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Abstract

This paper contributes to an ongoing debate on volatility dynamics. We introduce a discrete-time
fractional stochastic volatility (FSV) model based on the fractional Gaussian noise. The new model
has the same limit as the fractional integrated stochastic volatility (FISV) model under the in-fill
asymptotic scheme. We study the theoretical properties of both models and introduce a memory
signature plot for a model-free initial assessment. A simulated maximum likelihood (SML) method,
which maximizes the time-domain log-likelihoods obtained by the importance sampling technique,
is employed to estimate the model parameters. Simulation studies suggest that the SML method
can accurately estimate both models. Our empirical analysis of several financial assets reveals
that volatilities are both persistent and rough. It is persistent in the sense that the estimated
autoregressive coefficients of the log volatilities are very close to unity, which explains the observed
long-range dependent feature of volatilities. It is rough as the estimated Hurst (fractional) parameters
of the FSV (FISV) model are significantly less than half (zero), which is consistent with the findings
of the recent literature on ‘rough volatility’.

JEL classification: C15, C22, C32
Keywords: Fractional Brownian motion; stochastic volatility; memory signature plot; long memory;
asymptotic; variance-covariance matrix; rough volatility

1 Introduction

Volatility is central to risk management, portfolio allocation, and the pricing of financial assets. Tem-

poral dependence in volatility has been one of the most studied problems in financial econometrics.

One prominent feature of volatility dynamic is its slowly decaying autocovariance function (Ding et al.,

1993). As illustrated in Figure 1, the sample autocovariance of the daily log squared returns of the

S&P 500 index over the period from January 2, 1964 to October 1, 2020 remains non-negligible even

at a very large lag order. This feature of volatility is often referred to as ‘long-range dependence’.

Motivated by this empirical feature, many long memory volatility models have been put forward. In

the discrete-time framework, we have, for example, the fractional integrated generalized autoregressive

*Liu acknowledges the financial support from the National Natural Science Foundation of China (No.72003171). Shi
acknowledges research support from the Australian Research Council under project No. DE190100840. Yu acknowl-
edges the support from the Lee Foundation. Xiaobin Liu, School of Economics, Zhejiang University, Hangzhou, 310058,
China. Email: liuxiaobin@zju.edu.cn. Shuping Shi, Department of Economics, Macquarie University; E-mail: shup-
ing.shi@mq.edu.au. Jun Yu, School of Economics and Lee Kong Chian School of Business, Singapore Management
University, 90 Stamford Rd, Singapore 178903. Email: yujun@smu.edu.sg.
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Figure 1: The sample autocovariance of the daily log squared (demeaned) returns of the S&P 500 index
over the period from January 2, 1964 to October 1, 2020.

conditional heteroskedastic (FIGARCH) model (Baillie et al., 1996; Bollerslev and Mikkelsen, 1996)

and the fractional integrated stochastic volatility (FISV) models (Breidt et al., 1998; Harvey, 2007;

Hurvich and Soulier, 2009). In both models, the long-range dependent feature of volatilities is captured

by a fractional integrated process (Granger and Joyeux, 1980) which takes the form of

(1− L)dut = et, et
iid∼ N (0, 1) , (1)

with L being the lag operator, and the fractional parameter d ∈ (0, 0.5). This process has a long

memory in the sense that its autocovariances are all positive and decay at a hyperbolic rate.

Similar developments were observed in the continuous-time volatility literature, enabling more accu-

rate pricing of derivative securities (Comte and Renault, 1996, 1998). For example, the continuous-time

fractional stochastic volatility (fSV) model considered in Comte and Renault (1998) takes the following

expression:
dyt = σ∗eht/2dWt

dht = γhtdt+ σ∗ηdB
H
t
, (2)

where yt is the log price of an asset at period t, ht is the log volatility of dyt, Wt is a standard Brownian

motion, and BH
t is a fractional Brownian motion (fBM).1 The model considered in Rosenbaum (2008)

is similar to (2) but with a more general drift function for dht. The BH
t process is a zero mean Gaussian

with an autocovariance function of

E(BH
t B

H
s ) =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
. (3)

See, e.g., Mandelbrot and Van Ness (1968). The parameter H is known as the Hurst or memory parame-

ter in the literature2 and assumed to be H ∈ (0.5, 1) in Comte and Renault (1996, 1998) and Rosenbaum

(2008). Under this setting of H, the fBM has a long memory in the sense that its autocovariance func-

tion decays at a hyperbolic rate and the one-sided long-run variance
∑∞

n=0 E
(
BH

1 (BH
n+1 −BH

n )
)

=∞.

1The fractional Brownian motion becomes the standard Brownian motion Wt when H = 0.5 because E(BHt B
H
s ) =

min{t, s}.
2It is sometimes called the self-similarity parameter because BHat

d
= aHBHt for any a ∈ R+.
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The long-range dependence of volatilities is captured by either the fractional integrated process (1)

with d ∈ (0, 0.5) or the fBM process BH
t with H ∈ (0.5, 1). In fact, by letting d = H − 1/2, one can

show under the in-fill asymptotic scheme the log volatility process of the FISV model converge to ht

in the fSV model (Davydov, 1970; Tanaka, 2013). The volatility trajectory is smooth and its long-run

variance diverges to infinity under those model specifications.

There is, however, a burgeoning literature documenting evidence that the Hurst parameter of the

fSV model is smaller than 0.5 for volatility time series and volatility surface over the past several years.

See, for example, Gatheral et al. (2018); Fukasawa et al. (2019); Wang et al. (2019); Bennedsen et al.

(2017); Bolko et al. (2020). Interestingly, when H ∈ (0, 0.5) the fBM is negatively correlated, the

sample path generated by BH
t is rough, and the long-run variance (both two-sided and one-sided) of

fBM tends to a constant. In other words, contradicting the traditional view on volatility dynamics, they

believe the sample path of the volatility process is rough. As a result, a new generation of stochastic

volatility (SV) models, coined in Gatheral et al. (2018) as ‘rough volatility models’, appeared both in

the literature on volatility modeling and the literature on asset pricing. A publicly accessible website

contains more than 100 papers written on this subject matter.3 Several studies document the superior

performance of the rough SV model in forecasting volatility relative to long-memory volatility models

(Gatheral et al., 2018; Bennedsen et al., 2017; Wang et al., 2019). Gatheral et al. (2018) show via

simulations that standard tests (Andersen et al., 2001, 2003) might identify ‘spurious long memory’

when the data are actually generated from a rough volatility model.

The contribution of this paper is four folded. First, we consider an Euler discretized version of the

fSV model, with a more general setting of the Hurst parameter. We refer to the discrete-time model as

FSV. Unlike Comte and Renault (1996, 1998) and Rosenbaum (2008), we assume the Hurst parameter

H ∈ (0, 1). Properties of autocovariances and long-run variance of log volatilities are examined for

various ranges of H (i.e., H ∈ (0, 0.5), H = 0.5, and H ∈ (0.5, 1)) and compared with those of the

FISV model with d ∈ (−0.5, 0), d = 0, and d ∈ (0, 0.5). The long-run variance of log volatilties diverges

under the specfication of FSV with H ∈ (0.5, 1) or under the FISV specification with d ∈ (0, 0.5) and

converges to a constant when H ∈ (0, 0.5] or d ∈ (−0.5, 0].

Second, we introduce a memory signature plot that provides a simple and ‘model-free’ assessment for

the memory parameter (H or d). The memory signature plot displays the dynamic of the cumulative

sums of autocovariances of log volatilities, which is expected to diverge when H ∈ (0.5, 1) or d ∈
(0, 0.5) and be bounded otherwise. As such, it can reveal the possible range of the memory parameter.

Surprisingly, despite the considerable empirical evidence on long memory volatilities (Andersen and

Bollerslev, 1997; Breidt et al., 1998; Bollerslev and Wright, 2000; Andersen et al., 2003; Bollerslev

et al., 2000), we do not find divergences of the cumulative sums for all daily data series considered in

our empirical studies. For example, Figure 2 shows the memory signature plots of the S&P 500 index

from 1964 to 1988 with K = 200, K = 1, 000, and K = 2, 500. The y-axes are the cumulative sums

of autocovariances
∑K

k=0 γ̂(k) with γ̂(k) being the sample autocovariance of log volatilities at lag order

3https://sites.google.com/site/roughvol/home/risks-1.
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k, and the x-axes are K. As we can see,
∑K

k=0 γ̂(k) rises rapidly initially but eventually declines as K

increases. This pattern is in strong agreement with those of the FSV model when H ∈ (0, 0.5) and the

FISV model when d ∈ (−0.5, 0).

Figure 2: The memory signature plots of the S&P 500 from 1964 to 1988: the y-axes are the cumulative
sums of autocovariances

∑K
k=0 γ̂(k) and the x-axes are the value of K.

(a) K = 200 (b) K = 1000 (c) K = 2500

Third, we propose a simulated maximum likelihood (SML) method to estimate the FSV and FISV

models. The likelihood functions are computed in the time domain with an importance sampling

technique, instead of the frequency domain as in Fukasawa et al. (2019) for the fSV model and Breidt

et al. (1998) for the FISV model.4 We treat the log volatility as a latent variable and construct the

likelihoods from log prices. This is in contrast to Gatheral et al. (2018) and Wang et al. (2019) who

assume ht is observable. Our approach is also different from the quasi-maximum likelihood (QML)

method of Fukasawa et al. (2019) and the generalized method of moment (GMM) of Bolko et al.

(2020), where the spectral density is obtained from realized volatilities and the moments is obtained

from integrated volatilities, respectively. Since the time-domain likelihood function is maximized, the

SML method is expected to be asymptotically efficient. Also, one can use the classical asymptotic

theory to make statistical inferences. Our simulation results show that the SML method can provide

reasonably accurate estimations for all model parameters in both FSV and FISV.

Lastly, our estimation results reveal that volatilities are both persistent and rough. With a less

stringent assumption on the memory parameter and a new estimation method, we show that the ‘long-

range dependence’ of volatilities is due to the autoregressive coefficient that is very close to unity (a.k.a.

persistent). Meanwhile, roughness is also present in the data and driven by the memory parameter

H < 0.5 or d < 0. Specifically, we estimate both the FSV and FISV models with the SML method

for four financial assets (S&P 500, Nikkei 225, EURO/USD, and GBP/USD) over two 25-year periods.

4Fukasawa et al. (2019) propose to approximate the Whittle likelihood (i.e., the likelihood function in the frequency
domain) of increments of the log daily realized volatilities from the fSV model with γ = 0. Breidt et al. (1998) propose to
maximize the Whittle likelihood of returns from the FSV model given by equations (16)-(17). Unfortunately, Dahlhaus
(1988) shows that the Whittle estimators may perform poorly in finite samples for autoregressive processes, particularly
when the characteristic root of the time series is close to unity, which is the exact situation we are facing empirically, as
it will become clear later.
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The first period starts from their first available observation from DataStream (which varies for each

data series) and lasts for 25 years. This sample period allows us to connect with the earlier empirical

literature on long memory volatilities. The second sample is on the most recent 25 years running from

1996 to 2020, aligning with the more recent research on rough volatility. The estimated autoregressive

parameters of log volatilities fall between 0.99 and unity for all data series, suggesting very persistent

dynamics of log volatilities. The estimated Hurst parameters of the FSV model are less than 0.5, ranging

between 0.08 to 0.25, while the estimated fractional parameters of the FISV model are negative and

fall between −0.27 to −0.49. Our analysis supports the recent literature on rough volatility.

Our paper is related to Bennedsen et al. (2017) where two continuous-time SV models are introduced

to incorporate roughness and persistence in volatilities. The first model is based on the Cauchy process

of Gneiting and Schlather (2004) and found to perform well in volatility-forecasting (Bennedsen et al.,

2017). The second one is a Brownian semistationary (BSS) process originally introduced in Barndorff-

Nielsen and Schmiegel (2008). In Bennedsen et al. (2017), roughness occurs at short lags of the

autocorrelations of volatilities, while long memory is at longer lags. Both the Cauchy and BSS processes

can generate roughness and long memory in volatilities if the kernel function is selected carefully. Unlike

the fSV model that has been used to price options (Bayer et al., 2016), how to apply the Cauchy process

and BSS to pricing financial assets is yet to know.

The paper is organized as follows. In Section 1, we provide a primer on the fractional Gaussian noise

that is the basis for the fBM. Section 2 introduces the FSV model and derives its statistical properties,

and Section 3 is on the FISV model. Section 4 discusses the SML method in the time domain. Section

5 checks the performance of the proposed SML estimator using data simulated from the FSV and FISV

models. Section 6 applies the FSV and FISV models and the SML estimation method to the log prices

of several financial assets, including stock markets and foreign exchange markets. Section 7 concludes

the paper. The appendix collects the proof of theoretic results and additional results for the empirical

and simulation studies.

2 A Primer on Fractional Gaussian Noise

Let ηHt denote a fractional Gaussian noise and γη (k) = Cov
(
ηHt , η

H
s

)
with k = |t − s| be the autoco-

variance of ηHt . The autocovariance has the following expression,

γη (k) =
1

2

[
(k + 1)2H + (k − 1)2H − 2k2H

]
. (4)

The variance γη (0) = 1. When H = 1/2, the fractional Gaussian noise becomes the standard Gaussian

noise and γη (k) = 0 for all k 6= 0. If H 6= 1/2, γη(k) 6= 0 and, by the first order Taylor series expansion,

γη (k) =
1

2
k2H

[(
1 +

1

k

)2H

+

(
1− 1

k

)2H

− 2

]
∼ H(2H − 1)k2H−2 (5)

for large k. The autocovariance γη (k) decays at a hyperbolic rate as k goes to infinity. See the top row

of Figure 3 for an illustration.
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When H > 1/2, the one-sided long-run variance is approximately

∞∑
k=0

γη (k) ∼ H (2H − 1)
∞∑
k=0

k2H−2 →∞,

and hence, the two-sided long-run variance
∑∞

k=−∞ γη (k) = 1 + 2
∑∞

k=1 γη (k)→∞.5 When H < 1/2,

the one-sided long-run variance of ηHt is

∞∑
k=0

γη (k) = 1 +
∞∑
k=1

1

2

[
(k + 1)2H + (k − 1)2H − 2k2H

]
= 0.5,

and the two-sided long-run variance is

∞∑
k=−∞

γη (k) = 1 + 2
∞∑
k=1

γη (k) = 0.

See the bottom row of Figure 3 for an illustration of the one-sided long-run variance.

In summary, ifH > 1/2, ηHt is positively autocorrelated and has a long memory since
∑∞

k=−∞ γη (k) =

∞, whereas if H < 1/2, ηHt is negatively autocorrelated and anti-persistent with
∑∞

k=−∞ γη (k) = 0.

(a) γη(k): H = 0.2 (b) γη(k): H = 0.5 (c) γη(k): H = 0.9

(d)
∑K
k=0 γη (k): H = 0.2 (e)

∑K
k=0 γη (k): H = 0.5 (f)

∑K
k=0 γη (k): H = 0.9

Figure 3: The dynamics of γη(k) (with k = 1, · · · , 100) and
∑K

k=0 γη (k) (with K = 0, · · · , 100).

5By the Cauchy condensation test,
∑∞
k=0 k

2H−2 converges if and only if
∑∞
k=0 2k(2H−1) converges.
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3 Fractional Stochastic Volatility Model

Assume there are T + 1 equidistant log prices over the period [0, N ]. The interval between observations

is ∆ and N = T∆. Log returns rt∆ = yt∆ − y(t−1)∆ are available on grid t∆ with t = 1, 2, . . . , T .

Applying the Euler approximation to model (2), we have the following discrete-time fractional SV

model

rt∆ = σeht∆/2εt, (6)

ht∆ = βh(t−1)∆ + σ∗ηη
H
t∆, (7)

where β = 1 + γ∆, εt
iid∼ N (0, 1), ηHt∆ = BH

t∆ − BH
(t−1)∆ is a fractional Gaussian noise, and σ = σ∗

√
∆.

We assume γ < 0 in subsequent analysis. Note that, by the self-similarity property of fBM,

Cov
(
ηHt∆, η

H
s∆

)
= ∆2Hγη (k) with k = |t− s|.

When the time interval N is fixed and ∆→ 0, the AR coefficient β = 1 + γN/T → 1. The dynamic

of ht∆ is local-to-unity with the local parameter γN . When ∆ is fixed and γ → 0, the process ht∆

follows a fractional random walk process and its first difference ht∆ − h(t−1)∆ is a fractional Gaussian

noise.

3.1 Properties of ht : when the initialization is in the infinite past

We discuss the dynamic properties of ht∆ in this section. By recursive substitution, equation (7) can

be rewritten as

ht∆ = σ∗η

∞∑
i=0

βiηH(t−i)∆. (8)

Assume s ≥ t. The autocovariance between ht∆ and hs∆, denoted by γh (k) ≡ Cov (ht∆, hs∆) with

k = s− t, is6

γh (k) = σ∗2η ∆2H
∞∑
i=k

∞∑
j=0

βi+j−kγη (|i− j|) . (9)

Standard Gaussian noise: H = 0.5

We have the basic SV model when H = 0.5. The autocovariance γη (k) = 0 for all k 6= 0 under this

setting. It follows from (9) that the autocovariance function of ht∆ is

γh (k) = σ∗2η ∆
∞∑
i=k

β2i−kγη (0) = σ∗2η ∆
∞∑
i=k

β2i−k = σ∗2η ∆
βk

1− β2
. (10)

This autocovariance function decreases geometrically as k increases. The variance of ht∆ is γh (0) =

σ∗2η ∆/
(
1− β2

)
. The one-sided long-run variance is

∞∑
k=0

γh (k) =
σ∗2η ∆

(1− β2) (1− β)
.

6We slightly abuse the notations as we let γη (k) ≡ Cov (ηt, ηs) but let γh (k) ≡ Cov (ht∆, hs∆).
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Fractional Gaussian noise: H 6= 0.5

Now, we consider the case of H 6= 0.5. The ηHt process follows a fractional Gaussian noise under this

setting. It has a long memory when H > 0.5 and is anti-persistent when H < 0.5. We now explore the

properties of γh (0) and γh (k) with both H < 0.5 and H > 0.5.

Theorem 3.1 Let ςH,β,s ≡
∑∞

l=s β
lγη (l). When H 6= 0.5, the variance is

γh (0) =
σ∗2η ∆2H

1− β2
[1 + 2ςH,β,1] <∞, (11)

and the autocovariance function is

γh (k) =
σ∗2η ∆2H

1− β2
βk

[
1 +

k∑
l=1

β−lγη (l) + β−2kςH,β,k+1 + ςH,β,1

]
<∞. (12)

The one-sided long-run variance is

∞∑
k=0

γh (k) <∞ if H < 0.5 and

∞∑
k=0

γh (k) =∞ if H > 0.5.

When β ∈ (0, 1) and H > 0.5, γh (k) > 0 for any k.

According to Theorem 3.1, the behavior of ht∆ is similar to that of ηHt∆ in the sense that the one-

sided long-run variance is bounded when H < 0.5 and diverges to infinity when H > 0.5. Equations

(11) and (12) provide a convenient way for the computation of γh(k) and hence, the variance-covariance

matrix of ht∆ which is required for the SML method detailed in the next section.

As an illustration, we plot the dynamics of γh(k) and
∑K

k=0 γh (k) with various settings of H. We

set the maximum number of l in ζH,β,s to 10, 000 and consider the following parameter setting: N = 15,

σ∗η = 1.5, γ = −1, and ∆ = 1/256, according to the empirical results. The autocovariance functions

of ht∆ against the lag order k are displayed in the top row of Figure 4, with H = {0.2, 0.5, 0.9}, while

the cumulative sums of autocovariances are plotted in the second row. The autocovariance function

decays as k increases. The rate of decaying of the autocovariance is the slowest when the process has

a long memory (i.e., H = 0.9) and fastest when it is rough (i.e., H = 0.2). The cumulative sums of

autocovariances converge when H ≤ 0.5 and diverge when H = 0.9. When H = 0.2, the cumulative

sums first go up and then go down. This feature generally holds for any H ∈ (0, 0.5).

3.2 Properties of ht : when the initialization is at period zero

Suppose the ht process is initiated at period zero, instead of the infinite past as in (8). One can rewrite

equation (7) as

ht∆ = σ∗η

t∑
i=1

βt−iηHi∆ + h0,

8



(a) γh(k): H = 0.2 (b) γh(k): H = 0.5 (c) γh(k): H = 0.9

(d)
∑K
k=0 γh (k): H = 0.2 (e)

∑K
k=0 γh (k): H = 0.5 (f)

∑K
k=0 γh (k): H = 0.9

Figure 4: The dynamics of γh(k) (with k = 0, · · · , N/∆) and
∑K

k=0 γh (k) (with K = 0, · · · , N/∆):
γ = −1, σ∗η = 1.5, ∆ = 1/256, and N = 15.

with h0 being the initial value. The autocovariance between ht∆ and hs∆ is

Cov (ht∆, hs∆) = σ∗2η ∆2H
t∑
i=1

s∑
j=1

βt+s−i−jγη (|i− j|) . (13)

Consider the long-span asymptotic that ∆ is fixed and N → ∞. The autocovariance function has the

following limiting properties.

Theorem 3.2 Under the long-span asymptotic scheme (∆ fixed, N →∞, and γ < 0), as t→∞, when

H = 0.5,

Cov (ht∆, hs∆)→ σ∗2η ∆
βk

1− β2
;

when H 6= 0.5, the variance is

γh (0)→
σ∗2η ∆2H

1− β2
(1 + 2ςH,β,1) , (14)

and the autocovariance function is

γh (k)→
σ∗2η ∆2H

1− β2
βk

[
1 +

k∑
l=1

β−lγη (l) + β−2kςH,β,k+1 + ςH,β,1

]
. (15)

Theorem 3.2 shows that the autocovariance function (13) converges to (9) under the long-span

asymptotic scheme. As such, we refer to (13) as the finite sample autocovariance, with (9) being its

9



asymptotic counterpart. Figure 5 shows the finite sample autocovariance function when t = 1, 500,

1000, along with their corresponding asymptotic function. The model parameter settings are the same

as in those for Figure 4. It is obvious that the speed of convergence depends on H. The gaps between

the finite sample and asymptotic autocovariance functions are wider when H = 0.9 than those when

H = {0.2, 0.5}.

Figure 5: The convergence of the finite sample autocovariance function: γ = −1, σ∗η = 1.5, and
∆ = 1/256.

(a) H = 0.2 (b) H = 0.5 (c) H = 0.9

4 Fractional Integrated Stochastic Volatility Model

The fractional integrated stochastic volatility model of Breidt et al. (1998) takes the expression

rt∆ = σeht∆/2εt, εt
iid∼ N (0, 1) , (16)

ht∆ = ρh(t−1)∆ + σuut, (17)

where ut is a stationary fractional integrated process and takes the form of (1). The model of Harvey

(2007) is special case of the above model with ρ = 0 in (17). Here, we allow the fractional parameter d

to be between -0.5 and 0.5, that is, d ∈ (−0.5, 0.5).

The fractional difference operator (1− L)d in (1) has the expression

(1− L)d =
∞∑
j=0

Γ(j − d)

Γ(−d)Γ(j + 1)
Lj ,

where Γ (·) is a gamma function defined by

Γ (x) :=


∫∞

0 tx−1e−tdt, x > 0
∞, x = 0
x−1Γ (1 + x) , x < 0

.

The autocovariance function of ut, denoted by γu (k), is

γu (k) := E(utut−k) =
(−1)k Γ (1− 2d)

Γ (k − d+ 1) Γ (1− k − d)
. (18)

10



See, e.g., Page 468 in Brockwell and Davis (1987).

The FISV model is closely linked to the fractional stochastic volatility model (2). By letting

d = H − 1/2, ρ = eγ∆, σ2
u =

e2γ∆ − 1

2γ
σ∗2η ,

we have the following weak convergence. As ∆→ 0,

δHΓ(H + 1/2)

TH
hbTsc∆ ⇒ hs , ∀ 0 ≤ s ≤ 1 , (19)

where δH =
√

2HΓ(3/2−H)
Γ(H+1/2)Γ(2−2H) , hbTsc∆ is the process defined in (17) with b.c denoting the integer part

of the argument, and hs is the process defined in equation (2). See Davydov (1970) and Tanaka (2013).

4.1 Properties of ht∆

In analogy to the FSV model, let the autocovariance γh (k) ≡ Cov (ht∆, hs∆). It either takes the

finite-sample form

γh (k) = σ2
u

t∑
i=1

s∑
j=1

ρt+s−i−jγu (|i− j|) , (20)

or the asymptotic form

γh (k) = σ2
u

∞∑
i=k

∞∑
j=0

ρi+j−kγu (|i− j|) , (21)

with γu(·) defined in (18). From Hosking (1981, Lemma 1(c)), the asymptotic autocovariance (21) has

the expression

γh (k) =
σ2
u

1− ρ2
γu (k) [F (1, d+ k; 1− d+ k; ρ) + F (1, d− k; 1− d− k; ρ)− 1] , (22)

where F (·) being the hypergeometric function.7 It could also take the form of Sowell (1992, eq. (8)-(9))

γh (k) =
σ2
u

ρ (1− ρ2)
γu (k)A (k, ρ) , (23)

A (k, ρ) = B (k, 1)
[
ρ2C (1− k, ρ) + C (k − 1, ρ)− 1

]
, (24)

where B (k,m) = Γ(1−d−k)Γ(d−k+m)
Γ(d−k)Γ(1−d−k+m) , and C (s, ρ) = F (d+ s, 1; 1− d+ s; ρ).

Both asymptotic expressions require the evaluation of the hypergeometric function F (·), which

could be computational costly when the dimension of the variance-covariance matrix is large. The speed

of computation, however, can be improved significantly with the approximation method proposed by

Chung (1994). Specifically, we rewrite A (k, ρ) in (24) as

A (k, ρ) = ρ [C (k, ρ) + C (−k, ρ)− 1] , (25)

7See, for example, Gradshteyn and Ryzhik (2014).
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and compute C (k, ρ) recursively using the formula

C (k, ρ) = C (T, ρ)
ρT−k

B (T, T − k)
+

T−k−1∑
i=1

ρiB (−k, i) + 1, (26)

C (−k, ρ) = C (0, ρ)
ρk

B (0, k)
+
k−1∑
i=1

ρiB (k, i) + 1. (27)

With the proposed approximation of (25)-(27), one would only need to compute the hypergeometric

function twice (as opposed to T times), namely C (T, ρ) and C (0, ρ), and hence, is able to reduce the

computational cost substantially.

Figure 6: The asymptotic and finite-sample autocovariance γh (k) of FISV: ρ = 0.996, σu = 0.1∆d, and
∆ = 1/256.

(a) Asy: d = −0.3 (b) Asy: d = 0 (c) Asy: d = 0.4

(d) Finite v.s. Asy: d = −0.3 (e) Finite v.s. Asy: d = 0 (f) Finite v.s. Asy: d = 0.4

For comparison, we compute the autocovariance function γh (k) using the finite sample autocovari-

ance (20) and the four different approaches for the asymptotic autocovariance: equation (21) with a

truncation of 10, 000 for i and j (labeled as ‘Asy (truncation)’), equation (22) (labeled as ‘Asy (Hosk-

ing)’), equations (23)-(24) (labeled as ‘Asy (Sowell)’), and equations (23) and (25)-(27) (labeled as ‘Asy

(Chung)’). The fractional parameter takes three values d = {−0.3, 0, 0.4}. The remaining parameters

are set according to our empirical results, namely ∆ = 1/256, ρ = 0.996, and σu = 0.1∆d taking values

{0.528, 0.1, 0.011} when d = {−0.3, 0, 0.4}. From the first row of Figure 6, there is no visual difference

in the computed asymptotic covariance functions under this parameter setting. Similar to the FSV

model, the convergence speed of the finite sample covariance is slow when d = 0.4 and faster when

d = −0.3. See the second row of Figure 6. Figure 7 displays the cumulative sums of autocovariances

12



∑K
k=1 γh (k) of ht∆ under the FISV specification. We can see that

∑K
k=1 γh (k) diverges to infinity when

d > 0 and converges when d ≤ 0.

Figure 7: The asymptotic cumulative sums of autocovariances
∑K

k=1 γh (k) of FISV: ρ = 0.996, σu =
0.1∆d, and ∆ = 1/256.

(a)
∑K
k=1 γh (k): d = −0.3 (b)

∑K
k=1 γh (k): d = 0 (c)

∑K
k=1 γh (k): d = 0.4

Finally, it is important to note that the hypergeometric function could be of extremely large mag-

nitude when k is large and ρ is far from unity. Suppose d = 0.4 and k = 2000. While F (1, d + k; 1 −
d + k; ρ) = 99.06 when ρ = 0.99, it takes value of 5.21 × 1034 when ρ = 0.93. The large magnitude of

F (·) leads to extremely large values of the autocovariance functions of Hosking (1981), Sowell (1992),

and Chung (1994), as shown in Figure 8 where we set ρ = 0.93 and d = 0.4. The remain parameters

are the same as those in Figure 6. Similar pattern is observed for the case of d = −0.3. Consequently,

we recommend the use of ‘asy (truncation)’ for the asymptotic autocovariance function of the FISV

model.

5 Memory Signature Plot

To help us evaluate the possible range of H or d, we introduce a memory signature plot for volatilities.

Let xt∆ = log (rt∆ − r̄)2 with r̄ being the sample mean of rt∆. Under the model specification of (6)-(7)

and (16)-(17), we have

xt∆ = log
(
σ∗2∆

)
+ ht∆ + log ε2

t = µ+ ht∆ + ωt, (28)

where µ = log
(
σ∗2∆

)
+ E

[
log ε2

t

]
and ωt = log ε2

t − E
[
log ε2

t

]
. Since εt ∼ N(0, 1), log ε2

t is a log χ2
(1)

distribution with E
[
log ε2

t

]
= −1.27 and V

(
log ε2

t

)
= π2/2 ≈ 4.9. Therefore, xt∆ is the ht∆ process

plus an i.i.d non-Gaussian noise, with E (xt∆) = µ and

V ar (xt∆) = V ar (ht∆) + π2/2 and Cov (xt∆, xs∆) = Cov (ht∆, hs∆) . (29)

The autocovariances of ht∆ are identical to those of the log squared (demeaned) returns xt∆. De-

spite that the conditional variance ht∆ is unobservable, xt∆ can be easily obtained from returns. Con-

sequently, we can compute the sample autocovariance of ht∆ using xt∆, which is denoted by γ̂(k) with k

being the lag order. The memory signature plot shows the dynamic of
∑K

k=0 γ̂(k) as K increases, with

13



Figure 8: The asymptotic covariance functions of ht∆: ρ = 0.93, d = 0.4, σu = 0.1∆d, and ∆ = 1/256.

∑K
k=0 γ̂(k) on the y-axis and K on the x-axis. The limit of

∑K
k=0 γ̂(k) is equivalent to the one-sided

long-run variance
∑∞

k=0 γh(k) (when T →∞ followed by K →∞).

Importantly, from our previous discussions and as shown in Figure 4 and 7, the one-side long-run

variance diverges to infinity when the process ht has a long memory (i.e., H > 0.5 in FSV and d > 0

in FISV) and is bounded when H ≤ 0.5 in FSV or d ≤ 0 in FISV. The memory signature plot could,

therefore, provide a simple assessment for the range of the memory parameters (i.e., H and d). While

it is very common to plot γ̂(k) against k in the volatility literature (e.g., Ding et al. (1993); Bollerslev

and Mikkelsen (1996); Breidt et al. (1998)), we argue that it is more informative to plot
∑K

k=0 γ̂(k)

against K. This is because
∑K

k=0 γ̂(k) is directly related to
∑∞

k=0 γ(k), which has distinctive features

under various specifications of the memory parameter.

6 Simulated Maximum Likelihood

Let r = (r1∆, r2∆, · · · , rT∆)′ and h = (h1∆, h2∆, · · · , hT∆)′. Model parameters are collected in θ, that

is, θ = (σ, β, ση, H) for FSV and θ = (σ, ρ, σu, d) for FISV. Under the model specification of (6)-(7) or

(16)-(17), the joint probability density function (pdf) of returns is

f (r|θ) =

∫
f (r;h|θ) dh =

∫
f (r|h, θ) f (h|θ) dh, (30)
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where the conditional density f (r|h, θ) = ΠT
t=1φ

(
rt∆; 0, σ2eht∆

)
with φ

(
·; 0, σ2

)
being the pdf of a

normal distribution with mean zero and variance σ2 and the pdf of h

f (h|θ) = (2π)−T/2 |Ξθ|−1/2 exp

(
−1

2
h′Ξθh

)
, (31)

with Ξθ being a T × T matrix whose (t, s)th element is given by Cov (ht∆, hs∆) for t, s = 1, 2, · · · , T .

6.1 Likelihood Evaluation

The exact likelihood f (r|θ) involves a T -dimensional integral which makes it extremely difficult to

evaluate. A natural alternative way of evaluating the likelihood function is by Monte Carlo simula-

tions. One can draw h(s) from the multivariate normal distribution N (0,Ξθ) with s = 1, · · · , S and

approximate the likelihood function via the following ‘brutal force’ Monte Carlo method,

1

S

S∑
s=1

f
(
r|h(s), θ

)
. (32)

The distribution of h and the pdf f (h|θ) in (31) are obtained directly from the statistical assumption

of the model. This importance sampler, however, ignores the crucial information brought by the data r

regarding the latent variable h. As such, the approximation in (32) is extremely inefficient and requires

an enormous N to gain a reasonable accurate approximation of f (r|θ) (Liesenfeld and Richard, 2003).

To improve the estimation efficiency, we employ the importance sampling technique to approximate

the log-likelihood function, in the spirit of Shephard and Pitt (1997) and Durbin and Koopman (1997)

for non-Gaussian and nonlinear state space models. Although our model is not a state-space model

as h does not have the Markovian property unless H = 0.5 or d = 0, the idea of Shephard and Pitt

(1997) and Durbin and Koopman (1997) is general enough to be applicable to our models. Maximizing

the log-likelihood leads to the SML estimators of the parameters. This method has been successfully

applied to the basic SV model (i.e., H = 1/2 in the FSV model and d = 0 in the FISV model) by

Sandmann and Koopman (1998) and Yu (2011).

The idea of the importance-sampling-based approximation of the log-likelihood is to sample h(s) from

an alternative multivariate normal distribution with mean h∗θ (r) and variance-covariance matrix Σ∗θ (r),

denoted by N (h∗θ (r) ,Σ∗θ (r)). Let g (·) and G (·) be the pdf and cdf of N (h∗θ (r) ,Σ∗θ (r)), respectively.

The pdf f (r|θ) can be approximated by the sample average of
{
f
(
r;h(s)|θ

)
/g
(
h(s)

)}S
s=1

, that is,

f (r|θ) =

∫
f (r;h|θ)
g (h)

dG (h) ' 1

S

S∑
s=1

f
(
r;h(s)|θ

)
g
(
h(s)

) . (33)

Importantly, unlike the ‘brute force’ technique (32),
{
h(s)

}S
s=1

are drawn from a proposal distribu-

tion N (h∗θ (r) ,Σ∗θ (r)) that is obtained by the Laplace approximation. In detail, we compute h∗θ (r) as

the modal configuration of log (f (r;h|θ)) such that

h∗θ (r) = arg max
h

log (f (r;h|θ)) , (34)
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where log (f (r;h|θ)) has the form

log f (r;h|θ) =
T∑
t=1

log
(
φ
(
rt; 0, σ2eht

))
+ log (f (h|θ))

= −T log (2π)− T

2
log
(
σ2
)
− 1

2

T∑
t=1

ht∆ −
1

2

T∑
t=1

zt∆ −
1

2
log |Ξθ| −

1

2
h′Ξ−1

θ h,

with zt∆ = r2
t∆/

(
σ2eht∆

)
. The variance-covariance matrix Σ∗θ (r) is calculated as

Σ∗θ (r) =

[
−∂

2 log (f (r;h|θ))
∂h∂h′

]−1
∣∣∣∣∣
h=h∗θ(r)

. (35)

Clearly, the proposal distribution N (h∗θ (r) ,Σ∗θ (r)) depends on the data r.

The SML estimator of the FSV or FISV model is denoted by θ̂ and defined as

θ̂ = arg max
θ∈Θ

log

[
1

S

S∑
s=1

exp

(
log

f
(
r;h(s)|θ

)
g
(
h(s)

) )]
, (36)

where Θ is the parameter space and

log
f
(
r;h(s)|θ

)
g
(
h(s)

) = −T
2

log (2π)− T log
(
σ2
)
− 1

2

T∑
t=1

h
(s)
t∆ −

1

2

T∑
t=1

zt∆ −
1

2
log |Ξθ| −

1

2
h(s)′Ξ−1

θ h(s)

+
1

2
log |Σ∗θ (r)|+ 1

2

(
h(s) − h∗θ (r)

)′
Σ∗θ (r)−1

(
h(s) − h∗θ (r)

)
. (37)

The estimated volatility sequence ĥ is taken as h∗
θ̂

(r), which is the modal configuration of log f
(
r, h|θ̂

)
using equation (34) with θ replaced by θ̂. Clearly, ĥt∆, the tth element in ĥ, uses all the information in

{rt∆}Tt=1 and hence, is a smoothed estimate of ht∆. Correspondingly, the quantity exp (ht∆/2), which

follows a lognormal distribution, can be estimated as

exp

h∗(t)θ̂
(r)

2
+

Σ
∗(t,t)
θ̂

(r)

8

 , (38)

where h
∗(t)
θ̂

(r) is the tth element in h∗
θ̂

(r), Σ
∗(t,t)
θ̂

(r) is the tth diagonal element in Σ∗
θ̂
(r) (computed from

(35) with h∗θ (r) replaced by h∗
θ̂

(r)). To obtain the filtered estimates of ht∆ and exp (ht∆/2), one can

apply the Laplace approximation analogously to log f
(
r∆, ..., rt∆, h∆, ..., ht∆|θ̂

)
instead.

6.2 Other Implementation Details

The optimization problem (34) can be solved numerically with the Newton-Raphson’s method. Specif-

ically, we start from an initial proposal h
(0)
t and iterate recursively with the formula

h
(k+1)
t = h

(k)
t −

[
∂2 log f (r;h|θ)

∂h∂h′

∣∣∣∣
ht=h

(k)
t

]−1 [
∂ log f (r;h|θ)

∂h

∣∣∣∣
ht=h

(k)
t

]
,
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where
∂ log f (r;h|θ)

∂h
= −1

2
+

1

2
z − h′Ξ−1

θ and
∂2 log f (r;h|θ)

∂h∂h′
= −1

2
diag (z)− Ξ−1

θ

with z = [z1∆, z2∆, · · · zT∆].

The distributional approximation of h|(θ, r) or the optimization of (34) is conducted independently

for every given θ. To ensure the smoothness of the likelihood function (33) with respect to θ,8 it is

essential that all importance sampling sequences h(i) are obtained as transformations of a common

sequence of random draws. This is the so-called Common Random Numbers’ technique. For our

application, we use a fixed random seed to draw a random sequence of dimension T × N from the

standard normal distribution, which is then transformed to have the distribution of N (h∗θ (r) ,Σ∗θ (r)).

Furthermore, to prevent overflow of the likelihood value, we apply some simple rescaling techniques.

Let w(s) = f
(
h(s)|θ

)
/g
(
h(s)

)
. The log-likelihood function can be rewritten as

log

[
1

S

S∑
s=1

exp

(
log

f
(
r;h(s)|θ

)
g
(
h(s)

) )]
= log

[
1

S

S∑
s=1

f
(
r|h(s), θ

)
w(s)

]

= log

(
1

S

S∑
s=1

w(s)

)
+ log

[
S∑
s=1

f
(
r|h(s), θ

)
w∗(s)

]

= log

(
1

S

S∑
s=1

exp
(
A(s)

))
+ log

[
S∑
s=1

exp
(
B(s)

)
w∗(s)

]
, (39)

where A(s) = logw(s) = log f
(
h(s)|θ

)
− log g

(
h(s)

)
, B(s) = log f

(
r|h(s), θ

)
, and

w∗(s) =
w(s)∑S
s=1w

(s)
=

exp
(
A(s)

)∑S
s=1 exp

(
A(s)

) .
The computation of the likelihood involves exponential functions of A(s) and B(s), which could poten-

tially result in a numeric value that is outside of the range of computer precision and hence compromise

the reliability of the program. To avoid such an overflow condition, we rescale A(s) and B(s) such that

w∗(s) =
exp

(
A(s) + C1

)∑S
s=1 exp

(
A(s) + C1

) ,
log

(
1

S

S∑
s=1

exp
(
A(s)

))
= −C1 + log

(
1

S

S∑
s=1

exp
(
A(s) + C1

))
,

log

[
S∑
s=1

exp
(
B(s)

)
w∗(s)

]
= −C2 + log

[
S∑
s=1

exp
(
B(s) + C2

)
w∗(s)

]
,

where C1 = −maxs
{
A(s)

}
+ 1 and C2 = −maxs

{
B(s)

}
+ 1. It follows that the log-likelihood function

log

[
1

S

S∑
s=1

exp

(
log

f
(
r;h(s)|θ

)
g
(
h(s)

) )]
8Smoothness is essential for the numerical convergence of an optimization algorithm. See, for example, Gouriéroux

and Monfort (1997).
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= −C1 − C2 + log

(
1

S

S∑
s=1

exp
(
A(s) + C1

))
+ log

[
S∑
s=1

exp
(
B(s) + C2

) exp
(
A(s) + C1

)∑S
s=1 exp

(
A(s) + C1

)] .
The evaluation of the likelihood function involves the variance-covariance matrix Ξθ, which could be

of very high dimension when the sample size is large. Indeed, it will be computational costly to calculate

the matrix element-by-element. The speed of computation, however, can be improved substantially with

matrix-based languages. Table 1 lists the time required for computing the variance-covariance matrix

in MATLAB with a standard available laptop (CPU@ 1.90GHZ) for the FSV and FISV models, which

are quite fast even when T = 7, 680.

Table 1: Time required for computing Ξθ (in seconds)

Computation time Ξθ : FSV Ξθ : FISV
Finite Asy. Finite Asy (trunc.)

T = 2, 560 0.81 0.16 0.80 5.94
N = 7, 680 7.21 1.25 7.38 6.86

No asymptotic distribution has been developed for the SML estimator for general hidden non-

Markov models in the literature.9 It is a common practice to assume that the standard ML asymptotic

theory remains valid for the SML estimator (e.g., Durbin and Koopman (1997)). Heuristically, let θ0

be the true value of θ and θ̂ be an interior point of the compact set Θ. Applying the first-order Taylor

expansion to 1
T

∂ log f(r|θ̂)
∂θ at θ0 and using (36), we have, as T →∞,

√
T
(
θ̂ − θ0

)
=

−∂2 log f
(
r|θ̃
)

∂θ∂θ′

−1

√
T
∂ log f (r|θ0)

∂θ

d→ N
(
0, H−1JH−1

)
,

where H = plim
[
−∂2 log f(r|θ0)

∂θ∂θ′

]
, J = limE

[
∂ log f(r|θ0)

∂θ
∂ log f(r|θ0)

∂θ′

]
, and θ̃ is a value on the line joining

θ̂ and θ0. Therefore, standard asymptotic theory for the Wald test and the likelihood ratio test are

applicable to the basic SV, FSV, and FISV models.

7 Simulation Studies

In this section, we investigate the estimation accuracy of the SML method for the FSV and FISV

models. We report median deviations and median absolute deviations (MAD) of each parameter (i.e.,

median(θ̂i) − θi and median|θ̂i −median(θ̂i)|), with the biases and root mean square errors (RMSE)

provided in the appendix. It is well-known that the median is less sensitive than the mean to outliers,

which are likely to exist due to the failure of numerical convergence of some cases in the simulation.

7.1 Fractional Stochastic Volatility Model

Log returns are generated from equation (6), while the latent variable ht∆ is from (7), with the fractional

Gaussian noise generated using fast Fourier transform (Kroese and Botev, 2015). Model parameters

9Douc et al. (2011) provide the consistency of the maximum likelihood estimator for general hidden Markov models,
which include nonlinear and non-Gaussian state-space models as special cases.
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are set according to our empirical estimation results in Section 8 as follows

β = 0.9961, σ∗ = 0.1, σ∗η = 1.5,∆ = 1/256.

We examine the performance of the estimation method using both the asymptotic covariance and

its finite sample form. Different values of Hurst parameter H are considered. Specifically, we set

H = {0.1, 0.2, 0.5, 0.7, 0.9}. The time span considered are 5 and 10 years, implying 1280 and 2560

observations of rt∆. Figure 9 shows two typical realized data series from this data generating process

with N = 5. We set the Hurst parameter H to 0.2 in panel (a) and 0.7 in panel (b).

(a) FSV: H = 0.2 (b) FSV: H = 0.7

Figure 9: Typical realized trajectories of FSV: β = 0.996, σ∗ = 0.1, σ∗η = 1.5,∆ = 1/256, N = 5.
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Table 2: Estimated model parameters of FSV: median and median absolute deviation. The true model parameters are β = 0.9961, σ∗η =
1.5, σ∗ = 0.1.

β̂ σ̂∗η Ĥ σ̂∗

Median Bias MAD Median Bias MAD Median Bias MAD Median Bias MAD
T = 1280

Finite sample variance-covariance matrix
H = 0.1 0.9924 -0.0037 0.0035 1.5579 0.0579 0.1384 0.1292 0.0292 0.0211 0.1011 0.0011 0.0092
H = 0.2 0.9927 -0.0034 0.0032 1.5969 0.0969 0.1942 0.2239 0.0239 0.0395 0.0981 -0.0019 0.0124
H = 0.5 0.9940 -0.0021 0.0033 1.6390 0.1390 0.4501 0.5782 0.0782 0.1502 0.0972 -0.0028 0.0126
H = 0.7 0.9960 -0.0001 0.0021 1.4427 -0.0573 0.4540 0.7231 0.0231 0.1223 0.0962 -0.0038 0.0098
H = 0.9 0.9969 0.0008 0.0014 1.2470 -0.2530 0.4166 0.8990 -0.0010 0.0480 0.0993 -0.0007 0.0098
Asymptotic variance-covariance matrix
H = 0.1 0.9932 -0.0029 0.0039 1.5404 0.0404 0.1331 0.1276 0.0276 0.0180 0.1024 0.0024 0.0096
H = 0.2 0.9927 -0.0034 0.0036 1.5767 0.0767 0.1912 0.2190 0.0190 0.0372 0.1010 0.0010 0.0123
H = 0.5 0.9934 -0.0027 0.0029 1.5595 0.0595 0.3644 0.5264 0.0264 0.1248 0.1002 0.0002 0.0178
H = 0.7 0.9953 -0.0008 0.0017 1.3097 -0.1903 0.3453 0.6206 -0.0794 0.1033 0.1036 0.0036 0.0254
H = 0.9 0.9967 0.0006 0.0011 0.8472 -0.6528 0.2075 0.6694 -0.2306 0.0957 0.1096 0.0096 0.0347

T = 2560
Finite sample variance-covariance matrix
H = 0.1 0.9934 -0.0027 0.0022 1.4698 -0.0302 0.0763 0.1250 0.0250 0.0157 0.1002 0.0002 0.0056
H = 0.2 0.9946 -0.0015 0.0014 1.5227 0.0227 0.1202 0.2175 0.0175 0.0314 0.0978 -0.0022 0.0074
H = 0.5 0.9953 -0.0008 0.0025 1.5136 0.0136 0.3312 0.4978 -0.0022 0.0981 0.0965 -0.0035 0.0152
H = 0.7 0.9965 0.0004 0.0019 1.3823 -0.1177 0.3752 0.6373 -0.0627 0.1278 0.0977 -0.0023 0.0122
H = 0.9 0.9966 0.0005 0.0009 1.3716 -0.1284 0.2272 0.9029 0.0029 0.0269 0.0988 -0.0012 0.0094
Asymptotic variance-covariance matrix
H = 0.1 0.9938 -0.0023 0.0024 1.4646 -0.0354 0.0782 0.1251 0.0251 0.0157 0.0998 -0.0002 0.0063
H = 0.2 0.9946 -0.0015 0.0015 1.5112 0.0112 0.1345 0.2152 0.0152 0.0297 0.0977 -0.0023 0.0078
H = 0.5 0.9949 -0.0011 0.0021 1.4617 -0.0383 0.2851 0.4835 -0.0165 0.0825 0.0956 -0.0044 0.0173
H = 0.7 0.9959 -0.0002 0.0013 1.2553 -0.2447 0.2435 0.6026 -0.0974 0.0758 0.0981 -0.0019 0.0288
H = 0.9 0.9972 0.0011 0.0009 0.8304 -0.6696 0.1601 0.6894 -0.2106 0.1064 0.1056 0.0056 0.0423
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Table 2 reports the median and MAD of the parameter estimates when using both asymptotic

covariance and its finite sample form. The number of replications for every parameter constellation is

100. The number of samples in the importance sampling is 1, 000. When H is far from unity, no matter

which form of the covariance is used, the estimation method performs well even when there are only

T = 1280 observations. The medians of all estimates are closed to the true values of parameters. The

MADs of σ∗ and β are stable regardless of the values of H; and the variation becomes smaller as the

sample size increases.

However, when H is close to unity, the SML method performs better by using the finite sample form

of the covariance. In particular, for H = 0.9, the median of estimates is very close to the true value

if we use the finite-sample form even when the sample size is only T = 1, 280. However, if we adopt

the asymptotic form, the bias is very large. Specifically, when T = 2, 560, the bias is −0.2106, which is

100 times larger than that of the finite sample counterpart. The reason is the divergence between the

finite-sample and asymptotic covariances, illustrated in Section 3.2. In summary, when H is close to

unity, the finite-sample form is more accurate than the asymptotic form.

Table B.7 reports the mean and the RMSE of estimates from all replications. We can find similar

patterns of simulation results as those in Table 2. Further, it is not surprising that the bias and RMSE

are larger than the median and MAD, as the median and MAD are less sensitive to outliers.

7.2 Fractional Integrated Stochastic Volatility Model

For the FISV model, the log returns are generated according to equation (16), while the latent variable

ht∆ is from (17), with ut∆ generated using equation (1). We set the model parameters according to

our empirical estimation results in Section 8, that is,

ρ = 0.9961, σ∗ = 0.1,∆ = 1/256, σu = 0.1∆d.

The fractional parameter d is set corresponding to the H values in the previous section, that is, d =

{−0.4,−0.3, 0, 0.2, 0.4}. The time span N is either 5 or 10 years (i.e., T = 1, 280 or 2, 560). Figure 10

shows two typical realized data series from this data generating process with N = 5.

We estimate the model parameters using the SML method with both the asymptotic and finite

sample variance-covariance matrixes. The number of replications and the number of samples in the

importance sampling are the same as those for the FSV model in the previous section. Table 3 reports

the median and MAD of the estimates, while Table B.8 shows the mean and RMSE.
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(a) d = −0.3 (b) d = 0.2

Figure 10: Two typical realized trajectories of the fractional integrated stochastic volatility model:
ρ = 0.9961, σ∗ = 0.1,∆ = 1/256, N = 5.
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Table 3: Estimated model parameters of FISV: median and median absolute deviation. The true model parameters are ρ = 0.9961, σ =
0.1, σu = 0.1∆d.

ρ̂ σ̂u d̂ σ̂
Median Bias MAD Median Bias MAD Median Bias MAD Median Bias MAD

T = 1280
Finite sample variance-covariance matrix
d = −0.4 0.9900 -0.0061 0.0041 0.7810 -0.1379 0.0387 -0.3276 0.0724 0.0314 0.1000 -0.0000 0.0131
d = −0.3 0.9919 -0.0042 0.0032 0.4897 -0.0381 0.0508 -0.2601 0.0399 0.0415 0.1005 0.0005 0.0155
d = 0 0.9946 -0.0015 0.0019 0.0901 -0.0099 0.0099 0.0311 0.0311 0.0311 0.1000 0.0000 0.0061
d = 0.2 0.9956 -0.0005 0.0023 0.0347 0.0017 0.0142 0.1821 -0.0179 0.1079 0.1006 0.0006 0.0068
d = 0.4 0.9969 0.0008 0.0018 0.0189 0.0080 0.0089 0.2685 -0.1315 0.0888 0.1004 0.0004 0.0050
Asymptotic variance-covariance matrix
d = −0.4 0.9904 -0.0057 0.0037 0.7839 -0.1350 0.0403 -0.3300 0.0700 0.0349 0.0999 -0.0001 0.0123
d = −0.3 0.9919 -0.0042 0.0030 0.4958 -0.0320 0.0516 -0.2671 0.0329 0.0388 0.0994 -0.0006 0.0131
d = 0 0.9927 -0.0034 0.0031 0.0997 -0.0003 0.0344 0.0252 0.0252 0.1010 0.1007 0.0007 0.0178
d = 0.2 0.9945 -0.0016 0.0019 0.0452 0.0122 0.0165 0.1339 -0.0661 0.0828 0.0994 -0.0006 0.0224
d = 0.4 0.9959 -0.0002 0.0015 0.0275 0.0166 0.0104 0.1918 -0.2082 0.0838 0.1001 0.0001 0.0269

T = 2560
Finite sample variance-covariance matrix
d = −0.4 0.9915 -0.0046 0.0025 0.7469 -0.1721 0.0242 -0.3133 0.0867 0.0211 0.1008 0.0008 0.0097
d = −0.3 0.9936 -0.0025 0.0021 0.4618 -0.0660 0.0295 -0.2492 0.0508 0.0340 0.0995 -0.0005 0.0102
d = 0 0.9946 -0.0015 0.0016 0.0938 -0.0062 0.0063 0.0311 0.0311 0.0155 0.1000 0.0000 0.0104
d = 0.2 0.9956 -0.0005 0.0022 0.0349 0.0020 0.0127 0.1712 -0.0288 0.1139 0.0988 -0.0012 0.0107
d = 0.4 0.9966 0.0005 0.0014 0.0167 0.0058 0.0055 0.3024 -0.0976 0.0872 0.1001 0.0001 0.0089
Asymptotic variance-covariance matrix
d = −0.4 0.9917 -0.0044 0.0025 0.7476 -0.1713 0.0272 -0.3147 0.0853 0.0224 0.1013 0.0013 0.0098
d = −0.3 0.9936 -0.0025 0.0020 0.4654 -0.0624 0.0284 -0.2485 0.0515 0.0338 0.0993 -0.0007 0.0107
d = 0 0.9941 -0.0020 0.0022 0.1036 0.0036 0.0331 0.0019 0.0019 0.0944 0.0984 -0.0016 0.0164
d = 0.2 0.9952 -0.0009 0.0016 0.0415 0.0085 0.0141 0.1315 -0.0685 0.1024 0.0982 -0.0018 0.0229
d = 0.4 0.9965 0.0004 0.0013 0.0231 0.0123 0.0068 0.2284 -0.1716 0.0770 0.0955 -0.0045 0.0306
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The SML method can provide reasonably accurate estimates for all parameters of the FISV model.

For parameter d, one can reduce the bias of the estimator by replacing the asymptotic variance-

covariance matrix with its finite sample counterpart when the long memory pattern is strong. For

instance, when d = 0.4 and T = 2, 560, the bias of d̂ is −0.0976 with the finite sample variance-

covariance matrixes, which is 0.074 closer to the true value than the case with the asymptotic matrix.

The estimation accuracy of d can be improved further by increasing the sample size. When d = 0.4,

and with the finite sample variance-covariance matrix, the bias of d̂ reduces from −0.1315 to −0.0976

when T increases from 1, 280 to 2, 560. There are no obvious changes in MAD under various settings.

8 Empirical Studies

In this section, we consider two stock indices and two major currency pairs. The stock indices are

the S&P 500 composite index and the NIKKEI 225 index, while the currency pairs are the Eurodollar

to USD (EURO/US) and the Great British Pound to USD (GBP/USD). Data are downloaded from

DataStream for the maximum available sample period at the daily frequency. The starting dates of each

data series are listed in Table 4. The sample terminates on October 1, 2020. We remove observations

on public holidays for the two equity indices.

Figure 9 displays log returns rt∆ in the left column and xt∆ as defined in (28) in the right column.

Table 4 provides the summary statistics of the data series. One can see that for all data series considered,

both rt and xt are left skewed and leptokurtic. The standard deviations of xt are greater than
√

4.9 ≈
2.21, consistent with (29).

Table 4: Summary statistics

rt xt
Start Date Mean Std. dev Skewness Kurtosis Mean Std. dev Skewness Kurtosis

S&P 500 2-Jan-1964 0.000 0.010 -1.03 29.53 -11.06 2.48 -1.12 5.60
NIKKEI 225 3-Apr-1950 0.000 0.012 -0.39 12.69 -10.67 2.46 -1.15 5.86
EURO/USD 2-Jan-1975 0.000 0.006 -0.06 6.56 -12.29 3.18 -1.75 6.61
GBP/USD 2-Jan-1975 -0.000 0.006 -0.27 10.31 -12.21 2.79 -1.15 4.37

For the model estimation, we consider two subsamples. Sample I starts from the beginning of the

sample period and lasts for 25 years, while Sample II is from 1996 to 2020. The exact sample periods

are listed in Table 5. The first subsample allows us to connect with the empirical literature on long

memory which mostly published in late 1990s or early 2000s (Andersen and Bollerslev, 1997; Breidt

et al., 1998; Bollerslev and Wright, 2000; Andersen et al., 2003; Bollerslev et al., 2000). The second

subsample period aligns with the empirical studies of recent publications or working papers on volatility

roughness (Gatheral et al., 2018; Wang et al., 2019; Fukasawa et al., 2019; Bennedsen et al., 2017; Bolko

et al., 2020).
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Table 5: Estimation sample periods

S&P 500 NIKKEI 225 EURO/USD GBP/USD
Sample I 1964-1988 1950-1974 1975-1999 1975-1999
Sample II 1996-2020 1996-2020 1996-2020 1996-2020

8.1 Memory Signature Plots

The memory signature plot offers a simple way to visualize the convergence of the cumulative sums

of autocovariances
∑K

k=0 γ̂(k). Recall that the long-run variance
∑∞

k=0 γh(k) diverges to infinity when

H > 0.5 in the FSV model or d > 0 in the FISV model, whereas it is bounded when H ≤ 0.5 or d ≤ 0.

Figure 11 displays the memory signature plots (with K = 2, 500) for the four data series over each of

the two subsamples. Contradict to the traditional view that
∑∞

k=0 γh(k) =∞, we find the convergence

of the cumulative sums of autocovariances for all data series over both sample periods, suggesting d ≤ 0

or H ≤ 0.5.

For the memory signature plot, it is crucial to set K to a large value to be consistent with the notion

of ‘long-run’ variance. Otherwise, one might draw a false conclusion when the convergence is slow. As

a case in point, suppose that one sets the value of K to be 100 or 200, as typically done in the literature

when plotting γh(k) (Ding et al., 1993; Breidt et al., 1998). One can see from Figure 11 that for all

sample periods considered,
∑K

k=0 γ̂(k) increases rapidly with K when K ≤ 200. Without seeing the

remaining part of the graph, one would probably conclude that the cumulative sums of autocovariances

diverge and that the long-run variance is unbounded, leading to the conclusion of H > 0.5 in the FSV

model or d > 0 in the FISV model. This probably can been seen better from Figure 2, where we plot∑K
k=0 γ̂(k) for Sample I of the S&P 500 index with K = 200, K = 1, 000, and K = 2, 500 on separate

graphs.

8.2 Estimation Results

Next, we fit the FSV and FISV models, along with the basic SV model, to each of the return series

over the two subsample periods. The log-likelihood functions are computed from the finite sample

variance-covariance matrices. For the numerical optimization of (36) for the FSV and FISV models,

we consider a set of 1, 000 initial values and choose the one with the largest log-likelihood value as the

initial input of the optimization.10

Estimation results are reported in Table 6. The top panel is for Sample I and the bottom panel is

for Sample II. First, the log-likelihood values (the second last column) of the FSV and FISV models

are always larger than those of the basic SV model.11 The log-likelihood ratio statistics (last column)

10The 1, 000 grid points considered cover a wide range of values of the model parameters. For the FSV model, the
autoregressive coefficient is from 0.925 to 0.995 with an increment of 0.01, i.e., β0 = {0.925 : 0.01 : 0.995}, the Hurst
parameter H0 = {0.05 : 0.1, 0.95}, and σ∗η0 = {0.5 : 1 : 10}. The grid settings for the FISV model are the same, namely

ρ0 = β0, d0 = H0 − 0.5, and σu0 = σ∗η0

√
∆. For both models, we set σ to be the estimate of the standard SV model.

11The estimated coefficients in the basic SV model for the S&P 500 returns are almost identical to those provided in
Sandmann and Koopman (1998) for the sample period running from 1928 to 1987.
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Figure 11: The memory signature plots: the y-axis is the cumulative sums
∑K

k=0 γ̂(k) and the x-axis
shows the value of K. The vertical line indicates the locations of K = 200.

(a) S&P 500: Sample I (b) S&P 500: Sample II

(c) NIKKEI 225: Sample I (d) NIKKEI 225: Sample II

(e) EURO/USD: Sample I (f) EURO/USD: Sample II

(g) GBP/USD: Sample I (h) GBP/USD: Sample II

suggest that by freeing up only the memory parameter (H or d), the FSV and FISV models improve

the likelihood value, in the log scale, by a value between 8 and 176. The 1% critical value for chi-square

distribution is 6.63, overwhelmingly rejecting the basic SV model in favor of the FSV or FISV model
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for all data series. This means that the FSV and FISV models are far more suitable for the data series.

Second, the estimated autoregressive coefficients from both the FSV and FISV models are between

0.990 and unity, suggesting that volatilities are highly persistent.12 Third, the estimated Hurst param-

eter H of the FSV model ranges between 0.12 and 0.22 for the first sample period and between 0.08

and 0.25 for the second sample period, which is smaller than 0.5 assumed in the basic SV model. Cor-

respondingly, the estimated memory parameter of the FISV model d falls between −0.45 and −0.36 for

Sample I and −0.49 and −0.27 for Sample II. Both models suggest that the volatility process is rough,

confirming our observation from the memory signature plots. The estimation results imply that the

long-range dependence of volatility is due to the persistence of the data series (with an autoregressive

coefficient close to unity) rather than long memory with H > 0.5 or d > 0.

Our finding on the memory parameter is consistent with the recent rough volatility literature but

contradicts the earlier literature on long memory. For example, Breidt et al. (1998) estimate the FISV

model with a spectral likelihood estimator for the S&P 500 CRSP data over the sample period from

July 1962 to December 1987. They find that the estimated d parameter is approximately 0.44, and the

volatility process is less persistent with the autoregressive parameter ρ around 0.93. The long-range

dependence of the volatility is driven by the fractional parameter d being greater than zero and close

to 0.5. Although the data and the sample period considered in their paper is different from our S&P

500 data series, we find a similar pattern of the memory signature plot with the data provided by the

authors to that of the S&P 500 series (Figure 11(a)). In other words, although their estimation results

suggest d > 0, the memory signature plot of their data series shows otherwise.

Fourth, the log-likelihood values of FSV and FISV models are very close to each other. For Sample

I, the log-likelihood value of FSV is identical to that of FISV for the S&P 500 index. It is slightly larger

(smaller) than that of the FISV model for EURO/USD and GBP/USD (the Nikkei 225 index). For

Sample II, the likelihood value of the FSV model is higher than that of the FISV model for all data

series. Lastly, when using the asymptotic variance-covariance matrices for the likelihood functions,

we obtain almost identical results (up to second or third decimal points) for all three models and all

data series. This result echoes our findings in the simulations. When H ≤ 0.5 or d ≤ 0, there is no

apparent difference between the finite sample and the asymptotic variance-covariance matrices for the

SML estimation accuracy of both FSV and FISV.

The smoothed estimates of volatilities (38) from the FSV and FISV models are displayed in Figure

B.13.13 The estimated volatility trajectories are similar to those of ht∆ simulated from our DGPs with

H < 0.5 or d < 0 (Figure 9(a) and Figure 10(a)). The volatility of Sample II appears to be more volatile

than that of Sample I for the S&P 500 index, whereas we observe the opposite for the other three data

series. This observation aligns with our estimation results for ση and σu. The volatilities of the two

equity indices increased to unprecedented levels during the 2008 subprime mortgage crisis period. Like

12Our empirical estimates of β are very close to those obtained in Table 3 of Bolko et al. (2020) based on GMM. Note
that our β corresponds to 1− λ in Bolko et al. (2020).

13For brevity, we do not display the estimated volatilities from the basic SV model. They appear to be much smoother
than those from the FSV and FISV models.
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Table 6: Estimation results for the basic SV, FSV and FISV models. Numbers in the square brackets
are the 10% confidence intervals. The last column is the log-likelihood ratio test for H0: Basic SV.

Sample I: start date + 25 years

Basic Stochastic Volatility Model
β σ∗η H σ lld.

S&P 500 0.990 [0.986, 0.994] 1.93 [1.76, 2.10] - 0.007 [0.006, 0.008] 21,684
NIKKEI 225 0.944 [0.932, 0.956] 4.48 [4.04, 4.93] - 0.0084 [0.0079, 0.0088] 20,330
EURO-USD 0.974 [0.968, 0.980] 3.59 [3.18, 3.99] - 0.005 [0.004, 0.005] 25,045
GBP-USD 0.947 [0.941, 0.953] 4.88 [4.39, 5.37] - 0.0047 [0.0044, 0.005] 24,980

Fractional Stochastic Volatility Model
β σ∗η H σ lld. LR (H1: FSV)

S&P 500 0.998 [0.997, 0.999] 1.05 [0.95, 1.15] 0.18 [0.13, 0.22] 0.007 [0.006, 0.008] 21,690 12***
NIKKEI 225 0.990 [0.984, 0.994] 1.68 [1.41, 1.96] 0.22 [0.17, 0.27] 0.0081 [0.0078, 0.0085] 20,334 8***
EURO-USD 0.999 [0.997, 1.000] 1.33 [1.21, 1.45] 0.13 [0.11, 0.16] 0.005 [0.004, 0.006] 25,087 84***
GBP-USD 0.9999 [0.9996, 1.0002] 1.51 [1.42, 1.60] 0.12 [0.10, 0.14] 0.0024 [0.0018,0.003] 25,068 176***

Fractional Integrated Stochastic Volatility Model
ρ σu d σ lld LR (H1: FISV)

S&P 500 0.998 [0.997, 1.000] 0.31 [0.25, 0.37] -0.36 [-0.43, -0.29] 0.007 [0.006, 0.008] 21,690 12***
NIKKEI 225 0.994 [0.990, 0.997] 0.46 [0.40, 0.52] -0.38 [-0.45, -0.32] 0.0080 [0.0077, 0.0084] 20,339 18***
EURO-USD 0.999 [0.998, 1.000] 0.50 [0.45, 0.55] -0.44 [-0.48, -0.40] 0.0052 [0.0046 0.0059] 25,084 78***
GBP-USD 0.9999 [0.9997, 1.0002] 0.59 [0.55, 0.64] -0.45 [-0.49, -0.42] 0.0024 [0.0018, 0.0031] 25,063 166***

Sample II: 1996 to 2020

Basic Stochastic Volatility Model
β σ∗η H σ lld.

S&P 500 0.980 [0.975, 0.985] 3.19 [2.86, 3.52] - 0.009 [0.008, 0.010] 20,114
NIKKEI 225 0.974 [0.968, 0.980] 2.85 [2.62, 3.08] - 0.0124 [0.0115, 0.0133] 17,736
EURO-USD 0.994 [0.987, 1.000] 1.15 [0.61, 1.69] - 0.0052 [0.0047, 0.0058] 24,568
GBP-USD 0.983 [0.976, 0.990] 1.90 [1.55, 2.25] - 0.0050 [0.0047, 0.0053] 24,850

Fractional Stochastic Volatility Model
β σ∗η H σ lld. LR (H1: FSV)

S&P 500 0.996 [0.993, 0.999] 1.63 [1.39, 1.86] 0.25 [0.19, 0.31] 0.009 [0.008, 0.010] 20,121 14***
NIKKEI 225 0.994 [0.989, 0.998] 1.40 [1.24, 1.56] 0.24 [0.18, 0.31] 0.0123 [0.0116, 0.0131] 17,742 12***
EURO-USD 0.999 [0.998, 1.000] 0.90 [0.83, 0.97] 0.08 [0.06, 0.10] 0.005 [0.004, 0.006] 24,597 58***
GBP-USD 0.998 [0.996, 0.999] 0.98 [0.90, 1.05] 0.09 [0.06, 0.11] 0.0049 [0.0047,0.0052] 24,889 78***

Fractional Integrated Stochastic Volatility Model
ρ σu d σ lld LR (H1: FISV)

S&P 500 0.996 [0.993, 0.999] 0.34 [0.23, 0.45] -0.27 [-0.36, -0.17] 0.009 [0.008, 0.010] 20,120 12***
NIKKEI 225 0.994 [0.990, 0.999] 0.31 [0.24, 0.38] -0.28 [-0.39, -0.18] 0.0124 [0.0116, 0.0131] 17,741 10***
EURO-USD 0.999 [0.998, 1.000] 0.35 [0.29, 0.41] -0.46 [-0.52, -0.41] 0.005 [0.004, 0.006] 24,584 32***
GBP-USD 0.998 [0.997, 1.000] 0.42 [0.36, 0.48] -0.49 [-0.55, -0.44] 0.0050 [0.0048, 0.0052] 24,882 64***

the stock markets, we observe dramatic rises in volatilities of the two exchange rates around this period.

For example, the volatility of the EURO/USD rose abruptly from around 0.6 to 3.2 in 2008 according

to the FSV model. Unlike the stock markets, Covid-19 has a relatively mild impact on the exchange

rate volatility. There is an upsurge in the volatility of the GBP/USD when the Brexit referendum took

place in June 2016.

9 Conclusions

The long-range dependence of volatilities is traditionally believed to be driven by a long memory process

and modeled as either a fractionally integrated process with the memory parameter d > 0 or a fractional
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Brownian motion process with the Hurst parameter H > 0.5. However, since Gatheral, Thibault, and

Rosenbaum posted a working paper titled ‘Volatility is rough’ on SSRN in 2014, abundant empirical

evidence of rough volatilities has been reported. Volatility is rough in the sense that the behavior of

log volatility is well described by a fractional Brownian motion with H < 0.5. El Euch et al. (2018)

provide a market microstructural foundation to rough volatility.

This paper contributes to this debate. We introduce a discrete-time fractional stochastic volatility

model based on the fractional Gaussian noise (with the Hurst parameter H), which is asymptotically

equivalent to the fractional integrated stochastic volatility model with fractional parameter d = H−0.5.

These two models include the standard stochastic volatility model as a special case with H = 0.5 for

the FSV model and d = 0 for the FISV model. We examine the theoretical properties of these two

models, allowing the memory parameter to take various values. In particular, the log volatility has a

long memory and its long-run variance diverges to infinity when H ∈ (0.5, 1) or d ∈ (0, 0.5). In contrast,

the log volatility is rough, with its long-run variance converging to a constant when H ∈ (0, 0.5) or

d ∈ (−0.5, 0). We propose a memory signature plot, which reveals the dynamics of the cumulative sums

of autocovariance of log volatilities and offers a straightforward assessment for the memory parameter

range. Furthermore, we employ a simulated maximum likelihood method for the estimation of the

model parameters. The (time-domain) likelihood function is evaluated with the importance sampling

technique, where the Laplace approximation determines the proposal distribution. Unlike the existing

rough volatility literature, we neither assume that the volatility process is directly observable nor use

the estimated integrated or spot volatility to estimate the model. Instead, the estimation is based on

log prices, and the volatility sequence is treated as latent variables. Our estimation method allows us

to obtain both filtered and smoothed estimates of latent variables. Simulation studies show that the

proposed SML method can accurately estimate both models.

We fit the proposed FSV model, the FISV model, and the standard SV model to several financial

assets (S&P 500, Nikkei 225, EURO/USD, GBP/USD) over two sampling periods, each lasting about

25 years. Our empirical results suggest that log volatilities of those financial assets are persistent and

rough. The estimated autoregressive coefficient of the log volatility process is very close to unity, and

the estimated Hurst (fractional) parameters of the FSV (FISV) model are less than half (zero). The

latter is consistent with the findings of the recent literature on rough volatility.
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A Appendix: Proofs

Proof of Theorem 3.1. The covariance between ht∆ and hs∆

Cov (ht∆, hs∆) = σ∗2η ∆2H
∞∑
i=k

∞∑
j=0

βi+j−kγη (|i− j|)

= σ∗2η ∆2Hβ−k

 ∞∑
i=k

β2iγη (0) +
∑
i>j

βi+jγη (i− j) +
∑
j>i

βi+jγη (j − i)

 .
The second and third terms in the squared bracket can be rewritten as

∑
i>j

βi+jγη (i− j) =

∞∑
i=k

i−1∑
j=0

βi+jγη (i− j) =

∞∑
i=k

i∑
l=1

β2i−lγη (l)

=

k∑
l=1

γη (l)

∞∑
i=0

β2(k+i)−l +

∞∑
l=k+1

γη (l)

∞∑
i=0

βl+2i

=
β2k

1− β2

k∑
l=1

β−lγη (l) +
1

1− β2

∞∑
l=k+1

βlγη (l)

and ∑
j>i

βi+jγη (j − i) =
∞∑
i=k

∞∑
j=i+1

βi+jγη (j − i) =
∞∑
i=k

∞∑
l=1

β2i+lγη (l) =
β2k

1− β2

∞∑
l=1

βlγη (l) .

It follows that

Cov (ht∆, hs∆) =
σ∗2η ∆2H

1− β2

[
βk + βk

k∑
l=1

β−lγη (l) + β−k
∞∑

l=k+1

βlγη (l) + βk
∞∑
l=1

βlγη (l)

]

=
σ∗2η ∆2H

1− β2
βk

(
1 +

k∑
l=1

β−lγη (l) + β−2kςH,β,k+1 + ςH,β,1

)

where ςH,β,s ≡
∑∞

l=s β
lγη (l). Similarly, the variance of ht∆

γh (0) = σ∗2η ∆2H
∞∑
i=0

∞∑
j=0

βi+jγη (|i− j|)

= σ∗2η ∆2H

 ∞∑
i=0

β2iγη (0) +
∑
i>j

βi+jγη (i− j) +
∑
j>i

βi+jγη (j − i)


=

σ∗2η ∆2H

1− β2

[
1 + 2

∞∑
l=1

βlγη (l)

]
=
σ∗2η ∆2H

1− β2
(1 + 2ςH,β,1)

since ∑
i>j

βi+jγη (i− j) =
1

1− β2

∞∑
l=1

βlγη (l) and
∑
j>i

βi+jγη (j − i) =
1

1− β2

∞∑
l=1

βlγη (l) .
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We first derive properties of γh (0) and γh (k). By the definition of the upper incomplete Gamma
function Γ(s, z) =

∫∞
z ts−1e−tdt when s 6= 0,∫ ∞

s
l2H−2βldl =

[∫ ∞
−s lnβ

(−l lnβ)2H−2 el lnβd (−l lnβ)

]
(− lnβ)1−2H = Γ (2H − 1,−s lnβ) (− lnβ)1−2H <∞

as H 6= 0.5. This implies that both ςH,β,1 =
∑∞

l=1 β
lγη (l) < ∞ and ςH,β,k+1 =

∑∞
l=k+1 β

lγη (l) < ∞
when H 6= 0.5. