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Robust Estimation and Inference of Spatial Panel Data
Models with Fixed Effects

Shew Fan Liu1 and Zhenlin Yang2

Abstract

It is well established that the quasi maximum likelihood (QML) estimation of the spatial
regression models is generally inconsistent under unknown cross-sectional heteroskedasticity
(CH) and the CH-robust methods have been developed. The same issue remains for the
spatial panel data (SPD) models but the similar studies based on QML approach do not
seem to have been carried out. This paper focuses on the SPD model with fixed effects
(FE). We argue that under unknown CH the QML estimator for the SPD-FE model is
inconsistent in general, but there are ‘special cases’ where it may remain consistent although
the exact conditions may not be possible to check, as in practice the type of CH is generally
unknown. Thus, we introduce a new set of estimation and inference methods based on the
adjusted quasi scores (AQS), which are fully robust against unknown CH. Consistency and
asymptotic normality of the proposed AQS estimators are established. Robust standard
error estimates are provided and their consistency is proved. To improve the finite sample
performance, a set of AQS methods based on concentrated quasi scores is also introduced
and its asymptotic properties examined. Extensive Monte Carlo results show that the new
estimator outperforms the QML estimator even when the latter seems robust.

Key Words: Spatial dependence; Spatial panel data; Fixed effects; Unknown heteroskedas-
ticity; Non-normality, AQS estimator; Robust standard error.

1. Introduction

Exploring how correlation in space extends to and interacts over time is a long standing

question since the onset of the literature relating to spatial econometrics such as Anselin (1988).

Spatial panel data (SPD) models have the versatility of allowing a location related dependence

structure to be attached to the conventional panel model in terms of spatial dependence or

spatial heterogeneity (Anselin et al., 2008). With a fast evolving literature (see surveys in Lee

and Yu, 2010b, 2015), panel models with fixed effects (FE) and spatial or social interactions

remain popular due to its wide practical applicability. Examples of recent empirical studies

include Baltagi et al. (2016), Hsieh & Lee (2014), Kelejian & Piras (2016), and Millimet & Roy

(2016). In this paper, we consider SPD models with FE and cross-sectional heteroskedasticity

(CH) of unknown form, where a spatial autoregressive (SAR) process is built on both dependent

variable and disturbance term, and introduce CH-robust estimation and inference methods.

Zhenlin Yang Email: zlyang@smu.edu.sg
1School of Economics, Singapore Management University, Singapore
2School of Economics, Singapore Management University, Singapore
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SPD models with homoskedastic disturbances have been well studied (see, e.g., Baltagi et

al. 2003, 2013; Baltagi and Yang 2013; Fingleton 2008; Kelejian and Prucha 2007; Lee & Yu

2010a, 2012; Robinson & Rossi 2015; and Yang et al. 2016). The literature on CH-robust

estimation of cross-sectional spatial models is fairly comprehensive as well; See LeSage (1997)

for Bayesian estimation; Badinger & Egger (2011), Lin & Lee (2010), and Kelejian & Prucha

(2010) for GMM estimation; and Jin & Lee (2012), and Liu & Yang (2015) for QML based

estimation. However, the study on SPD models with unknown CH has been limited to Moscone

and Tosetti (2011) who extend the robust GMM estimation methods for a cross-sectional spatial

model, given in Kelejian & Prucha (2010) and Lin & Lee (2010), to the SPD framework where

they consider only spatial error dependence, and Badinger and Egger (2015) who consider CH-

robust 2SLS estimation of a higher order spatial panel model by extending the methods in

Kapoor et al. (2007), where the individual-specific effects are treated using the Mundlak (1978)

approach. However, the individual-specific effects may correlate with time-varying regressors

in an arbitrary manner and in this case they have to be treated as fixed parameters. Also, the

2SLS estimator may lack efficiency compared to a general GMM or an ML-based estimator, as

it focuses only on the deterministic part of the model based on linear moments and ignores the

reduced form model that incorporates the information contained in the disturbances.

Since ML methods provide the most efficient estimates, QML-based methods may also pro-

vide more efficient estimates compared with GMM and 2SLS methods, in particular the latter.

Therefore, QML-based methods for FE-SPD models that are simple to implement and robust

to unknown CH would be very useful. When the disturbances are homoskedastic, Lee and Yu

(2010a) show that a direct QML estimation yields consistent estimators for all parameters in the

FE-SPD model (including the FE parameters), when the number of spatial units (n) and time

periods (T ) are both large. When T is fixed, the QML estimators (QMLEs) for error variance

and FEs are inconsistent. Upon transformation of the model to wipe out the FEs, QMLEs of

all the structural parameters become consistent irrespective of the size of T . However, Lee and

Yu (2010a) does not consider unknown CH. This paper aims to fill this gap in the literature.

In a cross-sectional SAR model with unknown CH, Lin and Lee (2010) show that the usual

QMLE of the spatial parameter is inconsistent in general. A similar phenomenon is observed in

the FE-SPD models. We argue that under unknown CH the QMLEs for the SPD-FE model are

inconsistent in general, but there are ‘special cases’ where they may remain consistent although

the exact conditions may not be possible to check, as in practice the type of CH is generally

unknown. We therefore propose a new set of estimation and inference methods based on the

adjusted quasi scores (AQS), fully robust against unknown CH. Consistency and asymptotic

normality of the proposed AQS estimators (AQSEs) are established. To conduct CH-robust

inferences, we propose an outer-product-of-martingale-difference (OPMD) method for estimat-

ing the variance-covariance matrix of the AQSEs, first under normality, and then generalized

to allow for non-normality. Consistency of this OPMD-based estimate is also established. To

capture the extra variability coming from the estimation of the regression coefficients and the
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average of error variance, a set of AQS methods based on concentrated quasi score is also pro-

posed, which may offer finite-sample improvements. The AQS estimation is easy to implement

and is effective in attaining consistency under unknown CH while limiting the compromise on

efficiency of the usual QMLE. The AQS estimation and inference generally perform very well

under CH, but the regular QML estimation and inference do not, even when they are valid

under CH, as demonstrated by the extensive Monte Carlo results.

AQS estimators broadly fall into the umbrella of estimators known as M-estimators in the

literature, which can be either a maxima of an objective function or a root of an estimating

equation. The proposed robust estimator falls into the latter which is also known as the Z(ero)-

estimator in van der Vaart (1998). Very interestingly, this idea finds its root in Neyman and

Scott (1948) on Modified Equations of Maximum Likelihood, but it was only recently that

the idea was picked up by Baltagi and Yang (2013) to give CH-robust LM tests for spatial

dependence, Liu and Yang (2015) to give CH-robust estimation of spatial cross-sectional model,

and Yang (2018) to give initial condition free estimation of spatial dynamic panel data (SDPD)

models with FE, which is extended by Li and Yang (2019b) to allow for unknown CH, Xu

and Yang (2019) to give tests for temporal heterogeneity in FE-SPD models, and Li and Yang

(2019a) to give initial condition free estimation of SDPD models with correlated random effects.

The rest of the paper is organized as follows. Section 2 outlines the transformation-based

QML estimation of the FE-SPD model and examines its robustness. Section 3 introduces

the CH-robust AQS estimators for the SPD model with individual FE, presents asymptotic

properties and introduces CH-robust inference methods. Section 4 extends the AQS methods

to the SPD model with both individual and time FE. Section 5 presents the Monte Carlo results.

Section 6 concludes the paper. All technical details are given in Appendix B.

2. QML Estimation of FE-SPD Model and its Robustness

The spatial panel data (SPD) model with individual and time specific fixed effects (FE),

containing a spatial autoregressive (SAR) process in responses and a SAR process in errors,

called the FE-SPD model in this paper, has the form:

Ynt = λ0W1nYnt +Xntβ0 + cn0 + αt0ln + Unt, Unt = ρ0W2nUnt + Vnt, t = 1, . . . , T, (2.1)

where Ynt = (y1t, y2t, . . . , ynt)′ is an n × 1 vector of observations on the responses, Xnt is

an n × k matrix containing the values of k non-stochastic but time varying regressors, Vnt =

(v1t, v2t, . . . , vnt)′ is the vector of idiosyncratic errors, β0 is a k×1 vector of regression coefficients,

λ0 and ρ0 are the spatial lag and error parameters, W1n and W2n are the respective n× n non-

stochastic spatial weights matrices, cn0 is the n× 1 time invariant vector of individual-specific

FE, and {αt0} are the time-specific FE with ln being an n× 1 vector of ones.

The fixed effects in a panel data model induce the so-called incidental parameters problem of

Neyman and Scott (1948). The existence of unknown heteroskedasticity might induce another

3
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set of incidental parameters. The standard way of dealing with FE problem is to eliminate the

FE by some transformation, such as first-difference, demean, and orthonormal transformation.

However, there seems no standard solution to the problem of unknown heteroskedasticity.

In this section, we first outline the transformation-based QML estimator (QMLE) of the FE-

SPD model, where the idiosyncratic errors {vit} are first set to be independent and identically

distributed (iid) with mean 0 and variance σ2
0, as in Lee and Yu (2010a). Then, we examine

the properties of the QMLE when the errors are independent but with unknown cross-sectional

heteroskedasticity (CH). We show that under unknown CH, the necessary conditions for QMLE

to be consistent can be violated and therefore QMLE cannot be consistent in general.

Notation. Some notation and convention would be helpful in the theoretical developments.

Let tr(·), | · |, and ‖ · ‖ be, respectively, the trace, determinant and Frobenius norm of a square

matrix. The operator diag(·) forms a diagonal matrix based on a vector or the diagonal elements

of a square matrix, and diagv(·) forms a column vector by the diagonal elements of a square

matrix. Let θ0 = (β′0, σ
2
0, λ0, ρ0)′ be the true parameter vector and θ = (β′, σ2, λ, ρ)′ be any

value of it. The usual expectation, variance and covariance operators, E(·), Var(·), and Cov(·),
correspond to θ0. However, for two non-stochastic vectors a and b of the same length, Var(a)

denotes the sample variance of a, and Cov(a, b) the sample covariance between a and b.

2.1. The one-way FE-SPD model

Consider first the SPD model with only individual-specific FE (FE1), i.e., dropping αt from

(2.1). For an identity matrix IT and a vector of ones lT , let JT = IT − 1
T lT l

′
T , the time demean

operator, which is idempotent with rank T − 1, and thus has T − 1 eigenvalues of 1 and one

eigenvalue of 0. Let FT,T−1 be the first T − 1 eigenvectors of JT corresponding to eigenvalue 1.

The last eigenvector is 1√
T
lT , orthogonal to FT,T−1. Now, for an n × T matrix [Zn1, . . . , ZnT ],

defined [Z∗n1, . . . , Z
∗
n,T−1] = [Zn1, . . . , ZnT ]FT,T−1. We have the transformed FE1-SPD model:

Y ∗
nt = λ0W1nY

∗
nt +X∗

ntβ0 + U∗nt, U
∗
nt = ρ0W2nU

∗
nt + V ∗

nt, t = 1, . . . , T − 1, (2.2)

where the individual-specific fixed effects cn0 are transformed away and the effective sample

size post transformation is N = n(T − 1). Stacking the transformed vectors to give YN =

(Y ∗′
n1, . . . , Y

∗′
n,T−1)

′, similarly UN and VN , XNj = (X∗′
jn,1, . . . , X

∗′
jn,T−1)

′ for the jth regressor and

XN = [X1N , . . . ,XkN ], and letting WrN = IT−1 ⊗Wrn, r = 1, 2, Model (2.2) is written as,

YN = λ0W1NYN + XNβ0 + UN , UN = ρ0W2NUN + VN . (2.3)

The transformed errors, {v∗it}, are iid N(0, σ2
0) if the original errors, {vit}, are iid N(0, σ2

0), as

VN = (F ′T,T−1 ⊗ In)(V ′
n1, . . . , V

′
nT )′ and E(VNV′

N ) = σ2
0(F

′
T,T−1 ⊗ In)(FT,T−1 ⊗ In) = σ2

0IN .

The (quasi) Gaussian loglikelihood of θ, as if {v∗it} are iid N(0, σ2
0), is,

`N (θ) = −N
2 ln(2πσ2) + ln |A1N (λ)|+ ln |A2N (ρ)| − 1

2σ2 V′
N (β, δ)VN (β, δ), (2.4)

where VN (β, δ) = A2N (ρ)[A1N (λ)YN −XNβ], A1N (λ) = IN −λW1N , A2N (ρ) = IN − ρW2N ,
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and δ = (λ, ρ)′. Given δ, `N (θ) is partially maximized at:

β̃N (δ) = [X′
N (ρ)XN (ρ)]−1X′

N (ρ)YN (δ) and σ̃2
N (δ) = 1

N Y′
N (δ)MN (ρ)YN (δ), (2.5)

where YN (δ) = A2N (ρ)A1N (λ)YN , MN (ρ) = IN −XN (ρ)[X′
N (ρ)XN (ρ)]−1X′

N (ρ), and XN (ρ) =

A2N (ρ)XN . The concentrated quasi Gaussian loglikelihood function of δ is, upon substitution:

`cN (δ) = −N
2 (ln(2π) + 1) + ln |A1N (λ)|+ ln |A2N (ρ)| − N

2 ln σ̃2
N (δ). (2.6)

Maximizing (2.6) gives the unconstrained QMLE δ̂QML1 of δ, and thus the unconstrained QMLEs

of β and σ2: β̂QML1 ≡ β̃N (δ̂QML1) and σ̂2
QML1 ≡ σ̃2

N (δ̂QML1). Under the assumptions that the

errors are iid and some additional regularity conditions, Lee and Yu (2010a) show that θ̂QML1 =

(β̂′QML1, δ̂
′
QML1, σ̂

2
QML1)

′ is
√
N -consistent and asymptotically normal.

To examine the robustness of the transformation-based QMLE of the FE1-SPD model,

consider the quasi score function derived from (2.4) under homoskedasticity assumption:

∂
∂θ `N (θ) =



1
σ2 X′

N (ρ)VN (β, δ),
1

2σ4

[
V′

N (β, δ)VN (β, δ)−Nσ2
]
,

1
σ2 V′

N (β, δ)A2N (ρ)W1NYN − tr(G1N (λ)),
1
σ2 V′

N (β, δ)G2N (ρ)VN (β, δ)− tr(G2N (ρ)),

(2.7)

where G1N (λ) = W1NA−1
1N (λ) and G2N (ρ) = W2NA−1

2N (ρ).

Suppose now the errors are independent but not identically distributed (inid), i.e., vit ∼
inid(0, σ2

0hi), where 1
n

∑n
i=1 hi = 1 and hi > 0 so that σ2

0 represents the average of Var(vit) over

i for any t. A necessary condition for the consistency of an extremum estimator is that the

probability limit of the average objective function at the true parameter is zero. In the present

QMLE case, this surmounts to, plimN→∞
1
N

∂
∂θ `N (θ0) = 0 (Amemiya, 1985). It is evident that

this condition is still satisfied by the β- and σ2-components under unknown CH. However, it

may not be always true for the λ- and ρ-components. Let hn = (h1, . . . , hn)′, Hn = diag(hn)

and HN = IT−1 ⊗Hn. Note that under CH, Var(VN ) = σ2
0HN . It is easy to see that,

∂
∂λ

1
N `N (θ0) = 1

Nσ2
0
V′

NḠ1NVN − 1
N tr(G1N ) + op(1)

= 1
Nσ2

0
V′

N

(
Ḡ1N − 1

N tr(G1N )IN
)
VN + op(1)

= 1
N

(
tr(HNḠ1N )− 1

N tr(Ḡ1N )tr(HN )
)

+ op(1)

= Cov(ḡ1n,hn) + op(1),
∂
∂ρ

1
N `N (θ0) = 1

Nσ2
0
V′

NG2NVN − 1
N tr(G2N ) + op(1)

= 1
Nσ2

0
V′

N

(
G2N − 1

N tr(G2N )IN
)
VN + op(1)

= 1
N

(
tr(HNG2N )− 1

N tr(G2N )tr(HN )
)

+ op(1)

= Cov(g2n,hn) + op(1),

where Ḡ1N = IT−1⊗ Ḡ1n, G2N = IT−1⊗G2n, ḡ1n = diagv(Ḡ1n) and g2n = diagv(G2n); Ḡ1n =

5
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A2nG1nA
−1
2n , G1n = W1nA

−1
1n and G2n = W2nA

−1
2n . It follows that plimN→∞

1
N

∂
∂θ `N (θ0) = 0 if,

Cov(ḡ1n,hn) → 0 and Cov(g2n,hn) → 0. (2.8)

Therefore, (2.8) constitutes two necessary conditions for QMLEs to remain consistent. Ob-

viously, these conditions would hold if (i) Var(ḡ1n) → 0 and Var(g2n) → 0, where ḡ1n and g2n

relate to the spatial layouts, or (ii) CH, hn, arises due to reasons unrelated to spatial layouts.

See Liu and Yang (2015, Sec. 2.2) for a detailed discussion. Assessing whether these conditions

are satisfied in practice may not be feasible as CH is of unknown form, and thus makes the

QML estimator rather unappealing when CH is suspected.

Furthermore, for δ̂QML1 to be consistent under the unknown CH, sufficient conditions (van

der Vaart 1998, Theorem 5.7) are much more than those in (2.8): supδ∈∆
1
N |`

c
N (δ)− ¯̀c

N (δ)| p−→ 0

and supδ:d(δ,δ0)≥ε
¯̀c
N (δ) < ¯̀c

N (δ0) for every ε > 0, where ¯̀c
N (δ) = maxβ,σ2 E[`N (θ)] and d(δ, δ0) is

a measure of distance between δ and δ0. The latter condition, called the identification uniqueness

condition, boils down to the following two conditions:

Condition I. Either (a) limN→∞
1
N

{
XN ,G1NXNβ0

}′A′
2N (ρ)A2N (ρ)

{
XN ,G1NXNβ0

}
is

nonsingular ∀ρ, and limn→∞
1
n(ln |σ2

0A
′−1
2n A

−1
2n | − ln |σ2

n(λ0, ρ)A′−1
2n (ρ)A−1

2n (ρ)|) 6= 0 for ρ 6= ρ0,

or (b) limn→∞
1
n(ln |σ2

0D
′−1
n D−1

n | − ln |σ2
n(δ)D′−1

n (δ)D−1
n (δ)|) 6= 0 for δ 6= δ0,

where Dn(δ) = A2n(ρ)A1n(λ), Dn ≡ Dn(δ0), and σ2
n(δ) = 1

nσ
2
0tr(HnD

′−1
n D′

n(δ)Dn(δ)D−1
n );

Condition II. limn→∞ Cov[diagv(An), diagv(Hn)] = 0, for An = Ḡ1n, G2n, Ḡ′1nḠ1n,

G′2nG2n, G2nḠ1n, Ḡ′1nG
′
2nG2nḠ1n, G′2nG2nḠ1n, G′2nḠ1n, and Ḡ′1nG2nḠ1n.

Condition I extends the identification uniqueness conditions of Lee and Yu (2010a) to allow

for unknown CH and guarantees that lim supN→∞
1
N [¯̀cN (δ) − ¯̀c

N (δ0)] 6= 0, and Condition II

extends those given in (2.8) and guarantees that it is less than or equal zero. Moreover, the

uniform convergence, supδ∈∆
1
N |`

c
N (δ) − ¯̀c

N (δ)| p−→ 0, also requires Condition II. Appendix B

(the beginning part) provides some details on how these conditions arise.

Clearly, these conditions cannot be met in general, and even if some key conditions are met,

e.g., those in (2.8), it is difficult to verify the remaining. One such a situation may be when

spatial layouts are contiguity-based such as Rook, Queen, and group interactions, where the

number of neighbors for each spatial unit ‘does not vary much’, or the unknown CH depends

only on the exogenous regressors (see Liu and Yang 2015, and Monte Carlo results in this

paper). However, practical applications often use spatial weight matrices constructed base on

‘economic’ or ‘financial’ distances, and in these cases even the necessary conditions (2.8) might

be violated. Furthermore, this simple solution may not extend to the more general two-way FE

model as discussed below. A more general approach is therefore called for.

2.2. The two-way FE-SPD model

When T is small, the above discussions extend in a straightforward manner to the SDP

model with two-way FE (FE2-SPD), by adding the time-specific FE, {αt}T
t=1 into the model

in the form of dummy variables. When T is large, however, {αt}T
t=1 constitute another set of

6
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incidental parameters and it is customary to apply another transformation to eliminate them.

Let Fn,n−1 be the first n−1 eigenvectors of the individual demean operator, Jn = In− 1
n lnl

′
n.

