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Connecting the (dirty) dots: Current Account

Surplus and Polluting Production

October 27, 2023

Abstract

According to the existing open-economy macroeconomics literature, a

current account surplus is associated with a welfare loss only when distor-

tions exist in either savings or investment. We propose a new welfare effect

even in the absence of such distortions. In our theory, a trade imbalance

− the largest component of a current account imbalance − interacts with a

country’s pollution control (“cleanness”) regime to generate welfare effects

outside the standard channels. In particular, a trade surplus alters the ship-

ping costs and composition of a country’s imports, producing a welfare loss

associated with greater pollution.

1 Introduction

A current account imbalance is both common in the data and often a source of

international friction. Because it reflects a gap between a country’s savings and

investments, a welfare loss occurs in the standard open-economy macroeconomics

only if distortions exist in either savings or investments. In this paper, we suggest

that by drawing insight from the economics of both endogenous shipping costs and

pollution, we may derive a new welfare channel of a current account imbalance.

The basic mechanism can be summarized in two steps. First, we note that

for a majority of countries, the merchandise-trade imbalance is a quantitatively
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important component of the current account imbalance. More precisely, across

countries, the trade imbalance co-moves strongly with the current account imbal-

ance. In fact, using data from 2015, a regression of trade imbalance (as a share

of GDP) on current account imbalance (as a share of GDP) produces a slope co-

efficient that is essentially one.1 For this reason, the welfare effect of a country’s

trade imbalance is a major element of the welfare effect of its current account

imbalance. Second, a trade surplus affects the unit shipping cost in international

trade and alters the composition of a country’s imports in a way that tends to

lead to more pollution in the country, especially if its pollution tax is low.

In other words, this interaction among a trade surplus, endogenous shipping

costs, and the pollution control regime, with the last two objects normally being

of interest to two separate microeconomic fields, has an important macro conse-

quence. The welfare loss from a large current account surplus implied by this

paper is novel.

As a byproduct of our mechanism, we also provide a new explanation for why

certain countries with a large trade surplus, such as China, import so many heavy

goods (i.e., goods with a high weight-to-value ratio) or so much industrial waste.

Whereas the average weight-to-value ratio for world trade is 0.22 kg per dollar, the

ratio for Chinese imports is more than four times as high, at 0.96 kg per dollar.

Relatively heavy products include industrial scraps and waste, such as scrap metal

and discarded glass. Indeed, China was the largest importer of waste products

in the world (until its government banned waste imports in 2018).2 In 2016,

waste-products imports included 45 million tons of scrap metals, used textiles and

fibers, waste paper, and used plastics worth over 18 billion USD.3 Our mechanism

suggests that it is not a coincidence that China simultaneously runs the largest

1In Figure 1, we plot the trade imbalance-GDP ratio against the current account imbalance-
GDP ratio across countries in 2015. The correlation is 0.6. When we regress the trade surplus-
GDP ratio on the current account-GDP ratio, the slope coefficient is 0.941, but not statistically
different from 1, with an R-square of 0.63.

2Incidentally, the Chinese ban on imports of many industrial waste products since early 2018
has generated a mini-crisis in many countries that had previously grown accustomed to shipping
industrial scraps and waste to China.

3We define the waste products as HS 6-digit product lines that contain either “scrap” or
“waste” in their descriptions.

2



trade surplus in the world and is the most voracious importer of industrial scrap.

This paper is divided into two parts. In the first part, we study how a country’s

trade surplus reduces the unit shipping cost of inbound trade, and how that re-

duction in turn alters the composition of the country’s imports. We provide both

a simple model and statistical evidence. A key observation is that a country’s

trade surplus increases the likelihood that ships returning to the country will be

under their full carrying capacity (De Palma et al. (2011); De Oliveira (2014)).

This imbalance reduces the unit shipping cost for the country’s imports, making it

cost-effective to increase the imports of relatively heavy goods. Conversely, deficit

countries have a comparative advantage in exporting relatively heavy goods. By

our estimation, if a good’s weight-to-value ratio is higher by 10%, its elasticity of

imports to trade surplus increases by 0.12%.4

In the second part of the paper, we explore some novel implications of this

insight. In particular, we show that polluting industries (e.g., ceramics, cement,

copper wire production) tend to use more heavy inputs (including but not re-

stricted to recycled scrap metals and other industrial waste). As a result, by mak-

ing the inputs cheaper for the polluting industries, a greater trade surplus alters

a country’s comparative advantage toward a more polluting production structure.

Therefore, the overall “cleanness” of the economy is affected by the size of the

trade imbalance.5

This paper makes three contributions to the literature. First, we provide the

first empirical test of a novel channel for a current account surplus to be socially

inefficient. In particular, a trade surplus, by altering the unit shipping costs,

induces additional imports of heavy products and lowers the production costs in

4In addition to the cross-country evidence, Appendix C finds the same pattern within a
country. In particular, across port cities in China, those with a greater trade surplus also import
more heavy goods as a share of their total imports. This within-country evidence strengthens our
confidence that the key data patterns from the international data are not affected by unmeasured
time-varying country-pair features that may be correlated with the unit shipping cost.

5In the appendix, we construct a quantitative model to evaluate the welfare effect of a trade
surplus as well as to perform policy experiments. We find that the net effect of allowing the
shipping cost to respond to a trade surplus can amplify the welfare loss by 33%. A ban on
the imports of foreign scraps − a policy experiment that is similar to an actual Chinese policy
in place since 2018 − could increase welfare by raising the cost of the inputs for the polluting
sectors, hence reducing the level of production in that sector.
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the polluting industries. This mechanism tends to lead to more pollution in the

trade-surplus country, especially if it has a low environmental standard or weak

enforcement. By contrast, the existing literature on the efficiency consequences

of the trade imbalance focuses on the terms-of-trade channel (Dekle et al. (2007);

Epifani and Gancia (2017)). The welfare effect of the trade surplus comes from

frictions either in the capital market or in the savings decision. In this paper,

however, a trade surplus magnifies a negative externality in pollution through an

endogenous response of the shipping cost and the import composition to a trade

surplus. Distortions in the level of saving or investment are not necessary for a

trade surplus to generate a welfare loss.

Second, while there is literature on trade and environment,6 the only paper

that makes a connection between trade imbalance, shipping cost, and waste trade

is Kellenberg (2010). Our paper differs from his in a number of ways. While he

offers a theoretical argument without empirical evidence, our key contribution is to

provide a sequence of empirical evidence linking shipping costs to trade balance,

import composition to shipping cost, and sector-level pollution to the relative

heaviness of the inputs by sector. While his theoretical model focuses just on

consumption waste, we show that the consequence of endogenous shipping costs

is to tilt the imports of a surplus country towards heavy goods, including heavy

industrial inputs, not just consumption waste.

Finally, our paper enriches the literature on endogenous transportation costs.

Hummels and Skiba (2004) and Lashkaripour (2015) emphasize that unit weight

is an important feature in international shipping, whereas Djankov et al. (2010)

and Hummels and Schaur (2013) study the effect of shipping time on trade cost.

However, these papers do not consider a trade imbalance as a determinant of the

shipping cost or a source of comparative advantage. Behrens and Picard (2011),

Friedt and Wilson (2015), Jonkeren et al. (2010), Wong (2019), and Brancaccio

et al. (2019) relate shipping cost to trade balance. Building on and going beyond

this insight, we show, both analytically and empirically, that this change in the

6See surveys by Frankel (2009), Kellenberg (2009), Kellenberg (2012), and Lan et al. (2012),
respectively.
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shipping cost disproportionately favors heavy products.

The paper is hereafter structured into four sections. In section 2, we aim

to establish empirically a relationship between a country’s trade imbalance and

import composition. In section 3, we show that a country with a trade surplus

tends to generate more pollution. Section 4 concludes.

2 Trade Imbalance and Import Composition

In this section, we show that if the shipping cost depends on a good’s weight,

a modified gravity equation predicts that the import composition systematically

depends on the trade imbalance. This prediction is borne out strongly in the data.

2.1 The logic

The reasoning can be explained via two equations. We use i to denote goods, and

n and d to denote the origin and destination country, respectively. We start with

the following gravity equation at the sector (or product) level:

Xi,nd = {(1 + τi,nd)pi,n}1−σ
(αi,dEd

An

)
. (1)

Xi,nd is the amount of import of good i from country n by country d. pi,n is the

free-on-board (FOB) price of good i from country n, and τi,nd is the corresponding

trade cost per value of good i from country n to country d. Hence, (1 + τi,nd)pi,n

is the price per unit of good i paid by a consumer in the destination country.

The demand elasticity with respect to price is captured by 1− σ. Ed is the total

expenditure of destination country d, and αi,d is the share of the expenditure on

good i in country d. An captures “capabilities” of exporters from country n as a

supplier to all destinations.

Following Hummels and Skiba (2004), the trade cost per unit of goods (τi,ndpi,n)

depends on the shipping weight:

τi,ndpi,n = λndwi,n ×
( pi,n
wi,n

)β
,

5



where wi,n is the weight per unit of good i produced by country n,
wi,n
pi,n

is the

weight per value of good i, and λnd is the trade cost per weight. (
pi,n
wi,n

)β measures

the cost of handling goods with different value-to-weight ratios. Thus the price in

country d is

(1 + τi,nd)pi,n =
{

1 + λnd

(wi,n
pi,n

)1−β}
pi,n. (2)

Based on the estimates of Lashkaripour (2015), we assume β < 1. It has an intu-

itive explanation: If the cargo is heavier, it will use more fuel in transportation,

and a profit-maximizing shipping company would naturally charge a higher ship-

ping fee.7 We assume the weight-to-value ratio is an exogenous property of the

goods. We discuss and justify this assumption when we introduce our empirical

measure of the weight-to-value ratio by product.

From equation (1) and (2), we can see that if λnd decreases, the import of heavy

goods (those with a high weight-to-value ratio) will increase relatively more than

the import of light goods (those with a low weight-to-value ratio) because heavy

goods enjoy a disproportionately larger decline in the trade cost. We summarize

our findings in the following proposition:

Proposition 1. If λnd decreases, the import of heavy goods will increase relatively

more than the import of light goods because the heavy goods enjoy a disproportion-

ately larger decline in the trade cost.

