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Abstract

We propose a model-free test for structural changes in factor models. The basic idea is to regress the

data on the commonly estimated factors by local smoothing and compare the fitted values of time-varying

factor loadings with those of the time-invariant factor loadings estimated by the principal component

analysis. By construction, the test is powerful against both smooth structural changes and sudden

structural breaks with possibly unknown number of breaks and unknown break dates in the factor

loadings. No restrictions on the form of alternatives or trimming of the boundary regions near the

beginning or ending of the sample period is required for the test. The test has power to detect the usual

nonparametric rate of local alternatives. Monte Carlo studies demonstrate excellent power of the test in

detecting both smooth and sudden structural changes in the factor loadings. In an application to U.S.

asset returns, we find significant evidence against time-invariant factor loadings.
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1 Introduction

Factor models are extensively studied in the economics and finance literature. Since the datasets under

analysis usually span a large number of time periods, the data generating processes for the underlying vari-

ables may undergo significant structural changes during the sampling period. However, the factor loadings,

which capture the relationship between economic/financial variables and the latent common factors, are

usually assumed to be time-invariant by most of the existing literature (e.g., Stock and Watson 2002, Bai

and Ng 2002, Bai 2003). This assumption may stem from Stock and Watson’s (2002, 2009) arguments that

when the factor loadings undergo “small” instabilities, the estimated factors by the principal component

analysis (PCA) are still consistent. In fact, since macroeconomic datasets usually have a long time span, it

is difficult to assume that the factor loadings are time-invariant or only undergo asymptotically negligible

changes during the sampling period. The driving forces such as institutional switching, economic transition,

preference changes and technological progress, may influence the relationship between economic/financial

variables and the common factors significantly. If the assumption of time-invariant factor loadings fails,

the estimated common factors can be inconsistent and the inference and forecasting based on such an

assumption may lead to misleading conclusions.

Recently, many researchers study the issue of structural changes in factor models. Stock and Watson

(2009) examine the forecasting reliability when there exist structural breaks in the factor loadings. Breitung

and Eickmeier (2011) propose ,  and Wald statistics to test structural breaks in factor loadings. Chen

et al. (2014) propose a two-stage procedure to detect big breaks in factor loadings by testing the parameter

stability in a regression of one of the factors estimated by PCA on the remaining estimated factors. Corradi

and Swanson (2014) propose a test to check structural stability of both factor loadings and factor augmented

forecasting regression coefficients. Han and Inoue (2015) propose a test for structural breaks of factor

loadings by checking whether the second moments of the estimated factors exhibit a structural change.

Yamamoto and Tanaka (2015) propose a modified version of Breitung and Eickmeier’s (2011) test to ensure

the robustness to the non-monotonic power problem. Cheng et al. (2016) consider the case in which both

the factor loadings and the number of factors may change simultaneously. Baltagi et al. (2016) propose

a sequential procedure to test multiple structural breaks by testing the null of  change points versus

the alternative of  + 1 change points. These studies provide appropriate econometric tools to examine the

possible structural breaks in factor loadings. However, all these tests are proposed to check sudden structural

breaks. In fact, such driving forces of structural changes as preference changes, technological progress, and

policy changes usually take effect gradually in a long time. Even some abrupt policy changes also take a

period to take effect. Hence, it seems more realistic to assume smooth changes rather than sudden breaks in

such scenarios. In addition, there is a growing literature on the time-varying factor models; see Stock and

Watson (2002), Banerjee et al. (2008), Del Negro and Otrok (2009), Bates et al. (2013), Eickmeier et al.

(2015), and Mikkelsen et al. (2015). All these papers assume that the time-varying factor loadings follow a

random walk process or a vector autoregressive process and only consider the estimation problem. Recently,

Su and Wang (2017) model the time-varying factor loadings as piecewise smooth functions of scaled time

and estimate the time-varying factor loadings and factors by the local version of PCA. They show that

these estimators are consistent up to a rotation matrix that is time-dependent. This is in sharp contrast

to the fact that the rotation matrix for the conventional PCA is time-independent. For this reason, they
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cannot compare the factor loadings estimates from the conventional PCA with those from the local PCA

directly. Instead, they propose an 2-distance-based test statistic to contrast the estimators of the common

components under the null hypothesis of no structural changes in the factor loadings and the alternative

hypothesis respectively.

In this paper, we propose a simple nonparametric test for the null hypothesis of no structural changes

in large dimensional factor models. Specifically, the test is preceded by two steps. First, we apply the

conventional PCA to the data {  = 1 2    = 1 2  } to obtain the estimators of the common
factors and time-invariant factor loadings under the null, which are consistent up to a time-independent

rotation matrix under the null and inconsistent in general otherwise. Second, we regress {} on the
estimated common factors by local smoothing to obtain the estimators of time-varying factor loadings.

The test statistic is then constructed by measuring the squared-2-distance between these two estimators

of factor loadings. The intuition works as follows. If the null hypothesis is true, both the first-stage

PCA estimator of the factor loadings and the second-stage local PCA estimator of the factor loadings are

consistent with the same true time-invariant factor loadings up to a common rotation matrix and thus the

2-distance between them would be small. On the other hand, under the alternative hypothesis of structural

changes in the factor loadings, the two estimators of the factor loadings will differ substantially from each

other, which gives the power for the resulting 2-distance-based test statistic.

The test complements the nonparametric test of Su and Wang (2017) and generally outperforms existing

parametric tests. It has a number of appealing features. First, like the test of Su and Wang (2017), the new

test does not require one to impose stringent restrictions on the form of alternatives. In particular, our test

is powerful against a large class of smooth structural changes as well as one or multiple sudden structural

breaks in factor loadings. For the sudden structural breaks, we don’t need to know the break dates or the

number of breaks. This is in contrast to existing tests for the stability of factor loadings, all of which focus

on the sudden structural breaks, especially the single structural break. Simulation studies demonstrate

excellent power of our test in detecting various forms of structural changes such as the single structural

break, the multiple structural breaks, and the smooth structural changes. Second, our test does not require

trimming of the boundary regions near the starting or ending of the sampling period and has excellent

power in detecting breaks that occur near the end of the sample. In contrast, all existing parametric tests

for unknown break date such as the supremum-type tests of Breitung and Eickmeier (2011), Chen et al.

(2014), Han and Inoue (2015) and Cheng et al. (2016) rely on a prespecified trimming parameter and

hence would miss the possible structural changes in the boundary regions. Third, the new test shares some

common features as the test of Su and Wang (2017): both tests are of nonparametric nature, have the

asymptotic normal null distribution, and can detect local alternatives that converge to the null at the same

rate that is faster than the usual −12-rate detected by existing parametric tests. The superb performance

of our nonparametric test and that of Su and Wang (2017) is essentially because they explore the information

from both the cross-sectional and time dimensions effectively while existing parametric tests mainly rely

on the information along the time dimension. To simplify the derivation, our asymptotic theory requires

that the error term be the m.d.s. over the time but it allows for cross-sectional dependence. One could

possibly allow for both serial and cross-sectional dependence. In this case, the asymptotic variance of our

test statistic will involve double summations along both the cross-sectional and time dimensions and we are

not aware how to estimate it consistently.
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After the first version of the paper was circulated, we found that Mikkelsen et al. (2015) also con-

sider time-varying factor models. They model the time-varying factor loadings as a vector autoregressive

process and propose a two-step maximum likelihood procedure to estimate the parameters in the models.

Nevertheless, they do not consider a specification test for the time-invariant factor models.

The rest of this paper is organized as follows. In Section 2, we state the hypotheses of interest and

construct the test statistic. In Section 3, we investigate the asymptotic properties of our test. In Section

4, we study the finite sample performance of the test via simulations. Section 5 provides an empirical

application. Section 6 concludes. The proofs of the main results and some additional simulation results are

relegated to the Online Supplement.

NOTATION. For an  ×  real matrix  we denote its transpose as 0 its Frobenius norm as kk
(≡ [tr(0)]12) and its spectral norm as kksp (≡

p
1 (

0)) where ≡ means “is defined as” and

 (·) denotes the th largest eigenvalue of a real symmetric matrix by counting eigenvalues of multiplicity
multiple times. The operator

→ denotes convergence in probability,
→ convergence in distribution, and

plim probability limit. We use ( ) → ∞ to denote that  and  pass to infinity jointly. Let  ∧  =
min ( )  Let  ∈ (0∞) denote a generic positive constant that may vary from case to case.

2 Hypotheses and Test Statistic

In this section, we introduce the hypotheses and test statistic.

2.1 Hypotheses

Let {  = 1 2      ;  = 1 2     } be an  -dimensional time series with  observations. The index

 represents the th cross section unit in panel data set or the th random variable in a multiple time series

data set. We assume that  is generated via the following factor model

 = 0 +  (2.1)

where  is an  × 1 vector of common factors,  is an  × 1 vector of factor loadings that can admit
sudden and/or smooth structural changes over time, and  is the idiosyncratic error term.

The null hypothesis of no structural change in the above factor model could be written as:

H0 :  = 0 for  = 1 2      and  = 1 2     

The alternative hypothesis is

H1 :  6= 0 for some non-negligible values of ( )

Apparently, under H0  is time-invariant and model (2.1) degenerates to the factor model with time-
invariant factor loadings. This model has been elaboratively studied by Stock and Watson (2002), Bai

and Ng (2002), and Bai (2003), among others. Nevertheless, it is well known that factor models may

exhibit structural changes over time. For this reason, much recent research has been focusing on testing

for structural changes in factor models. See, e.g., Breitung and Eickmeier (2011), Chen et al. (2014), Han
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and Inoue (2015), and Cheng et al. (2016). These authors mainly focus on testing the existence of a single

structural break in the factor loadings by using some supremum-type test statistics. However, usually no

prior information about the structural change alternative is available in practice. It is extremely restrictive

to assume only a single sudden structural break in factor loadings. Most recently, Baltagi et al. (2016)

provide a sequential procedure to detect multiple structural changes, which is also a special case of our

alternative hypothesis.

To capture a wide range of alternatives, we consider a nonparametric local smoothing approach. More

precisely, we follow the nonparametric literature on time-varying models (see, e.g., Cai 2007, Robinson 2012

and Chen et al. 2012) and model  as a nonrandom function of  :

 = ( )

where (·) is an unknown piece-wise smooth function on (0 1] for each  with a finite number of discontinuity
points. By allowing (·) to have a finite number of discontinuities, our alternative covers both sudden
structural breaks and smooth structural changes. A special case is:

( ) =

(
(1) if   1

(2) if  ≥ 1

for some 1 ∈ (1  ) This is the factor model with a single structural break at the common break date 1 for
all individuals, and is the alternative considered by Breitung and Eickmeier (2011), Chen et al. (2014), Han

and Inoue (2015), and Cheng et al. (2016). Apparently, this is a very restrictive alternative. In contrast,

our model under the alternative allows for multiple structural breaks, with possibly unknown break dates

or unknown number of breaks. More importantly, by assuming (·) to be a piece-wise smooth function, we
allow for smooth structural changes in the factor loadings. This type of alternative appears more reasonable

and realistic than the single structural break alternative given the fact that the driving forces of structural

changes such as preference changes, technological progress and policy modifications take effect gradually

over a long horizon.

2.2 Test Statistic

Under the null hypothesis, we can follow Bai and Ng (2002) and Bai (2003) and apply the method of PCA

to estimate the following model

 = 00 + 
†
 (2.2)

where 
†
 =  under H0 and the two are distinct under H1.

Let  ≡ (1    )
0
  ≡ (1     )

0
 

†
 ≡ (†1  

†
)

0  ≡ (1      )
0
 and Λ0 ≡

(10  0)
0
 Let  ≡ (1  )

0
  ≡ (1      )0  † ≡ (†1  † )0 Then we can rewrite (2.2) in

matrix form

 = Λ00 + †

The PCA method solves the following minimization problem:

min
Λ

tr ( − Λ00) ( − Λ00)
0
=

X
=1

X
=1

¡
 − 00

¢2
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under certain identification restrictions. In this paper, we follow Bai (2003) and consider the following

identification restrictions:

−1 0 = I and Λ00Λ0 is a diagonal matrix.

Let ̃ and ̃0 be the principal component estimators of  and 0 respectively under the above identification

restrictions. Let ̃ = (̃1  ̃ )
0 and Λ̃0 = (̃10  ̃0)0 It is well known that ̃ is

√
 times eigenvectors

corresponding to the  largest eigenvalues of the  ×  matrix  0, and Λ̃00 = (̃
0̃ )−1̃ 0 = −1̃ 0.

After obtaining the restricted estimators ̃ and ̃0 of  and 0 we now consider the following non-

parametric regression model:

 = 

µ




¶0
̃ + 

‡
 (2.3)

where 
‡
 is another error term that takes into account the estimation error introduced by replacing  with

̃ The intuition of our test goes as follows: if H0 is true, then any nonparametric estimate of  (·) in (2.3)
should not differ much from the restricted estimate ̃0. However, if H0 is false, a typical nonparametric
estimate of  (·) can deviate a lot from the restricted estimate ̃0 Hence, we can test H0 by measuring the
distance between a typical nonparametric estimate of  (·) and the restricted estimate ̃0
In this paper, we consider the simple local constant estimate of 

¡



¢
in (2.3). Let  be the bandwidth

and  (·) be a kernel function with compact support [−1 1]  To avoid the boundary bias problem, we follow
Hong and Li (2005) and Li and Racine (2007, p.31) and apply the following boundary kernel:

 = −1

µ
− 



¶
=

⎧⎪⎨⎪⎩
−1

¡
−


¢

R 1
−()() if  ∈ [0 )

−1
¡
−


¢
 if  ∈ [  − ]

−1
¡
−


¢

R (1− )
−1 () if  ∈ ( −   ]



We note that  (·) equals to (·) in the interior region but not in the boundary regions. The local constant
estimator of 

¡



¢
is given by:

̂ = ̂

µ




¶
=

Ã
1



X
=1

̃̃
0


!−1
1



X
=1

̃ (2.4)

Under H0, we have  = 0 for all . ̂ will be close to ̃0 for each  Under H1,  is not a constant
over time and we would expect large deviations of ̂ from ̃0 for some  Therefore, we could test H0 by
measuring the squared distance between ̂ and ̃0:

̂ =
1



X
=1

X
=1

³
̂ − ̃0

´0 ³
̂ − ̃0

´
 (2.5)

The test statistic is a standardized version of ̂ in (2.5):d = V̂−12

³
1212̂ − B̂

´
 (2.6)

where the centering factor B̂ and the scaling factor V̂ are defined as follows:

B̂ =
12

 212

X
=1

X
=1

X
=1

̃ 0
¡


−1
 − I

¢ ¡


−1
 − I

¢
̃̃

2


V̂ = 2−2−1−1
X

1≤6=≤
̄

µ
− 



¶2
̃ 0Σ̃

−1
 Σ̃

−1
 ̃̃

0
Σ̃
−1
 Σ̃

−1
 ̃ (̃

0
 ̃)

2
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with  =
1


P
=1 ̃̃

0
 Σ̃ = −1

P
=1 ̃̃

0
 , ̃ =  − ̃

0
0̃ ̃ = (̃1     ̃)

0, and ̄ () =R 1
−1 () (− )  being the two-fold convolution kernel of  (·). For example, if we use the Epanech-
nikov kernel () = 075(1−2)1(|| ≤ 1), then ̄ () = ( 35 − 3

4
2+ 3

8 ||
3− 3

160 ||
5
)1(|| ≤ 2) where 1(·)

is the usual indicator function.

3 Asymptotic Properties of the Test Statistic

In this section, we will establish the asymptotic null distribution of our test and study its asymptotic local

power property. In addition, we also propose a bootstrap procedure to improve the finite sample performance

of the test and establish its asymptotic validity.

3.1 Assumptions

Let  ( ) = −1 (0),  = −1[0 −  (0)],  ( ) = −1 (0
0
) and   =

 (
0
). We usemaxmaxmax andmax to denotemax1≤≤ max1≤≤ max1≤≤ max1≤≤

and max1≤≤  respectively. Throughout, we make the following assumptions.

Assumption A.1 [Factors]

(i)  (
0
) = Σ ∀ for some × positive definite matrix Σ .

(ii) maxkk8+ ∞ for some   0.

Assumption A.2 [Factor Loadings]

(i) 0 are nonrandom such that max1≤≤ k0k ≤ .

(ii) −1Λ00Λ0 = −1
P

=1 0
0
0 → ΣΛ0 for some × positive definite matrix ΣΛ0 .

(iii) The eigenvalues of the × matrix ΣΣΛ0 are distinct.

Assumption A.3 [Error term]

(i) () = 0 max||8+ ≤  and maxkk8+4 ≤  for some   0.

(ii) For each  = 1 2      , the process {  = 1 2   } is a martingale difference sequence (m.d.s.)
with respect to F :  (|F−1) = 0, where F−1 is the -field generated from ( −1     −1

−2   ).

(iii) For each  = 1 2      , the process {( )  = 1 2   } is strong mixing with mixing coefficients
(·). (·) ≡ max (·) satisfies

P∞
=1 ()

(2+) ≤  for some   0. In addition, there exists an integer

0 ∈ [1  ) such that −2max( 40   30 −1  20 −2)→ 0 and 22 (0)
(1+) → 0 as ( )→∞

(iv) max
P

=1 | ( )| ≤  max
¯̄
12

¯̄4 ≤ , max|−12
P

=1[
2
 −

¡
2
¢
]|4 ≤ .

(v)max
P

=1

¯̄
 ( )

¯̄
≤ max6= k−120 0||4 ≤ , and−1−1

P
=1

P
=1 | | ≤

.

(vi) kksp =  (
12 +  12).

Assumption A.4 [Kernel function and Bandwidth]

(i) The kernel function  : R → R+ is symmetric and continuously differentiable probability density
function with compact support [−1 1].
(ii) As ( )→∞, → 0, 2 →∞, 23 → 0, 2 → 0, (ln )−2 →∞, 2(ln )−4 →∞,

 2−13(ln )−6 →∞.

7



Assumption A.1 imposes some conditions on the latent common factors. We follow Stock and Watson

(2002), Breitung and Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015) and Su and Wang

(2017) and assume that  (
0
) = Σ is homogeneous over . Motta et al. (2011) make a much stronger

assumption:  ∼ (0Σ ) with Σ being diagonal and positive definite. Assumption A.1(i) greatly

facilitates the derivation of the asymptotic results and can be regarded as an identification condition. Since

the latent common factors and the factor loadings are not separately identifiable, it is difficult to distinguish

the structural changes on factor loadings with those on common factors. This explains why researchers have

frequently made some normalization restrictions like (
0
) = Σ in the literature. Otherwise, even if

there is no structural change on the second moment of  such that (
0
) = Σ is satisfied for all  and

the factor loadings  are constant over time, we can always write

0 = 0 ( )
−1

 ( ) = ∗0
∗
 for any nonsingular matrix  ( ) 

where  ∗ =  ( ) and ∗ = [ ( )
−1
]0. That is, 

0
 can be equivalently rewritten as the inner

product of a time-varying factor loading ∗ with a factor 
∗
 that has time-varying second moment. [Note

that ( ∗ 
∗0
 ) = ( )Σ( )

0]. The constancy of the second moment of the factor in Assumption

A1(i) aims to rule out this situation even though it is still not sufficient to identify the factors and factor

loadings under the alternative.

Assumption A.2 ensures that each factor has a nontrivial contribution to the variance of . Following

Bai (2003) and Breitung and Eickmeier (2011), we assume that the factor loadings are nonrandom for

simplicity.