Lee and Yu (2010a) show that this transformation is valid as long as the spatial weights matrices

are row-normalized (i.e., each row sums to 1), since it ensures JnWrn = JnWrnJn. By Spectral

Theorem, Jn = Fn,n−1F
′
n,n−1. Now, for an n× T matrix [Zn1, · · · , ZnT ], define its transformed

version as [Z∗n1, . . . , Z
∗
n,T−1] = F ′n,n−1[Zn1, . . . , ZnT ]FT,T−1. This gives the transformed variables

(upon stacking): YN = (Y ∗′
n1, . . . , Y

∗′
n,T−1)

′, UN = (U∗′n1, . . . , U
∗′
n,T−1)

′, VN = (V ∗′
n1, . . . , V

∗′
n,T−1)

′,

XjN = (X∗′
jn,1, . . . , X

∗′
jn,T−1)

′, for the jth regressor, j = 1, . . . , k, and XN = {X1N , . . . ,XkN}.
Define WrN = IT−1⊗W ∗

rn, where W ∗
rn = F ′n,n−1WrnFn,n−1. We have the following transformed

FE2-SPD model, identical in form to Model (2.3):

YN = λ0W1NYN + XNβ0 + UN , UN = ρ0W2NUN + VN . (2.9)

The effective sample size now becomes N = (n − 1) × (T − 1). It is easy to see that VN =

(F ′T,T−1⊗F ′n,n−1)(V
′
n1, . . . , V

′
nT )′. Then, E(VNV′

N ) = σ2(F ′T,T−1⊗F ′n,n−1)(FT,T−1⊗Fn,n−1) =

σ2IN under homoskedasticity. Hence, {v∗it} are iid N(0, σ2) if the original errors {vit} are iid

N(0, σ2). Given the similarity between (2.9) and (2.3), QML estimation proceeds in the same

way. When {vit} are iid but may not be normal, Lee and Yu (2010a) show that, under some

regularity conditions, the resulting QMLE θ̂QML2 = (β̂′QML2, δ̂
′
QML2, σ̂

2
QML2)

′ is
√
N -consistent and

asymptotically normal. Finally, for simplifications in calculating the determinant terms in the

concentrated loglikelihood functions, see Lee & Yu (2010a) and Griffith (1988).

Robustness of QMLE of FE2-SPD model. When T is also large, the results above for

the FE1-SPD model are invalid as {αt}T
t=1 induce another set of incidental parameters. While

the transformed FE2-SPD model given in (2.9) takes an identical form as the transformed FE1-

SPD model given in (2.3), and the corresponding quantities also take the same forms as those

given in equations (2.5), written in terms of the new transformed variables, the major difference

is that in the presence of unknown CH the transformed errors in the FE2-SPD model are no

longer uncorrelated across i as seen below,

E(VNV′
N ) = σ2

0(F
′
T,T−1 ⊗ F ′n,n−1)(IT ⊗Hn)(FT,T−1 ⊗ Fn,n−1) = σ2

0(IT ⊗H∗
n),

where H∗
n = (F ′n,n−1HnFn,n−1), which no longer is a diagonal matrix. In addition, the two

necessary conditions for the QMLEs of the FE2-SPD model to be robust against CH become:

1
n(tr(H∗

nḠ1n)− 1
ntr(Ḡ1n)tr(H∗

N )) → 0 and 1
n(tr(H∗

nG2n)− 1
ntr(G2n)tr(H∗

n)) → 0,

which are even more difficult to verify and more unlikely to be satisfied in practical applications

compared to (2.8). Therefore, it may not be of practical interest to pursue further in this direc-

tion. However, the study of this section sends a clear message: the standard QML estimation

is not robust against unknown CH in general and effort should be diverted to the development

of new estimation and inference methods that are generally robust against unknown CH.
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3. Robust Estimation and Inference for FE1-SPD Model

Note that CH of completely unknown form may induce another set of incidental parameters

besides the fixed effects and this problem is even more profound for smaller T . In case of classical

linear regression, it posts no problem in terms of point estimation, but does cause problem on

standard error estimation which generates a series of works spurred by White (1980). In cases

of spatial econometric models or models containing ‘non-linear’ structural parameters, it causes

problems on both point estimation and inference. Developing a general method to solve these

problems, for the SPD model with individual-specific FE, is the focus of this section.

3.1. The adjusted quasi score method

We propose an adjusted quasi score (AQS) method for estimating the common parameters

in the FE-SPD model, by adjusting the joint quasi score function of θ. Following the notation

of Sec. 2.1, the quasi score function, SN (θ) = ∂
∂θ `N (θ) given in (2.7), can be written at θ0 as:

SN (θ0) =



1
σ2
0
X′

NVN ,

1
2σ4

0
(V′

NVN −Nσ2
0),

1
σ2
0
V′

N (ηN + Ḡ1NVN )− tr(Ḡ1N ),

1
σ2
0
V′

NG2NVN − tr(G2N ),

(3.1)

where ηN = Ḡ1NXNβ0. As evident from (3.1), the main cause of inconsistency of the QMLEs

may be the score elements with respect to the spatial parameters, which fail to reach the desired

probability limit of zero under CH. As such, one could naturally look at adjustments to these

score components by brute force so that the resulted AQS functions become unbiased and

have the desired probability limits under unknown CH. From (3.1), it is clear that these can be

achieved by replacing Ḡ1N by Ḡ◦
1N = Ḡ1N−diag(Ḡ1N ) and G2N by G◦

2N = G2N−diag(G2N ):

ψN (θ) =



1
σ2 X′

N (ρ)VN (β, δ),
1

2σ4 [V′
N (β, δ)VN (β, δ)−Nσ2],

1
σ2 V′

N (β, δ)[ηN (β, δ) + Ḡ◦
1N (δ)VN (β, δ)],

1
σ2 V′

N (β, δ)G◦
2N (ρ)VN (β, δ),

(3.2)

to give an AQS function ψN (θ) with the desired property: E[ψN (θ0)] = 0 and plimN→∞
1
NψN (θ0) =

0 under unknown CH. The AQS estimator (AQSE) of the structural parameters θ is thus

θ̂AQS1 = arg{ψN (θ) = 0}. (3.3)

The root-finding process can be simplified by first concentrating out β and σ2 from ψN (θ) using

β̃N (δ) and σ̃2
N (δ) given in (2.5) (the constrained QMLEs and AQSEs of β and σ2 are the same),

and then solving the concentrated AQS equations to give δ̂AQS1 = arg{ψ̃c
N (δ) = 0}, where

8
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ψ̃c
N (δ) =


1

σ̃2
N (δ)

V′
N (β̃N (δ), δ)[ηN (β̃N (δ), δ) + Ḡ◦

1N (δ)VN (β̃N (δ), δ)],

1
σ̃2

N (δ)
V′

N (β̃N (δ), δ)G◦
2N (ρ)VN (β̃N (δ), δ).

(3.4)

Then, the AQS estimators of β and σ2
0 are β̂AQS1 = β̃N (δ̂AQS1) and σ̂2

AQS1 = σ̃2
N (δ̂AQS1). The

concentrated AQS vector ψ̃c
N (δ) is also crucial in establishing the asymptotic properties of

AQSE θ̂AQS1, which are given below.

Asymptotic analyses. Our asymptotic analyses of the AQS estimator θ̂AQS1 cover the

cases where n is large and T is finite or large. The case of finite n and large T is of less interest

as (i) individual FE and CH can be consistently estimated, and (ii) the spatial weights matrices

can be estimated non-parametrically using the T observations for each cross section. Following

is a set of generic assumptions for the asymptotic analyses of the FE-SPD models.

Assumption 1: The true spatial parameters δ0 is in the interior of a compact set ∆.

Assumption 2: The errors {vit} are independent over i = 1, . . . , n and t = 1, . . . , T , with

mean 0 and variances σ2
0hi such that 1

n

∑n
i=1 hi = 1 and hi > 0,∀i, and E|vit|4+γ < c for some

γ > 0 and constant c for all i and t.

Assumption 3: The elements of Xnt are non-stochastic and bounded, uniformly in i and

t, and limN→∞
1
N X′

NXN exists and is non-singular.

Assumption 4: The spatial weights matrices Wrn, r= 1, 2, are uniformly bounded in

absolute value in both row and column sums and are of zero diagonal elements.

Assumption 5: The matrices ArN are non-singular and A−1
rN are uniformly bounded in

absolute value in both row and column sums. Further, A−1
1N (λ) and A−1

2N (ρ) are uniformly

bounded in either row or column sums, uniformly in δ ∈ ∆.

Assumption 2 extends Lee and Yu (2010a) to allow for unknown CH. Assumptions 1 and

3-5 are as in Lee and Yu (2010a). Compactness of the parameter space ∆ is needed due to

the non-linearity of δ in the reduced form of the model (Lee and Yu, 2010a), and in the AQS

function ψN (θ). Consistent estimation of δ requires that the difference between 1
N ψ̃

c
N (δ) and its

population counterpart converges in probability to zero, uniformly in δ ∈ ∆ and such a uniform

convergence requires the compactness of ∆ (Newey, 1991), as further explained below.

Let ψ̄N (θ) = E[ψN (θ)], the population counterpart of ψN (θ). Let ψ̄c
N (δ) be the population

counterpart of ψ̃c
N (δ) obtained by concentrating out β and σ2 from the ψ̄N (θ) = 0 (see the

proof of Theorem 3.1 in Appendix B for details). By Theorem 5.9 of van der Vaart (1998),

consistency of δ̂AQS1 follows from (a) the uniform convergence: supδ∈∆
1
N ‖ψ̃

c
N (δ)− ψ̄c

N (δ)‖ p→ 0,

and (b) the identification uniqueness condition: infδ:d(δ,δ0)≥ε
1
N ‖E[ψ̄c

N (δ)]‖ > 0 = 1
N ‖E[ψ̄c

N (δ0)]‖,
for every ε > 0, where d(δ, δ0) is a measure of distance between δ and δ0. The latter is satisfied

by Assumption 6 given below. Let DN (δ) = A2N (ρ)A1N (λ) and DN ≡ DN (δ0).

Assumption 6: limN→∞
1
NFN (δ) 6= 0, ∀δ 6= δ0, where, letting fN = A−1

1NXNβ0,

FN (δ) =

f ′ND′
N (δ)Ḡ◦

1N (δ)DN (δ)fN + σ2
0tr
(
HND′−1

N D′
N (δ)Ḡ◦

1N (δ)DN (δ)D−1
N

)
,

f ′ND′
N (δ)G◦

2N (δ)DN (δ)fN + σ2
0tr
(
HND′−1

N D′
N (δ)G◦

2N (δ)DN (δ)D−1
N

)
.
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Once δ0 is identified, the identification for β0 and σ2
0 follows from Assumptions 3-5. In

contrast to δ, due to the linearity of β and σ2 in the AQS function, the compactness of the

parameter space of β and σ2 is not needed.

The joint asymptotic normality of θ̂AQS1 is established based on the fact that AQS function

ψN (ψ0) can be written as linear-quadratic forms in the original error vector so that the central

limit theorem (CLT) of linear-quadratic forms of Kelejian and Prucha (2001, 2010), or Lemma

A.3, can be applied, and that the Hessian and the VC matrix of the AQS function possess

desired properties. We have the following theorem with its proof given in Appendix B.

Theorem 3.1. Under Assumptions 1-6, the AQSE θ̂AQS1 is consistent and asymptotically

normal, i.e., as N →∞, θ̂AQS1
p−→ θ0 and

√
N(θ̂AQS1 − θ0)

D−→ N
(
0, limN→∞ Φ−1

N ΩNΦ−1
N

)
,

where ΦN = − 1
N E[ ∂

∂θ′0
ψN (θ0)] and ΩN = 1

N E[ψN (θ0)ψ′N (θ0)], both are assumed to exist for large

enough N and ΦN is assumed to be positive definite for large enough N .

Robust inference. The robust inferences for ψ0 depends on the availability of the robust

estimators of ΦN and ΩN . The former can be consistently estimated by its sample analog

Φ̂AQS1 = − 1
N

∂
∂θ′ψN (θ)|θ=θ̂AQS1

, but the latter may contain second, third and fourth moments of

vit which vary across i in the presence of CH, making plug-in method infeasible. Here, we

provide a simple remedy on the standard inference methods so that they remain valid even if

there exists unknown CH. Similar to (3.1), we can write ψN (θ0) as,

ψN (θ0) =



1
σ2
0
X′

NVN ,

1
2σ4

0
(V′

NVN −Nσ2
0),

1
σ2
0
V′

N (ηN + Ḡ◦
1NVN ),

1
σ2
0
V′

NG◦
2NVN ,

(3.5)

As ψN (θ0) contains linear-quadratic forms of VN , it can be decomposed into a sum of N

uncorrelated terms (martingale differences) so that its variance can be estimated by the outer

products of the summands (Baltagi and Yang, 2013). Given Ḡ◦
1N has diagonal elements 0, the

term V′
NḠ◦

1NVN in ψN (θ0) can be written as,

V′
NḠ◦

1NVN = V′
N (Ḡ◦u

1N + Ḡ◦l
1N )VN = V′

N (Ḡ◦u′
1N + Ḡ◦l

1N )VN = V′
Nζ◦1N ,

where Ḡ◦u
1N and Ḡ◦l

1N are, respectively, the upper triangular and lower triangular matrices of

Ḡ◦
1N , and ζ◦1N = (Ḡ◦u

1N + Ḡ◦l
1N )VN ; similarly the term V′

NG◦
2NVN is represented. Therefore,

the AQS function can be written as ψN (θ0) =
∑N

j=1 sN,j , where,

sN,j =



1
σ2
0
XN,jvN,j ,

1
2σ4

0
(v2

N,j − σ2
0h

c
j),

1
σ2
0
vN,j(ηN,j + ζ◦1N,j),

1
σ2
0
vN,jζ

◦
2N,j ,

(3.6)
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where X′
N,j is the jth row of XN , vN,j is the jth element of VN and similarly are the other

quantities defined, for j = 1, . . . , N , a combined index for i = 1, . . . , n and t = 1, . . . , T − 1 with

i being the faster running index, and hc
j = hit = hi for t = 1, . . . , T − 1.

The {sN,j ,FN,j} form a vector martingale difference (MD) sequence, with respect to the

increasing sequence of σ-fields {FN,j} generated by {vN,1, . . . ,vN,j}, if the elements of VN

are inid normal, which is the case when the original errors are inid normal. It follows that

ΩN = 1
N Var[ψN (θ0)] = 1

N

∑N
j=1 E(sN,js′N,j), and hence can be consistently estimated by,

Ω̂AQS1 = 1
N

∑N
j=1 ŝN,j ŝ′N,j , (3.7)

which is termed as the outer-product-of-martingale-difference (OPMD) estimate as in Yang

(2018), where ŝN,j are the estimates of sN,j by plugging θ̂AQS1 and V̂N into sN,j for θ0 and VN .

Finally, since E(v∗2it ) = σ2
0hi, it is natural to replace hi in (3.6) by ĥi = 1

(T−1)σ̂2
N

∑T−1
t=1 v̂∗2it .

When the original errors are inid non-normal, the elements of VN are independent across i

and uncorrelated (but may not be independent) across t. Hence, there may exist higher-order

dependence among the elements of VN across t, i.e., between v∗it and v∗2is and v∗2it and v∗2is for

t 6= s, implying that sN,it and sN,is may be correlated and that the above OPMD estimate of

ΩN may not be strictly valid. As sN,j or sN,it are uncorrelated across i for all t, we have

Var[ψN (θ0)] = Var(
∑n

i=1

∑T−1
t=1 sN,it) =

∑n
i=1 Var(

∑T−1
t=1 sN,it)

=
∑N

j=1 E(sN,js′N,j) + 2
∑n

i=1

∑T−1
t=2

∑t−1
s=1 E(sN,its′N,is),

where we freely switch between the single index j and the double indices (i, t) for convenience.

This immediately suggests the following general estimator fully robust against non-normality:

Ω̂†
AQS1 = 1

N

∑N
j=1 ŝN,j ŝ′N,j + 1

n

∑n
i=1 r̂N,i, (3.8)

where r̂N,i = 2
T−1

∑T−1
t=2

∑t−1
s=1(ŝN,itŝ′N,is).

Theorem 3.2. Under Assumptions 1-6, we have, as N →∞,

Φ̂AQS1 − ΦN
p−→ 0 and Ω̂†

AQS1 − ΩN
p−→ 0.

Further If the skewness and excess kurtosis of vit are both zero, then Ω̂AQS1 − ΩN
p−→ 0.

Intuitively, the higher-order dependence causing the additional term in (3.8) relative to (3.7)

when the errors are non-normal may be asymptotically negligible due to the fact that {ft}, the

columns of FT,T−1, are orthonormal. See the proof of Theorem 3.2 in Appendix B for details.

Our Monte Carlo results (unreported for brevity) show that this is indeed the case. When T is

small, the approach of Yang (2018) can be also followed, i.e., first sum the elements of ψN (θ0)

over t, and then decompose over i to give a true MD representation of ψN (θ0) in n terms.

3.2. Finite sample improved AQS method

While it seems fairly easy to adjust the full score function (2.7) to attain a robust estimator,

with a desired asymptotic performance, the finite sample performance is less than optimal
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by the fact that the full score function does not take into account the variability caused by

estimating the other model parameters β and σ2. As such modifying the concentrated quasi

score functions are desirable to ensure both asymptotic as well as finite sample performance

in the robust estimator, since the concentrated score function captures the variability coming

from estimating β and σ2. See Liu and Yang (2015) for more discussions.

The concentrated score function derived by taking the derivatives of the concentrated log-

likelihood function (2.6) with respect to δ, or by concentrating (2.7), is,

Sc
N (δ) =


1

σ̃2
N (δ)

Y′
N (δ)MN (ρ)

[
Ḡ1N (δ)− 1

ntr(G1N (λ))IN
]
YN (δ),

1
σ̃2

N (δ)
Y′

N (δ)MN (ρ)
[
Ḡ2N (ρ)− 1

ntr(G2N (ρ))IN ]YN (δ),
(3.9)

where Ḡ1N (δ) = A2N (ρ)G1N (λ)A−1
2N (ρ) as defined above, and Ḡ2N (ρ) = G2N (ρ)MN (ρ).

Using Sc
N (δ), the regular QMLE is defined as, δ̂N = arg{Sc

N (δ) = 0}. Clearly, the root-

finding process is independent of σ̃2
N (δ) as long as σ̃2

N (δ) is bounded from below, away from

0 for δ in a neighborhood of δ0. We therefore adjust the numerators of (3.9) so that the ad-

justed quantities have zero expectation at θ0. Note, E(Y′
NMNḠrNYN ) = σ2

0tr(HNMNḠrN ) =

σ2
0tr(HNdiag(MNḠrN )). Hence, a possible way to go is to replace 1

ntr(GrN ) of (3.9) with

diag(MNḠrN ). However, this introduces an additional MN , i.e., E(Y′
Ndiag(MNḠrN )YN ) =

σ2
0tr(HNMNdiag(MNḠrN )). To cancel out this effect, the final adjustment made is of the

form diag(MN )−1diag(MNḠrN ). The final AQS function is simply,

ψ̃∗N (δ) =

Y′
N (δ)MN (ρ)Ḡ∗

1N (δ)YN (δ),

Y′
N (δ)MN (ρ)Ḡ∗

2N (ρ)YN (δ),
(3.10)

where Ḡ∗
rN (δ) = ḠrN (δ)− diag(MN (ρ))−1diag[MN (ρ)ḠrN (δ)], r = 1, 2.

It can be seen that E[ψ̃∗N (δ0)] = 0 and plimN→∞
1
N ψ̃

∗
N (δ0) = 0, i.e., ψ̃∗N (δ) gives a set of unbi-

ased and consistent estimating functions, leading to an AQS estimator of δ, possibly consistent

under unknown CH, asymptotically normal, and with a finite sample improved performance:

δ̂∗AQS1 = arg{ψ̃∗N (δ) = 0}. (3.11)

Once the CH-robust estimator δ̂∗AQS1 is obtained, the CH-robust estimators for β and σ2 follow

from β̂∗AQS1 ≡ β̃N (δ̂∗AQS1) and σ̂∗2AQS1 ≡ σ̃2
N (δ̂∗AQS1). Denote θ̂∗AQS1 = (β̂∗′AQS1, σ̂

∗2
AQS1, δ̂

∗′
AQS1)

′, called the

AQS∗ estimator in this paper. Note that the AQS functions (3.10) do not depend on σ̃2
N (δ).

