200 94.6 97.6 822 86.8 37.2 484 94.0 98.4 852 88.6 28.8 42.6

200 100 66.4 77.6 41.0 51.8 12.2 22.0 65.4 776 37.8 50.0 12.8 19.8

200 200 99.8 99.8 93.0 95.8 55.8 67.0 99.6 99.6 92.4 94.6 53.8 654

P3 100 100 30.6 41.8 37.2 47.8 49.2 60.0 29.0 44.0 36.0 41.0 51.0 60.0
100 200 54.0 68.2 64.8 73.8 784 86.8 55.2 67.4 652 748 T77.8 872

200 100 28.6 386 424 53.8 T1.2 794 29.4 40.0 424 520 71.6 784

200 200 60.0 67.8 76.0 82.2 958 97.2 60.8 67.8 76.0 81.6 958 97.2

P4 100 100 594 71.8 25.0 38.0 11.0 19.4 60.0 724 254 358 11.2 19.0
100 200 99.8 100 74.2 83.6 34.6 46.0 99.8 100 734 83.6 34.2 46.2

200 100 82.6 88.6 40.6 52.8 16.2 24.6 81.0 88.6 40.0 526 15.6 244

200 200 100 100 92.0 94.4 51.4 62.0 100 100 91.0 946 51.6 62.8

P5 100 100 428 55.0 67.8 79.8 79.6 86.2 42.0 54.0 69.0 80.2 78.4 87.0
100 200 90.0 95.0 974 99.2 100 100 89.8 94.4 97.6 99.4 100 100

200 100 69.0 78.6 90.0 942 95.6 97.4 69.4 79.4 90.4 94.8 94.8 97.0

200 200 99.6 99.6 100 100 100 100 99.2 99.8 100 100 100 100

P6 100 100 488 59.8 29.6 38.6 11.6 19.8 48.2 60.6 27.8 39.8 11.0 19.4
100 200 95.6 97.4 81.2 86.0 36.6 4838 95.2 97.6 80.8 852 36.0 49.2

200 100 67.8 78.6 384 52.6 152 222 69.2 79.8 404 526 158 23.0

200 200 99.6 99.8 924 95.8 53.6 65.0 99.8 99.8 924 954 54.0 63.2

P7 100 100 29.4 382 34.0 458 50.8 62.6 30.4 38.0 33.2 46.0 49.0 62.8
100 200 57.4 63.6 624 722 772 858 58.2 64.2 63.6 722 77.8 856

200 100 32.4 422 44.0 53.0 69.2 77.2 31.8 41.8 44.8 522 70.2 77.6

200 200 624 73.2 788 85.0 96.0 98.2 62.2 724 782 844 956 98.2

P8 100 100 644 76.0 382 50.6 11.8 19.2 65.0 76.8 38.6 51.2 12.0 20.6
100 200 99.0 99.6 91.2 94.8 486 60.6 98.2 99.6 90.6 954 484 60.4

200 100 78.6 854 49.4 60.8 154 23.0 78.2 86.2 494 60.8 14.4 23.8

200 200 100 100 97.8 99.0 66.4 76.2 100 100 97.8 99.2 66.0 76.0

Note: See the note in Table A.1.
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Table A.3 Size of tests under DGP.S1-S4 when the number of factors is determined by Su and Wang’s (2017) IC