To relate Proposition 1 to the trade surplus, we make the following assumption.

Assumption 1. A larger trade surplus leads to a lower import shipping cost per

weight.

Assumption 1 is motivated by the “backhaul problem,” well known in the

transportation economics literature. For example, Behrens and Picard (2011) en-

dogenize transportation costs through a market mechanism in a model of trade and

7From speaking to some firms that engage in trading in heavy goods, we learn that shipping
companies usually put a weight limit per container. For example, if a company ships scrap
copper, which is relatively heavy, each container is only about one-third full of satisfying the
weight restriction. This weight restriction is approximately the same as charging a shipping fee
in proportion to the weight of the cargo. In Appendix A, we show that our results are robust
to an alternative assumption that the shipping fee is charged in proportion to the volume of the
cargo.
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geography. Their model predicts that the growing trade surplus of China against

the US will lead to a reduction in the shipping cost from the US to China.8 Empir-

ically, a causal effect of trade surplus on the inbound shipping cost is estimated by

Jonkeren et al. (2010) (for northwestern European inland waterways) and Wong

(2019) (for containerized US trade).

Combining Proposition 1 with Assumption 1, we have the following proposi-

tion.

Proposition 2. A country tends to import more heavy goods if it runs a larger

trade surplus.

2.2 Data

The Weight-to-Value Ratio

We wish to extract information on the weight-to-value ratio for each HS 6-digit

product from customs data. However, most countries do not report product-level

weight information, making it hard to consistently compute the weight-to-value

ratios for all products. Fortunately, the National Tax Agency of Colombia reports

both the weight and FOB value of imports by product. Using these data, for

each HS6 product, we compute the average weight-to-value ratio.9 As concrete

examples, we list the top five and bottom five products in terms of the weight-to-

value ratio in Table 1.

Note we assume the weight-to-value ratio is an exogenous characteristic of the

goods. To investigate the validity of this assumption, we do cross-validation with

the Chinese customs data. The weight-to-value ratio can be computed for 3,349

goods (about 60% of all HS6 goods) in the Chinese customs data. For these

products, we find the correlation in the weight-to-value ratios computed from the

Colombian and Chinese data is 0.75. Furthermore, we find the weight-to-value

ratio is highly persistent over time in both datasets. For example, the Chinese

8Ishikawa and Tarui (2018) investigate the implication of the asymmetric shipping costs
induced by the backhaul problem on industrial policies such as tariffs.

9We thank Ahmad Lashkaripour for sharing these data.
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customs data shows that the auto-correlation in the weight-to-value ratio between

two adjacent years is 0.98. Based on these findings, we believe the assumption that

the weight-to-value ratio is an exogenous characteristic of goods is justified. In

any case, in all subsequent regression analyses, to further enhance the credibility

of the exogeneity assumption, we use the weight-to-value ratio extracted from the

Colombian data but exclude from the regression sample all country pairs that

involve Colombia as either an exporter or an importer.

Shipping Costs

We obtain port-to-port 20-foot dry-container freight rates over 2010-2017 for 128

major routes (64 country pairs in two directions) from Drewry, a shipping consult-

ing firm. A 20-foot dry container has a cubic capacity of 33.2 m3 and a payload

(weight) capacity of 25,000kg per container.10 When the restriction on weight per

container becomes binding, each container can only be partially occupied. For

example, each container is typically about 1/3 full of scrap copper. While we do

not have information on the volume-to-weight ratios for all goods and do not know

how many goods face a binding weight restriction per container, our conversations

with an expert from a shipping company and an executive from a trading firm

suggest that typically over half of the containers are left partially empty when

leaving the New York port.

For all countries except three, the Drewry covers one major port. For the

United States, China, and Canada, where two ports are available, we use Los

Angeles, Shanghai, and Vancouver, respectively.11 For consistency, we use the

shipping rates in July for all port pairs.12

10Source: DSV Global Transport and Logistics. Although the Drewry data are a small part
of our overall data, they are the most expensive part. For a detailed discussion of Drewry data,
see Wong (2019).

11Our results are robust to using the alternative ports as shown in Table 2.
12The first year for which the freight rate information is available differs across routes. The

ISO country codes for the 64 country pairs are as follows: ARE-CHN, CAN-AUS, AUS-CHN,
AUS-GBR, AUS-JPN, AUS-KOR, AUS-USA, BRA-CAN, BRA-CHN, BRA-GBR, BRA-IND,
BRA-JPN, BRA-KOR, BRA-USA, BRA-ZAF, CAN-CHN, CAN-GBR, CAN-IND, CAN-KOR,
CAN-ZAF, CHN-CHL, CHL-GBR, CHN-COL, CHN-EGY, CHN-GBR, CHN-IND, CHN-IDN,
CHN-JPN, CHN-KOR, CHN-MYS, CHN-NZL, CHN-PHL, CHN-RUS, CHN-SAU, CHN-THA,
CHN-TUR, CHN-USA, CHN-VNM, CHN-ZAF, GBR-COL, CBR-IND, GBR-JPN, GBR-KOR,
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Trade Data

We employ two datasets on trade. First, the bilateral trade data at the HS 6-digit

level between 64 country-pairs (in both directions) from 2010-2017 are obtained

from the UN Comtrade Database. Second, the data on exports and imports at

the HS 6-digit product level for individual Chinese ports during 2000-2006 are

obtained from the Chinese customs database.

2.3 Empirical Evidence

We test the theoretical prediction in section 2.1 in two steps. First, we check

whether the data support a negative relationship between a country’s trade sur-

plus and the back-haul shipping cost. Second, we check whether the elasticity of

imports with respect to shipping cost is systematically bigger for products with a

high weight-to-value ratio.

2.3.1 Shipping Cost and Trade Imbalance

Consider the following equation:

ln(Shipping costndt) = α0 + α1 ln(Imbalancendt) + Ω←→
nd

+ endt, (3)

where n and d are the origin and destination countries, respectively. Shipping

costndt is the shipping cost from country n to country d. Imbalancendt is mea-

sured by Exportndt/Importndt = Importdnt/Importndt, where Importdnt is country

n’s import from country d (or country d’s export to country n) and Importndt is

country d’s import from country n. Ω←→
nd

is an origin-destination pair-specific com-

ponent that affects the shipping cost for both directions, such as distance. This

fixed effect does not distinguish between the two directions of the route. endt is an

i.i.d. random component with a zero mean. The key coefficient of interest is α1,

which measures the responsiveness of the shipping cost to a trade imbalance.

GBR-TUR, GBR-USA, GBR-SZF, JPN-IND, JPN-IDN, IND-KOR, IND-USA, KOR-JPN, JPN-
NZL, JPN-THA, JPN-USA, KOR-USA, KOR-ZAF, MEX-USA, MYS-USA, NZL-USA, PHL-
USA, RUS-USA, THA-USA, TUR-USA, USA-ZAF.
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Although container trade accounts for a majority of international trade, some

goods such as oil or ores are shipped in bulk rather than in containers. We,

therefore, exclude non-metal ores (2 digit HS code 25), metal ores (2 digit HS

code 26), and oil and gas (2 digit HS code 27) in calculating the trade imbalance.

The result is reported in the first column of Table 2. α1 is estimated at -0.129.

Focusing on a pair of origin-destination (e.g., China and the U.S), it is a clear

data pattern that the country with a higher trade surplus (China) faces a lower

back-haul shipping cost than the other country (U.S), consistent with Assumption

1.

In regressing unit shipping costs on bilateral trade imbalance, one may be con-

cerned by the possible endogeneity of the trade imbalance. Indeed, the very logic

of our story indicates that an OLS regression is problematic. If a country’s initial

trade surplus does cause the unit shipping cost on the import side to decline, it

will trigger an increase in imports and a decline in exports. The endogenous re-

sponses of the import and export volumes would lead to a smaller trade imbalance.

They would make it harder to identify a negative relationship between the trade

imbalance and the unit shipping cost. In addition, there may also be factors that

simultaneously affect both the shipping costs and the bilateral trade balance.

To address the endogeneity challenge, we construct an instrumental variable

based on the following idea:

1. Country A is likely to run a greater trade surplus against country B if country

A has overall excess savings over its investment, and country B has an overall

savings shortage relative to investment.

2. A country’s saving-investment difference mirrors the weighted average of its

trading partners’ saving-investment differences.

3. A component of a trading partner’s national savings is affected by govern-

ment spending, which is likely to be exogenous to countries A and B.13

13The empirical literature on fiscal multipliers suggests that the Ricardian equivalence does
not hold. A reduction in public-sector savings is unlikely to be offset by an increase in private-
sector savings. The literature suggests several determinants of government spending (see Facchini
(2018) for a survey), but none is related to shipping costs.
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Following this logic, we use the ratio of the weighted averages of the government

spending of the two countries’ respective trading partners as the instrumental

variable for Imbalancendt:

{(Importnd2000

Importd2000

)
× Xdt

}/{(Importdn2000

Importn2000

)
× Xnt

}
, (4)

where Importnd2000 is country d’s import from country n in 2000, Importd2000 is

country d’s aggregate import in 2000, and Xdt is the trade-weighted average of

the government expenditures by the top 5 trading partners of county d in year t

(excluding country n if n is one of the top five trading partners of country d).14

Importdn2000, Importn2000, and Xnt are similarly defined. Note that we adjust the

Xdt and Xnt by the share of bilateral trade in the country d and country n’s import

bundles in 2000, a decade before our sample.

In the second column of Table 2, we report the IV regression result. To absorb

all time-varying aggregate supply or demand shocks in the exporting and import-

ing countries, we include the origin-year pair and destination-year pair fixed effects.

In the first stage, we regress the log of bilateral trade imbalance on the log of the

term in (4). The coefficient before the IV is approximately 0.45 and significant at

the 1% level, suggesting that a 1% increase in the IV leads to a 0.45% increase in

country d’s bilateral trade imbalance (export/import) with country n. With the

F-statistic around 69, we can easily reject the null of a weak instrument. The IV

estimate of α1 is negative and statistically significant: An increase in country d’s

trade surplus against country n by 10% would reduce country d’s import shipping

cost from country n by 1.77%.15

To allow for the possibility that more traffic on a given shipping route may

lower the unit freight rate on that route, we control in Column 3 the total shipping

weight Wndt +Wdnt, where Wndt denotes the total weight from country n to d. We

find evidence consistent with the economies of scale: the shipping cost declines

14The top five trading partners typically contribute over 80% of a country’s trade in our
dataset.

