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CHAPTER 3

MODEL SELECTION FOR 
EXPLOSIVE MODELS

Yubo Taoa and Jun Yub

aSchool of Economics, Singapore Management University, Singapore
bSchool of Economics and Lee Kong Chian School of Business, Singapore 
Management University, Singapore

ABSTRACT

This chapter examines the limit properties of information criteria (such as 
AIC, BIC, and HQIC) for distinguishing between the unit-root (UR) model 
and the various kinds of explosive models. The explosive models include the 
local-to-unit-root model from the explosive side the mildly explosive (ME) 
model, and the regular explosive model. Initial conditions with different 
orders of magnitude are considered. Both the OLS estimator and the indirect 
inference estimator are studied. It is found that BIC and HQIC, but not AIC, 
consistently select the UR model when data come from the UR model. When 
data come from the local-to-unit-root model from the explosive side, both 
BIC and HQIC select the wrong model with probability approaching 1 while 
AIC has a positive probability of selecting the right model in the limit. When 
data come from the regular explosive model or from the ME model in the 
form of 1 + nα/n with α ∈ (0, 1), all three information criteria consistently 
select the true model. Indirect inference estimation can increase or decrease 
the probability for information criteria to select the right model asymptoti-
cally relative to OLS, depending on the information criteria and the true 
model. Simulation results confirm our asymptotic results in finite sample.

Keywords: Model selection; information criteria; local-to-unit-root model; 
mildly explosive model; unit root model; indirect inference
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1. INTRODUCTION
Information criteria have found a wide range of practical applications in empiri-
cal work. Examples include choosing explanatory variables in regression models 
and selecting lag lengths in time series models. Frequently used information cri-
teria are Akaike information criterion (AIC) of Akaike (1969, 1973), Bayesian 
information criterion (BIC) of Schwarz (1978), and Hannan-Quinn information 
criterion (HQIC) of Hannan and Quinn (1979). A major nice feature in these 
information criteria is that the penalty term is trivial to compute and hence the 
implementation of them is straightforward and can be made automatic.

With a growing interest in nonstationarity in time series analysis, research-
ers have examined the properties of  information criteria in the context of 
nonstationary models with the unit-root (UR) behavior. An important form 
of  nonstationarity in time series involves explosive roots (EXR). Recent 
global financial crisis has motivated researchers to study explosive behav-
ior in economic and financial time series; see, for example, Phillips and Yu 
(2011), Phillips, Wu, and Yu (2011), Phillips, Shi and Yu (2015a, 2015b), 
Long, Li, and Li (2015).

In this chapter, we study the limit properties of information criteria for dis-
tinguishing between the UR model and the explosive models. The information 
criteria considered in this chapter have a general form and include AIC, BIC, and 
HQIC as the special cases. The impact of the initial condition on the limit proper-
ties is examined by allowing for an initial condition of three different orders of 
magnitude. Moreover, both the ordinary least squares (OLS) estimator and the 
indirect inference estimator (IIE) are studied when investigating the limit proper-
ties of information criteria. The motivation for the use of indirect inference esti-
mator comes from the existence of finite sample bias in the OLS estimator and the 
ability that the indirect inference method can reduce the bias.

It is found that information criteria consistently choose the UR model 
against the explosive alternatives when data comes from the UR model. 
Second, we prove that the probability for information criteria to correctly 
select the explosive model models against the UR model depends crucially  
on both the degree of explosiveness and the size of the penalty term in informa-
tion criteria. Finally and surprisingly, we show that indirect inference estimation 
can increase or decrease the probability for information criteria to select the right 
model asymptotically relative to OLS, depending on the information criteria and 
the true model, although the indirect inference method can reduce the bias.

The rest of  this chapter is organized as follows. Section 2 introduces the 
models and information criteria and briefly reviews the literature. Section 3 
gives the limit properties of  information criteria for distinguishing models 
with an explosive root from the UR model when the OLS estimator is used. 
Section 4 gives the limit properties of  information criteria when the indi-
rect inference estimator is used. Section 5 provides Monte Carlo evidence to 
support the theoretical results. Section 6 concludes. All the detailed proofs 
are provided in the Appendix. To compress notation, we denote BdB

0

1

∫  and 

B2

0

1

∫  in short for B r dB r
0

1

∫ ( ) ( ) and B r dr2

0

1

∫ ( ) , respectively, throughout the 
chapter, and ⇒ denotes weak convergence.
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2. MODELS, INFORMATION CRITERIA, AND A 
LITERATURE REVIEW

The model considered in the present chapter is of the form:

	 X X u t n, 1, , ,t n t t1 ρ= + =− 	 (2.1)

where u (0, )t

iid 2
 σ  and the model is initialized at t = 0 with some X0. The autore-

gressive (AR) coefficient ρn is the crucial parameter that determines the dynamic 
behavior of Xt. When ρn = ρ and |ρ| < 1, Xt is stationary. When ρn = 1, Xt has a 
UR. When ρn = 1 – cn /n = 1 – c/n for c > 0, Xt is near-stationary the model has a 
local-to-unit-root (LTU hereafter) from the stationary side (LTUS hereafter) or 
is near-stationary (Chan & Wei, 1987; Phillips, 1987b). When ρn = ρ and |ρ| > 1, 
Xt has an EXR. When ρn = 1 + cn/n = 1 + c/n for c > 0, Xt is near-explosive and 
the model is a local-to-unit-root model from the explosive side (LTUE hereafter). 
When ρn = 1 – cn/n for cn → ∞ but cn/n  0, the root represents moderate deviations 
from unity and Xt is near-stationary (Phillips & Magdalinos, 2007). When ρn =  
1 + cn/n for cn → ∞ but cn/n  0, Xt is mildly explosive (ME).

The asymptotic properties of the OLS estimator of the AR coefficient in the sta-
tionary AR(1) model is well known. The rate of convergence is n and the limiting 
distribution is Gaussian. Phillips (1987a) provided the limiting theory for the OLS 
estimator in the UR model and the rate of convergence is n. Phillips (1987b) and 
Chan and Wei (1987) established the asymptotic theory for the LTUS and LTUE 
models. The asymptotic theory is similar to that in the UR model and the rate of 
convergence is also n. In the cases of UR and LTU, ut can be weakly dependent sta-
tionary. Anderson (1959) studied the limiting distribution of the OLS estimator in 
the explosive model under the condition that u (0, )t

iid 2
 σ  and X0 = 0. The limit-

ing distribution is Cauchy and the rate of convergence is ρn. However, no invariance 
principle applies. Assuming X0 = op( n cn ), Phillips and Magdalinos (2007) devel-
oped the asymptotic theory for the model with ρn = 1 – cn/n for cn →∞ but cn/n  
0 and showed that the asymptotic distribution is invariant to the error distribution. 
The rate of convergence is n/√cn. If cn = nα with α ∈ (0, 1), this rate of convergence 
bridges that of UR/LTUR models and that of the stationary process. Phillips and 
Magdalinos (2007) also developed the asymptotic theory for the ME model. The rate 
of convergence is n cn

n
nρ . The limiting distribution is Cauchy which is the same as in 

the explosive model. Interestingly, in the ME case, the asymptotic theory is independ-
ent of the initial condition as long as X o n cp n0 ( )= .

It is known that the OLS estimator of ρn is biased downward when ρn = 1 or 
when ρn is in the vicinity of unity. In this case, the indirect inference estimation is 
effective in reducing the bias. Phillips (2012) derives the asymptotic theory of the 
indirect inference estimator when the model has a UR or LTU and u (0, )t

iid 2
 σ .  

The rate of convergence remains unchanged while the limiting distribution is dif-
ferent from that of the OLS estimator.

Information criteria for model selection have been proposed by Akaike (1969, 
1973), Schwarz (1978), Hannan and Quinn (1979), among many others. The gen-
eral form of these criteria is

	 IC
kp

n
log ˆ ,k k

n2σ= + 	
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where k is the number of parameters to be estimated, ˆk
2σ  is the estimated σ2 when 

k parameters are estimated. In general, ICk trades off the term that measures the 
goodness-of-fit (i.e., log ˆk

2σ ) and the penalty term that measures the complex-
ity of the model (i.e., kpn/n). Coefficient pn = 2, log n, 2 log log n corresponds 
to AIC of Akaike (1973), BIC of Schwarz (1978), and HQIC of Hannan and 
Quinn (1979). Clearly, for any n, log n > 2 log log n; if  n ≥ 8, log n > 2; if  n ≥ 16,  
2 log log n > 2. Other forms of pn are possible.

In the time series literature, information criteria have been widely used to select 
the lag length both in the family of stationary models and in the family of non-
stationary models; see, for example, Ng and Perron (1995) and Ploberger and 
Phillips (2003). The information criteria can also be used to evaluate whether 
ρn = 1 (i.e., k = 0) or ρn ≠ 1 (i.e., k = 1) in Model (2.1). For example, Phillips 
(2008) obtained limit properties of ICk for distinguishing between the UR model 
and the stationary model. Phillips and Lee (2015) show that BIC can successfully 
distinguish the UR model from the ME model. This is a surprising result as it is 
well known that BIC cannot consistently distinguish between the UR model and 
the LTU model; see Ploberger and Phillips (2003).

