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Does Precise Case Disclosure Limit Precautionary Behavior?

Evidence from COVID-19 in Singapore∗

Aljoscha Janssen† Matthew H. Shapiro‡

December 31, 2020

Abstract

Limiting the spread of contagious diseases can involve both government-managed and vol-

untary efforts. Governments have a number of policy options beyond direct intervention that

can shape individuals’ responses to a pandemic and its associated costs. During its first wave

of COVID-19 cases, Singapore was among a few countries that attempted to adjust behavior

through the announcement of detailed case information. Singapore’s Ministry of Health main-

tained and shared precise, daily information detailing local travel behavior and residences of

COVID-19 cases. We use this policy along with device-level cellphone data to quantify how

local and national COVID-19 case announcements trigger differential behavioral changes. We

find evidence that individuals are three times more responsive to outbreaks in granularly de-

fined locales. Conditional on keeping infection rates at a manageable level, the results suggest

economic value in this type of transparency by mitigating the scope of precautionary activity

reductions.
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1 Introduction

In the first wave of Singapore’s COVID-19 infections, the country relied on a strategy, near unique

among government responses, to mitigate the disease’s spread. Rather than implement shelter-in-

place orders or enforce business closures, the strategy entailed isolating potential patients, moni-

toring those they recently contacted, and sharing detailed data on confirmed cases, including their

residence and places they visited. The motivation for this final piece was twofold. First, the policy

could encourage those who potentially contacted cases to seek testing. Second, it might induce the

potentially affected into more cautious behavior while mitigating the impact on regular activity

elsewhere.

In this paper we study the efficacy of disclosing precise case information in limiting the scope of

voluntary activity reductions. To address this question we take advantage of local case announce-

ments in combination with device-level cellphone location data for more than 10% of Singapore’s

population to track movement responses to positive cases. To tease out the impact of case an-

nouncements on precautionary behavior, we make use of spatial variation in these announcements

at granular and successively larger geographic areas. Differences in individual responses to cases

proximal to their typical routines compared to those at more aggregated levels provide an opening

to estimate the differential effect of more precise information. Although the extent of a contagious

disease is a function of travel behavior, we argue and demonstrate that in our period of study cases

are effectively exogenous because of its then-limited spread.1

In our empirical exercises we study both inflow patterns to and outflow from areas in which

positive cases live or visited. Our results are consistent across different outcomes — including

travel distance or the likelihood of staying home — that people are significantly more responsive

on the margin to local case, both those near their homes and the places they visit. We find that an

additional COVID-19 case in an individual’s home census area decreases her daily travel distance on

the following day by 89 meters (0.64% compared to the average) on average while a non-local case

reduces travel by 28 meters (0.2%).2 Further, a local case increases the probability of staying home

on the following day by 0.14 percentage points (0.54%) while we do not observe changes in response
1We show this intuition holds up to empirical scrutiny in our Online Appendix.
2The most narrowly defined census area we use is a geography with an average population of 15 thousand residents,

as of 2015 estimates.
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to non-local cases. These adjustments hold across different activity types and are not specific to

shopping, commercial, or visiting other residences. Our second set of results show that local cases

reduce inflow travel as well. On average, an additional case reduces the probability of entering that

area by 0.34 percentage points (5.09%) and individuals partially reroute their traffic to locations

proximal to their typical destinations. We take these results to mean that precautionary changes

in individual travel and activity behavior are more localized with precise case information. Cases

more distant from a person’s regular activities have a mitigated or null effect.

To provide context to our estimates, we explore a counterfactual using a stylized model. In the

counterfactual, Singapore does not disclose this detailed case information. We emphasize that we

are not attempting to link the counterfactual to changes in transmission risk but rather pin down

movement responses to the information. Using our estimates we argue a conservative bound in

which individuals might additionally change their travel under this alternative policy. In the best

case scenario for local travel, in which individuals underestimate their self-assessed risk of infection,

we find daily travel increases on average by less than half a kilometer, 3% compared to a baseline

taken at the end of our study period. In the worst case scenario, in which individuals overestimate

their risk, daily travel decreases on average by more than 3 kilometers (-20%).

In the microeconomic literature we contribute to papers that analyze behavioral responses to

the COVID-19 epidemic and related governmental interventions using cellphone data (Abouk and

Heydari, 2020; Allcott et al., 2020; Andersen, 2020; Barrios and Hochberg, 2020; Borg et al., 2020;

Brzezinski et al., 2020; Courtemanche et al., 2020; Dave et al., 2020b; Engle et al., 2020; Fan et al.,

2020; Farboodi et al., 2020; Gao et al., 2020; Glaeser et al., 2020; Gupta et al., 2020; Mangrum

and Niekamp, 2020; Nguyen et al., 2020 Painter and Qiu, 2020; Siedner et al., 2020; Tucker and

Yu, 2020) in the United States.3 Besides the location of our study, our research differs in two

dimensions. First, our cellphone data are not aggregated on any geographical level. Hence, we

can identify individual-level changes in response to case announcements. Second, and key to our

question, we can evaluate an individual’s response to highly local cases rather than to those at

aggregated geographies that may have virtually no impact on her risk assessment. Chen et al.

(2020), Harris (2020), and Almagro and Orane-Hutchinson (2020) consider COVID-19 infection
3Also, see Brodeur et al. (2020) for an extended discussion on the COVID-19 literature evaluating non-

pharmaceutical intervention in the United States.
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exposure within cities; each uses zip-code level data of infections in New York City. The authors

do not study behavioral responses to the virus but rather evaluate the determinants of the virus’s

spread. Argente et al. (2020) utilizes an approach closest to ours. The authors study the South

Korean case disclosure policy, which is similar to Singapore’s. They analyze the flows of individuals

across neighborhoods in Seoul using aggregated cellphone data and incorporate their results in an

SIR model where virus spread is related to these flows. The authors conclude that the disclosure

policy lowered the number of infections. Our approach differs as we do not model the virus spread;

instead we shed light on the causal linkage between movement responses and local and non-local

cases using individual data.