A.3 imposes moment conditions on the errors and their interactions with the factors and factor load-

ings. A.3(i) and (iv) correspond to Assumptions C.1 and C.5 in Bai (2003). A.3(ii) assumes that the

process {  = 1 2 } is an m.d.s. with respect to the filter {F} and it allows for cross-sectional
dependence among the error terms. This assumption is essential for the establishment of the asymptotic

distribution of our test statistic under the null hypothesis and a sequence of Pitman local alternatives. It

is possible to allow for both serial dependence and cross-sectional dependence in the error terms. But that

will substantially complicate the asymptotic analysis and we are not sure how to estimate the asymptotic

variance of our raw test statistic in this case. A.3(iii) requires the process {( )   = 1 2 } to be
strong mixing with some algebraic mixing rate. With more complicated notation, one can allow different

individual time series to have different mixing rates and then relax the summability mixing condition to

lim sup
1


P
=1

P∞
=1  ()

(1+) ≤   ∞ If the processes are strong mixing with a geometric rate

(e.g.,  () =  for some  ∈ [0 1)), then the conditions on  (·) can be all met by specifying 0 = b0 ln c
for some sufficiently large positive constant 0. A.3(iv) and (v) control the cross-sectional dependence

among {  = 1 2     } and {  = 1 2     } respectively. A.3(vi) is widely assumed in the
factor literature; see, e.g., Moon and Weidner (2015), Su and Wang (2017), and Ma and Su (2018).

A.4 imposes regularity conditions on the kernel and bandwidth. The familiar positive bounded kernels,

such as the Epanechnikov, Quartic and Uniform kernels, are allowed. However, it rules out the Gaussian

kernel, which has unbounded support. We allow the choice of a wide range of admissible rates for bandwidth

. For example, if  and  are the same order of magnitude as in many applications, one can specify

 ∝ − for 0    13. Thus the optimal rate of bandwidth (−15) in terms of minimizing the mean

squared error of the nonparametric estimation for (·) would satisfy A4(ii) in this case even though it is

8



typically not the optimal bandwidth for our test. Moreover, Assumption A.4 also allows for a wide range of

admissible relative magnitudes of  and  . One can specify  ∝ − and  ∝   for max{2 13(1−2)} 
  min{1 + 2 2− 3}. For example, if  = 1

5 , then
2
5    7

5 . This includes the most common scenario

in applications where  and  pass to infinity at the same rate.

The nonparametric regression we used in the second step is the time-varying coefficient time series model

given by Cai (2007). Following the analysis in Cai (2007), we can show that the asymptotic bias of the

estimator of  ( ) is (
2) and the asymptotic variance is (−1−1). Therefore, a popular rule-of

thumb procedure is to choose  = 
−15, where  is the sample standard deviation of the smooth

variable and  is a constant depending on the kernel in use. For the Epanechnikov kernel,  = 2.35.

Here, the smooth variable {}=1 behaves like a uniform random variable on [0 1] and thus one can set

 = 1
√
12. Therefore, we use the bandwidth  = (235

√
12)−15 as the benchmark bandwidth in our

simulations and check the effect of different bandwidth sequences by setting  = (235
√
12)−15 for

 = 05 15 in the online supplement.

In practice, one could also consider a data-driven bandwidth using the leave-one-out cross-validation

(CV) method. That is, we can choose  as

 = arg min
1−≤≤2−

X
=1

X
=1

[ − −

µ




¶
̃]

2

where −
¡



¢
=
³
1


P
6= ̃̃

0


´−1
1


P
6= ̃ is the leave-one-out estimator,  = 15 and

0  1  2  ∞ are two pre-specified constants. Although the above cross-validated bandwidth is

asymptotically optimal for the estimation of the time-varying nonparametric regression model in terms of

mean squared error, it is not optimal for our test. For testing problems, the essential concern is the Type I

and Type II errors. Based on the Edgeworth expansion of the asymptotic distribution of a test statistic in a

different but related nonparametric context, Gao and Gijbels (2008) show that the choice of  affects both

the Type I and Type II errors, and usually there exists a tradeoff between these two. A sensible optimal

rule is to choose  to maximize the power of a test given a significant level. Gao and Gijbels (2008) derive

the leading terms of the size and power functions of their test and then choose a bandwidth to maximize

the power under a class of local alternatives with a controlled significance level. Unfortunately, Gao and

Gijbels’s (2008) results cannot be directly applied to our test, because the higher order terms of size and

power functions depend on the form of test statistic, the DGP, the kernel and the bandwidth, among other

things. In another different but related context, Sun, Phillips and Jin (2008) also consider a data-driven

bandwidth by minimizing a weighted average of the Type I and Type II errors of a test. It is possible to

extend these approaches to our test, but the analytical expressions for the leading terms of the size and

power functions or the two type errors of our test are rather involved and is beyond the scope of the present

paper. We will pursue this important issue in a subsequent study.

3.2 Asymptotic Null Distribution

Under the above regularity conditions, we now state the asymptotic distribution of d under H0

Theorem 3.1 Suppose Assumptions A.1-A.4 hold. Then d
→ (0 1) under H0

9



Remark 1. The test statistic is based on a sample quadratic form, which measures the distance between

the local smoothing estimator ̂ and the principal component estimator ̃0. Under H0, ̃0 converges to
the true factor loadings coupled with an unknown rotation matrix with a faster rate than that of the

local smoothing estimator ̂. As a result, the limiting behavior of d is solely determined by ̂.

In particular, by subtracting the bias term, the quadratic form statistic yields a dominant degenerate  -

statistic, which determines the asymptotic distribution of our test. Since a large value of ̂ is in favor of

the alternative, our test is a one-sided test.

Remark 2. The test is asymptotically pivotal and has a convenient asymptotic (0 1) distribution

under H0. Consequently, we can compare our test statistic with the one-sided (0 1) critical value  at

the significance level , and reject H0 when d  . In contrast, the limiting distributions of the

existing tests for structural changes with unknown break date, namely the supremum-type tests of Breitung

and Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015), rely on a tied-down Bessel process, which

depends on a prespecified trimming parameter and the degree of freedom. As a result, one should either

simulate or refer to Andrews’ (1993) tabulated critical values.

3.3 Asymptotic Local Power

To gain more insight into the asymptotic power property of the test d  we now consider a class of local

alternatives as follows:

H1 ( ) :  = 0 +  

µ




¶
for each  and 

where  → 0 as ( )→∞.  controls the speed at which the local alternative converges to the null

hypothesis, and 
¡



¢
is a piecewise smooth function with a finite number of discontinuity points. Noting

that 0 +  
¡



¢
= (0 +  ) +  [

¡



¢−   ] for any  ∈ R below we will assume
that Z 1

0

 ()  = 0

for location normalization purpose. It turns out this normalization will greatly simplify the local asymptotic

power analysis. With such a normalization, both 0 and  (·) can be dependent on the sample sizes  and

 But for notational simplicity, we continue to write them as 0 and  (·) instead of 0 and  (·) 
To study the asymptotic power property of d , we add the following assumption:

Assumption A.5

(i) For each  = 1 2     , (·) is piecewise continuous with a finite number of discontinuous points
on (0,1]. max1≤≤ sup | () | ≤ .

(ii) max1≤≤
°°° 1


P
=1

P
=1 

0


°°° =  (( ln( ))
−12

) where  =  ( ) 

A.5(i) allows for both sudden breaks and smooth changes under the local alternative. A.5(ii) can be

verified as in Su et al. (2015).

The following theorem studies the asymptotic local power property of d .

Theorem 3.2 Suppose that Assumptions A.1-A.5 hold. Then under H1 ( ) with  = −12−14−14,


hd ≥ |H1 ( )

i
→ 1−Φ ( − 0)
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as ( ) → ∞, where Φ (·) is the standard normal CDF,  is the one-sided normal critical value at the
significance level  and 0 = lim( )Π1 V12 with

Π1 = tr

Ã
1



X
=1

X
=1

0

µ




¶


µ




¶0
00

!
and

V = 2−2−1−1
X

1≤6=≤
̄

µ
− 



¶2

£
 0Σ

−1
 000Σ

−1
 

0
Σ
−1
 000Σ

−1
 (

0
)

2
¤


where 0 = 
12
0 Υ00Σ

−12
Λ0

 0 is an × diagonal matrix containing the  largest eigenvalues of Σ12Λ0 ΣΣ
12
Λ0

in decreasing order, and Υ0 is the corresponding eigenvector matrix such that Υ
0
0Υ0 = I

Remark 3. Theorem 3.2 shows that the test has nontrivial power against H1 ( ) with  =

−12−14−14 Although the test shares the same convergence rate with Su and Wang (2017) theoreti-

cally, the test has better finite sample performance for most cases (see Section 4). We conjecture that this

is mainly due to the fact that our test focuses exclusively on the time variation in factor loadings while Su

and Wang’s (2017) test is based on the contrast between the estimates of the common components under

the null and alternative hypotheses, respectively. Note that Assumption A.5 allows the presence of a finite

number of unknown discontinuity points in factor loadings. As a result, the test is powerful in detecting

smooth structural changes as well as sudden structural breaks, with possibly unknown break dates or un-

known number of breaks in the factor loadings. In addition, for the sample size ( ) sufficiently large,d can detect any fixed structural changes that occur close to the starting and ending points of the

sampling period, because no trimming is required for out test. This is rather appealing because no prior

information about the alternative is available in practice. It avoids blind searches of possible alternatives of

structural changes. In contrast, the tests of Breitung and Eickmeier (2011), Chen et al. (2014), Han and

Inoue (2015), Yamamoto and Tanaka (2015) and Cheng et al. (2016), all rely on a prespecified trimming

parameter  to trim out the first and last  observations in the sample and hence would miss the possible

structural changes in the boundary regions.

Remark 4. To ensure our test to have non-trivial power against the −12−14−14-rate local

alternatives, we need 0  0 which would require Π0 ≡ lim( )Π  0 as one can show that the limit

of V is bounded away from 0. This requires that the factor loadings should not be time-varying only for

an asymptotically negligible set of individuals or time periods. Let N = {1 2 } and T = {1 2  } 
Let |·| denote the cardinality of a set · Define the following subsets of N and T :

S = { ∈ N :  = 0 for all } and S = { ∈ T :  = 0} 

Let S= N\S , the complement of S relative to N  Define S = T \S analogously. It is easy to verify
that if either

|S |  =  (1) or max
1≤≤

|S|  =  (1) 

then Π0 = 0 and our test does not have power against the 
−12−14−14-rate local alternatives in this

case. Similar phenomenon occurs in Su and Chen’s (2013) test for slope homogeneity and Su and Wang’s

(2017) test for structural changes in factor loadings. In general, as long as a fixed proportional of individuals
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N either undergo abrupt structural change (one break or multiple breaks), or have a fixed proportion of 

periods of smooth structural changes, Π0  0 and our test has asymptotic power to detect them.

Remark 5. We note that, by assuming (·) to be a piecewise smooth function with a finite number of
discontinuity points, we allow various types of local alternatives, including the one-time structural breaks,

the multiple abrupt changes, and smooth structural changes. The case of one-time structural breaks overlaps

with the alternative hypothesis considered by some parametric tests given by Breitung and Eickmeier (2011),

Chen et al. (2014) and Han and Inoue (2015). To avoid the comparison between two large dimensional

factor loadings matrix estimates, the previous parametric tests all reduce the infinite dimensional problem

to a finite dimensional one in different ways. For example, Breitung and Eickmeier (2011) propose three

test statistics based on certain time series regressions for each cross sectional unit ; Chen et al. (2014)

run the regression of one estimated factor on the remaining ones and then test for the structural changes

in such a linear regression by constructing the sup-Wald and sup-LM statistics of Andrews (1993); Han

and Inoue (2015) construct their sup-Wald and sup-LM statistics by comparing the pre- and post-break

subsample second moments of the estimated factors. In any case, the test statistics have the same asymptotic

distribution and the same convergence rate as the conventional sup-Wald statistic of Andrews (1993). As a

result, they could only detect local alternatives that converge to the null at the rate −12, which is slower

than the rate  by noticing that →∞ under our assumptions.

Moreover, we want to mention that, for some types of structural changes that are not identifiable under

the alternative, all of existing tests including our test will have no power to detect them. For example,

consider a specific structural change process for the factor loadings:  = ( )0, where () is an

 ×  orthogonal matrix for all  ∈ [0 1] with (0) = . Then (
0
) = Λ(

0
)Λ

0
 + Σ =

ΛΛ
0
 + Σ = Λ0( )

0( )Λ00 + Σ = Λ0Λ
0
0 + Σ for  = 1 · · ·   . Thus, the time path {()}∈(01]

is entirely unidentified, and no structural break test can have nontrivial power against this specific class of

time-varying alternatives. This occurs mainly because the orthogonal matrix ( ) is not heterogeneous

across  and we can rewrite 0 as 
0
0
∗
 with  ∗ =  ( )

0
 In this case, the conventional PCA

estimator of the factor is consistent with a rotational version of  ∗ instead of  However, if the orthogonal

function () exhibits individual heterogeneity, say,  = ( )0, we cannot associate ( ) as a

part of the factor any more and our test still has power to detect such deviations from the null hypothesis.

Remark 6. The exact number  of common factors is typically unknown in practice and one should

determine the number of common factors before estimating and testing. This is not actually a concern under

the null hypothesis because many popular methods such as those of Bai and Ng (2002), Ahn and Horenstein

(2013) and Onatski (2009, 2010) could estimate the number of common factors consistently. Unfortunately,

these methods typically break down under the alternative. One exception is Su and Wang’s (2017) local-

PCA-based information criterion that proves to work under both the null and alternative hypotheses. So

we recommend the use of Su and Wang’s (2017) local-PCA-based information criterion to determine the

number of factors. Of course, in many applications, applied researchers may have a strong prior on the

reasonable number of factors to be included into the model (say,  ≤ 4), and one can also conduct our
nonparametric test for each of these prior values. The presence of smooth structural changes can typically

cause the rejection of the null. In any case, as a referee remarks, a model with few factors and time-varying

loadings can be a more parsimonious, useful, and interpretable model than a conventional factor model with

a very large number of factors and constant factor loadings. So it is worthwhile to explore the time-varying
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factor models as advocated by Su and Wang (2017) once one rejects the null.

3.4 A Bootstrap Version of the Test

Since kernel-based nonparametric tests may not perform well in finite samples and they can be sensitive to

the choice of bandwidth, we propose a bootstrap procedure to improve the finite sample performance of our

test.

As mentioned in Su and Wang (2017), the wild bootstrap works well if the error terms {} do not
exhibit cross-sectional dependence or only exhibit fairly weak cross-sectional dependence, but it tends to

be oversized in the presence of moderate or strong cross-sectional dependence in the error terms. Hence,

we follow Su and Wang (2017) and propose a modified parametric bootstrap procedure that tries to mimic

the cross-sectional dependence in {}. Let  = (1  )
0 ̃ = (̃1  ̃)

0 Σ =Var() = {} 
and Σ̃0 = −1

P
=1 ̃̃

0
 Let ̃

0
 denote the ( )th element of Σ̃

0 Define the shrinkage version of Σ̃0 as Σ̃

whose ( )th element is given by

̃ = ̃0 (1− )|−| for   = 1 

where  is a small positive number (e.g., 0.01) to ensure the maximum absolute column/row sum norm of

Σ̃ to be stochastically bounded provided max
¯̄
̃0
¯̄
is. By construction, Σ̃ is also symmetric and positive

semi-definite. The stochastic boundedness of max
¯̄
̃0
¯̄
is sufficient but not necessary for the justification

of the asymptotic validity of our bootstrap procedure below:

1. Estimate the restricted model  = 00 +  to obtain the principal component estimates ̃0 and

̃ and the corresponding residuals ̃ =  − ̃
0
0̃. Obtain the nonparametric kernel estimates ̂

and calculate the test statistic d as in Section 2.2.

2. For  = 1 2   and  = 1 2      obtain the bootstrap error ∗ = Σ̃
12 where  = (1     )

0

with  being   (0 1) across  and . Generate ∗ = ̃
0
0̃ + ∗ for  = 1 2      and

 = 1 2     

3. Use {∗} to run the restricted model to obtain the bootstrap versions {̃
∗
0 ̃

∗
 } of {̃0 ̃} respec-

tively. Run∗ on ̃
∗
 to obtain the local constant estimate of ̂ Calculate the bootstrap test statisticd∗  the bootstrap version of

d .

4. Repeat steps 2 and 3 for times and index the bootstrap test statistics as {d∗}=1 The bootstrap
-value is calculated by ∗ ≡ −1

P
=1 1(

d∗ 
d )

The following theorem establishes the asymptotic validity of the above bootstrap method.

Theorem 3.3 Suppose that Assumptions A.1-A.4 hold. Suppose that (i) max |̃0 | =  ( ) with

 = 
¡
 12

¢
 (ii) 1



P
=1

°°°̃°°°8 =  (1) and (iii)
1


P
=1

°°°̃0°°°8 =  (1)  Then d∗

∗→  (0 1)

in probability, where
∗→ denotes weak convergence under the bootstrap probability measure conditional on the

observed sample W ≡ {  = 1   = 1  }
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Remark 7. Theorem 3.3 shows that the modified parametric bootstrap provides an asymptotic valid

approximation to the limit null distribution of d  This holds as long as we generate the bootstrap

data by imposing the null hypothesis. If the null hypothesis does not hold in the observed sample, then we

expect d to explode at the rate 
121414 which delivers the consistency of the bootstrap-based

test d∗ 

Remark 8. Theorem 3.3 only establishes the first-order asymptotic validity of the bootstrap procedure.

We cannot expect that the bootstrap delivers a second order asymptotic refinement relative to the asymptotic

normal approximation. Note that the justification of Theorem 3.3 does not require Σ̃ to be consistent with

the  × variance-covariance matrix Σ of  in terms of spectral norm. In fact, due to the normalization

nature of our test statistic, one does not need to mimic the exact structure in Σ Even so, it is desirable to

generate the bootstrap errors {∗ } that share the variance-covariance structure as {} asymptotically. In
principle, we can follow Fan et al. (2013, FLM hereafter) to obtain a consistent estimate of Σ in terms of

spectral norm under some additional conditions. Let ̂ =
1


P
=1[̃̃ − ̂0 ]

2 Define Σ̂T =
n
̂T
o
with

̂T = ̂01 ( = ) + (̂
0
)1 ( 6= ) 

where  () ≡  () (||−  )+ is the soft thresholding function,   = 0(( ∧  )−1 log  )12(̂)12
and 0 is a positive constant. Following the asymptotic analysis in FLM, if

max
1≤≤

1



X
=1

(̃ − )
2 =  (( ∧  )−1 log  ) and max

1≤≤
max
1≤≤

|̃ − | =  (1)  (3.1)

then we can readily show that
°°°Σ̂T −Σ°°°

sp
=  ([( ∧  )−1 log  ](1−02)) =  (1) provided that there

exists some 0 ∈ [0 1) such that

max
1≤≤

X
=1

| |0 ≤  for some  ∞

The last condition strengthens the typical weak cross-sectional dependence conditionmax1≤≤
P

=1 | | =
 (1) and can be met if  satisfies certain -dependence condition cross-sectionally or the correlation be-

tween  and  shrinks to zero sufficiently fast as the “distance” between  and , perhaps after re-ordering

the cross-sectional units, increases. The fundamental problem is that we cannot verify the two conditions in

(3.1) under the global alternative despite the fact that they can verified under the local alternatives. For this

reason, we do not generate ∗ as (Σ̂
T )12 in our bootstrap procedure. Even if we generate the bootstrap

errors from (Σ̂T )12 and restrict our attention to the local alternatives, we are not sure whether the boot-

strap inference can achieve any refinement over the inference based on the asymptotic normal distribution.

In fact, to the best of our knowledge, there is no formal study on the bootstrap refinement in the factor

literature even for the inference on single factors or factor loadings. Our nonparametric test is involved with

the contrast of the factor loadings estimates for all cross-sectional units under the null and alternative. A

formal higher order refinement study that involves Edgeworth expansions would become much harder and

thus be beyond the scope of this paper.
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4 Monte Carlo Simulations

In this section, we study the finite sample performance of the test through Monte Carlo simulations. We

also compare our test with the parametric tests of Breitung and Eickmeier (2011), Chen et al. (2014) and

Han and Inoue (2015) for a single structural break with an unknown break date in the factor loadings and

the nonparametric test of Su and Wang (2017) that also allows for both single or multiple abrupt breaks

and smooth changes under the alternative.

