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Abstract

Credible counterfactual analysis often requires high-dimensional controls.
This paper considers estimation and inference for heterogeneous counterfactual
effects with high-dimensional data. We propose a novel doubly robust score
for double/debiased estimation and inference for the unconditional quantile
regression (Firpo, Fortin, and Lemieux, 2009) as a measure of heterogeneous
counterfactual marginal effects. We propose a multiplier bootstrap inference
and develop asymptotic theories to guarantee that the bootstrap works. Sim-
ulation studies support our theories. Applying the proposed method to Job
Corps survey data, we find that i) the marginal effects of counterfactually ex-
tending the duration of the exposure to the Job Corps program are globally
positive across quantiles robustly regardless of definitions of the treatment and
outcome variables and that ii) these counterfactual effects are larger for higher
potential earners than lower potential earners robustly regardless of whether
we define the outcome as the level or its logarithm.
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1 Introduction

Analysis of an outcome response to a counterfactual shift in the covariate distri-
bution is of interest in policy studies. Such a counterfactual analysis requires ac-
counting for the Oaxaca-Blinder decomposition of heterogeneous outcome distribu-
tions into structural heterogeneity (FY |X) and distributional heterogeneity (FX); see
Fortin, Lemieux, and Firpo (2011) for a review. To mitigate confoundedness in causal
effects for conducting a credible counterfactual analysis, it is crucial for researchers
to control a structure (FY |X) with rich information about X while applying a coun-
terfactual shift in the distribution of X . According to Athey, Imbens, and Wager
(2016), “[t]he unconfoundedness assumption is often more plausible if a large number
of pre-treatment variables are included in the analysis.” In this light, a researcher
ideally wants to use high-dimensional X in data.

Motivated by this feature of causal inference and the recently increasing availabil-
ity of high-dimensional data, we develop a novel theory and method of estimation
and inference for heterogeneous counterfactual effects with high-dimensional controls
based on machine learning techniques. The existing literature features a number of
alternative approaches and frameworks of counterfactual analysis. Among others, we
focus on the unconditional quantile partial effect (UQPE; Firpo, Fortin, and Lemieux,
2009) in the unconditional quantile regression based on the re-centered influence func-
tion (RIF) of Firpo et al. (2009) for two reasons: (i) its advantage of providing “a
simple way of performing detailed decompositions” (Fortin et al., 2011, p. 76) and
(ii) its popularity.1 This parameter measures the marginal effect of counterfactually
shifting the distribution of a coordinate of X on population quantiles of an outcome.2

The UQPE is expressed in the potential outcome framework as follows. Let

Y = Y (X),

where Y is the observed outcome and Y (x) is the potential outcome under X = x.
The UQPE with respect to the first coordinate, X1, of X is defined by

UQPE(τ) =
∂

∂ε
Qτ (Y (X1 + ε,X−1))

∣

∣

∣

∣

ε=0

, (1)

where X = (X1, X−1) and Qτ (·) is the τ -th quantile operator. (For notational simplic-
ity, we will focus on the change from X to (X1 +ε,X−1) throughout this paper, while
our analysis can be generalized to the change in any fixed direction.) The UQPE

1As of September 30, 2020, Firpo et al. (2009) have attracted 1767 Google Scholar citations.
2In addition to the unconditional quantile regression framework of Firpo et al. (2009), which

we focus on in this paper, we remark that there is another important branch of the lit-
erature on counterfactual inference under fixed distributional changes. See, for example,
Machado and Mata (2005); Melly (2005); Rothe (2010); Chernozhukov, Fernández-Val, and Melly
(2013); and Hsu, Lai, and Lieli (2020). See also Frölich and Melly (2013) for unconditional quantile
treatment effects under endogeneity.
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measures the change in the outcome quantile when the distribution of X changes
infinitesimally in the direction of the first coordinate.

While the RIF regression approach is indeed simpler to implement than alternative
methods of counterfactual analysis (Fortin et al., 2011), an estimation of the UQPE
still requires a three-step procedure. The first step is an estimation of unconditional
quantiles. The second step implements the RIF regression. The third step integrates
the RIF regression estimates to in turn estimate the UQPE. Firpo et al. (2009) pro-
vide an estimation procedure for the case of low-dimensional data. If we accommodate
high-dimensional controls with the aforementioned motivation, then the second step
will require some machine learning of the high-dimensional RIF regression, and hence
the traditional techniques to incorporate estimation errors of the second step into the
third step no longer apply. To overcome this challenge, we construct a novel dou-
bly robust score for estimation of the UQPE. The key insight for the construction is
the identification result in Firpo et al. (2009, p. 958) that the UQPE has the same
structure as the average derivative estimator, whose influence function in the pres-
ence of nonparametric preliminary estimation has been well studied in the existing
literature (e.g., Newey, 1994; see also Newey and Ruud, 2005). With this doubly ro-
bust score, we obtain a Z-estimation criterion with robustness against perturbations
in functional nuisance parameters as in Belloni, Chernozhukov, and Kato (2014) and
Belloni, Chernozhukov, Chetverikov, and Wei (2018a), and can thereby use the dou-
ble/debiased machine learning approach (e.g., Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey,
2017; Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, 2018a;
Chernozhukov, Escanciano, Ichimura, Newey, and Robins, 2018b), which allows one
to obtain the asymptotic distribution of a UQPE estimator, independently of the
second-step estimation as far as it satisfies only mild convergence rate conditions, as
is the case with major machine learners such as Lasso, ridge, elastic nets, and neural
networks, among others.

To accommodate a wide range of machine learners, possibly including those that
may be developed in the future, we first present a general method with the main
theory based on high-level assumptions. In addition, to provide a readily applicable
method for practitioners, we also present a specific method that is easy to imple-
ment and accompanying lower-level assumptions that are easy to interpret. Namely,
focusing on Lasso estimators of the nuisance parameters, we provide a concrete esti-
mation procedure, present primitive conditions to verify our high-level assumptions,
prescribe tuning parameter choice rules, and derive required convergence rate proper-
ties following Belloni, Chernozhukov, Fernández-Val, and Hansen (2017). While the
Lasso enjoys restricted entropy of function spaces via variable selection, other ma-
chine learners may have more complex or even unknown functional forms, implying
that the entropies of the classes of functions they belong to can be larger than what is
required by our high-level assumptions. To accommodate general machine learners,
we thus propose a method of kernel convolution that, combined with the cross-fitting
technique, weakens the required entropy condition.
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This paper is related to a series of recent papers that propose the estimation of
treatment effect parameters via the nonparametric regressions of continuous variables.
Abrevaya, Hsu, and Lieli (2015), Lee, Okui, and Whang (2017), and Fan, Hsu, Lieli, and Zhang
(2019) consider estimation and inference for average treatment effects of a binary
treatment conditionally on possibly continuous covariates. The latter two references
also develop doubly robust estimators, as in this paper. Furthermore, Kennedy, Ma, McHugh, and Small
(2017), Semenova and Chernozhukov (2017), Su, Ura, and Zhang (2019), Zimmert and Lechner
(2019), and Colangelo and Lee (2020) consider an expectation or quantiles of Y (x1 +
ε,X−1) given a value x1 of X1. None of these existing results directly apply to the
UQPE, since the UQPE does not restrict the subpopulation of interest to those with
fixed x1; see (1). A näıve integration of these existing estimators with respect to
the conditional distribution of X1 given Y = Qτ (Y ) will not lead to a doubly robust
estimation of the UQPE either. Therefore, it requires to develop a novel method, as
we have done in this paper.

Prior to this work, the use of doubly robust or locally robust methods for causal
inference has been considered by an extensive body of literature including, but not
limited to, Imbens (1992), Robins, Mark, and Newey (1992), Robins and Rotnitzky
(1995), Hahn (1998), Van der Laan and Robins (2003), Hirano, Imbens, and Ridder
(2003), Van Der Laan and Rubin (2006), Firpo (2007), Tsiatis (2007), Wooldridge
(2007), Chen, Hong, and Tarozzi (2008), Graham (2011), Van der Laan and Rose (2011),
Graham, Pinto, and Egel (2012), Farrell (2015), Graham, Pinto, and Egel (2016), Belloni et al.
(2017), Chernozhukov et al. (2017), Kennedy et al. (2017), Lee et al. (2017), Robins, Li, Mukherjee, Tchetgen, and van der Vaart
(2017), Semenova and Chernozhukov (2017), S loczyński and Wooldridge (2018), Wager and Athey
(2018), Sant’Anna and Zhao (2018), Fan et al. (2019), Rothe and Firpo (2019), Su et al.
(2019), Zimmert and Lechner (2019), Colangelo and Lee (2020), and Sasaki and Ura
(2020), among many others. More recent papers in this list are motivated similarly
to this paper and use the double robustness or local robustness to accommodate
machine learning of high-dimensional preliminary functions. This vast literature in-
vestigates various causal parameters in a variety of model frameworks, but to our
best knowledge, none has investigated the UQPE.

This paper also contributes to the literature on high-dimensional econometrics
and machine learning. Namely, we follow and extend the existing literature in a few
significant directions. First, we follow Chernozhukov et al. (2018a,b) and apply a
cross-fitting technique for estimation. We complement their results by considering
the uniformly valid inference. Second, this paper is related to Belloni et al. (2014)
and Belloni et al. (2018a), which consider uniformly valid inference in Z-estimation
with high-dimensional data. We complement their results by providing high-level
assumptions for the cross-fitting estimation.3

The paper is organized as follows. Section 2 proposes a doubly robust score for
the UQPE and discusses a multiplier bootstrap method of inference. We present an

3Belloni et al. (2018a) mention using a cross-splitting technique to relax their assumptions but
do not provide formal results.
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asymptotic theory for the estimator and its multiplier bootstrap counterpart. Sec-
tion 3 introduces preliminary first-stage estimators. Section 4 presents Monte Carlo
simulation studies. Section 5 presents an application to the Job Corps data. Section
6 concludes. The appendix collects all the proofs and auxiliary results.

2 Doubly Robust Score and Bootstrap Inference

for UQPE(τ )

In this section, we develop a new score for a doubly robust estimation of the UQPE.
We then present a uniform asymptotic linear representation for this doubly robust
UQPE estimator and its multiplier bootstrap counterpart. While we focus on a gen-
eral framework in this section, specific estimation procedures with lower-level prim-
itive conditions will follow in Section 3.1. It is worthwhile to mention here that our
analysis allows the dimensionality of X to depend on the sample size N and diverge
as N → ∞. This feature is important as the unconfoundedness, the key assumption
for the identification with observational data, is more plausible with a larger number
of conditioning variables, as emphasized at the beginning of this paper.

Following Firpo et al. (2009), we can rewrite our parameter of interest, defined in
(1), as a function of identifiable objects. Namely, if X ≡ (X1, X−1) and {Y (x1, x−1) :
(x1, x−1)} are independent, then

UQPE(τ) = − θ(τ)

fY (qτ )
, (2)

where qτ is the τ -th quantile of Y and

θ(τ) =

∫

∂FY |X=x(qτ )

∂x1
dFX(x). (3)

Although this equation is shown in Firpo et al. (2009, Corollary 1), we also present its
proof in Appendix B for the sake of completeness and for the convenience of readers.

2.1 Doubly Robust Score

We could estimate θ(τ) based on the equality (3) and some estimator for FY |X(·).
When X is high-dimensional, this direct estimation of θ(τ) can result in a large bias,
a large variance, or both. Instead, we propose constructing an estimator for θ(τ)
based on another representation:

θ(τ) =

∫

∂FY |X=x(qτ )

∂x1
dFX(x) −

∫

ω(x)(1{y ≤ qτ} −m0(x, qτ ))dFY,X(y, x)

=

∫

m1(x, qτ ) − ω(x)(1{y ≤ qτ} −m0(x, qτ ))dFY,X(y, x), (4)

5



where ω(x) = ∂
∂x1

log fX1|X−1=x−1(x1), m0(x, q) = FY |X=x(q) andm1(x, q) = ∂m0(x, q)/∂x1.
This representation comes from the influence adjustment term for the average deriva-
tive estimator (Newey, 1994, p.1369). Namely, in the moment (4), the term

∫

ω(x)(1{y ≤
qτ} −m0(x, qτ ))dFY,X(y, x) adjusts the estimation error from nonparametric prelimi-
nary estimation.

The advantage of (4) over (3) is that the moment (4) is doubly robust in the sense
that

θ(τ) =

∫

(m̃1(x, qτ ) − ω(x)(1{y ≤ qτ} − m̃0(x, qτ ))) dFY,X(y, x) (5)

and

θ(τ) =

∫

(m1(x, qτ ) − ω̃(x)(1{y ≤ qτ} −m0(x, qτ ))) dFY,X(y, x) (6)

hold for a set of values that the high-dimensional nuisance parameters (ω̃(x), m̃0(x, q),
m̃1(x, q)) take as far as some regularity conditions are satisfied. A precise statement
and its proof are found in Appendix A. Note that (ω̃(x), m̃0(x, q), m̃1(x, q)) in (5)
and (6) can be different from the true value (ω(x), m0(x, q), m1(x, q)). Thus, the
estimation error for (ω(x), m0(x, q), m1(x, q)) does not have a first-order asymptotic
influence on the estimation error for θ.

Based on the moment condition (4), we propose to estimate θ(τ) by a cross-fitting
approach (Chernozhukov et al., 2018a, Definition 3.2). We split the sample of size N
into a random partition {I1, · · · , IL} of approximately equal size. For simplicity, let
|Il| = n for every l so that N = nL. In this section, we assume that, for every index
l ∈ {1, ..., L} of fold, we can construct an estimator (ω̂l(x), m̂0,l(x, q), m̂1,l(x, q)) by
using all the observations except those in Il. Section 3.1 provides a concrete example
of (ω̂(x), m̂0,l(x, q), m̂1,l(x, q)) based on the Lasso regularization. Letting q̂τ be the
full sample τ -th empirical quantile of Y , we estimate θ(τ) by

θ̂(τ) =
1

L

L
∑

l=1

1

n

∑

i∈Il

[m̂1,l(Xi, q̂τ ) − ω̂l(Xi)(1{Yi ≤ q̂τ} − m̂0,l(Xi, q̂τ ))] . (7)

With this estimator for θ(τ), our proposed estimator for UQPE(τ) is

ÛQPE(τ) = − θ̂(τ)

f̂Y (q̂τ )
,

where

f̂Y (y) =

N
∑

i=1

1

Nh1
K1

(

Yi − y

h1

)

for some kernel function K1(·) and a bandwidth parameter h1.