15To examine a possible non-linear effect, we have also added log(imbalance) squared as an
additional regressor. We do not find evidence of a non-linear effect.

11



when the total weight increases. More importantly, the negative relation between

imbalance and the shipping cost still holds.

We use Los Angeles, Shanghai, and Vancouver port information to construct

the shipping cost associated with the US, China, and Canada. To check whether

our results are robust to using data from alternative ports within each country,

we replace the shipping cost associated with the US, China, and Canada using

New York, Yantian, and Montreal ports information, respectively. As shown in

Column 4, even with the alternative ports information, the relationship between

the imbalance and the shipping cost remains the same.

Discussion of multi-country routes

A possible complication is multi-country shipping routes: if country A runs a

surplus against country B, shipments from A to B do not need to go back to A

right away. Consider an extreme example: Suppose A runs a surplus against B,

B runs a surplus against C, and C runs a surplus against A, and each country

has a balanced overall trade. In this case, a ship can travel from A to B, B to

C, and C to A, while always carrying a full load on each route. This multi-route

arrangement would weaken the shipping-cost response to bilateral surplus. We

address this issue in two ways.

First, we note that contracting frictions often make arranging complicated re-

routing difficult. As Brancaccio et al. (2019) document, satellite tracking of ships

often finds empty ships on the go, suggesting the existence of non-trivial contract-

ing frictions.16 Indeed, if multi-country re-routing could always be arranged to

avoid below-capacity shipping completely, we would not have observed a negative

relationship between the shipping cost and bilateral trade imbalance as reported

in Table 2.

16Brancaccio et al. (2019) examine dry bulk ships. For container ships, we have ex-
amined all the cross-Pacific routes by Cosco, a major shipping company, and found
that about 70% of the routes are between two countries or only three countries
(https://elines.coscoshipping.com/ebusiness/sailingSchedule/searchByService). As long as a
country runs a surplus against this bundle of partner countries, the backhaul shipping cost
would become lower. In other words, one might interpret the word “bilateral” not always be-
tween two countries, but sometimes between a given importing country and a small collection
of countries (say, Italy plus Greece, or Argentina plus Uruguay).

12



Second, we zoom in on those country pairs with a pervasive imbalanced rela-

tionship - involving one running a surplus against 2/3 of its trading partners and

another running a deficit against 2/3 of its trading partners. For the importing

country in such a pair, it would be hard to use a multi-port route arrangement

to avoid having relatively empty ships come back to its ports. Similarly, for the

exporting country in such a pair, it will be hard to avoid relatively empty ships

leaving ports for other countries. When such countries are paired, the likelihood

that relatively empty ships will travel from the pervasive deficit country to the

pervasive surplus country is stronger. If our endogenous shipping-cost story is cor-

rect, the elasticity of the shipping cost to the trade imbalance should be greater

for these country pairs.

We create a dummy (“pervasive route”) for such country pairs and add an

interaction term between the dummy and the size of the bilateral imbalance. As

reported in the fifth column of Table 2, the coefficient on the interaction term

is negative and statistically significant. For country pairs that do not feature a

pervasive imbalance, the elasticity of the shipping cost with respect to the trade

imbalance is -0.028, but for pervasively unbalanced country pairs, the elasticity

increases dramatically to -0.176 (= -0.028-0.148).

In the sixth column of Table 2, we use an instrumental variable approach

similar to column 2. The estimated elasticities are -0.191 and -0.501 (= -0.191-

0.310) for non-pervasive and pervasive routes, respectively. These results suggest

that a trade surplus reduces the unit shipping cost on the import side, especially

for countries with a pervasive surplus.

2.3.2 Import Elasticity with Respect to Shipping Cost

To test Proposition 1 that the share of heavy-goods imports in total imports rises

when the shipping cost decreases, we consider the following specification:

ln(Importi,ndt) =β0 ln(Shipping costndt) + β1 ln(Shipping costndt)× ln
(wi
pi

)
+ ηi,nt + ηi,dt + εi,ndt, (5)
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where n and d are the origin and destination countries, respectively, i refers to

a HS 6-digit product, wi
pi

is the weight-to-value ratio of good i, ηi,nt (or ηi,dt) is

the origin-good-year (or destination-good-year) fixed effect, and εi,ndt is an random

component with a zero mean. We allow εi,ndt to be correlated among the same good

across countries, different goods in the same destination country, and different

goods in the same origin country. Equation (5) is essentially a gravity equation

with a long list of fixed effects to absorb many variations in the data.

The first column of Table 3 reports the benchmark result for equation (5).

β0 is -0.711 and statistically significant at the 1% level, suggesting the import of

good i from country A would be 7.11% larger than from country B if the shipping

cost from country A is 10% lower than from country B. More importantly, β1 is

-0.062 and statistically significant at the 1% level. This finding suggests that the

shipment of relatively heavy goods is more responsive to a given decline in the

unit shipping cost than that of relatively light goods. The import elasticity with

respect to the shipping cost is 0.62% higher for good i than for good j if the weight

per value of good i is 10% greater than good j.

If importing a good requires a fixed cost, a more permanent reduction in the

shipping cost may elicit a stronger response in the import pattern than a transitory

change in the shipping cost. To investigate this possibility, we create a dummy

variable, “Persist,” for country pairs whose bilateral imbalance takes on the same

sign (e.g., the importer always runs a surplus) during 2010-2017. In the second

column of Table 3, we add a triple-interaction term among the “persist” dummy

(for the country pair), the shipping cost (for the bilateral route), and the log

weight-to-value ratio (for the imported product). The coefficient on the triple

interaction is negative and statistically significant. This finding confirms that

the effect is indeed more pronounced for country pairs with a more persistent

imbalance.

The regressions so far already control for both origin-good-year and destination-

good-year fixed effects. Still, some trade costs, such as tariff rates, can vary by

origin-destination pair or time. Also, the weight-to-value ratio of the good could
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depend on the characteristics of the importing countries. For example, richer

countries may import higher-quality varieties for a given HS 6-digit product. We

assume that the weight-to-value ratio has two components: the first is a physical

feature that depends on the product but not on country identity, and the second

depends on the importing country’s income (and other features). Then, we also

need to control for origin-destination-year variations.

We present the result with this ambitious set of control variables, including

origin-destination-year fixed effects, in the third column of Table 3. Such an ex-

tension would not allow us to identify the coefficient on the shipping-cost variable

because the newly added fixed effects absorb it. Importantly, we find that even

with this demanding set of controls, the key coefficient for the interaction term

between a product’s weight-to-value ratio and the shipping cost remains negative

and statistically significant. This finding strongly confirms that a given decline in

shipping costs disproportionately favors relatively heavy goods.

In the fourth column of Table 3, we use log imbalance to replace log shipping

cost. The coefficient estimate for ln(imbalance) × ln
(
w
p

)
is 0.012 and significant

at the 1% level. Instrumenting trade imbalance as before (by using equation (4)),

we find that the point estimate of the coefficient on the interaction terms becomes

bigger (0.032 versus 0.012).17

Finally, we check if high-income importing countries differ from developing

countries. In the final column of Table 3, we restrict our sample to the high-

income countries as importers, defined as those countries whose GDP per capita

exceeds USD 16,000, about the median value in the sample of countries with

shipping cost data. The estimated slope coefficient is 0.003 but is not statistically

significant. In other words, the relationship between trade imbalance and the

weight composition of imports is much weaker for high-income countries. As we

will show later, many heavy goods are used as inputs in polluting industries. More

17The government expenditures of a country’s major trade partners are assumed to be inde-
pendent of the country’s composition of imports (in terms of weight/value ratio), which seems
reasonable. As it is hard to test this assumption directly, we check an implication of our identify-
ing assumption − whether the average weight-per-import value is correlated with the government
expenditure of the trading partners. We find no significant relationship in the data.
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stringent environmental regulations in rich countries may dampen their desire to

import heavy goods.

To summarize, across different shipping routes, a greater trade surplus clearly

reduces the unit shipping cost. Moreover, across shipping routes, goods, and time

periods, a given reduction in the shipping cost benefits heavy goods shipment

more than light goods as predicted by Proposition 1. These patterns hold after

controlling for a large number of fixed effects and accounting for possible endo-

geneity of the trade imbalance. Overall, trade imbalance is a robust predictor of

the composition of trade in terms of weight-to-value ratios. This pattern is most

prominent for developing-country importers.

In the evidence reported above, unmeasured time-varying country-pair features

can, in principle, be correlated with unit shipping costs. In Appendix C, we

also explore variations across different ports within a large country (China). The

country-level comparative advantage can be regarded as the same across all ports.

Nonetheless, we find that a surplus port tends to import heavier goods than other

ports. This result further confirms that trade imbalance is a robust predictor of

the heaviness of imports.

3 Trade Imbalance and Pollution

We now explore the implications of our previous findings for pollution. In section

3.1, we show a connection between the pollution intensity of the industries and

their relative dependence on heavy goods as inputs. In particular, we show that

industries using heavier inputs tend to be more polluting in their output. Because

the heavy inputs are cheaper in times of a larger trade surplus, polluting industries

tend to expand in times of a larger trade surplus, especially if environmental

regulation is weak. In section 3.2, we test the prediction of our theory by using

the recent policy change in China that forbids imports of certain industrial scraps.

16



3.1 Heavy Inputs and Polluting Output

In this subsection, we first show that a sector relying on heavy input generates

more pollution using China’s input-output table.18 Then using the cross-country

data, we show that trade surplus can induce an expansion of the pollution sector

due to a low heavy inputs shipping cost.

We measure the heaviness of each sector’s inputs via a two-step procedure.

First, every 6-digit HS commodity is assigned as an input into one or more indus-

trial sectors using China’s 2012 input-output table. Second, for each industrial

sector, the weight-to-value ratio of its input bundle is calculated as the weighted

average of the weight-to-value ratios of all inputs, with each input’s weight inferred

from the input-output table. The details are reported in Appendix B.

The air pollution intensity of each sector’s output is measured from the US

Environmental Protection Agency’s data on SO2, NO2, and total suspended par-

ticles (TSP) emission per dollar value of output by sector in 2000. The maintained

assumption here is that the relative pollution intensity across sectors is a technical

feature of the production processes and is highly correlated across countries.19

Table 4 reports the correlation between the output-level pollution intensity and

the input-bundle weight-to-value ratio across sectors. The correlation is positive

and statistically significant for each of the three pollutants. The pairwise corre-

lations among the pollutants are also high. In other words, different types of air

pollution often go together. More importantly, more polluting industries tend to

use heavier inputs.

If a greater trade surplus leads to lower prices of the inputs used more inten-

sively in the polluting industries, it should lead to a relatively greater expansion

of these industries. We investigate this prediction using cross-country data.20 In

18The world input-output table only covers 18 manufacturing sectors, which is too wide to be
matched with the 6-digit HS code. Thus we use the Chinese data at the 4-digit industry level.

19We do not have comparable data on other types of pollution. See Bombardini and Li (2016)
for more details.

20The UNIDO data is used for this analysis.
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particular, we run the following panel regression over 2010-2017:

ln(Outputni,t) = β1 ln(Shipping costnt)× Pollutioni + ηni + ηnt + εni,t. (6)

Outputni,t is country n and industry i’s total domestic output in year t (total

industry output minus export). Shipping costnt is country n’s average import

shipping cost in year t. Industry i is a 4-digit ISIC industry. Pollutioni is industry

i’s air pollution intensity measured by log SO2 emission per dollar value of output

in the US EPA data in 2000. It is assumed to be a fixed industry characteristic.21

We control for both the country-industry and country-year fixed effects to tease

out the unobserved country comparative advantage as well as the time-varying

country component.

We have also conducted similar panel regressions with NO2 and TSP emis-

sions from the US EPA data as a measure of industry-level pollution intensity,

respectively. Because the different air pollutants have similar industry rankings as

indicated in the last two columns of Table 4, it is perhaps not surprising that we

find similar regression results. We omit these results to save space. Due to a lack

of comparable industry-level data on solid or liquid pollutants, we are not able to

perform a similar analysis with other pollutants.

In the first column of Table 5, the coefficient on the interaction term is -0.009

and is statistically significant. This finding suggests that a decrease in the import

shipping cost is associated with an expansion of the more polluting industries

relative to other industries.

In column 2, we add a new triple interaction term: ln(Shipping costt) ×

Pollutioni × Heavy-Inputi. Heavy-Inputi, which is defined previously, is indus-

try i’s input weight-to-value ratio from Chinese data. We assume this measure

captures an industry characteristic. The coefficient for the new triple interaction

term is negative and statistically significant, suggesting that the expansion of the

21The ranking of air pollution intensity across sectors is highly stable over time. In particular,
the correlations for the industry rankings between 1990 and 2000 for SO2, NO2, and TSP,
respectively, are 0.98, 0.94, and 0.90. In other words, the industry ranking of the pollution
intensity barely changes over the 10-year interval for any of the major air pollutants.
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polluting sector is more pronounced for sectors using heavier inputs.

In column 3, we replace Shipping costnt to the trade imbalance measured with

the export-to-import ratio of country n. The coefficient before the interaction

term is 0.045, suggesting that a 1% increase in the trade surplus is associated with

a 0.045% expansion of the more polluting industries relative to other industries.

One may be concerned with a possible endogeneity of the trade imbalance.

We next implement an instrumental variable approach. In particular, for any

country n, we use the three biggest trading partners’ government expenditures as

a share of GDP as the instrumental variables for its trade imbalance. The idea

is that a change in major trading partners’ government expenditures is likely to

be exogenous to country n, but it represents a shock for country n’s international

trade. The IV estimate is presented in column 4 of Table 5, and is even more

pronounced than the OLS result; the polluting industries tend to expand more in

times of a greater trade surplus.

Overall, we confirm that pollution-intensive sectors expand relatively more

than the rest of the economy in times of a greater trade surplus. This tendency is

especially true for those polluting sectors that use heavier inputs.

3.2 The Trade of Industrial Scraps and Wastes

Industrial scraps and wastes are an important class of heavy inputs. Figure 2

plots the densities of the weight (kg)/value (US dollar) ratio for waste goods (the

solid line) versus other goods (the dashed line), respectively. While the non-waste

goods are lighter, about 0.1 kg/USD on average, industrial scraps and waste goods

are much heavier, with the most mass at about 1 kg/USD. Our theory helps to

explain why China was the largest importer of industrial scraps and waste until

its government imposed an import ban in 2018: With a large trade surplus, its

inbound shipping cost is cheap, making it attractive to import scraps and waste

(and other heavy goods).

Imported waste products are often dirty, poorly sorted, or contaminated with

hazardous substances. The recycling process often produces pollution and other
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unhealthy consequences. The adverse health effect of waste management has been

pointed out in medical research such as Rushton (2003). The film Plastic China

shows the environmental damage caused by China’s plastic-recycling industry,

which is dominated by many small-scale outfits that often lack proper pollution

controls. This suggests a large trade surplus can generate a welfare loss by indi-

rectly contributing to a higher level of pollution.

Perhaps seeing a connection between imported industrial waste and pollution,

the Chinese government began in 2018 to forbid imports of certain industrial scraps

with a plan to expand the ban to more scrap types. In Figure 3, we separate the

waste goods into four broad categories: chemical product scraps (short dashed

line), wood and paper scraps (long dashed line), scrap metals (dash-dot line) and

other wastes (solid line), and plot China’s import (in the log) from 2014 to 2019

for each category. We see a decline in three of the four types of waste imports

since 2018, with scrapped chemical products exhibiting the sharpest drop. As the

import ban does not apply to all waste products, some waste products such as

cotton scraps have increased slightly.

Since China was the largest waste goods importer in the world, its ban on

waste imports imposes a negative shock on other countries’ waste exports as they

need to find other ways to absorb the waste goods including exporting more of

them to other countries. Our theory predicts that, following the Chinese ban,

a waste-producing country with a greater trade surplus against other countries

decreases its waste exports relatively more than another waste-producing country

with a smaller trade surplus. To see whether this prediction is supported in the

data, we use i to denote a waste good at the HS6 level and n to denote an origin

country, and estimate the following regression:

ln(Exporti,nt) = β0 ln(Shocki,nt)+β1 ln(Imbalancen,2014−16)×ln(Shocki,nt)+µin+µnt+ei,nt

(7)

where Exporti,nt is country n’s total export of waste product i to the rest of the

world (ROW) except China. Imbalancen is country n’s trade balance with ROW

except for China during 2014-2016. Shocki,nt is a measure of the impact of China’s
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waste import ban on country n with regard to product i, and is defined as

Shocki,nt =
Country n’s exports to CHNi,2014−2016

CHN Total Waste Importi,2014−2016

× CHN Total Waste Importi,t

where the first term is the average share of country n in China’s total imports of

waste goods i in the three years before the waste import ban was announced, and

the second term is China’s total waste import of product i in year t.22 The shock

differs by both the exporting country and the product.

Note β0 +β1 ln(Imbalancent) is the elasticity of country n’s exports of product

i with respect to the change in China’s waste import. If a country can easily divert

its waste goods to other countries after a decline in China’s imports, the elasticity

would be positive. Otherwise, it would be around zero. We expect to see that

if country n runs a surplus against non-China ROW, it is more difficult for it to

divert its waste goods. Thus β1 < 0. That is, the elasticity should be smaller for

countries that run a surplus.

In equation (7), the country-product pair fixed effect, µni, captures the time-

invariant heterogeneity of comparative advantage of each country in goods i, while

the country-year fixed effect, µnt, controls for the aggregate origin country-year

specific shocks, such as its aggregate productivity. ei,nt is the error term. While

this specification does not identify the overall impact of China’s import ban, we

can check the relationship between a country’s waste export to the rest of the

world following the China shock and its trade balance.

From Column 1 of Table 6, we can see that β1 = −0.151 and significant at the

5% level. This confirms that a country that runs a trade surplus with ROW has

more difficulty exporting its waste goods after China’s import ban.

The effect of the China shock may differ in developing and developed coun-

tries since they have different environmental regulations.23 For instance, consider

22As the 2018 import ban was announced in 2017, we use information during 2014-2016 to
construct all pre-ban variables.

23The OECD’s Environmental Regulation Stringency (ERS) index captures the environmental
regulations across countries. The ERS is an internationally-comparable measure based on the
degree of stringency of 14 environmental policy instruments, primarily related to climate and air
pollution. Stringency is defined as the degree to which environmental policies place an explicit
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two developed countries. One runs a trade surplus, and the other has a deficit.

Since both have strong pollution regulations, firms in both countries that previ-

ously exported waste goods to China would have stronger incentives to export

the waste to other countries (as opposed to absorbing the waste at home). Thus

although the surplus developed country would still increase its export to ROW

less than the deficit country, the difference would be less pronounced. However,

for developing countries with weak environmental regulations, their waste exports

are more likely to respond to shipping costs. Hence when facing the China shock,

a deficit developing country is less likely to divert its waste export from China to

ROW than a surplus developing country. Therefore, we expect the effect of the

China shock to be more sensitive to a trade surplus among developing countries

than developed countries. In the second and third columns of Table 6, we split the

sample into high- and low-income groups the same as column 6 of Table 3: high

(low) income countries are those with 2011 GDP per capita above (below) 16,000

USD. Consistent with our conjecture, the results suggest that the difference in the

response to the China shock between a surplus and a deficit high-income exporter

is smaller than that within low-income countries.

