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ABSTRACT  

We propose a model studying the random assignments of bundles with no free disposal. The key difference between our 
model and the one where objects are allocated (see Bogomolnaia and Moulin (2001)) is one of feasibility. The implications 
of this difference are significant. Firstly, the characterization of sd-efficient random assignments is more complex. 
Secondly, we are able to identify a preference restriction, called essential monotonicity, under which the random serial 
dictatorship rule (extended to the setting with bundles) is equivalent to the probabilistic serial rule (extended to the setting 
with bundles). This equivalence implies the existence of a rule on this restricted domain satisfying sd-efficiency, sd-
strategy-proofness, and equal treatment of equals. Moreover, this rule only selects random assignments which can be 
decomposed as convex combinations of deterministic assignments. 

KEYWORDS  
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1. Introduction  

We study the problem of allocating a finite set of objects to a finite set of agents, where money transfers are prohibited 
and each agent receives a bundle of objects. Each object has a certain number of identical copies. We refer to this number 
as the capacity of the object and require that it be smaller than the number of agents. A bundle is a subset of objects that 
contains at most one copy of each object. In order to preserve fairness, we adopt randomization in allocations.1  

A central assumption in earlier studies on random assignments is that each agent gets at most one object.2 However, for 
many relevant applications, it is more appropriate to allocate objects in bundles. One reason is that complementarity may 
require allocation in bundles in order to improve efficiency. Another reason is that the total number of objects may be 
more than the number of agents and free disposal may not be acceptable, as for instance is the case when a number of 
tasks exceeding the number of agents have to be accomplished. In this paper, we propose a model studying the random 
assignment of bundles in the absence of free disposal; by requiring that all copies of every object be allocated, we 
distinguish our model from that of other studies, for example, the course allocation problem, where seats of a course may 
be freely disposed of.3 Another feature of our model is that we do not associate with objects priorities over agents, which 
distinguishes our model from the literature on school choice where priorities are essential (see Abdulkadiroğlu and 

Sönmez (2003)). 

Under our formulation, a random assignment can be identified with a plane stochastic matrix which reflects the feature 
that feasibility in our model requires that groups of columns sum to fixed integers in a combinatorial fashion. The 
consequences of this more complex feasibility requirement are that not every  
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random assignment is decomposable as a lottery over determin-
istic assignments, and that furthermore, the characterization of
efficient random assignments for the setting of object allocation,
(see Bogomolnaia and Moulin (2001)), is no longer valid.4

Our first result is a characterization of sd-efficiency using a
condition called unbalancedness. We next extend the Probabilis-
tic Serial rule (henceforth the PSB rule) and the Random Serial
Dictatorship rule, (henceforth the RSDB rule) to the setting with
bundles and observe that the RSDB rule satisfies sd-strategy-
proofness, decomposability, and equal treatment of equals but vi-
olates sd-efficiency, while the PSB rule satisfies sd-efficiency and
equal treatment of equals but violates sd-strategy-proofness and
decomposability. As our principal finding, we identify a particu-
lar domain of preferences, the domain of essentially monotonic
preferences, for which there exists a random assignment rule
which selects only decomposable assignments and which satis-
fies additionally sd-strategy-proofness, sd-efficiency, and equal
treatment of equals. Finally we demonstrate the non-existence
of a sd-strategy-proof, sd-efficient, and sd-envy-free rule on the
universal domain under a technical condition.5

In order to define the domain of essentially monotonic prefer-
ences, we first let agents sequentially take bundles which contain
exactly one copy of each object that is still available. The set of
bundles so dispensed is referred to as critical.6 Essential mono-
tonicity requires that a bundle contained in a critical bundle is
less preferred to this critical bundle. In order to show the exis-
tence of a desirable random assignment rule, we show that the
PSB and the RSDB rules are equivalent on the essentially mono-
tonic domain and furthermore, degenerate to a constant rule.
Given the disparity these two rules display in the setting with
objects, their equivalence comes as a surprise as does the fact
that sd-efficiency is preserved by a simple constant assignment
on such a large domain, a finding not common in mechanism
design.

The paper is organized as follows. Section 2 defines for-
mally the model and axioms, the RSDB rule and the PSB rule,
and introduces the domain of essentially monotonic preferences.
Section 3 contains our results. Some discussions and examples
that are omitted from the main exposition are gathered in
Section 4. Section 5 contains all proofs except the proof of a
Lemma which is of independent interest and appears in the
Appendix.

2. Preliminaries

2.1. Model and axioms

Let I ≡ {1, . . . , n} denote a finite set of agents and let X
denote a finite set of objects. Let in addition m ≡ |X |. Assume
n ⩾ 2 and m ⩾ 2. In order to incorporate situations where
some objects are physically identical, we allow an object to have
multiple copies. For each x ∈ X , the capacity of x is a positive
integer qx, which denotes the number of its copies. We assume
qx ∈ {1, 2, . . . , n−1} so that the number of copies is smaller than

4 Budish et al. (2013) study the decomposability of a random assignment
under an assumption called bihierarchy, which is violated in our set up.
5 Similar impossibilities in the setting of object allocation can be found

in Bogomolnaia and Moulin (2001), Kasajima (2013), Chang and Chun (2017),
and Liu and Zeng (2019).
6 For example, if there are 10 copies each of a and b and 5 copies each of c

and d, then each of the first 5 agents takes the grand bundle abcd; each of the
next 5 agents takes ab; and all the others take the empty bundle. The critical
bundles are accordingly abcd, ab, and the empty bundle.

the number of agents.7 The capacities are collected in a vector
q = (qx)x∈X .

A bundle of objects is a subset of X . The set of bundles
is hence the power set 2X and denoted as X . Note that our
definition of a bundle does not allow it to contain more than
one copy of any object. This assumption is reasonable in the
context of the applications of our model mentioned in Section 4.1.
Throughout the paper we denote objects with lowercase English
alphabets and denote bundles with uppercase English alphabets,
i.e., a, b, c, x, y, z ∈ X and A, B, C ∈ X . In addition, we usually
denote the bundle {a, b, c} simply as abc.

Each agent i ∈ I is assumed to have a strict preference Pi
on bundles, i.e., a linear order on X . Following the convention,
we denote A Ri B if and only if either A = B or A Pi B.
The set of all strict preferences is denoted as P and referred to
as the universal domain. Let D ⊂ P be a nonempty subset of
the universal domain. We treat this given subset as the set of
admissible preferences and call it the domain of the problem.
Given an arbitrary nonempty subset of bundles X̄ ⊂ X and an
arbitrary preference Pi ∈ P, denote rk(Pi, X̄ ) as the kth ranked
bundle in X̄ according to Pi, i.e., |{A ∈ X̄ : A Ri rk(Pi, X̄ )}| = k.

A deterministic assignment can be presented as a matrix,
whose rows are associated with agents and columns associated
with bundles. The elements are either zeros or ones, where ‘‘one"
means the corresponding agent gets the corresponding bundle
and ‘‘zero" means she does not. Each agent gets exactly one
bundle, which means every row of the matrix has exactly one
non-zero element. Notice that this does not mean every agent
will get some object, since the empty set is also treated as a
bundle, i.e., ∅ ∈ X . In addition, an object x ∈ X with capacity
qx is allocated to exactly qx agents. We therefore impose no
free disposal in our environment. Deterministic assignments are
formally defined below.

Definition 1. A deterministic assignment is a matrix D ∈ {0, 1}I×X

such that

1. ∀ i ∈ I:
∑

A∈X DiA = 1,
2. ∀ x ∈ X:

∑
i∈I,x∈A DiA = qx.

The set of deterministic assignments is denoted D. If one re-
stricts attention to deterministic assignments, one would expect
that, in general, the agents with the same preference will be
treated unequally. To allow for greater flexibility in design to deal
with the fairness issue, we allow the elements of an assignment
to be fractional numbers between zero and one, as below.

Definition 2. A random assignment is a matrix L ∈ [0, 1]I×X

such that

1. ∀ i ∈ I:
∑

A∈X LiA = 1,
2. ∀ x ∈ X:

∑
i∈I,x∈A LiA = qx.

The set of random assignments is denoted L. It is evident
that D ⊂ L. The following is an example of a specific random
assignment.

Example 1. Let I = {1, 2, 3}, X = {a, b}, qa = 1, and qb = 2.
Fig. 1 depicts a random assignment. ■

7 This assumption is reasonable for many relevant applications where the
number of agents is large. The cases where qx ⩾ n for some x can be transformed
into our setting as follows. Suppose there are 6 copies of a and only 5 agents, we
can split these six copies into smaller groups and treat each group as one type
of an object. For example, we may treat them as two objects, each of which has
3 copies. Depending on how one splits and allocates these copies, one obtains
a different model. To each such model, our methodology applies.
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Fig. 1. A random assignment.

The fractional numbers in a random assignment are inter-
preted as the probability of the corresponding agent getting
the corresponding bundle. Hence a row associated to agent i,
denoted Li, gives the lottery over bundles for agent i. In the
random assignment specified above, L2 specifies that agent 2 will
get bundle ab with probability 1/6, b with probability 1/3, and
empty bundle with probability 1/2.

For deterministic assignments, condition 2 in the definition
simply imposes ex post feasibility. For random assignments, the
situation is more complicated. To fully interpret it, we need to
introduce another notion below.

Definition 3. A random assignment L ∈ L is decomposable if
there is a lottery over deterministic assignments β ∈ ∆(D) such
that

L =

∑
D∈D

β(D) · D,

where β(D) denotes the probability lottery β assigns to D.
Such a lottery β is called a decomposition of L. Generally a

decomposable random assignment may have multiple decompo-
sitions. The following is an example of a decomposition.

Example 2. The random assignment L in Example 1 can be
decomposed as follows⎛⎜⎝ ab a b ∅

1 : 1/6 1/6 1/2 1/6
2 : 1/6 0 1/3 1/2
3 : 1/2 0 1/3 1/6

⎞⎟⎠

= 1/2

⎛⎜⎝ ab a b ∅

1 : 0 0 1 0
2 : 0 0 0 1
3 : 1 0 0 0

⎞⎟⎠

+ 1/6

⎛⎜⎝ ab a b ∅

1 : 1 0 0 0
2 : 0 0 1 0
3 : 0 0 0 1

⎞⎟⎠

+ 1/6

⎛⎜⎝ ab a b ∅

1 : 0 0 0 1
2 : 1 0 0 0
3 : 0 0 1 0

⎞⎟⎠

+ 1/6

⎛⎜⎝ ab a b ∅

1 : 0 1 0 0
2 : 0 0 1 0
3 : 0 0 1 0

⎞⎟⎠ ■

For a decomposable random assignment, Condition 2 in
Definition 2 requires that, for x, the expected number of its copies
that will be assigned to agents, through feasible deterministic
assignments, is exactly qx. In this sense, condition 2 imposes ex
ante feasibility. We will on occasion call a random assignment
feasible in order to emphasize the conditions in Definition 2.

In our setting with bundles, not every random assignment is
decomposable (see Example 15). Since every lottery β ∈ ∆(D)

specifies a random assignment L ∈ L, the set L is strictly larger
than the set of matrices specified by the lotteries in ∆(D).

A random assignment rule is formally defined as a mapping
which selects a random assignment for every profile of admissible
preferences.8

Definition 4. A random assignment rule is a mapping ϕ : Dn
→

L.

The remainder of the section introduces four axioms that we
impose on a desirable random assignment rule.

The first axiom concerns itself with decomposability, which
is desirable since decomposable random assignments, being ex-
pressible as a lottery over deterministic assignments, are easier
to operationalize. We call a random assignment rule decompos-
able if it selects only among decomposable random assignments.
Formally, a random assignment rule ϕ : Dn

→ L is decomposable
if ϕ(P) is decomposable for every P ∈ Dn.