6



2.2 Bootstrap Inference

For an inference about UQPE(τ), we propose the multiplier bootstrap without re-
calculating the preliminary estimators (ω̂l(x), m̂0,l(x, q), m̂1,l(x, q)) in each bootstrap
iteration. Using independent standard normal random variables {ηi}Ni=1 that are inde-

pendent of the data, we compute the bootstrap estimator ÛQPE
∗
(τ) in the following

steps. The bootstrap estimator for qτ is q̂∗τ defined by the h∗N -th order statistic of
Yi, where h∗N is the integer part of 1 +

∑N
i=1 (τ + ηi(τ − 1{Yi ≤ q̂τ})). The bootstrap

estimator for fY is

f̂ ∗
Y (y) =

N
∑

i=1

(ηi + 1)
∑N

i=1(ηi + 1)

1

h1
K1

(

Yi − y

h1

)

,

and the bootstrap estimator for θ(τ) is

θ̂∗(τ) =
1

L

L
∑

l=1

1
∑

i∈Il(ηi + 1)

∑

i∈Il

(ηi+1) [m̂1,l(Xi, q̂
∗
τ ) − ω̂l(Xi)(1{Yi ≤ q̂∗τ} − m̂0,l(Xi, q̂

∗
τ ))] .

With these components, the bootstrap estimator ÛQPE
∗
(τ) is given by

ÛQPE
∗
(τ) = − θ̂∗(τ)

f̂ ∗
Y (q̂∗τ )

.

We can use the above multiplier bootstrap method to conduct various types of in-
ference. For example, we can construct a pointwise confidence interval for UQPE(τ).
Denote by CI(τ) the interval whose lower (resp. upper) bound is the α/2 (resp.

(1 − α/2)) quantile of ÛQPE
∗
(τ) conditional on the data.

Another example of inference is a confidence band for {UQPE(τ) : τ ∈ Υ}
for some closed interval Υ ⊂ (0, 1). Let cΥ(1 − α) denote the (1 − α) quantile of

supτ∈Υ

∣

∣

∣
(ÛQPE

∗
(τ) − ÛQPE(τ))/σ̂(τ)

∣

∣

∣
conditional on the data, where σ̂(τ) is some

estimator of the standard error of ÛQPE(τ) for τ ∈ Υ. Let CBΥ denote the band

on Υ whose lower and upper bounds at τ ∈ Υ are ÛQPE(τ) ± σ̂(τ)cΥ(1 − α).

2.3 Asymptotic Theory

In this section, we investigate the asymptotic properties of the estimator ÛQPE(τ)

and the bootstrap estimator ÛQPE
∗
(τ) introduced in the previous two subsections.

As in Section 2.2, the uniformity over τ is relevant to applications (e.g., analysis of
heterogeneous counterfactual effects across τ), and therefore, in this section, we aim
to control the residuals for the linear expansion uniformly over τ ∈ Υ for some closed
interval Υ ⊂ (0, 1). Let Q = {qτ : τ ∈ Υ}, and let Qε denote the ε enlargement of Q.
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Assumption 1.

1. For every τ ∈ Υ, FY (X1+ε,X−1)(q) is differentiable with respect to ε in a neigh-
borhood of zero for every q in a neighborhood of qτ , and Qτ (Y (X1 + ε,X−1)) is
well defined and is differentiable with respect to ε in a neighborhood of zero.

2. X1 and {Y (x1, X−1) : x1} are conditionally independent given X−1.

3.
∫ [

supq∈Q |m1(x, qτ )|
]2+δ

dFX(x) and
∫

|ω(x)|2+δdFX(x) are finite.

4. For every x−1 in the support of X−1, the conditional distribution of X1 given
X−1 = x−1 has a probability density function, denoted by fX1|X−1, which is
continuously differentiable everywhere and is zero on the boundary of the support
of the conditional distribution of X1.

5. m1(x, q) and m0(x, q) are differentiable with respect to q for q ∈ Q, and the
derivatives are bounded in absolute value uniformly over x ∈ SuppX and q ∈ Q.

6. fY (y) is three times differentiable on Qε with all the derivatives uniformly
bounded. fY (qτ ) > 0 for every τ ∈ Υ.

This assumption is on the model primitives of this paper. Assumptions 1.1 and
1.3–1.6 impose regularity in terms of the smoothness of various functions representing
features of the data. Assumption 1.2 imposes the unconfoundedness, which is a key
assumption in causal inference. While this assumption may be implausible with
traditional low-dimensional models, it tends to be more plausible as X−1 contains a
richer set of controls (i.e., as the dimension of X−1 increases). As emphasized in the
introduction, this is the main motivation for our investigation of extended models
allowing for high dimensions of X−1 in this paper.

Assumption 2. For every index l ∈ {1, ..., L} of folds, there exist sequences νN , AN ,
πN such that the following conditions hold with probability approaching one:

sup
Q
N({m̂j(x, q) : q ∈ Q}, eQ, ε||G(j)

l ||Q,2) .

(

AN

ε

)νN

for every ε ∈ (0, 1], (8)

sup
q∈Q

∫

|m̂1,l(x, q) −m1(x, q)|2 dFX(x) = OP (π2
N), (9)

∫

|ω̂l(x) − ω(x)|2 dFX(x) = OP (π2
N ), (10)

sup
q∈Q

∫

||ω̂l(x)m̂0,l(x, q) − ω(x)m0(x, q)|2 dFX(x) = OP (π2
N ), (11)

∫
[

sup
q∈Q

|m̂1,l(x, q)|
]2+δ

dFX(x) = OP (1), (12)

8



∫
[

sup
q∈Q

|ω̂l(x)(1 + |m̂0,l(x, q)|)|
]2+δ

dFX(x) = OP (1), (13)

sup
q∈Q

∣

∣

∣

∣

∫
(

m̂1,l(x, q) −
∂

∂x1
m̂0,l(x, q)

)

dFX(x)

∣

∣

∣

∣

= oP (N−1/2), (14)

sup
q∈Q

∣

∣

∣

∣

∫

(ω̂l(x) − ω(x))(m̂0,l(x, q) −m0(x, q))dFX(x)

∣

∣

∣

∣

= oP (N−1/2), (15)

π2
NνN log(AN/πN) = o(1), and νNN

− δ
4+2δ log(AN/πN) = o(1), (16)

where, in (8), N(·) is the covering number, G
(j)
l is the envelope for {m̂j(x, q) : q ∈ Q},

eQ(f, g) = ||f − g||Q,2 for the probability measure Q, and the supremum is taken over
all finitely discrete probability measures.

Several comments are in order. First, this assumption consists of a list of high-
level conditions that should be satisfied by the preliminary estimator (ω̂l(x), m̂0,l(x, q),
m̂1,l(x, q)). While we state these high-level conditions here for the sake of accommo-
dating a general class of preliminary estimators, Section 3.1 demonstrates that these
conditions are satisfied in particular for a concrete estimator that we propose. Sec-
ond, (8) is the entropy condition for the classes of functions {m̂j,l(x, q) : q ∈ Q}. We

require this condition because (1) we want to derive the linear expansion for θ̂(τ)
that is uniform in τ and (2) m̂j,l(x, q̂τ ) has the estimated q̂τ inside for j = 0, 1. We
will directly verify (8) and (16) for the Lasso estimator in Section 3.1 and general
machine learning estimators via a kernel convolution technique in Section 3.2. Third,
it is worth mentioning that the oP (N−1/2)-consistency conditions in (14) and (15) are
feasible. The term (14) is zero if we construct m̂1(x, q) by m̂1(x, q) = ∂

∂x1
m̂0(x, q).

The term (15) is oP (N−1/2) and therefore negligible, as long as ω̂l(x) and m̂0,l(x, q) are
oP (N−1/4)-consistent (in the L2 norm with respect to x). These oP (N−1/4) conditions
are achievable even if X is high-dimensional. In addition, the product structure in
(15) allows for the trade-off between how fast ω̂l(x) converges and how fast m̂0,l(x, q)
converges.

Assumption 3. 1. K1(·) is a second-order symmetric kernel function with a compact
support. 2. h1 = c1N

−H for some positive constant c1 and some 1/2 > H ≥ 1/5.

Assumption 3.1 states requirements for the kernel function. Assumption 3.2 de-
scribes admissible rates at which the bandwidth parameter tends to zero. The next

theorem presents asymptotic expansions for ÛQPE(τ) and ÛQPE
∗
(τ) under the

above assumptions.
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Theorem 1. If Assumptions 1–3 hold, then

ÛQPE(τ) − UQPE(τ) =
1

N

N
∑

i=1

IFi(τ) +
θ(τ)f

(2)
Y (qτ )(

∫

u2K1(u)du)h21
2f 2

Y (qτ )
+R(τ)

(17)

ÛQPE
∗
(τ) − ÛQPE(τ) =

1

N

N
∑

i=1

ηi · IFi(τ) +R∗(τ),

(18)

where the residuals are oP (N−1/2) uniformly in τ , i.e.,

sup
τ∈Υ

max{|R(τ)|, |R∗(τ)|} = oP (N−1/2),

the influence function is

IFi(τ) =
θ(τ)

f 2
Y (qτ )h1

K1

(

Yi − qτ
h1

)

+
θ(τ)f

(1)
Y (qτ )

f 3
Y (qτ )

(τ − 1{Yi ≤ qτ})

−
m1(Xi, qτ ) − θ(τ) − ω(Xi)(1{Yi ≤ qτ} −m0(Xi, qτ )) + ∂

∂q
m1(Xi, qτ ) τ−1{Yi≤qτ}

fY (qτ )

fY (qτ )
,

and f
(1)
Y (·) and f

(2)
Y (·) are the first and second derivatives of fY (·), respectively.

This theorem first establishes the uniform influence function representation in

(17) for the estimator ÛQPE with the influence function IFi(τ). Second, it also
establishes the multiplier counterpart in (18). These two results together imply that

we can simulate the limit process of rN(ÛQPE(·) − UQPE(·)) by the process of
rN · 1

N

∑N
i=1 ηi ·IFi(·) conditionally on the data. The leading term of the score function

is θ(τ)
f2
Y
(qτ )h1

K1

(

Yi−qτ
h1

)

, which has a slower convergence rate than the other terms.

However, this does not imply that the doubly robust method is unnecessary. In fact,
we only require the convergence rate of the nuisance estimators to be o(N−1/4), which

is still slower than the nonparametric convergence rate of ÛQPE(τ). Without the
help of the doubly robust method, the estimation error of the nuisance parameters
would dominate the leading term in the score function. In addition, Theorem 1 shows
the bootstrap estimator can mimic not only the leading term but also the other faster
convergent terms in the score function. This indicates that the bootstrap method can
provide a higher-order approximation of the variance of the original estimator. That
said, a comparison between (17) and (18) makes it clear that the bootstrap cannot
approximate the bias term in the kernel estimation. In practice, we recommend an
undersmoothing, that is, taking the bandwidth h smaller than the MSE-optimal rate
as in Assumption 3 so that the bias is asymptotically negligible.

The following corollary summarizes the validity for the bootstrap inference.

10



Corollary 1. Suppose Assumptions 1–3 hold and
√
Nh1 = o(h−2

1 ), then

P(UQPE(τ) ∈ CI(τ)) → 1 − α.

If, in addition, supτ∈Υ

∣

∣

∣

√
Nh1σ̂(τ) −

√

h1V ar(IFi(τ))
∣

∣

∣
= oP (log−1/2(N)) holds and

h1V ar(IFi(τ)) is bounded away from zero, then

P({UQPE(τ) : τ ∈ Υ} ∈ CBΥ) → 1 − α.

Corollary 1 is a direct consequence of the linear expansions in Theorem 1 and
the strong approximation theory developed by Chernozhukov, Chetverikov, and Kato
(2014a,b). Its proof is omitted for brevity. To compute σ̂(τ), we can use either the
plug-in method or the bootstrap method. For these methods, the convergence rate
of

√
Nh1σ̂(τ) is polynomial in N , which implies oP (log−1/2(N)).

3 Preliminary First-Stage Estimators

The general theory presented in Section 2 presumes general machine learners for
preliminary first-stage estimation and therefore uses high-level conditions stated in
Assumption 2. In the current section, we present two additional results to supplement
this general framework. First in Section 3.1, to provide empirical practitioners with a
readily applicable method, we focus on the Lasso preliminary first-stage estimation,
propose a concrete estimation and inference procedure that is easy to implement, and
present lower-level sufficient conditions for Assumption 2 that are easy to interpret
in the context of this specific estimation procedure. Because the Lasso regularization
achieves variable selection, the entropy of the function class to which the estimators
belong is small enough to directly satisfy our general assumptions. Second, in Section
3.2, to accommodate a general class of machine learners as well as the Lasso, we
propose a method of kernel deconvolution so that the entropy of the function classes
to which the convoluted machine learning estimates belong is reduced so that our
general assumption can be satisfied for these general machine learners.

3.1 Lasso Preliminary Estimator

In this section, we use the Lasso regularization to construct (ω̂l(x), m̂0,l(x, q)) for every
index l ∈ {1, ..., L} of fold and derive a low-level sufficient condition for Assumption
2 in Section 2.3. In this paper, we use m̂1,l(x, q) defined by

m̂1,l(x, q) =
∂

∂x1
m̂0,l(x, q),

which immediately implies (14) in Assumption 2.

11



To estimate ω(X), we consider the location scale model

X1 = µ(X−1) + σ(X−1)U where U ∼ N(0, 1). (19)

By the shape of the normal distribution,

ω(X) =
−(X1 − µ(X−1))

σ2(X−1)
(20)

and

µ(X−1) =
Q0.25(X1|X−1) +Q0.75(X1|X−1)

2
, σ(X−1) =

Q0.25(X1|X−1) −Q0.75(X1|X−1)

z0.25 − z0.75
,

where Qτ (X1|X−1) is the conditional τ -th quantile of X1 given X−1 and zτ is the τ -th
standard normal critical value. It is possible to generalize the model (19) to

g(X1) = µ(X−1) + σ(X−1)U,

where g(·) is some known transformation and U may follow a non-Gaussian (but
known) distribution.