The asymptotic properties of the AQS∗ estimators δ̂∗AQS1 and β̂∗AQS1 are studied under the

same set of regularity conditions. In particular, Ḡ∗
1N (δ) is asymptotically equivalent to Ḡ◦

1N (δ),

Ḡ∗
2N (δ) is asymptotically equivalent to G◦

2N (δ), and σ̄2
N (δ) is bounded from below away from

0, uniformly in δ ∈ ∆ as shown in the proof of Theorem 3.1 and so is σ̃2
N (δ) for large enough

N . Thus, it is valid to work with the numerators of (3.9), and the identification uniqueness

condition for δ0, given in Assumption 6, remains.
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To establish asymptotic normality of δ̂∗AQS1, note that,

ψ̃∗N (δ0) =

V′
NB1NVN + c′1NVN ,

V′
NB2NVN + c′2NVN ,

(3.12)

where BrN = MNḠ∗
rN and crN = MNḠ∗

rNXNβ0, r = 1, 2. Clearly, diag(BrN ) = 0N×N by

construction. The AQS function ψ̃∗N (δ0) can be further rewritten as a linear-quadratic form of

the original disturbances, {vit}, and therefore its asymptotic normality can be established by

the CLT for linear-quadratic forms of Kelejian and Prucha (2001) or its multivariate version of

Kelejian and Prucha (2010) extended in Lemma A.3. This together with the proper asymptotic

behavior of the Hessian and VC matrices of ψ̃∗N (δ0) lead to the asymptotic normality of δ̂∗AQS1.

Theorem 3.3. Under Assumptions 1-6, the AQS∗ estimator δ̂∗AQS1 is consistent and asymp-

totically normal, i.e., as N →∞, δ̂∗AQS1
p−→ δ0 and

√
N(δ̂∗AQS1 − δ0)

D−→ N
(
0, limN→∞ Φ∗−1

N Ω∗
NΦ∗−1

N

)
,

where Ω∗
N = 1

N Var[ψ̃∗N (δ0)] and Φ∗
N = − 1

N E[ ∂
∂δ′0
ψ̃∗N (δ0)], both are assumed to exist, and Φ∗

N is

further assumed to be positive definite for large enough N .

Finally, for the AQS∗ estimator β̂∗AQS1 = β̃N (δ̂AQS1), we have by a Taylor expansion:

β̂∗AQS1 − β0 = β̃N (δ0)− β0 + [ ∂
∂δ′0
β̂N (δ0)](δ̂AQS1 − δ0) +Op( 1

N )

= (X′
NXN )−1X′

NVN + E[ ∂
∂δ′0
β̂N (δ0)]Φ−1

N ψ̃∗N (δ0) +Op( 1
N )

= (X′
NXN )−1[X′

NVN + ΠN ψ̃
∗
N (δ0)] +Op( 1

N ),

where ΠN = E[ ∂
∂δ′0
β̂N (δ0)]Φ−1

N , and E[ ∂
∂δ′0
β̂N (δ0)] = −

[
(X′

NXN )−1X′
NḠ1NXNβ0, 0k×1

]
because

∂
∂δ′0
β̂N (δ0)] =

[
(X′

NXN )−1X′
NA2NW1NYN , (X′

NXN )−1X′
N (G′

1N + G1N )MNYN

]
.

These lead to the asymptotic distribution of β̂∗AQS1.

Theorem 3.4. Under Assumptions 1-6, the AQS∗ estimator β̂∗AQS1 is consistent and asymp-

totically normal, i.e., as N →∞, β̂∗AQS1
p−→ β0, and

√
N(β̂∗AQS1 − β0)

D−→ N
[
0, limN→∞( 1

N X′
NXN )−1ΣN ( 1

N X′
NXN )−1

]
,

where ΣN = 1
N Var(X′

NVN + ΠN ψ̃
∗
N ).

The robust inferences for δ and β are carried out in a similar manner as in Sec. 3.1.

First, to conduct robust inference for δ, Φ∗
N is consistently and robustly estimated by its sample

analog, Φ̂∗
AQS1 = − ∂

∂δ′0
ψ̃∗N (δ0)|δ0=δ̂∗AQS1

. Then, the linear-quadratic forms of the elements of ψ̃∗N (δ0)

leads to an OPMD estimate of the VC matrix Ω∗
N of ψ̃∗N (δ0), similar to Sec. 3.1.

Write BrN = Bu
rN+Bl

rN . Define ζrN = (Bu′
rN+Bl

rN )VN , and let s∗N,j = (ζ1N,j+c1N,j , ζ2N,j+

c2N,j)′, r = 1, 2, j = 1, . . . , N . It follows that ψ̃∗N (δ0) =
∑N

j=1 vN,js∗N,j . If the elements {vN,j} of

the transformed error vector VN are independent, which is the case if the original errors are inde-
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pendent normal, then it can be shown that {vN,js∗N,j} form a sequence of martingale differences

and hence are uncorrelated. It follows that Ω∗
N = 1

N Var[ψ̃∗N (δ0)] = 1
N

∑N
j=1 E[v2

N,js
∗
N,js

∗′
N,j ].

Therefore, a heteroskedasticity robust estimator of Ω∗
N is given as

Ω̂∗
AQS1 = 1

N

∑N
j=1 v̂2

N,j ŝ
∗
N,j ŝ

∗′
N,j , (3.13)

where v̂N,j and ŝ∗N,j are, respectively, the estimates of vN,j and s∗N,j , based on θ̂∗AQS1.

Now suppose the disturbances are not Gaussian. In this case, {vN,js∗N,j} are no longer

strictly uncorrelated and hence the OPMD estimator given in (3.13) may not be a valid estimator

of the VC matrix of the AQS function. However, similar to Theorem 3.2, an extended estimator

fully robust against non-normality and unknown heteroskedasticity is given as follows:

Ω̂∗†
AQS1 = 1

N

∑N
j=1 v̂2

N,j ŝ
∗
N,j ŝ

∗′
N,j + 1

n

∑n
i=1 r̂∗N,i, (3.14)

where r̂∗N,i = 2
T−1

∑T−1
t=2

∑t−1
s=1 v̂

∗
itv̂

∗
isŝ

∗
N,itŝ

∗′
N,is.

Finally, to estimate ΣN in Theorem 3.4 for inference on β, based on the martingale difference

decomposition for ψ̃∗N (δ0) given above under normality, we obtain ΣN = 1
N

∑N
j=1 E[v2

N,j(XN,j +

ΠN,jsN,j)(XN,j + ΠN,jsN,j)′]. It follows that a heteroskedasticity robust estimator of ΣN is,

Σ̂AQS1 = 1
N

∑N
j=1 v̂2

N,j(XN,j + Π̂N,j ŝ∗N,j)(XN,j + Π̂N,j ŝ∗N,j)
′. (3.15)

Under non-normality, one immediately obtain a fully robust estimator:

Σ̂†
AQS1 = Σ̂AQS1 + 1

n

∑n
i=1 q̂∗N,i (3.16)

where q̂∗N,i = 2
T−1

∑T−1
t=2

∑t−1
s=1(Π̂N,itv̂

∗
itv̂

∗
isŝ

∗
N,itŝ

∗′
N,isΠ̂

′
N,is + 2XN,itv̂

∗
itv̂

∗
isŝ

∗′
N,isΠ̂

′
N,is).

Theorem 3.5. Under Assumptions 1-6, we have, as N →∞,

Φ̂∗
AQS1 − Φ∗

N
p−→ 0, Ω̂∗†

AQS1 − Ω∗
N

p−→ 0, and Σ̂†
AQS1 − ΣN

p−→ 0.

Further if the skewness and excess kurtosis of vit are zero, Ω̂∗
AQS1−Ω∗

N

p→ 0 and Σ̂AQS1−ΣN
p→ 0.

Similar to the arguments given below Theorem 3.2 and its proof in Appendix B, the ad-

ditional terms in Ω̂∗†
AQS1 and Σ̂†

AQS1 do not play much a role due to the fact that the columns

of FT,T−1 are orthonormal. Finally, similar steps lead to the asymptotic results for the AQS∗

estimator σ̂∗2AQS1, and the CH-robust inference method for inference on σ2. As this is not a case

of major interest, and the methods based on the joint AQS function have already covered this

case, we do not present details to conserve space.

4. Robust Estimation and Inference for FE2-SPD Model

The AQS estimation. The AQS estimation method for the FE1-SPD model introduced

above may be extendible to the FE2-SPD model. As the FE2-SPD model (2.9) takes an iden-

tical form as the FE1-SPD model (2.3), the likelihood and quasi score functions remain in the

same form as well. These motivate that for the robust estimation and inference for the FE2-

14

For Japanese Journal of Statistics and Data Sciene, Jan11, 2020



SPD Model, the same form of the AQS function (3.2) of the FE1-SPD model may be used.

However, this AQS function may not achieve the desired property for the FE2-SPD model as
1
N E(V′

NḠ◦
rNVN ) = 1

ntr(Ḡ
◦
rnH

◦
n) = 1

ntr(Ḡ
◦
rnF

′
n,n−1HnFn,n−1) 6= 0, r = 1, 2, due to the differ-

ence in transformed errors VN for the SPD-2F model, which are correlated across i under CH.

This may pose a potential problem in terms of attaining consistency for the AQSE even after

making the adjustments as those for FE1-SPD model. However, it is easy to see that,

1
ntr(Ḡ

◦
rnF

′
n,n−1HnFn,n−1) = 1

n

∑n−1
i=1

∑n−1
j 6=i Ḡ

◦
rn,ijf

′
jHnfi ≡ krn,

where fi denotes the ith column of Fn,n−1 and Ḡ◦rn,ij the ijth element of Ḡ◦rn. As f ′jfi = 0, j 6= i,

we have krn = 0 if Hn = cIn, Also, note that f ′ifi = 1. Therefore, it is reasonable to assume

krn → 0, as n→∞, r = 1, 2.

We are unable to provide simpler justifications for its validity, but instead we have performed

extensive Monte Carlo experiments and the results show clearly that this is indeed the case.

Thus, under this condition the AQS method inherited from the FE1-SPD model remains asymp-

totically valid for the FE2-SPD model. Therefore, we proceed using the same AQS function

(3.2) to give an AQS estimator, denoted as θ̂AQS2, of the structural parameters θ in the FE2-SPD

model, and do not pursue rigorous asymptotic theories in this paper.

Based on the AQS estimator θ̂AQS2, robust inference for θ can be carried out in a similar

manner. In particular, the asymptotic variance of θ̂AQS2 is Φ−1
N ΩNΦ−1

N , where ΦN and ΩN are

defined in the same way and estimated in the identical manners as those for the FE1-SPA model.

But again, we do not pursue the rigorous theoretical work in this occasion.

Finite sample improved AQS estimation. Similar to the considerations given in Sec.

3.2, the finite sample improved AQS estimation strategy for the FE1-SPD model may be ex-

tended directly to the FE2-SPD model using the newly defined quantities for the transformed

FE2-SPD model given in Sec. 2.2., due to the fact that the two transformed models and the

corresponding quasi score functions are identical in forms. However, unlike the case of FE1-SPD

model, Var(VN ) is no longer diagonal under CH. Therefore, for the AQS function ψ̃∗N (δ) given

in (3.10) to be applicable to the FE2-SPD model, it requires additional minor conditions which

can be seen to be asymptotically equivalent to the conditions given in Sec. 4.1 for AQS esti-

mation of FE2-SPD model: krn → 0 as n → ∞, r = 1, 2. The resulted finite sample improved

AQS estimators are denoted by θ̂∗AQS2 = (β̂∗′AQS2, σ̂
∗2
AQS2, δ̂

∗′
AQS2)

′.

The results given in Sections 3 and 4 show that the AQS estimators θ̂AQS1, θ̂AQS2, θ̂∗AQS1, and

θ̂∗AQS2 are computationally as simple as the original QML estimators θ̂QML1 and θ̂QML2, while being

generally consistent under unknown CH and preserving the nature of being robust against non-

normality. Monte Carlo results given in the following section confirm the excellent performance

of these estimators, in particular the pair of finite sample improved AQSEs θ̂∗AQS1 and θ̂∗AQS2.
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5. Monte Carlo Study

Extensive Monte Carlo experiments were conducted to investigate the finite sample perfor-

mance of the original QMLE δ̂N and the proposed AQSEs δ̂AQS1 and δ̂∗AQS1, and their impacts on

the estimators of β0 and σ2
0, with respect to changes in the sample size, spatial layouts, error

distributions and the model parameters when the disturbances are heteroskedastic. We consider

cases where the original QMLEs may be robust against CH and the cases they are not. The

simulations are carried out based on the following data generation process (DGP):

Ynt = λ0WnYnt +X1,ntβ1 +X2,ntβ2 + cn + Unt, Unt = ρ0WnUnt + Vnt, t = 1, 2, 3,

whereX1,nt andX2,nt are the two fixed regressors, and Vnt = σHnent. The regression coefficients

β is set to (1, 1)′, σ is set to 1, λ and ρ takes values from {−0.5,−0.25, 0, 0.25, 0.5}, n take values

from {50, 100, 250, 500} and T is initially set to be 3. The ways of generating the values for

(X1n, X2n), the spatial weights matrix Wn, the CH measure Hn, and the idiosyncratic errors ent

are described below. Each set of Monte Carlo results is based on 5, 000 Monte Carlo samples.

Spatial Weights Matrix: We use three different spatial layouts: (i) Circular Neighbors,

(ii) Group Interaction and (iii) Queen Contiguity. In (i), neighbors occur in the positions

immediately ahead and behind a particular spatial unit. For example, for the ith spatial unit

with 6 neighbors, the ith row of Wn matrix has non-zero elements in the positions: i − 3, i −
2, i− 1, i+ 1, i+ 2, and i+ 3. The weights matrix we consider has 2, 4, 6, 8 and 10 neighbors

with equal proportion. In (ii), neighbors occur in groups where each group member is spatially

related to one another resulting in a symmetric Wn matrix. In (iii), neighbors could occur in

the eight cardinal and ordinal positions of each unit. To ensure the CH does not fade as n

increases (so that the regular QMLE is inconsistent), the degree of spatial dependence is fixed

with respect to n. This is attained by fixing the possible group sizes in the Group Interaction

scheme or fixing the number of neighbors behind and ahead in the Circular Neighbors scheme.

The degree of spatial dependence is naturally bounded in the Queen Contiguity weights matrix.

To analyse the performance of the original QMLE when it is likely to be robust against CH, we

use Queen Contiguity scheme and the balanced Circular Neighbors scheme where all spatial

units have 6 peers each.

Heteroskedasticity: For the unbalanced Circular Neighbor scheme, hn,i is generated

as the ratio of the total number of neighbors to the average number of neighbors for each i while

for the Group Interaction scheme hn,i is generated as the ratio of the group size to mean group

size. For the balanced Circular Neighbor and the Queen Contiguity schemes, we generate CH

as hn,i = n[
∑n

i=1(|X1n,i|+ |X2n,i|)]−1(|X1n,i|+ |X2n,i|).

Regressors: The regressors are generated according to REG1: {x1,it, x2,it}
iid∼ N(0, 1)/

√
2.

For the Group Interaction scheme, the regressors can also be generated according to REG2:

{x1,it,r, x2,it,r}
iid∼ (2zr + zit,r)/

√
10, where (zr, zit,r)

iid∼ N(0, 1), for the ith observation in the

rth group, to give a case of non-iid regressors taking into account the impact of group sizes on
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the regressors. Both schemes give a signal-to-noise ratio of 1 when β1 = β2 = σ = 1.

Error Distribution: To generate the ent component of the disturbance term, three DGPs

are considered: DGP1: {en,it} are iid standard normal, DGP2: {en,it} are iid standardized normal

mixture with 10% of values from N(0, 4) and the remaining from N(0, 1) and DGP3: {en,it} iid

standardized log-normal with parameters 0 and 1. Thus, the error distribution from DGP2 is

leptokurtic, and that of DGP3 is both skewed and leptokurtic.

Tables 1-3 (a,b,c) summarize partial results for the QML and AQS∗ estimation of δ (the

worst and the best among the three estimators), where in each table, the Monte Carlo means,

root mean square errors (rmse) and the standard deviations (sd) of the estimators are reported.

To investigate the finite sample performance of the proposed OPMD-based robust standard error

estimators, we also report the averaged standard errors (ŝd) of the AQS∗ estimator (AQSE∗)

based on Ω̂∗
AQS1 in Theorem 3.5. Table 4 (a,b) gives empirical sizes of the t tests of H0: β1 = β2

under the Group Interaction scheme, using the QML and AQS∗ estimators, respectively. The

main observations made from the Monte Carlo results are summarized as follows:

(i) For the case where QMLE is likely to be consistent such as in Queen contiguity given in

Tables 1a-1c, both estimators perform equally well, consistency of both the estimators is

clearly shown, and the consistency of the OPMD-based standard error estimate for the

AQSE∗ is also clearly demonstrated.

(ii) For the cases where the original QMLE is inconsistent as in Tables 2-3, AQSE∗ provides

a useful consistent alternative with significantly less bias and with little or no impact on

the efficiency. The inconsistency of the QMLE and the consistency (robustness) of the

AQSE∗ are clearly demonstrated by the Monte Carlo results.

(iii) The OPMD-based estimates of the robust standard errors of λ0 and ρ0 perform well with

their values very close to their Monte Carlo counterparts in general.

(iv) As the theory suggests, the QMLEs for the covariate effects are less affected by CH. The

AQSE∗ for the covariate effects (unreported for brevity) performs well as well.

(v) The t-statistics based on the AQSE∗ outperform the ones based on the QMLE in terms of

size. The AQSE∗-based test is oversized but not severe, and with the increase of sample

size, its empirical sizes quickly converge to their nominal levels. In contrast, the QMLE-

based test is more severely oversized when sample size is not large, its empirical sizes

depend strongly on the values of the spatial parameters, keep decreasing as sample size

increases, and as sample size becomes large it becomes significantly undersized (see the

lower parts of Tables 4a and 4b).

(vi) The cases with larger T were also investigated. The results (unreported for brevity) show

that the AQSE∗ for δ and the OPMD-based estimate for the standard errors continue

to perform well, irrespective of whether the errors are normal or non-normal. These

conclusions support the discussions below Theorem 3.5.
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Extensive Monte Carlo experiments were also conducted for the estimators based on the

joint AQS function, corresponding to the results of Theorems 3.1 and 3.2. The results generally

support the theories, in particular, the AQSE performs not as well as AQSE∗ although generally

consistent. The results (not reported for conserving space) with Ω̂†
AQS1 or Ω̂∗†

AQS1 in VC matrix

estimation do not show significant difference from those using Ω̂AQS1 or Ω̂∗
AQS1. Furthermore,

Monte Carlo experiments were conducted as well for the QMLE, AQSE and AQSE∗ estimators

of FE2-SPD model, and the results (available from the authors upon requests) show similar

patterns, showing that the assumption on quantities krn, r = 1, 2, defined in Section 4 and the

related discussions are valid. Therefore, the methods developed for the FE1-SPD model can be

directly applied to the FE2-SPD model, although rigorous theories are yet to be developed.

6. Conclusion

In this paper we consider the problem of cross-sectional heteroskedasticity (CH) and non-

normality of the disturbances in a fixed effects spatial panel data (FE-SPD) model with spatial

autoregressive dependent variable and disturbances. CH in particular causes the traditional

QML estimator to be inconsistent in general, and for this we proposed the adjusted quasi

score (AQS) methods, based on joint AQS or concentrated AQS functions, giving AQS and

AQS∗ estimators that are generally robust against unknown CH. For CH-robust inferences, we

proposed an outer-product-of-martingale-differences (OPMD) method to estimate the variance

of the AQS or AQS∗ functions, which together with the Hessian matrices of the AQS or AQS∗

functions give robust estimator of the variance-covariance (VC) matrix of the AQS or AQS∗

estimators. Monte Carlo results reveal excellent performance of the proposed methods.

Motivated by the pioneering research in the cross-sectional spatial econometric literature,

we also give some formal arguments that the traditional QMLE of the FE-SPD model can be

consistent under CH of certain ‘types’. However, the conditions under which the QMLE is robust

against unknown CH are difficult to verify, and even if the conditions were satisfied under some

CH structures, these CH structures may not suit the practical applications well. Therefore, the

proposed set of fully robust AQS-estimation method and OPMD-inference method, which are

computationally as simple as the QML methods, are recommended for practical applications.

The studies given in this paper on SPD models with one-way fixed effects or two-way additive

fixed effects shed much light on the AQS strategy for robust estimation of structural parameters

in the model, and the corresponding OPMD strategy on the VC matrix estimation for robust

inferences, for future studies on more general models or different models. For example, in cases

where the spatial weights matrices changes with time so that the transformation method cannot

be applied, the AQS method may be able to provide a solution. In a situation where the two-

way fixed effects are interactive, the AQS method may be able to provide an alternative, and

perhaps simpler method to estimate the model. A more difficult issue remains on the estimation

of the VC matrix. It would be interesting to pursue these issues in future research.
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Appendix A: Some Useful Lemmas

Following lemmas extend the selected lemmas from Lee (2004), Yu et al. (2008), Lin & Lee

(2010), and Kelejian & Prucha (2010), which are essential in proving our main results.