We also add to the academic and public policy discussion on COVID-19-related non-pharmaceutical

interventions.4 Strict governmental policies such as shelter-in-place orders, non-essential business

closings, and school closure reduce travel activity and the spread of a virus (Dave et al., 2020c).

However, they come with economic costs such as unemployment (Baek et al., 2020; Couch et al.,

2020; Kim et al., 2020), educational costs (Doyle, 2020), health costs such as lower preventive and

emergency medical care (Lazzerini et al., 2020), and psychological costs (Galea et al., 2020; Hsing

et al., 2020). In comparison, voluntary travel reductions, even in the absence of strong govern-

mental intervention, suffices to reduce the spread of COVID-19 while potentially limiting economic

effects. Dave et al. (2020a) exploit a natural experiment in which the Wisconsin State Supreme

Court lifted a state-wide shelter-in-place order and find no evidence that the repeal of the lockdown

impacted social distancing or COVID-19 cases. While our paper does not compare governmental

interventions directly, we first show that there are behavioral responses in the absence of strict

policies and that it is highly dependent on the nature of information shared.

The macroeconomic literature has contributed several theoretical frameworks to link various

infection mitigation policies to aggregate welfare outcomes. Alvarez et al., 2020, Chari et al., 2020,

and Acemoglu et al., 2020 evaluate the welfare impact of dynamic lockdown policies and policies

targeted toward containing infections or targeting subpopulations of different risk, respectively.

Chudik et al., 2020 uses data on infection and recovery rates, along with varied policies implemented

at the Chinese provincial level, to assess the economic and epidemic impact of voluntary and
4There is also a literature on governmental policies in response to pandemic influenza. See, for example, Blendon

et al. (2008), Fineberg (2014), or Vaughan and Tinker (2009). However, those pandemics differ in severity, infection
symptoms, etc.
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mandatory measures. Empirical research weighing these alternative lockdown versus voluntary

policies, however, require sufficient understanding of voluntary responses to different information

regimes governments could implement. We believe our research is a valuable step in estimating

this behavior. On the optimal level of activity reduction, Hall et al., 2020 provides an estimate

of the maximal consumption a planner would be willing to give up to reduce infections, while

Eichenbaum et al., 2020 explores the decentralization of such a policy. A fundamental problem

the latter research identifies is that individuals’ voluntary responses will, by nature, not internalize

externalities their behavior imposes vis-à-vis infection risk.

The paper is organized as follows. In Section 2 we present background on Singapore’s disclosure

policy during the first wave of infections. Section 3 describes our data. In Section 4 we introduce

our empirical strategy, and results are presented in Sections 5 and 6. Finally we discuss the results

in Section 7 and conclude with stylized counterfactual results in Section 8.

2 Institutional Background

A key element of our analysis is the quality of the information Singapore released on COVID-19

cases. The only other country to match this Singapore’s disclosure was South Korea, though their

first wave of infections was of a much larger scope than Singapore’s. Following the global spread of

the pandemic, travelers returning to Singapore accelerated new case counts following mid March.

After this point Singapore only provided daily aggregate case numbers and eventually introduced

a lockdown policy.

Singapore detected its first COVID-19 case on January 23rd. Along with the public announce-

ment, the Ministry of Health (MoH) indicated the travel history of this case — a visitor from

Wuhan, China — its intention to start contact tracing, and other cases pending confirmation.

Additionally, the report indicated where this patient had visited in Singapore. They continued

to provide detailed reports every evening through the first wave of infections, which we define as

ending around March 17th. A sample of the location data provided for an early cluster born from

a Chinese tour group follows:

Besides Yong Thai Hang (24 Cavan Road) and Diamond Industries Jewellery Company

(Harbour Drive), the tour group also visited Meeting You Restaurant (14 Hamilton
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Road), Royal Dragon Restaurant (2 Havelock Road), T Galleria by DFS (25 Scotts

Road) and D’Resort @ Downtown East (1 Pasir Ris Close).5

While the Singaporean government’s disclosure was to encourage people to come forward for tracing

and testing, few official recommendations or restrictions limited standard movement from “life as

normal”. This is a strategy the Singaporean government also uses for communicating and managing

the risk of dengue and zika infections. For COVID-19 the first significant policy announcement was

moving the Disease Outbreak Response System Condition (DORSCON) to Orange on February

7th following several days of community transmission. Singapore uses this system to coordinate its

policies in a health crisis and communicate the severity and possibility of spread within the commu-

nity. While the announcement led to a brief run on supermarkets, few official movement restrictions

immediately followed. The effect of the announcement was to introduce temperature stations at

public locations and global hotspot travel declarations. The first legal movement restrictions were

stay-at-home notices issued to any travelers from China on February 17th.

This relatively lax regime persisted through mid March; only on March 13th did the government

mandate social distancing measures. We use this policy history to emphasize that most changes in

domestic travel behavior through mid-March should be attributed to voluntary activity reductions.

While businesses voluntarily started split-team work arrangements no later than February 17th,

businesses did not widely implement gathering restrictions.

3 Data

We draw on two principal data sources for our analysis. We obtain coronavirus case information via

daily announcements from the Singaporean MoH, and the marketing company Lifesight provided

the cellphone location data.

3.1 Coronavirus Data

In Section 2 we discussed Singapore’s disclosure of key details for each COVID-19 case. Announce-

ments included a list of the new cases confirmed in the previous day. On or within a day, the
5From the February 5th MoH press release. The full text of the press release can be found at

https://www.moh.gov.sg/news-highlights/details/four-more-confirmed-cases-of-novel-coronavirus-infection-in-
singapore.