We now discuss the detailed estimation procedure for ω(x) based on (20).4 Con-
sider the approximately sparse linear model for Qτ (X1|X−1):

Qτ (X1|X−1) = h(X−1)
Tγτ + rQ(X−1, τ),

where h(X−1) is a ph-dimensional vector and Assumption 4 (to be stated below)
specifies the conditions for the sparsity and the approximation error rQ(x−1, τ). We
estimate γτ by the Lasso penalized quantile regression

γ̂τ,l = arg min
γ

1

n(L− 1)

∑

i∈Ic
l

ρτ (X1,i − h(X−1,i)
Tγ) +

λ

n(L− 1)
||Ξτγ||1,

where ρτ (u) = u(τ−1{u ≤ τ}) is the check function and Ξτ is the ph×ph diagonal ma-

trix whose jth diagonal entry is
√

1
n(L−1)

∑

i∈Ic
l
τ(1 − τ)h2j (X−1,i). The regularization

parameter follows Belloni et al. (2017, p. 261):

λ = 1.1Φ−1(1 − (0.1/ log(N))/(ph ∨N))(n(L− 1))1/2.

4It is possible to estimate the conditional CDF of X1 given X−1 via a logistic Lasso regres-
sion proposed by Belloni et al. (2017) and then use a numerical derivative to estimate ω(x) =
∂

∂x1
log fX1|X−1=x

−1
(x1). We refer interested readers to Belloni, Chernozhukov, and Kato (2018b)

for more detail. Both methods involve parametric assumptions on the error term. Although the
numerical derivative method does not assume the location-scale model, it requires more tuning pa-
rameters than our method and needs to estimate ω(x) for each x1 separately. As introduced below,
our method is easier to implement, however, because it can construct an estimator for the function
x 7→ ω(x) by estimating the (2 · ph)-dimensional parameters for (µ(x−1), σ(x−1)).

12



Based on γ̂τ,l, we can estimate Qτ (X1|X−1) by

Q̂τ,l(X1|X−1) = h(X−1)
T γ̂τ,l.

Now we can estimate ω(X) by

ω̂l(X) =
−(X1 − µ̂l(X−1))

σ̂2
l (X−1)

,

where

µ̂l(X−1) =
Q̂0.25,l(X1|X−1) + Q̂0.75,l(X1|X−1)

2
, σ̂l(X−1) =

Q̂0.25,l(X1|X−1) − Q̂0.75,l(X1|X−1)

z0.25 − z0.75
.

We estimate m0(x, q) by the logistic Lasso regression using data in Icl . With the
standard logistic CDF denoted by Λ, we consider the approximately sparse logistic
regression model for m0(x, q):

m0(X, q) = Λ(b(X)Tβq) + rm(X, q),

where b(X) is a pb-dimensional vector and Assumption 4 (to be stated below) specifies
the conditions for the sparsity and the approximation error rm(x, q). We estimate βq
by the Lasso penalized logistic regression

β̃q,l = arg min
β

1

n(L− 1)

∑

i∈Ic
l

M(1{Yi ≤ q}, b(Xi); β) +
λ

n(L− 1)
||Ψqβ||1, (21)

where M(·) is the logistic likelihood and Ψq is a diagonal matrix with penalty loadings
defined in the next paragraph. The regularization parameter is

λ = 1.1Φ−1(1 − (0.1/ log(N))/(pb ∨N))(n(L− 1))1/2.

We recommend using the post-Lasso estimator for βq defined by

β̂q,l = arg min
β∈Rp:Supp(β)⊂Supp(β̃q,l)∪S1

1

n(L− 1)

∑

i∈Ic
l

M(1{Yi ≤ q}, b(Xi); β),

where S1 ⊂ {1, . . . , pb} represents the set of covariates researchers want to include
in the post-Lasso regression. In the context of the UQPE with respect to X1, it is
intuitive to include X1 in the regression. The post-Lasso estimator can do so by
setting 1 ∈ S1, whereas the Lasso estimator β̃q,l may exclude X1 from the regression.

With β̂q,l, we can estimate m̂0,l(x, q) as

m̂0,l(x, q) = Λ(b(X)T β̂q,l).

13



The penalty loading matrix Ψq = diag(ψq,1, · · · , ψq,pb) in (21) needs to be esti-
mated. Ideally, we would like to use the infeasible penalty loading

ψ̄q,j =

√

√

√

√

1

n(L− 1)

∑

i∈Ic
l

(1{Yi ≤ q} −m0(Xi, q))
2 b2j (Xi).

Since m0(X, q) is unknown, Belloni et al. (2017) propose the following iterative algo-
rithm to obtain the feasible version of the loading matrix:

1. We start the algorithm with ψ0
q,j =

√

1
n(L−1)

∑

i∈Ic
l

1{Yi ≤ q}b2j(Xi).

2. For k = 0, · · · , K − 1 for some fixed positive integer K, we can compute β̃k
q by

(21) with Ψ̃k
q = diag(ψk

q,1, · · · , ψk
q,pb

), and construct

ψk+1
q,j =

√

√

√

√

1

n(L− 1)

∑

i∈Ic
l

(

1{Yi ≤ q} − Λ(b(Xi)T β̃k
q )
)2

b2j(Xi).

3. The final penalty loading matrix ΨK
q = diag(ψK

q,1, · · · , ψK
q,pb

) will be used for Ψq

in (21).

We provide a sufficient condition under which the estimator, (ω̂l(x), m̂0,l(x, q)),
defined above satisfies Assumption 2 in Section 2.3.

Assumption 4.

1. (Conditional distribution) Suppose X1|X−1 ∼ N(µ(X−1), σ
2(X−1)).

2. (Boundedness) The following statements hold for positive constants δ, c, c: (i)
c ≤ σ(x−1) ≤ c for every x−1 ∈ Supp(X−1). (ii) c ≤ Ebj(X)2 ≤ c for every j =
1, . . . , p. (iii) supx∈Supp(X),q∈Qε |m1(x, q)| ≤ c. (iv) supq∈Q || ∂

∂x1
b(X)Tβq||P,∞ ≤ c.

(v) ||ω(X)||P,2+δ < c.

3. (Restricted eigenvalue condition) There are positive constants c, c and a sequence
mN → ∞ such that, with probability approaching one,

c ≤ inf
β 6=0,||β||0≤mN

||b(X)Tβ||Pn,2

||β||2
≤ sup

β 6=0,||β||0≤mN

||b(X)Tβ||Pn,2

||β||2
≤ c,

c ≤ inf
β 6=0,||β||0≤mN

|| ∂
∂x1
b(X)Tβ||Pn,2

||β||2
≤ sup

β 6=0,||β||0≤mN

|| ∂
∂x1
b(X)Tβ||Pn,2

||β||2
≤ c,

c ≤ inf
γ 6=0,||γ||0≤mN

||h(X−1)
Tγ||Pn,2

||γ||2
≤ sup

γ 6=0,||γ||0≤mN

||h(X−1)
Tγ||Pn,2

||γ||2
≤ c,
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sup
β 6=0,||β||0≤mN

∣

∣

∣

∣

∣

|| ∂
∂x1
b(X)Tβ||Pn,2

|| ∂
∂x1
b(X)Tβ||P,2

− 1

∣

∣

∣

∣

∣

+ sup
β 6=0,||β||0≤mN

∣

∣

∣

∣

∣

|| ∂
∂x1
b(X)Tβ||Pn,2

|| ∂
∂x1
b(X)Tβ||P,2

− 1

∣

∣

∣

∣

∣

+ sup
γ 6=0,||γ||0≤mN

∣

∣

∣

∣

||h(X−1)
Tγ||Pn,2

||h(X−1)Tγ||P,2
− 1

∣

∣

∣

∣

= oP (1),

where ||v||0 denotes the the number of nonzero coordinates of vector v.

4. (Sparsity) max(||γ0.25||0, ||γ0.75||0, supq∈Qε ||βq||0) ≤ s for a sequence s = sN

satisfying s = o(mN ), ζ2Ns
2 log(p) = o(N), ζ

4/(2+δ)
N s(6+2δ)/(2+δ) log2(p) = o(N),

and s log(p) = o(N δ/(4+δ)), where p = max(ph, pb) and

ζN = max(|| max
j=1,...,pb

|bj(X)|||P,∞, || max
j=1,...,pb

| ∂
∂x1

bj(X)|||P,∞, || max
j=1,...,ph

|hj(X−1)|||P,∞).

5. (Approximation Error)

sup
q∈Qε

∥

∥

∥

∥

∂

∂x1
rm(X, q)

∥

∥

∥

∥

P,2

+‖rQ(X−1, 0.25)‖
P,2+‖rQ(X−1, 0.75)‖

P,2 = O((s log(p)/N)1/2)

sup
q∈Qε

|| ∂
∂x1

rm(X, q)||P,∞+||rQ(X−1, 0.25)|||P,∞+||rQ(X−1, 0.75)||P,∞ = O((log(p)s2ζ2N/N)1/2).

Several remarks are in order. First, Assumption 4.2 is the common regularity con-
dition. Second, Assumptions 4.3 and 4.5 are common in the literature of logistic and
quantile regressions with ω1 penalty. See, for instance, Belloni and Chernozhukov
(2011), Belloni et al. (2017), and Belloni et al. (2018b), among others. Third, As-
sumption 4.4 is due to the fact that Eω2+δ(X) < ∞. If all the moments of ω(x) are
finite, then Assumption 4.4 reduces to ζ2Ns

2 log(p) = o(N) and s2 log2(p) = o(N) up to
some logarithmic factor. Fourth, the quantile regression requires that the conditional
quantile is bounded and bounded away from zero. Such condition holds automatically
in our setup. Let φ(·) be the standard normal PDF. Assumptions 4.1 and 4.2 imply
that

fX1|X−1=x−1(x1) =
1

σ(x−1)
φ

(

x1 − µ(x−1)

σ(x−1)

)

and that
∂

∂x1
fX1|X−1=x−1(x1) = −x1 − µ(x−1)

σ3(x−1)
φ

(

x1 − µ(x−1)

σ(x−1)

)

which are uniformly bounded in absolute value over the support of X . In addition,
we note that

fX1|X−1=x−1(Qτ (X1|X−1 = x−1)) =
1

σ(x−1)
φ(zτ ).
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As σ(x−1) is uniformly bounded away from zero, the previous display implies that
fX1|X−1=x−1

(Qτ (X1|X−1 = x−1)) is bounded away from zero uniformly for all x−1 ∈
Supp(X−1) for τ = 0.25 and 0.75.

With Assumption 4, we can demonstrate that the high-level conditions in As-
sumption 2 hold for the Lasso regularized estimator proposed in this section. The
formal statement is as follows.

Theorem 2. If Assumptions 1 and 4 hold, then Assumption 2 holds with πN =
(

ζ
4/(δ+2)
N s(4+δ)/(2+δ) log(p)/N

)1/2

, νN = s, and AN = p.

3.2 General Preliminary Machine Learning Estimators

In this section, we propose a kernel convolution method to smooth general machine
learning estimators m̂j,l(x, q) over q. This convolution benefits the theoretical argu-
ments for the uniform consistency over q because the resulting convolution is Lipschitz
continuous, as shown in the proof of Theorem 3. Chernozhukov, Fernández-Val, and Kowalski
(2015) use a similar idea. For a generic machine learning estimator m̂0,l(x, q), the en-
tropy of the class of functions {m̂j,l(x, q) : q ∈ Q} for j = 0, 1 and l ∈ {1, . . . , L}
is usually unknown. This kernel smoothing method provides one way to introduce
smoothness to m̂j,l(x, q) over q and thus reduces the entropy of {m̂j,l(x, q) : q ∈ Q}.

Assumption 5.

1. Both m0(x, q) and m1(x, q) are 2k-th order differentiable with respect to q, and
all the derivatives are bounded uniformly over x.

2. K2(·) is a symmetric function with bounded support,
∫

K2(u)du = 1,
∫

ujK2(u)du =
0 for j = 1, · · · , 2k − 1, supu|K2(u)| < ∞ and

∫

u2k|K2(u)|du < ∞. h2 =

c2N
−1

2(2k+1) for some positive constant c2.

We use the higher-order kernel to fully exploit the smoothness of m0(x, q) and re-
duce the bias caused by the kernel convolution method. We further assume that
the errors of the initial machine learning estimators {m̆j,l(x, q)}j=0,1,l∈{1,...,L} and
{ω̂l(x)}l∈{1,...,L} satisfy the following conditions.

Assumption 6. For every subsample index l ∈ {1, ..., L}, there exists a vanishing
sequence ρN such that

sup
q∈Qǫ

‖m̆j,l(x, q) −mj(x, q)‖P,∞ = OP (h2ρN), j = 0, 1, (22)

sup
q∈Qǫ

∫

|m̆1,l(x, q) −m1(x, q)|2 dFX(x) = OP (h22ρ
2
N), (23)

∫

|ω̂l(x) − ω(x)|2 dFX(x) = OP (h22ρ
2
N ), (24)
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∫
[

sup
q∈Qǫ

|m̆1,l(x, q)|
]2+δ

dFX(x) = OP (1), (25)

∫
[

sup
q∈Qǫ

|ω̂l(x)(1 + |m̆0,l(x, q)|)|
]2+δ

dFX(x) = OP (1), (26)

sup
q∈Qǫ

∣

∣

∣

∣

∫
(

m̆1,l(x, q) −
∂

∂x1
m̆0,l(x, q)

)

dFX(x)

∣

∣

∣

∣

= oP (N−1/2), (27)

sup
q∈Qǫ

∣

∣

∣

∣

∫

(ω̂l(x) − ω(x))(m̆0,l(x, q) −m0(x, q))dFX(x)

∣

∣

∣

∣

= oP (N−1/2). (28)

Our final first-stage estimator of (m0(x, q), m1(x, q), ω(x)) is (m̂0,l(x, q), m̂1,l(x, q),
ω̂l(x)), where

m̂0,l(x, q) =

∫

m̆0,l(x, t)

h2
K2

(

q − t

h2

)

dt, j = 0, 1.