Lemma A.1: For XN (ρ) defined in Sec. 2, under Assumptions 1, 3 and 4, the projection

matrices, PN (ρ) = XN (ρ)[X′
N (ρ)XN (ρ)]−1X′

N (ρ) and MN (ρ) = IN − PN (ρ) and are uniformly

bounded in both row and column sums, for each ρ in its compact parameter space.

Lemma A.2: Let AN and BN be N × N matrices, uniformly bounded in both row and

column sums, and MN (ρ) be defined in Lemma A.1. Then, we have,

(i) the elements of AN are uniformly bounded,

(ii) tr(Am
N ) = O(N) for m ≥ 1,

(iii) tr(A′
NAN ) = O(N),

(iv) tr((MN (ρ)AN )m) = tr(Am
N ) +O(1) for m ≥ 1 and each ρ,

(v) tr((A′
NMN (ρ)AN )m) = tr((A′

NAN )m) +O(1) for m ≥ 1 and each ρ,

(vi) ANBN is uniformly bounded in both row and column sums.

Lemma A.3: Let AN be an N ×N matrix of uniformly bounded column sums, CN be an

N × k matrix (k < N) of uniformly bounded elements, and VN be an N × 1 random vector of

independent elements with zero mean, and uniformly bounded third absolute moments. Then,

(i) 1√
N

C′
NANV = Op(1) and 1

N C′
NANV = op(1),

(ii) 1√
N

C′
NANV D→ N(0, limN→∞

1
N C′

NANHNA′
NCN ), where HN = Var(V) and the ‘limit’

is assumed to exist and to be positive definite.

Lemma A.4 (Moments and Limiting Distribution for Linear Quadratic forms):

Let BrN be N × N matrices of uniformly bounded row and column sums, and crN be N × 1

vectors with elements cri satisfying supN
1
N

∑N
i=1 |cri|2+ε < ∞ for some ε > 0. Let VN be an

N×1 random vector with elements: {vi} ∼ inid(0, σ2
0hi), where hi > 0 such that 1

N

∑N
i=1 hi = 1,

and E|vi|4+ε < c < ∞ for all i, for some ε > 0 and constant c. Consider the linear-quadratic

forms: QrN = V′
NBrNVN + c′rNVN , r = 1, 2. Denote the diagonal elements of BrN by br,ii.

Let si and κi be, respectively, the measures of skewness and excess kurtosis of vi. We have,

(i) E(QrN ) = σ2
0tr(HNBrN ), where HN = diag(h1, . . . , hN ),

(ii) Var(QrN ) = σ4
0tr[HNBrN (HNBrN + B′

rNHN )] + σ2
0c
′
rNHNcrN

+
∑N

i=1(σ
4
0b

2
r,iih

2
iκi + 2σ3

0br,iicrih
3/2
i si),

(iii) Cov(Q1N ,Q2N ) = 2σ4
0tr(B1NHNB2NHN ) + σ2

0c
′
1NHNc2N

+
∑N

i=1

[
σ4

0b1,iib2,iih
2
iκi + σ3

0(b1,iic2i + b2,iic1i)h
3/2
i si

]
,

(iv) E(QrN ) = O(N), V ar(QrN ) = O(N), and QrN = Op(N),

(v) 1
N QrN − 1

N E(QrN ) = Op

(
N− 1

2

)
,

(vi) QrN−E(QrN )√
Var(QrN )

D−→ N(0, 1), and for QN = (Q1N ,Q2N )′,

(vii) Σ−1/2
N (QN − E(QN )) D−→ N(0, I2), where ΣN = Var(QN ), and Σ1/2

N Σ1/2
N = ΣN .
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Appendix B: Proofs of Theorems

More on the Robustness of QMLE. We continue on the discussion at the end of Sec.

2.1 to give some more useful details on the nature of Condition I and Condition II.

First, given δ, ¯̀
N (θ) = E[`N (θ)] is partially maximized at

β̄N (δ) = [X′
N (ρ)XN (ρ)]−1X′

N (ρ)DN (δ)fN , (B-1)

σ̄2
N (δ) = 1

N f ′ND′
N (δ)MN (ρ)DN (δ)fN + σ2

0
N tr[HND′−1

N D′
N (δ)DN (δ)D−1

N ], (B-2)

giving the population counterpart of `cN (δ) (see (2.6)) upon substitution:

¯̀c
N (δ) = maxβ,σ2 E[`N (θ)] = −N

2 ln(2π + 1) + ln |DN (δ)| − N
2 ln(σ̄2

N (δ)), (B-3)

where DN (δ) = IT−1 ⊗Dn(δ),DN = DN (δ0) and fN = A−1
1NXNβ0. We have σ̄2

N (δ0) = σ2
0, and

σ̄2
N (δ) = σ2

n(δ)
[
1 + 1

Nσ2
n(δ)

f ′ND′
N (δ)MN (ρ)DN (δ)fN

]
≡ σ2

n(δ)µN (δ). Thus,

¯̀c
N (δ)− ¯̀c

N (δ0) = ln |DN (δ)| − ln |DN | − N
2 (ln(σ2

n(δ))− ln(σ2
0))− N

2 ln(µN (δ)).

It can be shown that σ2
n(δ) (which is the 2nd part of (B-3)) is bounded from below away from

0 (see the proof of 3.1). By the first part of Condition I(a), 1
N f ′ND′

N (δ)MN (ρ)DN (δ)fN > 0,

and thus µN (δ) > 1 for λ 6= λ0 given any ρ. Now, given λ0, limN→∞
1
N [¯̀cN (λ0, ρ) − ¯̀c

N (δ0)] 6=
0 for ρ 6= ρ0 by the second part of Condition I(a). Hence, δ0 is identified if further:

limN→∞
1
N [¯̀cN (λ0, ρ)− ¯̀c

N (δ0)] ≤ 0 for ρ 6= ρ0, which is a special case of the following.

When Condition I(a) fails, ¯̀c
N (δ) − ¯̀c

N (δ0) 6= 0 ∀δ 6= δ0 by Condition I(b). To ensure
¯̀c
N (δ) < ¯̀c

N (δ0) ∀δ 6= δ0, one needs additional conditions so that ¯̀c
N (δ) ≤ ¯̀c

N (δ0) ∀δ 6= δ0. Note

that pN (θ0) = exp[`N (θ0)] is the quasi joint pdf of YN under VN ∼ N(0, σ2IN ). Let p0
N (θ0) be

the true joint pdf of YN under VN ∼ (0, σ2HN ). Let Eq denote the expectation with respect

to pN (δ0), to differentiate from the usual notation E that corresponds to p0
N (θ0). Write

DN (δ)YN = DN (δ)fN + BN (δ)VN , and VN (β, δ) = BN (δ)VN + bN (β, δ),

where BN (δ) = DN (δ)D−1
N and bN (β, δ) = DN (δ)fN −A2N (ρ)XNβ. Then, for `N (θ) in (2.4),

Eq[`N (θ0)] = E[`N (θ0)] = −N
2 ln(2πσ2) + ln |DN | − N

2 , as 1
N tr(HN ) = 1, and

Eq[`N (θ)] = − N
2 ln(2πσ2) + ln |DN (δ)| − 1

2σ2 [σ2
0tr(B

′
N (δ)BN (δ)) + b′N (β, δ)bN (β, δ)],

E[`N (θ)] = − N
2 ln(2πσ2) + ln |DN (δ)| − 1

2σ2 [σ2
0tr(HNB′

N (δ)BN (δ)) + b′N (β, δ)bN (β, δ)].

By Jensen’s inequality, Eq
[
ln
( pN (θ)

pN (θ0)

)]
≤ ln Eq

( pN (θ)
pN (θ0)

)
= 0. If, E[`N (θ)] − Eq[`N (θ)] = o(N),

then E[ln pN (θ)] ≤ E[ln pN (θ0)], for large enough N . Thus, ¯̀c
N (δ) = maxβ,σ2 E[ln pN (θ)] ≤

maxβ,σ2 E[ln pN (θ0)] = ¯̀c
N (δ0),∀δ 6= δ0, and N large enough. Clearly,

E[`N (θ)]− Eq[`N (θ)] = σ2
0

2σ2 [tr(B′
N (δ)BN (δ))− tr(HNB′

N (δ)BN (δ))].

Using A1N (λ) = A1N + (λ0 − λ)W1N and A2N (ρ) = A2N + (ρ0 − ρ)W2N , we have

BN (δ) = IN + (ρ0 − ρ)G2N + (λ0 − λ)Ḡ1N + (λ0 − λ)(ρ0 − ρ)G2NḠ1N . (B-4)
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Using (B-4) it is easy to see that Condition II ensures E[`N (θ)]−Eq[`N (θ)] = o(N). Therefore,

if Condition I and Condition II are met, supδ:d(δ,δ0)>ε
¯̀c
N (δ) < ¯̀c

N (δ0) for every ε > 0, i.e.,

δ0 are uniquely identified by the QML estimation. Finally, it can be seen that the uniform

convergence, supδ∈∆
1
N |`

c
N (δ)− ¯̀c

N (δ)| p−→ 0, also requires Condition II.

Proof of Theorem 3.1: Proof of consistency. Let ψ̄N (θ) = E[ψN (θ)], the population

counterpart of the joint estimating function ψN (θ) given in (3.2). Given δ, ψ̄N (θ) is partially

solved at β̄N (δ) and σ̄2
N (δ), given in (B-1) and (B-2). Plugging β̄N (δ) and σ̄2

N (δ) back into the

λ- and ρ-components ψ̄N (θ), we get the population counterpart of ψ̃c
N (δ):

ψ̄c
N (δ) =


1

σ̄2
N (δ)

E
{
V(β̄N (δ), δ)′[ηN (β̄N (δ), δ) + Ḡ◦

1N (δ)V(β̄N (δ), δ)]
}

1
σ̄2

N (δ)
E
{
V(β̄N (δ), δ)′G◦

2N (ρ)V(β̄N (δ), δ)
}
.

where V(β̄N (δ), δ) = YN (δ)−XN (ρ)β̄N (δ). Working on the numerators of ψ̄c
N (δ) and dropping

the terms of smaller order, we arrive at FN (δ) given in Assumption 6, which shows that the

identification uniqueness condition of Theorem 5.9 of van der Vaart (1998) holds, i.e., for every

ε > 0, infδ:d(δ,δ0)≥ε
1
N ‖ψ̄

c
N (δ)‖ > 0 = 1

N ‖ψ̄
c
N (δ0)‖, provided that σ̄2

N (δ) is bounded from below

away from zero. Then, δ̂AQS1 is consistent if the uniform convergence condition of Theorem 5.9

of van der Vaart (1998) holds, i.e., supδ∈∆
1
N ‖ψ̃

c
N (δ)− ψ̄c

N (δ)‖ = op(1). These amount to show

(a) σ̄2
N (δ) is bounded from below away from zero;

(b) supδ∈∆ |σ̃2
N (δ)− σ̄2

N (δ)| = op(1), uniformly in δ ∈ ∆;

(c) supδ∈∆
1
N

∣∣V(β̃N (δ), δ)′ηN (β̃N (δ), δ)− E[V(β̄N (δ), δ)]′ηN (β̄N (δ), δ)
∣∣ = op(1);

(d) supδ∈∆
1
N

∣∣V(β̃N (δ), δ)′Ḡ◦
1N (δ)V(β̃N (δ), δ)−E[V(β̄N (δ), δ)′Ḡ◦

1N (δ)V(β̄N (δ), δ)]
∣∣ = op(1);

(e) supδ∈∆
1
N

∣∣V(β̃N (δ), δ)′G◦
2N (δ)V(β̃N (δ), δ)−E[V(β̄N (δ), δ)′G◦

2N (δ)V(β̄N (δ), δ)]
∣∣ = op(1);

where V(β̃N (δ), δ) = YN (δ) − XN (ρ)β̃N (δ) = MN (ρ)YN (δ), following the notation defined

between (2.4) and (2.6). Similarly, V(β̄N (δ), δ) = YN (δ)− [IN −MN (ρ)]E[YN (δ)].

For condition (a), from (B-2), it is obvious that the first term of σ̄2
N (δ) is nonnega-

tive. It suffices to show that the second term, which is σ2
n(δ) defined in Condition I, is

uniformly bounded from below away from zero. Consider the model with β0 = 0 and Hn = In.

We have the loglikelihood: `∗N (θ) = −N
2 ln(2πσ2) + ln |DN (δ)| − 1

2σ2 Y′
N (δ)YN (δ) and ¯̀∗

N (δ) =

maxσ2 E[`∗N (θ)] = const.−N
2 ln(σ2

◦n(δ))+ln |DN (δ)|, where σ2
◦n(δ) = σ2

0
n tr[D′−1

n D′
n(δ)Dn(δ)D−1

n ].

As D′−1
n D′

n(δ)Dn(δ)D−1
n is positive semidefinite (p.s.d.), σ2

◦n(δ) ≥ 0. By Jensen’s inequality,
¯̀∗
N (δ) ≤ maxσ2 E[`∗N (θ0)] = ¯̀∗

N (δ0), implying− ln(σ2
n(δ)) ≤ − ln(σ2

0)+
2
N ln |DN |− 2

N ln |DN (δ)| =
O(1) by Lemma A.2 and the fact that σ2

0 is bounded away from 0. Thus, − ln(σ2
◦n(δ)) is bounded

from above, implying σ2
◦n(δ) 6= 0. Therefore, σ2

◦n(δ) is bounded from below away from 0. Fi-

nally, σ2
n(δ) = σ2

0
n tr[HnD

′−1
n D′

n(δ)Dn(δ)D−1
n ] ≥ min(hi)σ2

◦n(δ) ≥ c > 0, asD′−1
n D′

n(δ)Dn(δ)D−1
n

is p.s.d., and Hn is a diagonal matrix with strictly positive elements.

For condition (b), using YN (δ) = DN (δ)D−1
N (A2NXNβ0 +(F ′T,T−1⊗ In)VnT ), where VnT
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is the nT × 1 vector of original errors, we can write σ̃2
N (δ) = 1

N Y′
N (δ)MN (ρ)YN (δ) as

σ̃2
N (δ) = 1

N f ′ND′
N (δ)MN (ρ)DN (δ)fN + 2

N f ′ND′
N (δ)MN (ρ)DN (δ)D−1

N (F ′T,T−1 ⊗ In)VnT

+ 1
N V′

nT (FT,T−1 ⊗ In)D′−1
N D′

N (δ)MN (ρ)DN (δ)D−1
N (F ′T,T−1 ⊗ In)VnT ,

giving σ̃2
N (δ)− σ̄2

N (δ) = Q1+Q2−σ2
N (δ), where Q1(δ) = 2

N f ′ND′
N (δ)MN (ρ)DN (δ)D−1

N (F ′T,T−1⊗
In)VnT , and Q2(δ) = 1

N V′
nT (FT,T−1 ⊗ In)D′−1

N D′
N (δ)MN (ρ)DN (δ)D−1

N (F ′T,T−1 ⊗ In)VnT .

For Q1(δ), it is easy to see that, under Assumptions 3-5 and by Lemma A.2, the elements of

f ′ND′
N (δ)MN (ρ)DN (δ)D−1

N (F ′T,T−1 ⊗ In) are uniformly bounded for each δ ∈ ∆, the pointwise

convergence, Q1(δ)
p→ 0, therefore follows from Lemma A.3. For Q2(δ), under Assumptions 3-5

and by Lemma A.2(v), tr[D′−1
N D′

N (δ)MN (ρ)DN (δ)D−1
N ] = tr[D′−1

N D′
N (δ)DN (δ)D−1

N ] + O(1).

It follows that, by Lemma A.4(v), Q2(δ)− σ2
N (δ)

p→ 0, for each δ ∈ ∆.

To show that Qr(δ), r = 1, 2, are stochastically equicontinuous, let δ1 and δ2 be two points

in ∆. We have by the mean value theorem:

Qr(δ2)−Qr(δ1) = ∂
∂δ′Qr(δ̄)(δ2 − δ1), r = 1, 2,

where δ̄ lies between δ1 and δ2 elementwise. It is easy to show that supδ∈∆ | ∂
∂λQr(δ)| = Op(1),

by Assumptions 1, 3, 4, and 5, and Lemma A.2, as Qr(δ) are linear or quadratic in λ by the

expression DN (δ)D−1
N = IN + (ρ0 − ρ)G2N + (λ0 − λ)Ḡ1N + (λ0 − λ)(ρ0 − ρ)G2NḠ1N . Now, ρ

appears in Qr(δ) nonlinearly only through MN (ρ). It is easy to show that ∂
∂ρMN (ρ) is uniformly

bounded in both row and column sums by Lemma A.2, uniformly in ρ in its compact space, and

that supδ∈∆ | ∂
∂ρQr(δ)| = Op(1). Therefore, Qr(δ), r = 1, 2, are stochastically equicontinuous.

The pointwise convergence and stochastic equicontinuity imply that Qr(δ) − E[Qr(δ)]
p−→ 0,

uniformly in δ ∈ ∆, r = 1, 2, leading to condition (b) (Newey, 1991).

For condition (c), we have ηN (β̃N (δ), δ) = Ḡ1N (δ)PN (ρ)YN (δ) and ηN (β̄N (δ), δ) =

Ḡ1N (δ)PN (ρ)E[YN (δ)]. With V(β̃N (δ), δ) = MN (ρ)YN (δ) and YN (δ) = DN (δ)D−1
N (A2NXNβ0+

(F ′T,T−1 ⊗ In)VnT ), we see that 1
N {V(β̃N (δ), δ)′ηN (β̃N (δ), δ)− E[V(β̄N (δ), δ)]′ηN (β̄N (δ), δ)} is

of the linear-quadratic form: V′
NAN (δ)VnT + c′N (δ)VnT , for suitably defined matrix AN (δ) and

vector cN (δ). Its pointwise convergence follows from Lemma A.4(v), and uniform convergence

is proved in a similar way as that for (b), based on the theorem of Newey (1991).

For condition (d), again with the expressions for V(β̃N (δ), δ) and YN (δ), we can write
1
N {V(β̃N (δ), δ)′Ḡ◦

1N (δ)V(β̃N (δ), δ)− E[V(β̄N (δ), δ)′Ḡ◦
1N (δ)V(β̄N (δ), δ)]} as a linear-quadratic

form in VN , and the proof of uniform convergence proceeds similarly.

For condition (e), similar to the proof of (d).

Proof of asymptotic normality. First note that tr(Hn) = n. By the mean value theorem,
√
N(θ̂AQS1 − θ0) = −

[
1
N

∂
∂θ′ψN (θ̃)

]−1 1√
N
ψN (θ0),

where θ̃ lies element-wise between θ̂AQS1 and θ0. It mounts to show that,

(i) 1√
N
ψN (θ0)

D−→ N(0, limN→∞ ΩN ), where ΩN = 1
N Var[ψN (θ0)]
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(ii) 1
N

[
∂

∂θ′ψN (θ̃)− ∂
∂θ′ψN (θ0)

]
= op(1), and

(iii) 1
N

[
∂

∂θ′ψN (θ0)− E( ∂
∂θ′ψN (θ0))

]
= op(1).

As argued above Theorem 3.1, the components of ψN (θ0) are linear or linear-quadratic forms

in the original error vector VnT since VN = (f ′T,T−1 ⊗ In)VnT . Assumptions 1-5 ensures that

every fixed linear combination of 1√
N
ψN (θ0) satisfies the conditions of the central limit theorem

(CLT) for linear-quadratic (LQ) forms of Kelejian and Prucha (2001) and hence is asymptoti-

cally normal. Therefore, Cramér-Wold device leads to 1√
N
ψN (θ0)

D−→ N(0, limN→∞ ΩN ).

For condition (ii): letting HN (θ) = − 1
N

∂
∂θ′ψN (θ) and denoting As

n = An+A′n for a matrix
An, we have the expression for Nσ2HN (θ):

X′
N (ρ)XN (ρ), 1

σ2 X′
N (ρ)VN (β, δ), X′

N (ρ)Π1N , X′
N (ρ)Gs

2N (ρ)VN (β, δ)
1

σ2 V′
N (β, δ)XN (ρ), 1

σ4 ‖VN (β, δ)‖2 − N
2σ2 ,

1
σ2 V′

N (β, δ)Π1N ,
1

σ2 V′
N (β, δ)Π2N

Π◦′
1NXN (ρ), 1

σ2 V′
N (β, δ)Π◦

1N , H33(β, δ), H34(β, δ)
V′

N (β, δ)G◦s
2N (ρ)XN (ρ), 1

σ2 V′
N (β, δ)Π◦

2N , H43(β, δ), H44(β, δ)

 ,

where H33(β, δ) = Π◦′
1NΠ◦

1N + V′
N (β, δ)Π̇◦

1N , H43(β, δ) = Π◦′
1NΠ◦

2N + V′
N (β, δ)G◦s

2N (ρ)VN (β, δ) =

H′
34(β, δ), H44(β, δ) = V′

N (β, δ)G◦s
2N (ρ)VN (β, δ), Π1N = ηN (β, δ) + Ḡ1N (δ)VN (β, δ), Π̇1N = ∂

∂λΠ1N ,

Π2N = G2N (ρ)VN (β, δ), Π◦
1N = ηN (β, δ) + Ḡ◦

1N (δ)VN (β, δ), and Π◦
2N = G◦

2N (ρ)VN (β, δ).