6



announcements would provide additional information about these cases including an approxima-

tion of their home area — typically the street block — locations visited, and linkages to previously

announced cases.6

In our analysis we group cases into census-defined geographies that partition Singapore. Figure 4

illustrates the cumulative number of cases across the smallest of these geographies through March

17th, which again we loosely refer to as the “first wave” of infections. A case is linked to an area if

the government announces the home, or hotel for a traveler, falls within that location. While the

government shared information on 250 cases during this period, the figure illustrates the geographic

dispersion of cases from the commercial and high income south-center of the island to the industrial

areas and hinterlands in the east, north, and west.

We use two successively larger census areas to disentangle the impact of highly local and more

distant cases on individual travel and activity behavior. The first are planning areas, denoted by

dashed lines in Figure 4; we later call these areas “subregions” for clarity. There are 55 subregions

across Singapore. They can be further aggregated into five large regions, delineated by thick solid

lines in the same figure.

For each case we identified three potentially important dates for people to respond to the

information in the case briefing: the date of a case’s confirmation, of announcement, and when

the MoH provided final details on issues like home residence. Given that our research agenda asks

how people respond to information, we focused on the announcement and information dates. Our

analysis in this paper uses the information dates, though results do not qualitatively change with

the alternative measurement; for the rest of the paper we call this date for information disclosure

the “announcement of the case.”

3.2 Cellphone Data

The marketing company Lifesight provided our principal data on individual behavior. This dataset

contains granular location information for individuals over long time periods by tracking pings from

specific cellphones. Each observation in this main dataset is an individual ID, unique to the phone;

a timestamp; and a longitude-latitude coordinate for that person at that time. Supplemental data
6While possible to geocode the data provided by the MoH, we take advantage of a site (https://sgwuhan.xose.net)

put together by computer programmer Ottokyu that mapped the reported cases and their linkages.
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Figure 1: Total Cases Across Singapore, through 17 March 2020

Notes: Solid lines demarcate the five regions of Singapore. Dashed lines denote plan-
ning areas, or subregions. The smallest units are subzones.

provide home location estimates for individuals in the dataset.7 These data cover the time period

January to March of 2020 and parts of 2019.

In our empirical analysis we assume that for each individual data are representative of, if not a

complete record of, their movement within a day. We find that, while there is significant variation

in observation counts per person in a day, conditional on a single person that variance is limited.

We take this feature of the data to support, beyond the standard advantages, the value of using

models with individual fixed effects to capture inherent differences in observation frequency.

A secondary challenge of using cellphone data is the quality of the collection. We implement

two types of cleaning filters on the data. We eliminate observations that indicate errors in how

the GPS data was collected. In the second category of filters we eliminate observations that imply

unrealistic movement behavior, such as moving at improbable speeds. In our Online Appendix we

provide more details on cleaning the data as well as a general discussion of its quality.
7Lifesight estimates home locations using their location data. Their method counts device pings during non-

working hours. Home locations are identified by where the devices consistently ping over these non-working hours.
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Figure 2 superimposes the timeline of daily COVID-19 cases against the median travel distance

of individuals in our filtered sample. The qualitative travel pattern is reflective of what our analysis

will find. The onset of the first wave of infections reveals an initial drop in travel which slightly

recovers as the infection rate appears to slow down. Our sample ends just as individuals begin

to respond to the harbinger of the large second wave of infections, eventually cresting at several

hundreds cases a day.

Figure 2: Average Distances Traveled and Cases, through 17 March 2020

Notes: Traveled distances are calculated as a daily average per individual to remove
day-of-week effects. The distribution of travel distances are highly skewed right and
so we present the median of this measure. The case dates reported are assigned to
the evening on which the government shared detailed location information on positive
cases.

Table 1 summarizes the size of our data and various outcome variables. Panel A provides

statistics on the subsample of the cell data we use from January to March 17th 2020. While

we have many pings from an individual on any given day, the analysis selected for this paper

focuses on outcomes derived at the person-day level. Panel B of Table 1 we include summary

statistics for person-day outcomes in our analysis, including whether an individual stayed at home

or what distance they traveled. We caution against drawing conclusions from aggregate views of the

data. Heterogeneity skews level averages and amplifies the pattern of travel reductions in February
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followed by a slight recovery in early March.

Table 1: Data Summary

Jan 2020 Feb 2020 Mar 2020

Panel A: Cell Phone Data

Person-Day Count 4,140,000 4,762,227 2,404,511
Unique People 546,178 569,803 330,805
Avg Obs Per Person-Day 69.35 69.18 100.66

(129.27) (148.88) (147.88)

Panel B: Travel Statistics

Avg KM Traveled Per Day 18.54 12.95 16.28
(25.00) (21.66) (24.38)

Avg % Staying Home 22.87 27.80 26.42
(0.18) (0.15) (0.10)

Avg Areas Visited Per Day 2.78 1.99 2.75
(2.80) (1.85) (2.72)

Panel C: Activity Statistics (Percent Visiting Daily)

Industrial 10.33 9.27 11.45
Commercial 24.50 16.41 24.44
Retail 2.72 1.49 2.62
Ind., Com., or Ret. 31.92 23.94 32.65
Recreation 31.17 19.43 29.99
Residential (Not Home) 80.10 73.59 84.92

Note 1 : Data for March 2020 only covers through the 17th, the end of our period of study.
The standard deviation for select averages are presented in parentheses.
Note 2 : Panel C uses data for a subsample of the dataset with estimates of an individual’s
residence as it is required to generate the statistics. Panels A and B use the full sample.
Versions based on the subsample with home estimates available is in the Online Appendix.

We complement this cellphone data with location information from Open Street Maps. We

combine land use and building classifications across Singapore and link individual location pings

to these areas. This link is used to qualify what types of activities the individual when the ping

was sent. We use high-level classifications for the analysis in this paper, levels at the description

of commercial, residential, retail, or industrial. Panel C of Table 1 summarizes tendencies to visit

each of these location types in any given day averaged over all individuals in the sample. These

statistics all reflect the general pattern of reduction and recovery seen in the other aggregate views

of our data.
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4 Empirical Strategy

Our empirical analysis contains two components. First, we investigate if the announcement of cases

close to residencies affects the outward travel behavior of local individuals differently from those

that are farther away. For this analysis we define a case as “close” if it occurs in the home subregion

of the resident, as depicted in Figure 4.8 Second, we assess if case announcements within subregions

influence the travel inflow of individuals.