The next theorem shows that the high-level conditions in Assumption 2 hold for
(m̂0,l(x, q), m̂1,l(x, q), ω̂l(x)).

Theorem 3. Suppose Assumptions 1, 5 and 6 hold, then (m̂0,l(x, q), m̂1,l(x, q), ω̂l(x))
satisfy Assumption 2 with νN = 1, AN = 1, and πN = h2ρN + h2k2 .

We can likewise apply the kernel convolution method to the Lasso preliminary
estimators proposed in Section 3.1. Suppose ζN is of logarithmic rate and Eω4(X) <
∞ so that δ = 2, then Assumption 4.4 reduces to that s log(p) = o(N1/3) (up to some

logarithmic rate). Assumption 6 requires s2 log(p) = o(N
2k

2k+1 ) and s2 log2(p) = o(N)
(up to some logarithmic rate), which is weaker than Assumption 4.4 for all k ≥ 1. It is
also interesting to see that the rate restriction of the sparsity level s and dimensionality
p can be relaxed by imposing extra smoothness. The cost for the weaker condition
is that we have to introduce one tuning parameter. In our simulation studies and
empirical illustration, we implement the Lasso preliminary estimation without the
kernel convolution, and the simulation results are impeccable even without the kernel
convolution.

4 Simulation Studies

In this section, we use Monte Carlo simulations to study the finite sample performance
of the proposed method of estimation and inference for the UQPE.

Consider a set of alternative data-generating designs as follows. The outcome
variable is generated according to the partial linear high-dimensional model

Y | X ∼ N(g(X1) +

p
∑

j=2

αjXj , 1),
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where the function g(·) is defined in the following three ways:

DGP 1 : g(x) = 1.00 · x
DGP 2 : g(x) = 1.00 · x− 0.10 · x2
DGP 3 : g(x) = 1.00 · x− 0.10 · x2 + 0.01 · x3

The high-dimensional controls (X1, ..., Xp)
T are generated by

X1 | (X2, ..., Xp) ∼ N

(

p
∑

j=2

γjXj , 1

)

and (X2, ..., Xp) ∼ N(0,Σp−1),

where Σp−1 is the (p− 1)× (p− 1) variance-covariance matrix whose (r, c)-element is
0.52(|r−c|+1). Note that this data-generating process (DGP) induces dependence of the
control X1 of main interest on the rest of the p−1 controls (X2, . . . , Xp)

T , as well as the
dependence among the p−1 controls (X2, . . . , Xp)

T . For the high-dimensional parame-
ter vectors in the above data-generating model, we set (α2, . . . , αp)

T = (γ2, . . . , γp)
T =

(0.52, 0.53, ..., 0.5p)T .
We follow the general estimation and inference approach outlined in Section 2

together with the Lasso preliminary estimator introduced in Section 3.1. We set
h(x−1) = (xT−1, (x

2
−1)

T , (x3−1)
T )T for estimation of ωl, and set b(x) = (xT , (x2)T , (x3)T )T

for estimation of m0 and m1. For the choice of h1, we undersmooth the rule-of-thumb
optimal choice as h1 = 1.06σ(Y )N−1/5−0.01. For each design, we use 500 iterations
of Monte Carlo simulations to compute the mean, bias, and root mean square error
(RMSE) of the estimate, as well as the 95% uniform coverage over the set [0.20, 0.80] of
quantiles. To evaluate the bias, RMSE, and the 95% uniform coverage, we first numer-
ically approximate the true UQPE by large-sample Monte Carlo simulations. Across
sets of Monte Carlo simulations, we vary the DGP ∈ {DGP 1, DGP 2, DGP 3}, the
sample size N ∈ {250, 500}, and the dimension p ∈ {50, 100}.

Table 1 summarizes the simulation results. We can make the following three ob-
servations in these results. First, the bias of our UQPE estimator is small, especially
relative to the RMSE. This feature of the results supports the fact that our estima-
tor mitigates the bias via the use of the doubly robust score and sample splitting.
Second, the RMSE decreases as the sample size increases. Third, the 95% uniform
coverage frequencies are close to the nominal probability, namely, 0.95. This feature
of the results supports our theory on the asymptotic validity of the bootstrap infer-
ence. From these simulation results, we confirm the main theoretical properties of
the proposed method of estimation and inference for the UQPE across alternative
data-generating processes. In addition to the simulation designs introduced above,
we also experimented with other designs, and the simulation results are very similar
and support the main theoretical properties of our proposed method as well.
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True Estimates 95% Cover
DGP N p L τ UQPE Mean Bias RMSE Point Unif.

1

500 100 5

0.20 1.00 1.04 0.04 0.30 0.92

0.95
0.40 1.00 1.04 0.04 0.37 0.91
0.60 1.00 1.05 0.05 0.42 0.92
0.80 1.00 1.01 0.01 0.50 0.93

1000 200 5

0.20 1.00 1.02 0.02 0.10 0.92

0.96
0.40 1.00 1.03 0.03 0.09 0.93
0.60 1.00 1.03 0.03 0.09 0.93
0.80 1.00 1.02 0.02 0.11 0.92

2

500 100 5

0.20 1.12 1.15 0.03 0.31 0.93

0.94
0.40 1.03 1.07 0.04 0.37 0.90
0.60 0.96 1.01 0.05 0.44 0.91
0.80 0.88 0.89 0.01 0.47 0.93

1000 200 5

0.20 1.12 1.14 0.02 0.11 0.93

0.96
0.40 1.03 1.05 0.02 0.09 0.94
0.60 0.95 0.98 0.03 0.09 0.93
0.80 0.87 0.90 0.03 0.10 0.92

3

500 100 5

0.20 1.14 1.17 0.03 0.32 0.92

0.94
0.40 1.04 1.09 0.04 0.37 0.91
0.60 0.97 1.03 0.05 0.44 0.92
0.80 0.90 0.92 0.01 0.48 0.92

1000 200 5

0.20 1.14 1.17 0.02 0.11 0.94

0.96
0.40 1.04 1.07 0.02 0.09 0.94
0.60 0.97 1.00 0.03 0.09 0.93
0.80 0.90 0.93 0.03 0.10 0.91

Table 1: Monte Carlo simulation results under approximate sparsity. The true UQPE
is numerically computed with a large-sample Monte Carlo. The 95% coverage is
uniform over the set [0.20, 0.80].

5 Heterogeneous Counterfactual Marginal Effects

of Job Corps Training

Applying our proposed method, we analyze heterogeneous counterfactual marginal
effects of Job Corps training on labor outcomes in this section. Job Corps is the
largest training program for disadvantaged youth in the United States. A number
of economists have analyzed the causal effects of this job training program on la-
bor, health, and behavioral outcomes. Schochet, Burghardt, and McConnell (2008)
are the first to provide an intensive study of the survey data associated with Job
Corps and find average effects of the program on a variety of labor and behavioral
outcomes. Flores and Flores-Lagunes (2009) study the causal effects by accounting
for the endogeneity of work experiences based on unconfoundedness given a set of
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observed controls. Flores, Flores-Lagunes, Gonzalez, and Neumann (2012) consider
the labor effects of the duration of exposure to the program as a continuous treat-
ment. Huber (2014) accounts for endogenous selection in employment as the medi-
ator on health outcomes based on selection on observables given a set of observed
controls. Frölich and Huber (2017) use the instrumental variables approach to disen-
tangle the indirect effects through work hours and the direct effects of the program.
Hsu, Huber, Lee, and Pipoz (2018) consider the duration of exposure to the program
as a continuous treatment and study its effects on behavioral outcomes with employ-
ment status as a mediator using a large set of observed controls.

While the rich set of interesting empirical findings have been reported about the
treatment effects of Job Corps, an analysis of heterogeneous counterfactual effects is
missing in the literature to the best of our knowledge, despite its potential relevance to
designing effective program policies and schemes. For instance, natural questions may
arise about whether higher (respectively, lower) potential earners would benefit more
(respectively, less) from counterfactually extending the duration of the training pro-
gram. Since the entrance interview in Job Corps provides some information regarding
the human capital of prospective trainees, answers to these empirical questions may
possibly help the program designers to devise more efficient policies and schemes for
the training programs. As such, we are interested in heterogeneous counterfactual
marginal effects of the duration of the exposure to the program, as a continuous
treatment variable, on labor outcomes measured by hourly wages. As in some of
the preceding papers in this literature discussed above, we identify and estimate the
causal effects based on unconfoundedness given a large set of observed controls by
taking advantage of our machine-learning-based method. For the outcome variable,
we consider hourly wages. For the continuous treatment variables, we consider two
seemingly similar but different measures: the duration in days of participation in Job
Corps and the duration in days of actually taking classes in Job Corps. As will be
shown shortly, these two definitions entail qualitatively different empirical findings.
We use 42 observed controls (and their powers) on which the unconfoundedness is
assumed. Table 2 shows the summary statistics of our data. Different sets of ob-
servations are missing across different variables, and hence we use the intersection
of observations that are non-missing across all the variables in use for our analysis.
After dropping the missing observations, we are left with n = 481 when we define
the duration of participation in Job Corps as the treatment, while we are left with
n = 368 when we define the duration of actually taking classes in Job Corps. Note
that the dimension of covariates is relatively large given these effective sample sizes,
and hence high-dimensional econometric methods are indispensable.

Using the same computer program as the one used for simulation studies presented
in Section 4, we obtain estimates, pointwise 95% confidence intervals, and uniform
95% confidence bands for UQPE(τ) for τ ∈ [0.20, 0.80]. Table 3 summarizes the
results. The row groups (I) and (II) report results for days in Job Corps as the
treatment variable, while the row groups (III) and (IV) report results for days of
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25th 75th Non-
Percentile Median Mean Percentile Missing

Outcome Y Hourly wage 4.750 5.340 5.892 6.500 7606
Treatment X1 Days in Job Corps 54.0 129.0 153.4 237.0 4748

Days taking classes 41.0 91.0 120.2 179.0 4207
Controls X−1 Age 17.00 18.00 18.43 20.00 14653

Female 0.000 0.000 0.396 1.000 14653
White 0.000 0.000 0.303 1.000 14327
Black 0.000 1.000 0.504 1.000 14327
Hispanic origin 0.000 0.000 0.184 0.000 14288
Native language is English 1.000 1.000 0.855 1.000 14327
Years of education 9.00 10.00 10.24 11.00 14327
Other job trainings 0.000 0.000 0.339 1.000 13500
Mother’s education 11.00 12.00 11.53 11.53 11599
Mother worked 1.000 1.000 0.752 1.000 14223
Father’s education 11.00 12.00 11.50 12.00 8774
Father worked 0.000 1.000 0.665 1.000 12906
Received welfare 0.000 1.000 0.563 1.000 14327
Head of household 0.000 0.000 0.123 0.000 14327
Number of people in household 2.000 3.000 3.890 5.000 14327
Married 0.000 0.000 0.021 0.000 14327
Separated 0.000 0.000 0.017 0.000 14327
Divorced 0.000 0.000 0.007 0.000 14327
Living with spouse 0.000 0.000 0.014 0.000 14235
Child 0.000 0.000 0.266 1.000 13500
Number of children 0.000 0.000 0.347 0.000 13500
Past work experience 0.000 1.000 0.648 1.000 14327
Past hours of work per week 0.000 24.00 25.15 40.00 14299
Past hourly wage 4.250 5.000 5.142 5.500 7884
Expected wage after training 7.000 9.000 9.910 11.000 6561
Public housing or subsidy 0.000 0.000 0.200 0.000 14327
Own house 0.000 0.000 0.411 1.000 11457
Have contributed to mortgage 0.000 0.000 0.255 1.000 13951
Past AFDC 0.000 0.000 0.301 1.000 14327
Past SSI or SSA 0.000 0.000 0.251 1.000 14327
Past food stamps 0.000 0.000 0.438 1.000 14327
Past family income ≥ $12K 0.000 1.000 0.576 1.000 14327
In good health 1.000 1.000 0.871 1.000 14327
Physical or emotional problem 0.000 0.000 0.049 0.000 14327
Smoke 0.000 1.000 0.537 1.000 14327
Alcohol 0.000 1.000 0.584 1.000 14327
Marijuana or hashish 0.000 0.000 0.369 1.000 14327
Cocaine 0.000 0.000 0.033 0.000 14327
Heroin/opium/methadone 0.000 0.000 0.012 0.000 14327
LSD/peyote/psilocybin 0.000 0.000 0.055 0.000 14327
Arrested 0.000 0.000 0.266 1.000 14327
Number of times arrested 0.000 0.000 0.537 1.000 14218

Table 2: Summary statistics of data.
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Outcome Treatment τ ÛQPE(τ) Pointwise 95% CI Uniform 95% CB
(I) Hourly Days in 0.2 0.00118 [0.00097 0.00138] [0.00087 0.00148]

wage Job Corps 0.4 0.00074 [0.00061 0.00087] [0.00054 0.00094]
0.6 0.00229 [0.00192 0.00266] [0.00174 0.00284]
0.8 0.00446 [0.00331 0.00561] [0.00274 0.00618]

(II) Log Days in 0.2 0.00020 [0.00016 0.00024] [0.00013 0.00027]
hourly Job Corps 0.4 0.00017 [0.00013 0.00021] [0.00010 0.00024]
wage 0.6 0.00037 [0.00030 0.00044] [0.00025 0.00049]

0.8 0.00062 [0.00046 0.00078] [0.00035 0.00089]
(III) Hourly Days in 0.2 0.00327 [0.00278 0.00377] [0.00253 0.00402]

wage Job Corps 0.4 0.00203 [0.00169 0.00239] [0.00151 0.00257]
classes 0.6 0.00110 [0.00082 0.00137] [0.00068 0.00151]

0.8 0.00267 [0.00133 0.00401] [0.00064 0.00470]
(IV) Log Days in 0.2 0.00056 [0.00045 0.00067] [0.00038 0.00074]

hourly Job Corps 0.4 0.00053 [0.00038 0.00068] [0.00028 0.00077]
wage classes 0.6 0.00017 [0.00012 0.00022] [0.00010 0.00026]

0.8 0.00037 [0.00017 0.00057] [0.00003 0.00070]

Table 3: Heterogeneous counterfactual marginal effects of days in Job Corps using
p = 42 controls. The row groups (I) and (II) report results for days in Job Corps as
the treatment variable, while the row groups (III) and (IV) report results for days of
taking classes in Job Corps as the treatment variable. The row groups (I) and (III)
report results for the hourly wage as the outcome variable, while the row groups (II)
and (IV) report results for the logarithm of the hourly wage as the outcome variable.
Row groups (I) and (II) are based on n = 481, while row groups (III) and (IV) are
based on n = 368. The results are based on L = 5 folds of sample splitting.

taking classes in Job Corps as the treatment variable. The row groups (I) and (III)
report results for the hourly wage as the outcome variable, while the row groups (II)
and (IV) report results for the logarithm of the hourly wage as the outcome variable.

Overall, the magnitudes of the estimates are consistent with those from prior stud-
ies,5 and we also obtain the following new findings. First, observe that the UQPE
is globally positive in the table, and the pointwise 95% confidence intervals and uni-
form 95% confidence bands are all contained in the set of positive reals. These results
indicate that the counterfactual marginal effects of our interest are globally positive
across the heterogeneous subpopulations. We next look into the heterogeneity of
these effects. Observe in (I) that the UQPE of days in Job Corps on hourly wages
is smaller for τ = 0.2 than that for τ = 0.8 and that the uniform 95% confidence
band does not intersect across these two quantile points. These results indicate that,

5In the row group (I) in Table 3 for instance, the daily marginal effects range from 0.0007 to 0.0044
dollars. This is consistent with the 0.22 difference in average hourly wages between the treatment
and control groups (Schochet, Burghardt, and McConnell, 2008, Table 3), where the average number
of days in Job Corps for the treated group is 153.4 (Table 2).
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although the effects are globally positive, the levels of the effects are heterogeneous.
However, we should be careful in analyzing this point because the larger effects for the
subpopulation of higher potential earners (i.e., higher quantiles) could simply result
from the scale effect. Heterogeneity in causal effects across different quantiles often
vanishes once we take the logarithm of the outcome variable. Therefore, we next
consider the row group (II), where the outcome variable is defined as the logarithm
of the hourly wage. Notice that, even in this row group, we continue to observe the
same qualitative pattern as that in the row group (I). Namely, the UQPE is smaller
for τ = 0.2 than that for τ = 0.8, and the uniform 95% confidence band does not
intersect across these two quantile points. These results indicate that the subpop-
ulation of higher potential earners or those with more innate human capital would
benefit more from marginally extending the duration of the training program than the
subpopulation of lower potential earners or those with less innate human capital. On
the other hand, if we turn to row groups (III) and (IV), where the treatment variable
is now defined as days of taking classes in Job Corps, then we no longer observe the
aforementioned pattern of heterogeneous counterfactual marginal effects, and both
the pointwise 95% confidence intervals and the uniform 95% confidence bands largely
overlap across different quantiles.

In summary, we obtain the following three new findings about counterfactual
marginal effects of the duration of exposure to Job Corps training on the hourly
wage. First, the effects are globally positive for all the subpopulations under consid-
eration, regardless of the definition of the treatment variable and the definition of the
outcome variable. Second, the counterfactual marginal effects of days in Job Corps
are heterogeneous with larger effects for the subpopulation of higher potential earn-
ers. This result holds robustly regardless of whether we define the outcome variable
as the hourly wage or the logarithm of it. Third, we fail to detect the aforementioned
pattern of heterogeneous counterfactual marginal effects once we define the treatment
variable as days of taking classes in Job Corps. The last two points imply that some
features of the Job Corps program other than merely taking classes may well be the
source of heterogeneous benefits to the different trainees.

6 Conclusion

Credible counterfactual analysis requires the unconfoundedness condition to be plau-
sibly satisfied, and high-dimensional controls are preferred to this end. On the other
hand, existing methods of estimation and inference for heterogeneous counterfactual
effects are not compatible with high-dimensional settings. In this paper, we therefore
propose a novel doubly robust score for double/debiased estimation and inference for
the UQPE as a measure of heterogeneous counterfactual marginal effects. For a con-
crete implementation procedure, we propose a multiplier bootstrap inference method
for the double/debiased estimator. Asymptotic theories are presented to guarantee
that the bootstrap method works. Lower-level sufficient conditions for our assump-
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tions tailored to the Lasso double/debiased estimator are also provided so that a user
can check the plausibility of the required assumptions in terms of primitive condi-
tions involving only non-stochastic population objects. In addition, we also propose
a method of kernel convolution to accommodate general machine learners.

Applying the proposed method of estimation and inference to survey data of Job
Corps, the largest training program for disadvantaged youth in the United States, we
obtain the following two empirical findings. First, the marginal effects of counterfac-
tually extending the duration of the exposure to the Job Corps program are globally
positive across quantiles robustly regardless of the definitions of the treatment vari-
able (days in Job Corps and days taking classes) and regardless of whether we define
the outcome as the level or its logarithm. Second, these counterfactual effects are
larger for higher potential earners than lower potential earners robustly regardless of
whether we define the outcome as the level or its logarithm.
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A Double Robustness

The double robustness of (4) follows from Chernozhukov et al. (2018b, Theorem 3).
In this section, for the sake of completeness, we demonstrate that (4) is doubly robust.

Lemma 1 (Double Robustness). Suppose Assumption 1 holds. If

(i)
∫

|m̃1(x, qτ )|dFX(x),
∫

|ω̃(x)1{y ≤ qτ}|dFY,X(y, x),
∫

|ω̃(x)m0(x, qτ )|dFX(x),
and

∫

|ω(x)m̃0(x, qτ )|dFX(x) are finite;

(ii) for every x−1 in the support of X−1, the mappings x1 7→ (m0(x, qτ )− m̃0(x, qτ ))
and x1 7→ fX1|X−1=x−1

(x1) are continuously differentiable with (m0(x, qτ ) −
m̃0(x, qτ ))fX1|X−1=x−1(x1) → 0 as x1 → ±∞; and

(iii)
∫

m̃1(x, qτ )dFX(x) =
∫

∂
∂x1
m̃0(x, qτ )dFX(x);

then (5) and (6) hold.

In the above lemma, conditions (i) and (ii) are regularity conditions for the nui-
sance parameter values. Condition (iii) is satisfied if m̃1(x, qτ ) = ∂

∂x1
m̃0(x, qτ ). It

is reasonable since m̃0(x, qτ ) is a value for m0(x, qτ ) and m̃1(x, qτ ) is a value for
m1(x, qτ ) = ∂

∂x1
m0(x, qτ ).

Proof. Note that (5) follows from
∫

(m̃1(x, qτ ) − ω(x)(1{y ≤ qτ} − m̃0(x, qτ ))) dFY,X(y, x)

=

∫

m̃1(x, qτ )dFX(x) −
∫∫

(m0(x, qτ ) − m̃0(x, qτ ))

(

∂

∂x1
fX1|X−1=x−1

(x1)

)

dx1dFX−1(x−1)

=

∫

m̃1(x, qτ )dFX(x) +

∫∫
(

m1(x, qτ ) −
(

∂

∂x1
m̃0(x, qτ )

))

(

fX1|X−1=x−1(x1)
)

dx1dFX−1(x−1)

=

∫

m1(x, qτ )dFX(x)

= θ(τ),

where the first equality follows from Fubini’s theorem, and the second equality follows
from integration by parts. Next, (6) follows from
∫

(m1(x, qτ ) − ω̃(x)(1{y ≤ qτ} −m0(x, qτ ))) dFY,X(y, x)

=

∫

m1(x, qτ )dFX(x) −
∫∫

ω̃(x)(m0(x, qτ ) −m0(x, qτ ))fX1|X−1=x−1
dx1dFX−1(x−1)

=

∫

m1(x, qτ )dFX(x)

= θ(τ).

This completes a proof of the lemma.
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B Proof of the Results in the Main Text

B.1 Proof of (2)

The proof of (2) is available in Firpo et al. (2009, Corollary 1), but we include it for
the sake of completeness and for convenience of readers.

Lemma 2. If Assumption 1 is satisfied, then (2) holds.

Proof. Since FY (X1+ε,X−1)(Qτ (Y (X1 + ε,X−1))) = τ , we have

0 =
∂

∂ε
(FY (X1+ε,X−1)(Qτ (Y (X1 + ε,X−1)))

∣

∣

∣

∣

ε=0

=

(

∂

∂ε
FY (X1+ε,X−1)

∣

∣

∣

∣

ε=0

)

(Qτ (Y (X))) + fY (X)(Qτ (Y (X)))

(

∂

∂ε
Qτ (Y (X1 + ε,X−1))

∣

∣

∣

∣

ε=0

)

=

(

∂

∂ε
FY (X1+ε,X−1)

∣

∣

∣

∣

ε=0

)

(Qτ (Y (X))) + fY (X)(Qτ (Y (X)))UQPE(τ)

Therefore, UQPE(τ) = − ( ∂
∂ε

FY (X1+ε,X
−1)|ε=0

)

(Qτ (Y (X)))

fY (X)(Qτ (Y (X)))
follows. The conditional in-

dependence between Y (x1 + ε, x−1) and X1 given X−1 implies FY (X1+ε,X−1)(y) =
∫

FY (x1+ε,x−1)|X=x(y)dFX(x) =
∫

FY (x1+ε,x−1)|X=(x1+ε,x−1)(y)dFX(x) =
∫

FY |X=(x1+ε,x−1)(y)dFX(x).
Thus, ∂

∂ε
FY (X1+ε,X−1)(y)

∣

∣

ε=0
=
∫

m1(x, y)dFX(x), which yields the statement of this
lemma.

B.2 Proof of (4)

Lemma 3. Equation (4) holds under Assumption 1.

Proof. This statement follows from

E[m1(X, qτ ) − θ − ω(X)(1{Y ≤ qτ} −m0(X, qτ ))]

= −
∫

ω(x)(1{y ≤ qτ} −m0(x, qτ ))dFY,X(y, x)

= −
∫

ω(x)(

∫

1{y ≤ qτ}dFY |X=x(y) −m0(x, qτ ))dFX(x)

= 0,

where the first equality follows from the definition of θ, the second equality comes
from the law of iterated expectations, and the last equality follows from the definition
of m0(x, q).

30



B.3 Proof of Theorem 1

For a proof of this theorem, we let PNf , Pn,lf , Plf , and Pf denote 1
N

∑N
i=1 f(Zi),

1
n

∑

i∈Il f(Zi), E(f(Zi)|{Zj}j∈Ic
l
), and Ef , respectively. For a vector v = (v1, · · · , vk),

diag(v) denotes the a diagonal matrix with the diagonal being v. We write aN . bN
for two positive sequences aN and bN if there exists a constant independent of n such
that aN ≤ cbN . The constant c may vary in different contexts. For any estimator θ̂, we
follow the empirical processes literature and denote Ef(X, θ̂) as Ef(X, θ) evaluated
at θ = θ̂.

The proof of Theorem 1 is divided into three sections. In Section B.3.1, we prove
several technical lemmas that will be used later. In Section B.3.2, we derive the

linear expansion of ÛQPE(τ). In Section B.3.3, we derive the linear expansion of

ÛQPE
∗
(τ).

B.3.1 Useful Lemmas

Define φi(q) = m1(Xi, q) − ω(Xi)(1{Yi ≤ q} − m0(Xi, q)) − θ(τ) and φ̂i,l(q) =
m̂1,l(Xi, q) − ω̂l(Xi)(1{Yi ≤ q} − m̂0,l(Xi, q)) − θ(τ).

Lemma 4. Under the assumptions in Theorem 1, 1
L

∑L
l=1 Pl(φ̂i,l(q̂τ ) − φi(q̂τ )) =

oP (N−1/2) for any estimator (ω̂l(x), m̂0,l(x, q), m̂1,l(x, q)) of (ω(x), m0(x, q), m1(x, q))
and any quantile index τ ∈ Υ.

Proof. Using the law of iterated expectations and m0(x, q) =
∫

1{y ≤ q}dFY |X=x(y),
we have

∫

(m1(x, q) − ω(x)(1{y ≤ q} −m0(x, q))) dFY,X(y, x)

−
∫

(m̂1,l(x, q) − ω̂l(x)(1{y ≤ q} − m̂0,l(x, q))) dFY,X(y, x)

=

∫

(m̂1,l(x, q) −m1(x, q)) dFX(x) +

∫

ω(x)(m̂0,l(x, q) −m0(x, q))dFX(x)

+

∫

(ω̂l(x) − ω(x))(m̂0,l(x, q) −m0(x, q))dFX(x).

The integration by parts implies
∫

ω(x)(m̂0,l(x, q) −m0(x, q))fX1|X−1=x−1(x1)dx1

= −
∫
(

∂

∂x1
m̂0,l(x, q) −

∂

∂x1
m0(x, q)

)

fX1|X−1=x−1
(x1)dx1,

where (m̂0,l(x, q)−m0(x, q))fX1|X−1=x−1
(x1) disappears on the boundary of x1. Then

∫

(m1(x, q) − ω(x)(1{y ≤ q} −m0(x, q))) dFY,X(y, x)
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−
∫

(m̂1,l(x, q) − ω̂l(x)(1{y ≤ q} − m̂0,l(x, q))) dFY,X(y, x)

=

∫
(

m̂1,l(x, q) −
∂

∂x1
m̂0,l(x, q)

)

dFX(x) +

∫

(ω̂l(x) − ω(x))(m̂0,l(x, q) −m0(x, q))dFX(x).

Because supτ∈Υ |q̂τ − qτ | = oP (N−1/2), we have, with probability approaching one
(w.p.a.1),

|Pl(φ̂i,l(q̂τ ) − φi(q̂τ ))| ≤ sup
q∈Q

∣

∣

∣

∣

∫
(

m̂1,l(x, q) −
∂

∂x1
m̂0,l(x, q)

)

dFX(x)

∣

∣

∣

∣

+ sup
q∈Q

∣

∣

∣

∣

∫

(ω̂l(x) − ω(x))(m̂0,l(x, q) −m0(x, q))dFX(x)

∣

∣

∣

∣

=oP (N−1/2),

where the last equality holds due to (14) and (15).

Lemma 5. Let η̃i = 1 for every i = 1, . . . , N or if η̃i = 1+ηi for every i = 1, . . . , N . If
the assumptions in Theorem 1 hold, then supl∈{1,...,L},q∈Q |(Pn,l−Pl)η̃i(φ̂i,l(q)−φi(q))| =

oP (N−1/2).

Proof. Define Ml(M) the set of (m̃1(x, q), m̃0(x, q), ω̃(x)) which satisfies

{m̃j(x, q) : q ∈ Q} ⊂ {m̂j(x, q) : q ∈ Q}, j = 0, 1

sup
q∈Q

∫

|m̃1(x, q) −m1(x, q)|2 dFX(x) ≤MπN ,

∫

|ω̃(x) − ω(x)|2 dFX(x) ≤MπN ,

sup
q∈Q

∫

|ω̃(x)m̃0(x, q) − ω(x)m0(x, q)|2 dFX(x) ≤ MπN ,

∫
[

sup
q∈Q

|m̃1(x, q)| + sup
q∈Q

|m1(x, q)|
]2+δ

dFX(x) ≤M, and

∫
[

sup
q∈Q

|ω̃l(x)(1 + |m̃0(x, q)|)| + sup
q∈Q

|ω(x)(1 +m0,l(x, q))|
]2+δ

dFX(x) ≤M.

Define Fl(Xi) = |η̃i| supq∈Q |ω̂l(x)(1+ |m̂0,l(x, q)|)|+ |η̃i| supq∈Q |ω(x)(1+m0,l(x, q))|+
|η̃i| supq∈Q |m̂1,l(x, q)| + |η̃i| supq∈Q |m1(x, q)|, and

Fl =

{

η̃i(m̂1,l(Xi, q) − ω̂l(Xi)(1{Yi ≤ q} − m̂0,l(Xi, q)))
−η̃i(m1(Xi, q) − ω(Xi)(1{Yi ≤ q} −m0(Xi, q)))

: q ∈ Q
}

.

By Assumption 2, for any δ > 0, we can find a sufficiently large constant M > 0 such
that (m̂1,l, m̂0,l, ω̂l) ∈ Ml(M) occurs with probability greater than 1− δ. Conditional
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on {(m̂1,l, m̂0,l, ω̂l) ∈ Ml(M)} and {Xi, Yi}i∈Ic
l
, we can treat m̂1,l, m̂0,l, ω̂l as fixed,

and PlF
2+δ
l <∞. In addition, by Van der Vaart and Wellner (1996, Theorem 2.7.11)

and the fact that supQN({m̂j(x, q) : q ∈ Q}, eQ, ε||G(j)
l ||Q,2) .

(

AN

ε

)νN
, we have

supQN(Fl, eQ, ε||Fl||Q,2) .
(

AN

ε

)νN
. Furthermore, note that

sup
f∈Fl

Plf
2 ≤ sup

q∈Q
Pl [|m̂1,l(X, q) −m1(X, q)| + |ω̂l(X) − ω(X)| + |ω(X)m0(X, q) − ω̂l(X)m̂0,l(X, q)|]2

.π2
N .

Then, by Chernozhukov et al. (2014b, Corollary 5.1), we have

Pl sup
q∈Q

|(Pn,l − Pl)(φ̂i,l(q) − φi(q))| = Pl||(Pn,l − Pl)||Fl

.

√

π2
NνN
N

log

(

AN ||F ||Pl,2

πN

)

+
νN ||maxi F (Xi)||Pl,2

N
log

(

AN ||F ||Pl,2

πN

)

.

Because EF 2+δ
l < ∞, we have ||maxi Fl||Pl,2 = O(N1/(2+δ)) on {(m̂1,l, m̂0,l, ω̂l) ∈

M(ε,M)}.6 Then, by letting n be sufficiently large, we have

Pl sup
q∈Q

|(Pn,l − Pl)(φ̂i,l(q) − φi(q))| . πNν
1/2
N N−1/2 log1/2(AN/πN) + νNN

−(1+δ)/(2+δ) log(AN/πN)

= o(N−1/2).

This leads to the desired result.

Lemma 6. Under the assumptions in Theorem 1, supl∈{1,...,L},τ∈Υ |(Pn,l−Pl)(φi(q̂τ )−
φi(qτ ))| = oP (N−1/2) and supl∈{1,...,L},τ∈Υ |(Pn,l−Pl)(ηi+1)(φi(q̂

∗
τ )−φi(qτ ))| = oP (N−1/2).

Proof. We know that supτ∈Υ |q̂τ−qτ | = OP (N−1/2) and supτ∈Υ |q̂∗τ−qτ | = OP (N−1/2).7

These conditions imply that, for any ε > 0, there exists a constant M > 0 such that

P

(

sup
τ∈Υ

|q̂∗(τ) − qτ | ≤MN−1/2, sup
τ∈Υ

|q̂τ − qτ | ≤MN−1/2

)

≥ 1 − ε.

Next, we show

sup
|v|≤M,τ∈Υ

|(Pn,l − Pl)η̃i(φi(qτ + vN−1/2) − φi(qτ ))| = oP (N−1/2).

6If {Xi} is sequence of i.i.d. nonnegative random variables with EX2+δ
i ≤ M , then

[E(maxi=1,...,N Xi)
2]1/2 . N

1
2+δ . It is shown as follows. Note that E(maxi=1,...,N Xi)

2 =
2
∫∞

0
xP(maxi=1,...,N Xi) > x)dx = 2

∫ αN

0
xP(maxi=1,...,N Xi) > x)dx + 2

∫∞

αN

xP(maxi=1,...,N Xi) >

x)dx ≤ α2
N+2N

∫∞

αN

EX2+δ

X1+δ dx ≤ α2
N+ 2MN

δαδ

N

. We can obtain the desired result by taking αN = N
1

2+δ .
7See Section B.3.3 for more detail.
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Let F = {η̃i
(

φi(qτ + vN−1/2) − φi(qτ )
)

: |v| ≤ M, τ ∈ Υ} with envelope F (Xi) =
|η̃i|
[

supq∈Q |m1(x, q)| + supq∈Q |ω(x)(1 +m0,l(x, q))|
]

. Note that F is nested in {η̃i (φi(q1) − φi(q2)) :
q1, q2 ∈ R}. Because mj(x, q) is Lipschitz continuous in q and {1{Y ≤ q} : q ∈ R} is a

VC class with VC index 2, we have J(θ) =
∫ θ

0

√

1 + log(supQN(F , eQ, ε||F ||Q,2))dε .

θ
√

log(a/θ) for some constant a > 0.
Last,

sup
f∈F

Plf
2 ≤Pl sup

τ∈Υ,|v|≤M

{

∣

∣m1(X, qτ + vN−1/2) −m1(X, qτ )
∣

∣

+ |ω(X)|
[
∣

∣m0(X, qτ + vN−1/2) −m0(X, qτ )
∣

∣+
∣

∣1{Y ≤ qτ} − 1{Y ≤ qτ + vN−1/2}
∣

∣

]

}2

.N−1/2.

Then, by Chernozhukov et al. (2014b, Corollary 5.1), we have

Pl sup
|v|≤M,τ∈Υ

|(Pn,l − Pl)(φi(qτ + vN−1/2) − φi(qτ ))|

=Pl||(Pn,l − Pl)||Fl

.

√

1

N3/2
log (a||F ||Pl,2N) +

||maxi F (Xi)||Pl,2

N
log (a||F ||Pl,2N) = o(N−1/2).

Therefore the statement of this lemma holds.

Lemma 7. Under the assumptions in Theorem 1,

sup
τ∈Υ

∣

∣

∣

∣

∣

θ̂(τ) − θ(τ) − 1

N

N
∑

i=1

[

φi(qτ ) +

∂
∂q
Em1(X, qτ )

fY (qτ )
(τ − 1{Yi ≤ qτ})

]
∣

∣

∣

∣

∣

= oP (N−1/2).

Proof. Taking η̃i = 1 and by (7) and Lemmas 4, 5, and 6, we have

θ̂(τ) − θ(τ) =
1

L

L
∑

l=1

Pn,lφ̂i,l(q̂τ )

=
1

L

L
∑

l=1

(Pn,l − Pl)φi(qτ ) +
1

L

L
∑

l=1

Plφi(q̂τ ) +
1

L

L
∑

l=1

(Pn,l − Pl)(φ̂i,l(q̂τ ) − φi(q̂τ ))

+
1

L

L
∑

l=1

Pl(φ̂i,l(q̂τ ) − φi(q̂τ )) +
1

L

L
∑

l=1

(Pn,l − Pl)(φi(q̂τ ) − φi(qτ )).

Rearranging the above equation, we have θ̂(τ) − θ(τ) = 1
L

∑L
l=1(Pn,l − Pl)(φi(qτ )) +

1
L

∑L
l=1 Plφi,l(q̂τ ) + oP (N−1/2) where the oP (N−1/2) term holds uniformly over τ ∈ Υ.
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By Em1(X, qτ ) = 0 and the usual delta method,

Plφi(q̂τ ) = (Em1(X, q̂τ ) − Em1(X, qτ )) =

∂
∂q
Em1(X, qτ )

fY (qτ )

1

N

N
∑

i=1

(τ−1{Yi ≤ qτ})+oP (N−1/2)

where the oP (N−1/2) term holds uniformly over l = 1, . . . , L and τ ∈ Υ. Therefore
the statement of this lemma holds.

B.3.2 Linear Expansion of ÛQPE(τ)

Note that f̂Y (q̂τ )−fY (qτ ) = A1(τ)+A2(τ)+A3(τ), where A1(τ) ≡ (PN−P) 1
h1
K1

(

Yi−q̂τ
h1

)

,

A2(τ) ≡ P
1
h1
K1

(

Yi−q̂τ
h1

)

−fY (q̂τ ) and A3(τ) ≡ fY (q̂τ )−fY (qτ ). Below we will analyze

A1(τ), A2(τ), and A3(τ), and then derive the linear expansion of ÛQPE(τ).

First, we will analyze A1(τ). Let R1(τ) = A1(τ)−(PN −P) 1
h1
K1

(

Yi−qτ
h1

)

. Because

supτ∈Υ |q̂τ − qτ | = OP (N−1/2). For any ε > 0, there exists a constant M > 0 such
that, with probability greater than 1 − ε,

sup
τ∈Υ

|R1(τ)| ≤ sup
q∈Q,|v|≤M

∣

∣

∣

∣

∣

(PN − P)

(

1

h1
K1

(

Yi − q − v/
√
N

h1

)

− 1

h1
K1

(

Yi − q

h1

)

)
∣

∣

∣

∣

∣

.

In the following, we aim to bound supq∈Q,|v|≤M

∣

∣

∣
(PN − P) η̃i

h1

[

K1

(

Yi−q−v/
√
N

h1

)

−K1

(

Yi−q
h1

)]
∣

∣

∣
.

Consider the class of functions F =
{

η̃i
h1

[

K1

(

y−q−v/
√
N

h1

)

−K1

(

y−q
h1

)]

: q ∈ Q, |v| ≤M
}

with an envelope function Fi = C|η̃i|/h for some constant C > 0 such that ||maxi=1,...,N Fi||P,2 .
√

log(N). We note that F is a VC-class with a fixed VC index and

sup
f∈F

Pf 2 = sup
q∈Q,|v|≤M

∫
(

K1(u−
v√
Nh1

) −K1(u)

)2

fY (q + h1u)du . 1/(Nh21).

Therefore, Chernozhukov et al. (2014b, Corollary 5.1) implies

E sup
q∈Q,|v|≤M

∣

∣

∣

∣

∣

(PN − P)

(

η̃i
h1

[

K1

(

Yi − q − v/
√
N

h1

)

−K1

(

Yi − q

h1

)

])
∣

∣

∣

∣

∣

.

√

log(N)

Nh1
+

log(N)3/2

Nh1
,

and thus, supτ∈Υ |R1(τ)| = oP (N−1/2).

Second, we will analyze A2(τ). Let R2(τ) = A2(τ) − f
(2)
Y

(qτ )(
∫

u2K1(u)du)

2
h21. By the

Taylor expansion, we have

sup
τ∈Υ

|R2(τ)| ≤ sup
τ∈Υ

∣

∣

∣

∣

∣

∫

(fY (q̂τ + uh1) − fY (q̂τ ))K1(u)du− f
(2)
Y (qτ )(

∫

u2K1(u)du)

2
h21

∣

∣

∣

∣

∣

. sup
τ∈Υ

|f (2)
Y (qτ ) − f

(2)
Y (q̃τ )|(

∫

u2K1(u)du)

2
h21,
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where q̃τ is between q̂τ and q̂τ + h1 such that supτ∈Υ |q̃τ − qτ | ≤ supτ∈Υ |q̃τ − q̂τ | +
supτ∈Υ |q̂τ − qτ | = OP (h1 +N−1/2). Therefore, supτ∈Υ |R2(τ)| = OP (h31 + h1N

−1/2) =
oP (N−1/2).

Third, we will analyze A3(τ). By the delta method, we have

A3(τ) = f
(1)
Y (qτ )(q̂τ − qτ ) +R′

3(τ) =
f
(1)
Y (qτ )

fY (qτ )

[

1

N

N
∑

i=1

(τ − 1{Yi ≤ qτ})

]

+R3(τ),

where supτ∈Υ |R′
3(τ)| + supτ∈Υ |R3(τ)| = oP (N−1/2).