In this chapter, we focus our attention to distinguishability between the UR 
model and the three explosive models (i.e., LTUE, ME, and EX) after the can-
didate models are estimated by OLS or by the indirect inference method. As a 
result, we make contributions in two strands of literature: explosive time series 
and indirect inference. Although we only use IC to do pairwise comparison in this 
chapter, IC is more widely used to compare multiple models.

To visually understand the difference between the UR model, the LTU model, 
and the ME model, we simulate a sample path of different length (n = 100, 200, 
500, 1,000) with y0 = 0, based on the same realizations of the error process, iid  
 (0, 1), from the following four models, ρn = 1 (UR), ρn = 1 + 1/n (LTUE), ρn =  
1 + n0.1/n (ME1), and ρn = 1 + n0.5/n (ME2). Figs. 1–3 illustrate the time series plot 
of UR against LTU, UR against ME1, and UR against ME2, respectively. It can 
be seen from Fig. 1 that it is very difficult to distinguish between the UR process 
and the LTU process, even when the sample size is as large as 1,000. When the 
sample size increases, the gap between the UR process and the two ME processes 
becomes larger and larger, as apparent in Fig. 2 and more so in Fig. 3.

3. LIMIT PROPERTIES BASED ON THE OLS ESTIMATOR
When the data generating process (DGP) is the UR model, since ρn = 1, we set the 
parameter count to k = 0. For the LTUE, ME, and explosive models, we need to 
estimate the AR coefficient and hence set the parameter count to k = 1. Throughout 
the chapter, we denote ρ̂ the OLS estimator of .ρ  k̂ 0IC =  or 1 means the information 
criterion of the UR model is smaller or larger than that of the competing model when 
ρ is estimated by OLS. We aim to find the limit of the following probabilities:

	 P k klim ˆ 0 0 ;
n IC{ }= =

→∞
	 (3.1)
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	 P k klim ˆ 1 0 ;
n IC{ }= =

→∞
	 (3.2)

	 P k klim ˆ 0 1 ;
n IC{ }= =

→∞
	 (3.3)

	 P k klim ˆ 1 1 ;
n IC{ }= =

→∞
	 (3.4)
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Fig. 1.  A Realization of the UR Model and the LTU Model with 1 + 1/n.
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Fig. 2.  A Realization of the UR Model and the ME Process with  
ρn = 1 + n0.1/n (ME1).
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Given that log(n) > 2log(log(n)) > 2 for n ≥ 16, the probability for BIC to 
select the UR model cannot be smaller than for HQIC and then for AIC.

As shown in Phillips and Magdalinos (2009), the UR asymptotic distribution 
is sensitive to initial conditions in the distant past. To understand how the initial 
condition affects the property of k̂IC , we follow Phillips and Magdalinos (2009) 
by assuming alternative initial conditions.

Assumption 1 (IN). The initial condition has the form

	 X n u ,j
j

0
0

n

∑( ) =
κ

−
=

	 (3.5)

where κn is a sequence of integers satisfying κn → ∞ and

	
n

n0, , as .nκ τ [ ]→ ∈ ∞ → ∞ 	 (3.6)

The following cases are distinguished:

	 (i)	 If  τ = 0, X0 (n) is said to be a recent past initialization.
	 (ii)	 If  τ ∈ (0, ∞), X0(n) is said to be a distant past initialization.
	(iii)	 If  τ = ∞, X0(n) is said to be an infinite past initialization.

Theorem 3.1. Under Assumption 1 (i) or (ii) or (iii), we have

(1)	 When pn → ∞ and pn/n → 0 as n → ∞,

	
P k k P IC IC

P k k P IC IC

lim ˆ 0 0 lim 0 1,

lim ˆ 1 0 lim 0 0.

n IC n

n IC n

0 1

0 1

{ }
{ }

{ }

{ }

= = = − ≤ =

= = = − > =

→∞ →∞

→∞ →∞
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Fig. 3.  A Realization of the UR Model and the ME Model with ρn = 1 + n0.5/n (ME2).



Model Selection for Explosive Models	 79

(2)	 When pn = 2, the asymptotic distribution under the AIC criterion is

	
P k k P AIC AIC P

P k k P AIC AIC P

lim ˆ 0 0 lim 0 2 ,

lim ˆ 1 0 lim 0 1 2 .

n AIC n

n AIC n

0 1
2

0 1
2

ξ

ξ

{ }
{ }

( )

( )

{ }

{ }

= = = − ≤ = <

= = = − > = − <

→∞ →∞

→∞ →∞

	

where

	

BdB

B

B dB

B

B

, if 0

, if 0, ,

1 , if

2

0

1 2

2

0

1

0

1 2

2

0

1

2

∫

∫

∫

∫

ξ

τ

τ

τ

( )

( )
( )

( )

=

=

∈ ∞

= ∞











τ

τ

	

with B(s) being a Brownian motion, and

	 B s B s B 1 ,0τ( ) ( ) ( )= +τ 	

with B0(s) being an independent Brownian motion.