In addition to decomposability, we impose three normative
axioms on a desirable random assignment rule. The first deals
with fairness and requires that whenever two agents report the
same preference, they get the same lottery. Formally, a rule ϕ :

Dn
→ L satisfies equal treatment of equals (or ETE) if for all

P ∈ Dn, [Pi = Pj] ⇒ [ϕi(P) = ϕj(P)].
The second deals with efficiency and the third deals with

incentive compatibility. However, both of these require an as-
sumption on how an agent compares lotteries when she is iden-
tified by a preference on bundles. We thus need to extend a
preference Pi over bundles X to a preference over lotteries in
∆(X ). Following the standard approach, we adopt the stochastic
dominance extension, which assumes that a lottery Li ∈ ∆(X )
is at least as good as L′

i ∈ ∆(X ) if, for each bundle A ∈ X , the
probability of getting a bundle that is at least as good as A given
by Li is no less than that given by L′

i .
9 Formally,

Definition 5. Given Pi ∈ P, Li ∈ ∆(X ) stochastically dominates
L′

i ∈ ∆(X ), denoted as Li P sd
i L′

i , if for all B ∈ X∑
A Ri B

LiA ⩾
∑
A Ri B

L′

iA.

With the stochastic dominance extension, we define the re-
maining two axioms. An assignment L is sd-efficient at P ∈ Dn

if there exists no L′
∈ L that Pareto dominates L, i.e., L′

̸= L
and L′

i P sd
i Li for all i ∈ I . Accordingly, a rule ϕ : Dn

→ L
is sd-efficient if ϕ(P) is sd-efficient at P , for all P ∈ Dn. We
address the general question of whether a random assignment
is sd-efficient at a given profile in Section 3.1. Finally, a rule is
sd-strategy-proof if truth-telling is always a weakly dominant
strategy in the associated preference revelation game. Formally,
a rule ϕ : Dn

→ L is sd-strategy-proof if for all i ∈ I , P ∈ Dn,
and P ′

i ∈ D, ϕi(Pi, P−i) P sd
i ϕi(P ′

i , P−i). We say a rule is desirable if
it satisfies decomposability, sd-strategy-proofness, sd-efficiency,
and equal treatment of equals.

8 As the set L is strictly larger than ∆(D), we allow a rule to select a non-
decomposable random assignment. Indeed some important assignment rules like
the probabilistic serial rule do so, and are included in our model. Although we
do not impose decomposability on the definition of random assignment rules,
we treat it as an axiom and impose it on our search for a desirable rule. In
particular, our existence result (Theorem 1) identifies a rule that selects only
decomposable random assignments. For the cases where an indecomposable
random assignment is chosen, a decomposable approximation may be adopted
(see Nguyen et al. (2016) and Akbarpour and Nikzad (2019)).
9 This assumption is equivalent to assuming that a lottery Li is at least as

good as L′

i if and only if, for every Bernoulli utility representing Pi , Li gives an
expected utility that is at least as high as that is given by L′

i .
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2.2. The random serial dictatorship rule for bundles

In the classical random assignment model, the random serial
dictatorship rule (Abdulkadiroğlu and Sönmez, 1998) is defined as
the equally weighted average of serial dictatorship rules (Svens-
son, 1999), each of which is a deterministic rule parameterized
by an ordering of agents. Such an ordering is defined as a one-to-
one mapping σ : {1, . . . , n} → I , where σ (1) denotes the agent
ordered the first, σ (2) the second, and so on. The corresponding
serial dictatorship rule lets the agents pick their respectively
favorite objects sequentially. In particular, σ (1) gets her favorite
object, σ (2) gets her favorite within the remaining objects, and
so on.

For the setting with bundles, a seemingly natural extension of
the serial dictatorship rule is one where every agent takes a bun-
dle rather than an object. However, the following example indi-
cates that such an extension may specify an infeasible assignment
because of its conflict with the no free disposal requirement.

Example 3. Consider the situation where X = {a, b}, qa = qb
= 1, and I = {1, 2}. Consider a preference profile where agents
have the same preference: a ≻ ∅ ≻ ab ≻ b. Let σ be an ordering
of agents such that σ (1) = 1 and σ (2) = 2.

In the first step, the set of available bundles is {ab, a, b, ∅}.
Hence agent 1 will take a. Then the set of available bundles for
agent 2 will be {b, ∅}, from which agent 2 will choose ∅. Then the
deterministic assignment will be D1a = D2∅ = 1. However, this is
not feasible since b is not assigned. ■

To deal with the problem, we introduce for each object x ∈ X ,
an ‘‘opposite object", denoted as x̄, and refer to it as ‘‘not x’’. In
addition, we will say x̄ ∈ A if x ̸∈ A. For each x̄, we define
its capacity as n − qx and whenever an agent takes a bundle A
which does not contain x, we deduct the available units of x̄ by
one. Accordingly, we define a bundle A as available, if for every
x ∈ X , x ∈ A implies that there are still some units of x available
and x ̸∈ A implies that there are still some units of x̄ available.
This rules out the infeasible assignments seen in Example 3 since
whenever an agent takes a bundle not containing x, the available
units of each opposite object x̄ will be less. So eventually, when
no more x̄ is available, subsequent agents have to take x.

We present the serial dictatorship rule for bundles on an
arbitrary domain below, where qv−1

x and qv−1
x̄ denote respectively

the available units of x and x̄ for the vth agent, which then defines
as X v−1 the available bundles.

Definition 6. Serial dictatorship for bundles (SDB) is a deter-
ministic assignment rule SDBσ

: Dn
→ D parameterized by

an ordering of agents σ : {1, 2, . . . , n} → I , such that given
a preference profile P ∈ Dn, SDBσ (P) = D, specified by the
following.

Let X 0
= X , q0x = qx, and q0x̄ = n − qx, for all x ∈ X .

For v = 1, . . . , n,

Dσ (v)A =

{
1 if A = r1(Pσ (v),X v−1)
0 otherwise

qv
x =

{
qv−1
x − 1 ∀x ∈ r1(Pσ (v),X v−1)

qv−1
x otherwise

qv
x̄ =

{
qv−1
x̄ − 1 ∀x ̸∈ r1(Pσ (v),X v−1)

qv−1
x̄ otherwise

X v
= X v−1

\{A ∈ X v−1
: ∃x ∈ X s.t. [x ∈ A, qv

x = 0] or
[x ̸∈ A, qv

x̄ = 0]}.

To illustrate that the SDB rule is well-defined, we present the
following example.

Example 4. Consider the setting of Example 3. The capacities of
the objects are as follows:

q0a = 1, q0b = 1, q0ā = 1, q0
b̄

= 1.

For agent 1, the set of available bundles is X 0
= {ab, a, b, ∅},

from which she takes a. Then the capacities of objects will be
updated as follows:

q1a = q0a − 1 = 0, q1b = q0b = 1, q1ā = q0ā = 1, q1
b̄

= q0
b̄
− 1 = 0.

Hence the set of available bundles for agent 2 is X 1
= {b}.

This indicates that agent 2 has to take b and the final assignment
is such that agents 1 and 2 get respectively a and b. ■

With the above well-defined serial dictatorship rules, we de-
fine the random serial dictatorship rule as the equally weighted
combination of these deterministic rules. Let Σ denote the set of
all orderings of agents.

Definition 7. Random serial dictatorship for bundles (RSDB) is
a random assignment rule RSDB : Dn

→ L such that given a
preference profile P ∈ Dn,

RSDB(P) =
1

|Σ |

∑
σ∈Σ

SDBσ (P).

The following Property, proved in Section 5.2, summarizes
properties of the RSDB rule acting on the universal domain.

Property 1. The RSDB rule on the universal domain satisfies de-
composability, sd-strategy-proofness, equal treatment of equals but
violates sd-efficiency.

The performance of the RSDB rule on the universal domain and
the underlying logic turn out to be the same as in the setting of
object allocation (see Bogomolnaia and Moulin (2001)).

2.3. The probabilistic serial rule for bundles

The PS rule in the classical random assignment model (Bogo-
molnaia and Moulin, 2001) is a special case of the so-called si-
multaneous eating algorithm, and corresponds to the case where
all agents eat at the uniform speed. It treats the objects as if
they are infinitely divisible and proceeds as follows: all the agents
eat their respectively favorite objects at the uniform speed, until
some object is exhausted; thereafter, agents eat their respectively
favorite objects among the available ones, still at the uniform
speed, until some other object is exhausted; this procedure is
repeated until all the objects are exhausted. Finally, the share of
an object eaten by an agent is interpreted as the probability that
this agent gets this object.

The PS rule can be naturally extended to the setting with
bundles, where every agent eats a bundle rather than an object.
In particular, an agent eating a bundle means that she simul-
taneously eats every object contained in that bundle. As in the
definition of the SDB rule, here too we introduce for each x ∈ X
an opposite object x̄. An agent eating a bundle A is equivalent to
saying that she eats every x such that x ∈ A and every x̄ such that
x ̸∈ A. We define the probabilistic serial rule for bundles below,
where rv−1

x and rv−1
x̄ denote respectively the available shares of

x and x̄ for the vth step. Accordingly, X v−1 denotes the available
bundles for the vth step. In particular, the length of the vth step,
i.e., tv − tv−1, is defined as the shortest time needed to exhaust
at least one in x’s and x̄’s.
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Definition 8. Probabilistic serial rule for bundles (PSB) is a ran-
dom assignment rule PSB : Dn

→ L such that given a preference
profile P ∈ Dn, PSB(P) ≡ Lv̄ where Lv̄ is generated by the following
algorithm.

Let t0 = 0, X 0
= X , r0x = qx and r0x̄ = n − qx for all x ∈ X .

Let in addition L0 be a matrix of size n × |X | with all zeros.
For v = 1, . . . , v̄,

Ivx ≡ {i ∈ I : x ∈ r1(Pi,X v−1)}, ∀x ∈ X;

Ivx̄ ≡ I\Ivx , ∀x ∈ X;

tv ≡ tv−1
+ min

{{
rv−1
x

|Ivx |
: rv−1

x > 0
}⋃{

rv−1
x̄

|Ivx̄ |
: rv−1

x̄ > 0

}}
;

Lv
iA ≡ Lv−1

iA +

{
tv − tv−1, if A = r1(Pi,X v−1)
0, otherwise ,

∀i ∈ I, A ∈ X v−1
;

rv
x ≡ rv−1

x − (tv − tv−1) · |Ivx |, ∀x ∈ X;

rv
x̄ ≡ rv−1

x̄ − (tv − tv−1) · |Ivx̄ |, ∀x ∈ X;

X v
≡ X v−1

\

{A ∈ X v−1
: ∃x ∈ X s.t. [x ∈ A, rv

x = 0] or [x ̸∈ A, rv
x̄ = 0]};

where v̄ is identified by X v̄
= ∅.

The following example illustrates an eating procedure.

Example 5. Let I = {1, 2, 3}, X = {a, b, c}, and qx = 1 ∀x ∈ X .
Let the preference profile P be as below.

P1 : ab abc · · · · · ·

P2 : ∅ ab c · · ·

P3 : ∅ ab c · · ·

∅ ab abc c
L1 : 0 2/3 1/3 0
L2 : 2/3 0 0 1/3
L3 : 2/3 0 0 1/3

Initially the available shares are r0a = r0b = r0c = 1 and
r0ā = r0

b̄
= r0c̄ = 2 and hence every bundle is available.

In the first period, agent 1 eats bundle ab and agents 2 and 3
eat ∅. So the sets of agents who eat various available objects are
as follows:
I1a = {1} I1b = {1} I1c = ∅

I1ā = {2, 3} I1
b̄

= {2, 3} I1c̄ = {1, 2, 3}.

The object c̄ will be exhausted first since r0c̄ /|I
1
c̄ | = 2/3 is the

smallest among available objects. This also identifies the end of
the first period, i.e., t1 = 2/3. Hence in the first period agent 1
eats 2/3 of ab and agents 2 and 3 each eats 2/3 of ∅. We now
update the available shares of objects as below

r1a = r0a − 2/3 · |I1a | = 1/3 r1ā = r0ā − 2/3 · |I1ā | = 2/3
r1b = r0b − 2/3 · |I1b | = 1/3 r1

b̄
= r0

b̄
− 2/3 · |I1

b̄
| = 2/3

r1c = r0c − 2/3 · |I1c | = 1 r1c̄ = r0c̄ − 2/3 · |I1c̄ | = 0.

So, except for c̄ , all the other objects are still available, which
defines the set of available bundles as X 1

= {abc, ac, bc, c}. In
particular, the set ∅ is not available any more.

In the second period, agent 1 eats abc , which is her favorite
in X 1 and agents 2 and 3 eat c , which is their favorite in X 1. The
sets of agents who eat various available objects are as follows:

I2a = {1} I2b = {1} I2c = {1, 2, 3}
I2ā = {2, 3} I2

b̄
= {2, 3} I2c̄ = ∅.

Then all the objects will be exhausted at the same time t2 =

t1 + 1/3 = 1 since 1/3 = r1a /|I
2
a | = r1b /|I

2
b | = r1c /|I

2
c | = r1ā /|I

2
ā | =

r1
b̄
/|I2

b̄
|. In this period agent 1 eats 1/3 of abc and each of agents

2 and 3 eats 1/3 of c . At the end of the second period, all the
objects are exhausted, the algorithm terminates, and the resulting
random assignment is L as presented above. ■

As the above example indicates, the PSB rule is well-defined.
To interpret it, imagine that each agent has m mouths, each
mouth corresponding to a particular object, say x, and that
throughout the eating procedure, a mouth is devoted to either
eating x or its opposite object x̄.

The following Property, proved in Section 5.3, summarizes
properties of the PSB rule acting on the universal domain.

Property 2. The PSB rule on the universal domain satisfies
sd-efficiency and equal treatment of equals but violates decompos-
ability and sd-strategy-proofness.

Except for the fact that the violation of decomposability is
new, the performance of the PSB rule turns out to be the same
as in the setting of object allocation. The underlying logic how-
ever is different since the characterization of sd-efficiency in the
current setting is different (see Section 3.1). Moreover, due to the
change in the feasibility requirement, the manipulation pattern
turns out to be more complicated. An implication is that an
existence result in the setting of object allocation (see Liu (2019))
becomes invalid. This observation is presented as Example 14 in
Section 4.2.

2.4. Essentially monotonic preferences

In order to introduce our preference restriction, we identify
first the following sequence of bundles and integers. We call them
critical bundles and critical capacities.
A1 ≡ X, d1 ≡ min{qx : x ∈ X},

A2 ≡ {x ∈ X : qx > d1}, d2 ≡ min{qx − d1 : qx > d1},

.

.

.
.
.
.

Ak ≡

{
x ∈ X : qx >

k−1∑
l=1

dl

}
, dk ≡ min

{
qx −

k−1∑
l=1

dl : qx >

k−1∑
l=1

dl

}
,

.

.

.
.
.
.

AK−1 ≡

{
x ∈ X : qx >

K−2∑
l=1

dl

}
, dK−1 ≡ min

{
qx −

K−2∑
l=1

dl : qx >

K−2∑
l=1

dl

}
,

AK ≡

{
x ∈ X : qx >

K−1∑
l=1

dl

}
, dK ≡ n −

K−1∑
l=1

dl,

where K is identified by AK = ∅. It is evident that dK−1 =

max{qx : x ∈ X}. By the structure above, X = A1 ' A2 ' · · · '
AK−1 ' AK = ∅.

Example 6. Consider situations where objects have the same
number of copies, i.e., qx = qy for all x, y ∈ X . Then the critical
bundles and capacities are as follows.

A1 = X d1 = qx
A2 = ∅ d2 = n − qx. ■

Example 7. Consider a situation where n = 6, X = {a, b, c},
qa = 4, qb = 3, and qc = 2. Then the critical bundles and
capacities are as follows.

A1 = abc d1 = 2
A2 = ab d2 = 1
A3 = a d3 = 1
A4 = ∅ d4 = 2. ■

A preference is called essentially monotonic if whenever a
bundle is a proper subset of a critical bundle, it is less preferred
to this critical bundle. Formally

Definition 9. A preference Pi ∈ P is essentially monotonic if for
any critical bundle Ak and any A ∈ X such that A ⫋ Ak, Ak Pi A.
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Fig. 2. The relationship among preference restrictions.

Let DEM ⊂ P be the set of all essentially monotonic prefer-
ences and call it the essentially monotonic domain. As shown by
Examples 6 and 7, the more the capacities vary, the greater
the number of critical bundles. Hence more restrictions will be
imposed on essentially monotonic preferences and DEM will be
smaller.

Among the preference restrictions studied in the setting with
bundles, two are closely related to essentially monotonicity:
monotonicity (Pápai, 2000) and separability (Le Breton and Sen,
1999). A preference is monotonic if whenever a bundle is a proper
subset of another bundle, the former is less preferred than the
later. Formally, ∀A, B ∈ X , B ⫋ A ⇒ A Pi B. A preference is
separable if adding an additional object to a bundle is preferred
if and only if the object itself is preferred to the empty bundle.
Formally, ∀A ∈ X and x ∈ X\A, A ∪ {x} Pi A if and only if x Pi ∅.10

Fig. 2 shows the relationship. By definition, essential mono-
tonicity is strictly weaker than monotonicity because the re-
quirement that a bundle contained in another is less preferred
is imposed only for bundles contained in critical bundles. This
relation is true independent of the capacities. (Recall that the size
of the essentially monotonic domain varies with the capacities.)
Consider the critical bundles in Example 6, essential monotonicity
requires only that the grand bundle, X , is the top ranked bundle.
But monotonicity requires much more and hence the monotonic
domain contains fewer preferences than the essentially mono-
tonic domain. For another instance, consider the critical bundles
in Example 7, essential monotonicity requires (i) the grand bundle
X is top ranked, (ii) bundles a, b, and ∅ are less preferred than ab,
and (iii) ∅ is less preferred than a. Hence essential monotonicity
imposes less structure on preferences than does monotonicity.

The essentially monotonic domain and the separable domain
overlap with each other but no one contains the other. This
relation is true independent of the capacities. Consider Example 7
where there are totally 3 objects and 4 critical bundles. Recall
that given the object set, these capacities identify a maximal
set of critical bundles. In other words, the resulting essentially
monotonic domain is minimal. Even in this case, there exists a
preference, Pi below (where the critical bundles are underlined),
which is essentially monotonic but not separable. To see that Pi is
non-separable, notice that ∅ Pi c but ac Pi a. In addition P ′

i below
is a preference which is separable but not essentially monotonic.

Pi : abc ≻ ab ≻ ac ≻ bc ≻ a ≻ b ≻ ∅ ≻ c
P ′

i : bc ≻ abc ≻ b ≻ ab ≻ c ≻ ac ≻ ∅ ≻ a

3. Results

We first present a characterization of efficiency in the setting
with bundles. We next present our main result which is an

10 The literature on matching with contracts employs a notion called ‘‘ob-
servable substitutability", which is a condition on choice functions introduced
by Hatfield et al. (2017). However, essential monotonicity neither implies nor is
implied by observable substitutability. Details are available on request.

existence result for essentially monotonic domains. Finally, we
present an impossibility result on the universal domain.

3.1. Efficiency

We address in this section the question of whether a given
random assignment is sd-efficient at a given preference pro-
file. For the problem of random assignments of objects, Bogo-
molnaia and Moulin (2001) provided two characterizations of
sd-efficient assignments. The first says that a random assignment
is sd-efficient at a profile if and only if a particular relation on
objects is acyclic. The second is more mechanical and shows that
at a profile, all sd-efficient random assignments can be found by
the simultaneous eating algorithm with varying eating speeds.
For the assignment problem of bundles, we find that neither
characterization is true. In particular, acyclicity, while still neces-
sary, is not sufficient.11 A new condition called unbalancedness
is provided and proved equivalent to sd-efficiency in the current
setting.

We begin with a modified definition of acyclicity (Bogomol-
naia and Moulin, 2001).

Definition 10. A random assignment L ∈ L is acyclic at P ∈ Pn if
and only if the relation τ (P, L) on X is acyclic where A τ (P, L) B
⇔ ∃i ∈ I such that B Pi A and LiA > 0.

The next example shows that acyclicity is no longer sufficient
to guarantee sd-efficiency.

Example 8. Let A = {a, b, c}, q = (1, 1, 1), I = {1, 2}. Let the
preferences of two agents be

P1 : c a ab b ∅ bc ac abc
P2 : a c ab b ∅ bc ac abc

Consider random assignments L and L′ below.

c a ab b ∅ bc ac abc
L1 : 0 0 0.2 0 0.3 0 0 0.5
L2 : 0.2 0 0 0 0.5 0 0 0.3

c a ab b ∅ bc ac abc
L′

1 : 0.2 0 0 0.2 0.1 0 0 0.5
L′

2 : 0 0.2 0 0 0.5 0 0 0.3

We claim that L above is acyclic at P . To see this, notice that if
the relation τ (P, L) has a cycle, it must involve a preference rever-
sal across two agents’ preferences. According to P , agents’ prefer-
ences coincide except between a and c. Hence a cycle of τ (P, L)
requires at the same time a τ (P, L) c and c τ (P, L) a. We show
however a τ (P, L) c is not true. To see this, notice that agent 1
who prefers c to a has no positive probability of a and that agent 2
does not prefer c to a. Hence the relation τ (P, L) is acyclic.
However L is not sd-efficient at P since it is Pareto dominated
by L′: L′

̸= L, L′

1 P sd
1 L1, and L′

2 P sd
2 L2. ■

The failure of the acyclicity to suffice for sd-efficiency occurs
as we are able to implement a sequence of probability transfers
starting at L and leading to a feasible Pareto improvement. In
particular, by comparing L and L′ in the above example, we
identify three probability transfers which construct L′ from L, and
illustrate them in Fig. 3.

In particular, let α(1, ab, c) = 0.2 denote the probability
transfer of 0.2 from (1, ab) to (1, c) and let L̄ denote the matrix
resulting from such a probability transfer on L. Since c is preferred
to ab by agent 1, she would prefer such a transfer. However, L̄
is not a feasible random assignment. Specifically,

∑
i∈I,a∈A L̄iA =

qa − 0.2,
∑

i∈I,b∈A L̄iA = qb − 0.2, and
∑

i∈I,c∈A L̄iA = qc + 0.2. The

11 As regards the simultaneous eating algorithm in the bundle setting, the
working paper version (Chatterji and Liu, 2018) of this paper contains an
example (Remark 4 on page 39), which shows that not all sd-efficient random
assignments can be described using the class of simultaneous eating algorithms.
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Fig. 3. Probability transfer system α.

net influence on the feasibility is as shown by the second column
in the following table.

α(1, ab, c) = 0.2 α(1, ∅, b) = 0.2 α(2, c, a) = 0.2 Total

a −0.2 0 +0.2 0

b −0.2 +0.2 0 0

c +0.2 0 −0.2 0

Next, we denote the remaining two transfers as respectively
α(1, ∅, b) = 0.2 and α(2, c, a) = 0.2 and implement them
successively starting from L̄ to obtain L′. The third and fourth
columns in the above table summarize the influence of these
two transfers on feasibility. We see that the influence of the
aforementioned transfers cancel out on each row, making L′ a
feasible random assignment.

To formalize the observation above, let T = I ×X ×X . Then a
system of probability transfers can be represented by a mapping
α : T → R+ that specifies for each triple (i, A, B) a non-negative
number α(i, A, B), which denotes a probability transfer from (i, A)
to (i, B). We require systems of probability transfers to be non-
trivial in the sense that not all triples are assigned zero probability
transfers. Given a random assignment L ∈ L, a transfer system
will construct a new matrix, denoted L′, of size |I|× |X |. Formally
∀j ∈ I and C ∈ X ,

L′

jC = LjC +

∑
{(i,A,B)∈T :i=j,B=C}

α(i, A, B) −

∑
{(i,A,B)∈T :i=j,A=C}

α(i, A, B).

Generally such a matrix L′ is not a feasible random assignment.
In the definition below, we focus on a particular class of systems
which not only construct feasible random assignments but also
ensure that the assignments constructed dominate the original L
at P .

Definition 11. An assignment L ∈ L is unbalanced at P ∈ Pn if
there is no α : T → R+ s.t.

(i) ∀ (i, A, B) ∈ T : α(i, A, B) > 0 implies LiA > 0 and B Pi A,
(ii) ∀x ∈ X :

∑
{(i,A,B)∈T :x∈B} α(i, A, B) =

∑
{(i,A,B)∈T :x∈A}

α(i, A, B).

We say L is balanced at P if it is not unbalanced at P .

The following proposition states that unbalancedness charac-
terizes sd-efficiency.

Proposition 1. Given P ∈ Pn and L ∈ L, L is sd-efficient at P iff L
is unbalanced at P.

The formal proof is provided in Section 5.1.