4.1 Data Generating Processes

We generate data under the framework of large factor models with  = 2 common factors:

 = 0 + 

where  = 1    = 1    ≡ (1 2)
0
 with 1 = 061−1 + 1 1 ∼  N(0 1 − 062);

2 = 032−1 + 2 2 ∼  N(0 1− 032)
To examine the size and power, we consider the following setups for the factor loading  ≡ (1 2)

0

and the error term :

DGP.S1:  = 0 ∼  N(0 I2)  ∼  N(0 1);

DGP.S2:  = 0 ∼  N(0 I2)  =  where  ∼ (05 15)  ∼  N(0 1);

DGP.S3:  = 0 ∼  N(0 I2)  = () where 
2
 = (02 + ) + 01

2
1 + 02

2
2  ∼ 

U(−01 03)  ∼  N(0 1);

DGP.S4:  = 0 ∼  N(0 I2) · = (1 )
0 ∼  N(0Σ);

DGP.P1:  =

(
0 for  = 1 2     2

0 + 02 for  = 2 + 1     
 0 ∼  N(1 1) for  = 1 2  = 

where  ∼  U(05 15)  ∼  N(0 1);

DGP.P2: 1 =

⎧⎪⎨⎪⎩
01 for 01   ≤ 02 or 07   ≤ 08
01 + 05 for 04   ≤ 05
01 − 05 otherwise

 2 = 02 ∼ N(0 1)

 ∼  N(0 1);

DGP.P3: 1 = 01 ∼  N(0 1) 2 = 05 (10 ; 2 5 + 2)   ∼  N(0 1);

DGP.P4: 1 =  + 05(10 ; 01 (1 3 7 9)
0)  ∼  N(0 1) 2 = 02 ∼  N(0 1)

 ∼  N(0 1);

DGP.P5:  =

(
0 for  = 1 2     2

0 + 02 for  = 2 + 1     
 0 ∼  N(1 1) for  = 1 2 · =

(1 )
0 ∼  N(0Σ);

DGP.P6: 1 =

⎧⎪⎨⎪⎩
01 for 01   ≤ 02 or 07   ≤ 08
01 + 05 for 04   ≤ 05
01 − 05 otherwise

 2 = 02 ∼ N(0 1)

· = (1 )
0 ∼  N(0Σ);

DGP.P7: 1 = 01 ∼  N(0 1) 2 = 05 (10 ; 2 5 + 2)  · = (1 )
0 ∼ 

N(0Σ);
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DGP.P8: 1 =

⎧⎪⎨⎪⎩
01 for 01   ≤ 02 or 07   ≤ 08
01 +  for 04   ≤ 05
01 −  otherwise

 2 = 02 ∼ (0 1),

 ∼ (0 1),  ∼  [0 1];

where Σ = ()=1 with  = 05
|−|, (;γ) = {1 + exp[−

Q
=1

( − )]}−1 denotes the Logistic
function with tuning parameter  and location parameter γ = (1  )

0


DGP.S1-S4 satisfy the null hypothesis of time-invariant factor loadings and are used to study the size of

our test. Specifically, DGP.S2 - S4 examine the performance of the test under heteroskedasticity, conditional

heteroskedasticity and cross-sectional dependence respectively. DGP.P1-P8 describe various time-varying

factor loadings. Among them, DGP.P1-P2 have a single sudden structural break and multiple sudden

structural breaks, respectively. DGP.P3-P4 describe two kinds of smooth structural changes. In particular,

the factor loadings generated by DGP.P3 are monotonic function while the factor loadings given by DGP.P4

are smooth transition functions with multiple regime shifts. DGP.P5-P7 parallel DGP.P1-P3 but allow for

cross-sectional dependence. DGP.P8 has heterogenous time variation. Some path plots for DGP.P1-P4 are

shown in the online supplement.

To examine the asymptotic local power property, we also consider the local alternative:  = 0 +

 
¡



¢
 where  = 1 2 4  = −12−14−14 0 ∼  N(0 I2) and the setups of the (·) =

(1 (·)  2 (·))0 are given by:
DGP.P9: () = 1(|| ≤ 1

2) for  = 1 2  =  where  ∼  U(05 15)  ∼  N(0 1);

DGP.P10: 1() = 0 2() =  (; 20 05),  ∼  N(0 1).

As mentioned above, our test does not require the trimming parameter used to control the minimum

length of each subsample under the alternative. To check the performance of our test near the end of the

sample, we follow the advice of a referee and consider the following DGP:

DGP.P11:  =

(
0 for  = 1 2     

0 +  for  =  + 1     
 0 ∼  N(1 1) for  = 1 2  = 

where  ∼  U(05 15)  ∼  N(0 1) and 01 02  and  are mutually independent of each

other. We consider the cases where  = 02 05 and  = 05 06 07 08 09. Apparently, the structural

break point moves from the middle to the end of the sample as  increases from 0.5 to 0.9.

4.2 Tests Statistics and Implementation

For each DGP, we simulate 500 data sets with  = 100 200 and  = 100 200 respectively. Since the

factor loadings are assumed to be nonrandom, we generate them once for all and fix them across the Monte

Carlo replications.

To implement our d test, we apply the Epanechnikov kernel and the Silverman’s rule-of thumb

bandwidth  = (235
√
12)−15 [Note that { 1


 2

  −1


 1} behave like a U(0 1) random variable with

variance 112] We have also tried the Uniform kernel and the Quartic kernel, and the rule-of thumb

bandwidth with different tuning parameters. Our simulation studies show that the choice of kernel function

has little impact on the performance of our test. However, the empirical sizes and powers are a bit sensitive

to the bandwidth selection. To alleviate this problem, we follow the nonparametric literature and apply the

bootstrap procedure proposed in Section 3.4. We consider 500 replications with  = 200 bootstrap number
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for the bootstrap-based test. Moreover, we also examine the performance of our nonparametric for different

choices of bandwidth sequences by setting  = (235
√
12)−15 for  = 05 1 and 15. Nevertheless, due

to the space constraint, we only report the results with  = 1 in the paper and relegate the results for other

choices of  to the online supplement.

In addition to our test, we also consider Breitung and Eickmeier’s (2011) sup-LM  -variable-specific

test, Chen et al.’s (2014) sup-LM test, and Han and Inoue’s (2014) sup-LM test. Following these papers,

we choose the trimming parameter  = 015 that restricts the one-time break, if it exists, to occur within

the time interval [015 , 085 ] We also examine the performance of these tests with  = 01 and 025

and find the results are quite similar. The tests of Chen et al. (2014) and Han and Inoue (2015) involve

the long-run variance estimation. We follow the HAC literature by choosing the Bartlett kernel and setting

the truncation parameter to be b 13c to estimate the long-run variance. The critical values presented in
Andrews (1993) are applied for the tests of Breitung and Eickmeier (2011), Chen et al. (2014) and Han

and Inoue (2015). Note that Breitung and Eickmeier’s (2011) sup-LM tests are implemented for each one

of the  cross-sectional units and we can only report the average rejection frequency for this test where

the averages are taken over these  cross-sectional units and the designated number of simulations. The

number of replications is set to be 500.

Moreover, we also implement the bootstrap-version of Su and Wang’s (2017) nonparametric test which

contrasts the local-PCA estimates of the common components under the alternative with the conventional

PCA estimates under the null. To implement their test, we follow their recommendation to choose the

bandwidth parameter. Here, we also consider 500 replications with 200 bootstrap resamples for each repli-

cation.

4.3 Simulation Results

In this section we first report the comparison of the size behavior of various tests and then report the

comparison of the power behavior of these tests under the global alternatives when the number of factors

is set to be the true value and determined from the data, respectively. Then we study the local power

performance of our test. Finally, we compare the performance of different tests when the one-time break

date is near the end of the sample.

4.3.1 Size comparison with correctly specified 

Table 1 reports the size performance of our test as well as that of the parametric tests of Breitung and

Eickmeier (2011), Chen et al. (2014) and Han and Inoue (2015) and the nonparametric test of Su and Wang

(2017) at the 5% and 10% significance levels when the number of common factors are fixed as the true

value  = 2. For our test, we report the results using the bootstrap critical values. As shown in this table,

our test has reasonable sizes using bootstrap critical values. Su and Wang’s (2017) test tends to overreject

slightly but is still acceptable. The sup-LM tests of Han and Inoue (2015) and Chen et al. (2014) tend

to under-reject slightly. In addition, Breitung and Eickmeier’s (2011)  -variable-specific sup-LM test also

suffers from slight under-rejection for DGP.S1-S2 and S4 but severe over-rejection for DGP.S3. It may not

be difficult to understand the bad size performance of Breitung and Eickmeier’s (2011) test, as their tests

require the independence between common factors and the error term, which is violated in DGP.S3.
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Table 1: Size of tests under DGP.S1-S4 when the number of factors is fixed to the true value

DGP    17   

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

S1 100 100 5.0 10.8 6.6 13.4 0.6 3.8 3.4 8.2 2.8 6.5

100 200 5.8 12.4 7.4 13.0 2.4 6.8 4.8 7.4 3.4 7.5

200 100 4.8 8.8 5.2 10.2 1.6 4.4 1.4 7.0 2.7 6.3

200 200 5.4 10.8 5.8 12.0 1.6 6.8 3.6 8.8 3.4 7.5

S2 100 100 5.2 9.6 7.4 12.0 0.4 2.4 2.0 8.2 2.7 6.4

100 200 4.6 9.8 5.0 11.4 1.0 5.8 2.0 6.6 3.7 7.8

200 100 5.4 10.6 6.4 14.0 0.4 1.8 1.0 4.6 2.8 6.4

200 200 6.6 11.2 7.0 14.0 0.6 5.4 2.6 6.8 3.6 7.7

S3 100 100 5.6 10.8 7.2 11.2 0.4 2.2 2.2 8.8 11.9 20.3

100 200 4.8 9.8 6.0 11.4 1.6 5.2 2.0 6.0 15.2 24.5

200 100 6.8 12.2 7.8 11.6 0.4 1.8 1.2 5.0 11.9 20.2

200 200 7.4 13.4 8.2 13.0 0.8 5.2 2.4 7.0 15.2 24.7

S4 100 100 5.2 12.0 6.2 12.2 0.4 4.6 2.8 8.0 2.8 6.4

100 200 5.2 10.4 4.2 10.4 2.0 6.8 4.6 8.6 3.4 7.5

200 100 6.0 12.0 6.8 12.0 1.6 3.2 2.6 6.6 2.8 6.3

200 200 5.0 9.6 5.6 10.2 2.2 7.0 4.0 8.4 3.4 7.4

Note: (i)  denotes the results of our d test using bootstrap critical values; (ii) 17 denotes the
results of Su and Wang’s (2017) bootstrap-based test; (iii)  denotes Han and Inoue’s (2014) sup-LM test;

(iv)  denotes Chen et al.’s (2014) sup-LM test; (v)  denotes Breitung and Eickmeier’s (2011) 

variable-specific sup-LM test. The main entries report the average percentage of rejection.

4.3.2 Global power comparison with correctly specified 

Table 2 reports the power performance of the tests under DGP.P1-P8 at the 5% and 10% significance

levels when the number of common factors is fixed as the true value  = 2. Our bootstrap-based test is

powerful in detecting all forms of time-varying factor loadings given by DGP.P1-P8 and its power increases

as either  or  increases. Recall that DGP.P1-P2, P5-P6 and P8 are factor models with sudden structural

breaks, while DGP.P3-P4 and P7 are factor models with smooth structural changes. The simulation results

are consistent with our theoretical claim that the test is able to detect both a finite number of sudden

structural breaks and smooth structural changes. In addition, Su and Wang’s (2017) test is also powerful

in detecting the deviation from the null in these DGPs. Moreover, the power of the new test is usually

higher than that of Su and Wang’s (2017) test in all cases except DGP.P3 and DGP.P7, which consider the

monotonic smooth structural changes in factor loadings. Hence the power ranking of these two tests are

ambiguous. In contrast, Han and Inoue’s (2015) sup-LM test has relatively low power against DGP.P1-P2

and P4-P6. However, it is most powerful in detecting DGP.P3 and P7. This is because the factor loadings

under DGP.P3 and P7 are monotonic functions of the scaled time  for each . If we apply the method of

PCA to estimate the factor model, the estimated factor series would behave like an explosive process with

increasing volatility over time. Since Han and Inoue’s (2015) test checks the time-invariance property of the

second order moment of common factors, it is able to capture such smooth structural changes as in DGP.P3.

In addition, both Chen et al.’s (2014) sup-LM test and Breitung and Eickmeier’s (2011)  -variable-specific

sup-LM test have quite low power against DGP.P1-P8, which exhibit either sudden structural breaks or

smooth structural changes in factor loadings.
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Table 2: Power of tests under DGP.P1-P8 when the number of factors is fixed to the true value

DGP    17   

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P1 100 100 72.2 81.4 67.4 79.4 0.8 4.4 2.4 7.2 5.9 11.1

100 200 98.4 99.6 98.4 99.4 4.2 10.6 2.0 6.8 11.2 17.8

200 100 94.0 97.2 92.2 96.4 0.8 4.0 2.4 6.6 5.7 10.7

200 200 100 100 100 100 5.0 12.2 2.2 6.6 11.1 17.5

P2 100 100 29.4 41.4 26.0 40.4 0.6 2.2 2.2 8.6 3.9 8.3

100 200 82.2 86.8 76.8 84.0 1.6 6.4 2.2 6.4 6.7 12.7

200 100 41.0 51.8 27.6 40.6 0.8 2.8 1.8 8.6 3.7 8.1

200 200 93.0 95.8 85.2 91.6 1.6 5.8 1.8 7.6 6.5 12.4

P3 100 100 37.2 47.8 41.2 55.2 35.8 67.0 6.8 16.8 4.9 10.3

100 200 64.8 73.8 77.0 86.6 97.4 99.8 10.2 18.4 9.8 17.2

200 100 42.4 53.8 45.2 60.2 37.4 71.4 6.6 15.4 5.2 10.7

200 200 76.0 82.2 84.2 92.0 99.2 100 10.2 20.0 9.8 17.7

P4 100 100 25.0 38.0 25.6 36.8 0.4 1.6 1.0 4.0 3.5 7.9

100 200 74.2 83.6 72.2 81.6 0.6 4.0 3.0 5.6 5.4 10.6

200 100 40.6 52.8 34.4 45.2 0.4 1.4 1.0 5.8 3.5 7.8

200 200 92.0 94.4 86.8 92.8 0.2 3.8 3.2 6.4 5.5 10.7

P5 100 100 67.8 79.8 63.0 75.6 1.4 5.8 3.2 8.8 4.9 10.1

100 200 97.4 99.2 96.8 99.0 6.0 12.8 4.4 8.4 9.8 16.6

200 100 90.0 94.2 88.0 92.0 2.0 6.6 1.2 6.6 4.9 9.9

200 200 100 100 99.6 99.8 3.8 11.4 4.8 10.6 9.4 15.8

P6 100 100 29.6 38.6 27.2 36.2 0.8 5.0 3.6 9.2 3.7 8.1

100 200 81.2 86.0 75.8 82.8 3.2 10.4 5.6 10.8 6.2 12.1

200 100 38.4 52.6 27.4 38.2 1.4 4.6 1.6 7.6 3.6 7.9

200 200 92.4 95.8 85.2 90.8 3.0 9.8 4.6 11.0 6.2 11.9

P7 100 100 34.0 45.8 37.0 54.6 32.4 65.0 7.4 14.6 5.0 10.5

100 200 62.4 72.2 74.4 86.2 98.2 99.6 12.0 18.0 9.5 16.9

200 100 44.0 53.0 44.0 60.2 36.6 68.8 7.0 15.2 5.0 10.5

200 200 78.8 85.0 86.4 92.6 99.0 99.8 10.8 19.6 9.7 17.5

P8 100 100 38.2 50.6 35.2 47.6 0.6 2.4 2.0 8.6 5.2 10.4

100 200 91.2 94.8 88.6 92.2 1.6 6.2 2.2 6.6 10.7 18.1

200 100 49.4 60.8 32.8 43.8 0.8 2.8 1.8 8.8 4.7 9.5

200 200 97.8 99.0 93.2 95.4 1.6 5.8 2.0 7.6 9.3 15.9

Note: See the note in Table 1.
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4.3.3 Size and global power comparison with  determined from the data

As the exact number  of common factors is typically unknown in practice, one should determine the

number of common factors before estimating and testing. In the literature on testing for structural breaks

in factor loadings, the number of common factors is either determined by Bai and Ng’s (2002, BN hereafter)

information criteria (e.g., Han and Inoue, 2015) or specified by some fixed numbers, which may be equal

to, less than, or greater than the correct number of factors (e.g., Chen et al., 2014). Of course, one can also

consider applying Onatski’s (2009, 2010) or Ahn and Horenstein’s (2013) testing procedures to determine

the number of factors, which work well in the presence of moderate or strong cross-sectional dependence.

Alternatively, one can apply Su and Wang’s (2017) nonparametric method to determine the number of

factors that is robust to the presence of structural changes in the factor loadings. In general, all the

aforementioned methods can select the correct number of factors consistently under the null hypothesis, but

only Su and Wang’s (2017) method has been proven valid under the alternative too. Indeed, if we apply

Su and Wang’s (2017) method to determine the number of factors, the size and power performance of all

tests will be similar to that in Tables 1 and 2 (see Tables A.3 and A.4 in the online supplement). To allow

the possible misspecification of the number of factors under the alternative, here we follow Han and Inoue

(2015) and select the number of factors based on BN’s information criteria 1 and 2. To implement

1 and 2 we need to prescribe the maximum number of factors, max. Given the true value of  is

2, we set max = 6 in our simulations. We find that the results based on 1 and 2 are quite similar

and thus we only report the results using 1 below to save space.

Tables 3 and 4 report the size and power performance of various tests at the 5% and 10% significance levels

when the number of factors is determined by BN’s 1. The results are similar to those reported in Tables

1 and 2. In fact, for all DGPs, our simulation results show that BN’s 1 only tends to overparameterize

slightly, and the problem alleviates as the sample size increases. Moreover, we also examine the performance

of various tests by setting the number of common factors as 3 The power of our bootstrap-based test is a

little bit lower than that in the case of correctly specified factors as reported in Table 2. However, our test

still has reasonable power that increases as either  or  increases; and more importantly, it is still the

most powerful test among all tests for most DGPs under consideration. To save space, we do not report the

results for this case here.

4.3.4 Local power performance of our test

We now study the local power property of our test by using DGP.P9-P10. Table 5 reports the empirical

rejection frequency of our test at the 5% and 10% significance levels when the number of factors is fixed to

be the true value or determined by BN’s 1 respectively. As shown in the table, the power of our test

increases fast in both cases as  increases.

4.3.5 Performance of various tests when the break date is near the end of the sample

Finally, we compare the performance of various tests when the break date is near the end of the sample by

using DGP.P11. Tables 6 and 7 report the empirical rejection rate under this DGP when the number of

common factors is fixed as the true number and determined from the data respectively.