When estimating individual responses to infection announcements close to an individual’s resi-

dence, we face a few identification challenges. First, case announcements must arrive as exogenous

shocks to individuals and occur with temporospatial heterogeneity. National trends in local travel

behavior that may correlate with announcement dates violate the exogeneity assumption of case

announcements. We tackle this identification challenge by solely using variation on the individual

level, controlling for national patterns by using day fixed effects. A second threat is that move-

ment itself affects the transmission rate of the disease and in turn announcements. We argue that

while this is theoretically inarguable, the low case count in our time period renders individual past

behavior functionally irrelevant to the spread of the disease. Unless there is minimal heterogene-

ity in the travel behavior for people living in and visiting affected areas, any individual patterns

cannot empirically account for specific case announcements. Indeed, in robustness checks we find

that inflow and outflow travel behavior through the fortnight prior to a case announcement is not

significantly related to that event.9

One specific challenge to the argument that travel behavior changes are voluntary is the in-

troduction of split-team work initiatives. These arrangements began no later than February 17th.

By this point some businesses had introduced mandatory part-time telecommuting. Changes in

movement as a result of workplace decisions are still voluntary but not necessarily a function of

individual-level discretion. Such involuntary changes in individual behavior would not affect esti-

mates of outward travel behavior as those are dependent on cases in an individual’s home location.

However, in our second analysis focusing on the inflow travel, we may also pick up non-voluntary
8Our results are based on residence estimates. Because these estimates are not available for all individuals, we

use a subsample of the data for fitting the regression model. In the Online Appendix we conduct a robustness check
by redefining cases close to an individual independent of home location. The alternative definition defines close cases
as those in any subregion the individual has visited within the last five days. We find similar results.

9Details are in the Online Appendix.
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changes if travel reductions into working areas are due to home office arrangements. Separating

out the effect of these decisions is not possible, but we believe that date fixed effects should soak

up the impact of these policies. It is unlikely businesses are making these decisions on the basis of

highly localized cases but rather on the basis of national patterns. As a robustness check provided

in the Online Appendix, we evaluate if areas with more office space feature stronger inflow travel

responses to local case announcements. We find some correlation between the number of offices

and the strength of our effect. However, independent of the number of offices, there remains a

significant linkage between inflow travel and the number of local cases.

Finally, we intend to identify the response to local as well as Singapore-wide cases separately.

As aggregate cases do not vary within Singapore, separately identifying these responses while simul-

taneously controlling for national trends is not possible. Therefore, we approximate responses to

aggregate cases by using case announcements within several larger regions of Singapore. In detail,

we consider the five regions depicted in Figure 4, which are the highest geographical division of Sin-

gapore (Urban Redevelopment Authority, 2020). Controlling for the subregion effect, the response

of individuals to cases within a region is non-local and proxies as an aggregate response given the

geographic and population size of a region.10 The advantage is that using regions permit employing

a day fixed effect structure, controlling for national trends and using the variation of announcement

across regions while simultaneously investigating highly localized responses. Additionally, these five

regions are still much larger than the 55 geographic units we use for local cases.

We summarize our empirical strategy in the following regression model:

aijkt = β1LocalCasesjkt−1 + β2RegionCaseskt−1 + γi + ρt + εijkt (1)

Consider individual i with a home located in a subregion j, which itself is a subset of the region

k. We consider each individual’s travel behavior for each day t. aijkt is a vector of outcome

variables measuring travel. In detail, we consider four outcome variables in our main analysis:

travel distance in meters (TravelDistijkt); a dummy which takes the value one if i stays within the

subzone of their home (StayHomeijkt); a dummy which takes the value one if i visits an area with

an industrial-, commercial-, or retail-use classification (IndRetComijkt); a dummy which takes the
10The size of the five region ranges between 4,267 and 8,873 km2 and each has a population between 573,000 and

923,000.
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value one if i visits an with a residential-use classification (Residentialijkt) outside the own home.

LocalCasesjkt are the number of announced local cases in subregion j in the evening of t− 1, and

RegionCaseskt−1 are the announced cases in region k. γi are individual and ρt date fixed effects.

While our first approach shows whether individuals change their travel behavior in response to

living close to infected individuals, our second measures if individuals actively avoid areas where

confirmed cases live or visited before getting tested. Considering individual i in time period t, our

outcome variable is V isitijt, a dummy variable which takes the value one if i has visited subregion

j in time t. Our full model specification follows:

V isitijt =β1LocalCasesjt−1 + β2InfectionV isitjt−1(+NeighbourhoodCasesjt−1)+ (2)

γi × ξj + ρt + εijt,

Where LocalCasesjt−1 are the number of case announcements for subregion j in the evening of t−1

and InfectionV isitjt−1 are the number of positive cases who visited subregion j. We control for

individual-subregion γi× ξj and time fixed effects ρt. Therefore, we evaluate if individual i changes

behavior visiting a specific subregion when cases within those subregions are announced. In a

final model specification, we further add NeighbourhoodCasesjt−1, which indicates the number of

case announcements in subregions neighboring j. The final model evaluates if there are signs of

substitution between regions visited, i.e. if individuals tend to visit subregion j in the event there

is a new case in neighboring subregions.

5 Results

We now turn to analyze responses to local and aggregate case announcements. In this section

we present average responses to case disclosures. In the next section we take advantage of our

individual-level data to decompose these responses by individual demographics and characteristics,

like existing travel behavior.