Remark 1. If a random assignment L is dominated by another
assignment L′ at a particular preference profile P , we can classify
this situation into one of the following two cases. Case 1: for
each bundle, the corresponding columns in L and L′ sum to the
same number. Case 2: they sum to different numbers. It is easy
to see that, for case 1, L is dominated if and only if it has a
cycle defined by Bogomolnaia and Moulin (2001). However, for

case 2, there could be various types of improvements. Besides
the improvements illustrated in Fig. 3, the following illustrates
another type.

Let I = {1, 2}, X = {a, b, c}, and qa = qb = qc = 1. Let P and L
be as follows.

P1 : abc ∅ c a ab b bc ac
L1 : 0.5 0.3 0 0 0.2 0 0 0
P2 : abc ∅ a c ab b bc ac
L2 : 0.3 0.5 0 0.2 0 0 0 0

An improvement can be implemented as follows. First, transfer
0.1 probability from ab to c for agent 1 and 0.1 from c to ab for
agent 2. Second, for agent 1, combine the probabilities of c and ab
to 0.1 probability of abc and increase the probability of ∅ by 0.1.
Last, do the same for agent 2. Then, the resulting random assign-
ment is L′ below, which dominates L at P .

P1 : abc ∅ c a ab b bc ac
L′

1 : 0.6 0.4 0 0 0 0 0 0
P2 : abc ∅ a c ab b bc ac
L′

2 : 0.4 0.6 0 0 0 0 0 0

The interesting feature of this improvement is that, in the first
step, the probability transfer hurts agent 2 since 0.1 probability is
transferred from a more preferred bundle (c) to a less preferred
bundle (ab). However, this probability transfer allows for other
probability transfers, which lead to a preferable final outcome.
Our characterization, Proposition 1, simplifies the verification of
sd-efficiency precisely because we dispense with the need to
check all the various types of improvements. It suffices to focus
only on probability transfers from less preferred bundles to more
preferred bundles where the less preferred bundles have positive
probabilities. ■

3.2. Existence

In the classical random assignment problem that allocates
objects, two extensively studied rules are the random serial dicta-
torship rule (or RSD, see Abdulkadiroğlu and Sönmez (1998)) and
the probabilistic serial rule (or PS, see Bogomolnaia and Moulin
(2001)). It is well known that in the classical random assignment
model, both rules treat equals equally. The PS rule is sd-efficient
but not sd-strategy-proof while the RSD rule is sd-strategy-proof
but not sd-efficient. Due to their distinct properties, these two
rules are in general treated as competing alternatives for appli-
cations. We prove that these rules, adapted to the setting with
bundles (as done in Sections 2.2 and 2.3 respectively), are equiv-
alent on the domain of essentially monotonic preferences. This
equivalence yields an existence result for desirable rules: there
exists a decomposable, sd-efficient, sd-strategy-proof, and equal-
treatment-of-equals random assignment rule on the essentially
monotonic domain.

The equivalence obtains from the following critical feature of
any profile of preferences where each agent’s preference is drawn
from the essentially monotonic domain DEM : Any pair Pi, Pj ∈ DEM
have the features that (i) the grand bundle comprising all objects
is top ranked in each preference, and (ii) that the two preferences
necessarily agree on the rankings of the critical bundles relative
to each other.

For the PSB rule, essential monotonicity guarantees that at any
point of time in the eating procedure, each agent’s top-ranked
bundle within the available ones is the same critical bundle. They
consequently agree on their eating procedure and end up with
the same lottery independently of their preferences. For the RSDB
rule, essentially monotonicity guarantees the same lottery as the
PSB rule as a consequence of the fact that the critical bundles are
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disbursed in the same order independent of the specific permu-
tation used to order agents. We next illustrate the mechanics of
the equivalence using an example.

Example 9. Consider the setting in Example 7 where n = 6,
X = {a, b, c}, qa = 4, qb = 3, and qc = 2. Recall that the four
critical bundles in this setting are abc , ab, a, and ∅. Suppose that
the first three agents have identical preferences given by P̂i while
the last three agents have identical preferences given be P̃j

P̂i : abc ab a ∅ ac bc b c
P̃j : abc ac bc c ab b a ∅

These two preferences may be seen as two extremes under
the requirement of essential monotonicity. In particular, the first
three agents treat all critical bundles better than the other bun-
dles, while the others rank the critical bundles as low as possible
without violating essential monotonicity. In particular, the rela-
tive ranking of the critical bundles remains the same across the
two preferences.

Although the preferences of the two groups of agents are
different, once the PSB rule is employed, their respective eating
procedures turn out to be the same. At time 0, all agents start
by eating abc. The first period ends (once c is depleted) at 1/3.
After 1/3, agents 1, 2, and 3 eat ab, as this is their second-ranked
bundle and it is available. For the remaining agents, their second,
third and fourth ranked alternatives are unavailable as c has been
depleted; they too therefore eat ab. Hence, in the second period,
all agents eat ab and this period ends at 1/2 when b is depleted.
One can verify that all agents eat a in the third period, which ends
at 2/3, and ∅ in the fourth period, which ends at 1. Consequently,
all agents receive the same lottery below.

abc ab a ∅ ac bc b c
Li : 1/3 1/6 1/6 1/3 0 0 0 0

Next we turn to the RSDB rule. Given an arbitrary ordering of
the set of agents, the first two agents under the ordering take
the bundle abc. Next, the third agent takes ab and the fourth
takes a. Finally, the two remaining agents get ∅. Randomizing
with uniform probability over all orderings over agents yields the
lottery Li above. ■

We now state the following property, whose formal proof is
provided in Section 5.4.

Property 3. The RSDB rule is equivalent to the PSB rule on the
essentially monotonic domain.

The equivalence in Property 3 along with Properties 1 and 2
gives the following result on the existence of a desirable rule.

Theorem 1. There is a decomposable random assignment rule
on the essentially monotonic domain satisfying sd-efficiency, sd-
strategy-proofness, and equal treatment of equals.

Remark 2. The proof of Property 3 generalizes the conclusion
of Example 9 and shows that the PSB rule and the RSDB rule
degenerate to the same constant rule. Therefore, given a specific
problem, we simply identify the critical bundles and then allocate
equally these bundles according the lottery specified in the proof
of Property 3, regardless of the preferences of agents. As men-
tioned in the introduction, the fact that sd-efficiency is preserved
by such a simple constant assignment on a large domain comes
as a surprise. ■

3.3. Impossibility

This subsection presents an impossibility result on the univer-
sal domain. Recall that the capacities of objects are collected in
a vector q = (qx)x∈X . Given q, we identify the critical bundles
A1, . . . , AK and in particular denote K as the number of critical
bundles. Since the grand bundle X and the empty bundle ∅ are
identified as critical bundles no matter what the capacity vector
q is, K ⩾ 2. In principle, the more capacities vary, the larger K
is. Below, we present a general impossibility, which states that
when there are at least four critical bundles, no rule on the uni-
versal domain satisfies sd-strategy-proofness, sd-efficiency, and
sd-envy-freeness at the same time. Sd-envy-freeness is a fairness
axiom stronger than equal treatment of equals and requires that
an agent always weakly prefers her own lottery to any other’s.
Formally, a rule ϕ : Dn

→ L is sd-envy-free if ∀P ∈ Dn and
i, j ∈ I , ϕi(P) P sd

i ϕj(P).

Proposition 2. Given K ⩾ 4. There is no sd-strategy-proof,
sd-efficient, and sd-envy-free rule on the universal domain.

The proof is contained in Section 5.5.

Remark 3. Note that the impossibility applies when there are at
least four critical bundles, i.e., K ⩾ 4. For the cases where K = 2
or 3, the picture is unclear and deserves further investigation.
For example, consider K = 2, that is, all the objects have the
same capacity q̄. Then whether or not there is a desirable rule on
the universal domain depends on the parameters of the problem
m, n, and q̄. When m = n ⩾ 4 and q̄ = 1, the impossibility
of Bogomolnaia and Moulin (2001) (their Theorem 2 in particular)
implies an impossibility in our setting. To see this, consider an
arbitrary profile of preferences, where all singleton bundles are
ranked at the top, and are followed by the empty bundle and then
the other bundles. Then sd-efficiency implies that only singleton
bundles get positive probabilities. Hence the proof of Theorem 2
in Bogomolnaia and Moulin (2001) can be used to prove the
corresponding impossibility in our setting. However, for other
cases, their proof cannot be used. Take for example the case
where m = 5, n = 4, and q̄ = 1. In this case, for a preference
profile mentioned above, feasibility requires that some bundle
containing more than one object gets positive probability. ■

4. Discussion and examples

4.1. Two applications of the model

We present in this subsection two examples that illustrate the
scope of our study.

Example 10. A local government has developed a public housing
project, which provides 50 units of standardized apartments, 50
parking slots, and 30 bicycle slots. These objects need to be
fully allocated among 100 eligible applicants without any money
transfers. ■

The objects in the example above are publicly financed and
consequently free disposal is not an option as the objects ought
not to be wasted.12 One way to allocate these objects is to do
so via independent committees, one for each type of the object.

12 Hence a treatment that replicates the rules used in the object assignment
literature (see for example (Pápai, 2000) and Bogomolnaia and Moulin (2001))
are not appropriate since a central assumption there is that each agent receives
at most one object, which implies for our problem that finally 30 objects need
to be discarded.
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However, given that the agents’ preferences may reflect comple-
mentarity and substitution, the efficiency losses incurred by this
method may be significant. It is therefore of interest to investi-
gate the allocation of objects in bundles. Moreover, due to the
indivisibility of the objects, agents reporting the same preference
will potentially be treated differently. In order to achieve fairness,
it is natural to resort to random assignments. In particular, every
agent receives a lottery on bundles.

There are in total 8 distinct bundles. We denote an apartment
as a, a parking slot as p, a bicycle slot as b and as before, a bundle
is denoted simply as a sequence of these alphabets, for example,
the grand bundle is denoted as apb rather than {a, p, b}.

Since objects are given to the agents for free, it might be
reasonable to assume that a bundle containing more objects
is better. This is captured by a classical preference restriction,
monotonicity, which requires that a bundle contained in another
bundle is less preferred to this later bundle. A typical monotonic
preference is as follows.

Pi : apb ≻ ap ≻ ab ≻ pb ≻ a ≻ p ≻ b ≻ ∅

In order to identify our preference restriction of essential
monotonicity, we proceed to identify the critical bundles for this
example. Assume that agents are lined up and are required to
take bundles one by one. Moreover, whenever an agent is called
upon, she takes one copy of each available object. As for the
current case, each of the first 30 agents will take the grand bundle
apb, each of the next 20 agents will take ap, and each of the
remaining agents will take the empty bundle ∅. Hence, there
are in total three critical bundles. Essential monotonicity imposes
three preference restrictions: (i) a bundle contained in apb is less
preferred; (ii) a bundle contained in ap is less preferred; and
(iii) a bundle contained in ∅ is less preferred.13

Hence the domain of essentially monotonic preferences in-
cludes not only all monotonic preferences, but also preferences
like the one below, where the critical bundles are underlined.

P ′

i : apb ≻ ap ≻ ab ≻ a ≻ ∅ ≻ b ≻ p ≻ pb

An agent having the above preference treats a bundle accept-
able (better than getting nothing) if and only if it contains an
apartment. Moreover, she treats the bicycle slots and parking
slots as benefits if she gets an apartment. However, she treats
these as bads otherwise.14 The classical monotonicity require-
ment captures only complete complementarity: the more the
better no matter the status quo. As shown by Pi, getting additional
objects is always preferred. However, our notion of essential
monotonicity captures also ‘‘partial complementarity’’. As shown
by P ′

i , getting an apartment is always preferred. But whether
getting a bicycle slot and a parking slot is preferred depends on
whether the agent already gets an apartment.

Example 11. Now consider the following alternative scenario,
where we seek to allocate three types of tasks, a, b, and c re-
spectively, among a given set of agents. In particular, assume
that 50 working days of task a, 50 working days of task b, and
30 working days of task c have to be allocated among 100 team
members. ■

13 Notice that the last restriction is vacuous. However, we still present it as
a restriction in order to simplify definition.
14 Put otherwise, receiving a parking slot or a bicycle slot without living
nearby is costly. This is plausible for two reasons. Firstly, objects obtained from
a publicly financed project are usually not allowed to be used for profit; it
would accordingly be very difficult to benefit from renting these out. Secondly,
receiving a parking slot in a project may possibly exclude her from getting a
parking slot in future projects where she may be assigned an apartment.