By Assumptions 3-5, Lemma A.2-A.3, and the following facts: θ̃ − θ0 = op(1), VN (β̃, δ̃) =

A2NXN (β0−β̃)+(λ0−λ̃)A2NW1NYN +(ρ0−ρ̃)W2NA1NYN +(λ0−λ̃)(ρ0−ρ̃)W2NW1NYN−
(ρ0− ρ̃)W2NXN β̃+VN , 1

N V′
N (β̃, δ̃)VN (β̃, δ̃) = 1

N V′
NVN +op(1), and the ηN and G-quantities

are all smooth functions of β and δ, it is straightforward but tedious to show that each term in

HN (θ̃)−HN (θ0) is op(1). We thus omit the details.

For condition (iii), recall ΦN = E[HN (θ0)]. We have

ΦN =
1

Nσ2
0


X′

NXN , ∼, ∼, ∼
0, N

2σ2
0
, tr(HNḠ1N ), tr(HNG2N )

η′NXN 0, η′NηN + σ2
0tr(HNḠ◦s

1NḠ◦
1N ), ∼

0, 0, σ2
0tr(HNG◦s

2NḠ◦
1N ), σ2

0tr(HNG◦s
2NG◦

2N )

 .

By Lemma A.4 and VN = (F ′T,T−1 ⊗ In)VnT , we have, Var[ 1
N (V′

NBNVN + c′NVN )] = o(1) for

any N ×N matrix BN and N × 1 vector cN satisfying the conditions of Lemma A.4. By these

results and Chebyshev inequality, we can show that all the terms in HN − ΣN are op(1). �

Proof of Theorem 3.2: The result Φ̂AQS − ΦN
p−→ 0 follows from the results (ii) and

(iii) in the proof of asymptotic normality part of the proof of Theorem 3.1. This result holds

irrespective of whether the errors are normal or non-normal, and T is small or large.

To show Ω̂†
AQS − ΩN

p−→ 0, we first prove the following general result:

1
N

∑N
j=1[ŝN,j ŝ′N,j − E(sN,js′N,j)]

p−→ 0. (B-5)

Under normality, ΩN = 1
N

∑N
j=1 E(sN,js′N,j) and therefore (B-5) already gives the desired result.
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The proof of (B-5) is relatively simple, as in this case the transformed errors vj are inid normal,

and hence {sN,j ,FN,j} form an MD sequence. See the proof of Theorem 3.5 for details.

Under non-normality, the proof of (B-5) is not trivial, and therefore for the proof of this

theorem we concentrate on the case of non-normal errors. First, we prove (B-5) by showing
1
N

∑N
j=1(ŝN,j ŝ′N,j− sN,js′N,j)

p−→ 0, and 1
N

∑N
j=1[sN,js′N,j−E(sN,js′N,j)]

p−→ 0. The proof of the

former is trivial by applying the mean value theorem, due to the consistency of the parameter

estimates. We focus on the proof of the latter result. To facilitate the proofs, we freely switching

between the single index j for the combined unit and time, and the double indices (i, t) for unit

i and time t. Recall vit are the original errors and v∗it are the transformed errors, and v∗t is

the n× 1 vector of transformed errors for period t. As sN,j or sN,it contains only two types of

quantities: ΠN,jvN,j and vN,jζ
◦
N,j or Πitv∗it and v∗itζ

◦
it, it suffices to show

(a) 1
N

∑N
j=1[ΠN,jΠ′

N,j(v
2
N,j − Ev2

N,j)]
p→ 0,

(b) 1
N

∑N
j=1[ΠN,j(v2

N,jζ
◦
N,j − E(v2

N,jζ
◦
N,j))]

p→ 0, and

(c) 1
N

∑N
j=1[(vN,jζ

◦
N,j)

2 − E((vN,jζ
◦
N,j)

2))]
p→ 0.

To show (a), we have 1
N

∑N
j=1[ΠN,jΠ′

N,j(v
2
N,j−Ev2

N,j)] = 1
T−1

∑T−1
t=1

{
1
n

∑n
i=1[ΠitΠ′

it(v
∗2
it −

Ev∗2it )]
}
≡ 1

T−1

∑T−1
t=1 Pnt. For each t, v∗it are independent over i, and thus {v∗2it − Ev∗2it } form

an MD sequence. The weak law of large numbers (WLLN) for MD arrays of Davidson (1994,

p.299) leads to Pnt
p−→ 0. Thus, 1

T−1

∑T−1
t=1 Pnt

p−→ 0, as n→∞ and then T →∞.

To show (b), note that ζ◦N = BNVN by definition given above (3.6), where BN is a strictly

lower triangular matrix. Decompose ζ◦N into {ζ◦t } and BN into {Bts}, t, s = 1, . . . , T − 2. Note

that Bts is a zero matrix if s > t, a strictly lower triangular matrix if s = t and a full n×n matrix

if s < t. We have, 1
N

∑N
j=1[ΠN,j(v2

N,jζ
◦
N,j − E(v2

N,jζ
◦
N,j))] = 1

T−1

∑T−1
t=1

{
1
n

∑n
i=1[Πit(v∗2it ζ◦it −

E(v∗2it ζ◦it))]} ≡ 1
T−1

∑T−1
t=1 Qnt. We shall show that for each t, Qnt

p−→ 0. First, we have,

Qn1 = 1
n

∑n
i=1[Πi1((v∗2i1 − σ2

0hi)ζ◦i1 + σ2
0hiζ

◦
i1 − E(v∗2i1 ζ◦i1))] = Qa

n1 +Qb
n1.

Let Gn,i be the increasing σ-field generated by (v1·, . . . , vi·), where vi· is the T × 1 vector of the

original idiosyncratic errors corresponding to the ith spatial unit. As ζ◦i1 is Gn,i−1-measurable,

E[(v∗2i1 −σ2
0hi)ζ◦i1|Gn,i−1] = 0. Thus, Qa

n1 = 1
n

∑n
i=1 Πi1(v∗2i1 −σ2

0hi)ζ◦i1 is the sum of an MD array.

By the WLLN for MD arrays of (Davidson, 1994, p.299), Qa
n1

p−→ 0. Now, as E(v∗2i1 ζ◦i1)) = 0,

Qb
n1 = σ2

0
n

∑n
i=1 Πi1hiζ

◦
i1. Then, Qb

n1 = σ2
0

n Π′
1Hnζ◦1 = σ2

0
n Π′

1HnB11v
∗
1

p−→ 0, by Assumptions 2-5,

Lemma A.2 and Chebyshev’s WLLN (Serfling, 1980, p.27). Therefore, Qn1
p−→ 0.

Next, to show Qn2
p−→ 0, first note that ζ◦2 = B21v

∗
1+B22v

∗
2 = (Bu

21+Bl
21+Bd

21)v
∗
1+B22v

∗
2 =

ζ◦u2,1 + ζ◦l2,1 + ζ◦d2,1 + ζ◦2,2. We have, Qn2 = 1
n

∑n
i=1[Πi2(v∗2i2 ζ◦i2 − E(v∗2i2 ζ◦i2))] =

∑4
r=1Q

(r)
n2 , where

Q
(1)
n2 = 1

n

∑n
i=1[Πi1(v∗2i2 − σ2

0hi)ζ◦ui2,1] + σ2
0

n

∑n
i=1 hiζ

◦u
i2,1,

Q
(2)
n2 = 1

n

∑n
i=1[Πi1(v∗2i2 − σ2

0hi)ζ◦li2,1] + σ2
0

n

∑n
i=1 hiζ

◦l
i2,1,

Q
(3)
n2 = 1

n

∑n
i=1[Πi1(v∗2i2 ζ◦di2,1 − E(v∗2i2 ζ◦di2,1)].

Q
(4)
n2 = 1

n

∑n
i=1[Πi1(v∗2i2 − σ2

0hi)ζ◦i2,2] + σ2
0

n

∑n
i=1 hiζ

◦
i2,2,

The first terms of Q(1)
n2 and Q

(4)
n2 are like Qa

n1 and their second terms are like Qb
n1; thus Q(2)

n2 =

24

For Japanese Journal of Statistics and Data Sciene, Jan11, 2020



op(1) and Q(4)
n2 = op(1). As ζ◦ui2,1 is Ḡn,i+1-measurable, where Ḡn,i is a decreasing σ-field generated

by (vi·, . . . , vn·), 1
n

∑n
i=1[Πi1(v∗2i2 − σ2

0hi)ζ◦ui2,1] is the sum of an MD sequence, shown to be op(1).

That σ2
0

n

∑n
i=1 hiζ

◦u
i2,1 is op(1) follows from some similar arguments for Qb

n1. Thus, Q(2)
n2 = op(1).

Finally, as v∗2i2 ζ◦di2,1 is measurable w.r.t. vi· and thus are independent. An application of WLLN

for MD arrays shows that Q(3)
n2 = op(1). Therefore, Qn2 = op(1). The proof of Qnt

p−→ 0 for

t ≥ 3 follows similar arguments as those for Qn2, although more tedious.

To show (c), we have 1
N

∑N
j=1[(vN,jζ

◦
N,j)

2−E((vN,jζ
◦
N,j)

2))] = 1
T−1

∑T−1
t=1

{
1
n

∑n
i=1[(v

∗
itζ

◦
it)

2−
E((v∗itζ

◦
it)

2)]
}

= 1
T−1

∑T−1
t=1 Rnt. Thus, the result follows if each Rnt is op(1).

First, we have Rn1 = 1
n

∑n
i=1(v

∗2
i1 −σ2

0hi)ζ◦2i1 + σ2
0

n

∑n
i=1 hi(ζ◦2i1 −E(ζ◦2i1 )). Obviously, the first

term of Rn1 is the sum of an MD sequence, which can easily be shown to be op(1) by applying

the WLLN for MD arrays. For the second term, note that ζ◦i1 =
∑i−1

k=1 b11,ikv
∗
1k, where b11,ik is

the (i, k)th element of B11. Thus, ζ◦2i1 =
∑i−1

k=1 b
2
11,ikv

∗2
1k + 2

∑i−1
k=1

∑k−1
l=1 b11,ikv

∗
1kb11,ilv

∗
1l. Then,

σ2
0

n

∑n
i=1 hi(ζ◦2i1 − E(ζ◦2i1 ))

= σ2
0

n

∑n
i=1 hi[

∑i−1
k=1 b

2
11,ik(v

∗2
1k − E(v∗21k))] + 2σ2

0
n

∑n
i=1 hi[

∑i−1
k=1

∑k−1
l=1 b11,ikb11,ilv

∗
1kv

∗
1l]

= σ2
0

n

∑n−1
k=1(

∑n
i=k+1 hib

2
11,ik)(v

∗2
1k − E(v∗21k)) + 2σ2

0
n

∑n−1
k=1 ξ

∗
kv
∗
1k,

where ξ∗k =
∑k−1

l=1 (
∑n

i=k+1 hib11,ikb11,il)v∗1l, and the last equality is obtained by switching the

orders of summations. Both terms are sums of MD sequences as ξ∗k is Gn,k−1-measurable, which

are shown to be op(1) by applying the WLLN for MD sequences. Therefore, Rn1 = op(1).

Next, we have Rn2 = 1
n

∑n
i=1(v

∗2
i2 − σ2

0hi)ζ◦2i2 + σ2
0

n

∑n
i=1 hi(ζ◦2i2 − E(ζ◦2i2 )). Applying the

decomposition ζ◦2 = ζ◦u2,1+ζ◦l2,1+ζ◦d2,1+ζ◦2,2 as used in proving Qn2
p→ 0, we are able to decompose

Rn2 into a sum of a finite number of terms, of which each is op(1), and hence Rn2 itself is op(1).

The detail for this and these for Rnt, t ≥ 3 are very tedious and hence are omitted.

It remains to show that 2
n(T−1)

∑n
i=1

∑T−1
t=2

∑t−1
s=1[sN,its′N,is − E(sN,its′N,is)]

p−→ 0, and that
2

n(T−1)

∑n
i=1

∑T−1
t=2

∑t−1
s=1[ŝN,itŝ′N,is− sN,its′N,is]

p−→ 0. The latter is straightforward by applying

the mean value theorem, and the former can proved a long the same line of the proof above.

Finally, we offer a discussion on the magnitude of the additional term in Ω̂†
AQS1. It is asymp-

totically equivalent to 2
N

∑n
i=1

∑T−1
t=2

∑t−1
s=1 E(sN,its′N,is). Denote the elements of E(sN,its′N,is) by

Υi,pq, where p, q = 1, 2, 3, 4, corresponding to β, σ2, λ, and ρ, respectively. Let ft be the tth col-

umn of FT,T−1 and vi· be the T ×1vector of idiosyncratic errors of the spatial unit ith. We have

v∗it = f ′tvi·. It is easy to see that Υi,11 = 0. By Lemma A.4 (iii) and the homoskedasticity of v∗it
across t given i, we have Υi,22 = 1

4σ8
0
Cov(v∗2it , v

∗2
is ) = 1

4σ4
0
h2

iκi(f2
t )′f2

s , Υi,33 = 1
σ4
0
Cov[vN,it(ηN,it+

ζN,is),vN,is(ηN,is+ζN,is)] = 1
σ4
0
E(v∗2it v

∗
isbts,iiηis) = 1

σ4
0
γif

′
tf

2
s bts,iiηis, and Υi,44 = 0, where {bts,ii}

are diagonal elements of Bts, ηis are the (i, s)th element of ηN , and γi and κi are the measures

of skewness and excess kurtosis of vit. Thus, 1
N

∑n
i=1

∑T−1
t=2

∑t−1
s=1 Cov(sN,it, sN,is) = o(1), if

(a) 1
N

∑n
i=1 h

2
iκi
∑T−1

t=2

∑t−1
s=1(f

2
t )′f2

s = o(1), and

(b) 1
N

∑n
i=1 γi

∑T−1
t=2

∑t−1
s=1 f

′
tf

2
s bts,iiηis = o(1),

as for the other terms with p 6= q, we have |Υi,pq| ≤ |Υi,pp||Υi,qq|. �
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Proof of Theorem 3.3: Proof of consistency. Let ψ̄∗N (δ) = E(ψ̃∗N (δ)). By Theorem 5.9

of van der Vaart (1998), consistency of δ̂∗AQS1 follows from (a) supδ∈∆
1
N ‖ψ̃

∗
N (δ)− ψ̄∗(δ)‖ = op(1)

and (b) for every ε > 0, infδ:d(δ,δ0)≥ε
1
N ‖ψ̄

∗(δ)‖ > 0 = 1
N ‖ψ̄

∗(δ0)‖. Write the two compo-

nents of the AQS function ψ̃∗N (δ) as RrN (δ) = TrN (δ) − SrN (δ), r = 1, 2, where TrN (δ) =

Y′
N (δ)MN (ρ)ḠrN (δ)YN (δ) and SrN (δ) = Y′

N (δ)MN (ρ)diag[MN (ρ)]−1diag[MN (ρ)ḠrN (δ)]YN (δ).

For condition (a), with YN (δ) = DN (δ)D−1
N (A2NXNβ0 + (F ′T,T−1 ⊗ In)VnT ), we see

that TrN (δ) and SrN (δ) are all linear-quadratic in VnT . Therefore, for each δ, the pointwise

convergence to zero of 1
N [TrN (δ)−E(TrN (δ))] and 1

N [SrN (δ)−E(SrN (δ))] for r = 1, 2, can easily

be established along the lines of the proof for Theorem 3.1. For stochastic equicontinuity of the

two types of quantities, note that DN (δ)D−1
N = IN +(ρ0−ρ)G2N +(λ0−λ)Ḡ1N +(λ0−λ)(ρ0−

ρ)G2NḠ1N , and the partial derivatives ∂
∂λḠ1N (δ), ∂

∂ρḠ1N (δ), ∂
∂ρḠ2N (ρ), and ∂

∂ρMN (ρ) are all

uniformly bounded in row and column sums, uniformly in δ ∈ ∆ by Lemma A.2. Therefore,

TrN (δ) and SrN (δ) are stochastically equicontinuous. The pointwise convergence and stochastic

equicontinuity lead to the uniform convergence results: supδ∈∆
1
N |TrN (δ)− E(TrN (δ))| = op(1)

and supδ∈∆
1
N |SrN (δ) − E(SrN (δ))| = op(1) for r = 1, 2, under Assumptions 1-6 and using the

theorem of Newey (1991). Thus, 1
N [RrN (δ)− E[RrN (δ)]] = op(1).

For condition (b), first, we have E[RrN (δ0)] = 0. By Assumption 6 and Lemma A.2,

E[RrN (δ)] 6= 0, for any δ 6= δ0. It follows that the conditions of Theorem 5.9 of van der Vaart

(1998) hold, and thus the consistency of δ̂∗AQS1 follows.

Proof of asymptotic normality. To establish the asymptotic normality of δ̂∗AQS1, we have,

by the mean value theorem,

0 = 1√
N
ψ̃∗N (δ̂∗AQS1) = 1√

N
ψ̃∗N (δ0) + 1

N
∂

∂δ′ ψ̃
∗
N (δ̄N )

√
N(δ̂∗AQS1 − δ0), (B-6)

where δ̄N lies between δ̂∗AQS1 and δ0 elementwise. It suffices to show that

(i) 1√
N
ψ̃∗N (δ0)

D−→ N(0, limN→∞ Ω∗
N ),

(ii) 1
N

[
∂

∂δ′ ψ̃
∗
N (δ̄N )− ∂

∂δ′ ψ̃
∗
N (δ0)

]
= op(1), and

(iii) 1
N

[
∂

∂δ′ ψ̃
∗
N (δ0)− E( ∂

∂δ′ ψ̃
∗
N (δ0))

]
= op(1).

To prove (i), note ψ̃∗N (δ0) can be written in LQ forms in original errors, the CLT for LQ

forms of Kelejian and Prucha (2001) leads to the result.

To prove (ii), let H∗
N (δ) = − ∂

∂δ′ ψ̃
∗
N (δ) = [H∗

N,11(δ),H∗
N,12(δ); H∗

N,21(δ),H∗
N,22(δ)], where,

H∗
N,11(δ) = Y′

N (δ)[Ḃ∗
11N (δ) + Ḡ

′
1N (λ)B∗

1N (δ) + B∗
1N (δ)Ḡ1N (λ)]YN (δ),

H∗
N,12(δ) = Y′

N (δ)[Ḃ∗
12N (δ) + G

′
2N (λ)B∗

1N (δ) + B∗
1N (δ)G2N (λ) + ṀN (ρ)Ḡ∗

1N (δ)]YN (δ),

H∗
N,21(δ) = Y′

N (δ)[Ḡ
′
1N (δ)B∗

2N (ρ) + B∗
2N (ρ)Ḡ1N (δ)]YN (δ),

H∗
N,22(δ) = Y′

N (δ)[Ḃ∗
22N (δ) + G

′
2N (λ)B∗

2N (ρ) + B∗
2N (ρ)G2N (λ) + ṀN (ρ)Ḡ∗

2N (δ)]YN (δ),

where B∗
rN (δ) = MN (ρ)Ḡ∗

rN (δ), Ḃ∗
rsN (δ) = MN (ρ) ˙̄G∗

rs,N (δ), ˙̄G∗
r1,N (δ) is the partial derivative

of Ḡ∗
rN (δ) (r = 1, 2), w.r.t. λ and ρ (s = 1, 2), ṀN (ρ) is the derivative of MN (ρ) w.r.t. ρ,
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˙̄G∗
11,N (δ) = Ḡ2

1N (δ)− diag[MN (ρ)]−1diag[B1N (ρ)Ḡ1N (δ)],
˙̄G∗

12,N (δ) = Ḡ1N (δ)G2N (ρ)−G2N (ρ)Ḡ1N (δ) + diag[MN (ρ)]−2diag[ṀN (ρ)]diag[B2N (ρ)]

+diag[MN (ρ)]−1diag[MN (ρ)G2N (ρ)Ḡ1N (δ)−B1NG2N (ρ)− ṀN (ρ)Ḡ1N (δ)],
˙̄G∗

22,N (δ) = G2N (ρ)Ḡ2N (ρ) + G2N (ρ)ṀN (ρ) + diag[MN (ρ)]−2diag[ṀN (ρ)]diag[B2N (ρ)]

−diag[MN (ρ)]−1diag[MN (ρ)G2N (ρ)Ḡ2N (ρ) + MN (ρ)G2N (ρ)ṀN (ρ) + ṀN (ρ)Ḡ2N (ρ)]

ṀN (ρ) = MN (ρ)G2N (ρ)PN (ρ) + PN (ρ)G′
2N (ρ)MN (ρ),

BrN (δ) = MN (ρ)ḠrN (δ), for r = 1, 2.