The first outcome is the travel distance on day t of an individual i living in subregion j. The

regression result shows that the announcement of a single case for subregion j in the evening of t−1

decreases the travel distance of i on a forthcoming day by 61.32 meters. The mean effect, calculate

13



Table 2: Estimation of Local and General Response

TravelDist StayHome IndComRet Residential
(1) (2) (3) (4)

LocalCasesjt−1 −61.433∗∗∗ 0.140∗∗∗ −0.117∗∗∗ −0.055∗∗

(14.429) (0.034) (0.035) (0.026)

RegionCasesjt−1 −28.045∗∗∗ 0.006 −0.083∗∗∗ −0.029∗∗

(6.776) (0.015) (0.016) (0.013)

Individual FE Yes Yes Yes Yes
Date FE Yes Yes Yes Yes
Mean Local Effect in Percent -0.44 0.54 -0.4 -0.07
Mean Aggregate Effect in Percent -0.2 0.02 -0.29 -0.04
N 9,482,376 9,482,376 9,482,376 9,482,376

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: The table presents results of regression model (1). One observation corresponds to an individual on a specific
date. Each model specification corresponds to a different outcome variable. T ravelDist is the travel distance in
meters, StayHome is a dummy variable that takes the value one if an individual remains at their home subzone
for an entire day. IndComRet is a dummy that takes the value one if an individual enters at least one industrial,
commercial or retail area. Residential is a dummy that takes the value one if an individual enters an a residential
area except the own residence. Note, that we multiply outcome variables StayHome, IndComRet and Residential
by 100 such that the coefficients are interpreted in percentage points. LocalCases are the number of local cases in a
subregion announced in the evening of t − 1. RegionCases are the cases of the region announced. For all models we
include individual and date FE. Additional models are reported in the Online Appendix. We calculate the mean local
effect and mean aggregate effect as percentage difference from the average outcome. Standard errors are reported in
parentheses and clustered on the individual level.
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as the percentage difference from the outcome averaged over individuals, is -0.44%. Simultaneously,

individuals decrease their travel distance by 28.26 meters (-0.2%) when a non-local, regional cases

outside subregion j is announced. Accordingly, the local response is more than twice the size of

the non-local response.

In specifications (2) to (4) of Table 2 we consider dummy variables as outcomes. To allow for

more convenient interpretation, we inflate the dummy outcome variables by 100, so the coefficients

should be interpreted as percentage point changes. Specification (2) considers if individual i stays

within their residence’s subzone in period t. An additional local case increases the probability

of staying home on a forthcoming day by 0.54 percentage points (0.54%). We do not observe a

statistically significant response to cases within a region and conclude that people tend to stay at

home or in the immediate neighborhood only as a response to local rather than non-local cases.

Model specification (3) considers the outcome if an individual enters an area on day t with an

industrial-, commercial-, or retail-use classification. From the regression results, we observe that

in response to an additional local case, individuals reduce visits to industrial, retail, or commercial

areas by 0.12 percentage points (-0.4%). In comparison, region-wide cases lead to an slight decrease

of 0.083 percentage points (-0.29%). Finally, specification (4) considers if an individual enters a

residential area outside the own residence. A local case decrease the probability of visiting a

residential building by 0.06 percentage points (-0.07%), while an aggregate case is associated with

0.029 percentage points (-0.04%) more visits to a residential area. Thus, we observe a higher

response to local cases compared to region-wide cases in all specifications.

Our second set of results concern the inflow of individuals into areas affected by case an-

nouncements. Table 3 shows the results of regression model 2 across four different specifications.

Specification (1) solely includes subregion fixed effects, (2) adds time fixed effects, and (3) and (4)

introduce subregion-individual as well as date-specific fixed effects. In model specification (1) to

(3), we consider the effect that the announcement of cases who reside in or visited subregion j have

on the probability of visiting j. In comparison, model (4) investigates these effects as well as the

impact of announced cases in subregions neighboring j.

Recall that for the second set of regressions we construct a day-individual-subregion panel. The

large sample size makes a regression analysis of the whole sample prohibitive. Therefore, results in

Table 3 are based on a bootstrapping procedure in which we draw 10% of the individuals in the
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Table 3: Regression, Visiting Affected Areas

Visit Visit Visit Visit
(1) (2) (3) (4)

LocalCasesjt−1 −0.31∗∗∗ −0.099∗∗∗ −0.081∗∗∗ −0.344∗∗∗

(0.003) (0.003) (0.002) (0.008)

InfectionV isitjt−1 −0.276∗∗∗ −0.149∗∗∗ −0.017∗∗∗ −0.014∗∗∗

(0.002) (0.002) (0.001) (0.001)

NeighbourhoodCasesjt−1 0.048∗∗∗

(0.001)

Subregion FE Yes Yes No No
Date FE No Yes Yes Yes
Subregion×Individual FE No No Yes Yes
Mean Local Effect in Percent -4.59 -1.47 -1.2 -5.09
Mean Infection Visit Effect in Percent -4.08 -2.2 -0.26 -0.21
N 477,903,426 477,903,426 477,903,426 477,903,426

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: The table presents results of regression model (2). One observation corresponds to a combination an individual,
subregion, and specific date. We exclude observations from the sample that do not provide variation: (1) subregions
that an individual has never visited and (2) home subregions of individuals. Each model specification corresponds
to the outcome variable V isit, a dummy that takes the value one if the individual visits the subregion in t. Note,
that we multiply outcome variable by 100 such that the coefficients are interpreted in percentage points. LocalCases
are the number of local cases in a subregion announced in the evening of t − 1. InfectionV isit are the number
of newly announced cases that visited subregion j. Finally NeighbourhoodCases are announced in the immediate
neighborhood subregions of j announced in t−1. Model specification (1) includes subregion fixed effects, specification
(2) adds date fixed effects, and specifications (3) and (4) include date and subregion× individual fixed effects. Results
are based on a bootstrapping procedure in which we draw 10% of the individuals in the full sample and repeat after
replacement. We calculate the mean local effect and mean infection visit effect as percentage change from the average
outcome. Standard errors are reported in parentheses and clustered on the individual level.
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full sample and repeat after replacement 100 times.