We summarize the findings from Tables 6-7. First, all of the parametric tests considered by Breitung
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Table 3: Size of tests under DGP.S1-S4 when the number of factors is determined from the data

DGP    17   

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

S1 100 100 5.0 10.8 6.6 13.4 0.6 3.8 3.4 8.2 2.8 6.5

100 200 5.8 12.4 7.4 13.0 2.4 6.8 4.8 7.4 3.4 7.5

200 100 4.8 8.8 5.2 10.2 1.6 4.4 1.4 7.0 2.7 6.2

200 200 5.4 10.8 5.8 12.0 1.6 6.8 3.6 8.8 3.4 7.5

S2 100 100 5.2 9.6 7.4 12.0 0.4 2.4 2.0 8.2 2.8 6.5

100 200 4.6 9.8 5.0 11.4 1.0 5.8 2.0 6.6 3.7 7.8

200 100 5.4 10.6 6.4 14.0 0.4 1.8 1.0 4.6 2.8 6.4

200 200 6.6 11.2 7.0 14.0 0.6 5.4 2.6 6.8 3.6 7.7

S3 100 100 5.6 10.8 7.2 11.2 0.4 2.2 2.2 8.8 11.9 20.1

100 200 4.8 9.8 6.0 11.4 1.6 5.2 2.0 6.0 15.3 24.5

200 100 6.8 12.2 7.8 11.6 0.4 1.8 1.2 5.0 11.8 20.2

200 200 7.4 13.4 8.2 13.0 0.8 5.2 2.4 7.0 15.2 24.7

S4 100 100 5.2 12.0 6.2 12.2 0.4 4.6 2.8 8.0 2.8 6.4

100 200 5.2 10.4 4.2 10.4 2.0 6.8 4.6 8.6 3.4 7.5

200 100 6.0 12.0 6.8 12.0 1.6 3.2 2.6 6.6 2.7 6.3

200 200 5.0 9.6 5.6 10.2 2.2 7.0 4.0 8.4 3.3 7.5

Note: See the note in Table 1.

and Eickmeier(2011), Han and Inoue (2015) and Chen et al. (2014) have extremely low power against this

DGP for both choices of  when  = 02, and the rejection frequency is close to the nominal level in most

cases. As  increases to 0.5, the powers of these parametric tests increase but are still significantly lower

than the powers of the two nonparametric tests. Second, when the structural break point moves from the

middle to the end of the sample, the empirical rejection rates of the parametric tests decrease significantly

and almost lose power for  = 05 when  = 09. Third, both our test and Su and Wang’s (2017) test have

reasonably high power to detect the structural changes near the end of the sample and the power increases

as either  or  increases. However, the empirical rejection rates of these nonparametric tests also decrease

when the structural break point moves from the middle to the end. This simulation result is as expected in

the structure change literature and is consistent with our theoretical claim. We note that when the break

point moves from the middle to the end, the post-break period gets shorter and shorter, and “the cumulative

effect of structural changes” is smaller. That is, 0 given by Theorem 3.2 gets smaller despite the fact it is

still significantly different from zero as along as  does not tend to 1 as ( )→∞.

5 An Empirical Application

In this section, we apply our test to check whether the factor loadings for asset returns suffer from structural

changes. Factor models for asset returns have received extensive attention in the finance literature. Since the

factor loadings depend on the nature of the information available to investors at any given time, they may

vary over time. Li and Yang (2011) and Ang and Kristensen (2012) consider the conditional factor models

when the number of assets/portfolios is fixed and small. Li and Yang (2011) model the factor loadings as

smooth functions of time; Ang and Kristensen model them as smooth functions of some macroeconomic and

financial variables that are thought to capture systematic risks as observable factors. Both devise Wald-
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Table 4: Power of tests under DGP.P1-P8 when the number of factors is determined from the data

DGP    17   

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P1 100 100 72.8 80.8 70.0 78.8 0.8 4.4 2.4 7.2 5.9 11.1

100 200 98.8 99.6 98.4 99.4 4.2 10.6 2.0 6.8 11.2 17.8

200 100 94.2 97.2 92.4 97.2 0.8 4.0 2.4 6.6 5.7 10.7

200 200 100 100 100 100 5.0 12.2 2.2 6.6 11.1 17.5

P2 100 100 29.8 41.6 26.4 40.8 0.4 1.6 1.8 7.8 3.7 8.0

100 200 85.2 88.6 80.0 85.8 1.0 5.2 2.4 6.4 5.3 11.7

200 100 37.8 50.0 27.6 41.2 0.6 2.2 1.6 7.6 3.4 7.6

200 200 92.4 94.6 83.2 89.0 1.0 3.8 2.0 8.4 4.7 9.7

P3 100 100 36.0 41.0 52.0 63.0 35.4 66.2 6.8 16.6 5.0 10.4

100 200 65.2 74.8 76.2 85.6 97.4 99.8 10.2 18.4 9.8 17.2

200 100 42.4 52.0 45.6 60.4 37.4 71.4 6.6 15.4 5.2 10.7

200 200 76.0 81.6 85.0 92.0 99.2 100 10.2 20.0 9.8 17.7

P4 100 100 25.4 35.8 26.4 35.2 0.4 1.6 1.0 4.0 3.5 7.9

100 200 73.4 83.6 70.2 81.4 0.6 4.0 3.0 5.6 5.4 10.6

200 100 40.0 52.6 32.2 45.2 0.4 1.4 1.0 5.8 3.5 7.8

200 200 91.0 94.6 85.6 92.2 0.2 3.8 3.2 6.4 5.5 10.7

P5 100 100 69.0 80.2 63.2 76.2 1.4 5.8 3.2 8.8 4.9 10.1

100 200 97.6 99.4 96.8 98.8 6.0 12.8 4.4 8.4 9.8 16.6

200 100 90.4 94.8 87.0 91.8 2.0 6.6 1.2 6.6 4.9 9.9

200 200 100 100 99.6 99.6 3.8 11.4 4.8 10.6 9.5 15.8

P6 100 100 27.8 39.8 27.0 35.6 0.8 4.8 3.2 8.4 3.6 7.9

100 200 80.8 85.2 76.2 82.2 3.2 8.6 4.8 10.0 5.0 10.2

200 100 40.4 52.6 27.6 38.6 1.0 4.0 1.4 6.8 3.4 7.5

200 200 92.4 95.4 86.2 90.8 1.2 6.0 2.8 7.6 4.5 9.2

P7 100 100 33.2 46.0 35.6 54.0 32.2 64.2 7.4 14.4 5.0 10.4

100 200 63.6 72.2 74.2 86.4 98.2 99.6 12.0 18.0 9.5 16.9

200 100 44.8 52.2 40.6 59.4 36.6 68.8 7.0 15.2 5.0 10.5

200 200 78.2 84.4 86.4 93.4 99.0 99.8 10.8 19.6 9.7 17.5

P8 100 100 38.6 51.2 36.4 47.0 0.2 1.8 1.6 6.4 3.6 8.0

100 200 90.6 95.4 88.0 92.6 0.2 1.4 2.2 9.8 4.3 8.8

200 100 49.4 60.8 33.0 44.4 0.6 1.6 1.4 5.2 3.4 7.5

200 200 97.8 99.2 92.8 95.8 0.2 1.8 2.6 8.6 4.0 8.6

Note: See the note in Table 1.
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Table 5: Local power performance of our test

 : fixed to the true value  : determined from BN’s 1

DGP    = 1  = 2  = 4  = 1  = 2  = 4
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P9 100 100 8.0 14.0 14.8 23.4 55.0 66.4 6.6 10.8 11.0 19.8 54.4 68.0

100 200 6.6 12.8 19.2 29.2 65.2 77.4 6.8 14.4 15.8 22.4 63.8 76.2

200 100 8.0 14.8 13.0 22.0 47.8 60.2 6.2 13.4 13.2 22.2 60.2 72.4

200 200 8.0 13.6 15.6 27.4 56.0 69.8 9.2 14.8 16.6 27.0 69.4 78.8

P10 100 100 7.6 15.2 15.0 24.2 52.4 62.8 7.2 10.2 10.2 20.2 49.4 64.4

100 200 5.4 12.8 11.8 21.6 56.0 67.0 6.6 13.2 12.6 20.8 52.4 66.6

200 100 7.6 15.6 13.0 22.2 52.2 66.0 8.2 14.4 13.8 23.2 50.8 65.0

200 200 8.0 13.8 14.2 21.2 58.2 70.6 8.4 14.2 15.8 23.2 60.0 72.8

Note: The main entries report the average percentage of rejection;  signifies the magnitude of local deviation from

the null hypothesis.

type tests for the significance of long-run conditional alphas and find substantial variation in the conditional

factor loadings. More recently, Ma et al. (2019) propose a high-dimensional alpha test to assess whether

there exist abnormal excess returns on high-dimensional assets by allow the factor loadings to evolve over

time. In all these studies, the factors are assumed to be observed. When the factors are not observed, we

can also check whether the factor loadings are time-varying by using the method developed in this paper.

Monthly data between 2000.1-2015.9 are available for 9145 stocks traded on the New York Exchange,

AMEX, and NASDAQ, which are obtained from the WIND data base. The data include live stocks whose

suspensions are no more than two years between this period. Finally, we get a balanced panel with  = 189

 = 2684.

We use BN’s four information criteria (namely, 1 2 1 2), Ahn and Horenstein’s (2013)

two criterion functions ( for eigenvalue ratio and  for growth ratio) and Onatski’s (2009) sequential

testing procedure to determine the number of common factors. The maximum number of factors is set to

be 8 in this empirical study. The estimated number of factors by 1 and 2 is 3, the other two BN’s

information criteria (1 2) and Onatski’s (2009) procedure all choose 2 common factors, while Ahn

and Horenstein’s (2013) testing procedures choose 1 common factor. Therefore, in the following context,

we report the test results for the cases of one, two and three common factors, respectively.

We apply our nonparametric test d , Han and Inoue’s (2014) sup-LM and sup-Wald tests, as well

as Chen et al.’s (2014) sup-LM and sup-Wald tests to investigate the possible structural changes in factor

loadings. The smooth parameter, kernel functions and other presettings for these tests are all the same to

those used in the simulation studies. For our test, we focus on the bootstrap results based on  = 500

bootstrap replications. Since the one-sided (0 1) critical values at the 5% and 10% levels are 1.64 and

1.28, respectively, it is obvious that we can reject the null hypothesis of time-invariant factor loadings at

the 5% significance level by using asymptotic critical value.

Table 8 reports the results of the tests and the corresponding critical values at the 5% and 10% signif-

icance levels. Our test rejects the null hypothesis for all the cases of one, two, and three common factors.

In contrast, both the results of Han and Inoue (2015) and Chen et al. (2014) are mixed. Han and Inoue’s
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Table 6: Empirical rejection rates under DGP.P11 when the number of factors is fixed to the true value

   17   

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

 = 05 100 100 72.2 81.4 67.6 79.4 0.8 4.4 2.4 7.2 5.9 11.1

 = 02 100 200 98.4 99.6 98.4 99.4 4.2 10.6 2.0 6.8 11.2 17.8

200 100 94.0 97.2 92.2 96.4 0.8 4.0 2.4 6.6 5.7 10.7

200 200 100 100 100 100 5.0 12.2 2.2 6.6 11.1 17.5

 = 06 100 100 68.8 77.8 66.0 77.0 0.8 5.2 2.4 7.6 5.8 10.9

 = 02 100 200 98.2 98.8 98.4 99.0 5.6 11.6 2.0 7.0 11.1 17.3

200 100 92.8 95.4 91.6 95.0 1.0 5.0 2.6 6.8 5.6 10.6

200 200 100 100 99.8 99.8 6.0 12.2 2.4 6.8 10.9 17.3

 = 07 100 100 54.2 68.2 56.0 68.4 1.2 5.8 2.8 7.4 5.3 10.3

 = 02 100 200 95.2 98.2 96.0 97.8 5.6 12.4 2.0 7.0 10.0 16.1

200 100 80.4 89.8 81.2 87.8 1.4 6.0 3.0 7.2 5.2 10.1

200 200 99.2 99.4 99.4 99.4 6.6 13.4 2.4 6.4 9.9 16.1

 = 08 100 100 30.2 42.2 35.4 47.6 1.4 5.8 3.0 7.8 4.5 9.1

 = 02 100 200 73.2 83.2 77.0 84.2 5.2 11.6 2.2 6.6 8.1 13.8

200 100 49.8 61.8 55.2 68.4 1.6 6.4 2.4 7.6 4.5 9.0

200 200 90.8 93.8 91.0 95.0 6.0 12.4 2.2 6.6 8.0 13.9

 = 09 100 100 9.8 18.2 12.8 21.6 0.8 3.2 1.8 7.4 3.4 7.4

 = 02 100 200 23.0 33.8 28.2 38.8 1.8 8.4 2.0 6.2 5.1 9.9

200 100 13.4 25.2 18.8 27.8 0.8 3.2 1.8 7.6 3.3 7.2

200 200 31.0 44.4 38.2 49.8 2.6 8.4 2.2 6.0 5.0 9.8

 = 05 100 100 100 100 100 100 3.8 11.0 2.8 9.2 21.1 28.5

 = 05 100 200 100 100 100 100 22.8 39.8 3.4 7.6 36.6 44.1

200 100 100 100 100 100 4.0 13.6 4.2 8.8 18.9 26.2

200 200 100 100 100 100 26.0 44.6 4.2 9.2 33.3 40.8

 = 06 100 100 100 100 100 100 5.0 14.6 3.4 9.8 20.8 28.5

 = 05 100 200 100 100 100 100 29.2 44.4 4.0 9.4 36.5 43.9

200 100 100 100 100 100 4.8 17.4 3.8 9.6 19.0 26.1

200 200 100 100 100 100 33.2 49.8 5.0 10.0 33.4 40.8

 = 07 100 100 100 100 99.8 100 7.4 17.6 4.0 9.6 19.2 26.7

 = 05 100 200 100 100 100 100 30.4 44.2 3.8 9.8 34.0 41.6

200 100 100 100 100 100 8.0 19.8 4.4 10.0 17.9 24.8

200 200 100 100 100 100 34.8 48.8 5.0 10.6 31.5 38.7

 = 08 100 100 98.6 99.0 97.2 98.6 7.4 17.0 3.6 8.4 15.4 22.4

 = 05 100 200 100 100 100 100 27.6 40.0 3.6 9.6 28.6 36.0

200 100 100 100 99.6 99.8 8.6 19.2 4.6 9.4 14.9 21.5

200 200 100 100 100 100 30.4 44.8 4.4 10.0 27.0 34.1

 = 09 100 100 48.2 61.4 56.4 68.6 2.4 8.2 3.2 7.8 7.7 13.4

 = 05 100 200 91.4 94.2 93.8 96.6 8.0 16.6 2.2 7.4 15.3 22.1

200 100 67.2 78.2 62.8 74.8 3.0 8.0 2.4 8.2 7.9 13.2

200 200 97.2 98.6 97.2 98.6 9.4 18.2 2.4 7.4 15.5 21.9

Note: See the note in Table 1.
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Table 7: Empirical rejection rates under DGP.P11 when the number of factors is determined from the data

   17   

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

 = 05 100 100 72.2 81.4 67.6 79.4 0.8 4.4 2.4 7.2 5.9 11.1

 = 02 100 200 98.4 99.6 98.4 99.4 4.2 10.6 2.0 6.8 11.2 17.8

200 100 94.0 97.2 92.2 96.4 0.8 4.0 2.4 6.6 5.7 10.7

200 200 100 100 100 100 5.0 12.2 2.2 6.6 11.1 17.5

 = 06 100 100 68.8 77.8 66.0 77.0 0.8 5.2 2.4 7.6 5.8 10.9

 = 02 100 200 98.2 98.8 98.4 99.0 5.6 11.6 2.0 7.0 11.1 17.3

200 100 92.8 95.4 91.6 95.0 1.0 5.0 2.6 6.8 5.6 10.6

200 200 100 100 99.8 99.8 6.0 12.2 2.4 6.8 10.9 17.3

 = 07 100 100 54.2 68.2 56.0 68.4 1.2 5.8 2.8 7.4 5.3 10.3

 = 02 100 200 95.4 98.2 96.0 97.8 5.6 12.4 2.0 7.0 10.0 16.1

200 100 80.4 89.8 81.2 87.8 1.4 6.0 3.0 7.2 5.2 10.1

200 200 99.2 99.4 99.4 99.4 6.6 13.4 2.4 6.4 9.9 16.1

 = 08 100 100 30.2 42.2 35.4 47.6 1.4 5.8 3.0 7.8 4.5 91

 = 02 100 200 73.2 83.2 77.0 84.2 5.2 11.6 2.2 6.6 8.1 13.8

200 100 49.8 61.8 55.2 68.4 1.6 6.4 2.4 7.6 4.5 9.0

200 200 90.8 93.8 91.0 95.0 6.0 12.4 2.2 6.6 8.0 13.9

 = 09 100 100 9.8 18.2 12.8 21.6 0.8 3.2 1.8 7.4 3.4 7.4

 = 02 100 200 23.0 33.8 28.2 38.8 1.8 8.4 2.0 6.2 5.1 9.9

200 100 13.4 25.2 18.8 27.8 0.8 3.2 1.8 7.6 3.3 7.2

200 200 31.0 44.4 38.2 49.8 2.6 8.4 2.2 6.0 5.0 9.8

 = 05 100 100 91.6 93.8 93.4 96.0 2.4 10.2 25.4 31.6 15.9 22.8

 = 05 100 200 100 100 100 100 89.0 91.8 87.2 87.8 11.9 18.2

200 100 100 100 100 100 2.0 10.0 74.0 77.8 6.3 11.3

200 200 100 100 100 100 99.6 99.6 99.4 99.4 5.3 10.7

 = 06 100 100 91.4 93.0 93.0 95.8 3.6 12.6 27.6 33.4 15.3 22.2

 = 05 100 200 100 100 100 100 89.6 92.6 88.0 88.8 11.5 17.8

200 100 100 100 100 100 2.2 14.6 74.8 78.0 6.4 11.2

200 200 100 100 100 100 99.8 99.8 99.8 99.8 5.1 10.4

 = 07 100 100 94.4 95.8 93.6 96.2 5.8 18.2 21.4 26.2 15.3 22.3

 = 05 100 200 100 100 100 100 75.2 80.2 71.2 72.6 14.9 21.5

200 100 100 100 100 100 5.4 24.6 60.0 63.2 8.0 13.1

200 200 100 100 100 100 97.2 97.6 97.2 97.4 5.6 10.8

 = 08 100 100 96.6 97.2 94.0 96.2 7.6 18.6 9.4 14.2 14.0 20.9

 = 05 100 200 100 100 100 100 41.8 49.2 31.2 33.8 21.4 28.3

200 100 100 100 100 100 9.8 26.4 32.8 36.4 10.2 15.9

200 200 100 100 100 100 72.4 76.6 70.4 72.2 10.4 15.9

 = 09 100 100 50.8 65.2 60.0 71.0 2.2 7.6 4.0 8.0 7.5 13.1

 = 05 100 200 91.6 94.6 93.2 96.2 8.0 17.2 5.0 10.2 14.7 21.6

200 100 64.8 76.2 60.8 73.0 2.4 6.4 6.2 12.8 7.1 12.2

200 200 96.0 97.6 93.0 95.0 13.8 23.8 13.4 27.8 13.4 19.6

Note: See the note in Table 1.
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Table 8: Tests for Structural Changes for the Stock Returns

Our test: bootstrap Han and Inoue (2015) Chen et al. (2014)

 5% 10% sup-LM sup-Wald 5% 10% sup-LM sup-Wald 5% 10%

 = 1 21.45 2.99 2.57 3.61 9.75 8.85 7.17 — — — —

 = 2 21.08 8.12 6.25 24.78 16.06 14.15 12.27 14.65 9.35 8.85 7.17

 = 3 26.60 8.62 6.62 25.28 17.61 20.26 18.12 6.27 21.50 11.79 10.01

Notes (i)  denotes the results of our d test using the bootstrap critical value based on  = 500 iterations;
(ii) entries below 5% and 10% denote the corresponding critical values.

(2014) sup-Wald test cannot reject the null for the case of three common factors, and their sup-LM test

cannot reject the null for the case of one common factor, while Chen et al.’s (2014) sup-LM test cannot

reject the null for the case of three common factors. This is consistent with the results of our simulation

studies that the tests of Han and Inoue (2015) and Chen et al. (2014) have relatively low power.

As suggested by one anonymous referee, it is interesting to study the structural change features of the

factor loadings. However, we want to mention that the factor loadings estimated in the second step is

inconsistent under the global alternative, due to the inconsistent PCA estimation of common factors in

the case of non-local structural changes. Figure A.2 in the online supplement plots Su and Wang’s (2017)

local PCA estimates of the time-varying factor loadings for some representative stocks. From the figure we

can see that the estimated factor loadings show significant structural changes that appear very likely to be

smooth changes.