DGP N T SMp SW17 HIpy CDGrum BEpym

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

S1 100 100 5.0 10.8 6.6 13.4 0.6 3.8 3.4 8.2 2.8 6.5
100 200 5.8 12.4 7.4 13.0 24 6.8 4.8 7.4 3.4 7.5

200 100 4.8 8.8 5.2 10.2 1.6 4.4 1.4 7.0 2.7 6.3

200 200 5.4 10.8 5.8 12.0 1.6 6.8 3.6 8.8 3.4 7.5

S2 100 100 5.2 9.6 7.4 12.0 0.4 24 2.0 8.2 2.8 6.4
100 200 4.6 9.8 5.0 11.4 1.0 5.8 2.0 6.6 3.7 7.8

200 100 5.4 10.6 6.4 14.0 0.4 1.8 1.0 4.6 2.8 6.4

200 200 6.6 11.2 7.0 14.0 0.6 5.4 2.6 6.8 3.6 7.7

S3 100 100 5.6 10.8 7.2 11.2 0.4 2.2 2.2 8.8 11.9 20.3
100 200 4.8 9.8 6.0 11.4 1.6 5.2 2.0 6.0 15.3 24.7

200 100 6.8 12.2 7.8 11.6 0.4 1.8 1.2 5.0 11.9 20.2

200 200 7.4 13.4 8.2 13.0 0.8 5.2 24 7.0 15.3 24.8

54 100 100 5.2 12.0 6.2 12.2 0.4 4.6 2.8 8.0 2.8 6.4
100 200 5.2 10.4 4.2 10.4 2.0 6.8 4.6 8.6 3.4 7.5

200 100 6.0 12.0 6.8 12.0 1.6 3.2 2.6 6.6 2.8 6.3

200 200 5.0 9.6 5.6 10.2 2.2 7.0 4.0 8.4 3.4 7.4

Note: (i) SMp denotes the results of our WNT test using bootstrap critical values; (i) SW17 denotes the
results of Su and Wang’s (2017) bootstrap-based test; (ili) HIpps denotes Han and Inoue’s (2014) sup-LM test;
(iv) CDGpps denotes Chen et al.’s (2014) sup-LM test; (v) BEpy; denotes Breitung and Eickmeier’s (2011) IV
variable-specific sup-LM test. The main entries report the average percentage of rejection.
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Table A.4 Power of tests under DGP.P1-P8 when the number of factors is determined by Su and Wang’s (2017) IC

DGP N T SMp SW17 Hlar CDG BELm
5%  10% 5%  10% 5% 10% 5% 10% 5%  10%

P1 100 100 722 812 678 794 08 44 24 72 59 1L1
100 200 984 996 984 994 42 106 2.0 68 112 178
200 100 940 972 922 964 0.8 40 24 66 57 107
200 200 100 100 100 100 5.0 122 22 6.6 111 175
P2 100 100 296 414 262 404 06 20 22 86 38 83
100 200 826 87.0 772 842 16 64 22 64 67 127
200 100 40.8 51.8 276 406 08 28 1.8 86 37 8.1
200 200 930 958 8.2 916 16 58 1.8 76 65 124
P3 100 100 37.0 468 462 56.2 356 664 68 168 49 103
100 200 650 742 768 864 974 99.8 102 184 98  17.2
200 100 424 534 452 602 374 714 66 154 52  10.7
200 200 76.0 822 8.2 920 992 100 102 200 98 17.7
P4 100 100 252 380 258 364 04 16 10 40 35 7.9
100 200 740 836 722 84 06 40 3.0 56 54  10.6
200 100 40.6 528 342 452 04 14 10 58 35 7.8
200 200 920 944 8.8 928 02 38 32 64 55 107
P5 100 100 680 798 630 758 14 58 32 88 49 101
100 200 974 992 968 99.0 60 128 44 84 98  16.6
200 100 90.0 942 8.0 920 20 66 1.2 66 49 99
200 200 100 100 99.6 99.8 3.8 114 48 106 94 1538
P6 100 100 294 388 272 360 08 50 36 92 37 81
100 200 81.0 8.8 758 826 32 104 56 108 62 121
200 100 386 526 276 382 14 46 16 76 36 7.9
200 200 924 958 852 90.8 3.0 98 46 110 62 119
P7 100 100 338 458 366 546 324 650 7.4 146 50 105
100 200 62.6 722 744 862 982 996 12.0 180 95 169
200 100 442 530 438 600 366 638 7.0 152 50 105
200 200 786 850 864 926 99.0 99.8 108 196 9.7 175

P8 100 100 382 508 354 474 04 24 20 86 42 100
100 200 91.0 948 884 922 14 60 22 66 105 180
200 100 494 608 328 438 08 28 18 88 47 95
200 200 97.8 99.0 932 954 16 58 20 76 93 159

Note: See the note in Table A.3.

46



	Testing for structural changes in factor models via a nonparametric regression
	Citation

	factor_breaks20190910.dvi