3.3 A Possible Externality

A stronger pollution regulation can, in principle, mitigate the pollution conse-

quence of a larger trade surplus. For example, developed countries may adopt

production techniques that result in less pollution. Because compliance with pol-

lution control is costly, firms in developed countries may have a reduced incentive

to import pollution-prone products. It is, therefore, not surprising that the import

composition of a developed country is less sensitive to its trade surplus (as shown

in column 6 of Table 3). However, the trade surplus in developing countries, which

usually lack strict environmental regulations, can lead to a welfare cost due to the

extra pollution.

or implicit tax on polluting or environmentally harmful behavior. The index ranges from 0 (not
stringent) to 6 (highest degree of stringency). Table 7 lists the ERS index of each country. The
ERS index is significantly lower in developing countries than in developed countries.
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Is the welfare loss from our channel quantitatively important? We investigate

these questions through the lens of a quantitative model in Appendix D. The model

features an endogenous response of the unit shipping cost to a trade surplus, which

lowers the input costs of the relatively polluting industry and ultimately decreases

the overall utility by increasing the pollution externality. The net effect of allowing

the shipping cost to respond to a trade surplus can amplify the welfare loss by

33%. We also use the quantitative model to perform policy experiments. We

find that a ban on the imports of foreign scraps − a policy experiment that is

similar to an actual Chinese policy in place since 2018 − could increase welfare

by raising the cost of the inputs for the polluting sectors, hence reducing the level

of production in that sector. Hence the policy can increase welfare because the

scraps are pollution intensive.

4 Conclusion

This paper provides a new channel for a trade imbalance to have welfare conse-

quences. In particular, with endogenous responses of the unit shipping cost to

the size of the trade imbalance, and the weak pollution control, a greater trade

surplus leads to a greater welfare loss.

The first ingredient of our theory is that shipping costs and the composition of

a country’s imports respond to the size of the trade imbalance. We find strong em-

pirical evidence that trade-surplus countries import more heavy goods, including

scrap metals and other industrial waste. With nearly two million observations, we

show robust evidence that the composition of trade is affected by shipping costs,

and shipping costs in turn are affected by a trade imbalance.

This theory helps explain why China imports so many scraps and industrial

waste: With a large trade surplus, China’s inbound shipping cost is low which

makes it attractive to import industrial scraps and waste (and other heavy goods).

Because the recycling of scraps and waste (to produce intermediate inputs) gen-

erates pollution, the mechanism we study suggests a concrete channel for a trade

surplus to generate a welfare loss, especially in countries with low environmental
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standards or weak enforcement. In other words, even in the absence of distortions

in savings or investment, a trade surplus can reduce welfare.
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Tables and Figures

Table 1: Top and Bottom 5 Goods in Terms of Weight-to-Value Ratio

Highest Weight-to-Value Ratio Lowest Weight-to-Value Ratio

Bitumen and asphalt Diamond
Limestone Precious metal
Wasted granulated slag from iron Gold
Ceramic building bricks Halogenated derivatives
Scrap glass Watch

NOTE: This table shows the top and bottom five goods in terms of the weight-to-value ratio,

estimated from transaction-level data on Colombian imports averaged over 2007-2013.
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Table 4: Correlations between Pollution Intensities and Input’s Weight-to-Value Ratios
across Chinese Industries

Kg-per-input val. ln(SO2) ln(NO2)

ln(SO2) 0.219***
(0.061)

ln(NO2) 0.189* 0.980***
(0.106) (0.000)

ln(TSP) 0.194* 0.929*** 0.944***
(0.098) (0.000) (0.000)

Notes: This table shows the correlations between output pollution intensities and input weight-

per-value across Chinese industries. *** p<0.01, ** p<0.05, * p<0.1.

Table 5: Trade Imbalance and the Relative Expansion of the Polluting Industries

(1) (2) (3) (4)

ln(Shipping costnt)×Pollutioni -0.009** -0.007**
(0.004) (0.004)

ln(Shipping costnt)×Pollutioni -0.008**
×Heavy-sectori (0.004)

ln(Imbalancent)×Pollutioni 0.045* 0.112*
(0.028) (0.059)

Country-year FE Y Y Y Y
Country-industry FE Y Y Y Y
IV Y

Obs. 85,789 85,789 85,789 85,789
R-squared 0.11 0.11 0.11 0.11

Notes: This table shows the estimation results of equation (6). The dependent variable is the log

value of the domestic output of country n and industry i in year t. The Shipping costnt is the

average import shipping cost of country n in year t. Imbalancent refers to exports/imports of

country n in year t. Heavy-sectori is the weight-per-input-value for industry i. In column 4, the

government expenditure as a share of GDP for three major trading partners of country n is used

as instrumental variables for the log of trade imbalance. The first-stage F-statistics is around 15.

Standard errors are clustered at country-industry-year levels. *** p<0.01, ** p<0.05, * p<0.1.
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Table 6: Waste Export and China Shock

(1) (2) (3)
All countries High-income Low-income

ln(Imbalancen)×ln(Shocki,nt) -0.151** -0.0582 -0.158*
(0.0768) (0.0941) (0.0949)

ln(Shocki,nt) 0.00924 0.0478** 0.0206
(0.0190) (0.0219) (0.0293)

Origin-goods FE Y Y Y
Origin-year FE Y Y Y

Obs. 27,855 9,262 18,593
R-squared 0.887 0.890 0.820

Notes: This table shows the estimation results of equation (7). The dependent variable is the

log value of the export of waste goods i from country n in year t. The Imbalancen refers to

exports/imports of country n to the rest of the world other than China between 2014 and 2016.

Shocki,nt measures the shock from the decline of waste import i of China from country n. In

the second (third) column, the sample is restricted to countries with GDP per capita in 2011

above (below) 16,000 USD. Standard errors are clustered at country-year levels. *** p<0.01, **

p<0.05, * p<0.1.
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Table 7: ERS Index

BRICS ERS OECD ERS

Brazil 0.42 Turkey 0.88
Indonesia 0.44 USA 1.05

South Africa 0.44 Slovak Republic 1.10
India 0.60 Australia 1.17

Russian Federation 0.65 Poland 1.27
China 0.85 Norway 1.42

Ireland 1.46
Italy 1.49

Canada 1.58
Czech Republic 1.63

Switzerland 1.69
Greece 1.73

United Kingdom 1.73
Japan 1.90

Netherlands 1.90
Belgium 1.98
France 2.13

Portugal 2.13
Hungary 2.33

Korea, Rep. 2.33
Austria 2.40
Finland 2.48

Denmark 2.59
Germany 2.67

Spain 2.75
Sweden 2.75

Notes: This table shows the environment regulation stringency index of OECD countries and 6

BRICS countries in 2004. A high index denotes high regulation.
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Figure 1: The Current Account Imbalance and the Trade Imbalance

NOTE: This figure shows the correlation between the current account-GDP ratio and the trade

surplus-GDP ratio across countries in 2015. The trade surplus is defined as export−import.

The dashed line is the linear fit: Trade surplus/GDP = −0.884(0.628) + 0.941∗∗∗(0.098) ×
Current Account/GDP. The standard errors are reported in the parenthesis.
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Figure 2: The Weight-to-Value Ratios for Industrial Waste Goods and Other Goods
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NOTE: This figure shows the density of the weight-to-value ratio (kg/USD). We define the waste

products as HS 6-digit product lines that contain either “scrap” or “waste” in their descriptions.

Figure 3: The Waste Import of China of Broad Categories
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NOTE: This figure shows the import of China (in log) of four broad waste categories: chemical

product scraps, wood and paper scraps, scrap metals, and other wastes. The value in 2014 of

each category is normalized to 0.
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Online Appendix (not for publication in print)

A Alternative Specification

In Section 2, we assume that the shipping company charges a shipping fee by

weight. In this appendix, we instead assume that the shipping fee is charged by

the volume of the goods and show that our results stay the same.

We redefine the trade cost per unit of goods (τi,ndpi,n) to depend on the shipping

volume:

(1 + τi,nd)pi,n =
{

1 + λnd

(vi,n
pi,n

)1−β}
pi,n

where vi,n is the number of containers per unit of good i produced by country n,

vi,n
pi,n

is the number of containers per value of good i produced by country n, and λnd

is the shipping cost per container from country n to country d. (
pi,n
vi,n

)β measures

the cost of handling goods with different value-to-volume ratios. We can rewrite

the above equation as

(1 + τi,nd)pi,n =
{

1 + λnd

(wi,n
pi,n

vi,n
wi,n

)1−β}
pi,n.

Although we do not observe
vi,n
pi,n

, if the container-per-weight ratio is similar across

goods, it will still be true that a country with a greater trade surplus imports

more heavy goods.

Under the assumption that the container-per-weight ratio is the same within a

2-digit HS code, we re-test whether the trade-surplus country imports more heavy

goods by controlling the destination-origin-year-2-digit HS code dummies. The

results are reported in Table 8.

With a finer level of fixed effect, the coefficient becomes smaller. Nevertheless,

we have a consistent result: The elasticity of the import value with respect to the

shipping cost is higher for goods with a higher weight per value.
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Table 8: Shipping Costs and Heavy Goods Imports: Alternative Specification

(1)

lnλndt × ln
(
wi
pi

)
-0.011**

(0.005)

Origin-good-year FE Y
Destination-good-year FE Y
Destination-origin-year-HS2 FE Y

Obs. 1,830,158
R-squared 0.85

Notes: This table shows the estimation results of equation (5) with additionally controlling for

destination-origin-year-HS2 fixed effect. The dependent variable is the log value of good i’s

import value from an origin country (n) to a destination country (d) in year t. λndt is the

shipping cost from an origin country (n) to a destination country (d) in year t. Imbalancendt is

the bilateral trade imbalance between a country pair (n and d) in year t, measured by the total

export of d to n divided by the total import of d from n. “wi/pi” is the weigh-to-value ratio of

good i from the Colombian data. *** p<0.01, ** p<0.05, * p<0.1.

B The Weight-per-Input-Value across Industries

To construct the input-level weight-to-value ratio for an industry, we first map each

HS6 product as an intermediate input to one or more Chinese 4-digit industries

(CSIC).24 We then map each CSIC code to an input-output table. Specifically,

we use the 2012 Chinese input-output table to calculate the weighted average of

the weight-to-value ratio of all inputs for each industry. The input-level weight-

to-value ratio for each industry is listed below in Table 9.

Table 9: The Weight-to-Value Ratio of Intermediate Inputs of Each Industry

Industry Name Weight-per-input-value

Asbestos cement products manufacturing 1.78

Building ceramics manufacturing 0.81

Cement manufacturing 0.69

Frozen food manufacturing 0.69

Compound fertilizer manufacturing 0.55

24The concordance table can be found from Brandt et al. (2017).
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Candied production 0.49

Steel rolling 0.43

Daily glass products and glass packaging containers 0.40

Manufacture of synthetic single (polymeric) bodies 0.39

Metal furniture manufacturing 0.38

Bottle (can) drinking water manufacturing 0.38

MSG manufacturing 0.37

Wood chip processing 0.35

Book, newspaper, publication 0.34

Other special chemical products manufacturing 0.34

Beer manufacturing 0.34

Manufacture of sealing fillers and similar products 0.34

Metal kitchen utensils and tableware manufacturing 0.33

Biochemical pesticides and microbial pesticide manufacturing 0.33

Machine paper and cardboard manufacturing 0.32

Feed processing 0.32

Sugar production 0.32

Nylon fiber manufacturing 0.31

Oral cleaning products manufacturing 0.31

Non-edible vegetable oil processing 0.31

Ferroalloy smelting 0.30

Ironmaking 0.29

Inorganic alkali manufacturing 0.28

Other non-metal processing equipment manufacturing 0.27

Metal shipbuilding 0.26

Plastic artificial leather, synthetic leather manufacturing 0.26

Vegetable, fruit and nut processing 0.25

Manufacture of other non-metallic mineral products 0.23

Electric light source manufacturing 0.23

Battery manufacturing 0.23

Hydraulic and pneumatic power machinery and component manufacturing 0.22

Mica product manufacturing 0.22

Lifting transport equipment manufacturing 0.22

Other rubber products manufacturing 0.21

Other sporting goods manufacturing 0.21

Insulation products manufacturing 0.21

Nuclear radiation processing 0.21

Gear, transmission and drive component manufacturing 0.20

Machine tool accessories manufacturing 0.20

Manufacturing of special equipment for agricultural and sideline food processing 0.20

Gardening, furnishings and other ceramic products manufacturing 0.20

Liquid milk and dairy products manufacturing 0.20

Construction machinery manufacturing 0.19

Auto parts and accessories manufacturing 0.19

Internal combustion engine and accessories manufacturing 0.19

Micromotors and other motor manufacturing 0.19
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Camera and equipment manufacturing 0.19

Industrial and mining rail vehicle manufacturing 0.18

Other power transmission and distribution and control equipment manufacturing 0.18

Agriculture, forestry, animal husbandry and fishing machinery parts manufacturing 0.17

Household refrigeration electric appliance manufacturing 0.17

Precious metal calendering 0.16

Motorcycle manufacturing 0.16

Modified car manufacturing 0.15

Manufacture of automobiles and other counting instruments 0.15

Silk knitwear and woven fabric manufacturing 0.15

Leather processing 0.15

Manufacture of other textile products 0.14

Leather shoes manufacturing 0.14

Aluminum smelting 0.13

Chemical drug manufacturing 0.13

Cap 0.12

Printed circuit board manufacturing 0.12

Cotton, chemical fiber textile processing 0.11

Grain grinding 0.11

Other electronic equipment manufacturing 0.10

Aquatic feed manufacturing 0.10

Silk screen dyeing and finishing 0.09

Livestock and poultry slaughter 0.09

Communication terminal equipment manufacturing 0.09

Home audio equipment manufacturing 0.09

Wool textile 0.08

Application of TV equipment and other radio equipment manufacturing 0.08

Electronic computer manufacturing 0.07

Coking 0.07

Nuclear fuel processing 0.07

Cigarette manufacturing 0.07

C The Chinese Port-level Evidence

In the cross-country evidence reported in the main text, unmeasured time-varying

country-pair features can, in principle, be correlated with unit shipping costs. In

this appendix, we explore variations across ports within a country and examine

the robustness of the relationship between trade imbalance and the heaviness of

imports.

We work with Chinese port-level customs data during 2000-2006. For a given

port, HS6 good, and a trading partner, we compute bilateral imports and exports,
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respectively.25 We then estimate the following gravity equation:

ln(Importi,mnt) =β0 ln(Imbalancemnt) + β1 ln(Imbalancemnt)× ln

(
wi
pi

)
+ ηi,mt + ηi,nt + εi,mnt, (8)

where m denotes a port in China, and Importi,mnt is the dollar value of good i’s

import into port m from country n. Imbalancemnt is the ratio of total exports

from port m to country n to the total imports into port m from country n. ηi,mt

and ηi,nt are port-product-year and origin-product-year fixed effects, respectively.

The key parameter of interest is β1. If a greater port-level trade surplus leads to

relatively more port-level imports of heavy products, we expect β1 > 0.

In Column 1 of Table 10, where we control for both product-port-year triplet

fixed effects and product-exporter-year triplet fixed effects, β1 is estimated to be

0.0095 and statistically significant at the 1% level. This finding suggests that

the import elasticity with respect to the trade imbalance is greater for heavier

products. In Column 2, where we additionally control for port-exporter-pair fixed

effects, β1 is estimated to be 0.0064 and statistically significant. We conclude that

the within-country data pattern is similar to the cross-country pattern, confirming

that a trade imbalance affects the composition of imports, even after we control

for a large number of relatively demanding fixed effects.

D A Quantitative Model and Policy Evaluations

D.1 Economic Structure

The model is an extension of Dekle et al. (2007). There are N countries that can

potentially trade with each other. Each country is endowed with Ln amount of

labor and has an exogenous trade surplus of Sn. Each country has a non-tradeble

goods sector (NT) and three tradable sectors. The latter consists of a recycling

sector (RS), a polluting sector (P), and a green sector (G). The output from each

25By port, the customs data refers to the city where the port is located. We exclude non-coastal
cities in this exercise.
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Table 10: Trade Imbalance and Import Composition across Chinese Ports

(1) (2)

ln(Imbalancenmt) 0.065*** 0.003*
(0.002) (0.001)

ln(Imbalancenmt)× ln
(
wi
pi

)
0.0095*** 0.0064***

(0.001) (0.001)

Port-good-year FE Y Y
Origin-good-year FE Y Y
Port-origin FE Y

Obs. 4,917,896 4,917,336
R-squared 0.79 0.81

Notes: This table shows the estimation results of equation (8). The dependent variable is the

log value of good i’s import value from an origin country (n) to a Chinese port (m) in year

t. Imbalancenmt is the bilateral trade imbalance between an origin (n)-port (m) pair in year t,

measured by the total export of m to n divided by the total import of m from n. “wi/pi” is the

weigh-to-value ratio of good i from the Colombian data. Standard errors are clustered at goods,

origin level. *** p<0.01, ** p<0.05, * p<0.1.
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sector can be used either as intermediate inputs or for final consumption. Scraps

(non-treated) are generated in the consumption process and are used as inputs of

the recycling sector to produce recycled scraps.

Motivated by the data patterns described earlier, the green sector produces

goods that have a low weight-to-value ratio (i.e., light), whereas both the polluting

sector and the recycling sector produce heavy goods. The international shipping

cost per unit of heavy goods is assumed to depend on the size of the bilateral trade

balance, whereas for simplicity, that for light goods does not.

We denote these four sectors as j ∈ {NT,RS, P,G}. The distinction between

recycled scraps and the polluting good (the other heavy goods) is important in

our exercise. First, not all pollution-generating inputs in the data are recycled

scraps. Second, because the Chinese import ban applies to industrial scraps but

not to other pollution-generating material, we would like to allow for substitution

between industrial scraps and other pollution-generating material in the policy

simulations.

Denote Cj
n as the quantity of final consumption of sector j. The final goods

bundle is defined as

Cn =
∏
j

(
Cj
n

)αjn (9)

where αjn is the preference over sector j, with j ∈ {NT,RS, P,G}, and
∑

j α
j
n = 1.

For each tradable sector j ∈ {RS, P,G}, Cj
n is an aggregation of a continuum of

varieties i:

Cj
n = [

∫ 1

0

(Qj
n(i))

σ−1
σ di]

σ
σ−1 (10)

Here i denotes a variety and σ > 0 is the elasticity of substitution among the

varieties. Qj
n(i) is the amounts of variety i in sector j consumed by country n.

For each tradable good, country n will consume variety i from the cheapest source

country given the bilateral trade cost, as explained later.

The representative household’s utility is defined as

lnCn − η ln ∆n, (11)
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where ∆n is the pollution in country n, and η measures the dis-utility per unit

of pollution. The production in the polluting sector generates pollution, but the

producers in the sector do not take the household’s dis-utility of pollution into

account unless a pollution tax is imposed.

Non-treated scrapped goods are generated at a fixed proportion φ > 0 of

the final consumption goods. So the total scraps generated is Kn = φCn. The

recycling sector buys them from the household to produce the recycled scraps.

The aggregate expenditure of the consumer, denoted by Xn, is

Xn = wnLn +XK
n − Sn, (12)

where Sn is the trade surplus of country n. PK
n is the price of the scrap goods, and

XK
n = PK

n Kn is the income from selling the scraps and wnLn is the labor income.

D.2 Production

We describe the production in the four sectors one by one. Their input-output

relationships are summarized in Table 11.

Non-tradable sector In the non-tradable sector, a representative firm pro-

duces a homogeneous non-tradable good only using the labor force with a constant

marginal production cost technology:

cNTn = PNT
n = κNTn wn,

where cNTn is the marginal cost in country n, PNT
n is the price of the non-tradable

good, and κNTn measures the labor required per unit of non-tradable goods (i.e. the

sector productivity in country n). The non-tradable goods are used as intermediate

inputs of the polluting sector and green sector, as well as the final consumption.

Recycling sector In the recycling sector, each country has a continuum of firms

and each firm can produce one variety i. The output of each firm is aggregated

to the sector bundle using the aggregator the same as equation (10). Recycling
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sector goods will be used as inputs for the polluting sector and green sector, as

well as the final consumption.