Last, we will derive the linear expansion of ÛQPE(τ). Combining the analyses
of A1(τ), A2(τ), and A3(τ), we have

f̂Y (q̂τ ) − fY (qτ ) = (PN − P)

[

1

h1
K1

(

Yi − qτ
h1

)

+
f
(1)
Y (qτ )

fY (qτ )
(τ − 1{Yi ≤ qτ})

]

+
f
(2)
Y (qτ )(

∫

u2K1(u)du)

2
h21 +R4(τ), (29)

where supτ∈Υ |R4(τ)| = oP (N−1/2). Based on (29), we have

sup
τ∈Υ

|f̂Y (q̂τ ) − fY (qτ )| = OP (log1/2(N)(Nh1)
−1/2 + h21),

sup
τ∈Υ

∣

∣

∣

∣

∣

(θ̂(τ) − θ(τ))(f̂Y (q̂τ ) − fY (qτ ))

f̂Y (q̂τ )fY (qτ )

∣

∣

∣

∣

∣

= oP (N−1/2),

and

sup
τ∈Υ

∣

∣

∣

∣

∣

θ(τ)(f̂Y (q̂τ ) − fY (qτ ))2

f 2
Y (qτ )f̂Y (q̂τ )

∣

∣

∣

∣

∣

= OP (log(N)(Nh1)
−1 + h41) = oP (N−1/2).

Therefore

ÛQPE(τ) − UQPE(τ) = − θ̂(τ) − θ(τ)

fY (qτ )
+
θ(τ)(f̂Y (q̂τ ) − fY (qτ ))

f 2
Y (qτ )

+
(θ̂(τ) − θ(τ))(f̂Y (q̂τ ) − fY (qτ ))

f̂Y (q̂τ )fY (qτ )
− θ(τ)(f̂Y (q̂τ ) − fY (qτ ))2

f 2
Y (qτ )f̂Y (q̂τ )

=
1

N

N
∑

i=1

IFi(τ) +
θ(τ)f

(2)
Y (qτ )(

∫

u2K1(u)du)h21
2f 2

Y (qτ )
+R(τ),

(30)

where supτ∈Υ |R(τ)| = oP (N−1/2).
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B.3.3 Linear Expansion of ÛQPE
∗
(τ)

First, we will derive the linear expansion of q̂∗τ . Note that q̂∗τ is the optimizer of
the objective function

∑N
i=1 ρτ (Yi − q) − q

∑N
i=1 ηi(τ − 1{Yi ≤ q̂τ}). Define the local

parameter as û =
√
N(q̂∗τ − qτ ). Then

û = arg min
u

N
∑

i=1

ρτ (Yi − qτ − uN−1/2) − uN−1/2
N
∑

i=1

ηi(τ − 1{Yi ≤ q̂τ})

Note that u 7→
∑N

i=1 ρτ (Yi− qτ −uN−1/2)−uN−1/2
∑N

i=1 ηi(τ −1{Yi ≤ q̂τ}) is convex
in u for any τ ∈ Υ. By the Knight’s identity, we can show that

[

N
∑

i=1

ρτ (Yi − qτ − uN−1/2) − uN−1/2

N
∑

i=1

ηi(τ − 1{Yi ≤ q̂τ})

]

−
[

− u√
N

N
∑

i=1

(ηi + 1)(τ − 1{Yi ≤ qτ}) +
fY (qτ )u2

2

]

is oP (1) pointwise in u. Then, by the convexity lemma (Pollard, 1991), we have

q̂∗τ − qτ =
1

NfY (qτ )

N
∑

i=1

(ηi + 1)(τ − 1{Yi ≤ qτ}) +R∗
1(τ), (31)

where supτ∈Υ |R∗
1(τ)| = oP (N−1/2).

Second, we will derive the linear expansion of θ̂∗(τ). Let n̂l =
∑

i∈Il(ηi+1). Then,

θ̂∗(τ) − θ(τ) =
1

L

L
∑

l=1

n

n̂l
Pn,l(ηi + 1)φ̂i,l(q̂

∗
τ )

=
1

L

L
∑

l=1

n

n̂l

(Pn,l − Pl)(ηi + 1)φi(q̂
∗
τ ) +

1

L

L
∑

l=1

n

n̂l

Plφ̂i,l(q̂
∗
τ ) +R∗

1(τ)

=
1

L

L
∑

l=1

n

n̂l
(Pn,l − Pl)(ηi + 1)φi(q̂

∗
τ ) +

1

L

L
∑

l=1

n

n̂l
Plφi(q̂

∗
τ ) +R∗

2(τ)

=
1

L

L
∑

l=1

n

n̂l

(Pn,l − Pl)(ηi + 1)φi(qτ ) +
1

L

L
∑

l=1

n

n̂l

Plφi(q̂
∗
τ ) +R∗

3(τ)

=(PN − P)(ηi + 1)φi(qτ ) +
1

L

L
∑

l=1

n

n̂l
Plφi(q̂

∗
τ ) +R∗

4(τ), (32)

where supτ∈Υ |Rj(τ)| = oP (N−1/2) for j = 1, · · · , 4, the second equality is due

to Lemma 5 and Plηiφ̂i,l(q̂
∗
τ ) = (Plηi)(Plφ̂i,l(q̂

∗
τ )) = 0, the third equality is due to
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Lemma 4, the fourth equality is due to Lemma 6 and the fact that supτ∈Υ |q̂∗τ − qτ | =
OP (N−1/2), and the fifth equality holds because supτ∈Υ |(Pn,l − Pl)(ηi + 1)φi(qτ )| =
oP (N−1/2) and n̂l/n = 1 + oP (1). For the second term on the RHS of (32), we have

1

L

L
∑

l=1

n

n̂l
Plφi(q̂

∗
τ ) =

(

1

L

L
∑

l=1

n

n̂l

)

(Em1(X, q̂
∗
τ ) − Em1(X, qτ ))

=

∂
∂q
Em1(X, qτ )

fY (qτ )

[

N
∑

i=1

(ηi + 1)

N
(τ − 1{Yi ≤ qτ})

]

+ oP (N−1/2), (33)

where the last equality is due to the delta method and (31). Combining (32) and
(33), we have

θ̂∗(τ) − θ(τ) =
1

N

N
∑

i=1

(ηi + 1)

[

m1(Xi, qτ ) − θ(τ) − ω(Xi)(1{Yi ≤ qτ} −m0(Xi, qτ ))

+

∂
∂q
Em1(X, qτ )

fY (qτ )
(τ − 1{Yi ≤ qτ})

]

+R∗
N (τ),

where supτ∈Υ |R∗
N (τ)| = oP (N−1/2).

Third, we will derive the linear expansion of f̂ ∗
Y (q̂∗τ ). Let N̂ =

∑N
i=1(ηi + 1). Note

that f̂ ∗
Y (q̂∗τ )− fY (qτ ) = N

N̂
(PN − P) (1+ηi)

h1
K1

(

Yi−q̂∗τ
h1

)

+ N
N̂

(

P 1
h1
K1

(

Yi−q̂∗τ
h1

)

− fY (q̂∗τ )
)

+
N
N̂

(fY (q̂∗τ ) − fY (qτ )). Following the same argument in the proof in Section B.3.2 and

the fact that
∣

∣

∣

N
N̂
− 1
∣

∣

∣
= OP (N−1/2), we have

N

N̂
(PN − P)

(1 + ηi)

h1
K1

(

Yi − q̂∗τ
h1

)

= (PN − P)
(1 + ηi)

h1
K1

(

Yi − qτ
h1

)

+R∗
1(τ),

N

N̂

(

P
1

h1
K1

(

Yi − q̂∗τ
h1

)

− fY (q̂∗τ )

)

=
f
(2)
Y (qτ )(

∫

u2K1(u)du)h21
2

+R∗
2(τ),

and

N

N̂
(fY (q̂∗τ ) − fY (qτ )) = f

(1)
Y (qτ )(q̂∗τ − qτ ) +R∗

3(τ)

=
f
(1)
Y (qτ )

fY (qτ )

[

1

N

N
∑

i=1

(ηi + 1)(τ − 1{Yi ≤ qτ})

]

+R∗
4(τ),

where supτ∈Υ,j=1,··· ,4 |R∗
j (τ)| = oP (N−1/2). This implies

f̂ ∗
Y (q̂∗τ ) − fY (qτ ) = (PN − P) (ηi + 1)

[

1

h1
K1

(

Yi − qτ
h1

)

+
f
(1)
Y (qτ )

fY (qτ )
(τ − 1{Yi ≤ qτ})

]

+
f
(2)
Y (qτ )(

∫

u2K1(u)du)

2
h21 +R∗

5(τ),
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where supτ∈Υ |R∗
5(τ)| = oP (N−1/2).

Last, we will derive the linear expansion of ÛQPE
∗
(τ). Based on the above

arguments, we have

ÛQPE
∗
(τ) − UQPE(τ) = − θ̂∗(τ) − θ(τ)

fY (qτ )
+
θ(τ)(f̂ ∗

Y (q̂∗τ ) − fY (qτ ))

f 2
Y (qτ )

+
(θ̂∗(τ) − θ(τ))(f̂ ∗

Y (q̂∗τ ) − fY (qτ ))

f̂ ∗
Y (q̂∗τ )fY (qτ )

− θ(τ)(f̂ ∗
Y (q̂∗τ ) − fY (qτ ))2

f 2
Y (qτ )f̂ ∗

Y (q̂∗τ )

=
1

N

N
∑

i=1

(1 + ηi)IFi(τ) +
θ(τ)f

(2)
Y (qτ )(

∫

u2K1(u)du)h21
2f 2

Y (qτ )
+R∗

6(τ)

(34)

where supτ∈Υ |R∗
6(τ)| = oP (N−1/2). Taking difference between (30) and (34), we

have ÛQPE
∗
(τ) − ÛQPE(τ) = 1

N

∑N
i=1 ηiIFi(τ) + R∗(τ), where supτ∈Υ |R∗(τ)| =

oP (N−1/2).

B.4 Proof of Theorem 2

In the proof of Theorem 2, we use the notations

G(0)
l = {Λ(b(X)Tβ) : β ∈ R

p, ||β||0 ≤Ms},

and

G(1)
l =

{

Λ(b(X)Tβ)(1 − Λ(b(X)Tβ))
(

∂
∂x1
b(X)Tβ

)

: β ∈ Rp, ||β||0 ≤ Ms,
∥

∥

∥

(

∂
∂x1
b(X)Tβ

)
∥

∥

∥

P,∞
≤ M,

}

,

where M is a sufficiently large constant.

Lemma 8. Under the assumptions in Theorem 2, (i) supl∈{1,...,L},q∈Q ||β̂q,l − βq||1 =

OP

(

√

s2 log(p)
N

)

, (ii) supl∈{1,...,L},q∈Q ||m̂0,l(x, q) −m0(x, q)||P,∞ = OP

(

√

ζ2
N
s2 log(p)

N

)

,

(iii) supl∈{1,...,L},q∈Q ||m̂0,l(x, q)−m0(x, q)||P,2 = OP

(

√

s log(p)
N

)

, (vi) supl∈{1,...,L},q∈Q ||m̂1,l(x, q)−

m1(x, q)||P,∞ = OP

(

√

ζ2
N
s2 log(p)

N

)

, (v) supl∈{1,...,L},q∈Qε ||m̂1,l(x, q) − m1(x, q)||P,2 =

OP

(

√

s log(p)
N

)

, (vi) supl∈{1,...,L} ||ω̂l(x) − ωl(x)||P,2 = OP

(

√

s log(p)
N

)

, where, in all

the statements, the norm in the left hand side is with respect to x and the stochas-
tic convergence OP in the right hand side is with respect to the randomness of the
estimators.
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Proof. The first three results have been established by Belloni et al. (2017). For the
fourth result, we have

|m̂1,l(x, q) −m1(x, q)|

≤
∣

∣

∣

∣

Λ(b(X)T β̂q,l)(1 − Λ(b(X)T β̂q,l))
∂

∂x1
b(X)T β̂q,l − Λ(b(X)Tβq)(1 − Λ(b(X)Tβq))

∂

∂x1
b(X)Tβq

∣

∣

∣

∣

+

∣

∣

∣

∣

∂

∂x1
rm(x, q)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂

∂x1
b(X)T (β̂q,l − βq)

∣

∣

∣

∣

+
∣

∣

∣
Λ(b(X)T β̂q,l) − Λ(b(X)Tβq)

∣

∣

∣
+

∣

∣

∣

∣

∂

∂x1
rm(x, q)

∣

∣

∣

∣

≤
∥

∥

∥

∥

∂

∂x1
b(X)

∥

∥

∥

∥

L∞

||β̂q,l − βq||1 + |m̂0,l(x, q) −m0(x, q)| +

∣

∣

∣

∣

∂

∂x1
rm(x, q)

∣

∣

∣

∣

,

where the first inequality is due to the triangle inequality and Assumption 4, and
the second inequality is due to the facts that Λ(·)(1 − Λ(·)) is bounded, f(λ) =
λ(1 − λ) is Lipschitz-1 continuous in λ, and supq∈Q || ∂

∂x1
b(X)Tβq||P,∞ < c. Taking

supl∈{1,...,L},q∈Q,x∈Supp(X) on both sides, we have supl∈{1,...,L},q∈Q ||m̂1,l(x, q)−m1(x, q)||L∞(P) =

OP

(

√

ζ2
N
s2 log(p)

N

)

.

Similarly,

||m̂1,l(x, q) −m1(x, q)||P,2

.|| ∂
∂x1

b(X)T (β̂q,l − βq)||P,2 + ||Λ(b(X)T β̂q,l) − Λ(b(X)Tβq)||P,2 +

∥

∥

∥

∥

∂

∂x1
rm(x, q)

∥

∥

∥

∥

P,2

.(1 + oP (1))

∥

∥

∥

∥

∂

∂x1
b(X)T (β̂q,l − βq)

∥

∥

∥

∥

Pn,2

+OP

(
√

s log(p)

N

)

.(1 + oP (1))c||β̂q,l − βq||2 +OP

(
√

s log(p)

N

)

=OP

(
√

s log(p)

N

)

,

where the second and third inequalities are due to Assumption 4.3.
For the last result, Belloni and Chernozhukov (2011) have established that

sup
l∈{1,...,L}

||σ̂l(x−1) − σ(x−1)||P,∞ = OP

(
√

ζ2Ns
2 log(p)

N

)

, (35)

sup
l∈{1,...,L}

||σ̂l(x−1) − σ(x−1)||P,2 = OP

(
√

s log(p)

N

)

, (36)
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sup
l∈{1,...,L}

||µ̂l(x−1) − µ(x−1)||P,∞ = OP

(
√

ζ2Ns
2 log(p)

N

)

, (37)

and

sup
l∈{1,...,L}

||µ̂l(x−1) − µ(x−1)||P,2 = OP

(
√

s log(p)

N

)

. (38)

(Although Belloni and Chernozhukov (2011) focus on the high-dimensional quantile
regression without approximation error, it is straightforward to extend their results
to the case with approximation error as long as it is sufficiently small, as imposed
in Assumption 4. Then, the general theory and proof techniques in Belloni et al.

(2017) lead to (35)–(38).) Further note that |ω̂l(x) − ω(x)| ≤
∣

∣

∣

µ̂l(x−1)−µ(x−1)
σ̂l(x−1)

∣

∣

∣
+

∣

∣

∣

(x1−µ(x−1))(σ̂l(x−1)−σ(x−1))
σ̂l(x−1)σ(x−1)

∣

∣

∣
. Since σ(x−1) ≥ c > 0 for every x−1 ∈ Supp(X−1), the

equalities (35)–(38) imply

||ω̂l(x) − ω(x)||P,2 .||µ̂l(x−1) − µ(x−1)||P,2 +
[

Pl(X1 − µ(X−1))
2(σ̂l(X−1) − σ(X−1))

2
]1/2

.||µ̂l(x−1) − µ(x−1)||P,2 + ||σ(X−1)(σ̂l(X−1) − σ(X−1))||P,2

=OP

(
√

s log(p)

N

)

,

where the second inequality is due to the fact that E((X1−µ(X−1))
2|X−1) = σ2(X−1).

This complete a proof of the lemma.

Now we will show (8)–(15) in Assumption 2. First, we will show (8). We note
that Belloni et al. (2017) have shown supq∈Q ||β̂q,l||0 = OP (s). In addition, by Lemma

8, supq∈Q

∥

∥

∥

∂
∂x1
b(X)T (β̂q,l − βq)

∥

∥

∥

P,∞
≤ ζN supq∈Q ||β̂q,l − βq||1 = oP (1). This implies,

w.p.a.1., supq∈Q

∥

∥

∥

∂
∂x1
b(X)T β̂q,l

∥

∥

∥

P,∞
= O(1). Then, (8) directly follows the argument

in the proof of Belloni et al. (2017, Theorem 5.1) with νN = s and AN = p.

Second, Lemma 8 verifies (9) and (10) with the rate of convergence
√

s log(p)
N

.

Third, we will show (11). Note that |ω̂l(x)m̂0,l(x, q) − ω(x)m0(x, q)| ≤ |(ω̂l(x) −
ω(x))||m̂0,l(x, q)| + |ω(x)(m̂0,l(x, q) −m0(x, q))|. Then, we have

sup
q∈Q

∫

|ω̂l(x)m̂0,l(x, q) − ω(x)m0(x, q)|2dFX(x)

. sup
q∈Q

∫

(ω̂l(x) − ω(x))2m̂2
0,l(x, q)dFX(x) +

∫

ω2(x)(m̂0,l(x, q) −m0(x, q))
2dFX(x)

.

∫

(ω̂l(x) − ω(x))2dFX(x)

+

[
∫

ω2+δ(x)dFX(x)

]2/(2+δ)

sup
q∈Q

[
∫

(m̂0,l(x, q) −m0(x, q))
2(2+δ)/δdFX(x)

]δ/(2+δ)
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=OP

(

ζ
4/(2+δ)
N s(4+δ)/(2+δ) log(p)N−1

)

,

where the last inequality is due to the Hölder’s inequality and the last equality holds
due to the fact that

∫

|U(x)|2(2+δ)/δdFX(x) ≤
∫

|U(x)|2dFX(x)||U(x)||4/δ
P,∞ and Lemma

8. Based on the above two steps, we can set πN =

√

ζ
4/(2+δ)
N s(4+δ)/(2+δ) log(p)N−1.

Fourth, (12) follows from the fact that supq∈Q ||m̂1,l(x, q)−m1(x, q)||P,∞ = oP (1).
Fifth, (13) follows from Lemma 8, ζ2Ns

2 log(p) = o(N), supx∈Supp(X),q∈Q |m0(x, q)| ≤
1, supx∈Supp(X),q∈Q |m̆0,l(x, q) − m̂0,l(x, q)| = oP (1), and E|ω(X)|2+δ <∞.

Sixth, (14) follows from m̂1,l(x, q) = ∂
∂x1
m̂0,l(x, q).

Seventh, we will show (15). By Lemma 8, we have

sup
q∈Q

∣

∣

∣

∣

∫

(ω̂l(x) − ω(x))(m̂0,l(x, q) −m0(x, q))dFX(x)

∣

∣

∣

∣

≤
(
∫

(ω̂l(x) − ω(x))2dFX(x)

)1/2(

sup
q∈Q

∫

(m̂0,l(x, q) −m0(x, q))
2dFX(x)

)1/2

= OP

(

s log(p)

N

)

= oP (N−1/2).

Lastly, (16) follows from ζ
4/(2+δ)
N s1+(4+δ)/(2+δ) log2(p) = o(N) and s log(p) = o(N δ/(4+δ)).

B.5 Proof of Theorem 3

We will show (8)–(15) in Assumption 2. First, we will show (8). To verify the first
condition in Assumption 2, we note that

sup
x∈Supp(X),q∈Q

∣

∣

∣

∣

∂

∂q
m̂j,l(x, q)

∣

∣

∣

∣

= sup
x∈Supp(X),q∈Q

∣

∣

∣

∣

∫

m̆j,l(x, t)

h22
K

(1)
2

(

t− q

h2

)

dt

∣

∣

∣

∣

≤ sup
x∈Supp(X),q∈Q

∣

∣

∣

∣

∫

mj(x, t)

h2
dK2

(

t− q

h2

)
∣

∣

∣

∣

+ sup
x∈Supp(X),q∈Qε

|m̆j,l(x, q) −mj(x, q)|
h2

∫

d|K2(u)|

≤ sup
x∈Supp(X),q∈Q

∣

∣

∣

∣

∣

∫ ∂
∂q
mj(x, t)

h2
K2

(

t− q

h2

)

dt

∣

∣

∣

∣

∣

+ sup
x∈Supp(X),q∈Qε

|m̆j,l(x, q) −mj(x, q)|
h2

∫

d|K2(u)|

≤ sup
x∈Supp(X),q∈Qε

| ∂
∂q
mj(x, q)|

∫

|K2(u)|du+ sup
x∈Supp(X),q∈Qε

|m̆j,l(x, q) −mj(x, q)|
h2

∫

d|K2(u)|

<∞,

where the first inequality is due to the triangle inequality, the second equality is due
to the integration by parts and the fact that the kernel function K2(·) vanishes at the
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boundary, and the last inequality is due to the facts that supx∈Supp(X),q∈Qε | ∂
∂q
mj(x, q)|

is bounded and that supx∈Supp(X),q∈Qε
|m̆j,l(x,q)−mj(x,q)|

h2
= OP (ρN) = oP (1). Given the

derivative ∂
∂q
m̂j,l(x, q) is uniformly bounded w.p.a.1, there exists a constant M such

that |m̂j,l(x, q1)−m̂j,l(x, q2)| ≤M |q1−q2|. The class of Lipschitz continuous functions
is a VC-class with a fixed VC-index. This implies µN = AN = 1.

Second, (9) follows from

sup
x∈Supp(X),q∈Q

|m̆j,l(x, q) − m̂j,l(x, q)|

= sup
x∈Supp(X),q∈Q

∣

∣

∣

∣

∫

m̆j,l(x, t) − m̆j,l(x, q)

h2
K2

(

t− q

h2

)

dt

∣

∣

∣

∣

≤ 2 sup
x∈Supp(X),q∈Q

∫

supt∈Qǫ |m̆j,l(x, t) −mj(x, t)|
h2

∣

∣

∣

∣

K2

(

t− q

h2

)
∣

∣

∣

∣

dt

+ sup
x∈Supp(X),q∈Q

∣

∣

∣

∣

∫

mj(x, t) −mj(x, q)

h2
K2

(

t− q

h2

)

dt

∣

∣

∣

∣

≤ 2 sup
x∈Supp(X),t∈Qε

|m̆j,l(x, t) −mj(x, t)|
∫

|K2(u)|du

+ sup
x∈Supp(X),q∈Qε

| ∂
2k

∂q2k
mj(x, q)|h2k2

∫

u2k|K2(u)|du

= OP (h2ρN + h2k2 ),

where the last inequality holds because of (22) and the fact that supx∈Supp(X),q∈Qε | ∂2k

∂q2k
mj(x, q)| <

∞.
Therefore,

sup
q∈Q

∫

|m̂1,l(x, q) −m1(x, q)|2 dFX(x)

. sup
q∈Q

∫

|m̂1,l(x, q) − m̆1(x, q)|2 dFX(x) + sup
q∈Q

∫

|m̆1,l(x, q) −m1(x, q)|2 dFX(x)

=OP (ρ2Nh
2
2 + h4k2 ).

Third, (10) is the same as (24).
Fourth, we will show (11). Note that

|ω̂l(x)m̂0,l(x, q)−ω(x)m0(x, q)| ≤ |(ω̂l(x)−ω(x))||m̂0,l(x, q)|+|ω(x)(m̂0,l(x, q)−m0(x, q))|.

Then, we have

sup
q∈Q

∫

|ω̂l(x)m̂0,l(x, q) − ω(x)m0(x, q)|2dFX(x)

. sup
q∈Q

∫

(ω̂l(x) − ω(x))2m̂2
0,l(x, q)dFX(x) +

∫

ω2(x)(m̂0,l(x, q) −m0(x, q))
2dFX(x)
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.

∫

(ω̂l(x) − ω(x))2dFX(x) +

∫

ω2(x)dFX(x) sup
q∈Q

||m̂0,l(x, q) −m0(x, q)||2P,∞

=OP (ρ2Nh
2
2 + h4k2 ),

where the last equality holds due to the fact that

sup
q∈Q

||m̂0,l(x, q) −m0(x, q)||P,∞ ≤ sup
q∈Q

||m̂0,l(x, q) − m̆0,l(x, q)||P,∞ + sup
q∈Q

||m̆0,l(x, q) −m0(x, q)||P,∞

=OP (h2ρN + h2k2 ).

Fifth, (12) holds because supx∈Supp(X),q∈Q |mj(x, q)| is bounded for j = 0, 1 and
supx∈Supp(X),q∈Q |m̆1,l(x, q) − m̂1,l(x, q)| = oP (1).

Sixth, (13) follows from supx∈Supp(X),q∈Q |m0(x, q)| ≤ 1, supx∈Supp(X),q∈Q |m̆0,l(x, q)−
m̂0,l(x, q)| = oP (1), and E|ω(X)|2+δ <∞.

Seventh, (14) holds because

sup
q∈Q

∣

∣

∣

∣

∫
(

m̂1,l(x, q) −
∂

∂x1
m̂0,l(x, q)

)

dFX(x)

∣

∣

∣

∣

≤ sup
q∈Q

∫

1

h2
sup
t∈Q

∣

∣

∣

∣

∫
(

m̆1,l(x, t) −
∂

∂x1
m̆0,l(x, t)

)

dFX(x)

∣

∣

∣

∣

∣

∣

∣

∣

K2

(

q − t

h2

)
∣

∣

∣

∣

dt

= oP (N−1/2).

Eighth, we will show (15). Note that
∣

∣

∣

∣

∫

(ω̂l(x) − ω(x))(m̂0,l(x, q) −m0(x, q))dFX(x)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

(ω̂l(x) − ω(x))(m̆0,l(x, q) −m0(x, q))dFX(x)

∣

∣

∣

∣

+

∫

∣

∣

∫

(ω̂l(x) − ω(x))(m̆0,l(x, q) −m0(x, q))dFX(x)
∣

∣

h2

∣

∣

∣

∣

K2

(

t− q

h2

)
∣

∣

∣

∣

dt

+

∫

∣

∣

∫

(ω̂l(x) − ω(x))(m̆0,l(x, t) −m0(x, t))dFX(x)
∣

∣

h2

∣

∣

∣

∣

K2

(

t− q

h2

)
∣

∣

∣

∣

dt

+

∫

|ω̂l(x) − ω(x)|
∣

∣

∣

∣

∫

m0(x, t) −m0(x, q)

h2
K2

(

t− q

h2

)

dt

∣

∣

∣

∣

dFX(x). (39)

By Assumption 6, we have

sup
q∈Q

∣

∣

∣

∣

∫

(ω̂l(x) − ω(x))(m̆0,l(x, q) −m0(x, q))dFX(x)

∣

∣

∣

∣

= oP (N−1/2).

For the second term on the RHS of (39), we have, by (28),

sup
q∈Q

∫

∣

∣

∫

(ω̂l(x) − ω(x))(m̆0,l(x, t) −m0(x, t))dFX(x)
∣

∣

h2
K2

(

t− q

h2

)

dt = oP (N−1/2).
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Similarly, we can show the third term is oP (N−1/2) uniformly over q ∈ Q as well. For
the fourth term on the RHS of (39), we have

∫

|ω̂l(x) − ω(x)|
∣

∣

∣

∣

∫

m0(x, t) −m0(x, q)

h2
K2

(

t− q

h2

)

dt

∣

∣

∣

∣

dFX(x)

≤
∫

|ω̂l(x) − ω(x)|
∣

∣

∣

∣

∂2k

∂q2k
m0(x, q̃)

∣

∣

∣

∣

h2kdFX(x)

∫

u2k|K2(u)|du = oP (N−1/2),

where we use the fact that supx∈Supp(X),q∈Qε | ∂2k

∂q2k
m0(x, q)| <∞, h2k2 = O(N

−k
2k+1 ), and

∫

|ω̂l(x) − ω(x)| dFX(x) ≤ ||ω̂l(x) − ω(x)||P,2 = OP (h2ρN) = oP (N
−1

2(2k+1) ).

Lastly, (16) follows from the choice of (νN , AN , πN).
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