6 Conclusion

Conventional factor models assume the factor loadings, which capture the relationship between random

variables and the latent common factors, to be time-invariant. In fact, shocks induced by policy switch,

preference change, and technology progress may cause structural changes in the relationship. Therefore,

the assumption of time-invariant factor loadings may not hold in practice. In this paper, we propose a

nonparametric test for structural changes in large dimensional factor models. Our test follows a convenient

asymptotic (0 1) distribution under the null hypothesis. By construction, it is powerful in detecting both

smooth structural changes and sudden structural breaks with possibly unknown break dates or unknown

number of breaks. Unlike existing tests such as Breitung and Eickmeier (2011), Chen et al. (2014), Han

and Inoue (2015), Yamamoto and Tanaka (2015), and Cheng et al. (2016), our test does not require any

trimming of the boundary regions and hence could detect any structural changes that occur close to the

starting and ending points of the sample period. We also study the local power property and propose a

bootstrap procedure to improve the finite sample performance of our test. Monte Carlo studies show that

our test has reasonable size and excellent power in detecting various time-varying factor loadings. In an

application to the U.S. asset returns, we find significant evidence against time-invariant factor loadings.
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This Online Supplement contains two appendices. Appendix A is a mathematical appendix that contains

some technical lemmas and the proofs of the theorems and lemmas in the paper. Appendix B contains some

additional simulation and application results.

A Mathematical Appendix

This Mathematical Appendix is composed of three parts. Section A.1 provides some technical lemmas that

are used in the proof of the theorems in Section 3. Section A.2 provides the proofs of the theorems in

Section 3. Section A.3 gives the proofs of the technical lemmas in Section A.1.

A.1 Technical Lemmas

Let  denote the  ×  diagonal matrices of the first  largest eigenvalues of ( )−1 0 arranged
in decreasing order along its diagonal line. Let  = (Λ00Λ0)(
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lemmas whose proofs are relegated to Section A.3.
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and Υ0 denotes the probability limit of Υ defined in the proof of (v).
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In addition, we need the following lemma from Sun and Chiang (1997).

Lemma A.7 Let {  ≥ 1} be a strong mixing process with mixing coefficient  (·)  Let 1 de-

note the distribution function of (1   )  For any integer   1 and integers (1  ) such that
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A.2 Proof of the Theorems in Section 3

Proof of Theorem 3.1. The result in Theorem 3.1 follows as a special case of Theorem 3.2 with ( ) = 0
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V are defined in Theorem 3.2, and V0 = lim( )→∞V  We prove these claims in Propositions A.8-

A.12 below. Noting that 1


P
=1 

¡



¢
=
R 1
0
 ()  +  (1 ) =  (1 ) under the normalization

rule
R 1
0
 ()  = 0 we have Π =  (1 ) for  = 2 3 Combining these results yields d =

V̂−12 (1212̂ − B̂ )
→  (0 1)  where 0 = lim( )→∞Π1 V12  ¥

Proposition A.8 Suppose that the conditions in Theorem 3.2 hold. Then1−B1−Π1
→  (0V0) under

H1 ( ) 

Proof. Using  =  0 +  =  0−10 +  + 
0
 = ̃ 0

−10 +  + 
0
 − (̃ −

3



 0)0−10, we have

̂ −−10 =

Ã
1



X
=1

̃̃
0


!−1
1



X
=1

̃ −−10

= −1
0 1


X
=1

 + 
−1


1



X
=1

̃
0


− −1
1



X
=1

̃

³
̃ − 0

´0
−10 + −1

1



X
=1



³
̃ − 0

´


≡ 1( ) +2( )−3( ) +4( ) say (A.1)

where  =
1


P
=1 ̃̃

0
 By (A.1) we decompose 1 as follows:

1 = 12−12
X
=1

X
=1

k1( ) +2( )−3( ) +4( )k2

= 12−12
X
=1

X
=1

[k1( )k2 + k2( )k2 + k3( )k2 + k4( )k2

+ 21( )
02( )− 21( )

03( )) + 21( )
04( )

−22( )
03( ) + 22( )

04( ))− 23( )
04( )]

≡11 +12 +13 +14 + 215 − 216 + 217 − 218 + 219 − 2110 say.

We prove the proposition by showing that (i) 11 − B1
→  (0V0)  (ii) 12 = Π1 +  (1)  and

(iii) 1 =  (1) for  = 3  10
We first prove (i). We decompose the 11 term as follows:

11 =
12

12

X
=1

X
=1

°°°°°−1  0 1


X
=1



°°°°°
2

=
12

 212

X
=1

X
=1

X
=1


0
−1 

−1
 

0
X
=1



=
12

 212

X
=1

X
=1

X
=1

2
0
−1 

−1


02 +
212

 212

X
=1

X
=1

X
1≤≤


0
S

+
212

 212

X
=1

X
=1

X
1≤≤


0


¡
−1 

−1
 

0 − S¢ ≡
(1)
11 +

(2)
11 +

(3)
11 

where S ≡Σ−1 000Σ
−1
 . Apparently, 

(1)
11 = B1  For 

(2)
11  we make the following decomposition


(2)
11 =

212

 212

X
=1

X
=1

X
1≤≤


0
S

=
2

1212

X
=1

X
1≤≤

̄

µ
− 



¶
 0S

+
2

1212

X
=1

X
1≤≤

"




X
=1

 − ̄

µ
− 



¶#
 0S ≡

(21)
11 +

(22)
11 

4



where ̄ () =
R 1
−1 () (− )  Let  = −1−12−12

P−1
=1 ̄

¡
−


¢
 0S0, then

(21)
11 =

2
P

=2  and  (|F−1) = −1−12−12
P−1

=1 ̄
¡
−


¢
 0S (0|F−1)  = 0 By

the martingale central limit theorem (e.g., Pollard, 1984, p.171), it suffices to prove V−12 
(21)
11

→ (0 1)
by showing that

Z ≡
X
=2


¡
4|F−1

¢
=  (1) and

X
=2

2 −V =  (1)  (A.2)

First, we verify the first part of (A.2). Observing that Z ≥0 it suffices to show Z =  (1) by showing that
 (Z) =  (1) by Markov inequality. Let ̄ = ̄

¡
−


¢
and  =  0S0. We have

 (Z) =
X
=2



⎧⎨⎩
"

2

1212

−1X
=1

̄

#4⎫⎬⎭
=

16

 422

X
=2



⎡⎣−1X
=1

̄4
4
 + 2

X
1≤12≤−1

̄21 ̄
2
2

21
2
2

+4
−1X
=1

X
1≤12≤−1

̄2̄1 ̄2
2
12 + 4

X
1≤12≤−11≤12≤−1

̄1̄2̄1̄21212

⎤⎦
≡ Z1 +Z2 +Z3 +Z4 say.

Noting that max
°°−12°°44 ≤  under Assumption A.3(v), we can readily show that under Assump-

tion A.4

Z1 ≤ max


°°°−12°°°4
4

16

 42

X
=2

−1X
=1

̄4 = 
¡
−2−1

¢
Z2 ≤ max



°°°−12°°°4
4

32

 42

X
=2

X
1≤12≤−1

̄21 ̄
2
2
= 

¡
−1

¢


Z3 ≤ max


°°°−12°°°4
4

64

 42

X
=2

−1X
=1

X
1≤12≤−1

̄2̄1 ̄2 =  () 

For Z4 we can apply Assumptions A.3(iii) and (v) and A.5 along with the Davydov inequality to show that

Z4 = 64

 422

X
=2

X
1≤12≤−11≤12≤−1

̄1̄2̄1̄2
¡
1212

¢
=  () 

Thus  (Z) =  (1) and Z =  (1).

To verify the second part of (A.2), it suffices to show (I)
P

=2
¡
2

¢
= V + (1), and (II)

Var(
P

=2 
2
) =  (1) by Chebyshev inequality. These two claims can be easily proved if we also

assume independence of {· = (1   )
0} across  conditional on the factor. Here we prove them

5
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×222). Since  is fixed and ’s are finite,  = (1) provided  (12 1 2) = (1) for
each quadruple (12 1 2). We consider three cases (1) |−2|  0, (2) |−2| ≤ 0 and |2−1|  0,

and (3) |− 2| ≤ 0 and |2 − 1| ≤ 0. We use 
()
 (12 1 2) to denote  (12 1 2) when

the time indices are restricted to case () for  = 1 2 3. In case (1), we apply Lemma A.7 and the fact that
(1

0
2
12) = 0 for 1 6= 2 under Assumption A.3(iii) to obtain

|() (12 1 2)| ≤ −2−1−1
X

12

X
=1

X
=1

̄1 ̄2(0)
(1+) = 

³
(0)

(1+)
´
= (1)

In case (2), we apply Lemma A.7 and the fact that (11) = 0 to obtain

|() (12 1 2)| ≤ −2−1−1
X

12

X
=1

X
=1

̄1 ̄2(0)
(1+) = 

³
(0)

(1+)
´
= (1)

In case (3), we have¯̄̄

(3)
 (12 1 2)

¯̄̄
= −2−1−1

X
12 case (3)

̄1 ̄2
¯̄

¡


0
1


0
2
12

¢¯̄
≤ max


max


°°°−120°°°2
2
−2−1

X
12 case (3)

̄1 ̄2 = 
¡
−1 20 

¢
=  (1) 

where we use the fact that the total number of terms in the summation over the three time indices for 
(3)


are of order 
¡
 20

¢
 In sum, we have shown that  =  (1) and

P
=2

¡
2

¢
= V +  (1) 

6



Now, we want to prove (II) by showing that (
P

=2 
2
)

2 = V2 +  (1)  Noting that



Ã
X
=2

2

!2
=

1

 422


⎛⎝ X
=2

"
−1X
=1

̄

#2⎞⎠2

=
1

 422


Ã
X
=2

−1X
=1

̄2
2


!2
+

1

 422


⎛⎝ X
=2

X
1≤1 6=2≤−1

̄1 ̄212

⎞⎠2

+
2

 422


⎡⎣Ã X
=2

−1X
=1

̄2
2


!
X
=2

X
1≤1 6=2≤−1

̄1 ̄212

⎤⎦
≡ 1 + 2 + 3  say,

it suffices to show that (a) 1 = V2+ (1) and (b) 2 =  (1), because then 3 ≤ 2 {1 2}12
=  (1) by Cauchy-Schwarz (CS) inequality. Note that 1 =

1
422

P
1≤11≤1≤11≤ ̄211 ̄

2
22

×(211222) and V2 =
1

 422

P
1≤11≤1≤22≤ ̄211 ̄

2
22


¡
211

¢

¡
222

¢
 Let S3 = {1 1

2 2}We consider two cases: (1) for each  ∈ S3, |− |  0 for all  ∈ S3 with  6=  and (2) all the other

remaining cases. Let S31 and S32 denote the subsets of S3 corresponding to these two cases, respectively.
For  = 1 2 let 1 () and V2 () denote 1 and V2 when the time indices are restricted to lie in

S3, respectively. Note that 1 = 1 (1) + 1 (2) and V2 = V2 (1) + V2 (2)  In case (2), we
have by Assumptions A.3(iii), (v) and A.4

1 (2) ≤ max


°°−12°°22 1

 42

X
1≤11≤1≤22≤

case (2)

̄211 ̄
2
22

= 
¡
0

−1¢ =  (1) 

V2 (2) ≤ max


£

¡
−12

¢¤2 1

 42

X
1≤11≤1≤22≤

case (2)

̄211 ̄
2
22

= 
¡
0

−1¢ =  (1) 

where we use the fact that there are at most  30 terms in the above displayed summations. In case (1),

we consider six subcases: (1a) 1  1  2  2 (1b) 2  2  1  1 (1c) 1  2  1  2 (1d)

2  1  1  2 (1e) 1  2  2  1 and (1f) 2  1  2  1 We use 1 (1 ) and V2 (1 )
to denote 1 (1) and V2 (1)  respectively, when the summation over the time indices are restricted to
satisfy the conditions in subcase (1) for  =       First, we study subcase (1a). By Lemma A.7,

Assumptions A.3(iii), (v) and A.4

1 (1 ) =
1

 422

X
1122 S31

̄211 ̄
2
22


¡
211

2
22

¢
=

1

 422

X
1122 S31

X
1122

̄211 ̄
2
22

(21111111111
2
22

22222222)

≤ 1

 422

X
1122 S31

X
1122

̄211 ̄
2
22

{ ¡21111111111¢
× ¡22222222222¢+  (0)

(1+)}
=

1

 422

X
1122 S31

X
1122

̄211 ̄
2
22


¡
211

¢

¡
222

¢
+(2 (0)

(1+)
)

= V2 (1 ) +  (1) 

where  =  0S
P

1122
denotes

P
1=1

P
1=1

P
2=1

P
2=1

 and
P

1122 S31 indicates the
summation is done over the four time indices satisfying the condition in case (1) (corresponding to S31).
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By the same token, 1 (1 ) = V2 (1 ) +  (1)  Now, consider subcase (1c). For notational simplicity,
we assume that  = 1 so that each term in  0S is a scalar. [Otherwise, we need to utilize  0S =P

=1

P
=1  as in the analysis of Part (I) ]. By applying Lemma A.7 three times, we have

1 (1 ) =
1

 422

X
1212S31

̄211 ̄
2
22


¡
211

2
22

¢
=

S4

 422

X
1212S31

X
1122

̄211 ̄
2
22


¡
 21

2
2
 21

2
2
1111111122222222

¢
≤ S4

 422

X
1212S31

X
1122

̄211 ̄
2
22

{ ¡ 21 2211112222¢
× ¡ 21 2211112222¢+  (0)

(1+)}

≤ S4

 422

X
1212S31

X
1122

̄211 ̄
2
22

{ ¡ 211111¢ ¡ 222222¢
× ¡ 211111¢ ¡ 222222¢+ 2 (0)(1+)}

=
S4

 422

X
1212S31

X
1122

̄211 ̄
2
22


¡
 211111

¢

¡
 222222

¢
× ¡ 211111¢ ¡ 222222¢+  (1) 

Similarly,

V2 (1 ) =
1

 422

X
1212S31

̄211 ̄
2
22


¡
211

¢

¡
222

¢
=

S4

 422

X
1212S31

X
1122

̄211 ̄
2
22


¡
 21

2
2
11112222

¢
× ¡ 21 2211112222¢

≤ S4

 422

X
1212S31

X
1122

̄211 ̄
2
22

{ ¡ 211111¢ ¡ 222222¢
× ¡ 211111¢ ¡ 222222¢+  (0)

(1+)}

=
S4

 422

X
1212S31

X
1122

̄211 ̄
2
22


¡
 211111

¢

¡
 222222

¢
× ¡ 211111¢ ¡ 222222¢+  (1) 

It follows that 1 (1 ) = V2 (1 )+ (1)  Analogously, we can show that 1 (1 ) = V2 (1 )+ (1)
for  =    Consequently, we have 1 (1) = V2 (1)+ (1) and 1 = V2 + (1)  Using arguments
as used in the analysis of 1 and Lemma A.7, we can also show that

2 =
1

 422

X
1=2

X
2=2

X
1≤1 6=2≤1−1

X
1≤3 6=4≤2−1

̄11 ̄12 ̄23 ̄24
¡
11122324

¢
= 

³
−1−2 +22 (0)

(1+)
+ −2 40 + −2 30 

−1 + −2 20 
−2
´
=  (1) 

It follows that (
P

=2 
2
)

2 = V2 + (1) and Var(
P

=2 
2
) =  (1)  Then the second part of (A.2)

follows by Chebyshev inequality. In addition, by straightforward moment calculations, we can show that

8




(22)
11 =  (1)  It follows that 

(2)
11

→  (0V0)  For 
(3)
11  by the matrix version of Cauchy-Schwarz

inequality, Jensen inequality, and Lemma A.3(v), we have

¯̄̄


(3)
11

¯̄̄
=

12

 212

¯̄̄̄
¯̄ X
=1

tr

⎡⎣¡−1 
−1


0 − S¢ X
=1

X
1≤≤


0


⎤⎦¯̄̄̄¯̄
≤ max



°°−1 
−1


0 − S
°° 12

 212

X
=1

°°°°°°
X
=1

X
1≤≤


0


°°°°°°
≤ max



°°−1 
−1


0 − S
°°
⎧⎪⎨⎪⎩ 

 3

X
=1

°°°°°°
X
=1

X
1≤≤


0


°°°°°°
2
⎫⎪⎬⎪⎭
12

= 

³
()−12 (ln )12 +−12

´
 (1) =  (1) 

where we also use the fact that 

µ


3

P
=1

°°°P
=1

P
1≤≤ 

0


°°°2¶ = (1) by using

Lemma A.7 and arguments as used in the above study of 1 . Consequently, we have shown that 11 −
B1

→  (0V0) 

Next, we prove (ii). Using  = −12−14−14 ̃ =  0+(̃− 0) and Lemmas A.3(i), (v)
and A.5(i), we have

12 =
12

12

X
=1

X
=1

k2( )k2 = 2
12

12

X
=1

X
=1

°°°°°−1 1
X
=1

̃
0


°°°°°
2

=
1



X
=1

X
=1

tr

Ã
−1

1



X
=1

̃
0


1



X
=1


0
̃

0

−1


!

=
1



X
=1

X
=1

tr

Ã
−1 

−1


0 1


X
=1


0


1



X
=1


0


0


!
+

¡
−2

¢
=

1



X
=1

X
=1

tr

Ã
Σ−1 000Σ

−1
 Σ 

µ




¶


µ




¶0
Σ

!
+  (1)

=
1



X
=1

X
=1

tr

Ã
0

µ




¶


µ




¶0
00

!
+  (1) = Π1 +  (1) 

Now, we prove (iii). For 13 we apply Lemmas A.3(i)-(ii) and (iv) and triangle inequality to obtain

13 =
12

12

X
=1

X
=1

k3( )k2 = 12

12

X
=1

X
=1

°°°°°−1 1
X
=1

̃

³
̃ − 0

´0
−10

°°°°°
2

≤ 1212
°°−1°°max



°°−1 °°2
(
1



X
=1

k0k2
)
max


°°°°° 1
X
=1

̃

³
̃ − 0

´0°°°°°
2

= 1212 (1)
³


¡
−1 ln +−1

¢2
+ 

¡
2

¢´
=  (1) 
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By Lemma A.4(iv) and triangle inequality, we obtain

14 =
12

12

X
=1

X
=1

k4( )k2 = 12

12

X
=1

X
=1

°°°°°−1 1
X
=1

³
̃ − 0

´


°°°°°
2

≤ 1212max


°°−1 °° 1



X
=1

X
=1

°°°°° 1
X
=1

³
̃ − 0

´


°°°°°
2

= 1212 (1)
³


³
−32 + −2

´
+ 

¡
2

¢´
=  (1) 

For 15 we have

|15| = 
12

 212

¯̄̄̄
¯
X
=1

X
=1

X
=1


0
−1 

−1


X
=1

̃
0


¯̄̄̄
¯

≤ max


°°°°° 1
X
=1

̃
0


°°°°° 14

 3234

X
=1

°°°°°
X
=1

X
=1

 0−1 
−1


°°°°° 
By Lemma A.4(i), max

°°° 1 P
=1 ̃

0


°°° =  (1)  In addition,

14

 3234

X
=1

°°°°°
X
=1

X
=1


0
−1 

−1
 

0 0−1
°°°°°

≤ 14

 3234

X
=1

°°°°°
X
=1

X
=1


0
Σ

−1
 000Σ

−1


°°°°°°° 0−1°°
+

14

 3234

X
=1

°°°°°
X
=1

X
=1


0


¡
−1 

−1


0 − Σ−1 000Σ
−1


¢°°°°°°° 0−1°°
≡ {1 + 2}

°° 0−1°°  say.
Noting that under Assumptions A.3(ii), (v) and A.4



 2

X
=1



°°°°°
X
=1

X
=1

 0

°°°°°
2

=


 2

X
=1

X
=1

X
=1

X
=1

2 (
0
)

≤ max


°°°°° 
X
=1

2

°°°°° kΣ k2 1



X
=1

X
=1

X
=1

| | =  (1) 

we have 12

12

P
=1

°°°P
=1

P
=1 

0


°°° ≤ ½


2

P
=1

°°°P
=1

P
=1 

0


°°°2¾12 =  (1) and

1 =  ( )  For 2 we have by Lemmas A.4(ii) and A.3(v)

2 ≤ 14

 3234

X
=1

°°°°°
X
=1

X
=1


0


¡
−1 

−1
 

0 −Σ−1 000Σ
−1


¢°°°°°
≤ 14 1214max



°°°°° 1
X
=1


0


°°°°° 1



X
=1

X
=1

°°−1 
−1
 −Σ−1 000Σ

−1


°°
= 14 1214

³
−12−12 ln ( )

´


³
−12−12 (ln )12 +−12

´
= 

³
−12−3414 ln( )(ln )12 +−14−14 ln( )

´
=  (1) 
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It follows that 15 =  (1) 
For 16 we have by Lemmas A.3(i)-(ii) and (iv),

|16| =
12

 212

¯̄̄̄
¯
X
=1

X
=1

X
=1

 0−1 
−1


X
=1

̃

³
̃ − 0

´0
−10

¯̄̄̄
¯

=
12

 212

¯̄̄̄
¯
X
=1

tr

"Ã
X
=1

X
=1

0
0


!
−1 

−1


X
=1

̃

³
̃ − 0

´0
−1

#¯̄̄̄
¯

≤ max


°°−1 °°°°−1°° kkmax
°°°°° 1

X
=1

̃

³
̃ − 0

´0°°°°°
×
⎧⎨⎩ 



X
=1

°°°°°
X
=1

X
=1

0
0


°°°°°
2
⎫⎬⎭
12

=
£


¡
−1 ln +−1

¢
+  ( )

¤
( 12) =  (1) 

where we also use the fact that under Assumptions A.3(ii), (v) and A.4





X
=1



°°°°°
X
=1

X
=1

0
0


°°°°°
2

=




X
=1

X
=1

X
=1

X
=1

2 (
0
)

0
00

≤ 

Ã
max






X
=1

2

!
1



X
=1

X
=1

X
=1

| |

=  (1) (1) =  ( ) 

For 17 we apply (A.8) in the supplementary appendix to make the following decomposition

17 =
12

 212

X
=1

X
=1

 0−1

X
=1

(̃ − 0)

=
12

 212

X
=1

X
=1

 0−1

X
=1

 [1() +2() +3() +4()]

≡ 
(1)
17 +

(2)
17 +

(3)
17 +

(4)
17  say.

By straightforward calculations, we can show that 
()
17 =  (1) for  = 1 2 3 4 It follows that 17 =

 (1) 

Finally, 18 ≤ {1213}12 =  (1)  19 ≤ {1214}12 =  (1)  and 110 ≤ {1314}12
=  (1) by CS inequality and the fact that 12 =  (1) and 1 =  (1) for  = 3 4. Consequently,

1 − B1 −Π1
→  (0V0).

Proposition A.9 Suppose that the conditions in Theorem 3.2 hold. Then2−B2−Π2 =  (1) under

H1 ( ) 

Proof. Using  =  0 +  =  00 + ( + 
0
) =  00 + 

†
 with 

†
 =  + 

0
 and

by Bai (2003, p.165), we have

̃0 −−10 =  0 1


X
=1


†
 +

1



X
=1

(̃ −)
†
 −

1


̃ 0(̃−1 −  )0

≡ 5() +6()−7() say. (A.3)
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By (A.3), we make the following decomposition for 2 :

2 = −1212
X
=1

X
=1

°°°̃0 −−10
°°°2 = −1212

X
=1

k5() +6()−7()k2

= −1212
X
=1

h
k5()k2 + k6()k2 + k7()k2 + 25()

06()− 25()
07()− 26()

07()
i

≡21 +22 +23 + 224 − 225 − 226 say.

We prove the proposition by showing that (i) 21 − B2 − Π2 =  (1) and (ii) 2 =  (1) for
 = 2 3  6
To prove (i), we use 

†
 =  + 

0
 and further make the following decomposition:

21 =
12

12

X
=1

X
=1


†


0
 0

X
=1


†


=
12

12

X
=1

X
=1

X
=1

 0 0 +
2

12

12

X
=1

X
=1

X
=1

 0
0
 0 0

+
2

12

12

X
=1

X
=1

X
=1

 0 0 0 ≡
(1)
21 +

(2)
21 + 2

(3)
21  say.

For 
(1)
21 we make the following decomposition:


(1)
21 =

12

12

X
=1

X
=1

 0 02 + 2
−1−1212

X
=1

X
1≤≤

 0
−1
0 −1

0
0 

+ 2−1−1212
X
=1

X
1≤≤

 0( 0 −−10 −1
0

0 )

≡
(11)
21 + 2

(12)
21 + 2

(13)
21  say

Apparently, 
(11)
21 = B2 . Using the fact that  −−10 =  (

−1
 ) under H1 ( ), we can show that


(12)
21 =  (1) and 

(13)
21 =  (1) by arguments as used in the analyses of 

(2)
11 and 

(3)
11  respectively.

By Lemmas A.2(vi) and A.5(ii), we have


(2)
21 =

2
12

12

X
=1

X
=1

 0
0
 0

X
=1


0


= tr

"
 0 1



X
=1

Ã
1



X
=1


0


!Ã
1



X
=1

 0
0


!#

=
1



X
=1

tr

"
−10 (

−1
0 )0Σ

1



X
=1


1



X
=1

0Σ

#
+  (1) = Π2 +  (1) 

12



For 
(3)
21  we have¯̄̄


(3)
21

¯̄̄
=


12

12

¯̄̄̄
¯tr
Ã
 0

X
=1


0


X
=1

X
=1


0


!¯̄̄̄
¯

≤ kk2 14

 3234

°°°°°
X
=1

 (
0
)

X
=1

X
=1


0


°°°°°
+ kk2 14

 3234

°°°°°
X
=1

[
0
 − (

0
)]

X
=1

X
=1


0


°°°°° ≡
(31)
21 +

(32)
21 

Noting that under Assumptions A.1(i), A.3(ii), (v) and A.5(i),



Ã
1

 3234

°°°°°
X
=1

Σ

X
=1

X
=1


0


°°°°°
!2

=
1

 332

X
=1

X
=1

X
=1

X
=1

X
1=1

tr(Σ  
0
1
Σ )

≤ 
1

32

X
=1

X
=1

X
=1

| | = (−12)

we have 
(31)
21 = kk2 14

3234

°°°P
=1Σ

P
=1

P
=1 

0


°°° = 14 (
−14) =  (1)  Similarly,

noting that
³
1


P
=1

°°°P
=1 

0


°°°´2 = 1
2

P
=1

P
=1

P
=1

P
=1 (

0
) =

1
2

P
=1

P
=1

P
=1  

= (), we have


(32)
21 = kk2 14

 3234

°°°°°
X
=1

X
=1

[
0
 − (

0
)] 

X
=1


0


°°°°°
≤

(
max


°°°°° 1
X
=1

[
0
 − (

0
)] 

°°°°°
)
kk2 14

 1234

X
=1

°°°°°
X
=1


0


°°°°°
=  (

−12 ln) (
14−14) =  (1) 

Thus 21 = B2 +Π2 +  (1) 

Now we prove (ii). By Lemma A.4(iii) and Lemma A.2 (iii)-(vi),

22 = −1212
X
=1

k6()k2 = 1212
1



X
=1

°°°°° 1
X
=1

(̃ −)
†


°°°°°
2

= 1212 (
−4
 ) =  (1) and

23 = −1212
X
=1

k7()k2 ≤ 1212
°°°° 1 ̃ 0(̃−1 −  )

°°°°2 1
X
=1

k0k2

= 1212 (
−4
 ) =  (1) 

By CS inequality 26 ≤ {2223}12 =  (1)  For 24 we apply Lemma A.4(iii) to obtain

|24| = −1212
¯̄̄̄
¯
X
=1

5()
06()

¯̄̄̄
¯ = −1212

¯̄̄̄
¯
X
=1

1



X
=1


†


0


1



X
=1

(̃ −)
†


¯̄̄̄
¯

≤ 1212

⎧⎨⎩ 1



X
=1

°°°°° 1
X
=1


†


0


°°°°°
2
⎫⎬⎭
12⎧⎨⎩ 1



X
=1

°°°°° 1
X
=1

(̃ −)
†


°°°°°
2
⎫⎬⎭
12

= 1212 (
−12) (

−2
 ) =  (1) 

13



where we use the fact that 1


P
=1|| 1

P
=1 

†


0
||2 ≤ 2



P
=1|| 1

P
=1 

0
||2+2



P
=1|| 1

P
=1

0
0
||2 = (−1 + 2 ) = (−1) Now,

25 = −1212
¯̄̄̄
¯
X
=1

5()
07()

¯̄̄̄
¯ = −1212

¯̄̄̄
¯
X
=1

1



X
=1


0


1


̃ 0(̃−1 −  )0

¯̄̄̄
¯

= −1−1212
¯̄̄̄
¯tr
Ã
̃ 0(̃−1 −  )

X
=1

X
=1

0
0


!¯̄̄̄
¯

≤  1212 kk
n
−1

°°°̃ 0(̃−1 −  )
°°°o°°°°°−12−12

X
=1

X
=1

0
0


°°°°°
=  1212 (

−2
 ) =  (1) 

Thus we have shown that 2 =  (1) for  = 2 3  6 and the second part of the lemma follows.

Proposition A.10 Suppose that the conditions in Theorem 3.2 hold. Then3−B3−Π3 =  (1) under

H1 ( ) 

Proof. By (A.1) and (A.3), we can write 3 as follows:

3 =
12

12

X
=1

X
=1

³
̂ −−10

´0 ³
̃ −−10

´
=

12

12

X
=1

X
=1

[1( ) +2( )−3( ) +4( )]
0 [5() +6()−7()]

=
12

12

X
=1

X
=1

[1( )
05() +1( )

06()−1( )
07() +2( )

05()

+2( )
06()−2( )

07()−3( )
05()−3( )

06() +3( )
07()

+4( )
05() +4( )

06()−4( )
07()]

≡
12X
=1

3 say.

We prove the proposition by showing that (i) 31 = B3 +  (1)  (ii) 34 = Π3 +  (1) and (iii)
3 =  (1) for  = 2 3 5 6  12
First, we show (i). We decompose 31 as follows:

31 =
12

12

X
=1

X
=1

1( )
05() =

12

 212

X
=1

X
=1

X
=1

X
=1


0
−1 

0
†


=
12

 212

X
=1

X
=1

X
=1

X
=1


0
−1 

0 +


12

 212

X
=1

X
=1

X
=1

X
=1


0
−1 

0 0

=
12

 212

X
=1

X
=1

X
=1


0
−1

02 +
12

 212

X
=1

X
=1

X
1≤6=≤


0
−1

0

+


12

 212

X
=1

X
=1

X
=1

X
=1


0
−1 

0 0

≡
(1)
31 +

(2)
31 +

(3)
31  say.
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Apparently 
(1)
31 = B3  Following the analysis of 11, we can readily show that 

(2)
31 =  (

12) and


(2)
31 =  (

−1214−14) =  (1)  It follows that 31 = B3 +  (1) 

Next, we show (ii). Using 
†
 =  + 

0
 we decompose 34 as follows:

34 =
12

12

X
=1

X
=1

2( )
05() =


12

 212

X
=1

X
=1

X
=1


0
̃

0

−1
 

0
X
=1


†


=


12

 212

X
=1

X
=1

X
=1


0
̃

0

−1
 

0
X
=1



+
2

12

 212

X
=1

X
=1

X
=1


0
̃

0

−1
 

0
X
=1


0
 ≡

(1)
34 +

(2)
34  say.

For 
(1)
34  by Lemmas A.2(iv) and A.3(iv) we have

¯̄̄


(1)
34

¯̄̄
≤ 

12

 212

¯̄̄̄
¯
X
=1

X
=1

X
=1


0


0
−1 

0
X
=1



¯̄̄̄
¯+  (1)

=


12

 212

¯̄̄̄
¯
X
=1

tr

Ã
−1

0
X
=1

X
=1

X
=1


0


0


!¯̄̄̄
¯+  (1)

=
14

 5234
kk2max



°°−1 °° X
=1

°°°°°
X
=1

X
=1


0


0


X
=1



°°°°°+  (1)

=
14

 5234
 (

12 52−12) +  (1) =  (1) 

Noting that −1
0 = −10

¡
(−10 )0Σ−10

¢−1
(−10 )

0 +  (1) = Σ
−1
 +  (1) uniformly in  by Lemmas

A.2(vi) and A.3(iv), we have by Lemmas A.2(vi) and A.5(i)-(ii)


(2)
34 =

1

 3

X
=1

X
=1

X
=1


0
̃

0

−1


0
X
=1


0


=
1



X
=1

1

 2

X
=1

X
=1


0


0
−1

0 1


X
=1


0
 +  (1)

=
1



X
=1

X
=1

tr

"
−1 

0
Ã
1



X
=1


0


!Ã
1



X
=1


0


0


!#

=
1



X
=1

tr

"
Σ−1 Σ

1



X
=1



³ 


´ 1



X
=1



µ




¶0
Σ

#
+  (1) = Π3 +  (1) 

It follows that 34 = Π3 +  (1) 
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Now, we prove (iii). We first consider 32 and 33 Note that by Lemmas A.2(vi) and A.3(iv),

12

 2

X
=1

°°°°°
X
=1

X
=1


0
−1 

°°°°°
2

≤ 212

 2

X
=1

°°°°°
X
=1

X
=1


0
Σ
−1
 00

°°°°°
2

+
212

 2

X
=1

°°°°°
X
=1

Ã
X
=1


0


¡
−1 −Σ−1 00

¢!°°°°°
2

≤ 212

 2

X
=1

°°°°°
X
=1

X
=1


0
Σ
−1
 00

°°°°°
2

+212 max


°°°°° 1
X
=1


0


°°°°°
2 °°°°°

X
=1

°°−1 −Σ−1 00
°°°°°°°

2

=  (12) + 12 (
−1−1 ln ( )) (

2(()−1 ln +−1)) =  (12)

By analogous analysis as used in the study of 
(2)
11 and 

(3)
11 and Lemma A.4(ii), we have

32 =
12

12

X
=1

X
=1

1( )
06() =

12

12

X
=1

X
=1

X
=1


0
−1 

1



X
=1

(̃ −)
†


≤
⎧⎨⎩ 

 2

X
=1

°°°°°
X
=1

X
=1


0
−1 

°°°°°
2
⎫⎬⎭
12⎧⎨⎩ 1



X
=1

°°°°° 1
X
=1

(̃ −)
†


°°°°°
2
⎫⎬⎭
12

=  (
12 1212) (

−2
 ) =  (1) 

Similarly, noting that

12

12

°°°°°
X
=1

X
=1

X
=1

0
0
−1 

°°°°°
≤ 12

12

°°°°°
X
=1

X
=1

X
=1

0
0
Σ
−1
 00

°°°°°+ 12

12

°°°°°
X
=1

X
=1

X
=1

0
0


¡
−1 −Σ−1 00

¢


°°°°°
=  (

1212)

we have by Lemma A.2(iii)

33 =
12

12

X
=1

X
=1

1( )
07() =

12

12

X
=1

X
=1

X
=1


0
−1 

1


̃ 0
h
̃−1 − 

i
0

=
12

12
tr

Ã
X
=1

X
=1

X
=1

0
0
−1 

1


̃ 0
h
̃−1 − 

i!

≤
°°°° 1 ̃ 0

h
̃−1 − 

i°°°° 12

12

°°°°°
X
=1

X
=1

X
=1

0
0
−1 

°°°°°
= 

¡
−2 + 

¢
 (

1212) =  (1) 

For 35 36 38 39 311 and 312 we apply CS inequality and the fact that 12 =  (1) 
1 =  (1) for  = 3 4 and 2 =  (1) for  = 2 3 to obtain

|35| ≤ {1222}12 =  (1)  |36| ≤ {1223}12 =  (1)  |38| ≤ {1322}12 =  (1) 

|39| ≤ {1323}12 =  (1)  |311| ≤ {1422}12 =  (1)  |312| ≤ {1423}12 =  (1) 

16



For 37 we have

|37| =
12

12

X
=1

X
=1

3( )
05() =


12

 212

X
=1

X
=1

X
=1


0
0

0−1
³
̃ − 0

´
̃ 0

−1
 

0
X
=1


†


=
14

 5234

¯̄̄̄
¯
X
=1

X
=1

tr

Ã


0−1
³
̃ − 0

´
̃ 0

−1
 

0
X
=1

X
=1


†


0
0

!¯̄̄̄
¯

=
14

 5234

¯̄̄̄
¯
X
=1

X
=1

tr

Ã


0−1
³
̃ − 0

´
̃ 0

−1
 

0
X
=1

X
=1


†


0
0

!¯̄̄̄
¯

≤ −1414
°°−1°°

⎧⎨⎩ 1
X
=1

°°°°° 1
X
=1



³
̃ − 0

´
̃ 0

°°°°°
2
⎫⎬⎭
12⎧⎨⎩ 1

 2

X
=1

°°°°°
X
=1

X
=1


†


0
0

°°°°°
2
⎫⎬⎭
12

= −1414

¡
−2

¢


³
1 +12 12

´
=  (1) 

Similarly, we can show that310 =
12

12

P
=1

P
=14( )

05() =
12

212

P
=1

P
=1

P
=1 (̃−

 0)0 −1 
0 1


P
=1 

†
 =  (1)  Consequently, we have 3 = B3 +Π3 +  (1) 

Proposition A.11 Suppose that the conditions in Theorem 3.2 hold. Then B̂ − B =  (1) under

H1 ( ) 

Proof. Let  =
¡


−1
 − I

¢ ¡


−1
 − I

¢
 Using ̃2 − 2 = (̃ − )

2 + 2 (̃ − )  we
have

B̂ − B =
12

 212

X
=1

X
=1

X
=1

tr
h
(̃̃

0
̃
2
 − 0 02)

i
=

12

 212

X
=1

X
=1

X
=1

{tr(̃̃ 0) (̃ − )
2 + 2tr(̃̃

0
) (̃ − ) 

+tr[(̃̃
0
 − 0 0)]

2
}

≡ 1 + 22 +3 say.

It suffices to show that (i1) 1 =  (1)  (i2) 2 =  (1)  and (i3) 3 =  (1) 
We first show (i1). We make the following decomposition:

 − ̃ = ̃
0
0̃ − 0 = ̃

0
0̃ − 00

0−1 0 − 
0


= (̃0 −
−1
0)

0̃ + 00
0−1(̃ − 0)− 

0
 ≡ 1 + 2 − 3 say. (A.4)

By CS inequality, 1 ≤ 312

212

P
=1

P
=1

P
=1tr

³
̃̃

0


´ ¡
21 + 22 + 23

¢ ≡ 311 + 312 + 313
say. By Lemmas A.6(i) and (iv),

11 =
12

 212

X
=1

X
=1

X
=1

̃ 0̃̃
0
(̃ −

−1
0)(̃ −

−1
0)

0̃

≤ 1212

(
1



X
=1

°°°̃ −
−1
0

°°°2) 1

 2

X
=1

X
=1

̃ 0̃̃
0
̃

= 1212 (
−2
 ) (

−1) =  (1) 
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Noting that  ≤ 2
−1
 

−1
 + I by Lemmas A.3(iv) and A.6(iii) and (v)

12 =
12

 212

X
=1

X
=1

X
=1

tr
h
̃(̃ − 0)0

−1
0

0
0

0−1(̃ − 0)̃ 0
i

≤ 12

 212

X
=1

X
=1

X
=1

tr
h¡
2

−1
 

−1
 + I

¢
̃(̃ − 0)0

−1
0

0
0

0−1(̃ − 0)̃ 0
i

≤ 1212
°°−1°°2 1

(
1



X
=1

k0k2
)
1



X
=1

°°°̃(̃ − 0)0
°°°2

= 1212

¡
−1

¢
 (1) (

−2
 + −1−2) =  (1) 

and

13 =
12

 212

X
=1

X
=1

X
=1

̃ 0̃
2
3 =

2
12

 212

X
=1

X
=1

X
=1

̃ 0̃ (
0
)

2

≤ 1

 3

X
=1

X
=1

X
=1

tr
h¡
2

−1
 

−1
 + I

¢
̃̃

0
 (

0
)

2
i

≤ 1

1

 2

X
=1

X
=1

°°°̃°°°2 kk2 kk2 ≤ ̄21



(
1



X
=1

°°°̃°°°4 1


X
=1

kk4
)12

= 

¡
−1−1

¢
 (1) =  (1) 

where 1 ≡ max
°°−1 °°2max 1



P
=1 

2
 + 1 = 

¡
−1

¢
.