To produce, a firm combines untreated scraps and labor to generate recycled

scraps. The cost of a unit output for firm i is

1

zRSn (i)

1

ZRS
n

(
βRSn

)−βRSn (
1− βRSn

)−(1−βRSn )
(wn)β

RS
n
(
PK
n

)(1−βRSn )︸ ︷︷ ︸
cRSn

(13)

Here βRSn is the labor share in this sector and ZRS
n is the sector’s aggregate pro-

ductivity. zRSn (i) represents the firm productivity in country n, which follows

a Frechet distribution Pr
(
zRSn (i) ≤ z̄

)
= exp

(
−Tnz̄−θ

)
, where Tn is country n’s

aggregate productivity, and θ is the shape parameter. The term after firm pro-

ductivity in (13), denoted as cRSn , is the cost to produce a unit sector output in

RS in country n.

Following Eaton and Kortum (2002), firms from country n face an iceberg cost

τRSdn ≥ 1 to sell their products to another country d. Then the probability that

country n exports to country d in sector RS is

πRSdn =
Tn
(
cRSn τRSdn

)−θ∑N
n=1 Tn (cRSn τRSdn )

−θ (14)

The price index of the recycling sector in the country n is

PRS
n = Γ

(
θ − σ + 1

θ

)( N∑
d=1

Td
(
cRSd τRSnd

)−θ)− 1
θ

(15)

where Γ is a gamma function.26

Note that τRSdn is a function of the bilateral trade balance as estimated in the

previous empirical section, since recycled scraps are heavy goods.

Denote by Y RS
n the gross output value of the recycling sector. Then from the

production technology assumption in (13), the expenditure on untreated scraps

26It is assumed that θ − σ + 1 > 0.
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K in the production is

XK
n =

(
1− βRSn

)
Y RS
n (16)

Assuming Kn = φCn, the price of the scrap, PK
n , in country n satisfies

PK
n

PC
n

=
XK
n /Kn

Xn/Cn
=

XK
n

φXn

(17)

Here PC
n = κCn

∏
j (P j

n)
αjn is the price of the final consumption and κCn =

∏
j (αjn)

−αjn

is a constant, which are derived from (9).

Polluting sector In the polluting sector, all assumptions are similar to the re-

cycling sector, except that: (1) Firms in this sector combine labor and products

from all sectors j (not the non-treated scraps K) to produce; (2) Pollution will be

generated, and the pollution intensity increases with units of recycled scraps used

in the production; (3) Firms produced in the country n face environmental regula-

tion tn and can choose pollution abatement. The output from the polluting sector

again is used as inputs for other sectors and consumed in the final consumption.

To save space, we directly write down the cost of producing a unit of output

in this sector and country n as:

cPn = tnκ
P
n (wn)β

P
n

∏
j

(
P j
n

)γPjn (1−βPn )
(18)

where κHn is a constant.27 γHjn is the share of sector j in the material bundle of

the polluting sector.
∑

j γ
Pj
n = 1. tn ≥ 1 measures the strength of environmental

regulation (one plus the pollution tax). In other words, tn = 1 represents no

environmental regulation. 28

A higher pollution tax can induce more pollution abatement. The emission

27In a Cobb-Douglas function, κjn = 1

Zj
n

(
βjn
)−βj

n Πj′

(
γjj

′

n

(
1− βjn

))−γjj′
n (1−βj

n)
, where Zjn is

the productivity of sector j in country n .
28We do not introduce pollution in the recycling sector because the available country-level

pollution data does not allow us to apportion it to different sectors, especially the recycling
sector.
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per output xn is given by

xn = t−ψnn δ
(
qP,RSn

)
(19)

where ψn > 0 measures the efficiency of the abatement technology in country n.

A larger ψn means more abatement at a given level of pollution tax. The function

δ(.) represents the pollution per unit of output in the absence of environmental

regulation. We allow δ to depend on qP,RSn , the units of recycled scraps used to

produce one unit of the polluting sector’s out, and assume δ′ ≥ 0 (recycled scraps

may be more polluted).

Green sector For the green sector, all assumptions are similar, but firms do not

generate any pollution. The key difference is that the output from this sector is

assumed to be light so that the trade cost does not depend on the trade imbalance.

Again we directly write down the cost of one unit of output in this sector as

cGn = κGn (wn)β
G
n

∏
j

(
P j
n

)γGjn (1−βGn )
(20)

where κGn and γGjn are defined in a similar way.

Given the firm productivity in all three tradable sectors follows the same

Frechet distribution, the probability that country n exports tradable good j ∈

{RS, P,G} to the country d shares the same functional forms:

πjdn =
Tn
(
cjnτ

j
dn

)−θ∑N
n=1 Tn

(
cjnτ

j
dn

)−θ (21)

where τ jdn ≥ 1 is the ice-berg trade cost. The key is that the trade cost τPdn and

τRSdn are endogenous, which depends on the trade imbalance between d and n, but

τGdn is assumed to be exogenous.

The aggregate price index P j
n in these 3 sectors is:

P j
n = Γ

(
θ − σ + 1

θ

)( N∑
d=1

Td
(
cjdτ

j
nd

)−θ)− 1
θ

(22)

45



D.3 Endogenous shipping cost and equilibrium

Denote the aggregate expenditure and the gross output in sector j by Y j
n and

Xj
n, respectively. Country n’s trade surplus against country d in percentage term,

denoted by Bdn, is defined as the ratio of country n’s exports to d and country d’s

exports to n:

Bdn =

∑
j π

j
dnX

j
d∑

j π
j
ndX

j
n

We assume that the import cost of country d from n is

τ jdn = Bνj

dnτ̄
j
dn (23)

where τ̄ Inm is the trade cost if Bdn = 1. νj is the elasticity of the import cost of

country d from country n with respect to the bilateral imbalance Bdn.

Our earlier empirical results show that an increase in the trade surplus tends

to reduce the unit shipping cost on the importing side of the surplus country.

Furthermore, both polluting goods and industrial scraps tend to have a higher

weight-to-value ratio on average. To capture these features, we assume vj > 0

for both polluting goods and recycled scraps. On the other hand, for green goods

(which are light), we assume vG = 0 for simplicity.

The aggregate expenditure of each sector j can be written as

Xj
n = αjnXn +

∑
j′ 6=RS

(
1− βj′n

)
γj
′j
n Y j′

n , (24)

where αjnXn is the value absorbed by the aggregate demand. The second term

is the sum of the values used as intermediate inputs, where γj
′j
n denotes sector

j’s share in sector j′’s input bundle, and
∑

j γ
j′j
n = 1. (Recall that the recycling

sector uses only scraps and labor as inputs.)

The labor share in each country and sector is

wnL
j
n = βjnY

j
n (25)
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To close the model, the market for each sector j has to clear:

Y j
n =

N∑
d=1

πjdnX
j
d, (26)

Finally, the current account for each country n satisfies

∑
j

Y j
n =

∑
j

Xj
n + Sn (27)

The total pollution is

∆n = xnY
P
n (28)

An equilibrium given Sn and tn is a set of wage wn, the price of the scrap

PK
n , the expenditures XK

n , X
j
n, Xn, the gross output Y j

n , trade cost τ jdn, and labor

market allocations Ljn that solves equations (16), (17), (23), (24), (25), (26), (27),

and also clears the labor market
∑

j L
j
n = Ln.

D.4 Calibration

In principle, solving for the equilibrium requires the knowledge of the parameter

values of τ̄ jdn, κjn, tn, Tn, φ, Ln, βjn, γj
′j
n , αjn, vj, θ, and σ as well as the aggregate

imbalance Sn. To solve for pollution and its dis-utility, we further need to know

ψn, δn and η. A challenge is that the existing literature does not give us a precise

guide on many of these parameter values.

A technique known as “hat algebra”, proposed by (Dekle et al. (2007)), allows

one to perform many counter-factual thought experiments - small changes from

the current equilibrium - without having to know many parameter values. An

important insight from this technique is that τ̄ jdn, κ
j
n, tn and Tn are contained in

the current trade shares, φ is contained in the current expenditure on scraps, Ln is

within the total labor income, and Sn is observed in the data. Hence parameters

left to calibrate are only βjn, γj
′j
n , αjn, vj, θ, and σ, and the parameters directly

related with pollution ψn, δn and η.29

29The technique is popular in the international trade literature. We are willing to provide the
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To calibrate our model, we use the world input-output (WIOD) data in 2014

and consider a three-country world: China, the U.S., and the ROW (an aggrega-

tion of all other countries). We aggregate all service sectors into a non-tradable

sector.

For the three tradable sectors, we take the recycling and waste collection indus-

try in the input-output table as the recycling sector in the model. The polluting

sector in the model is an aggregation of those manufacturing and mining industries

in the input-output table whose pollution intensities exceed the median value. The

green sector is an aggregation of the remaining industries.

We match our model with the data as follows:

Parameters related with pollution, ψn, δn and η We first explain how

we estimate the pollution intensity equation (29) to get ψn and δn. We focus on

four air pollutants measures: SOX, NOX, and VOC, measured in metric tons, plus

PM10 measured in µg/m3.30 Using estimates of willingness to pay (WTP) for each

pollutant, we convert these pollutants in a given country into a one-dimensional

measure of “pollution”, denoted as ∆n in the model.

We estimate the pollution intensity equation (19) and ψn. Assuming

ln δn = ln b+ ρRS ln

(
QP,RS
n

Y P
n

)
+ εn

where b is a constant, QP,RS
n is the total weight of the recycled scraps used in

the production of polluting good, with QP,RSn

Y Pn
as the weight of the recycled scraps

per unit of output, and εn is a random noise, then ρRS captures the elasticity

of pollution intensity to recycled scraps. Assuming further that environmental

regulation stringency, ERSn, is proportional to tn, and the abatement technology

ψn is the same across countries, our model implies that the pollution intensity ∆n

Y Pn

follows

ln
∆n

Y P
n

= ln (b)− ψ ln (ERSn) + ρRS ln

(
QP,RS
n

Y P
n

)
+ εn (29)

details of this analysis upon request.
30Data source: data.oecd.org/air/air-and-ghg-emissions.htm
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By our estimation, ψ = 1.63 and ρRS = 0.12.

The dis-utility of pollution η is challenging to pin down. Existing estimates

of willingness to pay (WTP) for reducing pollution are highly dispersed.31 One

of the most cited estimates is Bajari et al. (2012), which uses a hedonic pricing

approach and accounts for time-varying correlated unobservable, The WTPs for

PM10 (1µg/m3), SOX (1 ppb), and the VOC+NOX (1 ppb) are estimated to be

US$103, 178 and 180 (in 2003 dollars), respectively (Table 6 in their paper).