In this situation, objects appear to be ‘‘bads" and it would
appear that the essential monotonicity requirement is not appli-
cable to such situations as it would require, in the very least, that
the grand bundle is the favorite. But the following preference,
which seems to be reasonable in this situation, treats the empty
set as the best.

P ′′
: ∅ ≻ a ≻ b ≻ c ≻ ab ≻ ac ≻ bc ≻ abc

However, the following observation makes essential mono-
tonicity applicable. We need only to treat the following as the
objects to be allocated: 50 copies of ‘‘not serving a working day
of task a’’, 50 copies of ‘‘not serving a working day of task b’’,
and 70 copies of ‘‘not serving a working day of task c ’’. These
imaginary objects are denoted as ā, b̄, and c̄ respectively. For this
new problem, the critical bundles are āb̄c̄ , c̄ , and ∅. Then the
preference P ′′ above can be translated to P̄ ′′, which is essentially
monotonic for the imaginary problem.

P ′′
: āb̄c̄ ≻ b̄c̄ ≻ āc̄ ≻ āb̄ ≻ c̄ ≻ b̄ ≻ ā ≻ ∅

Hence, once these imaginary objects are allocated, the tasks
are automatically allocated. Moreover, essential monotonicity
should be a reasonable preference restriction for these imaginary
objects.

4.2. Examples

Example 12. RSDB rule is not sd-efficient on the universal
domain.

This example is a modification of an example in Bogomolnaia
and Moulin (2001). Let I = {1, 2, 3, 4}, X = {a, b, c}, and qa =

qb = qc = 1. Consider the preference profile P given below.

P1, P2 : ab c ∅ · · ·

P3, P4 : c ab ∅ · · ·

Then the random assignment specified by the RSDB rule is
given below, where B denotes an arbitrary bundle different from
ab, c , and ∅. The reader can verify that it is not sd-efficient
because it is dominated by the random assignment L.

RSDB(P) =

( ab c ∅ B
1, 2 : 5/12 1/12 1/2 0
3, 4 : 1/12 5/12 1/2 0

)

L =

( ab c ∅ B
1, 2 : 1/2 0 1/2 0
3, 4 : 0 1/2 1/2 0

)
. ■

Example 13. PSB rule is not sd-strategy-proof on the universal
domain.

Let I = {1, 2, 3, 4}, X = {a, b}, and qa = qb = 1. Two
preferences are as below.

P̃i : ab ≻ a ≻ b ≻ ∅

P̂i : a ≻ ab ≻ b ≻ ∅

Let two preference profiles be P = (P̃1, P̃2, P̂3, P̂4) and P ′
=

(P̂1, P̃2, P̂3, P̂4). The following are the corresponding assignments
specified by the PSB rule. In particular, L = PSB(P) and L′

=

PSB(P ′).

ab a b ∅

L1 : 1/4 0 1/8 5/8
L2 : 1/4 0 1/8 5/8
L3 : 0 1/4 1/8 5/8
L4 : 0 1/4 1/8 5/8

ab a b ∅

L′

1 : 0 1/4 3/16 9/16
L′

2 : 1/4 0 3/16 9/16
L′

3 : 0 1/4 3/16 9/16
L′

4 : 0 1/4 3/16 9/16

Across the two preference profiles, agent 1 is the unique devi-
ator. Notice that L′

1ab +L′

1a +L′

1b = 7/16 > 6/16 = L1ab +L1a +L1b,
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which means that, by misreporting P ′

1, agent 1 receives a higher
probability of getting a bundle better than ∅. Hence the PSB rule
is manipulable on any domain containing these two preferences,
including the universal domain. ■

Example 14. PSB rule is not sd-strategy-proof on the sequentially
dichotomous domain.

In the setting with objects, Liu (2019) proved that the PS rule
is sd-strategy-proof on the sequentially dichotomous domain,
which is generated by lexicographically checking a fixed list
of properties. We first introduce the sequentially dichotomous
domain to the current setting.

Let x1, x2, . . . , xm be a fixed ordering of objects. To simplify
notation, we denote a bundle as a 0–1 vector of length m, where
a ‘‘one" at the tth position means this bundle contains xt and
a ‘‘zero" means not. For example A = (1, 0, 0, 1) is equivalent
to A = x1x4. For each bundle A and each index t = 1, . . . ,m,
we write At as its tth element and At the sequence of the first
t elements. For example, for the bundle A = (1, 0, 0, 1), A2 = 0
and A3

= (1, 0, 0). A preference is sequentially dichotomous if the
bundles are ranked in the following sequential way. First, either
every bundle containing x1 is better than every bundle that does
not, or the other way around. Next, within the bundles containing
x1, either every bundle containing x2 is better than every bundle
that does not, or the other way around. Similarly, within the
bundles that do not contain x1, either every one containing x2 is
better than every one that does not, or the other way around.
The preference is refined by checking sequentially for x3, x4, and
so on.

Formally, a preference Pi ∈ P is sequentially dichotomous if

1. either [∀A, B ∈ X s.t. A1 = 1, B1 = 0, A Pi B] or [∀A, B ∈

X s.t. A1 = 1, B1 = 0, B Pi A];
2. ∀t = 2, . . . ,m and ∀α ∈ {0, 1}t−1, either [∀A, B ∈

X s.t. At−1
= Bt−1

= α, At = 1, Bt = 0, A Pi B] or
[∀A, B ∈ X s.t. At−1

= Bt−1
= α, At = 1, Bt = 0, B Pi A].

In this manner, the preference structure of the sequentially
dichotomous domain of Liu (2019) is directly introduced into the
bundle setting.15 The preferences P̃i and P̂i in Example 13 are
instances of sequentially dichotomous preferences. In particular,
agents compare the bundles by checking first whether the bundle
contains a and second whether it contains b. Both preferences
prefer the bundles containing a (ab and a) to the bundles that
do not (b and ∅). Then between ab and a, P̃i prefers the one
containing b while P̂i prefers the one that does not. Between b
and ∅, both preferences prefer the one containing b.

The manipulation of the PSB rule in Example 13 indicates that
the possibility result on the sequentially dichotomous domain
in the classical random assignment model fails in the setting
with bundles. This failure occurs exactly because the definition of
feasibility is modified. If we now treat the four bundles as distinct
objects, feasibility of random assignments of individual objects
now dictates that every column sums to one. Then the random
assignments generated by the PS rule for the above profiles would
be as follows.

ab a b ∅

L1 : 1/2 0 1/4 1/4
L2 : 1/2 0 1/4 1/4
L3 : 0 1/2 1/4 1/4
L4 : 0 1/2 1/4 1/4

ab a b ∅

L′

1 : 1/6 1/3 1/4 1/4
L′

2 : 1/2 0 1/4 1/4
L′

3 : 1/6 1/3 1/4 1/4
L′

4 : 1/6 1/3 1/4 1/4

15 By treating ‘‘containing xt " as the tth property, the above given definition
is equivalent to the original one in Liu (2019).

It is evident that agent 1’s misreport is no longer profitable. To
summarize, it follows that the change in the feasibility require-
ment from the classical setting to the setting with bundles has
a significant implication on possibilities of designing a desirable
rule, in that a previously known possibility result fails. ■

Example 15. PSB rule is not decomposable on the universal
domain.

Let I = {1, 2, 3}, X = {a, b, c}, and qx = 1 ∀x ∈ X . Let the
preference profile P and the random assignment L = PSB(P) be
as below.

P1 : ab c b ∅ · · ·

P2 : c b a ∅ · · ·

P3 : c a b ∅ · · ·

ab a b c ∅

L1 : 3/4 0 0 0 1/4
L2 : 0 0 1/4 1/2 1/4
L3 : 0 1/4 0 1/2 1/4

We prove that L is not decomposable. Suppose otherwise and
let L =

∑
D∈D β(D) · D. Let in addition D1 and D2 be two

deterministic assignments such that D1
1ab = D1

2c = D1
3∅ = 1

and D2
1ab = D2

2∅ = D2
3c = 1. Since D1 and D2 are the only ones

where agent 1 receives ab, 3/4 = β(D1)+ β(D2). Moreover, since
at D1, agent 3 receives nothing and L3∅ = 1/4, 1/4 ⩾ β(D1).
Similarly, L2∅ = 1/4 ⩾ β(D2). Hence, we have a contradiction:
1/4 + 1/4 ⩾ 3/4. ■

Example 16. The essentially monotonic domain is not maximal
for the equivalence between the RSDB rule and the PSB rule.

Let X = {a, b}, I = {1, 2, 3}, qa = 2, and qb = 1. The critical
bundles and capacities are A1 = ab, d1 = 1, A2 = a, d2 = 1,
A3 = ∅, and d3 = 1. Then the essentially monotonic domain,
DEM , contains only the following three preferences

Pi : ab b a ∅

P̂i : ab a b ∅

P̃i : ab a ∅ b

Consider now a preference P̄i below

P̄i : ab ∅ a b

One can verify that PSB(P) = RSDB(P) for all P ∈ {DEM ∪

P̄i}n. ■

4.3. Final remarks

We study the random assignments of bundles with no free
disposal. The induced feasibility requirement has been shown to
have significant implications for the design of random assignment
rules. First, the characterization of sd-efficiency is fundamentally
different in this setup. Second, the possibility result of Liu (2019)
fails under this new feasibility requirement. However, we identify
a preference domain on which a desirable existence result exists
by showing that the PSB rule is equivalent to the RSDB rule. In this
regard, we observe that the essentially monotonic domain is not
maximal for this equivalence. This is illustrated in Example 16.
It could be interesting to investigate whether there are situa-
tions where the essentially monotonic domain is maximal for the
equivalence, and what the maximal domains in general are.

Two unresolved problems are presumably of interest. The first
is whether there exists a non-constant desirable rule on the
essentially monotonic domain, and if so, can it be eliminated by
imposing other axioms like non-bossiness.16 The second question
is whether there exist other preference domains which admit a
desirable rule.

16 We thank an anonymous referee for suggesting this.
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5. Proofs

For clarity of the presentation, we begin with the proof of
Proposition 1. Thereafter, we present in order the proofs of
Properties 1, 2, 3, and the proof of Proposition 2.

5.1. Proof of Proposition 1

Necessity: We show the contrapositive statement. Let L ∈ L be
balanced at P ∈ Pn. Then there is an α : T → R+ such that
(i) α(i, A, B) > 0 implies LiA > 0 and B Pi A, (ii) ∀x ∈ X :∑

{(i,A,B)∈T :x∈B} α(i, A, B) =
∑

{(i,A,B)∈T :x∈A}
α(i, A, B). We show L is

not sd-efficient at P . To do this, we construct another matrix L′.
Let ϵ ∈ R++ be a very small positive number and let for ∀j ∈ I
and ∀C ∈ X ,

L′

jC = LjC +

∑
{(i,A,B)∈T :i=j,B=C}

ϵ ·α(i, A, B)−
∑

{(i,A,B)∈T :i=j,A=C}

ϵ ·α(i, A, B).

Notice first that by letting ϵ to be sufficiently small, we can
guarantee L′

jC ⩾ 0 for all j ∈ I and C ∈ X . Then the following two
classes of equations show that L′ is a feasible random assignment,
in other words L′

∈ L.

∀j ∈ I :

∑
C∈X

L′

jC =

∑
C∈X

LjC +

∑
C∈X

∑
{(i,A,B)∈T :i=j,B=C}

ϵ · α(i, A, B)

−

∑
C∈X

∑
{(i,A,B)∈T :i=j,A=C}

ϵ · α(i, A, B)

= 1 +

∑
{(i,A,B)∈T (P,L):i=j}

ϵ

· [α(i, A, B) − α(i, A, B)] = 1

∀x ∈ X :

∑
i∈I,x∈C

L′

jC =

∑
i∈I,x∈C

LjC +

∑
{(i,A,B)∈T :x∈B}

ϵ · α(i, A, B)

−

∑
{(i,A,B)∈T :x∈A}

ϵ · α(i, A, B)

=

∑
i∈I,x∈C

LjC = qx.

The last equality follows from the definition of α. Next, it
is evident that L′

j P sd
j Lj for all j ∈ I since the probability

transfers are all from less preferred bundles to more preferred
ones. Consequently, L is dominated by L′ constructed above and
hence not sd-efficient at P .