In all model specifications an announcement that a positive COVID-19 case resides in a sub-

region reduces the probability for individuals to enter. In our favored model specification with

subregion-individual and day fixed effects, an additional case decreases the probability of visiting

the region by 0.081 percentage points (-1.2 %). The impact the announcement a case visited sub-

region j has a similar qualitative effect. In specification (3) we find that such an announcement

decreases the probability of a visit in the area by 0.017 percentage points (0.26%). Finally, we show

significant substitution between neighboring subregions. An additional case announcement in re-

gions neighboring j increases the probability of an individual visiting j instead by 0.048 percentage

points (0.21%).

6 Heterogeneity Analysis

Within this section we deconstruct our main results by exploring heterogeneous travel responses

along two critical dimensions. First, we investigate precautionary behavior changes across the

distribution of typical travel distances. Using a quantile regression we show that the differences

in responses between local and regional cases are especially high for individuals who travel more.

Individuals in high percentiles of the travel distance distribution respond less to regional, non-local

cases but reduce their more in response to locally announced cases. Second, we analyze the effect

of locally announced cases across neighborhoods of varying socioeconomic status. Our principal

finding is that individuals with homes in wealthier neighborhoods respond more strongly to local

case announcements. Further, we observe a correlation between the usage of public transit and the

strength of the travel response.

We start by comparing the impact of case announcements across consumers of different baseline

travel behaviors. Specifically we look into the effect of local and non-local cases depending on an

individual’s quantile of typical traveled distance per day. We unpack this relationship (equation 1)

using an unconditional quantile regression.11 Figure 3 reports the unconditional quantile regression

coefficients of local and regional cases on travel distance in meters.
11Note that the unconditional quantile regression in comparison to the conditional provides the advantage of

interpreting the effects as the effects over the distributions of other covariates are marginalized. For an econometric
discussion see Firpo et al. (2009). Further, Borah and Basu (2013) provides an empirical comparison.
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Two major patterns emerge from this analysis. First, the impact of case announcements atten-

uate for people with lower baseline travel distances. We observe a limited response to local and

regional cases in the lower 40 percent of the travel distribution. From the 50th to 70th percentiles,

individuals decrease their travel to the same extent in response to locally and regionally announced

infections. However, from the 80th percentile, a second pattern emerges; responses to local and

regional cases diverge for the most traveled people. Those individuals respond much less to regional

than local cases. Specifically, the coefficient on regional cases remains constant for the 70th, 80th,

90th, and 95th percentile and is even increasing and insignificantly different from zero. In com-

parison, the local cases’ coefficient largely decreases for the higher percentiles. Overall, the result

shows that those individuals in the upper part of the distribution respond to case announcements

differently depending on their proximity. One interpretation of the result is that it is costly for

individuals who usually travel to decrease their travel. In comparison to individuals in the lower

parts of the travel distribution, they do not respond to non-local cases but only to those cases close

to their home.

We additionally focus on response heterogeneity based on home neighborhood demographics

and characteristics.12 To show evidence for the correlation we evaluate a simple extension from our

main model in equation 1:

TravelDistijkt =β1LocalCasesjkt−1 + β2RegionCaseskt−1+ (3)

β3LocalCasesjkt−1 · log(Cjk) + β4RegionCaseskt−1 · log(Cjk)+

γi + ρt + εijkt

The additional feature interacts local as well as regional cases with a characteristic of the local area j

in region k, collected in a vector of local characteristics Cjk: population density, average household

income, share of high education (at least post-secondary education), the share of population older

than 65 years old, the share of population living in a private condominium or landed property, the

share of the population using public transport to their workplace, and the average time transport

takes to the workplace. For each of these characteristics, we present evidence from a separate
12These characteristics are based on 2015 Singaporean household surveys (Statistics Singapore, 2016).
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Figure 3: Unconditional Quantile Regression Results

Notes: The figure displays coefficients from an unconditional quantile regression of equation 1 For
each percentile ({5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99}) we show the coefficient in response to
local (β1) and regional (β2) cases. The regression includes individual and date fixed effects. The
error bars correspond to the 95% confidence interval.

regression. Hence some of these factors may proxy for similar relevant demographics, e.g. household

income and education. We take the logarithm of each statistic of a local area to compare effects to

each other. For example, a 10% higher average income in a local area is correlated to an average

additional travel distance change of β3/10 in response to the announcement of an additional local

case. Note that individual fixed effects γi soak up any non-interacted characteristic terms. Our key

interest is if some characteristics are correlated with a greater travel distance response.

Figure 4 shows the coefficients β̂3 for each individual regression, i.e. the correlation between

local characteristics and the average travel distance response to local cases. Note that each co-

efficient should only be interpreted as a correlation; we are not discerning any causal mechanism

at play. We first observe a negative but insignificant correlation with density, that is more dense

areas show a higher reduction in travel distance. For high income and highly educated individuals,
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we observe a strong and negative correlation. We also find that areas with more residents over

65 in which a higher percentage of households live in private condominiums and landed property,

both connected to higher social-economic status in Singapore, show negative correlations to travel

responses. Finally, we evaluate the correlation with two variables that provide information about

the population’s work commute. We specifically find that a higher share of individuals who use

public transport is correlated with a higher reduction in travel distance after the announcement of

local cases. Further, the longer the commute time, the higher the reduction.

7 Discussion

We separate our discussion of these results by inflow and outflow behavior around locales with

newly announced local and non-local cases. Our focus is on the relative impact of these case types

on the travel behavior of individuals traveling to or from the affected areas.

