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Abstract

Trend elimination and business cycle estimation are analyzed by finite sample
and asymptotic methods. An overview history is provided, operator theory is
developed, limit theory as the sample size n → ∞ is derived, and filtered series
properties are studied relative to smoothing parameter (λ) behavior. Simulations
reveal that limit theory with λ = O(n4) delivers excellent approximations to the
HP filter for common sample sizes but fails to remove stochastic trends, contrary
to standard thinking in macroeconomics and thereby explaining ‘spurious cycle’
effects of the HP filter. The findings are related to the long run effects of the
GFC.

Keywords: Detrending, Graduation, Hodrick Prescott filter, Integrated process,

Limit theory, Smoothing, Trend break, Whittaker filter.

JEL Classification Number: C32 Time Series Models.

“RBC models can exhibit business cycle dynamics in HP filtered data

even if they do not generate business cycle dynamics in pre-filtered data.

The combination of a unit root or near unit root in technology and the

HP filter is sufficient to generate business cycle dynamics” Cogley and

Nason (1995).
*Manuscript received October 2019, revised June 2020.
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1 Introduction

Whittaker (1923) suggested a method of graduating data (now commonly called data

smoothing) that was designed to remove the effects of measurement error and reveal

the underlying trend in the data. This work on graduation was preceded by earlier

actuarial research, including many studies by DeForrest (1873, 1874, 1876) on inter-

polative methods based on probabilistic principles.1 The Whittaker method involved

taking a least squares best fit to the data subject to a penalty involving the squared

third order differences of the data. The procedure has many variants depending on

the form of the penalty. These were discussed in the book by Whittaker and Robinson

(1924) and were studied subsequently by many authors (e.g. Greville, 1957). Whit-

taker and Robinson (1924) provided a formal justification for their smoothing pro-

cedure using Bayesian principles to motivate the penalized least squares procedure.

This appears to be the first appearance and statistical validation of that principle in

the literature. Their justification underlies much subsequent work, including the use

of smoothness priors in econometrics (Shiller, 1973, 1984) and the spline smoothing

methods suggested in Wahba (1978).

The literature is now extensive. Aitken (1925) wrote his doctoral thesis on the sub-

ject and provided the first systematic investigation of general numerical procedures.

Numerical algorithms for graduating data by these techniques have been used in ac-

tuarial work dating back at least to Henderson (1924, 1925, 1938). Camp (1950) gave

an overview of the Whittaker-Henderson graduation processes. Schoenberg (1964),

Reinsch (1967), and Boneva et.al (1970) developed algorithms from the standpoint

of spline fitting, prior to the formal Bayesian approach to spline smoothing that was

1 DeForrest wrote extensively on methods of interpolating and adjusting series using probabilistic

principles to equalize the probability of error in the adjusted series. DeForrest cited earlier work by

Everest and by Schiaparelli, which he showed may be deduced as special cases of his own methods.

Stigler (1978) gave a modern statistical overview of some aspects of DeForrest’s work on statistical

methods of interpolation.
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used in Wahba (1978) which in turn closely echoed the original justification given

by Whittaker and Robinson (1924). Recently, Kim et al. (2009) discussed some

related trend capture methods using modern penalized `1 estimation where sums of

absolute values replace sums of squares in penalizing variations from trend. Diewert

and Wales (2006) considered smoothing algorithms based on prior ideas, going back

to Sprague (1887), that the second order differences of smooth series do not change

sign too frequently. The most recent work on computation and exact formulae for

the filter includes work by de Jong and Sakarya (2016), Cornea-Madeira (2017), and

Sakarya and de Jong (2020).

In economics the approach was systematically used by Hodrick and Prescott (1997;

hereafter, HP(1997))2, where second order differences were used in the penalty. This

version of the method, first promoted by Leser (1961) for trend construction with

economic data, has subsequently become known as the HP filter. In view of the origins

of this approach in the work of Whittaker and the Bayesian probabilistic justification

for this smoothing technology in the treatise by Whittaker and Robinson, we shall

use the terminology Whittaker filter in what follows for the general form of this filter

involving squared higher order differences discussed in the present paper. For the

last several decades, the HP filter has been used extensively in applied econometric

work to detrend data, particularly to assist in the measurement of business cycles.

Figure 1 gives plots of several macroeconomic time series over the last three decades,

including real quarterly GDP, real personal consumption expenditures, and industrial

production in the US, that are frequently HP filtered in empirical work (e.g. Hansen,

1985; Backus and Kehoe, 1992; Stock and Watson, 1999; Phillips and Sul, 2007).

The smoothing parameter used in calculating the HP filter in these illustrations is

λ = 1600, the conventional setting for quarterly data suggested in HP (1997). Most

noticeable in these plots is the characteristic smoothing that occurs over recession

periods, particularly the 2007-2009 Great Recession. The HP filter is seen as useful

2 Published version of a paper originally circulated as Hodrick and Prescott (1980).
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Figure 1: Time series plots of quarterly data (1994:III to 2019:II) for 3 US macro
variables accompanied by their HP trends: real GDP, real consumption, and indus-
trial production. All series are seasonally adjusted and in logarithms. Data source:
FRED.

in such contexts because the residual helps to demarcate cyclical fluctations, which

have been irregular in both duration and intensity over recent decades.

Like other trend removal techniques such as trend regression, moving average de-

trending, and band-pass filtering, the HP filter is often used to produce new time

series such as potential GDP and the output gap that are useful in macroeconomic

modeling and monetary policy research. This practice has generated enormous dis-

cussion in the literature as well as public debate involving James Bullard, President

of the St. Louis Federal Reserve, and the economist and New York Times columnist

Paul Krugman. Comparing two methods of decomposing US real GDP over 2002:1

to 2012:1, Bullard (2012) argued that detrending via linear time trend regression

produces a “large output gap” view of the economy in 2012 because of the large gap

between trend and actual GDP. To the extent that trend GDP represented by the

trend regression line actually represents potential output, he contends that this view

4
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Figure 2: Did the financial crisis do lasting damage to the US economy? Discovering po-
tential output by decomposing real GDP. The figures shown here reproduce those given in
James Bullard (2012) based on our own calculations.

suggests that the housing bubble and ensuing financial crisis “did no lasting damage

to the economy” as trend output was largely unaffected and deviations from trend

were business cycle effects associated with the great recession. On the other hand,

detrending by the HP filter gives a very different picture of the economy, in which

Bullard indicates that “relatively slow GDP growth” should be expected following a

housing bubble that “probably did some lasting damage to the US economy.” Figure

2 reproduces these two graphics based on our own calculations. The smoothing pa-

rameter used for the HP filter is again λ = 1600. The linear trend is fitted by least

squares regression on the data up to 2006:1 combined with a trend projection of that

line over the remaining period to 2012:1.

Krugman (2012) challenged the use of the HP filter as a measure of potential

output, arguing that “the use of the HP filter presumes that deviations from potential

output are relatively short-term, and tend to be corrected fairly quickly,” but “...

any protracted slump gets interpreted as a decline in potential output”. Krugman

illustrated the argument with a chart for US annual real GDP over 1919-1939 together

with its HP trend, which we reproduce from our own calculations in Figure 3.

The value of the smoothing parameter Krugman used in creating his chart is not

5
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Figure 3: US GDP and its HP trend during 1919-1939. The graphs reproduce Krugman’s
(2012) figure with more detail based on our own calculations for various choices of λ

stated. But it must be small because the result is a curve that reproduces closely

the fine-grain shape of the interwar data. (Our calculations in Figure 3 are based on

the choices λ = 1, 2, 6.25, 300, the setting λ = 6.25 being the value recommended for

annual data by Ravn and Uhlig, 2002.) As we demonstrate below, depending on the

value of λ that is chosen (in relation to the sample size), we may expect the detrended

(cyclical component of the) series to retain some of the stochastic trend or random

wandering low-frequency characteristics that may be present in the original series.

On the other hand, if we use a very large value of λ in relation to the sample size,

the fitted trend is now much smoother and the fluctuations about trend appear in

the cyclical component as a business cycle effect after trend removal. Quantification

of the order of magnitude of λ in relation to the sample size therefore turns out to

be of great importance in the interpretation of the results from empirical use of the

HP filter.

Krugman’s view has merit. The HP filter, as Whittaker originally developed it, is

a data-smoothing, graduating device. The filter is two-sided, not causal or predictive,

and averages data ahead and before each data point.3 It produces a new series that

3 The filter is necessarily one-sided at the terminal point of the sample and, correspondingly, a version

may be produced as a one-sided filter by recursive calculation through the sample observations.

6
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may be interpreted as a trend only to the extent that it shows the general course

of the observed data after graduating out fluctuations. The extent to which such

graduation occurs depends on the choice of the smoothing parameter used in the

penalty function that penalizes roughness in the observed series. As indicated above,

Whittaker and Robinson (1924, pp. 303-306) gave a formal inductive probabilistic

argument to justify the precise form of the filter.4 Their argument relies on finding

the ‘most probable’5 values based on a Bayesian principle in which there are prior

grounds for believing that these ‘most probable values’ form a smooth sequence or

trend. Such a filtered or smoothed series can therefore provide no guidance about an

economy’s potential output in the absence of further information and assumptions

that describe the smoothness properties of potential output itself and relate these

properties to the design of the filter. Obviously, the HP filter in its usual form cannot

do so, because it contains no economic ideas about the nature of potential output

in terms of the utilization of an economy’s resources, which themselves change over

time, whereas the choice parameter λ is fixed.6,7

There is a further issue that complicates the comparison of the two detrending

methods shown in Figure 2. The linear trend regression extrapolates using data up to

2006:1, before the advent of the Global Financial Crisis (GFC), from which inference

is drawn concerning the extent of the subsequent output gap. On the other hand,

the trend function obtained by the HP filter uses all of the data to 2012:1, so that

4 This particular contribution of Whittaker and Robinson (1924) amounts to a modern Bayesian

smoothness prior development of the filter. See footnote 10 below for further details.
5 “The problem is to combine all the materials of judgment – the observed values and the a priori

considerations - to obtain the most probable values” (Whittaker and Robinson, 1924).
6 As pointed out below, Leser (1961) and HP (1997) advanced arguments that use of the HP smoother

seemed appropriate in terms of long run linear trend behavior for economic aggregates.
7 Readers interested in reading more about this public debate on the merits and limitations of the HP

filter may consult Tim Duy’s (2012) Fed Watch: “Careful with that HP Filter” and the references

therein. See also Krugman’s (2013) follow-up article on attempts to measure potential output by

other methods with specific reference to the debate on European recovery from the recession.

7
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the fitted trend function absorbs the impact of the GFC and the Great Recession,

much as is argued in Krugman’s comment concerning the use of the HP filter on

US real GDP data during the Great Depression. To obtain a fair comparison of

the implications of these two alternate methods, it is necessary to use a predictive

version of the trend implied by the HP filter based on the same data that is used

in the linear trend regression. Such a predictive version of the HP filter can be

obtained by using a combination of the HP filter and ARMA forecasting techniques

that deliver the required forecasted values that are needed in the HP algorithm. This

approach is sometimes used for end-point corrections to the filter and clearly involves

mixing two methodologies (e.g. see Duy, 2012, in his comment on Bullard, 2012).

Another approach is to use the methods developed in the current paper to obtain a

predictive version of the HP filter itself. The theory and numerical algorithm needed

to accomplish this predictive version of the HP filter are outside the scope of the

present work and will be provided in a later paper.

Because of the commonly given solution form of the filter (see (14) below) it

is almost universally assumed that the filter removes unit root nonstationarity in

integrated processes up to the 4’th order, following the discussion in King and Rebelo

(1993). As demonstrated in the next section8 the argument given by King and Rebelo

(1993) is flawed by the fact that the HP filter for the cycle is a nonlinear rational

function filter in which the denominator operator produces a smoothing operation on

the data that accompanies and partially reverses the fourth difference operator in the

numerator of the filter on which their argument relies. Indeed, practical empirical

work and analyses with simulation data (e.g., Cogley and Nason, 1995) reveal that

‘cyclical’ residual series often test as having long memory or even a unit root after

HP detrending, just as we find in the above illustrations given in Figures 1 and 2

when we estimate the output gap using a large value of the smoothing parameter λ.

To wit, the cyclical residual process of US GDP shown in Figure 1 after HP filtering

8 This demonstration was first given in Phillips and Jin (2002).
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tests as unit root nonstationary with a drift (against the alternative that the time

series involves a stationary process with a deterministic linear trend) by a standard

Dickey-Fuller (DF) unit root t test with no extra lags giving a p value of 0.3405. A

similar outcome is obtained with a Phillips-Perron (1988; PP) test. These outcomes

are sensitive to the presence of transient dynamics and drift terms in the regression,

indicating some fragility in the test results. Table 1 provides unit root and long

memory test results for various settings that reveal this fragility.

The final three columns of Table 1 report estimates of the memory parameter

(d) of the HP detrended GDP time series. The long memory parameter is estimated

at d̂ = 1.1566 with a standard error of 0.100 using the exact local Whittle (ELW)

procedure (Shimotsu and Phillips, 2005) with bandwidth m = n0.7. ELW delivers a

consistent semiparametric estimator of the long memory parameter of a time series

(irrespective of the true value of d) and has an asymptotic N(d, 1
4m) distribution

for all values of d, which enables uniform confidence interval construction. A 95%

confidence interval for d is (0.9606, 1.3526) for m = n0.7. From these estimates, the

hypothesis that there is a unit root (d = 1 ) in the GDP cyclical residual process can-

not be rejected. A wide range of other values of the memory parameter are included

in the confidence interval but all of these lie in the nonstationary range (d ≥ 1
2).

When the bandwidth is set to the lower value m = n0.6 (which satisfies Assumption 4

in Shimotsu and Phillips, 2005), the long memory parameter estimate is d̂ = 0.8408,

with a standard errror of 0.1291 and 95% confidence interval (0.5878, 1.0938), again,

indicating that the null hypothesis of a unit root in the cyclical component of GDP

cannot be rejected. Similar findings apply to the other macroeconomic series, in-

cluding real personal consumption expenditures and industrial production, shown in

Figures 1 and 2.

It is well recognized that the form of the filtered series depends closely on the

smoothing parameter (λ) that controls the size of the penalty in the objective fun-

tion. For most macroeconomic applications, this parameter is deliberately chosen to

9
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Table 1: Testing HP filtered series for nonstationarity

λ = 1600 Unit root t tests (ADF and PP) Exact local Whittle estimates of d
p values of ADF tests m = n0.6

Figure 1 ADF(0) ADF(1) ADFD(0) ADFD(1) d̂ se CI

real GDP 0.0117 0.0020 0.3405 0.0914 0.8408 0.1291 [0.5878, 1.0938]

real Cons 0.0191 0.0045 0.4308 0.1737 1.1277 0.1291 [0.8747, 1.3807]

IP 0.0406 0.0010 0.5815 0.0010 0.7527 0.1291 [0.4996, 1.0057]

Figure 2 0.1819 0.0091 0.8931 0.3148

real GDP 1.5608 0.1508 [1.2654, 1.8563]

p values of PP tests m = n0.7

Figure 1 ADF(0) ADF(1) ADFD(0) ADFD(1) d̂ se CI

real GDP 0.0117 0.0061 0.3405 0.2220 1.1566 0.1000 [0.9606, 1.3526]

real Cons 0.0191 0.0116 0.4308 0.3376 1.2694 0.1000 [1.0734, 1.4654]

IP 0.0406 0.0100 0.5815 0.3107 1.5196 0.1000 [1.3236, 1.7156]

Figure 2
real GDP 0.1819 0.0919 0.8931 0.7706 1.7605 0.1250 [1.5155, 2.0055]

Notes:

(i) ADF(k) denotes ADF regression with k lagged differences;

(ii) ADFD(k) denotes ADF regression with k lagged differences and a drift.

be large to produce a smoothed time series that helps to capture the slow moving

low frequency component. For instance, with quarterly data where sample sizes are

usually in the region 100 to 300, a ubiquitous empirical choice is λ = 1600. In these

applications, we may consider λ to be large relative to n. In such cases, the HP filter

produces a smooth series that is usually taken to reflect the underlying trend in the

data. For much smaller choices of λ, the filtered series are choppier and follow the

original series more closely, as shown in the Figure 3 illustration. Of course, when

λ = 0, the filtered series is identical to the original series because there is no penalty.

When λ → ∞ for fixed n, the filter selects a linear trend, corroborating the origi-

nal motivation for using a penalty based on squared second differences of the data

(Leser, 1961). When higher order differences are used in the penalty function, the

filter selects a higher order time polynomial as the trend when λ → ∞, as shown in

Phillips (2010a).

The intimate dependence of the HP filter on the smoothing parameter λ in relation

10
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Table 2: Overview of limit behavior of the HP filter for integrated process I(1) data

λ,n
xbnrc√

n
 B (r) ; HP filter f̂HP (r) =

f̂HPbnrc√
n
 fHP (r)

λ fixed, n→∞ fHP (r) = B (r) consistent

λ = o (n) fHP (r) = B (r) consistent
λ
n→ µ ∈ (0,∞) fHP (r) =arg min

f

{∫ 1
0 (B(r)− f(r))2 + µVf,2(1)

}
inconsistent

λ = µn4, n→∞ fHP (r) =
∑∞

k=1
λ2k

µ+λ2k

√
λkϕk (r) ξk inconsistent

λ = µnn
4, µn→∞ fHP (r) = p3(r) inconsistent

λ→∞, n fixed fHP (r) = p1(r) inconsistent

Notes:

(i) {xt}nt=1 = data;
{
f̂HPt

}n
t=1

= fitted HP filter; fHP (r) = limiting form of HP filter; see (27)

(ii Vf,2(1) = limn→∞
∑n

j=1

{
f
(
j
n

)
− f

(
j−1
n

)}2
, quadratic variation of f ; see (58)

(iii) ϕk (r) =
√

2 sin
[(
k − 1

2

)
πr
]

; λk = 1
[(k− 1

2)π]2
; ξk ∼ iid N (0, 1); see (26)

(iv) pJ (r) = αHP + β1,HP r + ...+ βJ,HP r
J ; see (64)

to the sample size indicates that different forms of limit behavior manifest through

the filter as n→∞. Just as in nonparametric density estimation and regression, we

may expect the choice of the tuning parameter to affect the limit theory and limit

features such as the asymptotic mean squared error. However, in the case of the

HP filter the relationship is largely unexplored and, to the best of our knowledge,

there has been no previous study of the asymptotic properties of either the HP or

Whittaker filters. This paper therefore seeks to develop a limit theory for these filters

that allows for λ→∞ at various rates as n→∞. We look at stochastic trend, trend

break and trend stationary data generating processes. The results show precisely how

the limit properties of the filters depend on the relative size of λ and n.

Table 2 provides an overview of key features that detail how the HP filter behaves

for various combinations of λ and n when the time series xt is a stochastic trend.

In these cases after appropriate standardization, the limiting form of the trend is a

continuous stochastic process such as Brownian motion which has both slow moving

and high frequency components, as is clear from the Karhunen-Loève (KL) repre-

sentation (26) used later in the paper. To fully capture all of these features and

11
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provide a consistent estimator of the full trend process as n → ∞, the HP filter

requires λ = o(n). When λ/n → µ ∈ (0,∞] the HP filter is inconsistent for the full

trend process but still captures many of its slow moving components. Table 2 details

some analytic findings of the current paper. The most important of these is the case

λ = µn4 for some fixed µ > 0 where the limiting form of the standardized HP filter

fHP (r) is a stochastic process that is continuously differentiable to the fourth order.

The practical significance of this case is that the limiting process closely matches

many of the empirical applications of the HP filter with quarterly data and standard

setting λ = 1600. Thus, with conventional settings, the filter does not remove a full

stochastic trend but only a smoothed version of a stochastic trend. In effect, and con-

trary to popular belief in applied macroeconomics, the HP filter does not typically

eliminate a time series unit root. This analysis explains the ‘spurious cycle’ findings

in simulation work on the effects of the HP filter, such as those noticed by Cogley

and Nason (1995) in their analysis of artificial data generated by real business cycle

models with filtered and unfiltered data. Instead, the HP filter may be viewed as a

tool to capture some of the slow moving low frequency components of a nonstationary

time series. More precisely and as evident in the proof of Theorem 3(a), the HP filter

is a mechanism that delivers an approximation to a finite number of the slow moving

components in the KL representation of the full stochastic process B (r) and these,

as well as the remaining components, are all moderated in a specific way that ensures

a smooth limit process related to λ.

Notwithstanding the above remarks on the limitations of the HP filter, it has

recently been demonstrated in a companion paper (Phillips and Shi, 2020; hereafter

PS (2020)) that boosting the HP filter by machine learning iteration enhances trend

determination in a wide class and, in particular, enables consistent estimation of a

unit root stochastic trend. In conjunction with these findings, empirical researchers

wishing to capture the slow moving components of a time series may continue to

use the popular parameter setting λ = 1600 with quarterly data, understanding

12
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that the resulting series is a moderated version of the low frequency components

of the data that will smooth over structural breaks and discontinuities, as well as

high frequency components of the underlying trend. When more detailed features

of the trend elements that include such components in the data are needed, the

boosting enhancement of PS (2020) may be employed to better approximate all of

these components.

The plan of the remaining paper is as follows. Section 2 gives the filters and gen-

eral solution formulae and provides some preliminary analysis and heuristics. Section

3 provides a rigorous development, including definition of the trend mechanism and

limit theory in the leading case of a stochastic trend, where the expansion rates are

λ = O(n4) for the HP filter and λ = O(n2m) for the general Whittaker filter. Section

4 considers similar cases where there are general deterministic drifts and trend breaks

in the time series in addition to stochastic trends. Section 5 develops asymptotics for

faster and slower rates of expansion for λ. Some additional simulations are reported

in Section 6. Conclusions and recommendations for practical implementation are

discussed in Section 7. Proofs are given in the Appendix.

2 The Filters and Solution Formulae

The general Whittaker filter decomposes time series data (xt : t = 1, .., n) into a

smooth trend (ft) and a residual cycle (ct). The trend ft is meant to capture the

long run growth of xt, while the residual ct is often taken to represent a business

cycle component (or output gap in the case of real GDP). Writing these components

of xt as

(1) xt = ft + ct,

13
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the filter computes estimates of ft and ct by solving

(2) f̂t = arg min
ft

{
n∑

t=1

(xt − ft)2 + λ
n∑

t=m+1

(4mft)
2

}
, ĉt = xt − f̂t,

where λ > 0 is a smoothing parameter and 4mft is the m’th difference of ft for some

integer m ≥ 1, with ∆ = 1− L and L the lag operator defined by Lft = ft−1.

The first summation in (2) penalizes a poor fit and the second penalizes lack of

smoothness. Whittaker (1923) developed this approach to graduating series using

the setting m = 3. Aitken (1925, 1926) devised the first numerical algorithm using

a Laurent series expansion of the solution function of (2), an advance that enabled

practical implementation.9 Whittaker and Robinson (1924, pp. 304-306) provided a

rigorous Bayesian justification for the procedure that led to (2).10 Their early work on

penalized estimation in statistical theory was therefore based on formal probabilistic

principles, a fact that does not seem to have been yet acknowledged in the literature.

All these studies concentrated on the case where the penalty term involved squared

third differences in the data (m = 3), while noting that more general cases were

9 This work, which was contained in Aitken’s (1925) doctoral thesis at the University of Edinburgh,

was considered so significant an advance that Aitken was awarded a D.Sc degree in place of a Ph.D

(University of Edinburgh Senate Minutes, “Tribute to A. C. Aitken”, 19 January 1966.)
10Setting m = 3, they proposed maximizing the likelihood (or fidelity) of observing the actual observa-

tions xt when the true values ft were subject to a prior probability, guided by a principle of smooth-

ness and given by the normal law c1e
−λ2S for constants c1 > 0 and λ2 > 0 with S =

∑n
t=4

(
∆3ft

)2
a

measure of ‘roughness’. Fidelity was measured via F =
∑n
t=1 h

2
t (xt − ft)2 , where ht > 0 captured

the precision of the t’th observation, and likelihood was represented in terms of the normal law

c2

n∏

t=1

hte
−F for some constant c2 > 0. This principle led to the operational criterion

f̂t = arg max
ft

[
c1c2

n∏

t=1

hte
−λ2S−F

]
= arg min

ft

[
F + λ2S

]

which reduces to

f̂t = arg min
ft

[
n∑

t=1

(xt − ft)2 +
λ2

h2

n∑

t=4

(
∆3ft

)2
]

in the constant precision case where ht = h for all t, thereby falling into the class given by (2).
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possible. In recognition of these contributions, we will in what follows reference the

general case for arbitrary m ≥ 2 as the Whittaker filter.

Following early work by Macaulay (1931) and later Leser (1961), HP (1997) fo-

cussed on the case of second differences (m = 2). Leser (1961) argued that m = 2

was a natural choice for economic time series, giving a family of “quasi-linear trends”

approximating the linear trend case for which 42ft = 0. HP (1997) similarly argued

that when decomposing an economic times series like xt into a growth component

measured in logarithms (ft) and a cyclical component (ct) it is often natural to expect

a constant growth rate 4ft in the long run, which in turn implies a linear trend path

for ft. Neither argument is now compelling, particularly in view of the econometric

evidence for the presence of stochastic trends and breaks in economic data; and nei-

ther addresses the concern evident in Krugman’s critique that the prior underlying

the usual penalty in the HP filter has little economic content concerning such matters

as the smoothness properties of potential output. Nonetheless, the usage m = 2 in

the filter is near universal in applied econometric work.

2.1 Algebraic and Operator Solutions

Setting f ′ = (f1, ..., fn) , f̂ =
(
f̂1, f̂2, ..., f̂n

)′
and x = (x1, x2, ..., xn)′ , the criterion

(2) has the matrix form

(3) f̂ = arg min
f

{
(x− f)′ (x− f) + λf ′DmD

′
mf
}
,

with solution

(4) f̂ =
(
I + λDmD

′
m

)−1
x,
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where D′m is the rectangular (n−m)× n Toeplitz matrix

(5) D′m =




d′m 0 0 · · · 0 0 0

0 d′m 0 · · · 0 0 0

0 0 d′m · · · 0 0 0

...
. . .

...

0 0 0 · · · d′m 0 0

0 0 0 · · · 0 d′m 0

0 0 0 · · · 0 0 d′m




and d′m is the m− differencing vector

d′m =

[(
m

0

)
, (−1)

(
m

1

)
, ..., (−1)m−1

(
m

m− 1

)
, (−1)m

(
m

m

)]
.

Since
∑m

j=0

(
m
j

)
(−L)j ft = ∆mft, applying the matrix operator D′m to f = (f1, ..., fn)

gives

(6) D′mf = [∆mfm+1,∆
mfm+2, ...,∆

mfn]′ .

In the HP case d′2 = (1,−2, 1) and we have D′2f =
[
∆2f3,∆

2f4, ...,∆
2fn
]′

with

D′2 =




d′2 0 · · · 0

0 d′2 · · · 0

...
...

. . .
...

0 0 · · · d′2



.

The solution of (3) may be written in several different forms which reveal certain

properties of the filtered series f̂ and aid in the analysis of its asymptotic behavior.

The following result provides an explicit matrix solution that shows the polynomial

trend component.

Theorem 1 For given n,m, and λ, the solution f̂ = (I + λDmD
′
m)−1 x of (3) has

16
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the following algebraic form

(7)

f̂ = Rm
(
R′mRm

)−1
R′mx+Dm

(
D′mDm

)−1/2 {
I + λD′mDm

}−1 (
D′mDm

)−1/2
D′mx,

where Rm is the n×m polynomial time trend matrix

(8) Rm =




1 1 · · · 1

1 2 · · · 2m−1

1 3 · · · 3m−1

...
...

. . .
...

1 n · · · nm−1




.

Remark 1 Expression (7) decomposes f̂ into two components. The first is a poly-

nomial time trend of order m−1 whose parameters depend on the least squares

regression coefficients (R′mRm)−1R′mx. This time trend is independent of λ so

it is present for all values of λ 6= 0. The second component of (7) is a residual

whose importance and magnitude depend critically on the smoothing parameter

λ.

Remark 2 For large λ→∞ we can write (7) in series expansion form as follows

f̂ = Rm
(
R′mRm

)−1
R′mx

+
[
Dm

(
D′mDm

)−1/2 {
I + λD′mDm

}−1 (
D′mDm

)−1/2
D′m
]
x

= Rm
(
R′mRm

)−1
R′mx

+ λ−1

[
Dm

(
D′mDm

)−1
{
I +

(
λD′mDm

)−1
}−1 (

D′mDm

)−1
D′m

]
x

= Rm
(
R′mRm

)−1
R′mx−

∞∑

k=1

(−λ)−kDm

(
D′mDm

)−k−1
D′mx,(9)

the expansion holding for λ large enough to ensure that the latent roots of
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λD′mDm are outside the unit circle. We deduce that for fixed n

(10) f̂ → Rm
(
R′mRm

)−1
R′mx = Rmγ, as λ→∞,

where γ = (R′mRm)−1R′mx is the least squares regression coefficient of xt on

a polynomial time trend of degree m − 1. Thus, the general solution f̂ tends

asymptotically to a trend polynomial of degree m− 1 as λ→∞ (c.f. Phillips,

2010a). In the HP case (m = 2), the limit of f̂ is a simple linear trend, as is

well known. If the data follow a linear trend exactly, then it is evident from (7)

that the HP filter reproduces the data in finite samples since D′2x = 0 and the

projector PR2 = R2 (R′2R2)−1R′2 preserves x.

Remark 3 The cyclical component of the time series is estimated as the residual

ĉ = x− f̂. As shown in the Appendix, standard projection geometry gives the

relationship Rm (R′mRm)−1R′m = In −Dm (D′mDm)−1D′m, and so

ĉ = Dm

(
D′mDm

)−1
D′mx−Dm

(
D′mDm

)−1/2 {
I + λD′mDm

}−1 (
D′mDm

)−1/2
D′mx,

implying that the cyclical component of the Whittaker filter always removes a

polynomial time trend of degree m− 1 from the data.

When λ = λn →∞ as n→∞, the asymptotics are much more complex than (10)

and depend on the magnitude of the successive terms λ−kn Dm (D′mDm)−k−1D′mx in

(9), which in turn depend on the properties of the n×nmatricesDm (D′mDm)−k−1D′m,

the stochastic properties of the data x, and the expansion rate of λn → ∞. These

asymptotics are of great interest in practice and have implications for the interpreta-

tion of results obtained from HP filtered data, as will become more apparent in what

follows.

Tuning parameter choices are well known to be important in nonparametric es-

timation, affecting bias, variance, and rates of convergence. Similar considerations
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apply in the present setting where the choice of λ inevitably delimits the performance

characteristics of the nonparametric estimate f̂t. As shown below, it is instrumental

in determining the capability of the filter to accurately capture trends in the data,

particularly stochastic trends, as the sample size grows. The primary concern of the

present work is to explore these limits and to examine the relationship between the

tuning parameter and the limit form of the filtered series in cases where stochastic

trends, deterministic trends, and trend breaks occur in the data.

To start the analysis it is convenient to examine the operator form of the solution

of (3). The HP trend solution to (2) when m = 2 is frequently written in econometric

work (e.g., King and Rebelo, 1993) using operator notation as

(11) f̂HPt = [λL−2(1− L)4 + 1]−1xt,

where the filter induced by [λL−2(1 − L)4 + 1]−1 = [1 + λ(1 − L)2
(
1− L−1

)2
]−1

is a two-sided moving average of the original time series, as already apparent from

(4). The solution (11) is approximate and does not detail the head and tail (i.e. the

leading and end) elements of the HP filter. The exact finite sample operator solution

is given in Theorem 2 and formula (17) below. The approximate cyclical solution

associated with the operator form (11) of the fitted trend f̂HPt is

(12) ĉHPt =
λL−2(1− L)4

λL−2(1− L)4 + 1
xt.

The numerator of (12) suggests that if xt is I(1) and satisfies

(13) (1− L)xt = ut,

for some stationary process ut, then

(14) ĉHPt =
λL−2(1− L)3

[λL−2(1− L)4 + 1]
ut =: F (L)ut,

so that the fitted cyclical component ĉt appears to be a stationary process under the
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presumption that the operator F (L) produces an absolutely summable infinite mov-

ing average representation. A similar apparent conclusion applies when xt is I(4),

or I(4) with an accompanying polynomial trend of degree at most four. King and

Rebelo (1993) made the point, as subsequently emphasized in much of the economet-

ric literature, that the HP filter appears on the basis of the form of (14) to render

stationary any time series that is integrated up to the 4’th order (or integrated with

a 4’th order drift). However, this appearance is superficial. The asymptotic forms

(12) and (14) are nonlinear smoothing operators where the smoothing mechanism of

the filter is realized by virtue of the reciprocal component [λL−2(1 − L)4 + 1]−1 of

the operator. As discussed below in (19), the superficial conclusion that the filter

removes unit roots is fragile and its validity depends critically on the behavior of the

smoothing parameter λ as n→∞. Both in finite samples and asymptotically, as we

will show in the present paper, this smoothing reciprocal component plays a decisive

role in determining the properties of the filter. In short, one cannot conclude, as has

been the case repeatedly in past work, that the HP filter renders stationary any time

series with up to four unit roots.

The solutions (11) and (12) are, in fact, asymptotic approximations because they

do not take into account end corrections that manifest in the exact filter solution

given by the matrix formula (4). The correct operator form of the solution is given in

the next result, which mirrors (4) in operator notation. In what follows, O` denotes

an ` × ` matrix of zeros, O denotes a zero matrix whose dimensions are clear from

the context, and ej denotes the j’th unit vector with unity in the j’th position and

zeros elsewhere.

Theorem 2 For given n, λ, and m = 2, the HP filter solution f̂HP satisfies the
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operator equation d (L) f̂HP = x with matrix operator

d (L) =




da (L) O O

O
{

1 + λ∆2∆∗2
}
In−4 O

O O db (L)




=
(
1 + λ∆2∆∗2

)
diag [O2, In−4, O2] + EKE′,(15)

where ∆∗ = 1− L−1 is the adjoint operator of ∆ = 1− L, Ea = [e1, e2] , Eb =

[en−1, en] , E = [Ea, Eb] = [e1, e2, en−1, en] , K = diag [da (L) , db (L)] , da (L) =

diag
[
1 + λ∆∗2, 1 + λ∆∗2 (−1 + 2∆)

]
, and db (L) = diag

[
1 + λ∆2 (−1 + 2∆∗) , 1 + λ∆2

]
.

The operator d (L) may also be written in the form

(16)

d (L) =
(
1 + λ∆2∆∗2

)
In + λ∆2EGE′ =

(
1 + λ∆2∆∗2

) {
In + αλ (L)EGE′

}
,

where G = diag [A (L) , B (L)], A (L) = diag
[(

2L−1 − 1
)
,−1

]
, B (L) =

L−2diag [−1, (2L− 1)], and αλ (L) = λ∆2

1+λ∆2∆∗2 .

Remark 4 End corrections to the filter are contained in the components EKE′ and

λ∆2EGE′ which have rank 4.

Remark 5 The kernel of both operators11 ∆2 and ∆∗2 is the span of the constant and

linear trend functions (1, t) . The kernel of ∆2∆∗2 is the span of the polynomials
(
1, t, t2, t3

)
, and so for λ 6= 0 the identity space of the operator

{
1 + λ∆2∆∗2

}

is the span of the polynomials
(
1, t, t2, t3

)
. Correspondingly, the identity space

of the operator d (L) =
(
1 + λ∆2∆∗2

)
In+λ∆2EGE′ is the span of (1, t) . Thus,

when λ 6= 0, the HP filter preserves linear trends, as indicated above from the

explicit matrix form of the filter given by (7) when m = 2. When λ→∞, the

operator d (L) is dominated by λ∆2∆∗2In + λ∆2EGE′ whose kernel space is

the span of (1, t) . So the HP filter solution as λ→∞ lies in the intersection of

11 For any operator O : A→ B between two vector spaces A and B, the kernel of O is the set of all

elements a ∈ A for which O(a) = 0.
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the kernel spaces of ∆2∆∗2 and ∆2, i.e., the span of (1, t) .

Remark 6 As n → ∞, the filter d (L) in (16) is dominated by the lead component
(
1 + λ∆2∆∗2

)
In. As shown in the Appendix, the inverse of the operator d (L)

has the explicit form

d (L)−1 =
(
1 + λ∆2∆∗2

)−1
diag [O2, In−4, O2] +

(
1 + λ∆2∆∗2

)−1
(17)

×
(
Ea [I2 + αλ (L)A (L)]−1E′a + Eb [I2 + αλ (L)B (L)]−1E′b

)
,

whose second component has rank 4 and delivers end corrections to the filter,

thereby affecting only the first two and last two entries of f̂HP . It follows that

typical interior entries f̂HPt=bnrc of the solution f̂HP = d (L)−1 x are correspond-

ingly dominated as n→∞ by entries of the lead component
(
1 + λ∆2∆∗2

)−1
x,

thereby justifying (11) asymptotically.

Remark 7 For the general case (3) with arbitrary m ≥ 2, more complex calculations

related to those leading to (16) show that the Whittaker filter f̂W satisfies the

operator equation dm (L) f̂W = x, where

(18) dm (L) = (1 + λ∆m∆∗m) diag [Om, In−2m, Om] + EmKmE
′
m,

with Em = [Ema, Emb] , Ema = [e1, .., em] , Emb = [en−m+1,..., en] , and diagonal

matrix Km = diag [Am (L) , Bm (L)] in which

Am (L) = diag
[
1 + λ (−1)−m ∆∗m, .., 1 + λ [∆m − (−L)m] ∆∗m

]
,

Bm (L) = diag
[
1 + λ

[
∆∗m − (−L)−m

]
∆m, .., 1 + λ∆m

]
.

The specific entries of the diagonal matrices Am (L) and Bm (L) follow the

combinatoric scheme given in the operator system (68) - (69) detailed in the

Appendix. The matrices EmKmE
′
m have fixed rank 2m as n → ∞. It follows

from (18) that the filter dm (L) is dominated as n→∞ by the lead component
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involving the operator (1 + λ∆m∆∗m). The kernel of the operator ∆m∆∗m is

the span of the polynomials
(
1, t, ..., t2m−1

)
. On the other hand, the elements of

the diagonal matrix Km in (18) are polynomials of the form 1+a (L) ∆m where

a (L) is a polynomial in L and L−1, so the identity space of the operator Km

is the span of the polynomials
(
1, t, ..., tm−1

)
. The Whittaker filter therefore

preserves polynomial time trends of degree m− 1 in finite samples, as is again

evident from (7).

As indicated earlier in the discussion of (14), it is commonly stated in the literature

that the cyclical component ĉt = xt− f̂t obtained from the HP filter residual is a

stationary process when xt is a unit root process, which implies that the HP filter is

effective in removing a stochastic trend in the data. However, this conclusion does

not follow in finite samples, as indicated above, nor does it necessarily follow when

the smoothing parameter λ is large. First, as is clear from Remark 2, when λ → ∞

the filter only removes a linear (or, in the Whittaker case, a polynomial) trend, which

amounts to detrending a unit root process, not to the removal of the stochastic trend.

It is therefore of considerable interest to determine how the properties of the filter

and the induced cyclical component depend on the expansion rate of λ as n → ∞.

The specific rate for λ → ∞ that ensures removal of a stochastic trend is a natural

focus of interest. It is also of interest to learn what expansion rate for λ is required

in order to ensure that the filter is capable of more than simple polynomial trend

extraction. Finally, in the case of data that involve a stochastic trend and a drift or

deterministic trend break, what properties do the filtered data have in the limit as

n→∞? These questions are examined in the following section.

Some immediate heuristics are apparent from (12), which we may write in the

form

(19) ĉt =
∆2∆∗2

∆2∆∗2 + 1
λ

xt =
∆2∆∗2

∆2∆∗2 + o (1)
xt, as λ→∞.
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The second part of (19) suggests that, if λ → ∞ at some suitable rate as n → ∞,

the fitted cyclical component may inherit, asymptotically, features similar to those of

the original series xt including its stochastic trend or random wandering components.

This heuristic reasoning about the asymptotic form of the filter questions the simple

and apparently universally accepted conclusion that the HP filter removes stochastic

trends and it implies that the apparent trend removal property of (12) may not hold

up in large samples. It also corroborates findings from practical work which, as

mentioned in the Introduction, often show evidence of stochastic trend persistence

or long memory after HP trend removal. This evidence is frequently interpreted as a

‘spurious cycle’ outcome of HP smoothing on the residual process (Cogley and Nason,

1995; Cogley, 2008; Hamilton, 2018).12 The limit theory given in the following section

explains this spurious cycle in the HP residual, indicates the conditions under which

it arises, and gives explicit asymptotic forms to the residual process for data that

have stochastic trends and various forms of trend breaks.

The twin issues of whether the trend in the data is removed and whether the

induced cycle is spurious are central to much empirical and policy work in economics.

They have substantial import for economic management of the business cycle; and

they influence the measurement of key economic quantities such as the output gap,

as is clear from the Bullard-Krugman policy debate over the impact of the global

financial crisis on long run potential output of the US economy.

3 Limit Theory of the Filters

To develop an asymptotic theory for the filter, we examine the large sample behavior

of the operators in (12) and (14). We also need to make precise assumptions about

12 Spurious cyclicality may arise with other methods of detrending, such as moving average detrend-

ing and the use of band pass filters, as discussed, for example, in Osborn (1995), or the use of

low frequency projection methods that employ deterministic orthonormal approximations for trend

determination.
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xt and its limit behavior, so that the trend-capture capability of the filter can be as-

sessed. This section makes rigorous some of the heuristic reasoning of the preceding

section concerning the asymptotic behavior of the filter. Rigor requires clarity con-

cerning the trend mechanism13. This section will deal with stochastic trends, which

upon normalization have stochastic process limit behavior. To keep the presenta-

tion as brief as possible, we will confine attention to cases where the limit process is

Brownian motion. Section 4 considers stochastic trends complemented with polyno-

mial drifts and potential structural breaks. The results therefore cover most of the

trend mechanisms considered in practical work. As will become clear, the methods

provided here have greater applicability and various extensions will be explored in

subsequent work.

Our starting point is to assume that the data xt have a stochastic trend and to

consider the impact of the filter on such a process. Later, we examine cases where

the data have deterministic as well as stochastic trend components and a piecewise

continuous deterministic drift function is present in the limit process. Suppose that

xt is I(1) as in (13) and ut is such that a standardized form of xt satisfies the (weak)

functional law (e.g. Phillips, 1987a; Phillips and Solo, 1992)

(20) Xn (·) =
xt=bn·c√

n
→d B(·) = BM(ω2),

where B is Brownian motion (BM) with (long run) variance ω2 and b·c is the integer

floor function. It is convenient in what follows to strengthen (20). Using Lemma 3.1

of Phillips (2007) when ut has a general linear process (Wold) representation

ut = C(L)εt =
∞∑

j=0

cjεt−j ,
∞∑

j=0

j |cj | <∞, C(1) 6= 0,

13 For general discussion, definition of trends, and the limited forms presently used in economic

modeling, readers are referred to Phillips (1998, 2001a, 2003, 2005a, 2010a, 2010b, 2012), Shimotsu

and Phillips (2005), and White and Granger (2011).

25



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

for all t > 0, with εt = iid(0, σ2
ε) and E (|εt|p) <∞ for some p > 2, it is known that

an expanded probability space can be constructed with a Brownian motion B(·) for

which uniform convergence holds, viz.,

(21) sup
0≤t≤n

∣∣∣∣
xt√
n
−B

(
t

n

)∣∣∣∣ = oa.s.

(
1

n1/2−1/p

)
,

so that in this space the functional law convergence (20) takes the strong form

(22)
xbnrc√
n
−B (r) = oa.s. (1) .

In what follows and unless otherwise stated we assume that we are working in this

expanded probability space. In the original space the results translate, as usual, into

weak convergence mirroring (20).

We make a corresponding normalization assumption on the posited trend process

ft so that the class of allowable (interpolating) functions admits the limiting form of

a normalized trend process. Thus, if xt satisfies (20), we suppose that

(23)
ft√
n

= Fn

(
t

n

)
→ f(r),

where Fn is taken to be a continuous function that interpolates the points {ft/
√
n :

t = 1, ..., n, }, and the limit function f(r) ∈ C[0, 1] ∩ QV, the class of continuous

functions on [0, 1] with finite quadratic variation. This assumption allows potentially

for Brownian motion limits such as f(r) = B(r), which are continuous with finite

quadratic variation [B]r = rω2. Again, by an appropriate change in the probability

space and allowing for stochastic trend processes in the limit, when ft is data depen-

dent we can interpret the convergence in (23) in the strong form when taken in the

same probability space, viz.,

(24)
fbnrc√
n
− f (r) = oa.s. (1) .
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Given the standardarization used in (20) and (23), the filtering problem can therefore

be formalized so that the HP or Whittaker filter is selected according to the criterion

(25) f̂t = arg min
ft√
n

=Fn( tn),Fn∈S

{
n∑

t=1

(xt − ft)2 + λ
n∑

t=m+1

(4mft)
2

}
,

where S = {Fn ∈ C [0, 1] ∩QV }⊂ L2 [0, 1] is a smoothness class that restricts the in-

terpolating function Fn to functions that are continuous and have finite quadratic

variation on the interval [0, 1] . The use of an interpolating function Fn in a certain

class such as S becomes useful as we consider the limit behavior of the filter as n→∞

and the interval between standardized observations (1/n) shrinks to zero. In some

instances, it may be useful to extend this class to admit limit behavior that allows

for trend breaks in the limit function f (r) in which case we might use the Skorohod

space D [0, 1] , which allows for simple jump discontinuities, rather than C [0, 1] in

the definition of S.

We will see later that the asymptotic solution to the HP filter (2) when (22)

holds and m = 2 is fHP (r) = B(r) provided λ is finite or passes to infinity slowly

enough as n→∞. In other cases, the limiting trend function fHP (r) takes different

forms depending on the expansion rate of λ as n → ∞. In each case, the limiting

trend function fHP (r) is stochastic and embodies some stochastic characteristics of

the limiting form of the standardized process n−1/2xbnrc.

To characterize the limiting form of the filter solutions, it is convenient to use

a general framework that embodies the limiting stochastic process B (r) as well as

other possible stochastic trend processes. To this effect we use the Karhunen-Loève

(KL) representation of the limit process in (20) over the interval [0, 1] , viz.,

B (r) =
√

2
∞∑

k=1

sin
[(
k − 1

2

)
πr
]

(
k − 1

2

)
π

ξk, ξk = iid N(0, ω2)

=

∞∑

k=1

√
λkϕk (r) ξk,(26)
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(Phillips, 1998; see Phillips & Liao, 2014, for a recent overview), where {ϕk (r) =
√

2 sin
[(
k − 1

2

)
πr
]

=
√

2 sin
(
r/
√
λk
)
}∞k=1 is an orthonormal system of eigenfunctions

in L2[0, 1] and λk = 1/[
(
k − 1

2

)
π]2 are the corresponding eigenvalues. The series (26)

is well known to converge almost surely and uniformly in r ∈ [0, 1] , which implies that

B (r) is arbitrarily well approximated by a finite series
∑K

k=1

√
λkϕk (r) ξk for large

enough K. For such cases, it will be convenient to use as the interpolating functions

in (25) the specific class Sϕ =
{∑∞

k=1 dkϕk (r) :
∑∞

k=1 d
2
k <∞

}
⊂ L2 [0, 1] spanned by

the ON functions {ϕk (r)}∞1 . In practical work, it may be more convenient to include

an intercept term or use other ON functions, including polynomials.

An important property of stochastic trends such as B (r) is that their KL rep-

resentations in terms of deterministic functions typically involve infinite series such

as (26). These series are needed to fully capture all features of the trend process,

including both low and high frequency properties. As will be shown analytically and

in simulations below, a finite number K of leading terms in (26) typically provides

the broad features of the trend process in finite samples. Then, as n→∞, allowing

K = Kn →∞ enables such approximations to capture more volatile high frequency

elements in the trend. The latter play a role in determining some characteristic prop-

erties, such as the non-differentiability of the limit processes like Brownian motion

trends. But they may be neglected when only the broad features of the trending

process are of primary interest. Of course, practical work requires empirical fitting

and is inevitably confined to finite series representations, in which case the choice of

K becomes important and bears a close connection to the choice of λ in the use of the

HP filter. These tools for understanding trends by empirical regressions on trigono-

metric series and ON polynomials were developed and explored in Phillips (1998) and

have led to the use of finite series representations in terms of deterministic functions

for empirical trend modeling and low frequency projection methods in the work of

Hwang and Sun (2018), Phillips (2001b, 2005a, 2005b, 2014), Müller (2007), Müller

and Watson, 2018), Sun (2014), Yamada (2020) and others.
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We next consider some specific expansion rates for λ. The most important turns

out to be λ = O
(
n4
)

for the HP filter and λ = O
(
n2m

)
for the Whittaker filter.

These orders provide critical values that determine whether or not the filters produce

a stochastic trend process or a polynomial trend process (i.e., a polynomial with

random coefficients) in the limit.

For the HP filter penalty we let λHP = µn4 and for the general Whittaker filter set

λW = µn2m, so that in both cases λ→∞ much faster than n. As the following result

shows, the expansion rate is fast enough to ensure that these filters are not consistent

for a stochastic trend but they are not so fast as to produce only a simple polynomial

time trend limit. Instead, both filters produce limiting Gaussian stochastic processes

that embody elements of the stochastic trend (20) that is being modeled. Both

of these limiting stochastic processes fall within the usual ‘flexible ruler’ Bayesian

interpretation of the HP and Whittaker filters in the sense that the limit functions

are smooth.

Theorem 3 (a) If xt satisfies the functional law (22) and λ = µn4 then the HP

filter f̂HPt=bnrc has the following limiting form as n→∞

(27)
f̂HPbnrc√
n
→a.s. fHP (r) =

∞∑

k=1

λ2
k

µ+ λ2
k

√
λkϕk (r) ξk.

When λ = µn2m, the Whittaker filter for general m ≥ 2 has the corresponding

limiting form as n→∞

(28)
f̂Wbnrc√
n
→a.s. fW (r) =

∞∑

k=1

λmk
µ+ λmk

√
λkϕk (r) ξk.

In both cases ξk ∼iid N
(
0, ω2

)
, ϕk (r) =

√
2 sin

{(
k − 1

2

)
πr
}

=
√

2 sin
(
r/
√
λk
)
,

and λk = 1/
{(
k − 1

2

)
π
}2
.

(b) The asymptotic forms of the HP and Whittaker filters in (27) and (28) are
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the solutions of the following continuous time penalized regressions

fHP (r) = arg min
f

{∫ 1

0
(B(r)− f(r))2 + µ

∫ 1

0

[
f
′′
(r)
]2
dr

}
,(29)

fW (r) = arg min
f

{∫ 1

0
(B(r)− f(r))2 + µ

∫ 1

0

[
f (m)(r)

]2
dr

}
.(30)

Remark 8 In (27) and (28) the limit processes are random and involve the same

component variables ξk that appear in the limiting Brownian motion process

(26) derived directly from the nonstationary data. Thus, in the case where

λ = µn4 and n→∞, the HP filtered trend tends to a limiting stochastic process

whose components depend on those of the limiting process B (r) . Prima facie,

this outcome seems different to the case where λ→∞ with fixed n, for which

the HP filtered trend is just a simple linear trend. However, even in that case the

limiting (as λ → ∞) trend process, R2 (R′2R2)−1R′2x, has random coefficients

(R′2R2)−1R′2x. Upon standardization using the matrix Ln = diag [1, n] these

coefficients satisfy

Ln
(
R′2R2

)−1
R′2

x√
n

=

(
1

n
L−1
n R′2R2L−1

n

)−1 1

n
L−1
n R′2

x√
n

→a.s.




1
∫ 1

0 r
∫ 1

0 r
∫ 1

0 r
2




−1 

∫ 1

0 B (r) dr
∫ 1

0 rB (r) dr


 =:



αHP

βHP


 .(31)

Hence, from (9) as λ→∞ for fixed n

(32)
f̂HP√
n

= R2L−1
n Ln

(
R′2R2

)−1
R′2

x√
n

+ op (1) .

So the leading term of (32) is, in sequential asymptotics14 as (n, λ)seq →∞,

(33)
f̂HPt=bnrc√

n
∼
[
R2L−1

n

]
t=nr
Ln
(
R′2R2

)−1
R′2

x√
n
→a.s. αHP + βHP r,

14 The notation (n, λ)seq → ∞ signifies that λ → ∞ followed by n → ∞ (c.f., Phillips and Moon,

1999).
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giving the limiting linear trend function fHP (r) = αHP + βHP r, which has

random slope and intercept, both induced by the form of the limiting process

B (r) . In this case, the limit function fHP (r) carries (smoothed) characteristics

of the stochastic trend B (r) only in the two coefficients (αHP , βHP ) . Impor-

tantly, the linear trend limit applies when λ→∞ and the specific form of the

coefficients (αHP , βHP ) appearing in (33) holds when n→∞ subsequently. A

similar higher order polynomial limit applies in the case of the Whittaker filter

when (n, λ)seq →∞.

Remark 9 Functions (27) and (28) provide explicit KL forms for the limit of the

trends that are extracted by the HP and Whittaker filters when the original

data is I(1) and the tuning parameter λ = µn4 for the HP filter and λ = µn2m

for the Whittaker filter and constant µ > 0. In both cases, it is apparent that

the filters do not reproduce the limiting trend process B (r) , so the filter does

not deliver a consistent estimate of the (stochastic) trend function for these

expansion rates of λ. Further, the HP estimate ĉHPt of the cycle component ct

has the following limiting functional form upon standardization

ĉHPbnrc√
n

=
xbnrc√
n
−
f̂HPbnrc√
n
→a.s.

∞∑

k=1

{
µ

µ+ λ2
k

}√
λkϕk (r) ξk =: cHP (r) .

This limit function cHP (r) = B (r)−fHP (r) is a stochastic process that is non-

differentiable almost everywhere and inherits the stochastic trend random wan-

dering properties of the limiting Brownian motion process B (r) . It is therefore

to be expected that for choices of the smoothing parameter that approximate

λ = µn4 the HP filter fails to remove a stochastic trend and the imputed busi-

ness cycle estimate ĉHPt inevitably imports the random wandering character of

a stochastic trend, thereby producing ‘spurious cycle’ phenomena of the type

observed in simulations in the past literature.

Remark 10 The explicit forms (27) and (28) enable us to characterise the proper-
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ties of the limit processes fHP (r) and fW (r) in relation to the limiting trend

function B (r) . In particular, fHP (r) in (27) is expressed in terms of the or-

thonormal basis functions ϕk and the orthonormal Gaussian variates ξk. Since

λk = O
(
1/k2

)
, the coefficients in this representation satisfy

λ2
k

µ+ λ2
k

√
λk = O

(
1

k5

)
,

from which we deduce that fHP (r) is a Gaussian stochastic process with the

property that fHP (r) ∈ C4 [0, 1] , the class of functions that are continuously

differentiable to the 4’th order. Indeed, its fourth derivative is given by the

almost surely convergent series15

(34) f
(4)
HP (r) =

∞∑

k=1

√
λk

µ+ λ2
k

ϕk (r) ξk,

which is a non-differentiable Gaussian process similar to Brownian motion for

all µ 6= 0. Thus, when λ = µn4, the trend that is extracted by the HP filter is a

very smooth function. In a similar way from its KL representation, it is evident

that fW (r) is a smooth Gaussian process differentiable to order 2m.

Remark 11 The proof of Theorem 3 shows that for large n the HP trend filter takes

the finite series approximate form

(35)
f̂t,Kn√
n

=

Kn∑

k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk {1 + o (1)} ,

where Kn → ∞ as n → ∞ such that Kn/n → 0. Now set µ = µK in (35) and

let µKn → 0 as Kn →∞. Then,
λ
5/2
k

µK+λ2k
→ √λk uniformly for k ≤ Kn and so

(36) fKnHP

(
t

n

)
=
f̂t,Kn√
n
→a.s

∞∑

k=1

√
λkϕk (r) ξk = B (r) ,

15 The series (34) is evidently convergent almost surely by virtue of the L2 martingale convergence

theorem.
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which demonstrates that for smaller tuning parameter rates where λ = µKnn
4 =

o
(
n4
)

with 1
Kn

+ Kn
n → 0 the approximate HP filter (35) succeeds in capturing

the Brownian motion limit process of the stochastic trend as n → ∞. This

capability is exploited by the machine learning boosting method explored in

the companion paper (PS, 2020).

The accuracy of the approximation delivered by (35) is illustrated in Figure 4. In

this case the data are generated by taking n = 100 equispaced, discrete observations

of the Brownian motion (26) calculated using 5000 terms of the series with ω2 = 1.

The data are therefore drawn essentially from a standard Gaussian random walk.

Figure 4 also shows the HP filter computed directly with λ = 1600 and the limit

function approximation fKnHP

(
t
n

)
computed with µ = 0.000016 so that λ = µn4 =

1600 using (35) with Kn = 10. As is clear from the Figure, the asymptotic form

fHP (r) delivers an extremely good approximation to the actual HP filter. The HP

filter and its asymptotic approximation both follow the general path of the data but

do not reproduce any of its fine-grain fluctuations with this setting of λ. The only

points of deviation appear to be the initiation and terminal points of the series, for

which exact end corrections are not included in the asymptotic theory, in contrast to

the exact filter solution given by the matrix formula (4). The situation is similar to

the empirical example shown in Figure 3, where for US annual real GDP data the

trend extracted by the HP filter with λ = 300 also follows the general path of the

data without capturing all of the fine-grain wandering details.
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Figure 4: Random walk data, the HP filter, and its C4[0, 1] series approximation
fKnHP

(
t
n

)
in (35) with Kn = 10.

4 Stochastic Trends with Drift and Breaks

It is often realistic to allow for a limit process that is a stochastic trend with drift,

so that in place of (20) we have the weak convergence

(37) Xn (·) =
xt=bnrc√

n
→d α+ βr +B(r).

A suitable generating mechanism for the discrete time process xt leading to (37)

involves a localized drift function16, such as xt = αn + βnt + x0
t , where x0

t is a

pure stochastic trend satisfying X0
n (r) = n−1/2x0

t=bnrc →d B(r). The accompanying

linear trend is sample size dependent with coefficients that satisfy n−1/2αn → α, and

√
nβn → β. The time trend βnt ∼ β√

n
t then has a local to zero coefficient β√

n
and the

intercept αn ∼
√
nα has the same order as the stochastic trend x0

t , thereby ensuring

16 See Phillips, Shi and Yu (2014).
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that (37) holds in the limit as n→∞. For the general polynomial trend case, we can

use the formulation

(38) xt = αn + βn,1t+ ...+ βn,J t
J + x0

t ,

with

(39)
αn√
n
→ α and nj−

1
2βn,j → βj for j = 1, .., J,

so that

(40) Xn (·) =
xt=bnrc√

n
→d α+ β1r + ...+ βJr

J +B(r).

As before, it is convenient to work in an expanded probability space where (37)

and (40) hold a.s. using (22). Polynomial time trends are preserved under the Whit-

taker filter operation (7) up to degree J ≤ m− 1 and under the HP filter operation

to degree J ≤ 1, as shown in Remarks 2 and 7 above. It follows that the HP and

Whittaker filters applied to xt will have limit theory comparable to Theorem 3 for

the stochastic trend component augmented by a continuous time polynomial trend

of the corresponding degree. The following result details these limits.

Theorem 4 If xt = αn + βnt + x0
t where x0

t satisfies the functional law (22), the

coefficients αn and βn satisfy (39), and λ = µn4 then the HP filter f̂HPt=bnrc has

the following limiting form as n→∞

(41)
f̂HPbnrc√
n
→a.s. fHP (r) = α+ βr +

∞∑

k=1

λ2
k

µ+ λ2
k

√
λkϕk (r) ξk.

If xt is generated as in (38) with a deterministic trend of degree J ≤ m − 1,

then the Whittaker filter with penalty λ = µn2m has the corresponding limiting
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form

(42)
f̂Wbnrc√
n
→a.s. fW (r) = α+ β1r + ...βJr

J +
∞∑

k=1

λmk
µ+ λmk

√
λkϕk (r) ξk.
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Figure 5: Random walk with drift data, the HP filter, and its C4[0, 1] Approximation
fKnHP

(
t
n

)
in (43) with Kn = 10 and µ = 0.000016 (giving λ = 1600).

Remark 12 For large n the HP filter of xt = αn + βnt + x0
t takes the finite series

approximate form

(43) fKnHP

(
t

n

)
=
f̂t,Kn√
n

= α+ β
t

n
+

Kn∑

k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk {1 + op (1)} ,

where Kn →∞ as n→∞ such that Kn/n→ 0. As discussed earlier, if we set

µ = µK in (43) and let µKn → 0 as Kn →∞. Then, analogous to (36) we have

f̂t,Kn√
n
→a.s α+ βr +B (r) ,
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suggesting that for smaller tuning parameter rates where λ = µKnn
4 = o

(
n4
)

the HP filter captures the limiting Brownian motion with drift process as n→

∞. On the other hand, if µKn → ∞ in (43), we have
λ2k

µKn+λ2k
< 1

1+µKn
→ 0

uniformly in k ≥ 1, and

Kn∑

k=1

λ2
k

µKn + λ2
k

√
λkϕk

(
t

n

)
ξk {1 + op (1)} = Op

(
1

1 + µKn

)
,

so that the asymptotic approximation fKnHP

(
t
n

)
→ α + β t

n , µKn → ∞, giving

an approximating linear trend, as in Remark 2 when λ→∞ for any fixed n.

Figure 5 illustrates the HP filter asymptotic approximation (43) to a random walk

generated for n = 100 with drift using the (limiting) intercept and slope parameter

settings α = 10 and β = 2. As in Figure 4, the HP filter is computed directly

with λ = 1600 and the approximation fKnHP

(
t
n

)
is computed with µ = 0.000016 so

that λ = µn4 = 1600. Computations are performed using the finite series (43) with

Kn = 10. Similar to Figure 4, the asymptotic approximation fKnHP

(
t
n

)
delivers an

extremely good approximation to the actual HP filter. Both the HP filter and fKnHP

(
t
n

)

track the general course of the data but fail to reproduce fine-grain fluctuations.

As discussed in Remark 15 and Section 5 below, for trends involving stochastic

trends with deterministic time polynomial drifts of higher degrees (J = JHP ≥ 4 for

HP and J = JW ≥ 2m for Whittaker) the asymptotic forms of the filters project the

higher order time polynomials onto lower order polynomials (JHP = 3, JW = 2m−1)

and apply the smoother to the residual process. To take the HP case, the reason

for this projection is that the fourth order difference operator ∆2∆∗2 dominates

asymptotically in the operator form of the exact filter given in equation (16) of

Theorem 2 so that asymptotically we have ∆2∆∗2ft = 0, whose solution is a third

order time polynomial, as shown later in equation (63). A similar projection process

occurs in the case of data generated with breaking polynomial trends or trends with

multiple break points. These cases are covered by a general theory and result which
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we now develop.

Suppose that xt = gn (t) + x0
t in which x0

t satisfies the functional law (22) and

gn (t) is a piecewise smooth trend function with a finite number of break points and

sample size dependent coefficients such that n−1/2gn (bnrc)→ g (r) , where g (r) is a

piecewise smooth function for r ∈ [0, 1] with convergent Fourier series in L2 [−π, π] ,

the space of square integrable functions on [−π, π] . In place of (22) we then have

under the same conditions

(44) Xn (·) =
xt=bn·c√

n
→a.s. B(·) + g (·) =: Bg (·) .

We suppose in what follows that the continuous interpolating function for the de-

terministic trend component can be written in terms of its Fourier series using the

complex exponential basis functions (2π)−1/2 eikr, so that the interpolating class has

the general trigonometric form Sψ =
{∑∞

k=−∞ ckψk (r) :
∑∞

k=1 c
2
k <∞

}
⊂L2 [−π, π]

with ψk (r) = (2π)−1/2 eikr. The limit function g (r) then has the Fourier series rep-

resentation

(45) gF (r) =
1

2π

∞∑

k=−∞
cke
−ikr =

c0

2π
+

1

π

∞∑

k=1

Re
[
cke
−ikr

]
, r ∈ [−π, π] ,

with coefficients ck =
∫ π
−π e

ikrg (r) dr and where Re{·} signifies the real part of its

complex number argument. As an example related to the earlier discussion, suppose

gn (t) is a trend break polynomial with a single break point at τ0 = bnr0c that takes

the form

gn (t) =





α0
n + β0

n,1t+ ...+ β0
n,J t

J t < τ0 = bnr0c

α1
n + β1

n,1t+ ...+ β1
n,J t

J t ≥ τ0 = bnr0c
,

with αδn√
n
→ αδ and

{
nj−

1
2βδn,j → βδj : j = 1, .., J

}
for δ = 0, 1. Then

n−1/2gn (bnrc)→ g (r) =





α0 + β0
1r + ...+ β0

Jr
J r < r0

α1 + β1
1r + ...+ β1

Jr
J r ≥ r0

,
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and, in view of the finite number of jump discontinuities in the otherwise smooth

function g (r) , its Fourier series gF (r) in (45) converges pointwise over the interval r ∈

[0, 1] , although not to g (r) at break points such as r0, but instead to midpoints of the

left and right limits such as 1
2

{
g
(
r+

0

)
+ g

(
r−0
)}
. On the other hand, gF (r) = g (r)

for all points of continuity of g and, by standard Fourier analysis (e.g. Tolstov, 1976,

pp. 125-129), smooth integral operations on gF , such as GF (r) =
∫ r

0 g
F (s) ds, have

everywhere pointwise convergent (to G (r) =
∫ r

0 g (s) ds) Fourier series that are the

termwise integrals of the Fourier series of g. The HP and Whittaker filters in this case

have the following approximations and limit forms when the trigonometric functions
{

(2π)−1 e−ikr
}

are used as the basis functions in the Fourier series representation

gF (r) of the interpolating limiting trend function g (r).

Theorem 5 If xt = gn (t) + x0
t where x0

t satisfies the functional law (22) and gn (t)

is a piecewise smooth interpolating function with convergent Fourier series (45),

then the HP filter f̂HPt=bnrc with penalty λ = µn4 for µ ∈ (0,∞) has the approxi-

mating limit form n−1/2f̂HPbnrc →a.s. fHP (r) as n→∞ with

(46)

fHP (r) =

{
c0

2π
+

1

π

∞∑

k=1

1

1 + µk4
Re
[
cke
−ikr

]}
+
∞∑

k=1

λ2
k

µ+ λ2
k

√
λkϕk (r) ξk.

The Whittaker filter with penalty λ = µn2m for µ ∈ (0,∞) has the approximat-

ing limit form n−1/2f̂Wbnrc →a.s. fW (r) as n→∞ with

(47)

fW (r) =

{
c0

2π
+

1

π

∞∑

k=1

1

1 + µk2m
Re
[
cke
−ikr

]}
+

∞∑

k=1

λmk
µ+ λmk

√
λkϕk (r) ξk.

Remark 13 The components in braces on the right sides of (46) and (47) are the

limiting forms of the HP and Whittaker filters for the breaking trend func-

tion g (r) . The effect of these filters is to smooth the (possibly discontinuous)

limit function g(r) into a smooth curve where breaks are captured by smooth

transitions. For the HP case, when trigonometric basis functions are used to
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represent the trend break function gn (t), we have the smoothed limit function

(48) gHP (r) :=
c0

2π
+

1

π

∞∑

k=1

1

1 + µk4
Re
[
cke
−ikr

]
.

This smoothed limit function converges faster to its limit than the original

Fourier series gF (r) = 1
2π

∑∞
k=−∞ cke

−ikr in view of the presence of the factor

1/
(
1 + µk4

)
= O

(
k−4

)
in each term of the series. The extent of smoothing

that is involved depends on the magnitude of the parameter µ, with larger µ

producing more heavily smoothed versions of the break points in g (r) . As is

apparent in the examples studied below (Remark 16), small values of µ still

produce smoothing but retain greater fidelity to g (r), while smoothing out

ripples that occur in finite versions of the Fourier series representation (48).

Remark 14 As shown in the proof of Theorem 4, for large n the HP filter f̂t of

xt = gn (t) + x0
t has the finite series approximate form f̂t,Kn where

(49)
f̂t,Kn√
n

= gHPKn (r) +

Kn∑

k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk,

with

gHPKn (r) =
c0

2π
+

1

π

Kn∑

k=1

1

1 + µk4
Re
[
cke
−ik t

n

]
.

When Kn → ∞ as n → ∞ such that Kn/n → 0, (49) has the limiting form

fHP (r) given in (46). Further, if we let µ = µK → 0 as Kn → ∞ with

Kn/n→ 0 in (49), we find that gHPKn (r)→ c0
2π + 1

π

∑∞
k=1 Re

[
cke
−ik t

n

]
= gF (r) ,

which is the same as the deterministic trend break function g (r) except at break

points, for which the Fourier series gF (r) converges but not necessarily to the

value of g (r) at the break points. In this event, we have

fKnHP (r) =
f̂t=bnrc,Kn√

n
→ gF (r) +B (r) , as n→∞,

so that the HP filter succeeds in capturing both the continuous part of the
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stochastic and deterministic trends in the limit. These sequential asymp-

totics suggest that for tuning parameter expansion rates λ = µnn
4 = o

(
n4
)

with suitable µn → 0 as n → ∞, the HP and Whittaker filters will capture

the stochastic trend limit function B (r) and the Fourier series form gF (r) =

1
2π

∑∞
k=−∞ cke

−ikr of the trend break. When there are no break points, smooth

higher order polynomials are captured exactly in the limit by both filters in this

case.

Remark 15 If basis functions other than complex exponentials are used for the in-

terpolating function of the deterministic trend n−1/2gn (t = bnrc) and its limit

function g (r) , then the HP and Whittaker filters have alternate asymptotic

forms in terms of the new basis. In such cases, the smoothness class of interpo-

lating functions Sψ =
{∑∞

k=−∞ ckψk (r) :
∑∞

k=1 c
2
k <∞

}
will involve different

functions {ψk (r)}∞1 from the complex exponentials. For instance, we might use

the polynomials
{

1, r, r2, ...
}

as a basis or orthogonal versions of them, such as

the (shifted) Legendre polynomials
{
P̃m (r)

}∞
m=0

, which are orthogonal over

the interval r ∈ [0, 1] , where P̃m (r) is the (shifted) Legendre polynomial of

degree m in r. Then, if the deterministic trend gn (t) = αn +βn,1t+ ...+βn,J t
J

is itself a high order polynomial with coefficients αn and βn,j satisfying (39),

the limiting trend function has a similar polynomial representation as

lim
n→∞

1√
n
gn

(bnrc
n

)
= g (r) = α+ β1r + ...+ βJr

J .

In this event, applying the asymptotic form of the Whittaker operator 1/
{

1 + µn2m∆m∆∗m
}
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we have

{
1 + µn2m∆m∆∗m

}−1
[

1√
n
gn (t = bnrc)

]

=
αn√
n

+
βn,1√
n
bnrc+ ...+

βn,J√
n
bnrcJ

→





α+ β1r + ...+ βJr
J for J < 2m

α+ β1r + ...+ βJr
J +Q (µ, r) for J ≥ 2m

,(50)

where Q (µ, r) is a polynomial in µ of degree bJ/ (2m)c with coefficients in-

volving powers of r such that limµ→0Q (µ, r) = 0. The retention of the limit

polynomial g (r) in the above expression holds because ∆mk∆∗mkrJ = 0 for all

k ≥ 1 when J < 2m, which explains the first element of (50). When J ≥ 2m,

higher order terms in the expansion produce non zero terms involving powers

of µ in addition to the limit polynomial g (r) . To illustrate, we evaluate the

component
{

1 + µn2m∆m∆∗m
}−1 ( t

n

)j
for an arbitrary integer j as follows

{
1 + µn2m∆m∆∗m

}−1
(
t

n

)j

=

∫ ∞

0
exp

{
−
[
1 + µn2m∆m∆∗m

]
s
}
ds

[(
t

n

)j]

=

∫ ∞

0
e−s

∞∑

k=0

sk

k!

{
−µn2m∆m∆∗m

}k
ds

[(
t

n

)j]

=
∞∑

k=0

[∫ ∞

0
e−s

sk

k!

{
−µn2m∆m∆∗m

}k
[(

t

n

)j]
ds1 {2mk ≤ j}

]

=

bj/(2m)c∑

k=0

{
−µn2m∆m∆∗m

}k
(
t

n

)j

=
{

1− µn2m∆m∆∗m + µ2n4m∆2m∆∗2m + ...
}( t

n

)j

=

(
t

n

)j
+Qj

(
µ,
t

n

)
,(51)
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=





(
t
n

)j
for j < 2m

(
t
n

)j
+ (−1)m+1 µ (2m)! +O

(
n−1

)
for j = 2m

(
t
n

)j
+ (−1)m+1 µ (2m+ 1)!

(
t
n

)
+O

(
n−1

)
for j = 2m+ 1

(
t
n

)j
+ (−1)m+1 µ (2m+2)!

2!

(
t
n

)2
+O

(
n−1

)
for j = 2m+ 2

...
...

(
t
n

)j
+ (−1)m+1 µ (4m)!

(2m)!

(
t
n

)2m
+ µ2 (4m)! +O

(
n−1

)
for j = 4m

...
...

where Qj
(
µ, tn

)
is a polynomial in µ of degree bj/ (2m)c with coefficients involv-

ing powers of t
n . The explicit form of the coefficients that appear in (51) are ob-

tained by successive differencing. For example, when k = 1 and j = 2m+` < 4m

by successive recursion of the differencing operator ∆m∆∗m = (−L)−m ∆2m we

have

µn2m∆m∆∗m
(
t

n

)2m+`

= µn2m (−L)−m ∆2m−1

{(
t

n

)2m+`

−
(
t− 1

n

)2m+`
}

= µn2m−1 (−L)−m ∆2m−1

{
(2m+ `)

(
t

n

)2m+`−1

+O

(
1

n

)}

= µ (−L)−m
{

(2m+ `)!

`!

(
t

n

)`
+O

(
1

n

)}

= (−1)m µ

{
(2m+ `)!

`!

(
t+m

n

)`
+O

(
1

n

)}

= (−1)m µ

{
(2m+ `)!

`!

(
t

n

)`
+O

(
1

n

)}
,

with similar calculations when k > 1. The Whittaker filter therefore preserves

polynomials of degree J ≤ 2m − 1 asymptotically as n → ∞ when λ = µn2m.

When the polynomial has degree J ≥ 2m, the filter produces additional terms

that are contained in Qj
(
µ, tn

)
which all tend to zero as µ→ 0. Hence, just as

in the case of trigonometric basis functions, the filter reproduces general time

polynomial trends exactly as n→∞ when λ = µn2m and µ→ 0. These results
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all apply to the HP filter by specializing the above formulae to the case m = 2.

0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

r

g(r)

Figure 6: Fourier series (black solid line: K = 50) and HP filter (blue dashed line:
K = 50, µ = 0.0001; sienna dot-dashed line: K = 50;µ = 0.000001) approximations
of a level shift function g (r) with unit shift at r0 = 0.5.

Remark 16 We illustrate these effects with a linear trend-break function of the type

that commonly appears in empirical econometric work. Suppose the data follow

a deterministic trend break process with limiting form given by

(52) g (r) = (α1 + β1r)1 {r < r0}+ (α2 + β2r)1 {r ≥ r0}

for some break point r0 ∈ (0, 1) . The coefficients that appear in the trigono-

metric Fourier series for g (r) and the limiting HP filter approximation (46) are

found, after some calculations that are shown in the Appendix, to be

(53) c0 = π (α1 + α2) + r0 (α1 − α2) +
1

2

(
π2 − r2

0

)
(β2 − β1) ,

and

ck =
eikr0 − e−ikπ

ik
(α1 − α2) +

{
eikr0

ik
r0 −

eikr0

(ik)2 +
e−ikπ

(ik)2

}
(β1 − β2)(54)

+

(
e−ikπ

ik
π

)
(β1 + β2) ,
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for k ≥ 1. The curves of the Fourier series for g (r) and the limiting HP filter

fHP (r) are shown for a level shift in Figure 6 and for a trend break in Figure 7.

These are computed with finite sums
∑K

k=1 for large K, replacing the infinite

sums in (45) and the term in braces in (46) using the complex exponential basis

to construct the interpolating function. In Figure 6, we consider a level shift

function, setting α1 = β1 = β2 = 0 and α2 = 1, giving the simple level shift

function g (r) = 1 {r ≥ r0} in (52), and its HP filter approximations for various

µ. In Figure 7, we set α1 = α2 = 0, β1 = 0.5, and β2 = 1 in (52), giving the

breaking linear trend function g (r) = 0.5r1 {r < r0} + r1 {r ≥ r0} with HP

filter approximations shown for various values of K.

As is apparent in both Figures 6 and 7, the smoothing action embodied in the

coefficient scale factor 1/
(
1 + µk4

)
in (46) helps the HP filter to accelerate the con-

vergence of the Fourier series over a large part of the linear segments of g when µ is

small, in addition to smoothing the break discontinuity of g at r0 = 0.5 into a curve

that accentuates the continuous transition approximation to the break represented

in the finite Fourier series. In this sense the HP filter acts in a manner that re-

sembles a finite trigonometric series approximation while having the twin properties

of smoothing out the trigonometric ripples over the linear segments and creating a

smooth transition to replace the location shift and trend break in the deterministic

function.
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

r

g(r)

Figure 7: Fourier series (black solid line: K = 50; green dashed line: K = 250) and
HP filter (sienna solid line: K = 250, µ = 0.00001) approximations of a breaking
linear trend function g (r) with a slope break at r0 = 0.5.

Remark 17 Figure 8 shows equispaced data (with n = 100 observations) generated

from a Brownian motion with a deterministic location shift corresponding to

that of Figure 6 (viz., g (r) = 1 {r ≥ 0.5} ), shown against the corresponding

HP filtered series and HP limit approximations as n→∞. As is apparent, the

limiting HP filter approximation with µ = 0.000016 (so that λ = µn4 = 1600)

provides a very close approximation to the actual HP filter with the usual

setting λ = 1600, whereas when µ = 10−10 (or λ = µn4 = 0.01) the limiting

HP approximation follows the fine-grain course of the data in much greater

detail, including the sharp level shift at the midpoint (r0 = 0.5). Thus for

λ = 0.01 = O( 1
n), the HP filter reproduces the correct limit process involving a

Brownian motion with a deterministic drift limit g (r) for all r except for break

points such as r0 for which the filter corresponds in the limit to the Fourier

series of g (r) given by gF (r) = c0
2π + 1

π

∑∞
k=1 Re

[
cke
−ikr].

These results show that, just as in nonparametric function estimation, the path to

infinity of the smoothing parameter is important in influencing the asymptotic prop-

erties of the HP filter. Moreover, joint limits are not always the same as sequential

limits. The obvious example is that limit results for λ → ∞ for fixed n followed by
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n→∞ are usually very different from results where λ = µn4 →∞ and cases where

(µ, n)seq →∞. Furthermore and not unexpectedly, some interpolating functions used

in the smoothing class S for deterministic trends lead to slightly different asymp-

totics because of their different capacities as approximations to trends of different

forms. Thus, time polynomials are better modeled directly in terms of continuous

time polynomials than by trigonometric polynomials. In consequence, one requires

slightly different divergence rates on the smoothing parameter to achieve the same

level of approximation or reproduction of the deterministic trend process in the limit

as n → ∞. These differences are reflected in the above results concerning whether

we need λ = o
(
n4
)

or λ = O
(
n4
)

rates to embody limiting polynomial time trend

solutions exactly in the filtered series. Of course, for breaking trend functions, use

of a class S of continuous interpolating functions will typically lead to continuously

differentiable limits that embody the smoothing effects of the HP filter in the contin-

uous limit function, as demonstrated in the examples of a level shift and trend break

given above.
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Figure 8: Random walk with a location shift at r0 = 0.5, shown against the HP
filtered series and HP limit approximations (µ = 16× 10−6 and µ = 10−10).

5 Limit Theory for Weaker and Stronger Penalties

When xt is I (1) , satisfies (22), and λ = µn4 the asymptotic form of the trend HP

solution is a Gaussian process that is four times continuously differentiable, giving a

very smooth trend. Smooth trends of this type are typical of empirical outcomes with

the setting λ = 1600 for quarterly data. When the expansion rate of λ as n→∞ is

slower than O
(
n4
)
, the effect of the penalty is weaker and the limit function is not

as smooth, at least in this case where the data have a stochastic trend. When the

expansion rate of λ exceeds O
(
n4
)
, the penalty is stronger and the limit function

is even smoother. These cases are studied next. We concentrate attention here on

examining the case where xt is I (1) and satisfies (22). But closely related results

apply in cases where xt is near integrated (Phillips, 1987b) or where the limit process

is a continuous stochastic process with deterministic piecewise continuous drift, as

will be indicated below.
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Slower expansion rates for λ

In the extreme case where λ is fixed as n→∞ and if xt satisfies (22) and ft (24),

the HP optimization problem (2) with m = 2 may be written as

f̂t√
n

= arg min
ft/
√
n

{
1

n

n∑

t=1

(
xt√
n
− ft√

n

)2

+
λ

n

[
1

n

n∑

t=3

(42ft)
2

]}
(55)

= arg min
ft/
√
n

{
1

n

n∑

t=1

(
xt√
n
− ft√

n

)2

+ o

(
λ

n

)}
.(56)

It follows that for λ fixed or indeed for any λ = o (n) , the role of the penalty in the

optimization diminishes as n→∞, leading to the stochastic trend HP solution

(57) fHP (r) = arg min
f

∫ 1

0
(B(r)− f(r))2 = B (r) .

To be precise, according to the earlier condition (24), the interpolating fitted func-

tion Fn satisfies Fn (r)→ f(r) ∈ C[0, 1]∩QV so that the permissible limit functions

are continuous with finite quadratic variation (QV), thereby accommodating poten-

tial stochastic trend solutions that include nondifferentiable processes like Brownian

motion. Let the limiting quadratic variation function of Fn be

(58)

Vf,2 (r) = lim
n→∞

bnrc∑

j=1

{
Fn

(
j

n

)
− Fn

(
j − 1

n

)}2

= lim
n→∞

bnrc∑

j=1

{
f

(
j

n

)
− f

(
j − 1

n

)}2

.

It follows that 1
n

∑n
t=3(42ft)

2 =
∑n

t=3

(
42 (ft/

√
n)
)2 →a.s. Vf,2(1) <∞ so that (56)

holds, which leads to (57) and the HP filter is consistent for the stochastic trend B (r)

whenever λ = o (n).

When λ/n → µ ∈ (0,∞) , the HP filter limit function is the solution of the

following extremum problem

(59) fHP (r) = arg min
f∈C[0,1]∩QV

{∫ 1

0
(B(r)− f(r))2 + µVf,2(1)

}
,

which does not necessarily yield fHP (r) = B (r) . For example, suppose that f (r) is
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continuous and of bounded variation (BV) so that its quadratic variation is Vf,2(1) =

0. Then, f (r) is smoother than Brownian motion and

arg min
f∈C[0,1]∩BV

{∫ 1

0
(B(r)− f(r))2 + µVf,2(1)

}
= arg min

f∈C[0,1]∩BV

{∫ 1

0
(B(r)− f(r))2

}
.

The quadratic variation of the limit Brownian motion B (r) is [B]r = ω2r. If λ/n→

µ ∈ (0,∞) , it follows that fHP (r) 6= B (r) whenever

min
f∈C[0,1]∩BV

{∫ 1

0
(B(r)− f(r))2

}
< µω2,

an outcome that is more likely for given B (r) the larger is µ. In particular, if µ =

µn → ∞ as n → ∞, then the HP filter is inconsistent for a stochastic trend. More

precisely, these arguments show that when λ = µn with µ ∈ (0,∞) , the HP filter is

inconsistent for a stochastic trend with probability

(60) PB
[

min
f∈C[0,1]∩QV

{∫ 1

0
(B(r)− f(r))2 + µVf,2(1)

}
< µω2

]
> 0,

where PB is the probability measure associated with the stochastic process B (r) .

These results show that stochastic trends are removed by the HP filter when the

smoothing parameter λ is fixed or has expansion rate o (n) as n → ∞. When λ has

expansion rate O (n) with λ = µn and µ > 0, the HP filter is inconsistent with

probability (60). When λ has expansion rate greater than O (n) , the HP filter is

inconsistent with probability one. So the expansion rate λ = O (n) of the smoothing

parameter defines the borderline between consistent and inconsistent estimation of a

stochastic trend when using the HP filter. Similar results can be shown to hold when

the limit process is a continuous stochastic process with deterministic drift function

as in (44).

Faster expansion rates for λ

From Theorem 2 and (6) the HP filter f̂HP =
(
f̂HPt

)
is the solution of the operator
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equation
[(

1 + λ∆2∆∗2
)
In + λ∆2EGE′

]
f̂HP = x,

so that for λ = µnn
4 with µn →∞ we have

(61)

[(
1

µn
+ n4∆2∆∗2

)
In + n4∆2EGE′

]
f̂HP√
n

=
x

µn
√
n
→p 0,

or, since 1
µn
→ 0,

(62) ∆2

(
∆∗2

f̂HP√
n

+ EGE′
f̂HP√
n

)
→ 0.

Using the results of Theorem 2 we can write the second component in parentheses of

(62) in the following explicit form

EGE′
f̂HP√
n

=
2∑

j=1

ejgj (L)
f̂HPj√
n

+
n∑

j=n−1

ejgj (L)
f̂HPj√
n
,

where ej is the coordinate vector with unity in the j’th position and zeros else-

where and G = diag [g1 (L) , g2 (L) , gn−1 (L) , gn (L)] where the gj (L) are defined

in Theorem 2. Under the commonly employed assumption for initial conditions

of a partial sum process that xj = Op (1) , it can be shown using formulae for

the weights in the HP filter (e.g. McElroy, 2008; de Jong and Sakarya, 2016;

Cornea-Madeira, 2017) that f̂HPj = op (
√
n) for j = 1, 2 from which it follows that

∑2
j=1 ejgj (L) f̂HPj /

√
n = op (1) . Similarly, {f̂HPj : j = n−1, n} are at most Op (

√
n) .

Then the n-vector
∑n

j=n−1 ejgj (L) f̂HPj /
√
n has zeros everywhere except in the n−1

and n’th positions. It follows that, as n→∞, EGE′f̂HP /√n tends to the zero vector

in R∞ and as n→∞ the solution of (62) is equivalent to the solution of

(63) ∆2∆∗2
f̂HP√
n

= 0.

As discussed in Remarks 5 and 15, the null space of the operator ∆2∆∗2 is the span

of the polynomials
(
1, t, t2, t3

)
. It follows that as n→∞ and µn →∞ the HP filter
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f̂HP (r) =
f̂HPbnrc√
n

has the limiting functional form of a third degree polynomial

(64)
fHPt=bnrc√

n
→a.s. β̃

′
r̃ := αHP + β1,HP r + β2,HP r

2 + β3,HP r
3,

where the coefficients in the limiting polynomial are given by β̃ =
(∫ 1

0 r̃r̃
′
)(∫ 1

0 r̃B (r) dr
)
.

6 Additional Simulations

We briefly report some simulations that explore the manifestation of unit roots in

HP filtered data in finite samples. In particular, let cHPλt = xt− f̂HPλt , where f̂HPλt and

cHPλt are the HP fitted trend and cycle for some given λ. We examine evidence for

the presence of a unit root in cHPλt in finite samples when the underlying data have a

stochastic trend or trend with drift. As shown in (9) and (10) above, when λ → ∞

with n fixed, f̂HPλt → (1, t) (R′2R2)−1R′2x = a+ bt, for some a = a (X) and b = b (X)

where X = (xt)
n
t=1 . This is the case whether or not there is a deterministic trend or

trend break in the data.

Suppose that we run a standard unit root test from a fitted autoregression with

trend on the HP residual series cHPλt , viz.,

(65) cHPλt = â+ b̂t+ θ̂cHPλt−1 + ût.

It is clear that since f̂HPλt → a + bt when n is fixed, cHPλt = xt − (a (X) + b (X) t) as

λ→∞, which simply removes a linear trend from xt irrespective of whether there is

a linear trend in the data. Further, suppose that the true model for xt is a random

walk with drift, viz. xt = α+ βt+ x0
t , where x0

t is a random walk. Then, for large λ

we have

cHPλt = xt− (a (X) + b (X) t)+Op

(
1

λ

)
= (α− a (X))+(β − b (X)) t+x0

t +Op

(
1

λ

)
.
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A unit root test on cHPλt with fitted trend as in regression (65) is therefore equivalent

to a similar unit root test on x0
t for large λ. Hence as λ → ∞, a unit root test of

this type will have rejection probability (of a unit root) equal to the size of the test.

This is precisely what the simulations show in Figure 9. For each value of n, the

empirical rejection rate curves in Figure 9 are monotically declining as λ increases,

just as theory predicts. Further, as expected from Theorem 4 and Remark 12, when

the sample size n is larger, larger values of λ are needed before the empirical rejection

rate curves begin to decline towards nominal test size.

Figure 9: Empirical sizes of unit root tests on the residual ‘cyclical’ series cHPλt of a random
walk detrended by an HP filter with tuning parameter λ. The nominal test size is 0.01. The
horizontal scale is measured in logarithms. The number of replications is 1,000 and sample
sizes ranging from n = 50 to n = 500 are shown.

7 Conclusion and Recommendations

The Bullard-Krugman debate that was discussed in the Introduction focussed on the

measurement of potential output and how this may have been affected by the Global

Financial Crisis and the succeeding Great Recession. That debate gave public at-

tention to the key econometric issue of measuring a latent variable such as potential

output that depends critically on the measurement of trend. The debate showed how

dramatically economic thinking about the impact of serious shocks like the GFC and
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major recessions can be influenced by measurement issues. How is it that the mea-

surement of potential output can be so vulnerable to trend elimination methodology?

This paper provides some answers to that important question by analyzing care-

fully the dependence of trend elimination procedures such as the Whittaker and HP

filters. The HP filter is one of the most heavily used econometric methods for measur-

ing business cycles and potential output in empirical research. It is also a smoothing

method that belongs to a very general class of nonparametric graduation procedures

that depend on a tuning parameter governing the properties of the smoother. As

Krugman’s position makes clear, long run potential output of an economy can be

substantially influenced by extended recessions and depressions, which may suffi-

ciently divert resources to impact long run trend components of output. The HP

filter has the advantage that, depending on the smoothing parameter (λ) choice, it

can encompass long run behavior that encompasses a vast range of possibilities –

from a deterministic linear trend, to a smooth Gaussian process, through to stochas-

tic trends and combinations of stochastic trends and deterministic trends that even

include trend breaks. However, as the analysis in this paper reveals, the processes

that lie within the potential capture range of the HP filter depend intimately on the

value of the smoothing parameter in relation to the sample size (n). Our results show

that a critical expansion rate for λ in terms of n is O
(
n4
)
. Faster rates typically lead

to a low order polynomial time trend solution for the HP trend, while slower rates

enable the HP trend to capture some features of stochastic as well as deterministic

trends and even trend breaks (while still smoothing over the break function).

Like modern nonparametrics, optimal choice of the tuning parameter depends on

assumptions about the underlying trend function. If we exclude functions, including

stochastic processes, that are differentiable to the fourth order by insisting on a

small smoothness penalty with λ = o
(
n4
)

or even o (n), then the smoother gains an

enhanced capacity to capture aspects of stochastic trends with random wandering

behavior. In that sense, the filter may capture the effects of extended recessions
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and depressions – as indeed they do in the case of the illustration in Figure 3 of

the use of the HP filter in modeling data around the Great Depression of the 1930s.

On the other hand, if we insist on the use of low order polynomial deterministic

representations of trend, such as linear or quadratic time trends to embody long

term average growth rates, then the HP filter accommodates such solutions when we

insist on a large smoothness penalty by setting λ >> O
(
n4
)

so that λ/n4 →∞.

It is hoped that this analysis will help to guide empirical work concerned with

trend elimination and business cycle research in macroeconomics. It is important, at

least, for empirical researchers to be aware that, contrary to current thinking, the

HP filter with a quarterly default setting of λ = 1600 does not automatically remove

unit root stochastic trends in data of sample sizes that commonly arise in practical

work. It is not so much the value of λ that is important for the material implications

of the properties of the filter and induced cycle but the value of λ in relation to the

sample size n; and λ = 1600 is extremely large in comparison to most quarterly data

sample sizes. Nonetheless, this default setting does capture slow moving components

in the data, analogous to low frequency methods that approximate these components

using projections on trigonometric series or polynomials. These methods moderate

trends by smoothing out the data and by omitting or attenuating high frequency

components that contribute in a material way to the random wandering character of

stochastic trends and their stochastic process limiting forms.

Macroeconomists find the HP filter appealing because they are often looking for a

smooth curve representation of the trend that shows where trending economic activity

has been, is now, and where it may be heading. Our recommendation is that empirical

researchers wishing to capture the slow moving components of a time series may

continue to use the popular parameter settings like λ = 1600 for quarterly data but

in doing so they need to appreciate that the resulting time series is a moderated and

approximated version of the low and higher frequency components that are present in

stochastically trending data, so that the induced estimate of the ‘cycle’ will inevitably
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inherit some features of trend behavior under these typical parameter settings. When

more detailed features (or consistent estimates) of the trend elements in the data are

needed, investigators can use a lower parameter setting with λ = o (n) or the boosted

filter developed in the companion paper PS (2020) to better approximate all of the

trend components. The latter provides a data-based mechanism to determine the

number of boosting iterations, starting from standard usage such as the λ = 1600

setting for quarterly data.

Economic theory provides empirical researchers with primitive notions about

trend that are embodied in steady state growth theories and random wandering

processes that are intended to model technical change and the operation of efficient

markets for foreign exchange, commodities, and stocks. These notions can be used to

design smoothing priors, as originally envisaged by Whittaker and Robinson (1924)

in their Bayesian formulation of the graduation problem. The modern econometric

notion of trend embraces such deterministic and random slow-moving components

as well as the potential for intermittent shifts and breaks that lead to more abrupt

turning points. These formulations of trend form the foundation of much of the lat-

est research on trend determination17. While smoothers like the HP filter inevitably

‘smooth out’ abrupt breaks, it is shown here that they have the capacity to capture

most of these different forms of trend. If used with care and with priors that re-

flect economic thinking about the underlying processes at work in determining latent

variables like potential output, our analysis suggests that they may be successfully

employed in empirical work to estimate such latent variables in the observed data.

Since the original version of the present paper was written in 2002 and a more

extensive version circulated in 2015 there has been continuing research on the HP

filter. Some of this work is computational and formulaic, dealing with exact algebraic

representations of the filter, as outlined in the Introduction. Taking an approach

17 Readers interested in the complex question of trend definition that embraces this wide setting are

referred to White and Granger (2011) and Phillips (2005a, 2010b, 2012) for analysis and discussion.
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from the signal processing literature, Yamada (2020) has shown that the HP filter

and low-frequency projections such as those used in Phillips (2005a), Müller (2007)

and Müller and Watson (2018) are all related smoothing techniques that fall into the

class of graph spectral filters. Other work has taken up the longstanding tradition of

critiquing the HP filter as a tool of applied macroeconomics. A prominent example is

Hamilton (2018), which gives the following reasons for discontinuing use of the filter:

(i) it induces spurious cycles; (ii) it is inappropriate for a random walk; (iii) it is two-

sided, giving future-informed predictions; and (iv) a long autoregression, such as an

AR(4) should be used instead. PS (2020) challenge each of these arguments. Using

some of the asymptotic methods developed in the present paper, PS show that when

it is boosted by machine learning methods the HP filter delivers consistent estimation

in a wide class of stochastic and deterministic trend processes as well as trends with

multiple break points. In our view, these findings, coupled with the analytic results

and simulations of the present paper, help to vindicate continuing use of the HP filter

under advisement of its properties and automated enhancements such as the boosted

filter in empirical research.
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8 Appendix

As in the text, we use the following notation: O` denotes an ` × ` matrix of zeros,

O denotes a zero matrix where the dimensions are clear from the context, and ej

denotes the j’th unit vector with unity in the j’th position and zeros elsewhere.

Proof of Theorem 1 First order conditions and elementary matrix inversion

yield

f̂ =
(
I + λDmD

′
m

)−1
x =

{
I −Dm

[
λ−1I +D′mDm

]−1
D′m
}
x,

and

Dm

[
λ−1I +D′mDm

]−1
D′m(66)

= Dm

(
D′mDm

)−1/2
[
I + λ−1

(
D′mDm

)−1
]−1 (

D′mDm

)−1/2
D′m

= Dm

(
D′mDm

)−1
D′m

−Dm

(
D′mDm

)−1/2
{
I −

[
I + λ−1

(
D′mDm

)−1
]−1
}(

D′mDm

)−1/2
D′m

= Dm

(
D′mDm

)−1
D′m −

{
Dm

(
D′mDm

)−1/2 (
I + λD′mDm

)−1 (
D′mDm

)−1/2
D′m
}
,

since (I + λD′mDm)−1 = I −
[
I + λ−1 (D′mDm)−1

]−1
by direct calculation. Hence

(
I + λDmD

′
m

)−1
= I−Dm

(
D′mDm

)−1
D′m+

{
Dm

(
D′mDm

)−1/2 (
I + λD′mDm

)−1 (
D′mDm

)−1/2
D′m
}
.

The stated result follows because C =
[
Dm (D′mDm)−1/2 , Rm (R′mRm)−1/2

]
is an

orthogonal matrix and I −Dm (D′mDm)−1D′m = Rm (R′mRm)−1R′m.
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Proof of Theorem 2 When n is finite, the following first order conditions hold

∂

2∂f1

{
n∑

s=1

(xs − fs)2 + λ
n∑

s=3

(
∆2fs

)2
}

= − (x1 − f1) + λ
(
∆2f3

)
= 0,

∂

2∂f2

{
n∑

s=1

(xs − fs)2 + λ
n∑

s=3

(
∆2fs

)2
}

= − (x2 − f2) + λ
{(

∆2f3

)
(−2) +

(
∆2f4

)}
= 0,

∂

2∂ft

{
n∑

s=1

(xs − fs)2 + λ

n∑

s=3

(
∆2fs

)2
}

= − (xt − ft) + λ
{

∆2ft+2 − 2∆2ft+1 + ∆2ft
}

= 0,

∂

2∂fn−1

{
n∑

s=1

(xs − fs)2 + λ
n∑

s=3

(
∆2fs

)2
}

= − (xn−1 − fn−1) + λ
{(

∆2fn−1

)
+
(
∆2fn

)
(−2)

}
= 0,

∂

2∂fn

{
n∑

s=1

(xs − fs)2 + λ

n∑

s=3

(
∆2fs

)2
}

= − (xn − fn) + λ
(
∆2fn

)
= 0.

In operator form the above equations are

{
1 + λ∆2L−2

}
f1 = x1,

{
1 + λ∆2L−1

[
−2 + L−1

]}
f2 = x2,

{
1 + λ∆2

(
1− L−1

)2}
ft = xt, t = 3, ..., n− 2,

{
1 + λ∆2

(
1− 2L−1

)}
fn−1 = xn−1,

{
1 + λ∆2

}
fn = xn.

Observe that

1 + λ∆2L−2 = 1 + λ∆∗2,

1 + λ∆2L−1
(
−2 + L−1

)
= 1 + λ∆∗2 (−1 + 2∆) ,

1 + λ∆2
(
1− L−1

)2
= 1 + λ∆2∆∗2,

1 + λ∆2
(
1− 2L−1

)
= 1 + λ∆2 (−1 + 2∆∗) ,

1 + λ∆2 = 1 + λ∆2,
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where ∆∗ = 1−L−1 is the adjoint operator of ∆ = 1−L and ∆ (−L)−1 = ∆∗. These

results are combined in the matrix operator equation

d (L) f = x,

where

d (L) =




da (L) O O

O
{

1 + λ∆2∆∗2
}
In−4 O

O O db (L)




=
(
1 + λ∆2∆∗2

)
diag [O2, In−4, O2]+EKE′,

with Ea = [e1, e2] , Eb = [en−1, en] , E = [Ea, Eb] = [e1, e2, en−1, en] ,K = diag [da (L) , db (L)] ,

da (L) = diag
[
1 + λ∆∗2, 1 + λ∆∗2 (−1 + 2∆)

]
, and db (L) = diag

[
1 + λ∆2 (−1 + 2∆∗) , 1 + λ∆2

]
.

This gives the first stated result (15). Observe that da (L) and db (L) can be further

decomposed as follows:

da (L) = diag
[
1 + λ∆∗2, 1 + λ∆∗2 (−1 + 2∆)

]

=
(
1 + λ∆2∆∗2

)
I2 + diag

[
λ∆∗2

(
1−∆2

)
, λ∆∗2

{
(−1 + 2∆)−∆2

}]

=
(
1 + λ∆2∆∗2

)
I2 + diag

[
λ∆∗2L (2− L) , λ∆∗2

{
− (1−∆)2

}]

=
(
1 + λ∆2∆∗2

)
I2 + diag

[
λ∆∗2L (2− L) ,−λ∆∗2L2

]

=
(
1 + λ∆2∆∗2

)
I2 + diag

[
λ∆∗2L (2− L) ,−λ∆2

]

= :
(
1 + λ∆2∆∗2

)
I2 + a (L) ,

and

db (L) = diag
[
1 + λ∆2 (−1 + 2∆∗) , 1 + λ∆2

]

=
(
1 + λ∆2∆∗2

)
I2 + diag

[
λ∆2

{
− (1−∆∗)2

}
, λ∆2

(
1−∆∗2

)]

=
(
1 + λ∆2∆∗2

)
I2 + diag

[
−λ∆∗2, λ∆2L−1

(
2− L−1

)]

= :
(
1 + λ∆2∆∗2

)
I2 + b (L) .
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Hence, the operator d (L) also has the form

d (L) =
{

1 + λ∆2∆∗2
}
In +




a (L) O O

O On−4 O

O O b (L)




=
{

1 + λ∆2∆∗2
}
In + λ∆2




A (L) O O

O On−4 O

O O B (L)



,

where

a (L) = diag
[
λ∆∗2L (2− L) ,−λ∆2

]
= λ∆2diag

[(
2L−1 − 1

)
,−1

]
,

= : λ∆2A (L) , A (L) = diag
[(

2L−1 − 1
)
,−1

]
,

b (L) = diag
[
−λ∆∗2, λ∆2L−1

(
2− L−1

)]
= λ∆∗2diag [−1, (2L− 1)]

= λ∆2L−2diag [−1, (2L− 1)]

= λ∆2B (L) , B (L) := L−2diag [−1, (2L− 1)] .

It follows that we may write the solution as f̂ = d (L)−1 x with

d (L) =
(
1 + λ∆2∆∗2

)
In + λ∆2

{
EaA (L)E′a + EbB (L)E′b

}

=
(
1 + λ∆2∆∗2

)(
In +

λ∆2

1 + λ∆2∆∗2
EGE′

)

=
(
1 + λ∆2∆∗2

) {
In + αλ (L)EGE′

}
,

where E = [Ea, Eb] = [e1, e2, en−1, en] , G = diag [A (L) , B (L)] , and αλ (L) =

λ∆2

1+λ∆2∆∗2 , which gives the second result (16).

Proof of (17) The finite dimensional HP filter f̂ is the solution of the matrix

operator equation

(67)
(
1 + λ∆2∆∗2

) (
In + αEGE′

)
f̂ = x,
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where α = αλ (L) , E, and G are all as given above. Using (In + FF ′)−1 = In −

F (I + F ′F )−1 F ′ with F = α1/2EG1/2,
(
I + 1

αG
−1
)−1

= I − [I + αG]−1 , and noting

that E′E = I4, we have

[
In + αEGE′

]−1
= In − αEG1/2 (I + αG)−1G1/2E′ = In − E

(
I4 +

1

α
G−1

)−1

E′

=
(
In − EE′

)
− E

{(
I4 +

1

α
G−1

)−1

− I4

}
E′

=
(
In − EE′

)
+ E (I4 + αG)−1E′

= diag [O2, In−4, O2] + Ea [I2 + αA (L)]−1E′a + Eb [I2 + αB (L)]−1E′b.

Solving (67) we therefore have

f̂ =
(
1 + λ∆2∆∗2

)−1 (
In + αEGE′

)−1
x

=
(
1 + λ∆2∆∗2

)−1
diag [O2, In−4, O2]x

+
(
1 + λ∆2∆∗2

)−1
(
Ea [I2 + αA (L)]−1E′ax+ Eb [I2 + αB (L)]−1E′bx

)

=
(
1 + λ∆2∆∗2

)−1
diag [O2, In−4, O2]x

+
(
1 + λ∆2∆∗2

)−1
(
Ea [I2 + αλ (L)A (L)]−1E′ax+ Eb [I2 + αλ (L)B (L)]−1E′bx

)
,

showing that the solution
(
1 + λ∆2∆∗2

)−1
x is correct up to the first two and last

two elements, which differ via end corrections.

Proof of (18) In the general case where m ≥ 2, we use the expansion ∆m =

(1− L)m =
∑m

j=0

(
m
j

)
(−L)m−j so that

∆mfm+k =

m∑

j=0

(
m

j

)
(−L)m−j fm+k =

m∑

j=0

(
m

j

)
(−1)m−j fk+j

∂

∂fp
∆mfm+k =

m∑

j=0

(
m

j

)
(−1)m−j 1 {p = j + k} =

(
m

p− k

)
(−1)m+k−p , for k ≤ p,
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and then the required derivative in the first order conditions is

∂

∂fp
(∆mfm+k)

2 =
∂

∂fp




m∑

j=0

(
m

j

)
(−1)m−j fk+j




2

= 2




m∑

j=0

(
m

j

)
(−1)m−j fk+j



(

m

p− k

)
(−1)m+k−p

= 2

(
m

p− k

)
(−1)m+k−p (∆mfm+k) , for k ≤ p,

which leads to the following explicit forms for the first order conditions:

∂

2∂f1

{
n∑

s=1

(xs − fs)2 + λ
n∑

s=m+1

(∆mfs)
2

}
= − (x1 − f1) + λ (∆mfm+1)

(
m

0

)
(−1)m

= − (x1 − f1) + λ
(
∆m (−L)−m

)
f1 = − (x1 − f1) + λ

(
(−1)−m ∆∗m

)
f1 = 0,

∂

2∂f2

{
n∑

s=1

(xs − fs)2 + λ
n∑

s=m+1

(∆mfs)
2

}

= − (x2 − f2) + λ∆mfm+1

(
∂

∂f2
∆mfm+1

)
+ λ∆mfm+2

(
∂

∂f2
∆mfm+2

)

= − (x2 − f2) + λ

{(
∆mfm+1

(
m

1

)
(−1)m−1

)
+ (∆mfm+2)

(
m

0

)
(−1)m

}

= − (x2 − f2) + λ

{((
m

1

)
(−1)m−1

)
∆mL−(m−1)f2 +

(
m

0

)
(−1)m ∆mL−mf2

}

= − (x2 − f2) + λ

{((
m

1

)
(−1)m−1

)
L∆∗mf2 +

(
m

0

)
(−1)m ∆∗mf2

}

= − (x2 − f2) + λ

{((
m

1

)
(−1)m−1

)
L+

(
m

0

)
(−1)m

}
∆∗mf2 = 0,

63



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

∂

2∂fm

{
n∑

s=1

(xs − fs)2 + λ
n∑

s=m+1

(∆mfs)
2

}

= − (xm − fm) + λ
n∑

s=m+1

∂

2∂fm
(∆mfs)

2

= − (xm − fm) + λ

m∑

k=1

(∆mfm+k)
∂

∂fm
∆mfm+k

= − (xm − fm) + λ

m∑

k=1

(∆mfm+k)

(
m

m− k

)
(−1)m+k−m

= − (xm − fm) + λ

m∑

k=1

(
m

m− k

)
(−L)−k (∆mfm)

= −xm +

[
1 + λ

m∑

k=1

(
m

m− k

)
(−L)−k ∆m

]
fm

= −xm +

[
1 + λ

{(
1− 1

L

)m
− 1

}
∆m

]
fm

= −xm + [1 + λ {∆m − (−L)m}∆∗m] fm,

∂

2∂ft

{
n∑

s=1

(xs − fs)2 + λ
n∑

s=m+1

(∆mfs)
2

}
= − (xt − ft) + λ

n∑

s=m+1

∂

2∂ft
(∆mfs)

2

= − (xt − ft) + λ
t∑

k=1

(
m

t− k

)
(−1)m+k−t (∆mfm+k) for m < t

= − (xt − ft) + λ
m∑

q=0

(
m

q

)
(−1)m−q (∆mfm+t−q) for q = t− k = 0, ...,m

= − (xt − ft) + λ
m∑

q=0

(
m

q

)
(−L)−m+q (∆mft) = −xt +


1 + λ

m∑

q=0

(
m

q

)
(−L)−m+q ∆m


 ft

= −xt +

[
1 + λ

(
1− 1

L

)m
∆m

]
ft = −xt + [1 + λ∆∗m∆m] ft,
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∂

2∂fn−m+1

{
n∑

s=1

(xs − fs)2 + λ
n∑

s=m+1

(∆mfs)
2

}

= − (xn−m+1 − fn−m+1) + λ
n∑

s=n−m+1

∂

2∂fn−m+1
(∆mfs)

2

= − (xn−m+1 − fn−m+1) + λ

m∑

k=1

(∆mfn−m+k)
∂

∂fn−m+1
∆mfn−m+k

= − (xn−m+1 − fn−m+1) + λ

m∑

k=1

(∆mfn−m+k)

[(
m

k − 1

)
(−1)k−1

]

= − (xn−m+1 − fn−m+1) + λ

m∑

k=1

[
∆m

(
m

k − 1

)
(−1)k−1 L−(k−1)

]
fn−m+1

= − (xn−m+1 − fn−m+1) + λ

m∑

k=1

[(
m

k − 1

)
(−L)−(k−1)

]
∆mfn−m+1

= −xn−m+1 +
{

1 + λ
[
∆∗m − (−L)−m

]
∆m
}
fn−m+1,

∂

2∂fn−1

{
n∑

s=1

(xs − fs)2 + λ

n∑

s=m+1

(∆mfs)
2

}

= − (xn−1 − fn−1) + λ
n∑

s=n−1

∂

2∂fn−1
(∆mfs)

2

= − (xn−1 − fn−1) + λ

2∑

k=1

(∆mfn−2+k)

[(
m

k − 1

)
(−1)k−1

]

= − (xn−1 − fn−1) + λ
2∑

k=1

(
∆mL−(k−1)

)[( m

k − 1

)
(−1)k−1

]
fn−1

= − (xn−1 − fn−1) + λ

2∑

k=1

[(
m

k − 1

)
(−L)−(k−1)

]
∆mfn−1

= − (xn−1 − fn−1) + λ
[
1 +m (−L)−1

]
∆mfn−1,

and finally

∂

2∂fn

{
n∑

s=1

(xs − fs)2 + λ

n∑

s=m+1

(∆mfs)
2

}
= − (xn−1 − fn−1) + λ

∂

2∂fn
(∆mfn)2

= − (xn−1 − fn−1) + λ (∆mfn)

= −xn−1 − fn−1 + λ (∆mfn) ,
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giving the full operator system

{
1 + λ (−1)−m ∆∗m

}
f1 = x1,(68)

{
1 + λ

[(
m

1

)
(−1)m−1 L+

(
m

0

)
(−1)m

]
∆∗m

}
f2 = x2,

...

{1 + λ [∆m − (−L)m] ∆∗m} fm = xm,

[1 + λ∆∗m∆m] ft = xt, t = m+ 1, ..., n−m,
{

1 + λ
[
∆∗m − (−L)−m

]
∆m
}
fn−m+1 = xn−m+1,

...
{

1 + λ

[(
m

1

)
(−L)−1 +

(
m

0

)]
∆m

}
fn−1 = xn−1,

{1 + λ∆m} fn = xn.(69)

The system can be written in matrix form as follows:

dm (L) = (1 + λ∆m∆∗m) diag [Om, In−2m, Om] + EmKmEm,

with Em = [Ema, Emb] , Ema = [e1, .., em] , Emb = [en−m+1,..., en] ,Km = diag [Am (L) , Bm (L)]

where

Am (L) = diag
[
1 + λ (−1)−m ∆∗m, .., 1 + λ [∆m − (−L)m] ∆∗m

]
,

Bm (L) = diag
[
1 + λ

[
∆∗m − (−L)−m

]
∆m, .., 1 + λ∆m

]
,

and the remaining entries of the diagonal matrices Am (L) and Bm (L) follow the

combinatoric scheme given in the operator system (68) - (69) above.

Proof of Theorem 3

Part (a) We use the operator form of the filter (11), which governs its asymptotic

behavior as is evident from formulae (15) and (17) showing that the operator takes
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this form except for the end corrections. Scaling (11) by
√
n and writing Xn (r) =

n−1/2xbnrc we have from (21)

(70) sup
0≤t≤n

∣∣∣∣Xn

(
t

n

)
−B

(
t

n

)∣∣∣∣ = oa.s.

(
1

n1/2−1/p

)
.

Since the Karhunen Loève (KL) series representation of B (r) converges almost surely

and uniformly in r we may use a finite series KL approximationBKn (r) =
∑Kn

k=1

√
λkϕk

(
t
n

)
ξk

with the property that for Kn → ∞ we have sup0≤r≤1

∣∣BKn (r)−B (r)
∣∣ = oa.s. (1) .

Then

(71) sup
0≤t≤n

∣∣∣∣Xn

(
t

n

)
−BKn

(
t

n

)∣∣∣∣ = oa.s. (1) ,

if Kn → ∞ as n → ∞. It follows that the HP trend solution has the following

approximate form as n→∞

f̂t√
n

=
1

λL−2(1− L)4 + 1

xt√
n

=
1

λL−2(1− L)4 + 1

[
BKn

(
t

n

)
+ oa.s. (1)

]

=

Kn∑

k=1

√
λk

[
1

λL−2(1− L)4 + 1
ϕk

(
t

n

)]
ξk + oa.s. (1) .(72)

The oa.s. (1) error order in (72) holds because the two-sided moving average filter

produced by the operator 1
λL−2(1−L)4+1

is an absolutely summable weighted moving

average with stable geometric decay (McElroy, 2008), which preserves the error order

by majorization since the oa.s. (1) errors in (70) and (71) hold uniformly in t ≤ n.

An explicit form of the dominant term in (72) is obtained by analyzing the impact

of the operator
[
λL−2(1− L)4 + 1

]−1
on the basis functions ϕk

(
t
n

)
. Noting that

√
λk = 1/

{(
k − 1

2

)
π
}

and ϕk
(
t
n

)
=
√

2 Im

(
e
it/n√
λk

)
, where Im {·} and Re{·} denote

the imaginary and real parts of their complex number arguments, we write
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n (1− L)ϕk

(
t

n

)
=
√

2 Im

{
e
it/n√
λk n

(
1− e−

i

n
√
λk

)}

=

√
2√
λk

Im



e

it/n√
λk




1− cos
(

1
n
√
λk

)

1
n
√
λk

+ i
sin
(

1
n
√
λk

)

1
n
√
λk







=

√
2√
λk

Im

{
e
it/n√
λk

[
O

(
1

n
√
λk

)
+ i

(
1 +O

(
1

n2λk

))]}

=

√
2√
λk

Im

{
e
it/n√
λk

[
O

(
Kn

n

)
+ i

(
1 +O

(
K2
n

n2

))]}

=

√
2√
λk

{
Re

[
e
it/n√
λk

[
1 +O

(
K2
n

n2

)]]
+ Im

[
e
it/n√
λk ×O

(
Kn

n

)]}
,

uniformly for k ≤ Kn and t ≤ n. Also

nL−1 (1− L)ϕk

(
t

n

)
=

√
2√
λk

{
Re

[
e
it/n√
λk

[
1 +O

(
K2
n

n2

)]]
+ Im

[
e
it/n√
λk ×O

(
Kn

n

)]}

=

√
2√
λk

{
Re

[
e
it/n√
λk

[
1 +O

(
K2
n

n2

)]]
+ Im

[
e
it/n√
λkO

(
Kn

n

)]}
.

By repeated argument we find that

L−2 [n (1− L)]4 ϕk

(
t

n

)
=
√

2 Im

{(
i√
λk

)4

e
it/n√
λk

[
1 +O

(
K2
n

n2

)]
+

(
1√
λk

)4

i3e
it/n√
λk ×O

(
Kn

n

)}

=

√
2

λ2
k

Im

{
e
it/n√
λk

[
1 + i×O

(
Kn

n

)
+O

(
K2
n

n2

)]}

=

√
2

λ2
k

{
Im

[
e
it/n√
λk

[
1 +O

(
K2
n

n2

)]]
+ Re

[
e
it/n√
λk

]
×O

(
Kn

n

)}
,

uniformly for k ≤ Kn. Thus, the operator n (1− L) applied to ϕk
(
t
n

)
acts asymptot-

ically like the differential operator D = d/dx on ϕk(x) and L−1 acts asymptotically

like the identity. Moreover, well behaved nonlinear functions of n (1− L) and L−1 act

asymptotically like the same nonlinear functions of D and the identity. For instance,

(73) g
(
n (1− L) , L−1

)
ea

t
n = [g (D, 1) eax + o (1)]x= t

n
= g (a, 1) ea

t
n + o (1) ,
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where g(D, 1) = h (D) is treated as a pseudodifferential operator (e.g., Treves,

1980). A formal justification of (73) uses the Fourier integral representation h (x) =

1
2π

∫∞
−∞ e

ixyh̃ (y) dy of h in terms of its Fourier transform h̃, so that

h (D) eax =
1

2π

∫ ∞

−∞
eiDyeaxh̃ (y) dy =

1

2π

∫ ∞

−∞
ea(x+iy)h̃ (y) dy

= eax
1

2π

∫ ∞

−∞
eiayh̃ (y) dy = eaxh (a) .

Now suppose that λ = µn4 for some µ > 0. The operation in square parentheses in

(72) can be evaluated for each term using this argument as follows18

[
1

λL−2(1− L)4 + 1
ϕk

(
t

n

)]
=

[
1

µL−2 [n(1− L)]4 + 1
ϕk

(
t

n

)]

=
√

2 Im

[
1

µL−2 [n(1− L)]4 + 1
e
it/n√
λk

]

=
√

2 Im


 1

µ
[

i√
λk

]4
+ 1

e
it/n√
λk

{
1 + i×O

(
Kn

n

)
+O

(
K2
n

n2

)}



=
√

2
λ2
k

µ+ λ2
k

sin

(
t/n√
λk

)
(1 + o(1))

=
λ2
k

µ+ λ2
k

ϕk

(
t

n

)
(1 + o(1)),(74)

with the error magnitude holding uniformly for k ≤ Kn and Kn/n = o (1) . Using

18 In differential form the operator calculation can be performed as

1

µD4 + 1
ϕk (x) =

∫ ∞

0

e−{µD4+1}sϕk (x) ds = Im

[∫ ∞

0

e−s−sµD
4

e
ix√
λk ds

]

= Im

[∫ ∞

0

e
−s−sµ

(
i/
√
λk

)4

e
ix√
λk ds

]
= Im

[
1

1 + µ/λ2
k

e
ix√
λk

]

=
λ2
k

µ+ λ2
k

ϕk (x) .
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(74) in (72), we deduce that the asymptotic form of the HP filter can be written as

(75)
f̂t,Kn√
n

=

Kn∑

k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk {1 + o (1)} .

Observe that for µ > 0 the coefficients
λ
5/2
k

µ+λ2k
= O

(
k−5

)
and so the series

∑∞
k=1

λ
5/2
k

µ+λ2k
ϕk
(
t
n

)
ξk

converges uniformly and almost surely as Kn →∞. Hence, when Kn →∞ as n→∞

with Kn
n → 0, we have the asymptotic representation of the HP filter trend solution

in the case of an I (1) process xt as

(76)
f̂t√
n

=
∞∑

k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk + oa.s. (1) .

The continuous limit form of the HP filter applied to the stochastic trend xt is

therefore

fHP (r) =

∞∑

k=1

λ
5/2
k

µ+ λ2
k

ϕk (r) ξk,

as given in (27).

The corresponding result for the Whittaker filter follows in a similar fashion. In

particular, in place of (74) we have the operation

[
1

λ∆∗m∆m + 1
ϕk

(
t

n

)]

=

[
1

µL−2m [n(1− L)]2m + 1
ϕk

(
t

n

)]

=
√

2 Im

[
1

µL−2m [n(1− L)]2m + 1
e
it/n√
λk

]

=
√

2 Im


 1

µ
[

i√
λk

]2m
+ 1

e
it/n√
λk {1 + o (1)}




=
√

2
λ2m
k

µ+ λ2m
k

sin

(
t/n√
λk

)
{1 + o (1)}

=
λ2m
k

µ+ λ2m
k

ϕk

(
t

n

)
{1 + o (1)} .(77)
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Thus, in the same way as the HP filter, letting Kn →∞ such that Kn
n → 0, we find

f̂t√
n

=
√

2
∞∑

k=1

λmk
µ+ λmk

√
λk sin

(
t/n√
λk

)
ξk + oa.s. (1) .

In continuous form, the limiting trend process is therefore

(78) fW (r) =
√

2
∞∑

k=1

λmk
µ+ λmk

√
λk sin

(
r√
λk

)
ξk =

∞∑

k=1

λ
m+1/2
k

µ+ λmk
ϕk (r) ξk,

as stated in (28).

Part (b) We show that the asymptotic form of the HP filter (27) when λ = µn4 is

the solution of the continuous time extremum problem

(79) arg min
f

{∫ 1

0
(B(r)− f(r))2 + µ

∫ 1

0

[
f
′′
(r)
]2
dr

}
.

To see this, suppose that the interpolating functions Fn, f ∈ C4 for all n and

supr∈[0,1]

∣∣∣F (4)
n (r)− f (4) (r)

∣∣∣ → 0. The normalized first part of (2) has the follow-

ing limit

(80)
1

n2

n∑

t=1

(xt − ft)2 =
1

n

n∑

t=1

(
xt√
n
− ft√

n

)2

→a.s

∫ 1

0
(B(r)− f(r))2dr,

by continuous mapping. Next consider

λ

n2

n∑

t=1

(42ft)
2 =

λ

n

n∑

t=1

(
42 ft√

n

)2

=
λ

n

n∑

t=1

(
42Fn

(
t

n

))2

(81)

→ µ

∫ 1

0
f
′′
(r)2dr,

again by continuous mapping and the fact that n2
[
42Fn

(
bnrc
n

)]
converges uniformly

to f
′′
(r).

From these results we can derive directly the asymptotics of the continuous time
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HP filter. Suppose f satisfies the initial condition f (0) = 0 and can be written

in terms of the basis functions19 {ϕk} as f(r) =
∑∞

k=1 ckϕk (r). Then, since f ∈

C4 [0, 1] , the first two derivative series converge pointwise and we have

f ′′(r) =
∞∑

k=1

ckϕ
′′
k (r) =

∞∑

k=1

ck
λk
ϕk (r) .

It follows that (79) is equivalent to the following optimization problem with respect

to the Fourier coefficients

(82) arg min
ck

{ ∞∑

k=1

(
ck −

√
λkξk

)2
+ µ

∞∑

k=1

(
ck
λk

)2
}
.

Solving (82) we get

ck =
1

1 + µ/λ2
k

√
λkξk =

λ2
k

µ+ λ2
k

√
λkξk,

which corresponds precisely to the coefficients that appear in the solution fHP (r)

given in (27) above, thereby proving (29).

In the same way, we can obtain the continuous time Whittaker filter as the solution

of

(83) arg min
f

{∫ 1

0
(B(r)− f(r))2 + µ

∫ 1

0

[
f (m)(r)

]2
dr

}
.

Assuming that Fn, f ∈ C2m and supr∈[0,1]

∣∣∣F (2m)
n (r)− f (2m) (r)

∣∣∣→ 0, it follows that

(83) is equivalent to

arg min
ck




∞∑

k=1

(
ck −

√
λkξk

)2
+ µ

∞∑

k=1

(
ck

λ
m/2
k

)2


 ,

which leads directly to the solution ck =
λmk

µ+λmk

√
λkξk and expression (28) for fW (r) ,

19Since f (0) = 0 and f ∈ C4 [0, 1] , the Fourier series f(r) =
∑∞
k=1 ckϕk (r) is pointwise convergent

over the entire interval [0, 1] .
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proving (30).

Proof of Theorem 4 We again use the operator form of the filter (11) to examine

asymptotic behavior. Scaling (11) by
√
n we can use the earlier result (72) obtained

for the component x0
t in the proof of Theorem 3. Thus, if Kn → ∞ as n → ∞, we

write

1

λL−2(1− L)4 + 1

x0
t√
n

=

Kn∑

k=1

√
λk

[
1

λL−2(1− L)4 + 1
ϕk

(
t

n

)]
ξk + oa.s. (1)

=

Kn∑

k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk + oa.s. (1) .(84)

Next, using the pseudo-differential integral form

(85)
1

λL−2(1− L)4 + 1
=

∫ ∞

0
exp

{
−
[
λL−2(1− L)4 + 1

]
s
}
ds

of the operator
{
λL−2(1− L)4 + 1

}−1
, we find that

1

λL−2(1− L)4 + 1

{
α+ β

t

n

}
=

∫ ∞

0
exp

{
−
[
λL−2(1− L)4 + 1

]
s
}
ds

[
α+ β

t

n

]

=

∫ ∞

0
exp {−s} ds

[
α+ β

t

n

]
= α+ β

t

n
,(86)

since λjL−2j(1−L)4j
(
α+ β t

n

)
= 0 for all λ > 0 and all j = 1, 2, ... . The invariance

result (86) also follows immediately from the finite sample representation (7) since the

projection operator R2 (R′2R2)−1R′2 is the identity operator on a linear time trend

and the differencing operator D′2 eliminates a linear time trend. Note that when

n → ∞, the operator 1/(λL−2(1 − L)4 + 1) also preserves polynomials of degree 3

since λjL−2j(1 − L)4j
(
t
n

)3
= 0 for all j ≥ 1. Combining (84) and (86) we have the

following approximation to the HP filter

f̂HPt,Kn√
n

= α+ β
t

n
+

Kn∑

k=1

λ
5/2
k

µ+ λ2
k

ϕk

(
t

n

)
ξk,
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so that as Kn →∞, with Kn/n→ 0 and λ = µn4 as n→∞,

f̂HPt=bnrc,Kn√
n

→a.s. fHP (r) = α+ βr +
∞∑

k=1

λ
5/2
k

µ+ λ2
k

ϕk (r) ξk,

as stated for the HP filter in (41). The same proof applies to the Whittaker filter

using the projection invariance of the operator Rm (R′mRm)−1R′m on polynomial time

trends of degree m− 1. The resulting limiting form of the filter is

f̂Wbnrc√
n
→a.s. fW (r) = α+ β1r + ...βJr

J +

∞∑

k=1

λmk
µ+ λmk

√
λkϕk (r) ξk,

as given in (42) for all J ≤ m − 1. In fact, when n → ∞ the dominant asymptotic

operator, 1/(λL−m(1 − L)2m + 1), of the Whittaker filter preserves polynomials of

degree 2m− 1 since λjL−mj(1− L)2mj
(
t
n

)J
= 0 for all j ≥ 1 and J ≤ 2m− 1.

Proof of Theorem 5 It is sufficient to work with the case of the Whittaker filter

with m ≥ 2. The data are generated according to xt = gn (t) + x0
t where x0

t satisfies

the functional law (22) and gn (t) is a polynomial or a piecewise smooth function

with a finite number of break points and sample size dependent coefficients such that

n−1/2gn (t = bnrc) → g (r) , uniformly in r ∈ [0, 1] , whose limit g (r) is a piecewise

smooth function. Define g̃n (t) as the residual function in the relation

gn (t) = αn + βn,1t+ ...+ βn,2m−1t
2m−1 + g̃n (t) := pn,2m−1 (t) + g̃n (t) ,

where αn√
n
→ α and nj−

1
2βn,j → βj for j = 1, ..,m−1, and n−1/2g̃n (t = bnrc)→ g̃ (r)

uniformly in r. Then g (r) and g̃ (r) are piecewise smooth functions on r ∈ [0, 1] that

differ by a polynomial of degree 2m− 1. The Fourier series representation of g̃ (r) in

terms of the complex orthonormal sequence
{

(2π)−1/2 eikr
}

and Fourier coefficients

c̃k =
∫ π
−π e

ikrg̃ (r) dr is

(87) g̃ (r) =
1

2π

∞∑

k=−∞
c̃ke
−ikr =

c̃0

2π
+

1

π

∞∑

k=1

Re
[
c̃ke
−ikr

]
, r ∈ [−π, π] ,
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which converges pointwise over r ∈ [0, 1] and converges to g̃ (r) everywhere except at

the (finite number of) break points. Integral operators on g̃ such as G̃ (r) =
∫ r

0 g̃ (s) ds

are everywhere smooth on [0, 1] and therefore have Fourier series that are pointwise

convergent to G (r) and that are given by the termwise integrals of the Fourier series

of g̃. Define the following function based on K terms of the series in (87)

(88) g̃K (r) =
c̃0

2π
+

1

π

K∑

k=1

Re
[
c̃ke
−ikr

]
, r ∈ [−π, π] ,

and the corresponding function for finite samples

(89)
1√
n
g̃Kn (r) =

c̃n0

2π
+

1

π

K∑

k=1

Re
[
c̃nke

−ikr
]
,

where supK maxk≤K |c̃nk − c̃k| → 0 as n→∞. Proceeding as in (77) we have

[
1

λ∆∗m∆m + 1
e−ikt/n

]
=

[
1

µL−2m [n(1− L)]2m + 1
e
−ikt/n
k

]

=

[
1

µ [−ik]2m + 1
e
−ikt/n
k {1 + o (1)}

]
,

uniformly in k ≤ K. Termwise application of the smoothing operator {λ∆∗m∆m + 1}−1

with λ = µn2m in the Fourier series (89) leads to

1

λ∆∗m∆m + 1

{
g̃Kn (t)√

n

}∣∣∣∣
t=bnrc

=
1

λ∆∗m∆m + 1

[
c̃n0

2π
+

1

π

K∑

k=1

Re
{
c̃nke

−ik t
n

}]∣∣∣∣∣
t=bnrc

=
c̃n0

2π
+

1

π

K∑

k=1

Re

{
c̃nk

[
1

λ∆∗m∆m + 1
e−ik

t
n

]

t=bnrc

}

=
c̃n0

2π
+

1

π

K∑

k=1

Re

{
c̃nk

[
1

µ (−ik)2m + 1
e−ik

t
n

]

t=bnrc
{1 + o (1)}

}

=
c̃n0

2π
+

1

π

K∑

k=1

1

µk2m + 1
Re
{
c̃nke

−ikr
}
{1 + o (1)} ,
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which converges as K,n→∞ with K
n → 0 to

c̃0

2π
+

1

π

∞∑

k=1

1

µk2m + 1
Re
{
c̃ke
−ik t

n

}
.

Then

(90)
1

λ∆∗m∆m + 1

{
g̃n (t)√
n

}∣∣∣∣
t=bnrc

→ c̃0

2π
+

1

π

∞∑

k=1

1

1 + µk2m
Re
{
c̃ke
−ikr

}
.

Analogous to (86) we have

1

λL−m(1− L)2m + 1

{
α+ β1

t

n
+ ...+ β2m−1

(
t

n

)2m−1
}

=

∫ ∞

0
exp

{
−
[
λL−m(1− L)2m + 1

]
s
}
ds

[
α+ β1

t

n
+ ...+ β2m−1

(
t

n

)2m−1
]

= α+ β1

t

n
+ ...+ β2m−1

(
t

n

)2m−1

,(91)

so that polynomials to degree J ≤ 2m−1 are preserved under the filter 1/ (λ∆∗m∆m + 1).

Combining (90) and (91) with the earlier result (78)20 we have

f̂Wbnrc√
n

=
1

λ∆∗m∆m + 1

{
gn (t) + x0

t√
n

}∣∣∣∣
t=bnrc

=
1

λ∆∗m∆m + 1

{
pn,m−1 (t) + g̃n (t) + x0

t√
n

}∣∣∣∣
t=bnrc

→a.s. fW (r) ,

where

(92)

fW (r) = p2m−1 (r) +

{
c̃0

2π
+

1

π

∞∑

k=1

1

1 + µk2m
Re
{
c̃ke
−ikr

}}
+

∞∑

k=1

λ
m+1/2
k

µ+ λmk
ϕk (r) ξk,

as given in (47). The leading term of (92) is the polynomial p2m−1 (r) = α + β1r +

...+ β2m−1r
2m−1, which remains invariant asymptotically under the filter. The term

20Note that the earlier interpolating class Sϕ =
{∑∞

k=1 dkϕk (r) :
∑∞
k=1 d

2
k <∞

}
⊂ L2 [0, 1] spanned

by the ON functions
{
ϕk (r) =

√
2 sin

(
r/
√
λk
)}∞

1
is subsumed within the general trigonometric

class Sψ =
{∑∞

k=−∞ dkψk (r) :
∑∞
k=1 d

2
k <∞

}
⊂ L2 [−π, π] with ψk (r) =

{
(2π)−1/2 eikr

}∞
−∞

.

Hence, an analogous result to (92) is obtained using the basis functions ψk (r) = (2π)−1/2 eikr.
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in braces represents the effect of the filter on the residual deterministic drift function

g̃ (r), complete with whatever breakpoints occur in g̃ (r) . The final component on

the right side represents the effect of the filter on the stochastic trend, as studied

earlier. The series (92) converges uniformly and almost surely for all µ 6= 0. The

result includes polynomials of degree K ≥ 2m and trend breaks.

Proof of (53) and (54) We derive the explicit formulae in case of the linear trend

break function g (r) = (α1 + β1r) 1 {r < r0} + (α2 + β2r) 1 {r ≥ r0} . The Fourier

series of g (r) is

(93)

g (r) =
1

2π

∞∑

k=−∞
cke
−ikr =

c0

2π
+

1

2π

∞∑

k=1

{
cke
−ikr + c̄ke

ikr
}

=
c0

2π
+

1

π

∞∑

k=1

Re
{
cke
−ikr

}
,

with coefficients

c0 =

∫ r0

−π
(α1 + β1r) dr +

∫ π

r0

(α2 + β2r) dr

= α1(π + r0) +
1

2
β1(r2

0 − π2) + α2(π − r0) +
1

2
β2(−r2

0 + π2)

= π (α1 + α2) + r0 (α1 − α2) +
1

2

(
π2 − r2

0

)
(β2 − β1) ,(94)

and, for k ≥ 1,

ck =

∫ π

−π
eikrg (r) dr =

∫ r0

−π
eikr (α1 + β1r) dr +

∫ π

r0

eikr (α2 + β2r) dr

= α1
eikr0 − e−ikπ

ik
+ β1

{[
eikr0

ik
r0 +

e−ikπ

ik
π

]
− eikr0 − e−ikπ

(ik)2

}

+ α2
eikπ − eikr0

ik
+ β2

{[
eikπ

ik
π − eikr0

ik
r0

]
− eikπ − eikr0

(ik)2

}

=
eikr0 − e−ikπ

ik
(α1 − α2) +

{
eikr0

ik
r0 −

eikr0

(ik)2 +
e−ikπ

(ik)2

}
(β1 − β2)

+

[
e−ikπ

ik
π

]
(β1 + β2) ,(95)
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since

∫ r0

−π
eikr (α1 + β1r) dr = α1

eikr0 − e−ikπ
ik

+ β1

∫ r0

−π
eikrrdr

= α1
eikr0 − e−ikπ

ik
+ β1

[
eikr

ik
r

]r0

−π
− β1

∫ r0

−π

eikr

ik
dr

= α1
eikr0 − e−ikπ

ik
+ β1

[
eikr0

ik
r0 +

e−ikπ

ik
π

]
− β1

[
eikr0

(ik)2 −
e−ikπ

(ik)2

]
,

and

∫ π

r0

eikr (α2 + β2r) dr = α2
eikπ − eikr0

ik
+ β2

∫ π

r0

eikrrdr

= α2
eikπ − eikr0

ik
+ β2

[
eikr

ik
r

]π

r0

− β2

∫ π

r0

eikr

ik
dr

= α2
eikπ − eikr0

ik
+ β2

[
eikπ

ik
π − eikr0

ik
r0

]
− β2

[
eikπ

(ik)2 −
eikr0

(ik)2

]
.

Then the Fourier series (93) for g (r) has explicit form

g (r) =
(π + r0)α1 + (π − r0)α2

2π
+

(β2 − β1)

4π

(
π2 − r2

0

)
+

1

π

∞∑

k=1

Re

[{(
eikr0 − e−ikπ

)
(α1 − α2)

ik

+

{[
eikr0

ik
r0

]
− eikr0

(ik)2 +
e−ikπ

(ik)2

}
(β1 − β2) +

e−ikπ

ik
π (β1 + β2)

}
e−ikr

]
.

The special cases shown in Figures 5 and 6 involve a constant location shift and a

trend break shift. For the constant shift case, put β1 = β2 = 0 and then

g (r) =
α1 + α2

2
+
α1 − α2

2π
r0 +

1

π

∞∑

k=1

Re

[{
eikr0 − e−ikπ

ik

}
e−ikr

]
(α1 − α2) .

The corresponding Whittaker filter limit when λ = µn2m is

gW (r) =
c0

2π
+

1

π

∞∑

k=1

1

1 + µk2m
Re
{
cke
−ikr

}

=
α1 + α2

2
+
α1 − α2

2π
r0 +

1

π

∞∑

k=1

1

1 + µk2m
Re

[{
eikr0 − e−ikπ

ik

}
e−ikr

]
(α1 − α2) .
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As is evident in Figure 5 for m = 2, the HP smoother captures the constant levels

better than the finite number of terms of the Fourier series of the function g (r) ,

i.e, the smoother works well in capturing the constant linear levels and the shift is

captured as a smooth transition function.

In the trend break case, we work with the function g (r) = (α1 + β1r)1 {r < r0}+

(α2 + β2r)1 {r ≥ r0} and use the Fourier series with coefficients (94) and (95). When

α1 = 0, α2 = 0, r0 = 1
2 , β1 = 0.5, β2 = 1, we have g (r) = 0.5r1 {r < r0}+ r1 {r ≥ r0}

and the Fourier series has the explicit form

π

8
− 1

32π
+

1

π

∞∑

k=1

Re

[({[
eik/2

2ik

]
− eik/2

(ik)2 +
e−ikπ

(ik)2

}(
−1

2

)
+
e−ikπ

ik

3π

2

)
e−ikr

]
,

with asymptotic form of the HP filter given by

gHP (r) =
π

8
− 1

32π
+

1

π

∞∑

k=1

1

1 + µk2m
Re

[({[
eik/2

2ik

]
− eik/2

(ik)2 +
e−ikπ

(ik)2

}(
−1

2

)
+
e−ikπ

ik

3π

2

)
e−ikr

]
.
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