Remark 3.2. Theorem 3.1 is the same as Phillips (2008, Theorem 1) for distin-
guishing between the UR model and the stationary model. The condition that  
pn → ∞ and pn/n → 0 covers BIC and HQIC and hence, both BIC and HQIC 
can consistently select the UR model. The AIC criterion is inconsistent and its 
asymptotic distribution depends on ξ2, the squared UR t-statistic for the OLS 
estimator.

Remark 3.3. The validity of Theorem 3.1 does not require the iid assumption for 
the error term ut. If we follow Phillips (2008) by denoting F L F L ,j

j

j 0∑( ) =
=

∞
 

with F0 = 1 and F(1) ≠ 0, and letting us have Wold representation

	 u F L F j F, with ,s s j s j
j

j
j0

1/2

0
∑ ∑ε ε( )= = < ∞−

=

∞

=

∞

	 (3.7)

where (0, )t

iid 2
ε σε , the results in Theorem 3.1 continue to hold. However, both 

B0 and ξ2 need to be modified to accommodate the dependence in ut as in 
Phillips (2008).

Theorem 3.4. Let Assumption 1 (i) or (ii) holds. Assume the true DGP is the 
LTUE model.

(1)	 When pn → ∞ and pn/n → 0 as n → ∞,

{ } ( )= = = − >










=
→∞ →∞

P k k P
n
p

IC IClim ˆ 0 1 lim 0 1,
n IC n

n
1 0
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	 { } ( )= = = − ≤










=
→∞ →∞

P k k P
n
p

IC IClim ˆ 1 1 lim 0 0.
n IC n

n
1 0 	

(2)	 When pn = 2, the asymptotic distribution of the AIC criterion is

P k k P n AIC AIC P

P k k P n AIC AIC P

lim ˆ 0 1 lim 0 1 2 ,

lim ˆ 1 1 lim 0 2 ,

n AIC n

n AIC n

1 0
2

1 0
2

ζ

ζ

{ }
{ }

( )

( )

{ }

{ }

( )

( )

= = = − > = − >

= = = − ≤ = >

→∞ →∞

→∞ →∞

	

where

	
J dB

J
c J dB c J2 ,

c

c

c c
2 0

1 2

2

0

1
2

0

1
2

0

1∫

∫
∫ ∫ζ

( )
= + + 	

with

	 J r c r s dB sexp .c

r

0∫ { }( ) ( ) ( )= − 	

Remark 3.5. Theorem 3.4 shows that all the information criteria are inconsist-
ent in distinguishing between the LTUE model and the UR models when data 
come from the LTUE model. AIC selects the wrong model with probability 
going to 1 – P (ζ2 > 2), which depends on the localization constant c. This 
problem worsens for BIC and HQIC as the probability of  selecting the wrong 
model goes to one. Note that BIC is well known to be blind to local alterna-
tives; see, for example, Ploberger and Phillips (2003).

Theorem 3.6. Let Assumption 1 (i) or (ii) holds. Assume the true DGP is the 
ME model.

(1)	 When 
ρ

=
→∞

p
lim 0,
n

n

n
n2

	

P k k P
n

IC IC

P k k P
n

IC IC

lim ˆ 0 1 lim 0 0,

lim ˆ 1 1 lim 0 1.

n IC n
n
n

n IC n
n
n

2 1 0

2 1 0

ρ

ρ

{ }

{ }

( )

( )

= = = − >










=

= = = − ≤










=

→∞ →∞

→∞ →∞

	

(2)	 When 
p

lim 0, ,
n

n

n
n2ρ
π ( )= ∈ +∞

→∞

P k k P
n

IC IC P

P k k P
n

IC IC P

lim ˆ 0 1 lim 0 1 4 ,

lim ˆ 1 1 lim 0 1 1 4 .

n IC n
n
n

n IC n
n
n

2 1 0
2

2 1 0
2

ρ
χ π

ρ
χ π

{ }

{ }

( )

( )

( )

( )

( )

( )

= = = − >










= <

= = = − ≤










= − <

→∞ →∞

→∞ →∞
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(3)	 When 
p

lim
n

n

n
n2ρ

→ +∞
→∞

,

	

P k k P
n
p

IC IC

P k k P
n
p

IC IC

lim ˆ 0 1 lim 0 1,

lim ˆ 1 1 lim 0 0.

n IC n
n

n IC n
n

1 0

1 0

{ }

{ }

( )

( )

= = = − >










=

= = = − ≤










=

→∞ →∞

→∞ →∞

	