Beginning with the outflow analysis, summarized in Table 2, local cases refer to those in the

vicinity of an individual’s residence. Non-local cases refer to those in areas outside the individual’s

home but in the same region; therefore, these cases might nonetheless be “local” to areas the

individual visits away from home.13

Nonetheless, the results support that local case announcements have a stronger marginal impact

on travel outcomes than non-local cases. We find the reduction in travel behavior and increase in

the likelihood of staying home are reflected across multiple channels of adjustment including how

often individuals visit shopping areas (specification (3)) and even other non-home residential areas

(specification (4)). We take these changes to mean that individuals reduce their travel behavior as

they increasingly perceive themselves as a more likely virus vector. Indeed this is most stark when

looking at the impact local cases have on people simply staying home while aggregate cases yield no

effect. A case local to home, does not marginally increase risk or the range of risk for contracting

the disease in locations away from home yet we observe these behavior changes. That non-local

cases have a smaller impact suggests that people perceive the risk change from these additional
13In an alternative definition, the results for which are available in the Online Appendix, we redefine local cases

based on subregions the individual has visited within the last five days. Non-local cases are cases in areas where the
individual has not been in the same time period. We find similar results to those presented here.
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Figure 4: Heterogeneity of Local Areas, Regression Results

Notes: The figure displays coefficients β̂3 of regression 3. Each coeficient correspond to one average
characteristic of a local area. By increasing the value of the characteristic in a local area by 10%
we observe on average a change of travel distance by β3/10 in response to the announcement of
an additional local case. Each regression includes individual and date fixed effects. The error bars
correspond to the 95% confidence interval.

cases to be smaller when occurring away from home.

The inflow analysis, the results of which are summarized in Table 3, affirm our findings of the

impact of local case information on travel behavior. For this analysis, local cases are those in the
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same subregion where the individual might visit. We control for non-local cases through day fixed

effects in specifications (3) and (4) as well as cases from neighboring subregions in specification

(4). Across specifications we see individuals reduce their likelihood of traveling to locations either

home to or visited by recently announced cases, though we do not find consistent results about

which of the two is more influential on this decision. While the risk of disease contraction and

becoming a vector for it are inextricably linked, we take these results as stronger evidence of

avoiding contraction. Specification (4) particularly supports this finding. We find that new cases

in neighboring areas increases my likelihood to travel to the unaffected subregion. Hence, people

are not simply cutting their travel outright but making marginal adjustments in their destinations.

The finding suggests that individuals will use precise information to update their risk assessment

at levels of granularity the information shared allow.

Finally, our result on the heterogeneous responses in travel outcomes have additional purpose

for evaluating the impact of localized information. On the one hand, the analysis reveals that the

policy could have a differential impact across the average travel distance distribution. Especially

for those who travel a lot, we observe a diverging response between local and regional responses.

In case that a policy intends to target those individuals, localized information may be a suitable

policy tool. On the other hand, the analysis reveals that high-income households respond strongly

to local case information. The finding is in line with previous observations in the literature (Al-

magro and Orane-Hutchinson, 2020, Desmet and Wacziarg, 2020) which shows that economically

disadvantaged households have less opportunity in precautionary behavior. Additionally, we find a

correlation between travel along vectors carrying greater transmission risk, e.g. on public transport,

and the adjustment in precautionary behavior.

8 A Stylized Counterfactual

In this section we provide light framing our results to describe how risk perceptions might impact

our estimated travel behavior. We do not explicitly model the role that new information, like

case disclosure, plays in updating these perceptions. Rather we use the model to rationalize how

imprecise beliefs can generate our findings. We close the section by connecting our empirical results

to a back-of-the-envelope counterfactual exercise estimating how people may have behaved without
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Singapore’s local information disclosure.

8.1 Set Up

Start with the setting of a standard SIR model; there is a city’s population in which each individual

i in day t is in one of four states σt ∈ {S,K,R,D}, susceptible, infected, recovered, and deceased.

As we focus on the beginning of a pandemic, we assume for simplicity that only susceptible and

infected persons exist. The share in the population that are susceptible or infected are st and kt

respectively. Provided the information kt is available, individuals may distinguish between local,

e.g. close to their residence or perhaps locations they frequent, and non-local cases. Denote local

cases klit = αikt for some αi ∈ [0, 1], which may be based on the individual’s perception. Summarize

the relevant information for an individual in Θit.

Every day individuals must choose how much to travel cit. Individuals earn utility from travel-

ing and engaging in daily activity while infection with COVID-19 reduces utility, u(ci, σi), so u′c > 0

and u(c;S,Θi) > u(c;K,Θi) for all c. The individual discounts future utility by δ and maximizes

expected lifetime utility
∑∞
τ=t δ

τu(ciτ ;σiτ ,Θit). As in our time period there is little feedback be-

tween infection rates and individual behavior, we assume people do not worry about developing

expectations over the city’s infection status. Rather they behavior in t as if Θit will hold for the

near future.

One cost of travel is the chance to become infected by COVID-19. The “true” probability an

individual gets infected in t is g(citβkt) ∈ [0, 1) where g′ > 0 and β is some known infection factor

for the infected population.14 Hence travel and the rate of infection both result in higher infection

rates. Individuals, however, are motivated by their perceived infection risk. This perceived infection

risk is ĝi ≡ g(citβk̂it), where k̂it ≡ fi(kt); any perception errors are based on uncertainty around

the number of people infected.

The second cost is based on concerns that an infection, even if undiagnosed, could unwittingly

spread the disease. Before a positive diagnosis an individual i is in the susceptible state and

is uncertain if she is infected or not; denote the perceived probability of her own infection by

p̂i ≡ p
(
k̂lit

)
∈ [0, 1]. Note that this uncertainty is not necessarily based on symptoms but based

14A classic assumption on g is that it is a logistic function. At this point in the pandemic, the city should be in
the convex portion of this function.
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concern about exposure to local infected people. Let a(cit) be a negative externality imposed on

others by an infected person. We assume a′ > 0. Hence, for person i the internalized component

of the expected negative externality is p̂ia(cit).

8.2 Individual Decisions

We can summarize the maximization problem of susceptible people in the following Bellman equa-

tion.

V s
i (Θi) = max

c

{
u(c;S,Θi)− p

(
k̂li

)
a(c) + δ

[
g(cβk̂i)V k

i (Θi) +
(
1− g(cβk̂i)

)
V s
i (Θi)

]}
(4)

Solving the first order condition yields

u′(c;S,Θi) = g′(cβk̂i)βk̂iδ
(
V s
i (Θi)− V k

i (Θi)
)

︸ ︷︷ ︸
infection risk cost

+ p
(
k̂li

)
a′(c)︸ ︷︷ ︸

externality cost

(5)

Hence the marginal benefit of more travel is weighed against two marginal costs, roughly corre-

sponding to the costs discussed previously. The first factor is the perceived marginal increment of

becoming infected. Note that belief crucially depends on the private perception of the risk in the

population k̂i. The second effect is the marginal impact on the expected externality. Note that in

this model local cases have two channels to impact behavior as compared to non-local cases. Only

local cases impose costs through both cost channels identified above. This result is meant to line

up with our empirical findings summarized in Table 2, specifically the relative strong impact of

local and non-local (regional) cases on travel behavior.

8.3 Impact of Information

Finally, we turn to discussing the potential role Singapore’s local case disclosure may have played in

changing an individual’s behavior. In the context of the model government case disclosures impact

an individual’s risk evaluation through perceived population infection rates k̂i. The structure of

the disclosure may have a different impact on k̂i and k̂li.

As previously noted the goal of the paper is not to estimate people’s risk perceptions. We

do emphasize, however, how they might respond differently to local case data versus aggregate
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case data. In our back-of-the-envelope counterfactual exercises we will offer two extremes for how

individuals might respond to cases. In a “local extreme” people take local case information as

indicative of the infection rates throughout the city. If government information were perfectly

accurate, this appears as over-estimation the infection probability. In another extreme people

respond to all cases as if non-local; in this case the reaction would appear as an under-estimation.

To illustrate these extremes start with the baseline of Singapore’s disclosure regime and assume

that individuals take government disclosures as the true infection rates. In this case the government

provides sufficient information for everyone to accurately set k̂it = kt and k̂lit = klt, in contrast to a

guess of αi. In the counterfactual disclosure environment in which the government does not provide

local information, only kt is known. To construct k̂lit, the individual must now guess what fraction

αi of cases are local. In the local local extreme (LE) counterfactual, αLEi = 1. In the non-local

extreme (NE) αNEi = 0. Generally, we can think of the former as a weak overestimation of the case

counts in one’s local areas while the latter is an underestimation.

These counterfactual extremes can predict a wide range of potential impacts on travel behavior.

Let k◦ stand in for the baseline information. In both extremes outlined above k◦ = kLE = kNE

while 0 = kl,NE ≤ kl,◦ ≤ kl,LE . It is obvious from the FOC in Equation 5 that optimal travel among

the three cases follows cLE ≤ c◦ ≤ cNE . After presenting the back-of-the-envelope calculations, we

discuss more on which extreme we find more plausible with the evidence available.

In the calculation we make two simplifying assumptions, both consistent with the stylized model

in this section. The first is to hold the transmission and distribution of the disease constant under

alternative policies. There is ample evidence of the impact behavior has on transmission rates —

see Chudik et al., 2020 for a related context — but we leave it to future researchers to explore how

these travel movements link to transmission explicitly. Second, we assume that the marginal effects

presented in Table 2 apply for the cumulative local and non-local cases for the entire period.15

Hence, as we use the results from estimating model 1 local cases are those near an individual’s

residence. In the local extreme we find individuals would, on average, reduce daily travel by an

additional 3 kilometers by the end of the first wave. Compared to the average daily distance

traveled for the last week in our sample, this would amount to a 20% reduction. In the non-local
15Consistent with the explanation provided above, in the non-local extreme individuals react to every case as

though regional. In the local extreme individual react as if all cases over the time period are local.
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extreme daily travel distance would increase by 350m, or 3% compared to the average.

To oversimplify and consider travel distance as proportionally correlated with economic activity,

the local extreme carries a larger downside than the potential aggregate extreme upside. We

emphasize that we are not attempting to link this to changes in transmission risk. If from a

simple epidemiological stand point less travel is good, then the local extreme’s downside would be

mitigated.

Out stylized counterfactual is agnostic about the exact position of the real counterfactual.

However, we present two arguments that a true counterfactual would be closer to the local extreme.

That is, without local information we would have observed a larger downside in economic activity.

First, there is survey evidence that individuals overestimated the risk of getting infected and dying

from COVID-19 in the beginning of the pandemic (Akesson et al., 2020). Second, the data the

government discloses is a lower bound, ignoring many false positive tests, on the true number

of infections in the city. It would be reasonable that perceived local infections are higher than

government-reported infections, i.e. perceived infections k̂l ∈ [kl,◦, kl,LE ].16

This back-of-the-envelope calculation only considers outward travel outcomes, while there is a

separate impact of precise confirmation that we see in specification (4) of Table 3. Specifically,

precise information gives individuals the opportunity to minimally adjust their travel decisions

by shifting to proximal areas unaffected by a recent case. Modeling the specific location choices

of individuals is beyond the scope of this paper and so a quantitative prediction on the impact

of shifting to an aggregate information regime is a significant extrapolation. It is safe to suggest,

though, informed switching is not an available risk-adjustment tool to individuals in a counterfactual

regime with only aggregate case information.

Assessing whether the policy is ultimately effective requires understanding the Singapore gov-

ernment’s specific objectives. Presumably, two of these objectives, particularly during the first wave

of infections, included minimizing transmission of coronavirus while also minimizing the impact on

local economic activity. While we intentionally do not touch on this first objective, we are able

to present proxies for the latter through changes in individual travel and activity behavior and

find robust evidence of individuals responding to granular information with more precise move-

ment adjustments. Evidence that individuals adjust their routines to areas proximal to new cases
16In fact, in the baseline case with this rationale k̂l > kl,LE as well.
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provides the most optimistic evidence of the mitigating economic impact of providing such specific

information and could merit further investigation.
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