By Assumptions 4, 5 and continuous mapping theorem (CMT), Ḡ◦
rN (δ̄N ) = Ḡ∗

rN + op(1)

and ˙̄G∗
rN (δ̄N ) = ˙̄G∗

rN + op(1) for r = 1, 2. Thus using a Taylor expansion, terms of the sort

Q1N (δ̄) = 1
N Y′

n(δ̄)Q1N (δ̄)YN (δ̄) can be written as, Q1N + (δ̄ − δ0)′ ∂
∂δ Q1N . Together with the

CMT, Lemma A.2, Assumptions 3-5 and some tedious algebra, we have Q1N (δ̄) = Q1N + op(1).

Collecting these results we have ∂
∂δ′ ψ̃

∗
N (δ̄N )− ∂

∂δ′ ψ̃
∗
N = op(1).

To prove (iii), the negative of the expected Hessian, Φ∗
N , is given as:

Φ∗
N =

1
N

(
σ2

0tr(HNφ11,N ) + β
′
0X

′
Nφ11,NXNβ, σ2

0tr(HNφ12,N ) + β
′
0X

′
Nφ12,NXNβ

σ2
0tr(HNφ21,N ) + β

′
0X

′
Nφ21,NXNβ, σ2

0tr(HNφ22,N ) + β
′
0X

′
Nφ22,NXNβ

)
,

where φ11,N = Ḃ∗
11N + Ḡ

′
1NB∗

1N + B∗
1NḠ1N ,

φ12,N = Ḃ∗
12N + G

′
2NB∗

1N + B∗
1NG2N + ṀNḠ∗

1N ,

φ21,N = Ḡ
′
1NB∗

2N + B∗
2NḠ1N and

φ22,N = Ḃ∗
22N + G

′
2NB∗

2N + B∗
2NG2N + ṀNḠ∗

2N .

The result of (iii) follows by showing HN,rs − Φ∗
N,rs = op(1), r, s = 1, 2.

With (B-6), and (i)-(iii), the asymptotic normality follows. �

Proof of Theorem 3.4: The proof is straightforward following the derivations above The-

orem 3.4 in the main text and the proof of Theorem 3.3, and thus is omitted. �

Proof of Theorem 3.5: Similarly, the result Φ̂∗
AQS−Φ∗

N

p−→ 0 follows from the results (ii)

and (iii) in the proof of asymptotic normality part of the proof of Theorem 3.3. This result

holds irrespective of whether the errors are normal or non-normal, and T is small or large.

To prove the consistency of Ω̂∗
N as an estimator of Ω∗

N , we focus on the case of normal

errors for this theorem. The case of non-normal errors can be proved in a similar manner as the

proof of Theorem 3.2. It amounts to show that 1
N

∑N
j=1[v̂

2
N,j ŝ

∗
N,j ŝ

∗′
N,j−E(v2

N,js
∗
N,js

∗′
N,j)] = op(1),

where s∗N,j = (ζrN,j +crN,j)′r=1,2 ≡ (s∗1N,j , s
∗
2N,j)

′ and v̂N,j and ŝ∗N,j are estimates based on θ̂∗AQS1.

The result holds if
1
N

∑N
j=1[v̂

2
N,j ŝ

∗
N,j ŝ

∗′
N,j − v2

N,js
∗
N,js

∗′
N,j ] = op(1) and

1
N

∑N
j=1[v

2
N,js

∗
N,js

∗′
N,j − E(v2

N,js
∗
N,js

∗′
N,j)] = op(1).

The former is straightforward by using the mean value theorem, and therefore we focus on the
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latter. Denote {∆r,s}r,s=1,2 = 1
N

∑N
j=1[v

2
N,js

∗
N,js

∗′
N,j −E(v2

N,js
∗
N,js

∗′
N,j)]. We have, for r, s = 1, 2,

∆r,s = 1
N

∑N
j=1[s

∗
rN,js

∗
sN,j(v

2
N,j − E(v2

N,j)]

+ 1
N

∑N
j=1[E(v2

N,j)(ζrN,jζsN,j − E(ζrN,jζsN,j))]

+ 1
N

∑N
j=1(crN,jζsN,j + csN,jζrN,j)E(v2

N,j) ≡
∑3

k=1 TkN .

As s∗1N,j and s∗2N,j are FN,j−1-measurable, where FN,j is an increasing σ-field generated by

{vN,1, . . . ,vN,j}, E[s∗rN,js
∗
sN,j(v

2
N,j − E(v2

N,j)|FN,j−1] = 0, and thus T1N is the sum of an MD

sequence. The conditions of Theorem 19.7 of Davidson (1994) (the WLLN for MD sequences)

can be easily verified under Assumptions 1-5, and hence T1N = op(1).

For T2N , note that ζrN,j =
∑j−1

k=1 brN,jkvN,k, where brN,jk is the (j, k)th element of Bu′
rN +

Bl
rN . Hence, E(ζrN,jζsN,j) =

∑j−1
k=1 brN,jkbsN,jkE(v2

N,k) ≡ drsN,j and,

T2N = 1
N

∑N
j=1 E(v2

N,j)(ζrN,jζsN,j − drsN,j)

= 1
N

∑N
j=1 E(v2

N,j)
∑j−1

k=1 brN,jkbsN,jk(v2
N,k − E(v2

N,k))

+ 2
N

∑N
j=1 E(v2

N,j)
∑j−1

k=1 brN,jkvN,k
∑k−1

l=1 bsN,jlvN,l

= 1
N

∑N−1
j=1 φrsN,j(v2

N,j − E(v2
N,j)) + 1

N

∑N−1
j=1 ϕrsN,jvN,j ,

where, by switching the order of summations, we have φrsN,j = 1
N

∑N
k=j+1 brN,kjbsN,kjE(v2

N,k),

ϕrsN,j =
∑j−1

k=1 ξrsN,jkvN,k and ξrsN,jk = 2
∑N

l=j+1 brN,ljbsN,lkE(v2
N,l). Thus T2N is the sum of

two MD sequences and the WLLN for MD sequences implies T2N
p−→ 0. The last term T3N is

simpler than T3N . Thus, similar but simpler arguments show T3N
p−→ 0.

For the case of non-normal errors, refer to the proof of Theorem 3.2 for details.

A similar line of arguments can be used to show Σ̂∗
N − Σ∗

N = op(1). �
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Table 1a. Empirical Mean[rmse](sd){ŝd} of Estimators of λ and ρ, FE1-SPD Model

Case when the regular QMLE is consistent under heteroskedasticity

T = 3, β = (1, 1)′, σ = 1, Queen Contiguity, REG-1, DGP 1

n λ ρ QMLE-λ AQSE∗-λ QMLE-ρ AQSE∗-ρ

50 .50 .50 .474[.202](.200) .490[.209](.207){.190} .452[.239](.234) .449[.244](.238){.234}
.25 .462[.190](.186) .470[.195](.191){.180} .225[.266](.265) .221[.268](.267){.266}
.00 .468[.166](.163) .470[.168](.165){.158} -.017[.275](.274) -.021[.273](.272){.279}

-.25 .469[.150](.147) .472[.151](.148){.149} -.257[.271](.271) -.258[.267](.267){.271}
-.50 .472[.138](.135) .476[.138](.136){.129} -.501[.271](.271) -.500[.267](.267){.270}

-.50 .50 -.469[.225](.223) -.480[.226](.225){.215} .450[.211](.205) .450[.211](.205){.192}
.25 -.475[.222](.221) -.480[.224](.223){.220} .196[.252](.246) .194[.252](.245){.239}
.00 -.484[.222](.221) -.485[.223](.223){.219} -.049[.277](.273) -.001[.275](.271){.268}

-.25 -.487[.218](.218) -.486[.220](.220){.217} -.288[.286](.284) -.274[.284](.281){.281}
-.50 -.489[.219](.219) -.490[.221](.221){.221} -.532[.288](.287) -.521[.285](.284){.280}

100 .50 .50 .472[.169](.167) .470[.169](.166){.151} .485[.179](.178) .490[.177](.177){.172}
.25 .474[.144](.142) .474[.143](.140){.150} .244[.194](.194) .250[.191](.191){.200}
.00 .481[.119](.118) .481[.118](.117){.118} -.005[.196](.196) -.003[.192](.192){.195}

-.25 .486[.099](.097) .490[.098](.097){.093} -.253[.193](.193) -.249[.190](.190){.192}
-.50 .487[.087](.086) .490[.087](.086){.083} -.504[.186](.185) -.498[.183](.183){.185}

-.50 .50 -.486[.181](.181) -.485[.180](.179){.174} .474[.151](.149) .469[.151](.148){.148}
.25 -.495[.174](.174) -.500[.172](.172){.169} .228[.181](.180) .230[.179](.177){.177}
.00 -.494[.173](.173) -.493[.171](.171){.170} -.022[.202](.201) -.023[.199](.197){.196}

-.25 -.501[.169](.169) -.500[.167](.167){.162} -.263[.212](.212) -.261[.208](.208){.208}
-.50 -.501[.169](.169) -.500[.167](.167){.160} -.510[.216](.216) -.504[.211](.211){.214}

250 .50 .50 .486[.118](.118) .490[.121](.120){.119} .489[.128](.127) .490[.130](.130){.128}
.25 .486[.098](.097) .488[.099](.098){.096} .248[.134](.134) .250[.135](.135){.133}
.00 .487[.081](.080) .490[.081](.080){.078} .001[.135](.135) .000[.134](.134){.132}

-.25 .490[.068](.068) .500[.068](.068){.066} -.247[.128](.128) -.250[.128](.128){.127}
-.50 .493[.059](.059) .500[.059](.059){.058} -.500[.122](.122) -.500[.121](.121){.121}

-.50 .50 -.486[.127](.127) -.491[.128](.127){.127} .481[.100](.098) .484[.099](.098){.096}
.25 -.490[.126](.126) -.493[.126](.126){.126} .233[.122](.121) .240[.122](.121){.121}
.00 -.493[.125](.125) -.500[.126](.125){.124} -.014[.141](.140) -.013[.141](.140){.140}

-.25 -.497[.123](.123) -.497[.123](.123){.121} -.260[.149](.148) -.258[.148](.148){.146}
-.50 -.500[.118](.118) -.500[.118](.118){.118} -.505[.148](.148) -.502[.147](.147){.146}

500 .50 .50 .492[.082](.082) .500[.083](.083){.083} .497[.089](.089) .497[.089](.089){.088}
.25 .494[.066](.066) .495[.066](.066){.064} .250[.095](.095) .250[.095](.095){.092}
.00 .496[.052](.052) .500[.052](.052){.052} -.001[.093](.093) .000[.093](.093){.092}

-.25 .497[.045](.045) .500[.045](.045){.045} -.251[.088](.088) -.250[.088](.088){.088}
-.50 .497[.041](.041) .500[.041](.041){.040} -.501[.086](.086) -.500[.086](.086){.085}

-.50 .50 -.497[.086](.086) -.500[.086](.086){.086} .494[.065](.065) .500[.065](.065){.065}
.25 -.498[.087](.087) -.500[.087](.087){.086} .244[.085](.085) .243[.085](.085){.083}
.00 -.499[.085](.085) -.499[.084](.084){.084} -.004[.096](.096) -.001[.096](.096){.094}

-.25 -.502[.082](.082) -.500[.082](.082){.082} -.252[.102](.102) -.252[.101](.101){.101}
-.50 -.502[.081](.081) -.501[.080](.080){.080} -.502[.101](.101) -.500[.100](.100){.101}
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Table 1b. Empirical Mean[rmse](sd){ŝd} of Estimators of λ and ρ, FE1-SPD Model

Case when the regular QMLE is consistent under heteroskedasticity

T = 3, β = (1, 1)′, σ = 1, Queen Contiguity, REG-1, DGP 2

n λ ρ QMLE-λ AQSE∗-λ QMLE-ρ AQSE∗-ρ

50 .50 .50 .475[.201](.200) .472[.208](.206){.220} .451[.239](.234) .450[.243](.237){.237}
.25 .467[.183](.180) .467[.187](.184){.173} .227[.255](.254) .230[.256](.255){.258}
.00 .469[.165](.162) .470[.167](.164){.160} -.016[.268](.267) -.012[.266](.265){.265}

-.25 .469[.152](.148) .480[.152](.149){.140} -.255[.268](.268) -.255[.264](.264){.260}
-.50 .471[.143](.140) .480[.143](.140){.145} -.503[.269](.269) -.500[.264](.264){.259}

-.50 .50 -.469[.225](.223) -.480[.226](.224){.217} .448[.211](.205) .447[.211](.204){.196}
.25 -.481[.223](.222) -.484[.224](.223){.210} .201[.251](.246) .200[.249](.244){.246}
.00 -.487[.217](.216) -.487[.218](.217){.210} -.041[.274](.271) -.042[.271](.268){.265}

-.25 -.494[.216](.216) -.492[.218](.217){.200} -.279[.282](.281) -.272[.279](.277){.277}
-.50 -.499[.216](.216) -.495[.216](.216){.210} -.516[.283](.283) -.512[.278](.278){.274}

100 .50 .50 .473[.167](.165) .473[.165](.163){.148} .483[.177](.176) .482[.174](.173){.169}
.25 .473[.144](.141) .480[.140](.138){.133} .246[.193](.193) .250[.189](.189){.189}
.00 .479[.123](.121) .480[.121](.119){.110} -.001[.199](.199) .000[.194](.194){.191}

-.25 .487[.101](.100) .487[.100](.099){.092} -.252[.192](.192) -.248[.188](.188){.187}
-.50 .487[.091](.090) .487[.091](.090){.090} -.501[.185](.185) -.495[.182](.182){.182}

-.50 .50 -.488[.181](.181) -.486[.179](.179){.169} .476[.151](.149) .480[.150](.147){.143}
.25 -.494[.177](.177) -.500[.174](.174){.165} .226[.183](.181) .223[.180](.178){.173}
.00 -.499[.174](.174) -.497[.171](.171){.160} -.015[.201](.201) -.012[.197](.196){.192}

-.25 -.498[.173](.173) -.497[.171](.170){.159} -.264[.213](.213) -.262[.208](.208){.199}
-.50 -.503[.169](.169) -.500[.167](.167){.157} -.506[.214](.214) -.501[.209](.209){.200}

250 .50 .50 .485[.119](.118) .484[.122](.121){.119} .493[.128](.128) .500[.130](.130){.127}
.25 .485[.099](.098) .486[.100](.099){.095} .251[.132](.132) .250[.133](.133){.132}
.00 .489[.080](.079) .499[.080](.079){.076} .001[.132](.132) .000[.132](.132){.130}

-.25 .491[.066](.065) .493[.066](.065){.065} -.248[.126](.126) -.250[.125](.125){.125}
-.50 .492[.060](.059) .500[.060](.059){.058} -.498[.124](.124) -.499[.124](.124){.120}

-.50 .50 -.490[.127](.126) -.500[.127](.127){.125} .485[.097](.096) .490[.097](.096){.094}
.25 -.491[.130](.130) -.500[.130](.130){.126} .233[.125](.124) .240[.125](.124){.120}
.00 -.498[.126](.126) -.499[.126](.126){.123} -.011[.140](.139) -.010[.139](.139){.136}

-.25 -.498[.123](.123) -.498[.123](.123){.120} -.261[.149](.149) -.254[.149](.148){.143}
-.50 -.502[.118](.118) -.500[.118](.118){.117} -.507[.147](.147) -.504[.146](.146){.144}

500 .50 .50 .493[.082](.082) .500[.083](.082){.080} .496[.089](.089) .496[.089](.089){.088}
.25 .494[.066](.065) .495[.066](.065){.064} .251[.093](.093) .250[.093](.093){.092}
.00 .497[.053](.053) .500[.053](.053){.052} -.003[.093](.093) -.002[.092](.092){.091}

-.25 .496[.046](.046) .500[.046](.046){.045} -.251[.090](.090) -.250[.090](.090){.089}
-.50 .498[.040](.040) .500[.040](.040){.040} -.503[.085](.085) -.500[.084](.084){.084}

-.50 .50 -.497[.087](.087) -.497[.087](.086){.086} .494[.065](.065) .493[.066](.065){.065}
.25 -.500[.087](.087) -.499[.087](.087){.086} .246[.084](.084) .250[.083](.083){.083}
.00 -.500[.084](.084) -.499[.084](.084){.084} -.004[.094](.094) -.005[.093](.093){.093}

-.25 -.499[.085](.084) -.498[.084](.084){.082} -.255[.103](.103) -.252[.102](.102){.100}
-.50 -.502[.082](.082) -.501[.081](.081){.080} -.502[.104](.104) -.500[.103](.103){.101}
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Table 1c. Empirical Mean[rmse](sd){ŝd} of Estimators of λ and ρ, FE1-SPD Model

Case when the regular QMLE is consistent under heteroskedasticity

T = 3, β = (1, 1)′, σ = 1, Queen Contiguity, REG-1, DGP 3

n λ ρ QMLE-λ AQSE∗-λ QMLE-ρ AQSE∗-ρ

50 .50 .50 .475[.194](.193) .480[.200](.198){.195} .456[.228](.223) .453[.231](.226){.221}
.25 .466[.182](.179) .470[.187](.184){.188} .228[.250](.249) .230[.251](.249){.252}
.00 .466[.172](.168) .468[.173](.169){.153} -.009[.265](.264) -.011[.261](.261){.263}

-.25 .471[.149](.146) .473[.149](.146){.140} -.256[.265](.265) -.255[.260](.260){.263}
-.50 .475[.140](.138) .477[.140](.138){.130} -.500[.258](.258) -.495[.253](.253){.252}

-.50 .50 -.467[.222](.220) -.480[.221](.219){.200} .448[.209](.203) .450[.208](.201){.190}
.25 -.477[.222](.221) -.480[.223](.221){.199} .201[.242](.237) .199[.241](.236){.234}
.00 -.487[.214](.214) -.490[.214](.213){.199} -.036[.268](.265) -.038[.264](.261){.259}

-.25 -.491[.209](.209) -.490[.209](.208){.198} -.285[.273](.270) -.250[.268](.266){.269}
-.50 -.498[.214](.214) -.500[.213](.213){.197} -.519[.280](.280) -.515[.274](.274){.270}

100 .50 .50 .478[.162](.160) .480[.158](.156){.144} .484[.170](.170) .482[.168](.167){.164}
.25 .475[.145](.143) .480[.140](.138){.137} .244[.189](.189) .250[.184](.184){.184}
.00 .480[.124](.123) .480[.122](.120){.107} .001[.189](.189) .002[.184](.184){.185}

-.25 .486[.104](.103) .490[.103](.101){.090} -.254[.187](.187) -.249[.182](.182){.179}
-.50 .487[.090](.089) .486[.091](.089){.084} -.499[.180](.180) -.491[.176](.176){.177}

-.50 .50 -.491[.180](.179) -.490[.174](.173){.160} .476[.150](.148) .480[.146](.143){.145}
.25 -.493[.176](.176) -.490[.171](.171){.155} .226[.180](.178) .230[.175](.173){.174}
.00 -.496[.173](.173) -.500[.167](.167){.155} -.019[.198](.197) -.021[.191](.190){.187}

-.25 -.500[.171](.171) -.498[.164](.164){.150} -.260[.214](.213) -.259[.203](.203){.194}
-.50 -.501[.170](.170) -.500[.164](.164){.150} -.509[.215](.215) -.500[.205](.205){.199}

250 .50 .50 .489[.118](.118) .490[.119](.119){.120} .489[.127](.126) .490[.128](.127){.129}
.25 .485[.102](.100) .486[.102](.101){.100} .248[.137](.137) .250[.137](.137){.137}
.00 .487[.082](.081) .489[.082](.082){.080} .003[.133](.133) .001[.133](.133){.130}

-.25 .493[.064](.064) .495[.064](.063){.063} -.250[.125](.125) -.250[.123](.123){.120}
-.50 .493[.058](.058) .496[.058](.057){.056} -.500[.120](.120) -.500[.118](.118){.114}

-.50 .50 -.488[.130](.130) -.491[.128](.127){.128} .483[.101](.099) .485[.099](.098){.098}
.25 -.491[.131](.131) -.500[.129](.129){.124} .233[.127](.126) .235[.125](.124){.120}
.00 -.501[.128](.128) -.500[.126](.126){.120} -.010[.142](.141) -.010[.140](.140){.140}