Remark 3.7. Theorem 3.6 shows that the limit probability of selecting the cor-
rect model by information criteria under the ME model depends critically on 
two parameters, cn, pn. As expected, the larger cn, the further the model away 
from the UR model and the higher probability for the information criteria 
to select the correct model. Interestingly, the smaller pn, the higher probabil-
ity for the information criteria to select the correct model. From Phillips and 
Magdalinos (2009), we know ρ ( )=− −o cn

n
n

1  and hence ρ → +∞cn
n

n . In the spe-

cial case where cn = nα, for α ∈ (0, 1), ρ =
→∞

plim 0
n n n

n2  no matter whether pn = 2 

or log n or 2 log log n. In this case, all the well-known information criteria can 
consistently select the true model.

Theorem 3.8. Let Assumption 1 (i) holds. Assume the true DGP is the explosive 
model.

(1)	 When 
ρ

=
→∞

p
lim 0
n

n
n2

,

	

P k k P
n

IC IC

P k k P
n

IC IC

lim ˆ 0 1 lim 0 0,

lim ˆ 1 1 lim 0 1.

n IC n n

n IC n n

2 1 0

2 1 0

ρ

ρ

{ }

{ }

( )

( )

= = = − >










=

= = = − ≤










=

→∞ →∞

→∞ →∞

	

(2)	 When 
ρ

π ( )= ∈ +∞
→∞

p
lim 0,
n

n
n2

 ,

	

P k k P
n

IC IC P
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Remark 3.9. Theorem 3.8 shows that the limit probability of selecting the cor-
rect model by information criteria under the explosive model depends also 
critically on two parameters, ρ, pn. As expected, the larger ρ, the higher prob-
ability for the information criteria to select the correct model. Interestingly, 
the smaller pn, the higher probability for the information criteria to select the 
correct model. If  pn = 2 or log n or 2 log log n, ρ =

→∞
plim 0

n n
n2  and hence case 

(1) applies, suggesting that all the well-known information criteria can consist-
ently select the true model.

Results in Theorem 3.6 can be extended to cover the LTUE model and the 
ME model with weakly dependent errors. The following proposition estab-
lishes the results for the ME model.

Proposition 3.10. Let Assumption 1 (i) or (ii) and the assumption specified in 
Equation (3.7) hold. Assume the true DGP is the ME model.
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4. LIMIT PROPERTIES BASED ON THE INDIRECT 
INFERENCE ESTIMATOR

The OLS estimator of ρn in Model (2.1) is known to be biased and the bias is 
acute when ρn is close to unity. To reduce the bias, the indirect inference method 
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of Smith (1993) and Gourérioux et al (1993) can be used if  Model (2.1) is fully 
specified. Phillips (2012) derives the asymptotic theory of the indirect inference 
estimator when the model is UR or LTU and u (0, )t

iid 2
 σ . Throughout the 

chapter, we denote ρ as the indirect inference estimator of ρ. Let h(c)  = c + g(c) 
and g(c)  = g −(c)1{c ≤ 0} + g+(c) 1{c > 0} with
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Phillips (2012) shows that under the UR model,
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Let 


=k 0IC  or 1 mean the information criterion of the UR model is smaller or 
larger than that of the competing model when the model is estimated by the indi-
rect inference method. We aim to find is the limit of the following probabilities:
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Theorem 4.1. Under Assumption 1 (i) or (ii) or (iii), we have

(1)	 When pn → ∞ and pn/n → 0 as n → ∞,
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(2)	 When pn = 2, the asymptotic distribution under the AIC criterion is
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with C being a standard Cauchy variate.

Remark 4.2. According to Theorem 4.1, as long as pn → ∞ and pn/n → 0, 
information criteria based on the indirect inference estimator is consistent in 
selecting the UR model. Hence, BIC and HQIC based on the indirect inference 
estimator can consistently select the UR model. Like the AIC criterion that is 
based on the OLS estimator, the AIC criterion based on the indirect inference 
estimator continues to be inconsistent. However, its asymptotic distribution 
depends on ς2, the squared UR t-statistic for the indirect inference estimator.

Remark 4.3. As shown in Phillips (2012), the squared UR t-statistic for the 
indirect inference estimator has a smaller variance than that of the squared 
UR t-statistic for the OLS estimator. Consequently, P (ς2 < 2) > P (ξ2 < 2), 
suggesting that AIC based on the indirect inference estimator can select the 
true model (i.e., the UR model) with a larger probability than that based on 
the OLS estimator.

Theorem 4.4. Let Assumption 1 (i) or (ii) holds. Assume the true DGP is the 
LTUE model.

(1)	 When pn → ∞ and pn/n → 0 as n → ∞,
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(2)	 When pn = 2, the asymptotic distribution under the AIC criterion is
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Remark 4.5. Theorem 4.4 shows that all the information criteria continue to 
be inconsistent in distinguishing between the LTUE model and the UR mod-
els when data come from the LTUE model even when the indirect inference 
estimation is employed. AIC selects the wrong model with probability going 
to 1 – P (ϑ2 > 2). Since the variance of  ζ2 is bigger than that of  υ2, the tail 
probability of  ζ2 is larger than that of  υ2, suggesting that AIC based on OLS 
selects the true model (i.e., LTUE model) with a greater probability than AIC 
based on the indirect inference estimator. This is a rather surprising result 
and suggests that the superiority in estimation does not necessarily translate 
to the superiority in model selection.

Theorem 4.6. Let Assumption 1 (i) or (ii) holds. Assume the true DGP is the 
ME model.
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Remark 4.7. The results in Theorem 4.6 are the same as those in Theorem 3.6, 
suggesting all the well-known information criteria can consistently select the 
true model (i.e., ME model) when cn = nα, for α ∈ (0, l).

Theorem 4.8. Let Assumption 1 (i) holds. Assume the true DGP is the explosive 
model.
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Remark 4.9. The results in Theorem 4.8 are the same as those in Theorem 3.8, 
suggesting that all the well-known information criteria can consistently select 
the true model (i.e., the explosive model).
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5. MONTE CARLO STUDY
In this section, we examine the performance of alternative information criteria, 
namely, AIC, BIC, and HQIC, in finite sample via simulated data and check the 
reliability of the asymptotic results developed in Sections 3 and 4. In the simula-
tion study, we use both OLS and the indirect inference method to estimate ρn 
from sample paths that are simulated from different DGPs. In total, we design 
four experiments. In the first experiment, we simulate data from the UR model. 
In the second experiment, we simulate data from the LTUE model with c = 1  
(i.e., ρn = 1 + 1/n). In the third experiment, we simulate data from two ME models 
with cn = n0.1, n0.3, respectively. In the last experiment, we simulate data from the 
explosive model with ρ =  1.01, 1.05, respectively. In all experiments, we simulate 
10,000 sample paths with initial value X0 = 0 and four sample sizes are consid-
ered, n = 100, 200, 500, 1,000. In each experiment, we report the fraction of the 
number of times in which the correct model is selected out of 10,000 replications.

Table 1 reports the results when the true DGP is UR. Several results can be 
found here. First, the probability for BIC and HQIC to select the true model 
grows as n grows. However, the probability for AIC to select the true model does 
not seem to increase or decrease as n grows. This observation is consistent with 
the asymptotic results reported in Theorem 3.1. Second, the probability for BIC 
to select the true model is larger than that in HQIC which is in turn larger than 
AIC in these four sample sizes. So, we can conclude that the probability grows as 
pn increases since 2 < 2 log log n < log n when 100 ≤ n ≤ 1000. Third, the prob-
ability implied by AIC based on the indirect inference estimator is larger than 
that based on OLS. This finding is consistent with Theorem 4.1 and Remark 4.3.

Table 2 report the results when the true DGP is the LTUE model with cn = 1. Also 
reported is the value of pn/ n

n2ρ . Several results can be found here. First, the probability 
for BIC and HQIC to select the true model becomes smaller as n grows. However, 
the probability for AIC to select the true model does not seem to increase or decrease 
as n grows. This observation is consistent with the asymptotic results in Theorem 3.4. 
Second, the probability implied by AIC based on the indirect inference estimator 
is smaller than that based on OLS. This finding is consistent with Theorem 4.4 and 
Remark 4.5. Finally, it seems that AIC performs better than BIC and HQIC in all cases.

Table 3 report the results when the true DGP is the ME model with cn = n0.1, 
n0.3. Also reported is the value of pn/ n

n2ρ . Several results can be found here. First, 

Table 1.  Probability of Selecting the Correct Model When Data Come from 
the UR Model.

n 100 200

IC AIC BIC HQIC AIC BIC HQIC

OLS 0.8160 0.9604 0.9020 0.8155 0.9751 0.9249

IIE 0.8731 0.9702 0.9292 0.8742 0.9810 0.9445

n 500 1,000

IC AIC BIC HQIC AIC BIC HQIC

OLS 0.8127 0.9849 0.9335 0.8195 0.9895 0.9402

IIE 0.8704 0.9881 0.9508 0.8759 0.9918 0.9566
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Table 2.  Probability of Selecting the Correct Model When Data Come from 
the LTUE Model with cn = 1.

n 100 200

IC AIC BIC HQIC AIC BIC HQIC

pn/ n
n2ρ 0.2734 0.6295 0.4175 0.2720 0.7206 0.4536

OLS 0.3516 0.1475 0.2420 0.3406 0.1305 0.2156

IIE 0.1485 0.0445 0.0922 0.1235 0.0269 0.0663

n 500 1,000

IC AIC BIC HQIC AIC BIC HQIC

pn/ n
n2ρ 0.2712 0.8427 0.4955 0.2709 0.9358 0.5236

OLS 0.3474 0.1019 0.1933 0.3416 0.0871 0.1823

IIE 0.1169 0.0134 0.0517 0.1089 0.0090 0.0394

Table 3.  Probability of Selecting the Correct Model When Data Come from 
the ME Model with cn = n0.1 and cn = n0.3.

ME Model with cn = n0.1

n 100 200

IC AIC BIC HQIC AIC BIC HQIC

pn/ n
n2ρ 0.0861 0.1983 0.1316 0.0679 0.1799 0.1132

OLS 0.5183 0.3403 0.4349 0.5554 0.3638 0.4629

IIE 0.3071 0.1741 0.2406 0.3211 0.1624 0.2250

n 500 1,000

IC AIC BIC HQIC AIC BIC HQIC

pn/ n
n2ρ 0.0486 0.1512 0.0889 0.0371 0.1282 0.0718

OLS 0.6151 0.4083 0.5048 0.6469 0.4374 0.5494

IIE 0.3544 0.2008 0.2815 0.3925 0.2351 0.3129

ME Model with cn = n0.3

n 100 200

IC AIC BIC HQIC AIC BIC HQIC

pn/ n
n2ρ 0.0008 0.0019 0.0012 0.0001 0.0003 0.0002

OLS 0.9374 0.9066 0.9235 0.9749 0.9608 0.9683

IIE 0.9274 0.8979 0.9163 0.9716 0.9578 0.9648

n 500 1,000

IC AIC BIC HQIC AIC BIC HQIC

pn/ n
n2ρ 1.0e-06 1.0e-05 1.0e-06 1.0e-07 1.0e-07 1.0e-07

OLS 0.9948 0.9907 0.9938 0.9988 0.9985 0.9986

IIE 0.9938 0.9901 0.9933 0.9986 0.9985 0.9985
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the probability for all three information criteria to select the true model grows as 
n increases. This observation is consistent with the asymptotic results reported 
in Theorem 3.6 and Remark 4.7. Second, comparing the results for cn = n0.1 and 
those for cn = n0.3, the probability for all three information criteria to select the 
true model increases when  cn is bigger. Third, the probability based on the indi-
rect inference estimator is smaller than that based on OLS. Finally, it seems that 
AIC performs better than BIC and HQIC in all cases.

Table 4 report the results when the true DGP is the explosive model with  
ρ = 1.01, 1.05. Also reported is the value of pn/ρ

2
n. Several results can be found 

here. First, when ρ = 1.01, which is larger than the unity by 1%, the probability 
for information criteria to select the correct model is small in all cases when the 
sample size is small. However, it grows very quickly with the sample size. When 
ρ = 1.05, the probability for information criteria to select the correct model is 
almost 1 in all cases even when the sample size is small and increases with the 
sample size. Finally, it seems that AIC performs better than BIC and HQIC in 
all cases.

Table 4.  Probability of Selecting the Correct Model When Data Come from 
the Regular Explosive Model with ρ = 1.01, 1.05.

Explosive Model with ρ = 1.01

n 100 200

IC AIC BIC HQIC AIC BIC HQIC

pn/ n
n2ρ 0.2734 0.6295 0.4175 0.0374 0.0990 0.0623

OLS 0.3516 0.1475 0.2420 0.6449 0.4820 0.5555

IIE 0.1485 0.0445 0.0922 0.4740 0.3059 0.3845

n 500 1,000

IC AIC BIC HQIC AIC BIC HQIC

pn/ n
n2ρ 1.0e-4 1.0e-4 1.0e-4 1.0e-9 1.0e-8 1.0e-9

OLS 0.9775 0.9599 0.9704 0.9998 0.9997 0.9998

IIE 0.9733 0.9563 0.9681 0.9998 0.9997 0.9998

Explosive Model with ρ = 1.05

n 100 200

IC AIC BIC HQIC AIC BIC HQIC

pn/ n
n2ρ 0.0001 0.0003 0.0002 1.0e-07 1.0e-07 1.0e-07

OLS 0.9741 0.9643 0.9681 0.9999 0.9998 0.9998

IIE 0.9703 0.9626 0.9655 0.9999 0.9998 0.9998

n 500 1,000

IC AIC BIC HQIC AIC BIC HQIC

pn/ n
n2ρ 1.0e-20 1.0e-20 1.0e-20 1.0e-41 1.0e-41 1.0e-41

OLS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

IIE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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6. CONCLUSION
This chapter studies the limit properties of information criteria for distinguish-
ing between the UR model and three types of explosive models. Both the OLS 
estimator and the indirect inference estimator are employed to estimate the AR 
coefficient in the candidate model. This chapter contributes to the literature in 
three aspects. First, our results extends results in the literature to the explosive 
side of the UR, and we find that information criteria consistently choose the UR 
model when the UR model is the true model. Second, we show that the limiting 
probabilities for information criteria to select the explosive model depends on 
both the distance of AR coefficient from unity and the size of penalty term in the 
information criteria. When the penalty term is not too large and the root is not 
too close to UR, all the information criteria consistently select the true model. 
It is known that the indirect inference method is effective in reducing the bias in 
OLS estimation in all cases as well as reducing the variance in OLS estimation in 
the UR model and in the LTU model. However, when information criteria are 
used in connection with the indirect inference estimation, the limiting probabili-
ties for information criteria to select the correct model can go up or down rela-
tive to that with the OLS estimation, depending on the true DGP. When the true 
DGP is the UR model, the indirect inference estimation increases the probability. 
When the true DGP is the LTUE model or the ME model or the explosive model, 
the indirect inference estimation decreases the probability. This rather surprising 
result suggests that the superiority in estimation does not necessarily translate to 
the superiority in model selection.
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APPENDIX 
A. Proof of Theorem 3.1

The proof is the same as the proof for Theorem 1 in Phillips (2008), and hence 
omitted.

B. Proof of Theorem 3.4

When the true DGP is the LTUE model, we have 0 < c < ∞ and
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By Lemma 1 in Phillips (1987b), when the process is initialized at X0, we know
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We also know from Phillips (1987b) that
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Hence,
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Therefore, by Equations (A.3) and (A.5), we have
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Hence, if  pn = 2 (as in AIC), as n → ∞, we have
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C. Proof of Theorem 3.6

When the true DGP is the ME model, we have
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According to Phillips and Magdalinos (2007), when the process is initialized at 
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where X, Y ∼  (0, 1) and ζ is a standard Cauchy variate.
Therefore, by Equations (A.8) and (A.9), we have
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On the other hand,
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By Equations (A.8)–(A.10), we obtain
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Therefore, by Equations (A.11) and (A.12), we have
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D. Proof of Theorem 3.8

When the true DGP is the explosive model, we have
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By results established in Anderson (1959), we know
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where X Y, (0,1)
iid
  and  is a standard Cauchy variate. Then, we have
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For the OLS estimator for the general explosive series, we have
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By Equation (A.13)–(A.15), we have
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Now, by Equations (A.16) and (A.17), we obtain
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E. Proof of Proposition 3.10

When the true DGP is the ME model, we have 0 < c < ∞, and
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When the process is initialized at X0, by Lemma 5 in Magdalinos (2012), we 
know
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where by Lemma 2 in Magdalinos (2012), we know Y and Z are independent  

 (0, 1) variates with ω2 = Fjj 0

2
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∞
.

Therefore, by Equations (A.18) and (A.19), we have
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We also know from Magdalinos (2012) that
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Therefore, by Equations (A.20) and (A.22), we have
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F. Proof of Theorem 4.1

When the true DGP is the UR model, we have
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According to Phillips (2012), we have
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where h(c) was defined in Section 4.
According to Phillips and Magdalinos (2009), we have
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G. Proof of Theorem 4.4

When the true DGP is the LTUE model, we have 0 < c < ∞. There is no dif-
ference between IC0 based on the OLS estimator and that based on the indirect 
inference estimator. For IC1, we have
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By the limit theory for the indirect inference estimator developed in Phillips 
(2012), we have
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By Equations (A.1), (A.2), and (A.23), we have
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Therefore, by Equations (A.11) and (A.23), we have
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When pn = 2, as n →∞ we have
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When pn → ∞ and 
p

n
0n → , we have n
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H. Proof of Theorem 4.6

When the true DGP is the ME model, we have
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By Equations (A.8) and (A.9), we have
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Similarly, for IC1 based on the indirect inference estimator, we have
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Using the results in Phillips (2012), Equations (A.8) and (A.9), we obtain
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Therefore, the similar results to those in Theorem 3.6 are obtained.

I. Proof of Theorem 4.8

When the true DGP is the explosive model, for the indirect inference estimator, 
we know that for IC0, it is the same as the OLS estimator. Therefore, we only need 
to derive the IC1. Note that for IC1, we have
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According to the results in Phillips (2012), for |ρ| > 1, we know the binding 
function for ρ is
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Now, by Equations (A.16) and (A.27), we obtain
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