Sufficiency: We show the contrapositive statement. Let L be
sd-inefficient at P . Then there is another random assignment
L′

∈ L such that L′
̸= L and L′

j P sd
j Lj for all j. We construct

an α : T (P, L) → R+ such that (i) α(i, A, B) > 0 implies
LiA > 0 and B Pi A, (ii) ∀x ∈ X :

∑
{(i,A,B)∈T :x∈B} α(i, A, B) =∑

{(i,A,B)∈T :x∈A}
α(i, A, B).

By the fact that Lj, L′

j ∈ ∆(X ) for all j ∈ I , there is a system of
probability transfers β : T → R+ such that, ∀j ∈ I and C ∈ X ,

L′

jC = LjC +

∑
{(i,A,B)∈T :i=j,B=C}

β(i, A, B)−
∑

{(i,A,B)∈T :i=j,A=C}

β(i, A, B). (1)

In other words, L′ is constructed from L by β . In addition, since
both L and L′ are feasible random assignments, ∀x ∈ X ,∑
{(i,A,B)∈T :x∈B}

β(i, A, B) =

∑
{(i,A,B)∈T :x∈A}

β(i, A, B). (2)

Note that the vector β in general cannot serve as the α we
seek since β may transfer some positive probability from (i, A) to
(i, B) where LiA = 0 and(or) A Pi B, which is not allowed by the
definition of α. In the following, we construct the sought α from
β in two steps.

Step 1: Given β : T → R+ satisfying (1) and (2), we construct
a γ : T → R+ satisfying not only (1) and (2) but also that
γ (i, A, B) > 0 implies LiA > 0.

To do so, pick an arbitrary (i, A, B) ∈ T such that β(i, A, B) > 0
and LiA = 0. We claim that there is another bundle C ̸= A such
that β(i, C, A) > 0, since otherwise, according to (1), we have a
contradiction: L′

iA ⩽ 0 + 0 − β(i, A, B) < 0.
Let β(i, A, B) = u and β(i, C, A) = v. Then we update β to β ′

by the following changes.

If u ⩽ v, let β ′(i, A, B) = 0, β ′(i, C, B) = β(i, C, B) + u,
β ′(i, C, A) = v − u;

If u > v, let β ′(i, A, B) = u − v, β ′(i, C, B) = β(i, C, B) + v,

β ′(i, C, A) = 0.

Notice first that no matter whether u ⩽ v or not, β ′ still
satisfies (1) and (2). Notice in addition that for the case where
u ⩽ v, β ′(i, A, B) = 0 and hence the unwanted instance where
β(i, A, B) > 0 and LiA = 0 is eliminated, while for the other
case where u > v, this unwanted instance remains. We can then
repeat the update above by finding some other bundle D ̸= A such
that β ′(i,D, A) > 0. By repeatedly applying the above update, we
can finally construct a vector γ : T → R+ which satisfies not
only (1) and (2) but also that γ (i, A, B) > 0 implies LiA > 0.

Step 2: Given γ : T → R+ generated by the last step, we con-
struct the sought α : T → R+ that satisfies not only (1) and (2),
but also the property that α(i, A, B) > 0 implies LiA > 0 and
B Pi A. In other words, positive probability transfers are allowed
only from less preferred bundles to preferred bundles.

To do so, pick an arbitrary (i, A, B) ∈ T such that γ (i, A, B) > 0
and A Pi B. We claim that there is a sequence (i, Al, Bl)Ll=1 ⊂ T
such that (i) γ (i, Al, Bl) > 0 and Bl Pi Al for all l = 1, . . . , L,
(ii) B1 Ri B Ri A1, (iii) Bl Ri Al+1 for all l = 1, . . . , L − 1, and
(iv) BL Ri A Ri AL. The figure given at the top of next page depicts
an instance where L = 2.

We show the existence of such a sequence by construc-
tion. First, notice that there exists (i, A1, B1) ∈ T such that
γ (i, A1, B1) > 0, B1 Pi A1, and B1 Ri B Ri A1, since otherwise,∑

C Pi B
L′

iC <
∑

C Pi B
LiC which contradicts L′

i P
sd
i Li. Fixing A1 and

B1, if B1 Ri A, we are done by letting L = 1. If not, there exists
another triple (i, A2, B2) ∈ T such that γ (i, A2, B2) > 0, B2 Pi A2,
and B1 Ri A2, since otherwise,

∑
C Pi B1

L′

iC <
∑

C Pi B1
LiC which

contradicts L′

i P sd
i Li. We repeat this procedure to identify the

sequence, and finally the finiteness of bundles gives BL Ri A Ri AL.
Fixing such a sequence, let µ = min{γ (i, A, B), γ (i, Al, Bl) :

l = 1, . . . , L}. Then we update γ to γ ′ using exactly the following
changes:

γ ′(i, A, B) = γ (i, A, B) − µ

γ ′(i, Al, Bl) = γ (i, Al, Bl) − µ, ∀l = 1, . . . , L
γ ′(i, A, BL) = γ (i, A, BL) + µ

γ ′(i, A1, B) = γ (i, A1, B) + µ

γ ′(i, Al+1, Bl) = γ (i, Al+1, Bl) + µ, ∀l = 1, . . . , L − 1

The figure given at top of next page depicts the update, where
blue solid arrows correspond to the minuses and the red dotted
arrows the pluses.

It is evident that γ : T (L) → R+ satisfies not only (1)
and (2) but also that γ ′(i, A, B) > 0 implies LiA > 0. It satis-
fies (1) evidently. To see that it satisfies (2), notice that for all
C ∈ X ,

∑
{(i,A,B)∈T :A=C}

γ ′(i, A, B) =
∑

{(i,A,B)∈T :A=C}
γ (i, A, B) and∑

{(i,A,B)∈T :B=C}
γ ′(i, A, B) =

∑
{(i,A,B)∈T :B=C}

γ (i, A, B).
By repeatedly applying the above update, we can finally con-

struct an α : T → R+ satisfying not only (1) and (2) but also that
α(i, A, B) > 0 implies LiA > 0 and B Pi A.
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Pi:
better worse

B2 A B1 A2 B A1

Pi:
better worse

B2 A B1 A2 B A1

To show the sufficiency part, it remains to show that such an
α satisfies ∀x ∈ X :∑
{(i,A,B)∈T :x∈B}

α(i, A, B) =

∑
{(i,A,B)∈T :x∈A}

α(i, A, B),

which follows from the fact that α satisfies (2).

5.2. Proof of Property 1

First, by construction the RSDB rule is decomposable, be-
cause it is a lottery over deterministic assignment rules. Second,
the RSDB rule is sd-strategy-proof, because each SDB rule is
sd-strategy-proof and that sd-strategy-proofness is preserved
under linear combinations. Third, the RSDB rule treats equals
equally, because the various orderings of agents are equally
weighted. Last, the RSDB rule is not sd-efficient because it selects
a random assignment that is not sd-efficient at some preference
profile (see Example 12 in Section 4).

5.3. Proof of Property 2

Examples 13 and 15 in Section 4 show respectively that the
PSB rule is not sd-strategy-proof nor decomposable on the uni-
versal domain. The fact that the PSB rule treats equals equally
follows from the fact that all the agents have the same eating
speed at every point in time. Now we turn to proving the effi-
ciency claim. To do so, we introduce two conditions on random
assignments. One is called the strong unbalancedness, which is a
sufficient condition for sd-efficiency. The other is called the weak
unbalancedness and it is necessary for sd-efficiency. The relation
between these conditions is summarized in Lemma 1. We then
show that the PSB rule always generates strongly unbalanced
random assignments, which hence guarantees sd-efficiency of
the PSB rule. Although, for the current purpose, only a part of
Lemma 1 is needed, we nonetheless present the lemma in its
entirety in the hope that it may be useful for other related studies.

In order to define these two conditions, we introduce some
notation. Fix P ∈ Pn, L ∈ L, and a subset of triples S ⊂ T .
For each object x ∈ X , let d(x, S) count the triples (i, A, B) ∈ S
such that x ∈ B and x ̸∈ A. Recall that we interpret a triple
(i, A, B) as a potential transfer from (i, A) to (i, B). Then for every
such x, there is a positive influence on the feasibility of x when
a positive transfer is implemented. (See Example 8.) In this way,
d(x, S) counts the instances of positive influence on the feasibility
of x. Similarly, s(x, S) counts the instances of negative influence
on the feasibility of x. Formally

d(x, S) ≡
⏐⏐{(i, A, B) ∈ S : x ∈ B\A}

⏐⏐ and
s(x, S) ≡

⏐⏐{(i, A, B) ∈ S : x ∈ A\B}
⏐⏐.

We say an assignment L ∈ L is strongly unbalanced at P ∈ Pn

if there is no S ⊂ T s.t.

(i) ∀ (i, A, B) ∈ T : (i, A, B) ∈ S implies LiA > 0 and B Pi A,
(ii) ∀x ∈ X: d(x, S) > 0 ⇔ s(x, S) > 0.

We say L is strongly balanced at P if it is not strongly unbal-
anced at P .

Next, an assignment L ∈ L is weakly unbalanced at P ∈ Pn if
there is no S ⊂ T s.t.

(i) ∀ (i, A, B) ∈ T : (i, A, B) ∈ S implies LiA > 0 and B Pi A,
(ii) ∀x ∈ X: d(x, S) = s(x, S).

We say L is weakly balanced at P if it is not weakly unbalanced
at P .

The following lemma establishes the logical relations among
the definitions we have mentioned so far. The proof is in
Appendix.

Lemma 1. Strong unbalancedness H⇒

⇍H
sd-efficiency H⇒

⇍H
weak

unbalancedness H⇒

⇍H
acyclicity.

Let P ∈ Pn and L = PSB(P). We show that L is sd-efficient at P .
To do so, ∀ x ∈ X , let t(x) be the time when x is depleted,

i.e., t(x) ≡ min{tv : rv
x ⩽ 0}. Similarly, ∀ x ∈ X , let t(x̄) be the time

when x̄ is depleted, i.e., t(x̄) ≡ min{tv : rv
x̄ ⩽ 0}. We consider two

cases.
Case 1: ∀x ∈ X , t(x) ⩽ t(x̄). Lemma 2 considers this case.

Lemma 2. Let P ∈ Pn and L = PSB(P). If, ∀x ∈ X, t(x) ⩽ t(x̄), L is
sd-efficient at P.

Proof. We prove the lemma by contradiction. Suppose L is not
sd-efficient at P . Then by Lemma 1, L is strongly balanced at P .
Put otherwise, there is a subset S ⊂ T such that (i) (i, A, B) ∈ S
implies B Pi A and LiA > 0; (ii) ∀x ∈ X , [∃(i, A, B) ∈ S s.t. x ∈

A\B] ⇔ [∃(i, A, B) ∈ S s.t. x ∈ B\A]. For each i ∈ I and A ∈ X
such that LiA > 0, let t(i, A) denote the time when agent i starts
to consume A. Formally, t(i, A) ≡ min{t(x) : x ∈ A} − LiA.

Pick an arbitrary (i1, A1, B1) ∈ S , by definition, B1 Pi1 A1 and
Li1A1 > 0. Hence at the time when agent i1 starts to consume A1,
i.e., t(i1, A1), B1 is already depleted. Then the assumption that, ∀
x ∈ X , t(x) ⩽ t(x̄), implies the existence of x1 ∈ B1\A1 such that
t(x1) ⩽ t(i1, A1). Strong balancedness then implies the existence
of (i2, A2, B2) ∈ S such that x1 ∈ A2\B2. Then Li2A2 > 0 implies
t(i2, A2) < t(x1). Similarly, let x2 ∈ B2\A2 be arbitrary such that
t(x2) ⩽ t(i2, A2). Hence t(x2) ⩽ t(i2, A2) < t(x1). We repeat the
procedure to find x3, A3, and i3 such that t(x3) ⩽ t(i3, A3) <

t(x2) ⩽ t(i2, A2) < t(x1). If x3 = x1, we have a contradiction.
Otherwise, we repeat the procedure to find x4, and so on. Finally,
the finiteness of X implies the existence of x such that t(x) < t(x):
contradiction. ■

Case 2: Let X̄ ≡ {x ∈ X : t(x) > t(x̄)} be nonempty. Let
E ≡ (I, X, q) denote the model setting. We define a new model
E ′

≡ (I, Y , p) such that (i) the set of agents is the same as the
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original model, and (ii) the set of objects Y and their capacities p
is associated to X and q via an arbitrary bijection f : Y → X , as
follows.

py =

{
qf (y), f (y) ∈ X\X̄
n − qf (y), f (y) ∈ X̄

Thus if an object y ∈ Y is mapped to an object x not in X̄ ,
its capacity is the same as x. Otherwise, its capacity is defined
as n minus the capacity of x. For E and E ′, the set of bundles is
denoted as X and Y respectively. It is evident that |X | = |Y|. In
addition, the set of random assignments is denoted as L and L′

respectively. We now define a mapping g : Y → X such that ∀

A ∈ Y , g(A) = B ∈ X if and only if, ∀y ∈ Y ,

f (y) ∈ B, if either [f (y) ∈ X\X̄ and y ∈ A] or [f (y) ∈ X̄ and y ̸∈ A]

f (y) ̸∈ B, otherwise.

(3)

For a better understanding of the construction, we illustrate in
Example 17 the construction with a specific model setting. One
can verify that g is a bijection. For the new model E ′, we specify a
profile of preferences on Y , denoted as P ′

= (P ′

i )i∈I , and a random
assignment L′

∈ L′. In particular, for all i ∈ I and A, B ∈ Y , A Pi ′B
if and only if g(A) Pi g(B). For all i ∈ I and A ∈ Y , L′

iA = Lig(A).
We now make the following two claims.
Claim 1: L′ is sd-efficient at P ′ in E ′

⇒ L is sd-efficient at P in E .
We prove the contrapositive statement. Let L be not

sd-efficient at P in E . Then, by definition, ∃ L̃ ∈ L such that L̃ ̸= L
and L̃i P sd

i Li for all i ∈ I . We construct a matrix L̃′
∈ [0, 1]I×Y

such that, ∀ i ∈ I and A ∈ Y , L̃′

iA = L̃ig(A). We prove the following
three statements.

1. L̃′ is a random assignment in E ′, i.e., L̃′
∈ L′.

To see this, note that, ∀i ∈ I ,∑
A∈Y

L̃′

iA =

∑
A∈Y

L̃ig(A) =

∑
A∈X

L̃iA = 1.

Moreover, ∀ y ∈ Y ,

f (y) ∈ X\X̄ :

∑
i∈I,y∈A

L̃′

iA =

∑
i∈I,y∈A

L̃ig(A)

(by L̃′

iA = L̃ig(A))

=

∑
i∈I,f (y)∈A

L̃iA

(by the definition of g)
= qf (y)

(byL̃ ∈ L)
= py.

(by the definition of p)

f (y) ∈ X̄ :

∑
i∈I,y∈A

L̃′

iA =

∑
i∈I,y∈A

L̃ig(A)

(by L̃′

iA = L̃ig(A))

=

∑
i∈I,f (y)̸∈A

L̃iA

(by the definition of g)

= n −

∑
i∈I,f (y)∈A

L̃iA = n − qf (y)

(byL̃ ∈ L)
= py.

(by the definition of p)

2. L̃′
̸= L′. This is implied by the fact that L̃ ̸= L and that g is a

bijection.
3. ∀ i ∈ I , L̃′

i P
′sd
i L′

i . Given ∀ i ∈ I , B ∈ Y , and the fact that
L̃i P sd

i Li,∑
{A∈Y:A R′

i B}

L̃′

iA −

∑
{A∈Y:A R′

i B}

L′

iA

=

∑
{g(A)∈X :g(A) Ri g(B)}

L̃iA −

∑
{g(A)∈X :g(A) Ri g(B)}

LiA ⩾ 0.

The above three statements together imply that L′ is not
sd-efficient at P ′ in E ′.

Claim 2: For E ′, L′
= PSB(P ′) and t(y) ⩽ t(ȳ) for all y ∈ Y .

By construction, when the PSB rule is applied to P ′ in E ′, if
f (y) ∈ X\X̄ , y mimics f (y) when the PSB rule is applied to P in E .
If instead f (y) ∈ X̄ , ȳ mimics f (y) when the PSB rule is applied to
P in E . Hence, ∀ i ∈ I , y ∈ Y such that f (y) ∈ X\X̄ , and any point in
time, agent i consumes y when the PSB rule is applied to P ′ in E ′ if
and only if agent i consumes f (y) when the PSB rule is applied to
P in E . So t ′(y) = t(x) ⩽ t(x̄) = t ′(ȳ), where t ′(y) denote the point
in time when object y is depleted and x ∈ X such that f (y) = x.
On the contrary, ∀ i ∈ I , y ∈ Y such that f (y) ∈ X̄ , and any point
in time, agent i consumes y when the PSB rule is applied to P ′ in
E ′ if and only if agent i consumes x̄ when the PSB rule is applied
to P in E , where x = f (y). So t ′(y) = t(x̄) ⩽ t(x) = t ′(ȳ), where
x ∈ X such that f (y) = x.

The statement that L = PSB(P) is sd-efficient at P for Case 2 is
now implied by Claims 1, 2 and Lemma 2. In particular, Claim 2
and Lemma 2 imply that L′ is sd-efficient at P ′ in E ′. Then Claim 1
implies that L is sd-efficient at P in E . ■

Example 17. Consider the setting of Example 5. In particular,
the model is denoted as E = (I, X, q), where I = {1, 2, 3}, X =

{a, b, c}, and qa = qb = qc = 1. According to the eating procedure
illustrated in Example 5, t(a) = t(ā) = 1, t(b) = t(b̄) = 1, t(c̄) =

2/3 < 1 = t(c). Hence, let X̄ = {c}. Let in addition, E ′
= (I, Y , p)

be the new model where Y = {x, y, z}, px = qa = 1, py = qb = 1,
and pz = 3 − qc = 2. Let f : {x, y, z} → {a, b, c} be such that
f (x) = a, f (y) = b, and f (z) = c. Given this, we map the bundles
in E ′ to the ones in E according to the definition of g in (3).

xy xyz x y xz yz ∅ z
g : ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

abc ab ac bc a b c ∅

Given the preference profile P and the PSB assignment L in E ,
we construct the profile P ′ and a matrix L′ in E ′ via g .

P ′

1 : xyz xy · · · · · ·

P ′

2 : z xyz ∅ · · ·

P ′

3 : z xyz ∅ · · ·

z xyz xy ∅

L′

1 : 0 2/3 1/3 0
L′

2 : 2/3 0 0 1/3
L′

3 : 2/3 0 0 1/3

One can easily verify that L′ is exactly the random assignment
generated by applying the PSB rule to P ′. One can also verify that
in the corresponding eating procedure, each of the objects, x, y,
and z in particular, is depleted before their respective opposite
objects. ■

5.4. Proof of Property 3

Let P ∈ Dn
EM be an arbitrary profile of essentially monotonic

preferences. We show ∀i ∈ I , RSDBi(P) = PSBi(P) = Li (given
below), where A1, . . . , AK are the critical bundles and B denotes
any bundle that is not critical.

A1 A2 · · · AK−1 AK B
Li :

d1
n

d2
n · · ·

dK−1
n

dK
n 0
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The fact that PSBi(P) = Li is seen as follows: the eating
procedure begins with all agents eating their commonly top
ranked bundle, A1 = X , which is exhausted at d1/n. Thereafter,
essential monotonicity implies that the favorite bundle of each
agent, within the available bundles, is A2. So all agents start eating
A2, which is exhausted at d1/n+d2/n. The iteration goes on until
d1/n + · · · + dK−1/n, when all the objects are depleted. Finally,
every agent receives 1 − (d1/n + · · · + dK−1/n) probability on ∅,
which is equivalent to specifying, for each agent i, Li∅ = dK/n.

To see RSDBi(P) = Li, notice that given an arbitrary ordering
σ of agents, SDBσ

σ (i)(P) = A1 for all i = 1, . . . , d1. Thus each of
the first d1 agents will take their commonly favorite bundle A1.
Thereafter, the agents ordered from d1 + 1 to d1 + d2 will take
A2 since essential monotonicity implies that this is their favorite
bundle among the available ones. This argument continues and
gives that SDBσ

σ (i)(P) = Ak for all i = d1 + · · · + dk−1 + 1, d1 +

· · · + dk−1 + 2, . . . , d1 + · · · + dk−1 + dk and all k = 2, . . . , K . For
each k = 1, . . . , n and each i ∈ I , the probability of this agent
occupying the kth position is 1/n. To see this, note that there are
a total of n! orderings of agents, among which there are (n − 1)!
orderings where agent i is ordered at the kth position. Given this,
the probability of each agent to get the critical bundle A1 can be
calculated: (n−1)!

n! · d1 = d1/n. The probabilities of getting other
critical bundles can be calculated similarly. Consequently we have
RSDBi(P) = Li.

Note that the random assignment L is determined completely
by the critical bundles and critical capacities. In particular, it is
independent of the preferences in P . Hence, we have proved that
these two rules degenerate to the same constant rule on the
essentially monotonic domain. ■

5.5. Proof of Proposition 2

Recall that the number of critical bundles is at most 1 + max
{qx : x ∈ X}. In addition, we require qx ⩽ n−1 for all x ∈ X . Hence,
by construction, n ⩾ K ⩾ 4. Let ϕ : Pn

→ L be an sd-strategy-
proof, sd-efficient, and sd-envy-free rule. In the following, we
construct four preference profiles P1, P2, P3, P4, and then charac-
terize the random assignments ϕ(P1), ϕ(P2), ϕ(P3), ϕ(P4). Finally,
a contradiction against feasibility is identified, which then proves
the theorem.

The preference profiles we construct consist of only the fol-
lowing three preferences

P̄i : A1 A3 A2 A4 · · · AK · · ·

Pi : A1 A2 A3 A4 · · · AK · · ·

P̂i : A2 A1 A3 A4 · · · AK · · ·

Specifically, the critical bundles are top-ranked and the rank-
ing of A4 through AK is the same across the three preferences.

Claim 1: Let the first preference profile be such that all the
agents have the same preference as Pi in above table, i.e., P1

=

(P1, P2, P3, . . . , Pn). Then ϕ(P1) is as below.

A1 A2 A3 A4 · · · AK · · ·

1 · · · n :
d1
n

d2
n

d3
n

d4
n · · ·

dK
n 0

By sd-envy-freeness, agents have the same lottery. In order to
verify the claim, we notice that there exists x ∈ A1 such that
qx = d1. Then feasibility of x together with sd-envy-freeness
require LiA1 ⩽

d1
n . Similarly, there exists x ∈ A1 ∩ A2 such that

qx = d1 + d2, which then implies LiA1 + LiA2 ⩽
d1
n +

d2
n . This

argument proceeds until
∑K

k=1 LiAk ⩽ 1. It is hence evident that
any sd-envy-free and feasible assignment L ̸= ϕ(P1) is dominated
by ϕ(P1).

Claim 2: Let P2
= (P̄1, P2, P3, . . . , Pn). Then ϕ(P2) is as follows.

A1 A2 A3 A4 · · · AK · · ·

1 :
d1
n 0 d2+d3

n
d4
n · · ·

dK
n 0

2 · · · n :
d1
n

d2
n−1

d3−
d2+d3

n
n−1

d4
n · · ·

dK
n 0

From P1 to P2, agent 1 is the unilateral deviator, and her
ranking of A2 and A3 are reversed with no other changes. Hence
sd-strategy-proofness implies ϕ1A(P2) = ϕ1A(P1) for all A ̸=

A2, A3. Then sd-envy-freeness implies ϕiA(P2) = ϕ1A(P2) for all
i = 2, . . . , n and all A ̸= A2, A3. Notice that sd-efficiency implies
ϕ1A2 (P

2) = 0 since otherwise, ϕiA3 (P
2) = 0 for all i = 2, . . . , n,

which implies ϕ1A3 (P
2) = d3 and hence ϕ1A2 (P

2)+ϕ1A3 (P
2) > d3 ⩾

1: a contradiction to feasibility. Given ϕ1A2 (P
2) = 0, ϕ1A3 (P

2) =
d2+d3

n is implied by feasibility and then remaining elements are
implied by sd-envy-freeness and feasibility.

Claim 3: Let P3
= (P1, P̂2, P3, . . . , Pn). Then ϕ(P3) is as follows.

