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Abstract: This paper estimates the drift parameters in the fractional Vasicek model from a continuous
record of observations via maximum likelihood (ML). The asymptotic theory for the ML estimates
(MLE) is established in the stationary case, the explosive case, and the boundary case for the entire
range of the Hurst parameter, providing a complete treatment of asymptotic analysis. It is shown that
changing the sign of the persistence parameter changes the asymptotic theory for the MLE, including
the rate of convergence and the limiting distribution. It is also found that the asymptotic theory
depends on the value of the Hurst parameter.

Keywords: maximum likelihood estimate; fractional Vasicek model; asymptotic distribution;
stationary process; explosive process; boundary process

JEL Classification: C15; C22; C32

1. Introduction

Since Vasicek (1977) introduced a model to describe the evolution of short-term interest rates,
the so-called Vasicek model has enjoyed a wide range of applications. Jamshidian (1989) used it to
price bond options. Scott (1987) used it to model the evolution of the instantaneous volatility of stock
price and to price European call options.

Many extensions have been made to generalize the specification of Vasicek. For example, motivated
by the phenomenon of long-range dependence found in the data of hydrology, geophysics, climatology,
telecommunication, economics, and finance, the Brownian motion in the Vasicek model has been
replaced by a fractional Brownian motion (fBm), leading to the following fractional Vasicek
model (fVm):

dXt = κ (µ− Xt) dt + σdBH
t , (1)

where σ is a positive constant, µ, κ ∈ R, BH
t is an fBm with H ∈ (0, 1) being the Hurst parameter, and

X0 = op(
√

T) with op defined at the end of this section. An fBm BH
t is a zero mean Gaussian process,

defined on a complete probability space (Ω,F ,P), with the following covariance function:

E(BH
t BH

s ) =
1
2

(
|t|2H + |s|2H − |t− s|2H

)
. (2)

The process BH
t is self-similar in the sense that ∀a ∈ R+, BH

at
d
= aH BH

t . It becomes the standard
Brownian motion Wt when H = 1/2 and can be represented as a stochastic integral with respect to the
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standard Brownian motion. It is negatively correlated when 0 < H < 1/2. When 1/2 < H < 1, it has
long-range dependence in the sense that ∑∞

n=1 E
(

BH
1 (BH

n+1 − BH
n )
)
= ∞. In this case, the positive

(negative) increments are likely to be followed by positive (negative) increments. The parameter H,
which is also called the self-similarity parameter, measures the intensity of the long-range dependence.

Parameter κ is often referred to as the persistence parameter. When κ > 0, Xt is stationary
and ergodic. In this case, µ is the unconditional mean of Xt and κ is the mean-reversion parameter.
When κ < 0, Xt is explosive and hence non-ergodic. When κ = 0, Xt is the boundary case, and the drift
term κ (µ− Xt) dt disappears. Therefore, µ is superfluous in this case. The ergodic fVm was used to
model the evolution of instantaneous volatility in Comte and Renault (1998), the evolution of quadratic
variation in Aït-Sahalia and Mancini (2008), and the evolution of realized variance in Gatheral et al.
(2018). The explosive fVm was used to model the NASDAQ index in Lui et al. (2020). The explosive
OU was used to model the log real estate price in Chen et al. (2017).

An alternative to and perhaps slightly more general specification than Model (1) is:

dXt = (α− κXt) dt + σdBH
t . (3)

In Model (3), even when κ = 0, the drift term does not vanish, and it is αdt. This alternative
specification for the drift term was used in Chan et al. (1992) and Yu and Phillips (2001). When α

in (3) is known (without loss of generality, it is assumed to be zero), (3) becomes the fractional
Ornstein–Uhlenbeck (fOU) process. A unique path-wise solution to the stochastic differential equation
in (3) is:

Xt = e−κtX0 +
α

κ

(
1− e−κt)+ σ

∫ t

0
e−κ(t−s)dBH

s , (4)

where the stochastic integral,
∫ t

0 e−κ(t−s)dBH
s , is the path-wise Riemann–Stieltjes integral, and the

solution is unique (Proposition A.1 in Cheridito et al. 2003).
Assuming that a continuous record of observations is available for Xt with t ∈ [0, T], a number of

studies have introduced methods to estimate κ and α (or µ) and developed asymptotic distributions for
the proposed estimators under the scheme of T → ∞.1 When H > 1/2 and κ > 0, borrowing the idea of
Hu and Nualart (2010) and Hu et al. (2019), Xiao and Yu (2019a) considered the ergodic-type estimates
of κ and µ. Xiao and Yu (2019b) extended the results of Xiao and Yu (2019a) from the case where
H ∈ (1/2, 1) to where H ∈ (0, 1/2). Assuming κ > 0 and H > 1/2, Nourdin and Tran (2019) extended
the results of Xiao and Yu (2019a, 2019b) to a model where the fBm is replaced with a Hermite process.
Using the Malliavin calculus, Es-Sebaiy and Viens (2019) studied the estimation problem for the drift
parameter for some stochastic differential equations driven by fBm. Lohvinenko and Ralchenko (2017)
considered the maximum likelihood (ML) estimates of κ and α when κ > 0 and H ∈ (1/2, 1). Moreover,
Lohvinenko and Ralchenko (2019) considered the maximum likelihood (ML) estimates of κ and α

when κ < 0 and H ∈ (1/2, 1).
Our paper also focuses on the MLE of κ and α. We aim to develop the asymptotic distributions for

the MLE of κ and α under the following scenarios: (1) κ > 0 and H ∈ (0, 1/2]; (2) κ = 0 and H ∈ (0, 1);
(3) κ < 0 and H ∈ (0, 1). Therefore, together with Lohvinenko and Ralchenko (2017), a complete
coverage of asymptotic theory for all possible cases is provided to the MLE of κ and α.

Other estimation methods and alternative sampling schemes are possible. A recent study by
Ng and Wirjanto (2019) investigated the bias property of the least squares estimator (LS) of κ based on
discrete-sampled data. It is shown that the bias depends on the Hurst parameter and the true value of
κ. While the assumption of a continuous-time record is practically too strong, it allows us to obtain the
ML estimates in closed-form. Moreover, the results obtained in our paper will serve as the benchmark
for those based on discrete-sampled data.

1 When a continuous record of observations is available, H and σ can be recovered without estimation errors.
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Several recent applications of Model (1) can be found in economics and finance. Gatheral et al. (2018)
assumed κ = 0 and found the evidence of H < 1/2 in the log realized volatility (RV) of a DAX
contract, the Bund futures contract, the S&P 500 index, and the NASDAQ index. Bennedsen et al.
(2017) documented the evidence of H < 1/2 in the log RV of a large number of U.S. equities. Wang et
al. (2019) found the evidence of κ > 0 and H < 1/2 in the log RV, the realized kernel and bipower
variation of the S&P500, NASDAQ, and DJIA, and in the log RV of three exchange rates. Fukasawa
et al. (2019) found the log RV of several stock indices indicating that H is smaller than 0.1. Lui et al.
(2020) reported the evidence of κ < 0 and H < 1/2 in the S&P500 in the 1990s. Unfortunately, none of
these empirical studies used the ML method to estimate κ.

The rest of the paper is organized as follows. Section 2 introduces the MLE of κ and α. Section 3
is devoted to the asymptotic theory for the stationary case (i.e., κ > 0), but H ∈ (0, 1/2]. Section 4
studies the asymptotic properties of the MLE in the boundary case (i.e., κ = 0) and for the entire
range for the Hurst parameter H ∈ (0, 1). In Section 5, we establish the asymptotic behaviors of the
MLE for the non-ergodic case (i.e., κ < 0) and for the entire range for the Hurst parameter H ∈ (0, 1).
Section 6 contains some concluding remarks and gives directions for further research. All the proofs
are collected in Appendix A.

We use the following notations throughout the paper: O, o, Op, op,
p→, a.s→, d→, and ∼ denote

the same order, the smaller order, the same order in probability, the smaller order in probability,
convergence in probability, convergence almost surely, convergence in the distribution, and asymptotic
equivalence, respectively, as T → ∞. Throughout this paper, the constant C only depends on H,
whose values can differ at different places.

2. ML Estimation

Following Kleptsyna et al. (2000), by applying the Girsanov theorem for the fBm developed in
Norros et al. (1999), one can get the expression for the continuous-record log-likelihood function for
Model (3) as follows:

`(κ, α) =
∫ T

0
QH(t)dMH

t +
1
2

∫ T

0
(QH(t))

2 dωH
t ,

where:

QH (t) =
1
σ

d
dωH

t

∫ t

0
kH (t, s) (α− κXs) ds , (5)

kH (t, s) =
1

kH
(s (t− s))

1
2−H , kH = 2HΓ

(
3
2
− H

)
Γ
(

H +
1
2

)
, (6)

ωH
t =

1
λH

t2−2H , (7)

λH =
2HΓ (3− 2H) Γ

(
H + 1

2

)
Γ
( 3

2 − H
) , (8)

MH
t =

∫ t

0
kH(t, s)dBH

s . (9)

Taking the derivatives of the log-likelihood function with respect to κ and α and setting them to zero,
Lohvinenko and Ralchenko (2017) obtained the following expressions for the MLE of α and κ:

α̃T =
ST
∫ T

0 P2
H (t) dωH

t −
∫ T

0 PH (t) dSt
∫ T

0 PH (t) dωH
t

ωH
T
∫ T

0 P2
H (t) dωH

t −
(∫ T

0 PH (t) dωH
t

)2 σ , (10)

κ̃T =
ST
∫ T

0 PH (t) dωH
t −ωH

T
∫ T

0 PH (t) dSt

ωH
T
∫ T

0 P2
H (t) dωH

t −
(∫ T

0 PH (t) dωH
t

)2 , (11)



Econometrics 2020, 8, 32 4 of 28

where:

St =
1
σ

∫ t

0
kH (t, s) dXs , (12)

PH (t) =
1
σ

d
dωH

t

∫ t

0
kH (t, s) Xsds , (13)

Combining (3) and (6) with (13), we deduce that:

PH (t) =
1
σ

α

κ
+

1
σ

(
X0 −

α

κ

)
VH (t) + P̃H (t) , (14)

where:

VH (t) =
d

dωH
t

∫ t

0
kH (t, s) e−κsds , (15)

P̃H (t) =
d

dωH
t

∫ t

0
kH (t, s)Usds , (16)

Ut =
∫ t

0
e−κ(t−s)dBH

s . (17)

Using the idea of Kleptsyna and Le Breton (2002), Lohvinenko and Ralchenko (2017) obtained the
following results:

QH (t) =
α

σ
− κPH (t) , (18)

St =
∫ t

0
QH (s) dωH

s + MH
t =

α

σ
ωH

t − κ
∫ t

0
PH (s) dωH

s + MH
t , (19)

dSt =
α

σ
dωH

t − κPH (t) dωH
t + dMH

t . (20)

The process MH
t , the so-called fundamental martingale, is a Gaussian martingale with the variance

function being ωH
t . Moreover, the natural filtration of the martingale MH coincides with the natural

filtration of the fBm. Based on (19) and (20), the MLE of α and κ can be represented as:

α̃T = α +
MH

T
∫ T

0 P2
H (t) dωH

t −
∫ T

0 PH (t) dMH
t
∫ T

0 PH (t) dωH
t

ωH
T
∫ T

0 P2
H (t) dωH

t −
(∫ T

0 PH (t) dωH
t

)2 σ , (21)

κ̃T = κ +
MH

T
∫ T

0 PH (t) dωH
t −ωH

T
∫ T

0 PH (t) dMH
t

ωH
T
∫ T

0 P2
H (t) dωH

t −
(∫ T

0 PH (t) dωH
t

)2 , (22)

When a continuous record of observations of Xt is available, Lohvinenko and Ralchenko (2017)
studied the consistency and the asymptotic normality of the MLE defined by (10) and (11) when
H > 1/2 and κ > 0. The goal of the present paper is to establish the asymptotic theory for the MLE of
α and κ for all the other cases, including H < 1/2 and κ > 0, H ∈ (0, 1) and κ = 0, and H ∈ (0, 1) and
κ < 0.

3. Asymptotic Theory When κ > 0

In this section, inspired by Lohvinenko and Ralchenko (2017), we extend the asymptotic
properties of α̃T and κ̃T from the case of H ∈ (1/2, 1) to the case of H ∈ (0, 1/2]. For the sake
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of comparison, we first introduce the main result of Lohvinenko and Ralchenko (2017). When H > 1/2,
Lohvinenko and Ralchenko (2017) obtained the asymptotic normality for the MLE of α and κ, i.e.,

T1−H (α̃T − α)
d→ N

(
0, λHσ2

)
, (23)

√
T (κ̃T − κ)

d→ N (0, 2κ) . (24)

Remark 1. We can use the ergodic property to estimate α and κ (denoted by α̂HN and κ̂HN , respectively).
Following the idea of Equation (1.3) in Nourdin and Tran (2019) or Equations (2.9) and (2.10) in
Xiao and Yu (2019a), we can easily obtain the following results by the ergodic theorem:

1
T
∫ T

0 Xtdt a.s.→ α
κ ,

1
T
∫ T

0 X2
t dt a.s.→ σ2κ−2H HΓ (2H) +

(
1
T
∫ T

0 Xtdt
)2

.

Solving these two equations for α and κ, we obtain the ergodic-type estimators of κ and µ as:

α̂HN =
1
T

∫ T

0
Xtdt

 1
T
∫ T

0 X2
t dt−

(
1
T
∫ T

0 Xtdt
)2

σ2HΓ (2H)


−1/(2H)

, (25)

κ̂HN =

 1
T
∫ T

0 X2
t dt−

(
1
T
∫ T

0 Xtdt
)2

σ2HΓ (2H)


−1/(2H)

. (26)

with H > 1/2.
Using Theorem 1.3 in Nourdin and Tran (2019) or Theorem 3.3 in Xiao and Yu (2019a), we can

easily obtain:

T1−H (α̂HN − α)
d→ N

(
0, σ2

)
, (27)

for 1/2 < H < 1 and: √
T (κ̂HN − κ)

d→ N (0, κφH) , (28)

for 1/2 < H < 3/4 and φH = 4H−1
4H2

[
1 + Γ(3−4H)Γ(4H−1)

Γ(2−2H)Γ(2H)

]
.

Similarly, using Theorem 1.3 in Nourdin and Tran (2019) or Theorem 3.3 in Xiao and Yu (2019a),
we can obtain: √

T
log(T)

(κ̂HN − κ)
d→ N

(
0,

16κ

9π

)
, (29)

for H = 3/4.
Using Theorem 1.3 in Nourdin and Tran (2019) or Theorem 3.3 in Xiao and Yu (2019a), again, for H ∈

(3/4, 1), we have:

T2−2H (κ̂HN − κ)
L−→ −κ2H−1

HΓ(2H + 1)
R(H) ,

where R(H) is the Rosenblatt distribution with E [R (H)] = 2H2 (2H − 1) / (4H − 3).
Comparing (23) with (27), we can see that the convergence rate of α̃T is the same as that of α̂HN . However,

α̃T is more efficient than α̂HN because of λH < 1 for H ∈ (1/2, 1). Similarly, comparing (24) with (28), we can
see that the convergence rate of κ̃T is the same as that of κ̂HN when H ∈ (1/2, 3/4). In this case, the asymptotic
variance of κ̂HN depends on H while the asymptotic variance of κ̃T is always 2κ. Since φH > 2, κ̃T is more
efficient than κ̂HN . When H = 3/4, the convergence rate of κ̂HN is slower than that of κ̃T . Let us also mention
that κ̂HN is asymptotically more efficient than the LS estimator of κ when H ∈ (1/2, 1); see Xiao and Yu (2019a)
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for details about the LS estimator of κ. When H = 1/2, κ̂HN and the LS estimator of κ are asymptotically
equivalent. For more comparison of the LS estimator and MLE, see Tanaka (2020).

The objective of this section is to obtain the consistency and the asymptotic normality of α̃T and
κ̃T when H ∈ (0, 1/2]. Since the asymptotic laws of α̃T are different when H ∈ (0, 1/2) from those
when H = 1/2, we need to treat them separately.

3.1. Asymptotic Theory When H ∈ (0, 1/2)

Before presenting the asymptotic properties of α̃T and κ̃T for H ∈ (0, 1/2), we first state a useful
technical lemma.

Lemma 1. For κ > 0 and H ∈ (0, 1) in Model (3), as T → ∞, we have:

VH (T) = O
(

TH− 3
2

)
, (30)∫ T

0
VH (t) dωH

t = O
(

T
1
2−H

)
, (31)∫ T

0
P̃H (t) dMH

t = Op

(√
T
)

, (32)∫ T

0
P̃2

H (t) dωH
t = Op (T) , (33)∫ T

0
V2

H (t) dωH
t = O (1) , (34)∫ T

0
P̃H (t) dωH

t = Op

(
T1−H

)
, (35)∫ T

0
VH (t) P̃H (t) dωH

t = Op

(√
T
)

(36)∫ T

0
VH (t) dMH

t = Op (1) . (37)

We can now describe the asymptotic laws of α̃T and κ̃T as T → ∞.

Theorem 1. For κ > 0 and H ∈ (0, 1/2) in Model (3), as T → ∞, we have:

√
T (α̃T − α)

d→ N
(

0,
2α2

κ

)
, (38)

√
T (κ̃T − κ)

d→ N (0, 2κ) . (39)

Remark 2. Comparing the asymptotic theory with that obtained in Lohvinenko and Ralchenko (2017),
the asymptotic normality continues to hold for both estimators. Moreover, comparing (39) with (24), we
can see that the asymptotic theory for κ̃T is the same regardless of H ∈ (0, 1/2) or H ∈ (1/2, 1). Comparing
(38) with (23), we can see that the asymptotic variance of α̃T depends on H. The asymptotic variance is λHσ2

with the consistency order T1−H if H ∈ (1/2, 1), whereas it does not depend on H with the consistency order√
T as T becomes large if H ∈ (0, 1/2).

Remark 3. The asymptotic theory for the MLE of κ in the fOU when H ∈ (0, 1/2) has been developed in the
literature; see, for example, Theorem 2 in Brouste and Kleptsyna (2010). It is the same as in (39). Therefore,
having to estimate an additional parameter α, there is no efficiency loss in estimating κ asymptotically.



Econometrics 2020, 8, 32 7 of 28

Remark 4. Following Hu et al. (2019), Xiao and Yu (2019b) considered the ergodic-type estimate of κ defined
in (25) when 0 < H < 1/2 and showed that:

√
T (κ̂HN − κ)

d→ N
(

0, κδ2
HN

)
, (40)

where δ2
HN = 1

4H2

[
(4H − 1) + 2Γ(2−4H)Γ(4H)

Γ(2H)Γ(1−2H)

]
. Figure 1 compares the asymptotic variances of κ̃T and κ̂HN

by plotting δ2
HN against twofor H ∈ (0, 1/2). It can be seen that κ̃T is more efficient than κ̂HN . The smaller

H is, the larger the relative asymptotic efficiency in κ̃T . The two estimators have the same asymptotic variance
when H = 1/2.

0 0.1 0.2 0.3 0.4 0.5

Value of H

1.5

2.5

3.5

4.5

5

HN

2

2

Figure 1. Plots of δ2
HN against two as functions of H.

Remark 5. Using the Taylor expansion and Theorem 3.2 of Xiao and Yu (2019b), we can easily obtain that for
0 < H < 1/2:

√
T (α̂HN − α)

d→ N
(

0,
α2

κ
δ2

HN

)
. (41)

Comparing (38) with (41), we can see that α̃T and α̂HN share the same convergence rate. However, α̃T is
more efficient than α̂HN because δ2

HN < 2 for H ∈ (0, 1/2).

3.2. Asymptotic Theory When H = 1/2

When H = 1/2, B1/2
t = Wt, which is a standard Brownian motion, and the fVm becomes the

standard Vasicek model. In this case, it can be shown that fundamental martingale MH
t becomes

a standard Brownian motion. Consequently, the MLE reduces to the LS estimates and can be
rewritten as:

α̃T =
XT
∫ T

0 X2
t dt−

∫ T
0 Xtdt

∫ T
0 XtdXt

T
∫ T

0 X2
t dt−

(∫ T
0 Xtdt

)2 , (42)

κ̃T =
XT
∫ T

0 Xtdt− T
∫ T

0 XtdXt

T
∫ T

0 X2
t dt−

(∫ T
0 Xtdt

)2 , (43)

where the stochastic integration
∫ T

0 XtdXt is interpreted as an Itô integral. The asymptotic theory in (42)
and (43) has been studied in the literature; see, for example, Kubilius et al. (2018) and Kutoyants (2004).
From page 64 of Kutoyants (2004), we can easily show that α̃T and κ̃T are consistent and asymptotically
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normally distributed. Hence, we only provide the asymptotic laws of α̃T and κ̃T for H = 1/2
without proof.

Theorem 2. For κ > 0 and H = 1/2 in Model (3), as T → ∞, we have:

√
T (α̃T − α)

d→ N
(

0, σ2 +
2α2

κ

)
, (44)

√
T (κ̃T − κ)

d→ N (0, 2κ) . (45)

Remark 6. When α 6= 0, we can summarize the three sets of asymptotic theory for the MLE of α as follows:

If H ∈ (0, 1/2),
√

T (α̃T − α)
d→ N

(
0,

2α2

κ

)
,

If H =1/2,
√

T (α̃T − α)
d→ N

(
0, σ2 +

2α2

κ

)
,

If H ∈ (1/2, 1), T1−H (α̃T − α)
d→ N

(
0, λHσ2

)
,

where the last asymptotic theory was obtained in Theorem 3.4 of Lohvinenko and Ralchenko (2017). While the
three sets of asymptotic theory for κ̃T are identical, the three sets of asymptotic theory for α̃T are different.
When H changes from a value in (0, 1/2) to 1/2, while the rate of convergence stays the same (i.e.,

√
T),

the asymptotic variance changes from 2α2

κ to σ2 + 2α2

κ . When H changes from a value in (0, 1/2] to (1/2, 1),
both the rate of convergence and the asymptotic variance change.

Remark 7. When α is known and assumed to be zero and H = 1/2, the asymptotic theory for the MLE of κ

was obtained in Brown and Hewitt (1975) and in Feigin (1976). The two sets of asymptotic theory are the same,
suggesting that there is no efficiency loss in estimating κ when α is estimated or not.

4. Asymptotic Theory When κ = 0

In this section, we consider the asymptotic laws of α̃T and κ̃T for the entire range for the Hurst
parameter, i.e., H ∈ (0, 1). Note that when κ = 0, we have:

Xt = X0 + αt + σBH
t . (46)

For the model dUt = −κUtdt + dBH
t , it is well known that the MLE of κ can be expressed as:

κ̂T − κ =
−
∫ T

0 P̂H (t) dMH
t∫ T

0 P̂2
H (t) dωH

t

, (47)

where P̂H (t) = d
dωH

t

∫ t
0 kH (t, s) BH

s ds.

Before considering the asymptotic properties of α̃T and κ̃T , we first introduce a lemma, which will
be used to derive the asymptotic theory.

Lemma 2. For κ = 0 and H ∈ (0, 1) in Model (1), as T → ∞, we have:
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∫ T

0
P̂H (t) dMH

t = Op (T) , (48)∫ T

0
P̂2

H (t) dωH
t = Op

(
T2
)

, (49)∫ T

0
tdωH

t =
1

λH

2− 2H
3− 2H

T3−2H , (50)∫ T

0
t2dωH

t =
1

λH

1− H
2− H

T4−2H , (51)∫ T

0
P̂H (t) dωH

t = Op

(
T2−H

)
, (52)∫ T

0
tP̂H (t) dωH

t = Op

(
T3−H

)
, (53)

VH (T) =
λH
kH

B
(

3
2
− H,

3
2
− H

)
, (54)

d
dωH

t

∫ t

0
kH (t, s) sds = aHt , (55)

where B(·, ·) is the Beta function, λH is defined by (8), and aH = 3−2H
4(1−H)

.

We can now describe the asymptotic behavior of α̃T and κ̃T as T → ∞.

Theorem 3. For κ = 0, α 6= 0, and H ∈ (0, 1) in Model (1), as T → ∞, we have:

T1−H (α̃T − α)
d→ N

(
0, σ2ρH

)
, (56)

T2−H (κ̃T − κ)
d→ N

(
0,

σ2

α2 φH

)
, (57)

where ρH = λH (3− 2H)2, φH =
32H(1−H)(2−H)Γ(3−2H)Γ(H+ 1

2 )

Γ( 3
2−H)

and λH is defined by (8).

Remark 8. In the case of H = 1/2 and α 6= 0, we can see that Xt = X0 + αt + σWt. A straightforward
algebraic calculation shows ωH

t = t, PH (t) = 1
σ Xt, MH

T = Wt, P̂H(t) = Wt and that:

1
T3

∫ T

0
X2

t dt =
α2

3
+ op(1) , (58)

1
T2

∫ T

0
Xtdt =

α

2
+ op(1) , (59)

1
T
√

T

∫ T

0
XtdWt =

α

T
√

T

∫ T

0
tdWt + op(1) . (60)

Then, by the scaling properties of the Brownian motion, (21) and (58)–(60), we deduce that:
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√
T (α̃T − α) =

√
T

WT
∫ T

0 X2
t dt−

∫ T
0 XtdWt

∫ T
0 Xtdt

T
∫ T

0 X2
t dt−

(∫ T
0 Xtdt

)2 σ


=
√

T

 1√
T

1√
T

WT
1

T3

∫ T
0 X2

t dt− 1
T
√

T

∫ T
0 XtdWt

1
T2

∫ T
0 Xtdt

1
T3

∫ T
0 X2

t dt−
(

1
T2

∫ T
0 Xtdt

)2 σ


=

α2

3
WT√

T
− α2

2
1

T
√

T

∫ T
0 tdWt + op(1)

α2

3 −
(

α
2
)2

+ op(1)
σ

= 12σ

(
WT

3
√

T
− 1

2T
√

T

∫ T

0
tdWt

)
+ op(1)

d→ N
(

0, 4σ2
)

,

which is identical to (56) with H = 1/2. Moreover, using (22) and (58)–(60), we can write:

T
√

T (κ̃T − κ) = T
√

T


(

WT
∫ T

0 Xtdt− T
∫ T

0 XtdWt

)
σ

T
∫ T

0 X2
t dt−

(∫ T
0 Xtdt

)2


=

[
WT√

T
1

T2

∫ T
0 Xtdt− 1

T
√

T

∫ T
0 XtdWt

]
σ

1
T3

∫ T
0 X2

t dt−
(

1
T2

∫ T
0 Xtdt

)2

d→ N
(

0,
12σ2

α2

)
,

which is identical to (57) with H = 1/2 being assumed.

Remark 9. In the case of H = 1/2 and α = 0, with α and κ being estimated, by the scaling properties of the
Brownian motion, we have:

√
T (α̃T − α)

d→
W1

(∫ 1
0 Wtdt

)2
−
∫ 1

0 Wtdt
∫ 1

0 WtdWt∫ 1
0 W2

t dt−
(∫ 1

0 Wtdt
)2 σ ,

T (κ̃T − κ)
d→

W1
∫ 1

0 Wtdt−
∫ 1

0 WtdWt∫ 1
0 W2

t dt−
(∫ 1

0 Wtdt
)2 .

Thus, the limiting distributions of α̃T and κ̃T are not normal. In particular, the asymptotic distribution of κ̃T is a
Dickey–Fuller–Phillips-type distribution with the rate of convergence being T. Hence, when κ = 0 is unknown,
the value of α plays an important role in the study of asymptotic laws for the MLE.

5. Asymptotic Theory When κ < 0

When κ < 0, the model given by (3) is non-ergodic or explosive. Since the proofs of the asymptotic
theory of α̃T and κ̃T when H = 1/2 are different from those when H ∈ (0, 1/2) ∪ (1/2, 1), we first
consider the case of H = 1/2. For the sake of notational simplicity, we introduce the process ξt =

σ
∫ t

0 eκsdWs ∼ N
(

0,
σ2(e2κt−1)

2κ

)
for t ≥ 0. Obviously, ξ∞ ∼ N

(
0,− σ2

2κ

)
. Moreover, using (17) and the

definition of ξt, we can easily obtain:
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σeκT
∫ T

0
Utdt = eκT

∫ T

0
e−κtξtdt

p→ − ξ∞

κ
, (61)

σe2κT
∫ T

0
e−κtUtdt

p→ − ξ∞

2κ
. (62)

Since E
[(∫ T

0 eκ(T−t)dWt

)2
]
= e2κT ∫ T

0 e−2κtdt = e2κT−1
2κ , we can obtain:

∫ T

0
eκ(T−t)dWt = Op(1) . (63)

Moreover, let ηt = σ
∫ t

0 eκ(t−s)dWs be a zero mean Gaussian process. Since E
[
η2

t
]

=

σ2
∫ t

0 e2κ(t−s)ds = − σ2

2κ + σ2

2κ e2κt, we have η∞ ∼ N
(

0,− σ2

2κ

)
. Consequently, we can obtain:

σ
∫ T

0
eκ(T−t)ξtdWt

p→ ξ∞η∞ , (64)

where ξ∞ and η∞ are two independent N(0,−σ2/(2κ)) random variables.

5.1. Asymptotic Theory When H = 1/2

Now, we can state the key results of the asymptotic theory for α̃T and κ̃T when H = 1/2.

Theorem 4. For κ < 0, H = 1/2 in Model (1), as T → ∞, we have:

√
T (α̃T − α)

d→ N
(

0, σ2
)

, (65)

e−κT

2κ
(κ̃T − κ)

d→ η∞

X0 − α
κ + ξ∞

, (66)

where ξ∞ and η∞ are two independent N (0,−σ2/(2κ)) random variables.

Remark 10. In (66), if we set X0 = α
κ , the limiting distribution of e−κT

2κ (κ̃T − κ) becomes a standard Cauchy
variate. This limiting distribution is the same as that in the Vasicek model driven by a standard Brownian
motion (see, e.g., Feigin 1976). The asymptotic theory in (66) is similar to that in the explosive discrete-time
and continuous-time models when discretely-sampled data are available (see, e.g., White 1958; Anderson 1959;
Phillips and Magdalinos 2007; Wang and Yu 2015, 2016).

5.2. Asymptotic Theory When H ∈ (0, 1/2) ∪ (1/2, 1)

We now turn to the case when H ∈ (0, 1/2) ∪ (1/2, 1) assuming κ < 0. The limiting theory is the
most difficult to derive in our paper and, hence, is the main technical contribution to the literature.
First, we can have the following lemma.

Lemma 3. For κ < 0 and H ∈ (0, 1) in Model (1), we have:
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VH (t) = O
(

tH− 1
2 e−κt

)
, (67)∫ T

0
P̃2

H (t) dωH
t = Op

(
e−2κT

)
, (68)∫ T

0
P̃H (t) dMH

t = Op

(
e−κT

)
, (69)∫ T

0
VH (t) dωH

t = O
(

T
1
2−He−κT

)
, (70)∫ T

0
P̃H (t) dωH

t = Op

(
e−κTT

1
2−H

)
, (71)∫ T

0
V2

H (t) dωH
t = O

(
e−2κT

)
, (72)∫ T

0
VH (t) P̃H (t) dωH

t = Op

(
e−2κT

)
, (73)∫ T

0
VH (t) dMH

t = Op

(
e−κT

)
. (74)

Now, we can state the asymptotic theory for α̃T and κ̃T for κ < 0 and H ∈ (0, 1/2) ∪ (1/2, 1).

Theorem 5. When κ < 0, H ∈ (0, 1/2) ∪ (1/2, 1), and X0 = α
κ in Model (1), as T → ∞, we have:

T1−H (α̃T − α)
d→ N

(
0, λHσ2

)
, (75)

e−κT

2κ
(κ̃T − κ)

d→ X
√

sin (πH)

Y
, (76)

where X and Y are two independent N (0, 1) random variables.

Remark 11. For the entire range of H ∈ (0, 1), the asymptotic distribution of α̃T is normal with the rate
of convergence of T1−H and variance σ2. This asymptotic distribution is the same as that of the LS estimate
(see Theorem 3.5 in Xiao and Yu (2019a) and Section 3 in Xiao and Yu (2019b)).

Remark 12. According to (76), the asymptotic law of e−κT

2κ (κ̃T − κ) is the standard Cauchy times
√

sin (πH).
For H ∈ (0, 1/2) ∪ (1/2, 1),

√
sin (πH) ∈ (0, 1), suggesting that as H draws further away from 1/2, κ is

estimated with higher accuracy. Moreover, with X0 = α
κ , from Theorem 3.5 in Xiao and Yu (2019a, 2019b), we

can see that the LS estimator of κ, which is denoted by κ̂LS, has the asymptotic law e−κT

2κ (κ̂LS − κ)
d→ C, where

C is the standard Cauchy distribution. Since the second moment of the Cauchy distribution is infinite, we cannot
use the variances to measure the asymptotic relative efficiency. From Theorem 2 in Tanaka (2020) and based
on the asymptotic concentration probability, we can see that the MLE is always more efficient asymptotically
than the LS estimator for H ∈ (0, 0.5) ∪ (0.5, 1). For H = 1/2, the MLE is asymptotically the same as the LS
estimator.

Remark 13. When X0 6= α
κ , using Lemma 3, we can obtain:

e−κT

2κ
(κ̃T − κ) =

−2κeκT ∫ T
0

[
1
σ

(
X0 − α

κ

)
VH (t) + P̃H (t)

]
dMH

t + op(1)

4κ2e2κT
∫ T

0

[
1
σ

(
X0 − α

κ

)
VH (t) + P̃H (t)

]2
dωH

t + op(1)
.

In this case, to obtain the asymptotic distribution of e−κT (κ̃T − κ) /(2κ), one needs to calculate the

Laplace transform of
∫ T

0

[
1
σ

(
X0 − α

κ

)
VH (t) + P̃H (t)

]2
dωH

t . On the other hand, for 1/2 < H <

1, using the moment generating function of ST ,
∫ T

0 P2
H (t) dωH

t ,
∫ T

0 PH (t) dSt, and
∫ T

0 PH (t) dωH
t ,
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Lohvinenko and Ralchenko (2019) provided the joint asymptotic normality of MLE of the vector parameter (α, κ):

(
T1−H (α̃T − α)

e−κT (κ̃T − κ)

)
d→

(
ϑ1

ϑ2/ϑ3

)
,

where ϑ1
d→ N

(
0, λHσ2), ϑ2

d→ N (0, 1), and ϑ3
d→ N

(
(x0− α

κ )
√

λHρH(−κ)H−1
√

π(4−4H)
, 1

4κ2 sin(πH)

)
, which

generalizes (76) for particular X0 = α/κ.

6. Concluding Remarks and Future Directions

The fVm has found more and more applications in practice. In this paper, we consider the MLE of
parameters in the drift term when a continuous record of observations is available. The ML estimation
is made possible due to the presence of the fundamental martingale and the generalized Girsanov
theorem. The asymptotic theory is based on the assumption that T → ∞.

It is shown that the MLE of α is asymptotically normal regardless of the sign of κ. However,
the asymptotic law of the MLE of κ critically depends on the sign of κ. More precisely, when κ > 0 and
H ∈ (0, 1), we have shown that the asymptotic distribution of the MLE of κ is normal with the rate of
convergence being

√
T. The asymptotic variance is 2κ, which is independent of H. When κ = 0 and

α 6= 0, the asymptotic distribution of the MLE of κ is normal with the rate of convergence being T2−H .
The asymptotic variance depends on H. When κ = 0 and α = 0, the asymptotic distribution of the
MLE of κ is a Dickey–Fuller–Phillips distribution with the rate of convergence being T. When κ < 0,
it is shown that the limiting distribution is a Cauchy-type with the rate of convergence being e−κT .
If one further assumes that X0 = α/κ, the limiting distribution becomes a standard Cauchy variate
multiplied by

√
sin(πH). Table 1 summarizes the asymptotic laws of α̃T and κ̃T for different ranges

of H and κ, where λH =
2HΓ(3−2H)Γ(H+ 1

2 )
Γ( 3

2−H)
, ρH = λH (3− 2H)2, φH =

32H(1−H)(2−H)Γ(3−2H)Γ(H+ 1
2 )

Γ( 3
2−H)

,

ξ∞, and η∞ are two independent N (0,−σ2/(2κ)) random variables and X and Y are two independent
N (0, 1) random variables. Moreover, we assume X0 = α/κ for κ < 0 and H ∈ (0, 1/2) ∪ (1/2, 1).

Table 1. Summary of the asymptotic laws of α̃T and κ̃T for different ranges of H and κ.

0 < H < 1/2 H = 1/2 1/2 < H < 1

κ > 0
√

T (α̃T − α)
d→ N

(
0, 2α2

κ

) √
T (α̃T − α)

d→ N
(

0, σ2 + 2α2

κ

)
T1−H (α̃T − α)

d→ N
(
0, λHσ2)

√
T (κ̃T − κ)

d→ N (0, 2κ)
√

T (κ̃T − κ)
d→ N (0, 2κ)

√
T (κ̃T − κ)

d→ N (0, 2κ)

κ = 0 T1−H (α̃T − α)
d→ N

(
0, σ2ρH

) √
T (α̃T − α)

d→ N
(
0, 4σ2) T1−H (α̃T − α)

d→ N
(
0, σ2ρH

)
T2−H (κ̃T − κ)

d→ N
(

0, σ2

α2 φH

)
T3/2 (κ̃T − κ)

d→ N
(

0, 12σ2

α2

)
T2−H (κ̃T − κ)

d→ N
(

0, σ2

α2 φH

)
κ < 0 T1−H (α̃T − α)

d→ N
(
0, λHσ2) √

T (α̃T − α)
d→ N

(
0, σ2) T1−H (α̃T − α)

d→ N
(
0, λHσ2)

e−κT

2κ (κ̃T − κ)
d→ X
√

sin(πH)
Y

e−κT

2κ (κ̃T − κ)
d→ η∞

X0− α
κ +ξ∞

e−κT

2κ (κ̃T − κ)
d→ X
√

sin(πH)
Y

This study also suggests several important directions for future research. First, it is worth
investigating generalizing the results in this paper to nonlinear stochastic differential equations driven
by the fBm. The ergodic theorem, fractional calculus, and Malliavin calculus will be employed for
obtaining the asymptotic properties of both the MLE and the LS estimators.

Second, in this paper, H and σ are assumed to be known. In practice, both H and σ are almost
always unknown. Although many approaches have been proposed to estimate the Hurst coefficient
and the volatility parameter from discrete time observations, how to estimate H and σ in fVm with
a continuous record of observations is an open question. It is interesting to realize that we can use the
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generalized quadratic variation to estimate both the Hurst parameter and the volatility parameter in
fVm. For T > 0 and any ε 6= ξ,

H = lim
ε↓0,ξ↓0

1
2

log
(

ε

ξ

)
log

(∫ T
0

(
Xt+ξ − Xt

)2 dt∫ T
0 (Xt+ε − Xt)

2 dt

)
, σ2 =

limε↓0
∫ T

0 (Xt+ε − Xt)
2 dt

ε2HT
.

It would be interesting to study the asymptotic properties of these estimators mentioned above,
which will be reported in later work.

Third, this paper assumes that a continuous record of an increasing time span is available for the
development of asymptotic theory. In practice, data are typically observed at discrete time points with
(0, h, 2h, . . . , Nh(:= T)) where h is the sampling interval and T is the time span. When high frequency
data over a long spanning time period are available, one may consider using a double asymptotic
scheme by assuming h→ 0 and T → ∞. The discretized model corresponding to (3) is given by:

yth = µ + exp(−κh)
(

y(t−1)h − µ
)
+ ut, (1− L)dut = εt, t = 1, . . . , N,

where L is the lag operator, d = H − 1/2. As shown in Wang and Yu (2016), under the double
asymptotic scheme, exp(−κh) = exp {−κ/kN} = 1− κ/kN + O(k−2

N )→ 1 where kN := 1/h→ ∞ as
h→ 0 and kN/N = 1/T → 0 as T → ∞. This implies an autoregressive (AR) model with the AR root
moderately deviating from unity and with a fractionally integrated error term with d ∈ (−1/2, 0).
This model is closely related to a model considered in Magdalinos (2012) where it is assumed that
d ∈ (0, 1/2). Developing double asymptotic theory based on discretely-sampled data will allow one to
extend the results of Magdalinos (2012) to the case where d ∈ (−1/2, 1/2). The development of the
MLE and the asymptotic theory is beyond the scope of this paper and will be reported in later work.
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Appendix A

Appendix A.1. Proof of Lemma 1

We first consider (30). Let us introduce the modified Bessel functions of the first kind (see, e.g.,
Abramowitz and Stegun 1972), which are defined as:

Iν(z) =
(

1
2

z
)ν ∞

∑
k=0

(
1
4 z2
)k

k!Γ(ν + k + 1)
, where ν ∈ R . (A1)

From page 377 in Abramowitz and Stegun (1972), we can see that the asymptotic behavior of Iν(z) is:

Iν(z) =
ez
√

2πz
[1 + O(1/z)], when z→ ∞, | arg z| < π

2
. (A2)
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Using (6), (15) and (A2), we get:

VH (T) =
d

dωH
T

∫ T

0
kH (T, s) e−κsds

=
d

dωH
T

[√
πκH−1Γ

( 3
2 − H

)
kH

T1−He−
κT
2 I1−H

(
κT
2

)]

=
κH− 3

2 Γ (2− 2H)

Γ
(

1
2 − H

) TH− 3
2 + O

(
TH− 5

2

)
, (A3)

which is (30).
Then, as T → ∞, using arguments similar to those in Lemma 4.2 of Lohvinenko and Ralchenko

(2017), we can obtain: ∫ T

0
VH (t) dωH

t =
∫ T

0
kH (T, s) e−κsds = O

(
T

1
2−H

)
,

which yields (31).
By the proof of Theorem 3 in Tanaka (2013), we can easily obtain (32) and (33). The result of

(34) follows directly from
∫ 1

0 V2
H (t) dωH

t < ∞ and
∫ T

1 V2
H (t) dωH

t < ∞ (see the proof of Lemma 4.7 in
Lohvinenko and Ralchenko 2017).

Next, we consider (35). Let J̃T =
∫ T

0 P̃H(t)dωH
t . Then, using Lemma 2 in Lohvinenko and

Ralchenko (2019) and replacing JT with J̃T , we have:

E
[
eθ J̃T

]
= m̃(α1,β1)

1

(
−α1

σ
,−κ + β1

)
exp

{
α2

1
2σ2 ωH

T

}
, (A4)

where α1 = −σθ/κ, β1 = −κ, m̃(α1,β1)
1 (ξ1, ξ2) is the moment generating function defined by Lemma

1 in Lohvinenko and Ralchenko (2019). Using Lemma 1 in Lohvinenko and Ralchenko (2019) again,
we can obtain:

m̃(α1,β1)
1

(
−α1

σ
,−κ + β1

)
=

(
D(α1,β1) (−κ + β1)

)−1/2
exp

[ α2
1

σ2 c3T2−2He−β1T

8D(α1,β1) (−κ + β1)

×I1−H

(
− β1T

2

)
IH−1

(
− β1T

2

)
− −κ + β1

2
T

]
, (A5)

where c3 = 4(1 − H)Γ(H)Γ(1 − H)/λH and D(α1,β1) (ξ2) is defined by Equation (10) in
Lohvinenko and Ralchenko (2019).

Consequently, using the fact D(α1,β1) (−κ + β1) = e2κT , α1 = −σθ/κ, β1 = −κ, (A4) and (A5),
we have:

E
[
eθ J̃T

]
= e−κT exp

 θ2

κ2 c3T2−2He−β1T

8e2κT
eκT

πκT
×
(

1 + O
(

T−1
))
− −κ + β1

2
T +

θ2ωH
T

2κ2


= exp

[
θ2

2κ2 ωH
T + θ2O

(
T1−2H

)]
, (A6)
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which yields:

E
[

J̃T
]

=
d
dθ

E
[
eθ J̃T

]∣∣∣∣
θ=0

= 0 , (A7)

E
[

J̃2
T

]
=

d2

dθ2E
[
eθ J̃T

]∣∣∣∣
θ=0

=
ωH

T
κ2 + O

(
T1−2H

)
. (A8)

Using (7), (A5), (A7) and (A8), we can obtain:

J̃T = O
(

T1−H
)

,

J̃T

T1−H
d→ N

(
0,

1
κ2λH

)
,

which implies (35).
Now, we consider (36). Using the Cauchy–Schwarz inequality, (33) and (34), we obtain:

∫ T

0
VH (t) P̃H (t) dωH

t ≤

√∫ T

0
V2

H (t) dωH
t

∫ T

0
P̃2

H (t) dωH
t

=
√

O(1)Op(T) ,

which implies (36).
Finally, we are left with (37). Using (34), we can obtain:

E
[(∫ T

0
VH (t) dMH

t

)2
]
=
∫ T

0
V2

H (t) dωH
t = O(1) ,

which implies (37) directly.

Appendix A.2. Proof of Theorem 1

To simplify the notations, let X̃0 := X0 − α
κ . Using (14), we have:

∫ T

0
P2

H (t) dωH
t =

∫ T

0

[
α

σκ
+

1
σ

X̃0VH (t) + P̃H (t)
]2

dωH
t

=
α2

σ2κ2 ωH
T +

1
σ2 X̃2

0

∫ T

0
V2

H (t) dωH
t +

∫ T

0
P̃2

H (t) dωH
t

+
2α

σ2κ
X̃0

∫ T

0
VH (t) dωH

t +
2α

σκ

∫ T

0
P̃H (t) dωH

t

+
2
σ

X̃0

∫ T

0
VH (t) P̃H (t) dωH

t . (A9)

Using (14) again, we obtain:(∫ T

0
PH (t) dωH

t

)2

=

[∫ T

0

(
α

σκ
+

1
σ

X̃0VH (t) + P̃H (t)
)

dωH
t

]2

=
α2

σ2κ2

(
ωH

T

)2
+

1
σ2 X̃2

0

(∫ T

0
VH (t) dωH

t

)2

+

(∫ T

0
P̃H (t) dωH

t

)2

+
2α

σκ
ωH

T

∫ T

0
P̃H (t) dωH

t +
2α

σ2κ
ωH

T X̃0

∫ T

0
VH (t) dωH

t

+
2
σ

X̃0

∫ T

0
VH (t) dωH

t

∫ T

0
P̃H (t) dωH

t . (A10)
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Using (A9), (A10) and Lemma 1, we deduce that:

ωH
T

∫ T

0
P2

H (t) dωH
t −

(∫ T

0
PH (t) dωH

t

)2

=
ωH

T
σ2 X̃2

0

∫ T

0
V2

H (t) dωH
t + ωH

T

∫ T

0
P̃2

H (t) dωH
t + ωH

T
2α

σ2κ
X̃0

∫ T

0
VH (t) dωH

t

+ωH
T

2α

σκ

∫ T

0
P̃H (t) dωH

t + ωH
T

2
σ

X̃0

∫ T

0
VH (t) P̃H (t) dωH

t

− 1
σ2 X̃2

0

(∫ T

0
VH (t) dωH

t

)2

−
(∫ T

0
P̃H (t) dωH

t

)2

− 2α

σ2κ
ωH

T X̃0

∫ T

0
VH (t) dωH

t

− 2α

σκ
ωH

T

∫ T

0
P̃H (t) dωH

t −
2
σ

X̃0

∫ T

0
VH (t) dωH

t

∫ T

0
P̃H (t) dωH

t

= ωH
T

∫ T

0
P̃2

H (t) dωH
t + op(T3−2H) . (A11)

Moreover, using (14), we get:

∫ T

0
PH(t)dMH

t

∫ T

0
PH(t)dωH

t

=

[
α

σκ
MH

T +
1
σ

X̃0

∫ T

0
VH (t) dMH

t +
∫ T

0
P̃H (t) dMH

t

]
×[

α

σκ
ωH

t +
1
σ

X̃0

∫ T

0
VH (t) dωH

t +
∫ T

0
P̃H (t) dωH

t

]
=

α2

σ2κ2 MH
T ωH

T +
α

σκ
MH

T
1
σ

X̃0

∫ T

0
VH (t) dωH

t +
α

σκ
MH

T

∫ T

0
P̃H (t) dωH

t

+
1
σ

X̃0

∫ T

0
VH (t) dMH

t
α

σκ
ωH

T +
1
σ2 X̃2

0

∫ T

0
VH (t) dMH

t

∫ T

0
VH (t) dωH

t

+
1
σ

X̃0

∫ T

0
VH (t) dMH

t

∫ T

0
P̃H (t) dωH

t +
α

σκ
ωH

T

∫ T

0
P̃H (t) dMH

t

+
1
σ

X̃0

∫ T

0
P̃H (t) dMH

t

∫ T

0
VH (t) dωH

t +
∫ T

0
P̃H (t) dMH

t

∫ T

0
P̃H (t) dωH

t . (A12)

By combining (A9), (A12) and Lemma 1, we have:

MH
T

∫ T

0
P2

H (t) dωH
t −

∫ T

0
PH(t)dMH

t

∫ T

0
PH(t)dωH

t

=
α2

σ2κ2 MH
T ωH

T +
MH

T
σ2 X̃2

0

∫ T

0
V2

H (t) dωH
t + MH

T

∫ T

0
P̃2

H (t) dωH
t

+MH
T

2α

σ2κ
X̃0

∫ T

0
VH (t) dωH

t + MH
T

2α

σκ

∫ T

0
P̃H (t) dωH

t

+MH
T

2
σ

X̃0

∫ T

0
VH (t) P̃H (t) dωH

t −
α2

σ2κ2 MH
T ωH

T

− α

σκ
MH

T
1
σ

X̃0

∫ T

0
VH (t) dωH

t −
α

σκ
MH

T

∫ T

0
P̃H (t) dωH

t

− 1
σ

X̃0

∫ T

0
VH (t) dMH

t
α

σκ
ωH

T −
1
σ2 X̃2

0

∫ T

0
VH (t) dMH

t

∫ T

0
VH (t) dωH

t

− 1
σ

X̃0

∫ T

0
VH (t) dMH

t

∫ T

0
P̃H (t) dωH

t −
α

σκ
ωH

T

∫ T

0
P̃H (t) dMH

t

− 1
σ

X̃0

∫ T

0
P̃H (t) dMH

t

∫ T

0
VH (t) dωH

t −
∫ T

0
P̃H (t) dMH

t

∫ T

0
P̃H (t) dωH

t

= − α

σκ
ωH

T

∫ T

0
P̃H (t) dMH

t + op

(
T

5
2−2H

)
. (A13)
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According to Corollary 5.2 of Jost (2006), for H < 1/2, we have the relationship between BH
t and

B1−H
t ,

BH
t =

(
2H

Γ (2H)
Γ (3− 2H)

) 1
2 ∫ t

0
(t− s)2H−1 dB1−H

s . (A14)

Using (A14), following Equation (34) in Brouste and Kleptsyna (2010), we can transform Model (1) to
the following model,

dX̂t = κ
(

µ− X̂t

)
dt + σdB1−H

t ,

where X̂t =
(

2H
Γ(2H)

Γ(3− 2H)
) 1

2 ∫ t
0 (t− s)1−2HdXs. When H < 1/2 and 1−H > 1/2, hence, the results

in (4.4) and (4.5) of Lohvinenko and Ralchenko (2017) are valid for all H ∈ (0, 1).
Now, combining (21), (A13), (A11) and (4.4), (4.5) in Lohvinenko and Ralchenko (2017) with

Slutsky’s theorem, we obtain:

√
T (α̃T − α) =

√
T
[

MH
T
∫ T

0 P2
H (t) dωH

t −
∫ T

0 PH (t) dMH
t
∫ T

0 PH (t) dωH
t

]
ωH

T
∫ T

0 P2
H (t) dωH

t −
(∫ T

0 PH (t) dωH
t

)2 σ

=
− α

σκ ωH
T

1√
T

∫ T
0 P̃H (t) dMH

t + op
(
T2−2H)

ωH
T

1
T
∫ T

0 P̃2
H (t) dωH

t + op(T2−2H)
σ

d→ N
(

0,
2α2

κ

)
.

Now, we consider (39). Using (14) and (A10), we have:

MH
T

∫ T

0
PH (t) dωH

t −ωH
T

∫ T

0
PH (t) dMH

t

= MH
T

α

σκ
ωH

T + MH
T

1
σ

X̃0

∫ T

0
VH (t) dωH

t + MH
T

∫ T

0
P̃H (t) dωH

t

−
[

ωH
T

α

σκ
MH

T + ωH
T

1
σ

X̃0

∫ T

0
VH (t) dMH

t + ωH
T

∫ T

0
P̃H (t) dMH

t

]
= −ωH

T

∫ T

0
P̃H (t) dMH

t + op

(
T

5
2−2H

)
. (A15)

Finally, combining (22), (A15), (A11) and (4.4), (4.5) in Lohvinenko and Ralchenko (2017) with
Slutsky’s theorem, we have:

√
T (κ̃T − κ) =

−ωH
T

1√
T

∫ T
0 P̃H (t) dMH

t + op(T2−2H)

ωH
T

1
T
∫ T

0 P̃2
H (t) dωH

t + op(T2−2H)

d→ N (0, 2κ) .

Appendix A.3. Proof of Lemma 2

From the proof of Theorem 2 in Tanaka (2013), we can easily obtain (48) and (49). A simple
calculation shows that:∫ T

0
tdωH

t =
∫ T

0
t

1
λH

(2− 2H) t1−2Hdt =
1

λH

2− 2H
3− 2H

T3−2H .

Similarly, a standard calculation yields:

∫ T

0
t2dωH

t =
∫ T

0
t2 1

λH
(2− 2H) t1−2Hdt =

1
λH

1− H
2− H

T4−2H .
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Combining (49) with the Cauchy–Schwarz inequality, we have:

∫ T

0
P̂H (t) dωH

t ≤

√
ωH

T

∫ T

0
P̂2

H (t) dωH
t = Op

(
T2−H

)
.

Using (49), (51) and the Cauchy–Schwarz inequality, we obtain:

∫ T

0
tP̂H (t) dωH

t ≤

√∫ T

0
t2dωH

t

∫ T

0
P̂2

H (t) dωH
t = Op

(
T3−H

)
.

Now, we consider (54). Form the definition of VH (T), we conclude that:

VH (T) =
d

dωH
T

∫ T

0
kH (T, s) e−κsds =

d
dωH

T

∫ T

0
kH (T, s) ds

=
d

dωH
T

[
1

kH

∫ T

0
(s (T − s))

1
2−H ds

]
=

d
dωH

T

[
1

kH

∫ 1

0
T1−2H (u (1− u))

1
2−H Tdu

]
=

d
dT

[
1

kH
T2−2H B

(
3
2
− H,

3
2
− H

)]/
dωH

T
dT

= 1 .

Finally, we deal with (55). A standard calculation yields:

d
dωH

t

∫ t

0
kH (t, s) sds =

d
dωH

t

[
1

kH

∫ t

0
(s (t− s))

1
2−H sds

]
=

d
dωH

t

[
1

kH

∫ t

0
s

3
2−H (t− s)

1
2−H ds

]
=

d
dωH

t

[
1

kH

∫ 1

0
(vt)

3
2−H (t− vt)

1
2−H tdv

]
=

d
dωH

t

[
1

kH
t3−2H

∫ 1

0
v

3
2−H (1− v)

1
2−H dv

]
=

d
dωH

t

[
1

kH
t3−2H B

(
5
2
− H,

3
2
− H

)]
= aHt ,

where aH = (3− 2H)/ (4− 4H), and the proof of this lemma is complete.

Appendix A.4. Proof of Theorem 3

Using (13), (46) and (55), we have:

PH (t) =
1
σ

d
dωH

t

∫ t

0
kH (t, s) Xsds

=
1
σ

d
dωH

t

∫ t

0
kH (t, s)

[
X0 + αs + σBH

s

]
ds

=
X0

σ
+

α

σ

d
dωH

t

∫ t

0
kH (t, s) sds + P̂H (t)

=
X0

σ
+

α

σ
aHt + P̂H (t) , (A16)
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where P̂H (t) = d
dωH

t

∫ t
0 kH (t, s) BH

s ds. Using (49)–(53) and (A16), we have:

∫ T

0
P2

H (t) dωH
t =

∫ T

0

[
X0

σ
+

α

σ
aHt + P̂H (t)

]2
dωH

t

=
X2

0
σ2 ωH

T +
α2

σ2 a2
H

∫ T

0
t2dωH

t +
∫ T

0
P̂2

H (t) dωH
t

+2
X0

σ2 αaH

∫ T

0
tdωH

t +
2X0

σ

∫ T

0
P̂H (t) dωH

t

+
2α

σ
aH

∫ T

0
tP̂H (t) dωH

t

=
α2

σ2 a2
H

∫ T

0
t2dωH

t + op(T4−2H) . (A17)

Similarly, combining (50) with (52) leads to:

∫ T

0
PH (t) dωH

t =
∫ T

0

[
X0

σ
+

α

σ
aHt + P̂H (t)

]
dωH

t

=
X0

σ
ωH

T +
α

σ
aH

∫ T

0
tdωH

t +
∫ T

0
P̂H (t) dωH

t

=
α

σ
aH

∫ T

0
tdωH

t + op(T3−2H) . (A18)

Moreover, using (48) and (A16), we have:

∫ T

0
PH (t) dMH

t =
∫ T

0

[
X0

σ
+

α

σ
aHt + P̂H (t)

]
dMH

t

=
X0

σ
MH

T +
α

σ
aH

∫ T

0
tdMH

t +
∫ T

0
P̂H (t) dMH

t

=
X0

σ
MH

T +
α

σ
aH

∫ T

0
tdMH

t + Op (T) . (A19)

According to (A17) and (A18), we get:

ωH
T

∫ T

0
P2

H (t) dωH
t −

(∫ T

0
PH (t) dωH

t

)2

=
1

λH
T2−2H α2

σ2 a2
H

∫ T

0
t2dωH

t −
α2

σ2 a2
H

1
λ2

H

(2− 2H)2

(3− 2H)2 T6−4H + op(T6−4H)

=
T6−4H

λ2
H

α2

σ2 a2
H

(
1− H
2− H

− (2− 2H)2

(3− 2H)2

)
+ op(T6−4H)

=
T6−4H

σ2λ2
H

α2a2
H

1− H

(2− H) (3− 2H)2 + op

(
T6−4H

)
. (A20)
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Similarly, applying (A17) and (A19), we have:

MH
T

∫ T

0
P2

H (t) dωH
t −

∫ T

0
PH (t) dωH

t

∫ T

0
PH (t) dMH

t

= MH
T

α2

σ2 a2
H

∫ T

0
t2dωH

t −
α

σ
aH

∫ T

0
tdωH

t
α

σ
aH

∫ T

0
tdMH

t + op(T5−3H)

=
α2

σ2 a2
H

[
MH

T
T4−2H

λH

1− H
2− H

− T3−2H

λH

2− 2H
3− 2H

∫ T

0
tdMH

t

]
+ op(T5−3H)

=
α2a2

HT5−3H

λHσ2

[
1− H
2− H

MH
T

T1−H −
2− 2H
3− 2H

1
T2−H

∫ T

0
tdMH

t

]
+ op(T5−3H) . (A21)

Using (A21), we can see that:

1
T5−3H

[
MH

T

∫ T

0
P2

H (t) dωH
t −

∫ T

0
PH (t) dωH

t

∫ T

0
PH (t) dMH

t

]
=

α2a2
H

λHσ2

[
1− H
2− H

MH
T

T1−H −
2− 2H
3− 2H

1
T2−H

∫ T

0
tdMH

t

]
+ op(1)

d→ N
(

0,
(1− H)2

(2− H)2
1

λH
− 1− H

2− H
(2− 2H)2

(3− 2H)2
1

λH

)
. (A22)

Consequently, combining (21) and (A20)–(A22) with Slutsky’s theorem, we have:

T1−H (α̃T − α) =

1
T5−3H

[
MH

T
∫ T

0 P2
H (t) dωH

t −
∫ T

0 PH (t) dMH
t
∫ T

0 PH (t) dωH
t

]
1

T6−4H

[
ωH

T
∫ T

0 P2
H (t) dωH

t −
(∫ T

0 PH (t) dωH
t

)2
] σ

d→ N
(

0, σ2ρH

)
.

By (7), (A18), (A19) and the fact that MH
T = Op(T1−H), we obtain:

MH
T

∫ T

0
PH (t) dωH

t −ωH
T

∫ T

0
PH (t) dMH

t

= MH
T

α

σ
aH

∫ T

0
tdωH

t −ωH
T

α

σ
aH

∫ T

0
tdMH

t + op

(
T4−3H

)
=

α

σ
aH

[
MH

T
1

λH

2− 2H
3− 2H

T3−2H − 1
λH

T2−2H
∫ T

0
tdMH

t

]
+ op

(
T4−3H

)
=

α

σλH
aHT4−3H

[
MH

T
T1−H

2− 2H
3− 2H

− 1
T2−H

∫ T

0
tdMH

t

]
+ op

(
T4−3H

)
. (A23)

Using (22), (A20), (A23) and Slutsky’s theorem, we can see that:

T2−H (κ̃T − κ) =

1
T4−3H

[
MH

T
∫ T

0 PH (t) dωH
t −ωH

T
∫ T

0 PH (t) dMH
t

]
1

T6−4H

[
ωH

T
∫ T

0 P2
H (t) dωH

t −
(∫ T

0 PH (t) dωH
t

)2
]

d→ N
(

0,
σ2

α2 φH

)
.
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Appendix A.5. Proof of Theorem 4

Using (17), (61) and (62), we can obtain:

∫ T

0
X2

t dt =
∫ T

0

[α

κ
+ e−κtX̃0 + σUt

]2
dt

=
α2

κ2 T + X̃2
0

∫ T

0
e−2κtdt + σ2

∫ T

0
U2

t dt +
2α

κ
X̃0

∫ T

0
e−κtdt

+
2ασ

κ

∫ T

0
Utdt + 2X̃0σ

∫ T

0
e−κtUtdt

= X̃2
0

∫ T

0
e−2κtdt +

∫ T

0
e−2κtξ2

t dt + 2X̃0

∫ T

0
e−2κtξtdt + op

(
e−2κT

)
=

∫ T

0
e−2κt

(
X̃0 + ξt

)2
dt + op(e−2κT) . (A24)

Similarly, using (17), (61) and (62) again, we can easily have:

∫ T

0
Xtdt =

∫ T

0

[α

κ
+ e−κtX̃0 + σUt

]
dt

=
α

κ
T + X̃0

1
κ

(
1− e−κT

)
+ σ

∫ T

0
Utdt

= Op

(
e−κT

)
. (A25)

A straightforward calculation shows:∫ T

0
XtdWt =

∫ T

0

[α

κ
+ e−κtX̃0 + σUt

]
dWt

=
α

κ
WT + X̃0

∫ T

0
e−κtdWt + σ

∫ T

0
UtdWt

= Op

(
e−κT

)
. (A26)

From the definition of ξt, we can rewrite Xt as Xt =
α
κ + e−κtX̃0 + e−κtξt. As a consequence, using

(63), (64) and (A24), we can see that:

e2κT
∫ T

0
X2

t dt =

∫ T
0 e−2κt

(
X̃0 + ξt

)2
dt

e−2κT + op (1) , (A27)

σeκT
∫ T

0
XtdWt = X̃0σ

∫ T

0
eκ(T−t)dWt + σ

∫ T

0
eκ(T−t)ξtdWt + op (1) . (A28)

Now, applying (21) and (A25)–(A27) and Slutsky’s theorem, we deduce:

√
T (α̃T − α) =

WT√
T

e2κT ∫ T
0 X2

t dt− e2κT
√

T

∫ T
0 XtdWt

∫ T
0 Xtdt

e2κT
(∫ T

0 X2
t dt− 1

T

(∫ T
0 Xtdt

)2
) σ

=

WT√
T

e2κT ∫ T
0 X2

t dt + op (1)

e2κT
∫ T

0 X2
t dt + op (1)

σ =
σWT√

T
+ op(1) ,

which implies (65).
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Finally, using (22), (A25), (A27), (A28) and Slutsky’s theorem, we have:

e−κT (κ̃T − κ) = e−κT

 WT
T
∫ T

0 Xtdt−
∫ T

0 XtdWt∫ T
0 X2

t dt− 1
T

(∫ T
0 Xtdt

)2 σ


=
−σeκT ∫ T

0 XtdWt + op (1)

e2κT
∫ T

0 X2
t dt + op (1)

d→
−
(
X0 − α

κ + ξ∞
)

η∞

− 1
2κ

(
X0 − α

κ + ξ∞
)2 ,

which yields (66), and the proof is done.

Appendix A.6. Proof of Lemma 3

We first consider (67). Applying (14) and (15), we can obtain:

VH (t) = d
dωH

t

∫ t
0 kH (t, s) e−κsds

=
d
dt
∫ t

0 kH(t,s)e−κsds
dωH

t
dt

= λH
√

π(−κ)H−1Γ(3/2−H)
kH(2−2H)t1−2H

[
(1− H) t−He−

κt
2 I1−H

(
− κt

2
)

− κ
2 t1−He−

κt
2 I1−H

(
− κt

2
)
+ t1−He−

κt
2 1

2
(
− κ

2
) (

I2−H
(
− κt

2
)
+ I−H

(
− κt

2
)) ]

=
λH
√

π(−κ)H−1Γ( 3
2−H)

kH(2−2H)

[
(1− H) t−1+He−

κt
2 I1−H

(
− κt

2
)

− κ
2 tHe−

κt
2 I1−H

(
− κt

2
)
− κ

4 tHe−
κt
2 I2−H

(
− κt

2
)
− κ

4 tHe−
κt
2 I−H

(
− κt

2
) ]

=
λH
√

π(−κ)H−1Γ( 3
2−H)

kH(2−2H)

[
(1− H) t−1+H e−κt

√
−πκt

(
1 + O

(
t−1))

− κ
2 tH e−κt

√
−πκt

(
1 + O

(
t−1))− κ

4 tH e−κt
√
−πκt

(
1 + O

(
t−1))

− κ
4 tH e−κt

√
−πκt

(
1 + O

(
t−1)) ]

=
λH(−κ)H−1Γ( 3

2−1)
kH(2−2H)

e−κt

[
(1− H) (−κ)−

1
2 t−

3
2+H (1 + O

(
t−1))

+ 1
2 (−κ)

1
2 tH− 1

2
(
1 + O

(
t−1))

+ 1
4 tH− 1

2 (−κ)
1
2
(
1 + O

(
t−1))+ 1

4 (−κ)
1
2 tH− 1

2
(
1 + O

(
t−1)) ]

= O
(

tH− 1
2 e−κt

)
.

(A29)

where Iν(z) is the modified Bessel function of the first kind defined in (A1) and we used the asymptotic
behavior of (A2).

Let us observe that (68) can be obtained easily from Theorem 2 in Tanaka (2015), and the details
are omitted here. For (69), using (68), we have:

E
[(∫ T

0
P̃H (t) dMH

t

)2
]
=
∫ T

0
P̃2

H (t) dωH
t = O(e−2κT) ,

which implies (69) directly.
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Let 1F1(·, ·, ·) be the confluent hypergeometric function of the first kind. From (A29) and the
well-known result of the confluent hypergeometric function (see, for example, Equation 3.383 (1) in
Gradshteyn and Ryzhik 2007; Bateman 1953, p. 278), we have:∫ T

0 VH (t) dωH
t

T
1
2−He−κT

≤ C
∫ T

0

(
t
T

) 1
2−H

eκ(T−t)dt

= CT
∫ 1

0
u

1
2−HeκT(1−u)du

= CT
∫ 1

0
(1− v)

1
2−H eκTvdv

= CT 1F1

(
1,

5
2
− H, κT

)
= O(1) ,

which yields (70).
We now deal with (71). Let ζt = σ

∫ t
0 eκsdBH

s . Then, using Lemma 2.2 of El Machkouri et al. (2016),
as T → ∞, we have:

ζT
p→ ζ∞ ∼ N

(
0,E

[
ζ2

∞

])
. (A30)

Using (6), (17), (A30) and the property of the confluent hypergeometric function (see, for example,
Equation 3.383 (1) in Gradshteyn and Ryzhik 2007; Bateman 1953, p. 278), we have:

∫ T

0
P̃H (t) dωH

t =
∫ T

0
kH (T, t)Utdt

=
1

kH

∫ T

0
(t (T − t))

1
2−H e−κt

σ
ζtdt

= CT2−2H
∫ 1

0
(u (1− u))

1
2−H e−κTuζTudu

= Op(1)T2−2H
∫ 1

0
(u (1− u))

1
2−H e−κTudu

= Op(1)T2−2H
1F1

(
3
2
− H, 3− 2H,−κT

)
= Op(1)T2−2HOp(TH− 3

2 e−κT)

= Op(T
1
2−He−κT) ,

which implies (71).
We now turn to the term (72). Using (A29), we can easily obtain:

∫ T

0
V2

H (t) dωH
t ≤ C

∫ T

0
t2H−1e−2κtt1−2Hdt = O(e−2κT) ,

which yields (72).
Using the Cauchy–Schwarz inequality, (68) and (72), we obtain:(∫ T

0
VH (t) P̃H (t) dωH

t

)2

≤
∫ T

0
V2

H (t) dωH
t

∫ T

0
P̃2

H (t) dωH
t = Op

(
e−4κT

)
,

which implies (73).
Similarly, using (72), we have:

E
[(∫ T

0
VH (t) dMH

t

)2
]
=
∫ T

0
V2

H (t) dωH
t = O

(
e−2κT

)
,
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which yields (74), and we complete the proof.

Appendix A.7. Proof of Theorem 5

Using (14), (68) and (70)–(73), we can obtain:∫ T

0
P2

H (t) dωH
t =

∫ T

0

[
α

σκ
+

1
σ

X̃0VH (t) + P̃H (t)
]2

dωH
t

=
α2

σ2κ2 ωH
T +

1
σ2 X̃2

0

∫ T

0
V2

H (t) dωH
t +

∫ T

0
P̃2

H (t) dωH
t

+
2α

σ2κ
X̃0

∫ T

0
VH (t) dωH

t +
2α

σκ

∫ T

0
P̃H (t) dωH

t

+
2
σ

X̃0

∫ T

0
VH (t) P̃H (t) dωH

t

=
1
σ2 X̃2

0

∫ T

0
V2

H (t) dωH
t +

∫ T

0
P̃2

H (t) dωH
t

+
2
σ

X̃0

∫ T

0
VH (t) P̃H (t) dωH

T + op

(
e−2κT

)
=

∫ T

0

(
1
σ

X̃0VH (t) + P̃H (t)
)2

dωH
t + op(e−2κT) . (A31)

According to (14), (68), (70) and (71), we obtain:

1
ωH

T

(∫ T
0 PH (t) dωH

t

)2
= 1

ωH
T

[∫ T
0

(
α

σκ + 1
σ X̃0VH (t) + P̃H (t)

)
dωH

t

]2

= 1
ωH

T

[
α

σκ ωH
T + 1

σ X̃0
∫ T

0 VH (t) dωH
t +

∫ T
0 P̃H (t) dωH

t

]2

= 1
ωH

T

[
α2

σ2κ2

(
ωH

T
)2

+ 1
σ2 X̃2

0

(∫ T
0 VH (t) dωH

t

)2

+
(∫ T

0 P̃H (t) dωH
t

)2
+ 2α

σ2κ
ωH

T
∫ T

0 VH (t) dωH
t

+ 2α
σκ ωH

T
∫ T

0 P̃H (t) dωH
t + 2

σ X̃0
∫ T

0 VH (t) dωH
t
∫ T

0 P̃H (t) dωH
t

]
= op

(
e−2κT) .

(A32)

From (14), (69) and (74), we can see that:∫ T

0
PH (t) dMH

t =
∫ T

0

[
α

σκ
+

1
σ

X̃0VH (t) + P̃H (t)
]

dMH
t

=
α

σκ
MH

T +
1
σ

X̃0

∫ T

0
VH (t) dMH

t +
∫ T

0
P̃H (t) dMH

t

=
X̃0

σ

∫ T

0
VH (t) dMH

t +
∫ T

0
P̃H (t) dMH

t + op(e−κT). (A33)

From (14) and the definition of ωH
t , we can obtain:

∫ T

0
PH (t) dωH

t =
∫ T

0

[
α

σκ
+

1
σ

X̃0VH (t) + P̃H (t)
]

dωH
t

=
α

σκ
ωH

T +
1
σ

X̃0

∫ T

0
VH (t) dωH

t +
∫ T

0
P̃H (t) dωH

t

=
X̃0

σ

∫ T

0
VH (t) dωH

t +
∫ T

0
P̃H (t) dωH

t + O(T2−2H) . (A34)
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Using (A31), we have:

MH
T

ωH
T

∫ T

0
P2

H (t) dωH
t −

1
ωH

T

∫ T

0
PH (t) dMH

t

∫ T

0
PH (t) dωH

t

=
MH

T
ωH

T

∫ T

0

(
1
σ

(
X0 −

α

κ

)
VH (t) + P̃H (t)

)2
dωH

t

− 1
ωH

T

[
1
σ

(
X0 −

α

κ

) ∫ T

0
VH (t) dMH

t +
∫ T

0
P̃H (t) dMH

t

] [∫ T

0
P̃H (t) dωH

t

]
+ op

(
e−2κT

T1−H

)
.

Now, combining the above result, (21), (A31), (A32) and Lemma 3 with Slutsky’s theorem,
we have:

T1−H (α̃T − α) =
T1−H MH

T
ωH

T

∫ T
0 P2

H (t) dωH
t − T1−H

ωH
T

∫ T
0 PH (t) dMH

t
∫ T

0 PH (t) dωH
t∫ T

0 P2
H (t) dωH

t − 1
ωH

T

(∫ T
0 PH (t) dωH

t

)2 σ

d→ N
(

0, σ2
)

.

Moreover, from Equation (31) in Tanaka (2015), replacing H with 1 − H leads to the same
moment generating function. This suggests that the distribution of κ−

∫ T
0 P̃H (t) dMH

t /
∫ T

0 P̃2
H (t) dωH

t
is symmetric around H = 1/2. Hence, Equation (33) in Tanaka (2015) holds true for all H ∈ (0, 1).

Now, let X and Y be two independent N (0, 1) random variables. Then, using (14), (22),
(A31)–(A34), Lemma 3, Slutsky’s theorem and Equation (33) in Tanaka (2015), we can see that:

e−κT

2κ
(κ̃T − κ) =

e−κT

2κ

[
MH

T
ωH

T

∫ T
0 PH (t) dωH

t −
∫ T

0 PH (t) dMH
t

]
∫ T

0 P2
H (t) dωH

t − 1
ωH

T

(∫ T
0 PH (t) dωH

t

)2

=
−2κeκT ∫ T

0 PH (t) dMH
t + op(1)

4κ2e2κT
∫ T

0 P2
H (t) dωH

t + op(1)

=
−2κeκT ∫ T

0

[
X̃0
σ VH (t) + P̃H (t)

]
dMH

t + op(1)

4κ2e2κT
∫ T

0

[
X̃0
σ VH (t) + P̃H (t)

]2
dωH

t + op(1)

=
−2κeκT ∫ T

0 P̃H (t) dMH
t + op(1)

4κ2e2κT
∫ T

0 P̃2
H (t) dωH

t + op(1)

d→ X
√

sin (πH)

Y
,

with X̃0 = 0.
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