-.25 -.495[.123](.123) -.500[.122](.122){.117} -.262[.147](.147) -.261[.146](.145){.140}
-.50 -.502[.123](.123) -.501[.121](.121){.120} -.504[.153](.153) -.501[.150](.150){.149}

500 .50 .50 .496[.082](.082) .500[.081](.081){.078} .494[.089](.089) .494[.088](.088){.086}
.25 .493[.065](.064) .494[.064](.064){.063} .251[.092](.092) .251[.091](.091){.090}
.00 .496[.053](.053) .500[.053](.053){.051} -.003[.092](.092) -.002[.092](.092){.089}

-.25 .497[.045](.045) .497[.044](.044){.044} -.251[.088](.088) -.250[.087](.087){.086}
-.50 .498[.041](.040) .498[.040](.040){.040} -.501[.086](.086) -.499[.085](.085){.082}

-.50 .50 -.498[.088](.088) -.500[.087](.087){.084} .495[.067](.067) .494[.066](.065){.063}
.25 -.498[.087](.087) -.500[.086](.086){.084} .243[.085](.084) .242[.084](.083){.080}
.00 -.500[.087](.087) -.499[.085](.085){.082} -.004[.096](.096) -.006[.095](.095){.092}

-.25 -.503[.084](.084) -.500[.082](.082){.080} -.250[.102](.102) -.250[.100](.100){.098}
-.50 -.499[.084](.084) -.500[.081](.081){.080} -.503[.104](.104) -.500[.101](.101){.100}
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Table 2a. Empirical Mean[rmse](sd){ŝd} of Estimators of λ and ρ, FE1-SPD Model

Case when the regular QMLE is inconsistent under heteroskedasticity

T = 3, β = (1, 1)′, σ = 1, Circular Neighbors, REG-1, DGP 1

n λ ρ QMLE-λ AQSE∗-λ QMLE-ρ AQSE∗-ρ

50 .50 .50 .486[.124](.123) .485[.165](.164){.208} .422[.181](.164) .444[.220](.213){.218}
.25 .451[.123](.112) .476[.144](.142){.144} .229[.172](.171) .213[.236](.233){.239}
.00 .435[.123](.104) .480[.126](.124){.127} .043[.179](.174) -.026[.241](.240){.229}

-.25 .418[.129](.100) .480[.116](.114){.115} -.142[.198](.166) -.267[.233](.232){.232}
-.50 .405[.137](.099) .479[.112](.110){.115} -.321[.241](.161) -.493[.219](.219){.226}

-.50 .50 -.390[.152](.104) -.481[.117](.115){.117} .368[.199](.149) .457[.163](.157){.157}
.25 -.401[.143](.103) -.480[.126](.124){.121} .127[.208](.167) .202[.207](.201){.201}
.00 -.421[.128](.100) -.480[.137](.136){.134} -.078[.182](.165) -.047[.233](.228){.207}

-.25 -.443[.117](.102) -.478[.151](.149){.171} -.258[.152](.152) -.288[.237](.234){.379}
-.50 -.478[.106](.104) -.485[.161](.160){.155} -.426[.156](.137) -.523[.226](.225){.282}

100 .50 .50 .485[.096](.095) .490[.133](.132){.136} .447[.129](.117) .481[.154](.153){.153}
.25 .459[.093](.083) .483[.106](.105){.109} .245[.123](.123) .237[.163](.163){.162}
.00 .443[.095](.076) .486[.088](.087){.086} .053[.134](.123) -.005[.165](.165){.165}

-.25 .435[.095](.069) .490[.075](.074){.073} -.142[.161](.120) -.258[.161](.161){.161}
-.50 .428[.097](.065) .491[.068](.067){.072} -.332[.202](.112) -.495[.148](.148){.101}

-.50 .50 -.359[.166](.088) -.487[.101](.100){.100} .364[.174](.108) .477[.114](.112){.112}
.25 -.381[.144](.082) -.487[.105](.105){.105} .121[.175](.118) .220[.149](.146){.146}
.00 -.409[.120](.079) -.489[.110](.110){.107} -.081[.144](.118) -.029[.171](.168){.168}

-.25 -.441[.095](.075) -.493[.113](.113){.114} -.257[.108](.108) -.269[.175](.174){.174}
-.50 -.479[.077](.074) -.498[.119](.119){.120} -.421[.125](.097) -.504[.168](.168){.162}

250 .50 .50 .490[.059](.058) .491[.086](.086){.083} .458[.082](.071) .494[.099](.099){.100}
.25 .461[.065](.052) .495[.067](.066){.066} .255[.078](.077) .242[.108](.108){.108}
.00 .441[.076](.048) .495[.055](.055){.055} .066[.102](.077) -.003[.107](.107){.107}

-.25 .427[.086](.045) .495[.050](.049){.050} -.124[.148](.076) -.251[.105](.105){.105}
-.50 .418[.093](.043) .496[.046](.046){.047} -.318[.195](.070) -.497[.093](.093){.093}

-.50 .50 -.370[.141](.053) -.495[.057](.057){.060} .374[.143](.068) .491[.067](.066){.066}
.25 -.384[.127](.051) -.497[.061](.061){.061} .129[.143](.075) .239[.088](.088){.088}
.00 -.407[.105](.048) -.497[.066](.065){.065} -.078[.107](.073) -.009[.103](.103){.103}

-.25 -.436[.080](.047) -.495[.073](.073){.073} -.259[.067](.066) -.258[.111](.110){.111}
-.50 -.476[.053](.048) -.497[.084](.084){.084} -.422[.099](.060) -.502[.113](.113){.113}

500 .50 .50 .492[.039](.038) .497[.054](.054){.054} .460[.063](.048) .497[.066](.066){.066}
.25 .464[.050](.034) .498[.043](.043){.043} .257[.053](.053) .246[.072](.072){.072}
.00 .445[.064](.033) .498[.038](.038){.038} .064[.084](.054) -.003[.076](.076){.076}

-.25 .430[.076](.031) .498[.034](.034){.034} -.125[.136](.053) -.252[.074](.074){.074}
-.50 .419[.086](.029) .497[.032](.032){.032} -.319[.187](.049) -.499[.066](.066){.070}

-.50 .50 -.377[.129](.036) -.497[.039](.039){.040} .380[.129](.048) .494[.047](.046){.046}
.25 -.389[.116](.035) -.498[.041](.041){.041} .136[.126](.052) .245[.060](.060){.060}
.00 -.409[.096](.033) -.497[.043](.043){.043} -.074[.090](.051) -.005[.070](.070){.070}

-.25 -.438[.070](.033) -.496[.049](.049){.049} -.258[.049](.048) -.257[.079](.078){.078}
-.50 -.477[.040](.033) -.498[.057](.057){.060} -.422[.088](.042) -.502[.078](.078){.080}
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Table 2b. Empirical Mean[rmse](sd){ŝd} of Estimators of λ and ρ, FE1-SPD Model

Case when the regular QMLE is inconsistent under heteroskedasticity

T = 3, β = (1, 1)′, σ = 1, Circular Neighbors, REG-1, DGP 2

n λ ρ QMLE-λ AQSE∗-λ QMLE-ρ AQSE∗-ρ

50 .50 .50 .483[.125](.124) .482[.163](.162){.163} .432[.177](.163) .454[.215](.210){.211}
.25 .456[.119](.111) .479[.142](.140){.174} .230[.171](.169) .216[.231](.229){.228}
.00 .438[.122](.105) .482[.126](.124){.123} .038[.177](.173) -.029[.241](.240){.240}

-.25 .420[.132](.105) .479[.119](.117){.122} -.143[.202](.172) -.264[.237](.237){.232}
-.50 .406[.139](.102) .479[.111](.109){.107} -.328[.238](.165) -.500[.218](.218){.276}

-.50 .50 -.396[.151](.110) -.484[.117](.116){.116} .376[.196](.152) .461[.163](.158){.158}
.25 -.406[.144](.109) -.481[.127](.126){.121} .135[.203](.167) .207[.202](.198){.204}
.00 -.420[.130](.103) -.476[.135](.133){.131} -.076[.180](.164) -.048[.230](.224){.227}

-.25 -.445[.118](.104) -.480[.151](.150){.183} -.257[.151](.151) -.290[.236](.233){.262}
-.50 -.475[.110](.107) -.483[.164](.164){.103} -.425[.161](.143) -.523[.230](.229){.297}

100 .50 .50 .486[.095](.094) .484[.130](.129){.122} .445[.128](.116) .477[.151](.149){.115}
.25 .461[.092](.083) .485[.105](.104){.102} .240[.125](.125) .232[.165](.164){.201}
.00 .446[.094](.077) .488[.088](.087){.087} .048[.133](.125) -.011[.167](.167){.167}

-.25 .434[.098](.072) .487[.076](.075){.075} -.139[.165](.122) -.249[.160](.160){.159}
-.50 .430[.097](.067) .492[.067](.067){.067} -.338[.200](.117) -.502[.144](.144){.144}

-.50 .50 -.363[.167](.096) -.488[.103](.102){.102} .365[.177](.114) .476[.117](.115){.115}
.25 -.384[.144](.086) -.487[.105](.104){.104} .126[.173](.120) .220[.147](.144){.144}
.00 -.411[.120](.081) -.490[.108](.108){.108} -.075[.139](.117) -.024[.166](.164){.160}

-.25 -.441[.098](.078) -.491[.117](.117){.117} -.257[.109](.108) -.271[.177](.176){.176}
-.50 -.479[.078](.075) -.497[.120](.120){.124} -.420[.126](.098) -.504[.166](.166){.160}

250 .50 .50 .490[.059](.058) .491[.086](.085){.103} .456[.084](.072) .491[.100](.100){.104}
.25 .460[.067](.054) .493[.068](.068){.068} .256[.078](.078) .244[.108](.108){.108}
.00 .441[.077](.049) .495[.056](.056){.056} .064[.102](.079) -.005[.109](.109){.109}

-.25 .427[.087](.048) .495[.050](.050){.050} -.124[.148](.078) -.252[.104](.104){.104}
-.50 .419[.093](.046) .496[.046](.046){.046} -.320[.195](.075) -.499[.093](.093){.093}

-.50 .50 -.371[.142](.059) -.496[.058](.058){.060} .375[.144](.070) .490[.067](.066){.066}
.25 -.383[.129](.055) -.494[.063](.063){.063} .129[.144](.078) .238[.089](.088){.088}
.00 -.405[.107](.050) -.494[.066](.065){.065} -.080[.108](.073) -.013[.103](.102){.102}

-.25 -.435[.081](.048) -.493[.073](.073){.074} -.258[.068](.067) -.259[.112](.112){.112}
-.50 -.477[.053](.048) -.499[.083](.083){.083} -.422[.099](.060) -.501[.109](.109){.107}

500 .50 .50 .491[.040](.039) .496[.055](.055){.055} .460[.063](.050) .497[.067](.067){.067}
.25 .464[.051](.036) .498[.044](.044){.044} .256[.053](.053) .246[.073](.073){.073}
.00 .445[.064](.033) .499[.038](.037){.037} .064[.084](.055) -.004[.075](.075){.075}

-.25 .431[.077](.033) .498[.035](.035){.035} -.124[.137](.055) -.250[.074](.074){.074}
-.50 .420[.086](.031) .498[.032](.032){.032} -.320[.188](.054) -.500[.066](.066){.070}

-.50 .50 -.378[.129](.039) -.498[.039](.039){.040} .382[.128](.050) .496[.047](.046){.046}
.25 -.390[.116](.037) -.498[.041](.041){.041} .136[.126](.054) .245[.061](.061){.061}
.00 -.411[.095](.035) -.499[.044](.044){.044} -.072[.088](.051) -.003[.070](.070){.070}

-.25 -.438[.070](.034) -.497[.050](.050){.050} -.256[.048](.048) -.254[.078](.078){.078}
-.50 -.477[.040](.033) -.498[.057](.057){.060} -.423[.088](.043) -.502[.077](.077){.080}
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Table 2c. Empirical Mean[rmse](sd){ŝd} of Estimators of λ and ρ, FE1-SPD Model

Case when the regular QMLE is inconsistent under heteroskedasticity

T = 3, β = (1, 1)′, σ = 1, Circular Neighbors, REG-1, DGP 3

n λ ρ QMLE-λ AQSE∗-λ QMLE-ρ AQSE∗-ρ

50 .50 .50 .480[.129](.128) .480[.160](.158){.154} .435[.175](.163) .459[.204](.200){.208}
.25 .461[.126](.120) .483[.139](.138){.139} .224[.177](.175) .212[.227](.224){.224}
.00 .439[.131](.116) .476[.132](.130){.130} .035[.181](.178) -.020[.238](.237){.237}

-.25 .429[.132](.111) .478[.124](.122){.125} -.155[.203](.180) -.261[.237](.237){.231}
-.50 .416[.138](.109) .478[.124](.122){.183} -.334[.245](.180) -.496[.234](.234){.266}

-.50 .50 -.401[.159](.124) -.480[.128](.126){.124} .382[.197](.158) .460[.168](.163){.169}
.25 -.413[.145](.116) -.481[.126](.125){.125} .140[.201](.168) .202[.201](.195){.192}
.00 -.428[.135](.114) -.479[.137](.135){.135} -.064[.181](.169) -.042[.223](.219){.219}

-.25 -.448[.121](.110) -.481[.146](.145){.147} -.252[.162](.162) -.287[.235](.232){.221}
-.50 -.478[.112](.110) -.489[.159](.158){.195} -.419[.171](.151) -.520[.230](.229){.210}

100 .50 .50 .486[.097](.096) .486[.124](.123){.121} .446[.129](.117) .476[.146](.144){.140}
.25 .461[.096](.087) .482[.107](.105){.106} .243[.125](.125) .239[.162](.162){.162}
.00 .451[.093](.079) .488[.089](.089){.106} .041[.132](.126) -.012[.165](.164){.201}

-.25 .436[.103](.081) .485[.082](.081){.085} -.145[.168](.131) -.249[.161](.161){.160}
-.50 .433[.102](.077) .489[.082](.081){.080} -.341[.208](.134) -.497[.157](.157){.120}

-.50 .50 -.369[.172](.111) -.483[.110](.109){.110} .369[.178](.121) .472[.120](.117){.114}
.25 -.393[.147](.100) -.487[.106](.105){.105} .136[.170](.126) .223[.145](.143){.146}
.00 -.417[.124](.092) -.490[.111](.110){.109} -.069[.138](.120) -.025[.163](.161){.165}

-.25 -.446[.102](.087) -.494[.112](.111){.110} -.249[.117](.117) -.265[.170](.169){.169}
-.50 -.476[.088](.085) -.493[.123](.123){.121} -.422[.133](.108) -.512[.169](.169){.170}

250 .50 .50 .488[.063](.062) .490[.086](.086){.083} .457[.086](.074) .492[.099](.098){.100}
.25 .462[.067](.055) .494[.067](.067){.067} .255[.077](.076) .245[.103](.103){.103}
.00 .444[.078](.054) .495[.056](.056){.056} .060[.102](.082) -.005[.106](.106){.106}

-.25 .431[.088](.055) .496[.053](.053){.050} -.132[.148](.089) -.254[.107](.107){.107}
-.50 .420[.097](.055) .495[.050](.050){.049} -.324[.201](.096) -.499[.097](.097){.097}

-.50 .50 -.374[.147](.076) -.494[.063](.063){.060} .380[.145](.082) .491[.070](.069){.069}
.25 -.391[.128](.067) -.495[.060](.060){.060} .138[.140](.083) .240[.086](.086){.086}
.00 -.410[.109](.062) -.495[.066](.065){.065} -.073[.107](.079) -.011[.101](.100){.099}

-.25 -.440[.084](.059) -.496[.075](.075){.075} -.256[.072](.072) -.260[.110](.110){.110}
-.50 -.476[.059](.053) -.497[.082](.082){.085} -.424[.103](.068) -.505[.111](.111){.116}

500 .50 .50 .492[.040](.039) .498[.054](.054){.054} .458[.065](.049) .494[.065](.065){.061}
.25 .464[.052](.037) .497[.044](.044){.044} .256[.054](.054) .246[.072](.072){.072}
.00 .446[.066](.037) .498[.038](.038){.038} .062[.085](.058) -.002[.075](.075){.075}

-.25 .432[.078](.039) .498[.036](.036){.036} -.128[.138](.064) -.252[.075](.075){.075}
-.50 .423[.087](.041) .498[.032](.032){.032} -.323[.191](.074) -.499[.067](.067){.067}

-.50 .50 -.380[.132](.055) -.498[.040](.040){.040} .385[.129](.058) .496[.046](.046){.046}
.25 -.393[.117](.049) -.498[.041](.041){.041} .139[.127](.062) .244[.061](.061){.060}
.00 -.413[.098](.045) -.498[.044](.044){.044} -.070[.090](.056) -.005[.070](.070){.070}

-.25 -.439[.072](.039) -.497[.049](.049){.049} -.254[.049](.048) -.253[.075](.075){.075}
-.50 -.477[.045](.038) -.498[.058](.058){.059} -.423[.091](.049) -.503[.077](.077){.080}
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Table 3a. Empirical Mean[rmse](sd){ŝd} of Estimators of λ and ρ, FE1-SPD Model

Case when the regular QMLE is inconsistent under heteroskedasticity

T = 3, β = (1, 1)′, σ = 1, Group Interaction, REG-2, DGP 1

n λ ρ QMLE-λ AQSE∗-λ QMLE-ρ AQSE∗-ρ

50 .50 .50 .473[.161](.158) .482[.184](.165){.173} .416[.214](.197) .474[.278](.172){.170}
.25 .431[.169](.154) .433[.295](.284){.271} .218[.229](.227) .253[.239](.237){.250}
.00 .416[.162](.139) .456[.210](.206){.205} .030[.243](.241) -.012[.257](.241){.240}

-.25 .409[.156](.126) .473[.163](.161){.152} -.150[.272](.253) -.239[.245](.243){.236}
-.50 .404[.150](.115) .479[.139](.137){.138} -.316[.310](.249) -.462[.144](.142){.130}

-.50 .50 -.186[.380](.213) -.492[.334](.334){.344} .263[.308](.196) .484[.231](.228){.236}
.25 -.305[.277](.197) -.519[.286](.285){.298} .048[.294](.214) .229[.236](.234){.239}
.00 -.389[.222](.192) -.522[.235](.234){.245} -.144[.266](.224) -.013[.240](.238){.230}

-.25 -.447[.190](.182) -.515[.211](.211){.228} -.319[.235](.225) -.239[.243](.241){.253}
-.50 -.498[.178](.178) -.519[.185](.184){.199} -.477[.223](.222) -.503[.230](.209){.205}

100 .50 .50 .483[.114](.112) .490[.126](.125){.127} .445[.144](.133) .489[.121](.121){.126}
.25 .446[.120](.107) .464[.170](.167){.163} .248[.157](.157) .258[.143](.140){.142}
.00 .431[.119](.097) .477[.126](.124){.118} .057[.180](.171) -.049[.127](.225){.124}

-.25 .425[.114](.085) .487[.101](.100){.110} -.127[.216](.177) -.231[.127](.127){.124}
-.50 .420[.111](.077) .500[.089](.089){.090} -.307[.265](.181) -.576[.135](.133){.125}

-.50 .50 -.181[.354](.152) -.503[.235](.235){.247} .293[.244](.128) .544[.198](.189){.190}
.25 -.309[.237](.141) -.503[.266](.254){.253} .086[.216](.141) .260[.121](.122){.122}
.00 -.387[.177](.136) -.502[.248](.247){.251} -.111[.192](.156) -.062[.164](.157){.166}

-.25 -.446[.142](.132) -.513[.221](.221){.228} -.289[.161](.157) -.232[.190](.181){.170}
-.50 -.489[.128](.128) -.504[.120](.120){.126} -.454[.168](.162) -.521[.132](.131){.140}

250 .50 .50 .489[.068](.067) .499[.114](.112){.123} .464[.087](.080) .492[.115](.115){.121}
.25 .462[.071](.060) .495[.076](.076){.073} .259[.093](.093) .258[.127](.126){.124}
.00 .453[.069](.051) .496[.058](.057){.057} .058[.117](.101) -.017[.112](.102){.102}

-.25 .447[.070](.045) .497[.049](.049){.049} -.132[.159](.107) -.256[.157](.156){.155}
-.50 .442[.071](.041) .498[.045](.045){.046} -.313[.217](.109) -.502[.108](.106){.102}

-.50 .50 -.240[.276](.091) -.501[.178](.178){.180} .348[.168](.071) .494[.095](.094){.101}
.25 -.340[.181](.085) -.500[.146](.146){.151} .126[.150](.084) .253[.107](.106){.108}
.00 -.405[.124](.080) -.502[.127](.127){.124} -.076[.121](.095) -.023[.104](.104){.103}

-.25 -.453[.091](.078) -.503[.114](.114){.111} -.261[.098](.098) -.239[.105](.105){.105}
-.50 -.488[.073](.072) -.502[.102](.102){.104} -.431[.122](.100) -.524[.170](.168){.167}

500 .50 .50 .492[.049](.048) .499[.077](.077){.078} .468[.064](.056) .495[.081](.081){.082}
.25 .466[.054](.042) .496[.051](.051){.051} .261[.066](.065) .249[.087](.087){.088}
.00 .457[.057](.036) .498[.039](.039){.039} .059[.093](.072) -.012[.100](.099){.098}

-.25 .450[.059](.032) .498[.033](.033){.033} -.130[.141](.074) -.251[.106](.106){.109}
-.50 .447[.060](.028) .500[.030](.030){.031} -.313[.202](.077) -.501[.102](.101){.102}

-.50 .50 -.239[.269](.066) -.500[.132](.132){.135} .351[.157](.051) .498[.068](.068){.068}
.25 -.342[.170](.061) -.502[.107](.107){.109} .133[.132](.060) .250[.083](.082){.083}
.00 -.408[.109](.058) -.504[.091](.091){.090} -.067[.095](.067) -.010[.096](.096){.094}

-.25 -.452[.072](.054) -.500[.078](.078){.078} -.255[.069](.069) -.256[.106](.105){.105}
-.50 -.488[.054](.053) -.500[.073](.073){.073} -.424[.103](.070) -.501[.117](.117){.118}
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Table 3b. Empirical Mean[rmse](sd){ŝd} of Estimators of λ and ρ, FE1-SPD Model

Case when the regular QMLE is inconsistent under heteroskedasticity

T = 3, β = (1, 1)′, σ = 1, Group Interaction, REG-2, DGP 2

n λ ρ QMLE-λ AQSE∗-λ QMLE-ρ AQSE∗-ρ

50 .50 .50 .467[.182](.179) .538[.180](.162){.172} .419[.221](.206) .542[.233](.232){.241}
.25 .433[.177](.164) .443[.185](.175){.155} .220[.238](.237) .257[.233](.231){.244}
.00 .417[.170](.148) .454[.213](.208){.204} .029[.251](.250) -.011[.214](.200){.205}

-.25 .408[.160](.131) .472[.159](.156){.144} -.153[.274](.256) -.242[.238](.220){.224}
-.50 .404[.154](.121) .477[.139](.137){.148} -.316[.324](.266) -.460[.236](.223){.211}

-.50 .50 -.208[.380](.242) -.494[.272](.271){.270} .278[.301](.203) .539[.304](.283){.374}
.25 -.324[.278](.215) -.521[.279](.278){.286} .061[.290](.220) .137[.235](.233){.255}
.00 -.402[.227](.205) -.525[.239](.238){.228} -.137[.269](.231) -.013[.239](.237){.267}

-.25 -.454[.198](.192) -.520[.213](.212){.230} -.311[.242](.234) -.239[.242](.241){.233}
-.50 -.495[.186](.186) -.518[.187](.186){.182} -.475[.234](.232) -.463[.243](.240){.244}

100 .50 .50 .480[.118](.116) .465[.127](.126){.119} .449[.143](.134) .473[.121](.120){.145}
.25 .445[.122](.109) .466[.171](.167){.158} .248[.157](.157) .251[.141](.138){.123}
.00 .433[.119](.098) .482[.127](.126){.119} .055[.178](.169) -.051[.166](.162){.160}

-.25 .428[.114](.088) .495[.101](.101){.105} -.133[.215](.180) -.232[.206](.198){.193}
-.50 .422[.112](.080) .494[.089](.088){.099} -.305[.271](.187) -.514[.232](.131){.133}

-.50 .50 -.196[.349](.171) -.514[.235](.234){.249} .306[.234](.131) .451[.187](.181){.190}
.25 -.312[.244](.156) -.516[.225](.219){.219} .088[.221](.151) .248[.130](.123){.121}
.00 -.390[.181](.143) -.513[.247](.247){.250} -.108[.191](.158) -.063[.161](.154){.157}

-.25 -.447[.148](.138) -.510[.223](.223){.247} -.289[.167](.162) -.224[.195](.186){.176}
-.50 -.489[.131](.131) -.504[.201](.201){.227} -.454[.170](.163) -.517[.171](.164){.168}

250 .50 .50 .489[.069](.068) .497[.117](.113){.111} .464[.088](.080) .493[.116](.116){.120}
.25 .462[.071](.060) .497[.075](.074){.073} .257[.094](.094) .254[.127](.126){.124}
.00 .453[.070](.052) .499[.057](.057){.057} .058[.117](.102) -.017[.141](.140){.138}

-.25 .448[.070](.047) .498[.049](.049){.049} -.136[.159](.110) -.257[.109](.108){.105}
-.50 .443[.071](.042) .498[.044](.044){.046} -.316[.217](.114) -.502[.107](.107){.108}

-.50 .50 -.244[.275](.100) -.501[.101](.101){.099} .348[.170](.075) .489[.097](.095){.101}
.25 -.345[.177](.086) -.501[.146](.145){.140} .130[.148](.086) .253[.118](.117){.116}
.00 -.406[.124](.081) -.503[.124](.124){.124} -.073[.118](.093) -.019[.134](.132){.131}

-.25 -.453[.089](.076) -.503[.105](.105){.102} -.260[.100](.100) -.257[.105](.105){.105}
-.50 -.489[.075](.074) -.504[.103](.103){.104} -.432[.122](.101) -.506[.107](.107){.107}

500 .50 .50 .493[.048](.048) .499[.076](.076){.077} .468[.066](.057) .499[.082](.082){.083}
.25 .467[.054](.042) .497[.051](.051){.051} .261[.066](.065) .254[.088](.088){.088}
.00 .457[.056](.036) .499[.039](.039){.039} .060[.094](.072) -.011[.099](.098){.098}

-.25 .451[.059](.033) .500[.034](.034){.034} -.133[.140](.077) -.256[.108](.107){.107}
-.50 .447[.061](.029) .499[.030](.030){.031} -.313[.203](.079) -.500[.118](.118){.121}

-.50 .50 -.241[.269](.072) -.500[.134](.134){.130} .352[.158](.054) .497[.069](.068){.065}
.25 -.342[.170](.062) -.501[.105](.105){.109} .133[.132](.062) .254[.084](.083){.083}
.00 -.407[.109](.058) -.500[.089](.089){.089} -.066[.093](.066) -.001[.094](.094){.094}

-.25 -.453[.072](.054) -.500[.078](.078){.078} -.251[.069](.069) -.251[.104](.104){.104}
-.50 -.487[.053](.052) -.500[.071](.071){.073} -.426[.103](.071) -.501[.117](.116){.117}
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Table 3c. Empirical Mean[rmse](sd){ŝd} of Estimators of λ and ρ, FE1-SPD Model

Case when the regular QMLE is inconsistent under heteroskedasticity

T = 3, β = (1, 1)′, σ = 1, Group Interaction, REG-2, DGP 3

n λ ρ QMLE-λ AQSE∗-λ QMLE-ρ AQSE∗-ρ

50 .50 .50 .444[.253](.247) .538[.264](.246){.248} .428[.225](.214) .543[.231](.230){.236}
.25 .421[.239](.225) .460[.233](.234){.231} .218[.257](.255) .266[.237](.230){.234}
.00 .413[.211](.192) .452[.224](.219){.234} .028[.269](.267) -.088[.240](.239){.258}

-.25 .409[.195](.172) .467[.192](.188){.156} -.162[.298](.285) -.258[.244](.243){.245}
-.50 .413[.168](.144) .480[.164](.162){.149} -.349[.333](.297) -.462[.233](.219){.210}

-.50 .50 -.235[.384](.278) -.498[.341](.341){.360} .293[.301](.218) .540[.228](.225){.230}
.25 -.346[.302](.260) -.514[.336](.336){.322} .075[.299](.243) .244[.233](.232){.248}
.00 -.411[.250](.234) -.513[.262](.259){.242} -.127[.275](.244) -.013[.236](.236){.234}

-.25 -.464[.219](.216) -.516[.296](.299){.292} -.307[.252](.245) -.282[.240](.237){.231}
-.50 -.500[.204](.204) -.511[.270](.269){.268} -.473[.257](.255) -.528[.242](.237){.227}

100 .50 .50 .462[.204](.200) .463[.227](.226){.254} .452[.163](.156) .472[.121](.121){.125}
.25 .441[.161](.150) .462[.176](.172){.176} .247[.172](.172) .243[.190](.163){.150}
.00 .433[.145](.129) .476[.136](.133){.136} .044[.199](.194) -.041[.173](.168){.177}

-.25 .432[.123](.103) .487[.106](.105){.104} -.147[.227](.202) -.233[.204](.198){.196}
-.50 .429[.117](.093) .492[.099](.099){.116} -.329[.275](.216) -.508[.225](.217){.231}

-.50 .50 -.223[.353](.218) -.506[.234](.234){.232} .315[.237](.148) .463[.192](.184){.187}
.25 -.337[.263](.206) -.511[.286](.286){.275} .100[.227](.170) .287[.133](.125){.120}
.00 -.406[.202](.179) -.510[.227](.225){.224} -.099[.199](.173) -.068[.162](.154){.168}

-.25 -.454[.171](.165) -.506[.176](.174){.161} -.282[.183](.180) -.232[.191](.182){.196}
-.50 -.492[.155](.155) -.501[.135](.134){.147} -.453[.192](.186) -.458[.216](.206){.192}

250 .50 .50 .485[.104](.103) .487[.115](.114){.124} .464[.094](.087) .490[.114](.114){.113}
.25 .464[.080](.071) .500[.078](.078){.072} .256[.097](.097) .257[.108](.107){.103}
.00 .456[.073](.058) .496[.057](.057){.056} .052[.129](.118) -.016[.104](.104){.104}

-.25 .449[.073](.052) .498[.049](.049){.048} -.140[.162](.120) -.258[.106](.105){.110}
-.50 .445[.075](.051) .500[.044](.044){.044} -.326[.224](.141) -.506[.107](.107){.107}

-.50 .50 -.263[.274](.137) -.502[.174](.173){.180} .357[.168](.089) .489[.095](.094){.102}
.25 -.356[.186](.118) -.504[.145](.145){.146} .135[.151](.097) .253[.115](.113){.113}
.00 -.416[.134](.104) -.505[.126](.126){.126} -.067[.125](.106) -.020[.109](.105){.107}

-.25 -.455[.102](.091) -.502[.106](.105){.107} -.256[.108](.108) -.258[.105](.105){.104}
-.50 -.487[.084](.083) -.502[.103](.103){.106} -.432[.131](.112) -.508[.107](.106){.107}

500 .50 .50 .490[.075](.074) .498[.077](.077){.078} .470[.067](.060) .500[.080](.080){.080}
.25 .467[.057](.046) .500[.054](.054){.050} .261[.068](.067) .254[.088](.088){.087}
.00 .457[.060](.043) .500[.043](.043){.040} .057[.096](.078) -.010[.098](.097){.096}

-.25 .451[.061](.038) .500[.034](.034){.034} -.134[.145](.087) -.251[.108](.108){.108}
-.50 .448[.064](.037) .500[.030](.030){.031} -.317[.210](.103) -.501[.117](.116){.120}

-.50 .50 -.255[.267](.106) -.500[.131](.131){.135} .359[.156](.066) .500[.067](.065){.064}
.25 -.350[.172](.086) -.500[.106](.106){.108} .139[.132](.070) .254[.082](.082){.082}
.00 -.411[.114](.071) -.500[.090](.090){.089} -.063[.095](.071) -.001[.094](.093){.092}

-.25 -.454[.080](.065) -.500[.078](.077){.077} -.251[.074](.074) -.252[.106](.105){.106}
-.50 -.486[.060](.058) -.500[.071](.071){.071} -.426[.106](.076) -.501[.116](.115){.115}
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Table 4a. Empirical Sizes: Two-Sided Tests of H0 : β1 = β2 in FE1-SPD Model
Group Interaction, REG2, T = 3, σ = 1, λ = 0.5

n ρ Test 10% 5% 1% 10% 5% 1% 10% 5% 1%
Normal Errors Normal Mixture Lognormal Errors

50 .50 1 .1562 .0926 .0322 .1596 .0926 .0302 .1518 .0872 .0260
2 .1156 .0691 .0269 .1458 .0588 .0247 .1470 .0838 .0228

.25 1 .1634 .0998 .0370 .1624 .0972 .0332 .1592 .0936 .0232
2 .1255 .0694 .0303 .1445 .0903 .0268 .1476 .0803 .0202

.00 1 .1500 .0844 .0282 .1646 .0988 .0286 .1580 .0924 .0280
2 .1246 .0682 .0256 .1455 .0691 .0226 .1478 .0648 .0267

-.25 1 .1410 .0822 .0248 .1430 .0838 .0272 .1440 .0832 .0246
2 .1347 .0789 .0245 .1224 .0804 .0256 .1406 .0680 .0224

-.50 1 .1376 .0812 .0238 .1246 .0720 .0200 .1254 .0654 .0178
2 .1235 .0794 .0204 .1236 .0722 .0198 .1238 .0628 .0127

100 .50 1 .1530 .0916 .0290 .1462 .0900 .0272 .1478 .0844 .0226
2 .1023 .0732 .0203 .1026 .0672 .0202 .1228 .0627 .0145

.25 1 .1468 .0824 .0218 .1476 .0908 .0264 .1516 .0838 .0246
2 .1226 .0607 .0146 .1134 .0570 .0214 .1208 .0700 .0168

.00 1 .1352 .0780 .0242 .1252 .0698 .0180 .1358 .0752 .0190
2 .1126 .0688 .0128 .1114 .0628 .0168 .1226 .0646 .0168

-.25 1 .1170 .0654 .0166 .1206 .0648 .0160 .1188 .0632 .0134
2 .1138 .0564 .0107 .1178 .0618 .0144 .1106 .0622 .0128

-.50 1 .1102 .0624 .0178 .1128 .0584 .0156 .1210 .0578 .0122
2 .1146 .0678 .0129 .1127 .0606 .0167 .1246 .0626 .0124

250 .50 1 .1162 .0642 .0190 .1158 .0648 .0164 .1226 .0638 .0164
2 .1068 .0548 .0158 .1047 .0507 .0103 .1016 .0506 .0138

.25 1 .1236 .0634 .0152 .1174 .0618 .0166 .1184 .0636 .0144
2 .1122 .0567 .0123 .1047 .0558 .0136 .1098 .0507 .0116

.00 1 .1062 .0534 .0140 .1110 .0590 .0138 .1078 .0544 .0146
2 .1018 .0502 .0134 .1047 .0526 .0126 .1020 .0502 .0124

-.25 1 .1128 .0590 .0150 .1046 .0502 .0098 .1026 .0488 .0120
2 .1127 .0634 .0127 .1007 .0504 .0116 .1056 .0522 .0102

-.50 1 .0924 .0438 .0078 .0962 .0480 .0078 .0930 .0454 .0078
2 .1018 .0508 .0108 .1058 .0506 .0096 .1024 .0538 .0094

500 .50 1 .1214 .0646 .0150 .1126 .0578 .0132 .1176 .0596 .0124
2 .1049 .0588 .0102 .1004 .0498 .0114 .1009 .0494 .0101

.25 1 .1184 .0650 .0142 .1094 .0590 .0138 .1110 .0588 .0128
2 .1088 .0508 .0118 .0998 .0526 .0116 .1002 .0503 .0108

.00 1 .1110 .0614 .0142 .1118 .0534 .0108 .1114 .0552 .0124
2 .1026 .0528 .0103 .1048 .0522 .0098 .1028 .0536 .0106

-.25 1 .0972 .0480 .0100 .1006 .0520 .0108 .1076 .0558 .0094
2 .1003 .0508 .0112 .1005 .0546 .0122 .1088 .0569 .0106

-.50 1 .0894 .0430 .0076 .0900 .0446 .0082 .0946 .0442 .0074
2 .0996 .0514 .0096 .1014 .0522 .0104 .1046 .0504 .0102

1000 -.50 1 .0890 .0455 .0100 .0885 .0435 .0045 .0920 .0465 .0070
2 .1010 .0550 .0135 .1000 .0540 .0065 .1020 .0525 .0100

Tests: 1 = t test based on QMLE; 2 = t test based on AQSE∗.
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Table 4b. Empirical Sizes: Two-Sided Tests of H0 : β1 = β2 in FE1-SPD Model
Group Interaction, REG2, T = 3, σ = 1, λ = −0.5

n ρ Test 10% 5% 1% 10% 5% 1% 10% 5% 1%
Normal Errors Normal Mixture Lognormal Errors

50 .50 1 .1640 .1034 .0378 .1682 .1008 .0320 .1636 .0942 .0270
2 .1532 .0908 .0314 .1514 .0838 .0270 .1480 .0794 .0222

.25 1 .1680 .1044 .0374 .1668 .1000 .0314 .1606 .0944 .0296
2 .1522 .0940 .0326 .1546 .0914 .0250 .1494 .0822 .0260

.00 1 .1472 .0860 .0276 .1580 .0924 .0276 .1494 .0812 .0236
2 .1414 .0836 .0254 .1476 .0840 .0248 .1418 .0760 .0192

-.25 1 .1384 .0860 .0226 .1452 .0806 .0214 .1484 .0814 .0214
2 .1390 .0858 .0252 .1438 .0856 .0234 .1490 .0808 .0228

-.50 1 .1286 .0766 .0208 .1262 .0656 .0206 .1214 .0660 .0160
2 .1384 .0836 .0250 .1354 .0744 .0242 .1334 .0734 .0198

100 .50 1 .1464 .0834 .0248 .1420 .0780 .0258 .1492 .0852 .0216
2 .1320 .0726 .0192 .1262 .0672 .0214 .1334 .0738 .0190

.25 1 .1352 .0768 .0242 .1364 .0748 .0226 .1346 .0704 .0140
2 .1198 .0698 .0196 .1246 .0674 .0204 .1212 .0614 .0130

.00 1 .1256 .0656 .0168 .1228 .0708 .0180 .1220 .0630 .0156
2 .1216 .0634 .0176 .1202 .0668 .0170 .1168 .0602 .0150

-.25 1 .1184 .0608 .0128 .1094 .0598 .0164 .1060 .0540 .0126
2 .1226 .0656 .0160 .1192 .0670 .0194 .1134 .0596 .0150

-.50 1 .1014 .0516 .0138 .1062 .0544 .0118 .1004 .0516 .0108
2 .1212 .0638 .0184 .1220 .0680 .0186 .1186 .0630 .0168

250 .50 1 .1190 .0670 .0156 .1210 .0634 .0164 .1180 .0616 .0164
2 .1112 .0588 .0138 .1106 .0526 .0128 .1070 .0510 .0128

.25 1 .1122 .0624 .0178 .1148 .0572 .0120 .1200 .0668 .0110
2 .1086 .0572 .0166 .1102 .0542 .0104 .1150 .0598 .0106

.00 1 .1056 .0542 .0126 .1034 .0542 .0116 .1096 .0570 .0136
2 .1088 .0552 .0120 .1050 .0542 .0130 .1128 .0556 .0146

-.25 1 .1008 .0510 .0082 .0974 .0512 .0112 .1028 .0482 .0086
2 .1130 .0576 .0106 .1076 .0592 .0132 .1120 .0550 .0104

-.50 1 .0884 .0448 .0094 .0896 .0426 .0070 .0894 .0416 .0072
2 .1088 .0594 .0136 .1136 .0564 .0120 .1090 .0536 .0104

500 .50 1 .1194 .0668 .0168 .1094 .0566 .0126 .1174 .0610 .0114
2 .1088 .0578 .0136 .1010 .0480 .0104 .1094 .0538 .0082

.25 1 .1026 .0536 .0136 .1040 .0526 .0102 .1046 .0524 .0112
2 .0962 .0480 .0110 .0988 .0484 .0082 .0998 .0502 .0096

.00 1 .0974 .0530 .0092 .1080 .0570 .0108 .1028 .0550 .0120
2 .0998 .0544 .0096 .1102 .0604 .0104 .1038 .0552 .0124

-.25 1 .0966 .0466 .0100 .0874 .0428 .0094 .1010 .0494 .0086
2 .1068 .0532 .0126 .0978 .0500 .0112 .1110 .0558 .0112

-.50 1 .0868 .0422 .0080 .0832 .0404 .0066 .0802 .0388 .0060
2 .1096 .0552 .0130 .1014 .0540 .0100 .1032 .0504 .0114

1000 -.50 1 .0820 .0380 .0085 .0810 .0385 .0045 .0795 .0345 .0085
2 .1020 .0540 .0135 .1005 .0535 .0065 .1005 .0445 .0115

Tests: 1 = t test based on QMLE; 2 = t test based on AQSE∗.
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