A1 A2 A3 A4 · · · AK · · ·

1 :
d1
n−1

d2−
d1+d2

n
n−1

d3
n

d4
n · · ·

dK
n 0

2 : 0 d1+d2
n

d3
n

d4
n · · ·

dK
n 0

3 · · · n :
d1
n−1

d2−
d1+d2

n
n−1

d3
n

d4
n · · ·

dK
n 0

From P1 to P3, agent 2 is the unilateral deviator, and her
ranking of A2 and A3 are reversed with no other changes. Hence
sd-strategy-proofness implies ϕ2A(P3) = ϕ2A(P1) for all A ̸=

A1, A2. Then sd-envy-freeness implies ϕiA(P3) = ϕ2A(P3) for all
i = 1, 3, . . . , n and all A ̸= A1, A2. In addition, sd-efficiency
implies ϕ2A1 (P

3) = 0, given which all other elements are implied
by sd-envy-freeness and feasibility.

Claim 4: Let P4
= (P̄1, P̂2, P3, . . . , Pn). Then ϕ(P4) is as given in

Box I.
First, from P3 to P4, agent 1 is the unilateral deviator, and

her ranking of A2 and A3 are reversed with no other changes.
Hence ϕ1A(P4) = ϕ1A(P3) for all A ̸= A2, A3. Second, from P2

to P4, agent 2 is the unilateral deviator and she reversed the
ranking of A1 and A2. Hence ϕ2A(P4) = ϕ2A(P2) for all A ̸= A1, A2.
Third, sd-envy-freeness implies that ϕiA(P4) = ϕ1A(P4) for all
i = 3, . . . , n and A ̸= A2, A3. In addition sd-envy-freeness implies
also that ϕiA3 (P

4) = ϕ2A3 (P
4) for all i = 3, . . . , n. Fourth, sd-

efficiency implies ϕ1A2 (P
4) = ϕ2A1 (P

4) = 0. Last, the remaining
elements, i.e., ϕ1A3 (P

4) and ϕiA2 (P
4) for i = 2, . . . , n, are implied

by feasibility.
By the fact that there exists x ∈ A1 ∩ A2 such that x ̸∈ Ak for

all k = 3, . . . , K and that qx = d1 + d2, we have the following
contradiction.

d1 + d2 =

∑
i∈I

ϕiA1 (P
4) + ϕiA2 (P

4) ⇒ d1 = 0. ■

Appendix

We noted in the main text that Lemma 1 might be of inde-
pendent interest. We present here a proof in three steps, each of
which is divided into two parts.

Lemma 1. Strong unbalancedness H⇒

⇍H
sd-efficiency H⇒

⇍H
weak

unbalancedness H⇒

⇍H
acyclicity.

Step 1.1: Strong unbalancedness H⇒ sd-efficiency. Let L ∈ L
be strongly unbalanced at P ∈ Pn. Suppose L is not sd-efficient
at P . Then by Proposition 1, L is balanced at P , which implies the
existence of an α : T → R+ such that (i) α(i, A, B) > 0 implies
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A1 A2 A3 A4 · · · AK · · ·

1 :
d1
n−1 0 d1+d2+d3

n −
d1
n−1

d4
n · · ·

dK
n 0

2 : 0 d1+d2+d3
n −

d3−
d2+d3

n
n−1

d3−
d2+d3

n
n−1

d4
n · · ·

dK
n 0

3 · · · n :
d1
n−1

d1+d2+d3
n −

d1
n−1 −

d3−
d2+d3

n
n−1

d3−
d2+d3

n
n−1

d4
n · · ·

dK
n 0

Box I.

LiA > 0 and B Pi A, (ii) ∀x ∈ X :
∑

{(i,A,B)∈T :x∈B} α(i, A, B) =∑
{(i,A,B)∈T :x∈A}

α(i, A, B).
Let S = {(i, A, B) ∈ T : α(i, A, B) > 0}. Then by definition,

(i, A, B) ∈ S implies LiA > 0 and B Pi A. We claim that ∀x ∈ X:
d(x, S) > 0 ⇔ s(x, S) > 0. Suppose not, and let x ∈ X be such that
d(x, S) > 0 and s(x, S) = 0. We identify a contradiction below.
(A contradiction can be identified analogously for the other case
where d(x, S) = 0 and s(x, S) > 0.)∑

{(i,A,B)∈T :x∈B}

α(i, A, B) −

∑
{(i,A,B)∈T :x∈A}

α(i, A, B)

=

∑
{(i,A,B)∈S:x∈B}

α(i, A, B) −

∑
{(i,A,B)∈S:x∈A}

α(i, A, B)

=

∑
{(i,A,B)∈S:x∈B\A}

α(i, A, B) −

∑
{(i,A,B)∈S:x∈A\B}

α(i, A, B)

=

∑
{(i,A,B)∈S:x∈B}

α(i, A, B) − 0 > 0 : contradiction.

In the above, the first two equations follow from definitions.
The third equation follows from s(x, S) = 0 and the last inequality
follows from d(x, S) > 0.

Step 1.2: Strong unbalancedness ⇍H sd-efficiency. This is
shown by the following example. Let X = {a, b, c} and qx = 1
for all x ∈ X . Let the preference profile P and the assignment L be
as below.

P1 : ab c · · ·

P2 : c b · · ·

P3 : c a · · ·

a b c ab
L1 : 0 0 1 0
L2 : 0 1 0 0
L3 : 1 0 0 0

We show that L is sd-efficient at P . Suppose not, and let L′

dominate L.
First, we show L′

1 = L1. Suppose not, L′

1 P sd
1 L1 implies that ∃

ϵ1 ∈ (0, 1] s.t.

a b c ab
L′

1 : 0 0 1 − ϵ1 ϵ1

Given this, L′

2 P sd
2 L2 and L′

3 P sd
3 L3 imply the existence of

ϵ2, ϵ3 ∈ [0, 1] such that

a b c ab
L′

2 : 0 1 − ϵ2 ϵ2 0
L′

2 : 1 − ϵ3 0 ϵ3 0

Then feasibility requires ϵ1 + (1 − ϵ3) = qa = 1 and ϵ1 + (1 −

ϵ2) = qb = 1, which imply ϵ1 = ϵ2 = ϵ3. This however implies
1 − ϵ1 + ϵ2 + ϵ3 ̸= 1 = qc : contradiction.

Given L′

1 = L1, feasibility implies L′

2c = L′

3c = 0 and hence
L′

2 P sd
2 L2 and L′

3 P sd
3 L3 imply L′

2 = L2 and L′

3 = L3, which means
L = L′: contradiction.

Next we show that L is strongly unbalanced at P . To do this,
let S = {(1, c, ab), (2, a, c), (3, b, c)}. Then it is easy to verify that
L is strongly unbalanced at P: (i) L1c > 0, ab P1 c; L2a > 0, c P2 a;
L3b > 0, c P3 b; (ii) d(x, S) > 0 and s(x, S) > 0 for all x ∈ X .

Step 2.1: Sd-efficiency H⇒ weak unbalancedness. By
Proposition 1, it suffices to show unbalancedness H⇒ weak un-
balancedness. Suppose an assignment L ∈ L be weakly balanced
at P ∈ Pn. Then there is a subset S ⊂ T such that (i) (i, A, B) ∈ S
implies LiA > 0, B Pi A, and (ii) ∀x ∈ X: d(x, S) = s(x, S). In
the following, we construct a mapping α : T → R+ such that
(i) α(i, A, B) > 0 implies LiA > 0, B Pi A, and (ii) ∀x ∈ X :∑

{(i,A,B)∈T :x∈B} α(i, A, B) =
∑

{(i,A,B)∈T :x∈A}
α(i, A, B).

In particular, let α(i, A, B) = ϵ for all (i, A, B) ∈ S and
α(i, A, B) = 0 otherwise, where ϵ is a small positive number. Then
(i) is satisfied by definition and (ii) follows from the equation
below.

∀x ∈ X :

∑
{(i,A,B)∈T :x∈B}

α(i, A, B) −

∑
{(i,A,B)∈T :x∈A}

α(i, A, B)

=

∑
{(i,A,B)∈S:x∈B}

α(i, A, B) −

∑
{(i,A,B)∈S:x∈A}

α(i, A, B)

=

∑
{(i,A,B)∈S:x∈B\A}

α(i, A, B) −

∑
{(i,A,B)∈S:x∈A\B}

α(i, A, B)

= ϵ · d(x, S) − ϵ · s(x, S) = 0.

Step 2.2: Sd-efficiency ⇍H weak unbalancedness. This is
shown by the following example. Let X = {a, b, c, d} and qx = 1
for each x ∈ X . Let the preference profile P and the assignment
L, L′ be as below.

P1 : c ∅ · · ·

P2 : b a · · ·

P3 : d b · · ·

P4 : ab c · · ·

P5 : ∅ d · · ·

a b c d ∅ ab
L1 : 0 0 0 0 1 0
L2 : 1 0 0 0 0 0
L3 : 0 1 0 0 0 0
L4 : 0 0 1 0 0 0
L5 : 0 0 0 1 0 0

a b c d ∅ ab
L′

1 : 0 0 ϵ 0 1 − ϵ 0
L′

2 : 1 − ϵ ϵ 0 0 0 0
L′

3 : 0 1 − 2ϵ 0 2ϵ 0 0
L′

4 : 0 0 1 − ϵ 0 0 ϵ

L′

5 : 0 0 0 1 − 2ϵ 2ϵ 0

We verify that L is weakly unbalanced at P . Suppose not,
and let S ⊂ T be a subset such that (i) (i, A, B) ∈ S im-
plies LiA > 0 and B Pi A, and (ii) ∀ x ∈ X , d(x, S) =

s(x, S). Notice that for each i ∈ I , Li assigns the entire proba-
bility to the second ranked bundle according to Pi. Hence S ⊂

{(1, ∅, c), (2, a, b), (3, b, d)), (4, c, ab), (5, d, ∅}. Next, by defini-
tion of weak unbalancedness, if S is non-empty, it must include
all five triples in order to make d(x, S) = s(x, S) for all x ∈ X .
So S = {(1, ∅, c), (2, a, b), (3, b, d), (4, c, ab), (5, d, ∅)}. However,
d(b, S) = 2 ̸= 1 = s(b, S): contradiction.

We verify next that L is not sd-efficient at P by showing that
L is dominated by L′. Let ϵ ∈ (0, 1]. Feasibility of L′ is evident.
Notice that for each i ∈ I , the change from Li to L′

i is achieved by
moving some probability from the second ranked bundle to the
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top ranked bundle. It follows that L is dominated by L′ and hence
L is not sd-efficient at P .

Step 3.1: Weak unbalancedness H⇒ acyclicity. Let L ∈ L be
weakly unbalanced at P ∈ Pn such that τ (P, L) has a cycle. Let a
cycle be as follows

A1 τ (P, L) A2 τ (P, L) A3 · · · AK−1 τ (P, L) AK τ (P, L) A1.

In addition, let ik be such that Ak+1 Pik Ak and LikAk > 0. Let
S = {(ik, Ak, Ak+1) : k = 1, . . . , K } with AK+1 = A1. Fixing an
arbitrary x ∈ X , we prove d(x, S) = s(x, S). If x ̸∈ Ak for all
k = 1, . . . , K , by definition d(x, S) = s(x, S) = 0. Otherwise,
let (ik−1, Ak−1, Ak) ∈ S be arbitrary such that x ∈ Ak\Ak−1. It
suffices to show the existence of (ik+l, Ak+l, Ak+l+1) ∈ S such that
x ∈ Ak+l\Ak+l+1. By the fact that A1, . . . , AK forms a cycle, such a
triple exists.

Step 3.2: Weak unbalancedness ⇍H acyclicity. This is shown
by the following example. Let A = {a, b, c}, q = (1, 1, 1), I =

{1, 2}. Let the preferences of two agents be

P1 : c a ab b ∅ bc ac abc
P2 : a c ab b ∅ bc ac abc

Consider a random assignment L below.

c a ab b ∅ bc ac abc
L1 : 0 0 0.2 0 0.3 0 0 0.5
L2 : 0.2 0 0 0 0.5 0 0 0.3

We have stated in Example 8 that L is acyclic at P . Let S =

{(1, ab, c), (1, ∅, b), (2, c, a)}. We have c P1 ab, L1ab > 0, b P1 ∅,
L1∅ > 0, a P2 c , and L2c > 0. In addition, it follows by counting
that d(x, S) = s(x, S) = 1 for all x ∈ {a, b, c}. Hence L is not
weakly balanced at P .
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