Next, we show (i2). Using (A.4), we decompose 2 as follows

2 =
12

 212

X
=1

X
=1

X
=1

tr(̃̃
0
) (̃ − ) 

=
12

 212

X
=1

X
=1

X
=1

tr(̃̃
0
) (−1 − 2 + 3)  ≡ −21 −22 +23 say.

By (A.3), we further decompose 21:

21 =
12

 212

X
=1

X
=1

X
=1

tr(̃̃
0
)̃

0


³
̃ −

−1
0

´


=
12

 212

X
=1

X
=1

X
=1

tr(̃̃
0
)̃

0
 [5() +6()−7()]  ≡ 

(1)
21 +

(2)
21 −

(3)
21  say.

For 
(1)
21  we have


(1)
21 =

12

 212

X
=1

X
=1

tr(̃̃
0
)̃

0


0
Ã
1



X
=1

X
=1


†


!

≤ kk
⎧⎨⎩ 

 3

X
=1

°°°°°
X
=1

tr(̃̃
0
)̃

0


°°°°°
2
⎫⎬⎭
12⎧⎨⎩ 1



X
=1

°°°°° 1
X
=1

X
=1


†


°°°°°
2
⎫⎬⎭
12
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Using  ≤ 2
−1
 

−1
 + I and Lemma A.6(ii),



 3

X
=1

°°°°°
X
=1

tr(̃̃
0
)̃

0


°°°°°
2

≤ 

 3

X
=1

°°°°°
X
=1

tr[
¡
2

−1
 

−1
 + I

¢
̃̃

0
]̃

0


°°°°°
2

≤ 21





X
=1

°°°̃°°°6
=  (()

−1)

In addition, 1


P
=1

°°° 1 P
=1

P
=1 

†


°°°2 = 
¡
−1 +−2 + 2 (1 + )

¢
=  (1)  It follows

that 
(1)
21 =  (1)  For 

(2)
21 and 

(3)
21  we have by Lemmas A.2(iii) and A.6(ii), and the proof of Lemma

A.6(i),


(2)
21 =

12

 212

X
=1

X
=1

X
=1

tr(̃̃
0
)̃

0
6()

=
12

 212

X
=1

X
=1

tr(̃̃
0
)̃

0


X
=1

1



X
=1

(̃ −)
†


≤ 12

 212

X
=1

X
=1

tr[
¡
2

−1
 

−1
 + I

¢
̃̃

0
]̃

0


X
=1

1



X
=1

(̃ −)
†


=
12

 212

X
=1

X
=1

tr[
¡
2

−1
 

−1
 + I

¢
̃̃

0
]̃

0


°°°°°
X
=1

1



X
=1

(̃ −)
†


°°°°°
≤ 1

1212

(
1



X
=1

°°°̃°°°3)
⎧⎨⎩ 1



X
=1

°°°°° 1
X
=1

(̃ −)
†


°°°°°
2
⎫⎬⎭
12

max


(
1



X
=1

2

)12
=  (

12−12) (1)

¡
−2

¢
 (1) =  (1) 

and


(3)
21 =

12

 212

X
=1

X
=1

X
=1

tr(̃̃
0
)̃

0
7()

=
12

 212

X
=1

X
=1

tr(̃̃
0
)̃

0


1


̃ 0(̃−1 −  )

X
=1

0

≤ 12−12
1



°°°̃ 0(̃−1 −  )
°°°max



°°°°° 1
X
=1

0

°°°°° 1

 2

X
=1

X
=1

°°°tr(̃̃ 0)̃ 0°°°
≤ 1

1212
1



°°°̃ 0(̃−1 −  )
°°°max



°°°°° 1
X
=1

0

°°°°° 1
X
=1

°°°̃°°°3
=  (

12−12)
¡
 (

−2
 ) +  ( )

¢
 (

−12 ln ) (1) =  (1) 
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Thus 21 =  (1)  By Lemma A.6(vi),

|22| =
12

 212

¯̄̄̄
¯
X
=1

X
=1

X
=1

tr(̃̃
0
)

0
0

0−1(̃ − 0)

¯̄̄̄
¯

≤ 12

12

¯̄̄̄
¯
X
=1

"
1



X
=1

tr(̃̃
0
)

#"
X
=1

00
0−1(̃ − 0)

#¯̄̄̄
¯

≤ 12

⎧⎨⎩ 1
X
=1

°°°°° 1
X
=1

tr(̃̃
0
)

°°°°°
2
⎫⎬⎭
12⎧⎨⎩ 1



X
=1

°°°°°
X
=1

00
0−1(̃ − 0)

°°°°°
2
⎫⎬⎭
12

≤ 1
12

(
1



X
=1

°°°̃°°°2)12
⎧⎨⎩ 1



X
=1

°°°°°
X
=1

00
0−1(̃ − 0)

°°°°°
2
⎫⎬⎭
12

=  (
−12) (1) (

−1
 ) =  (1) 

In addition,

23 =


12

 212

X
=1

X
=1

X
=1

tr(̃̃
0
)

0
 =

1414

 52

X
=1

X
=1

tr(̃̃
0
)

0


Ã
1



X
=1



!

≤ 1

1414

 12
max


¯̄̄̄
¯ 1

X
=1



¯̄̄̄
¯
(
1



X
=1

°°°̃°°°4 1


X
=1

kk2
)12

= 14−34−12 (
−12 ln ) (1) =  (1) 

Thus 2 =  (1) 
Now, we show (i3). For 3 we use the definition of  and make the following decomposition:

3 =
12

 212

X
=1

X
=1

X
=1

tr
h
(̃̃

0
 − 0 0)

i
2

=
12

 212

X
=1

X
=1

X
=1

2tr
h
−1 

−1
 (̃̃

0
 − 0 0)

i
2

− 212

 212

X
=1

X
=1

X
=1

tr
h
−1 (̃̃

0
 − 0 0)

i
2 +

12

 212

X
=1

X
=1

X
=1

tr(̃̃
0
 − 0 0)

2


≡ 31 +32 +33 say.

Using ̃̃
0
− 0 0 = (̃− 0)(̃− 0)0+(̃− 0) 0+

0(̃− 0)0 we can decompose
31 as follows

|31| ≤ 12

 212

X
=1

X
=1

X
=1

2tr
h
−1 

−1
 (̃ − 0)(̃ − 0)0

i
2

+
212

 212

¯̄̄̄
¯
X
=1

X
=1

X
=1

2tr
h
−1 

−1
 (̃ − 0) 0

i
2

¯̄̄̄
¯ ≡ 

(1)
31 + 2

(2)
31 
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By Lemma A.2(i) and the fact that max
1


P
=1 

2
 =  (1)  we have


(1)
31 ≤ 1

1212

(
max


1



X
=1

2

)(
1



X
=1

°°°̃ − 0
°°°2)

=  (
12−12) (1) (

−2
 ) =  (1) 

In addition, by Lemmas A.3(iv), A.6 (iii) and (vii), we can readily show that


(2)
31 =

12

 212

1



X
=1

2tr

Ã
−1 

−1


X
=1

X
=1

(̃ − 0) 02

!

≤ 1212
n
max


°°−1 °°2o
(
max


1



X
=1

2

)°°°°° 1



X
=1

X
=1

(̃ − 0) 02

°°°°°
≤ 1212 (1)

¡
−1

¢
 (1) ( ) =  (

−12−14−34) =  (1) 

Thus 31 =  (1)  Similarly, we have 3 =  (1) for  = 2 3 Then 3 =  (1)  This completes the
proof of Proposition A.11.

Proposition A.12 Suppose that the conditions in Theorem 3.2 hold. Then V̂ = V +  (1) under

H1 ( ) 

Proof. Let ̄ = ̄
¡
−


¢
 Observe that V̂ −V = V1 +V2  where

V1 = 2−2−1−1
X

1≤6=≤
̄2

h
̃ 0Σ̃

−1
 Σ̃

−1
 ̃̃

0
Σ̃
−1
 Σ̃

−1
 ̃ (̃

0
 ̃)

2 −  0S 0S (0)
2
i


V2 = 2−2−1−1
X

1≤6=≤
̄2

h
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0
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≡ 2V11 + 4V12 + 2V13 say.

Using (A.4) and following the analysis in proving (i), we can readily show that V1 =  (1) for  = 1 2
For V13 using ̃

0̃− 0 = (̃− )0 (̃− ) + (̃− )0 + 0 (̃− )  we decompose it as follows:
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Noting that ̃ 0Σ̃
−1
 Σ̃

−1
 ̃− 0S = ̃ 0Σ̃

−1
 Σ̃

−1
 (̃− 0)+̃ 0

−1(Σ̃−1 Σ̃
−1
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we have
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Using Lemma A.2, we can readily show that each term in the last expression is  (1)  Then we have

V(1)13 =  (1)  Similarly, we can show V(2)13 =  (1)  So V13 =  (1) and V1 =  (1) 

In addition, noting that  (V2 ) = 0 and Var(V2 ) =  (1), we have V2 =  (1)  Thus, V̂ =
V +  (1)

Proof of Theorem 3.3. Let  ∗ denote the probability measure induced by the modified parametric
bootstrap conditional on the original sample W  Let 

∗ and Var∗ denote the expectation and variance
under  ∗ Let ∗ (·) and ∗ (·) denote the probability order under  ∗ e.g.,  = ∗ (1) if for any
  0  ∗ (k k  ) =  (1)  The proof is similar to but much simpler than that of Theorem 3.2 for

three reasons: (1) the null hypothesis is satisfied in the bootstrap world, (2) ∗ ’s are independent over
 conditional on W , and (3) both ̃0 and ̃ are fixed given W  Even though ̃0 and ̃ are not

uniformly bounded over  or  we can use arguments as used in the proof of Lemma A.6(i) to demonstrate

that 1


P
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3−8 ) =  (1) and that
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=1 ||̃0||8 =  (1)  These are sufficient

for the analysis of ̂∗ 
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∗
0 ̃

∗
  and ̃

∗
 denote the bootstrap analogue of ̃0 ̃ and ̃ respectively. Let ̂

∗ ∗ 

B∗  V∗  ̂
∗
  B̂∗  and V̂∗ denote the bootstrap analogue of ̂   B  V  ̂  B̂  and

V̂  respectively. Then ∗ ≡ (1212̂∗ − B∗ )
p
V∗ and ̂∗ ≡ (−12̂∗ − B̂∗ ) 

q
V̂∗ 

Following the proof of Theorem 3.2, we can show that 1212̂∗−B∗ =
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∗→ (0 1), (ii) B̂∗ = B∗ + ∗(1) and (iii)

V̂∗ = V∗ + ∗(1)
We only outline the proof of (i) as those of other parts are analogous to the corresponding parts in the

proof of Theorem 3.2. Noting that {∗ F∗} is an m.d.s., we can continue to apply the martingale

CLT by showing that
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As in the proof of Proposition A.8,
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where ∗ = ̃ 0S∗̃∗0 ∗  Using the  property of  and the conditions in Theorem 3.3, we can readily

verify that Z∗ =  (1) for  = 1 2 3 4 For example, noting that  [1234] = 3 if 1 = 2 = 3 = 4

= 1 if 1 = 2 6= 3 = 4 1 = 3 6= 2 = 4 or 1 = 4 6= 2 = 4 and zero otherwise, we have for any  6= 
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where we use the fact that 1
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ThenZ∗ = ∗ (1) by the conditional Markov inequality. Now
P

=2
∗(∗2) = 4

−2−1−1∗[
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P
=2 

∗2
 − V∗ =  (1). This completes the proof of (i). ¥
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A.3 Proofs of the Technical Lemmas

Recall thatmaxmax andmax denotemax1≤≤ max1≤≤  andmax1≤≤  respectively. Let kk =
{ kk}1 for  ≥ 1.
Proof of Lemma A.1. (i) From the principal component analysis, we have the identity ( )−1 0̃ =
̃  Pre-multiplying both sides by 

−1̃ 0 and using the normalization −1̃ 0̃ = I yields −1̃ 0 ( )
−1

 0̃ =   By Bai (2003, Lemma A.3) and following the proof of (ii) below,  has probability limit

0 that is a diagonal matrix consisting of the  eigenvalues of ΣΛ0Σ under Assumptions A.1-A.3 and A.5.
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†
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0
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0
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(−1̃ 0 )
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(−1 0̃ ) +  = 

→ 0 (A.6)

where  = −1−2̃ 0††0̃ + (−1̃ 0 )(−1−1Λ00
†0̃ ) + (−1−1̃ 0†Λ0)(−1 0̃ ) Noting that
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and −1|| 0̃ || =  (1) under Assumptions A.1-A.3 and A.5, we have

kk =  (
−1 + −1 + 2 +−12 +  ) =  (1)  (A.7)

It follows that (̃ 0 ) (Λ00Λ0) (
0̃  ) → 0 ¥

Proof of Lemma A.2. (i) Let 
†
 = (

†
1  

†
)

0 and Λ0 = (10  0)0. Noting that ( )−1
0
̃ =

̃ and  = 0+ = 00+
†
 with 
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, we can decompose ̃− 0 as follows:
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By (A.8) and the inequality (+ + + )2 ≤ 4(2 + 2 + 2 + 2), we have

1



X
=1

°°°̃ −
0


°°°2 ≤ 4



°° −1

°°2 X
=1

h
k1()k2 + k2()k2 + k3()k2 + k4()k2

i


By Lemma A.1(i), it suffices to bound 1
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hereafter) inequality, we have
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As in Bai (2003), the first term is bounded above by 4max  ( )max
P

=1 | ( )| =  (1) by
Assumption A.3(iv). By Davydov inequality and Assumptions A.1(ii), A.3(i) and (iii) and A.5(i)
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we have by Assumptions A.1(i)-(ii), A.2(i), A.3(vi) and A.5(i)
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For ̄1 we apply CS inequality and the result in part (i) to obtain
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provided that 1
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where  is the th column of -dimensional identity matrix I It follows that ̄2 = 
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°°°°°
X
=1

̃
0


X
=1

Λ00
†


0


°°°°° ≤ kk
°°°°° 1

X
=1

̃
0


°°°°°
°°°°° 1



X
=1

Λ00
†


0


°°°°°
=  ( )

provided
°°° 1


P
=1 Λ

0
0
†


0


°°° =  ( )  To see this, we write



°°°°° 1



X
=1

Λ00
†


0


°°°°°
2

= 

°°°°° 1



X
=1

X
=1

0 ( + 
0
)

0


°°°°°
2

≤ 2

2 2

X
=1

X
=1

X
=1

X
=1

 (
0
)

0
00

+
22

2 2

X
=1

X
=1

X
=1

X
=1

0 (
0


0
) 

0
00

≡ 231 + 232 say.

It is easy to show that 31 = 
¡
−1−1

¢
under Assumptions A.2(i) and A.3(v). For 32 using

 (
0


0
) =  (

0
) (

0
)+Cov(

0
 

0
)  we have

32 =
2

2 2

X
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X
=1

X
=1

X
=1

0 (
0


0
) 

0
00

=
2

2 2

X
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X
=1

X
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X
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0ΣΣ 
0
00 +

2

2 2

X
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X
=1

X
=1

X
=1

0Cov (
0
 

0
) 

0
00

≡ 
(1)
32 +

(2)
32

By local normalization
R 1
0
() = 0, 00

1


P
=1  = 00

1


P
=1  ( ) = 00

R 1
0
 ()  +


¡
1


¢
=  (1) uniformly in  Thus 

(1)
32 = (2 ) By Davydov inequality and Assumptions A.1(ii), A.2(i),

A.3(iii), and A.5(i), we can readily show that 
(2)
32 = 

¡
2

−1¢  It follows that 32 = 
¡
2

¢
and


1


P
=13()

0
 =  ( ) 

Now, we consider 
1


P
=14()

0
 :



1



X
=1

4()
0
 =

1

 2

X
=1

X
=1

(̃ − 0) 0Λ0
†


0
 +

1

 2
 0

X
=1

X
=1


0
Λ0

†


0


≡ 41 +42 say.

For 41 we apply CS inequality and the result in part (i) to obtain

k41k ≤ kk 1

 2

X
=1

X
=1

°°°̃ − 0
°°° kk2 °°Λ0†°°

≤ kk
(
1



X
=1

kk2
)(

1



X
=1

°°°̃ − 0
°°°2)12( 1

2

X
=1

°°Λ00†°°2
)12

=  (1)

¡
−1

¢
 (

−12 +  ) = 

¡
−2

¢
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as 1
2

P
=1

°°Λ00†°°2 = 
¡
−1 + 2

¢
under Assumptions A.2, A.3 and A.5. Let ̄42 =

1
2

P
=1

P
=1


0
Λ0

†


0
  Let 42 denote the ()th element of ̄42 Then

|42| =

¯̄̄̄
¯ 1

 2

X
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X
=1

0
0
Λ0

†


0
 

¯̄̄̄
¯ =

¯̄̄̄
¯ 1

 2

X
=1

( 0 )
0


X
=1

Λ00
†

0


¯̄̄̄
¯

≤ 1



X
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kk2 1



°°°°°
X
=1

Λ00
†

0


°°°°° =  ( ) 
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°°°°° 1



X
=1

Λ00
†

0


°°°°°
2

≤ 2

2 2


°°°°°
X
=1

X
=1


0


°°°°°
2

+
22

2 2


°°°°°
X
=1

X
=1


0


0


°°°°°
2

= (−1−1) + (2 ) = (2 )

by using arguments as used in the analysis of32 It follows that ̄42 =  ( ) and 
1


P
=14()

0


=  ( )  Combining the above results yields the claim in part (ii) of the lemma.

(iii) This follows from the results in (i) and (ii) and the triangle inequality.

(iv) Observing that 1

(̃ 0̃ − 0) = 1


(̃ −)0(̃ −)+ 1


(̃ −)0+ 1


()

0
(̃ −)

the results follows from (i) and (ii).

(v) By (A.6) in the proof of Lemma A.1(ii),

(−1̃ 0 )
¡
−1Λ00Λ0

¢
(−1 0̃ ) +  =  

Premultiplying both sides by
¡
−1Λ00Λ0

¢12
(−1 0̃ ) and using the fact that −1̃ 0̃ = I we have¡

−1Λ00Λ0
¢12

(−1 0 )
¡
−1Λ00Λ0

¢
(−1 0̃ ) + ̄ =

¡
−1Λ00Λ0

¢12
(−1 0̃ )

where ̄ = (
−1̃ 0 )

¡
−1Λ00Λ0

¢
 =  (

−12) Let =
¡
−1Λ00Λ0

¢12
(−1 0 )

¡
−1Λ00Λ0

¢12


 =
¡
−1Λ00Λ0

¢12
(−1 0̃ ) and 0 = Σ

12
Λ0
ΣΣ

12
Λ0

 Then as in Bai (2003, p.161),£
 + ̄

¤
Υ = Υ

where Υ = 
∗−12
 with  ∗ being a diagonal matrix that contains the diagonal elements of

0  That is,  contains the eigenvalues of  + ̄ with the corresponding normalized

eigenvectors contained in Υ  It is trivial to show that°° + ̄ −0

°° = 

¡
−1

¢
 (A.9)

By the perturbation theory for eigenvalue problem,¯̄

¡
 + ̄

¢−  (0)
¯̄
≤
°° + ̄ −0

°° = 

¡
−1

¢


where  () denotes the th largest eigenvalue of a symmetric matrix  That is,  − 0 = 

¡
−1

¢


(vi) Let Υ0 denote the probability limit of Υ  By (A.9) and the eigenvector perturbation theory

that requires distinctness of eigenvalues (see, e.g., Steward and Sun (1990), kΥ −Υ0k = 

¡
−1

¢
.

[Let
¡
  

¢
and (̃  ̃) be the eigenvector-eigenvalue pairs of a symmetric matrix  and its symmetric

perturbation version ̃ = +∆ respectively, where the eigenvectors are properly normalized. Then (i)

̃ =  + 0∆ + (k∆k2) and (ii) ̃ =  +
P

 6=
£
0∆( − )

¤
 + (k∆k2) if  6=  for

all  6= ] This, in conjunction with the definition of   implies that

−1
0
̃ = (−1Λ00Λ0)

−12Υ
∗12
 = Σ

−12
Λ0

Υ0
12
0 +

¡
−1

¢
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It follows that  = (−1Λ00Λ0)(
−1

0
̃ ) −1 = ΣΛ0Σ

−12
Λ0

Υ0
12
0  −10 + 

¡
−1

¢
= Σ

12
Λ0
Υ0

−12
0

+

¡
−1

¢
= −10 +

¡
−1

¢
 where 0 = 

12
0 Υ−10 Σ

−12
Λ0
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Proof of Lemma A.3. (i) The proof parallels that of Lemma A.2(i) and we only sketch it. By (A.8)
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X
=1



°°°̃ −
0


°°°2 ≤ 4°° −1

°°2 4X
=1

1



X
=1

 k()k2 ≡ 4
°° −1

°°2 4X
=1

 ()  say.

We prove (i) by find the bound for ()   = 1 2 3 4 uniformly in Using the fact thatmax
P

=1[(
†0



†
)]

2 =  (1) and that

1



X
=1

 =
1



X
=1



µ
− 



¶
= 1 +

µ
1



¶
uniformly in  under Assumption A.4,

we have
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1 () = max


1
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 k1()k2 ≤ max


1
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(
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X
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°°°̃(†0 †)°°°
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(
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X
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X
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h
(†0 

†
)

i2
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(
1
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)
= −1(1) (1)(1) =  (

−1)

For 2 ()  using notations defined in the proof of Lemma A.2(i) and by CS inequality, we have
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X
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 k2()k2 = 1



X
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X
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̃
†
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°°°°° 1
X
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†
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2

+
2



X
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X
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 0
†
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2

≡ 221 () + 222 ()  say.

For 21 () we apply Lemma A.2(i) to obtain the rough bound
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21 () ≤ 1



X
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°°°̃ − 0
°°°2max
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¢
as we can readily show thatmax

1


P
=1 ||†||2 ≤ max 1

P
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P
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 (1)+  (1) by a simple application of Bernstein inequality for strong mixing processes. Let ̄22 () =
1
3

P
=1 

P
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P
=1 

0
 
†


†
Observing that22 () =tr( 022 ())  we can bound22 ()

by bounding each element of ̄22 ()  Let  () denote the ()th element of ̄22 ()  Noting

that  () ≤ { ()  ()}12  it suffices to bound  () for  = 1   Observe that

 () =
1
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¯
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It follows that max 22 () = 

¡
−1 ln

¢
and max 2 () = 

¡
−1 ln +−1

¢
 To study

3 ()  we first study ̄3 () ≡ 1


P
=1 
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For ̄31 (), we have under Assumptions A.2-A.4
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For the fourth term, we have
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X
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as we can show that max
1


P
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1


P
=1  kk2 + max | 1

P
=1 [kk2 −

 kk2]} =  (1)  Combining these results, we have max || 1
P

=1 (̃ − 0)
³
̃ − 0

´0
|| =

 (
−1 ln +−1)

(ii) The proof of (ii) is analogous to that of (i) with some modifications similar to those used in the proof

of Lemma A.2(ii).

(iii) Write 
(0)
 =

1


P
=1  (

0
) +

1


P
=1  [

0
 − (

0
)] ≡ 

(0)
1 + 

(0)
2  say. Using

 (
0
) = Σ and the Riemann sum approximation of integral, we have
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By Bernstein inequality for strong mixing processes, we can readily show thatmax ||(0)2 || = 

¡
−12(ln )12

¢


It follows that max ||(0) −Σ || = 

¡
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(iv) Using ̃ =  0 + (̃ − 0) we make the following decomposition:

 =
1



X
=1
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0


=  0(0) +
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X
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0(̃ − 0)0 +

1



X
=1

(̃ − 0) 0

+
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X
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≡ 1 + 2 + 3 + 4 say.

By Lemmas A.2(vi) and A.3(iii), max ||1 −
¡
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Σ
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−12 (ln )12 + −12) By
Lemma A.3(i)-(ii), max ||2|| = max ||3|| =  (
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 (

−1 ln +−1) Combining these results yield the desired result.
(v) This follows from Lemmas A.2(vi) and A.3 (iv) above. ¥

Proof Lemma A.4. (i) First, using ̃
0
 =  0 0 + (̃ − 0) 0 =  0Σ + 0 ( 0 −Σ ) + (̃ −

 0) 0 , we have:
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̃
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 + 0 1
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0
 −Σ )  +
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X
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≡ 1 ( ) + 2 ( ) + 3 ( )  say.

By the uniform approximation property for Riemann integral and Bernstein inequality for mixing processes,

we have that under Assumptions A.1 and A.3-A.5
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(iv) By (A.8) and CS inequality
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we have
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It follows that 21 =  (
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(vii) The proof is analogous to that of Lemma A.2(ii) and thus omitted. ¥

B Some Additional Simulation and Applications Results

In this appendix, we report some additional simulation and applications results.
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Figure 1: The factor loadings’ paths for DGP.P1-P4 when  = 100

B.1 Some additional simulation results

First, following the suggestion of an anonymous referee, we plot  for DGP.P1-P4 as a function of  for a

representative cross-sectional unit. As we mentioned in the paper, DGP.P1-P2 have a single and multiple

structural breaks, respectively, while DGP.P3-P4 describe two kinds of smooth structural changes. Among

them, the factor loadings given by DGP.P3 are monotonic functions of  (or ), while the factor loadings
given by DGP.P4 are smooth transition functions of  with multiple regime shifts. Figure 1 plots the

paths of factor loadings under DGP.P1-P4 as functions of  when  = 100.
Second, to examine the sensitivity of our nonparametric test to the choice of the bandwidth parameter

 we set

 =  · 235√
12

−15

for  = 05 1 and 1.5. Tables A.1 and A.2 report the empirical rejection rates of our test at the 5% and

10% significance levels when the number of common factors is fixed as the true value and determined by

BN’s information criterion, respectively. As shown in Table A.1, the size of our test is robust to the choice

of bandwidth. However, the power of our test reported in Table A.2 is a bit sensitive to the choice of

bandwidth. For DGPs P1, P3, P5, and P7, the larger the bandwidth, the higher the power. In contrast,

the power of the test for DGPs P2, P4, P6 and P8 tends to decrease as the bandwidth increases. Moreover,

the power increases quickly as either  or  increases.

Third, we consider the tests when the number of factors are estimated by using Su and Wang’s (2017)

local-PCA-based information criterion. As mentioned in the paper, Su and Wang’s (2017) information

criterion can consistently estimate the true number of breaks under both the null and alternative hypotheses.
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Figure 2: Some representative factor loadings estimated by local PCA

Tables A.3 and A.4 report the empirical rejection rates of several tests considered in the paper. As expected,

the results in these two tables are quite similar to those in Tables 1 and 2.

B.2 Some additional application results

Following the suggestion of an anonymous referee, we use Su and Wang’s (2017) local PCA to estimate the

time-varying factor loadings in the empirical study. Since there are  = 2684 stocks and the factor loadings
for these stocks are quite different from each other, it is impossible to plot them one by one. For this reason,

we only plot the estimates of some representative factor loadings in Figure 2. From the figure we can see

that the estimated factor loadings show significant structural changes that very likely appear to be smooth

structural changes.
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Table A.1 The size of our test with different bandwidth sequences under DGP.S1-S4

 is fixed to the true value  is determined from the data

DGP    = 05  = 1  = 15  = 05  = 1  = 15
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

S1 100 100 6.6 12.0 5.0 10.8 4.4 10.8 6.6 12.0 5.0 10.8 4.4 10.8

100 200 4.8 10.2 5.8 12.4 5.8 13.2 4.8 10.2 5.8 12.4 5.8 13.2

200 100 4.6 10.4 4.8 8.8 4.4 10.6 4.6 10.4 4.8 8.8 4.4 10.6

200 200 5.0 10.0 5.4 10.8 5.4 10.4 5.0 10.0 5.4 10.8 5.4 10.4

S2 100 100 6.2 11.6 5.2 9.6 4.8 10.4 6.2 11.6 5.2 9.6 4.8 10.4

100 200 6.4 9.6 4.6 9.8 5.0 10.0 6.4 9.6 4.6 9.8 5.0 10.0

200 100 6.8 13.2 5.4 10.6 6.6 10.6 6.8 13.2 5.4 10.6 6.6 10.6

200 200 6.0 11.4 6.6 11.2 6.4 12.0 6.0 11.4 6.6 11.2 6.4 12.0

S3 100 100 4.4 10.0 5.6 10.8 4.6 10.6 4.4 10.0 5.6 10.8 4.6 10.6

100 200 5.0 9.8 4.8 9.8 5.6 10.8 5.0 9.8 4.8 9.8 5.6 10.8

200 100 4.8 11.0 6.8 12.2 7.2 13.0 4.8 11.0 6.8 12.2 7.2 13.0

200 200 5.6 11.6 7.4 13.4 7.8 13.4 5.6 11.6 7.4 13.4 7.8 13.4

S4 100 100 6.8 11.0 5.2 12.0 5.6 10.0 6.8 11.0 5.2 12.0 5.6 10.0

100 200 6.4 12.4 5.2 10.4 4.8 11.2 6.4 12.4 5.2 10.4 4.8 11.2

200 100 6.2 13.4 6.0 12.0 5.8 11.6 6.2 13.4 6.0 12.0 5.8 11.6

200 200 5.2 9.2 5.0 9.6 4.6 10.8 5.2 9.2 5.0 9.6 4.6 10.8

Note: (i) The results are obtained by setting  = (235
√
12)−15 for  = 05 1 and 15; (ii)  is the number

of common factors.
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Table A.2 The power of our test with different bandwidth sequences under DGP.P1-P8

 is fixed to the true value  is determined from the data

DGP    = 05  = 1  = 15  = 05  = 1  = 15
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P1 100 100 47.8 60.4 72.2 81.4 81.4 87.8 46.0 60.8 72.8 80.8 81.2 87.6

100 200 91.6 97.4 98.4 99.6 99.4 100 91.2 96.6 98.8 99.6 99.4 99.8

200 100 73.0 84.4 94.0 97.2 98.0 98.8 72.8 83.0 94.2 97.2 98.0 98.8

200 200 98.8 99.6 100 100 100 100 98.6 99.8 100 100 100 100

P2 100 100 52.2 62.0 29.4 41.4 10.0 18.0 51.2 61.6 29.8 41.6 9.6 17.0

100 200 94.6 97.6 82.2 86.8 37.2 48.4 94.0 98.4 85.2 88.6 28.8 42.6

200 100 66.4 77.6 41.0 51.8 12.2 22.0 65.4 77.6 37.8 50.0 12.8 19.8

200 200 99.8 99.8 93.0 95.8 55.8 67.0 99.6 99.6 92.4 94.6 53.8 65.4

P3 100 100 30.6 41.8 37.2 47.8 49.2 60.0 29.0 44.0 36.0 41.0 51.0 60.0

100 200 54.0 68.2 64.8 73.8 78.4 86.8 55.2 67.4 65.2 74.8 77.8 87.2

200 100 28.6 38.6 42.4 53.8 71.2 79.4 29.4 40.0 42.4 52.0 71.6 78.4

200 200 60.0 67.8 76.0 82.2 95.8 97.2 60.8 67.8 76.0 81.6 95.8 97.2

P4 100 100 59.4 71.8 25.0 38.0 11.0 19.4 60.0 72.4 25.4 35.8 11.2 19.0

100 200 99.8 100 74.2 83.6 34.6 46.0 99.8 100 73.4 83.6 34.2 46.2

200 100 82.6 88.6 40.6 52.8 16.2 24.6 81.0 88.6 40.0 52.6 15.6 24.4

200 200 100 100 92.0 94.4 51.4 62.0 100 100 91.0 94.6 51.6 62.8

P5 100 100 42.8 55.0 67.8 79.8 79.6 86.2 42.0 54.0 69.0 80.2 78.4 87.0

100 200 90.0 95.0 97.4 99.2 100 100 89.8 94.4 97.6 99.4 100 100

200 100 69.0 78.6 90.0 94.2 95.6 97.4 69.4 79.4 90.4 94.8 94.8 97.0

200 200 99.6 99.6 100 100 100 100 99.2 99.8 100 100 100 100

P6 100 100 48.8 59.8 29.6 38.6 11.6 19.8 48.2 60.6 27.8 39.8 11.0 19.4

100 200 95.6 97.4 81.2 86.0 36.6 48.8 95.2 97.6 80.8 85.2 36.0 49.2

200 100 67.8 78.6 38.4 52.6 15.2 22.2 69.2 79.8 40.4 52.6 15.8 23.0

200 200 99.6 99.8 92.4 95.8 53.6 65.0 99.8 99.8 92.4 95.4 54.0 63.2

P7 100 100 29.4 38.2 34.0 45.8 50.8 62.6 30.4 38.0 33.2 46.0 49.0 62.8

100 200 57.4 63.6 62.4 72.2 77.2 85.8 58.2 64.2 63.6 72.2 77.8 85.6

200 100 32.4 42.2 44.0 53.0 69.2 77.2 31.8 41.8 44.8 52.2 70.2 77.6

200 200 62.4 73.2 78.8 85.0 96.0 98.2 62.2 72.4 78.2 84.4 95.6 98.2

P8 100 100 64.4 76.0 38.2 50.6 11.8 19.2 65.0 76.8 38.6 51.2 12.0 20.6

100 200 99.0 99.6 91.2 94.8 48.6 60.6 98.2 99.6 90.6 95.4 48.4 60.4

200 100 78.6 85.4 49.4 60.8 15.4 23.0 78.2 86.2 49.4 60.8 14.4 23.8

200 200 100 100 97.8 99.0 66.4 76.2 100 100 97.8 99.2 66.0 76.0

Note: See the note in Table A.1.
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Table A.3 Size of tests under DGP.S1-S4 when the number of factors is determined by Su and Wang’s (2017) IC

DGP    17   

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

S1 100 100 5.0 10.8 6.6 13.4 0.6 3.8 3.4 8.2 2.8 6.5

100 200 5.8 12.4 7.4 13.0 2.4 6.8 4.8 7.4 3.4 7.5

200 100 4.8 8.8 5.2 10.2 1.6 4.4 1.4 7.0 2.7 6.3

200 200 5.4 10.8 5.8 12.0 1.6 6.8 3.6 8.8 3.4 7.5

S2 100 100 5.2 9.6 7.4 12.0 0.4 2.4 2.0 8.2 2.8 6.4

100 200 4.6 9.8 5.0 11.4 1.0 5.8 2.0 6.6 3.7 7.8

200 100 5.4 10.6 6.4 14.0 0.4 1.8 1.0 4.6 2.8 6.4

200 200 6.6 11.2 7.0 14.0 0.6 5.4 2.6 6.8 3.6 7.7

S3 100 100 5.6 10.8 7.2 11.2 0.4 2.2 2.2 8.8 11.9 20.3

100 200 4.8 9.8 6.0 11.4 1.6 5.2 2.0 6.0 15.3 24.7

200 100 6.8 12.2 7.8 11.6 0.4 1.8 1.2 5.0 11.9 20.2

200 200 7.4 13.4 8.2 13.0 0.8 5.2 2.4 7.0 15.3 24.8

S4 100 100 5.2 12.0 6.2 12.2 0.4 4.6 2.8 8.0 2.8 6.4

100 200 5.2 10.4 4.2 10.4 2.0 6.8 4.6 8.6 3.4 7.5

200 100 6.0 12.0 6.8 12.0 1.6 3.2 2.6 6.6 2.8 6.3

200 200 5.0 9.6 5.6 10.2 2.2 7.0 4.0 8.4 3.4 7.4

Note: (i)  denotes the results of our d test using bootstrap critical values; (ii) 17 denotes the
results of Su and Wang’s (2017) bootstrap-based test; (iii)  denotes Han and Inoue’s (2014) sup-LM test;

(iv)  denotes Chen et al.’s (2014) sup-LM test; (v)  denotes Breitung and Eickmeier’s (2011) 

variable-specific sup-LM test. The main entries report the average percentage of rejection.
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Table A.4 Power of tests under DGP.P1-P8 when the number of factors is determined by Su and Wang’s (2017) IC

DGP    17   

5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P1 100 100 72.2 81.2 67.8 79.4 0.8 4.4 2.4 7.2 5.9 11.1

100 200 98.4 99.6 98.4 99.4 4.2 10.6 2.0 6.8 11.2 17.8

200 100 94.0 97.2 92.2 96.4 0.8 4.0 2.4 6.6 5.7 10.7

200 200 100 100 100 100 5.0 12.2 2.2 6.6 11.1 17.5

P2 100 100 29.6 41.4 26.2 40.4 0.6 2.0 2.2 8.6 3.8 8.3

100 200 82.6 87.0 77.2 84.2 1.6 6.4 2.2 6.4 6.7 12.7

200 100 40.8 51.8 27.6 40.6 0.8 2.8 1.8 8.6 3.7 8.1

200 200 93.0 95.8 85.2 91.6 1.6 5.8 1.8 7.6 6.5 12.4

P3 100 100 37.0 46.8 46.2 56.2 35.6 66.4 6.8 16.8 4.9 10.3

100 200 65.0 74.2 76.8 86.4 97.4 99.8 10.2 18.4 9.8 17.2

200 100 42.4 53.4 45.2 60.2 37.4 71.4 6.6 15.4 5.2 10.7

200 200 76.0 82.2 84.2 92.0 99.2 100 10.2 20.0 9.8 17.7

P4 100 100 25.2 38.0 25.8 36.4 0.4 1.6 1.0 4.0 3.5 7.9

100 200 74.0 83.6 72.2 81.4 0.6 4.0 3.0 5.6 5.4 10.6

200 100 40.6 52.8 34.2 45.2 0.4 1.4 1.0 5.8 3.5 7.8

200 200 92.0 94.4 86.8 92.8 0.2 3.8 3.2 6.4 5.5 10.7

P5 100 100 68.0 79.8 63.0 75.8 1.4 5.8 3.2 8.8 4.9 10.1

100 200 97.4 99.2 96.8 99.0 6.0 12.8 4.4 8.4 9.8 16.6

200 100 90.0 94.2 88.0 92.0 2.0 6.6 1.2 6.6 4.9 9.9

200 200 100 100 99.6 99.8 3.8 11.4 4.8 10.6 9.4 15.8

P6 100 100 29.4 38.8 27.2 36.0 0.8 5.0 3.6 9.2 3.7 8.1

100 200 81.0 85.8 75.8 82.6 3.2 10.4 5.6 10.8 6.2 12.1

200 100 38.6 52.6 27.6 38.2 1.4 4.6 1.6 7.6 3.6 7.9

200 200 92.4 95.8 85.2 90.8 3.0 9.8 4.6 11.0 6.2 11.9

P7 100 100 33.8 45.8 36.6 54.6 32.4 65.0 7.4 14.6 5.0 10.5

100 200 62.6 72.2 74.4 86.2 98.2 99.6 12.0 18.0 9.5 16.9

200 100 44.2 53.0 43.8 60.0 36.6 68.8 7.0 15.2 5.0 10.5

200 200 78.6 85.0 86.4 92.6 99.0 99.8 10.8 19.6 9.7 17.5

P8 100 100 38.2 50.8 35.4 47.4 0.4 2.4 2.0 8.6 4.2 10.0

100 200 91.0 94.8 88.4 92.2 1.4 6.0 2.2 6.6 10.5 18.0

200 100 49.4 60.8 32.8 43.8 0.8 2.8 1.8 8.8 4.7 9.5

200 200 97.8 99.0 93.2 95.4 1.6 5.8 2.0 7.6 9.3 15.9

Note: See the note in Table A.3.
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