As SOX, VOC, and NOX in China and many other countries are often reported

in weight, we need to convert weight of emission to degree of concentration. As the

US EPA reports both concentration and tonnage of these pollutants, we estimate a

simple linear relationship between the two using US data over 1990-2018. We find

that one million tons of SOX, and VOC+NOX emissions increase the concentration

by 4.56 ppb, and 0.99 ppb, respectively. The monetary costs of one million tons

of emission of SOX, and VOC+NOX are estimated to be 811.68 (178×4.56), and

178.2 (180×0.99), respectively. We then use the WTP estimates to convert all

pollutants to a single pollution measure in the model ∆n in US dollar term. This

means that η = 1, when the US consumption bundle is used as the numeraire.

Based on our computation, the per capita monetary loss from pollution in China

is about US$2600 per year, while the corresponding per capita loss in the United

States is about US$900 per year.

It is hard to say whether our estimate of the dis-utility of pollution is too high

or too low. On the one hand, the available data only covers four air pollutants,

PM10, SOX, NOX, and VOC, but the list of health-harming pollutants are surely

longer than these. By ignoring other pollutants, we may have underestimated η.

On the other hand, our estimate is based on US data. Bayer et al. (2016) show

that the WTP of pollution is lower for developing countries. Thus, we may have

overestimated η in the other economies.

31For instance, the WTP for reducing TSP emission reported in Smith and Huang (1995)
varies from US$ -239.8 to US$ 1,807. Sieg et al. (2004) Similarly, the WTP estimates for ozone
reduction vary from US$ 8 to US$ 181.
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Other parameters We calculate βjn and γj
′j
n from the value-added share and

intermediate input shares in each country/sector, and αjn from the expenditure

share of the country n’s GDP. The estimates are reported in Table 12 and Table

13.

We set vj based on the estimates from our empirical section. In particular,

vj = 0.501 for the polluting and recycling sector as in column 4 of Table 2. As

explained earlier, for simplicity, vj = 0 for light (green) goods. Finally, we set

θ = 3.6 and σ = 3.79 as Bernard et al. (2003). We then can solve for all variables

except for pollution.

D.5 Welfare and Policy Analysis

China is the home country in the model. Using calibrated parameters, we perform

counterfactual thought experiments. We first quantify the welfare cost of a trade

surplus due to an endogenous response of the shipping cost to a trade surplus.

To do so, we study what happens when we set ν = 0, i.e., making the shipping

cost independent of the trade surplus. Relative to endogenous shipping costs, the

import shipping cost rises and the export shipping cost declines. For any variable

x, Table 14 shows the percentage change (x̂− 1)× 100.32

With exogenous shipping costs, the imports of scraps and heavy materials

(goods from the polluting sector) decline by 0.029% and 0.035%, respectively (in

the second and third row). A higher unit shipping cost on the import side increases

the input costs of the polluting industry, which reduces pollution by 0.028% (the

first row). As this also reduces the labor demand, the wage declines by 0.032%.

While the consumption goes down (in the last row), the negative effect on utility

is more than offset by a reduction in pollution. The net effect is an increase in the

overall utility by 0.027%.

With an endogenous shipping cost, a change in trade imbalance alters import

composition. We consider a small perturbation of China’s trade surplus from

the current level by ±1% (and adjusting the trade deficits of USA and ROW

32 x̂ = x′

x , where x is the current equilibrium value, and x′ is the counter-factual value.
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accordingly),33 and compare the changes in pollution externality in China un-

der ν = 0.501 (endogenous shipping cost) and ν = 0 (exogenous shipping cost),

respectively.

The results are presented Figure 4. On the x-axis, the change in Chinese

aggregate trade surplus varies from -1% to 1% relative to the observed Chinese

aggregate surplus. We then trace the changes in pollution in the two cases (en-

dogenous versus exogenous shipping cost) on the vertical axis. As we can see, a

higher trade surplus is associated with more pollution. Importantly, the increase

in pollution is greater when the trade cost is endogenous (the solid line). For in-

stance, with a greater trade surplus by 1%, the pollution would increase by 0.32%

when v = 0.501, but by 0.21% only when ν = 0 (dashed line). In other words,

the endogenous shipping cost channel raises pollution by an extra 1/3 (0.32−0.21
0.32

),

compared to the case of an exogenous shipping cost.

The interaction between a trade surplus and pollution generates a new welfare

effect of a change in a trade imbalance that is new to the existing literature on

current account imbalances.34 Our calibration results suggest that the effect is also

economically significant. When China’s trade surplus increases by 1%, it suffers a

welfare loss from the pollution externality by 0.32%; about 1/3 of the welfare loss

is due to the endogenous shipping channel.35

Banning Scrap Imports vs. Stronger Environmental Regulation

We now examine the effects of public policies that aim to improve upon the out-

comes. In particular, we analyze a ban on imports of all scraps, representing

an actual Chinese policy put in place in 2018. We compare it with a policy of

imposing stronger environmental regulation.36

33The relative changes in the trade deficits in USA and ROW are proportional to their trades
with China.

34In the NBER working paper version, we present a dynamic small open economy model that
endogenizes the current account imbalance and find that the welfare channel of our endogenous
shipping channel is also quantitatively important.

35Gourinchas and Jeanne (2006) and Mendoza et al. (2007)) estimate that the welfare loss of
a current account imbalance associated with financial frictions is about 1% of the consumption.

36In both counter-factual experiments, we hold constant the value of the trade imbalance. As
the value of the scrap imports accounts for less than 1% of the total imports in the data, banning
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The results of the import ban are reported in the second column of Table

14. The ban raises the input cost of the polluting sector, which in turn generates

several effects. First, the output in the polluting sector decreases, and the pollution

in turn decreases by 0.42%. The import of polluting goods increases by 0.008%

due to a substitution effect between polluting goods and scraps. Second, the

scrap import ban reduces the labor demand and causes a decline in wages by

0.25%. Meanwhile, the price of the consumption bundle rises, and the consumption

declines. The overall utility rises by about 0.41%, driven by lower pollution.

In the third column, we report a sensitivity analysis by setting ρRS = 0 when

banning scrap imports. That is, we consider an alternative assumption that re-

cycling is no more pollution-intensive than other heavy goods production. In this

case, pollution only declines by 0.29%. The overall utility increases by 0.28%,

which is only about 2/3 of the utility change in the second column.

Finally, in the fourth column, we raise the pollution tax by 1%. Not sur-

prisingly, the pollution declines by 1.22%. The scrap imports also decline since

they are mainly used in pollution-intensive production. However, the imports of

non-scrap heavy goods increase to substitute for the lower scrap imports. Since

the pollution tax increases the production cost of the polluting sector, the wage

declines by 1.13% and the consumption declines by 0.83%. Nonetheless, thanks

to reduced pollution, the overall utility increases by 0.4%. Comparing to the sec-

ond column, we see that the scrap import ban is comparable to a 1 percentage

point increase in pollution tax in terms of the effect on utility. However, a higher

pollution tax can yield even better welfare gains.37

the scrap imports is assumed to have no effect on the value of China’s overall trade surplus.
37With a higher pollution tax, the trade imbalance may change. While we ignore this effect

here, the dynamic model in the NBER working paper version takes this into account. Further-
more, while the ”hat algebra” technique is not conducive to deriving the optimal pollution tax,
the dynamic model in the NBER working paper version suggests that the import ban is much
inferior to an optimal pollution tax.
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Table 11: Production Structure of the Model

Sector Inputs Outputs

Recycle sector Untreated scraps from consumption K Recycled scraps Y RS

+ labor (a heavy material)

Polluting sector Heavy materials(RS,P)+light material(G) Polluting output Y P (a heavy
+non-tradable material(NT)+labor material) +pollution

Green sector Heavy materials(RS,P)+light material(G) Green output Y G (light
+non-tradable material(NT)+labor material)

Non-tradable sector Labor Non-tradable output Y NT

Final consumption Outputs of all above 4 sectors Consumption goods+scraps

Table 12: Calibration Result: γ

Source sector Usage sector CHN USA ROW

NT NT 0.485 0.786 0.707
G G 0.198 0.078 0.107
P P 0.315 0.128 0.174
RS NT 0.006 0.019 0.022
NT G 0.180 0.318 0.300
G P 0.549 0.423 0.461
P NT 0.269 0.257 0.229
RS G 0.003 0.005 0.011
NT P 0.193 0.290 0.317
G NT 0.171 0.183 0.149
P G 0.634 0.519 0.521
RS P 0.008 0.012 0.015

Notes: This table shows the γj
′j
n in the calibration.
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Table 13: Calibration Result: α and β

α β

CHN
NT 0.307 -
G 0.374 0.261
P 0.310 0.211
RS 0.008 0.360

USA
NT 0.719 -
G 0.128 0.404
P 0.140 0.337
RS 0.012 0.538

ROW
NT 0.581 -
G 0.206 0.356
P 0.190 0.300
RS 0.018 0.498

Notes: This table shows the αjn and βjn in the calibration.

Table 14: Welfare Comparisons of Counterfactual Policy Experiments

(1) (2) (3) (4)
China ν = 0 Ban scrap Ban scrap imp t̂CHN = 1%

import ρRS = 0

Pollution -0.028 -0.425 -0.299 -1.225
Scrap import -0.029 0.000 0.000 -0.106
Heavy goods import -0.035 0.009 0.011 4.208
Wage -0.032 -0.257 -0.257 1.133
U 0.027 0.413 0.283 0.402
C -0.003 -0.018 -0.019 -0.849

Notes: This table presents the model predictions about the Chinese economy for different coun-

terfactual experiments. In column 1, the Chinese shipping cost is exogenous ν = 0. In column

2, a ban on scrap imports is imposed. In column 3, a ban on scrap imports + low pollution

intensity of recycling scraps (ρRS = 0) is imposed. In column 4, the Chinese environmental

regulation increases by 1%.
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Figure 4: The Pollution and Trade Surplus
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NOTE: This figure shows the pollution change in China when v = 0.501 and v = 0 under

different trade-surplus values.
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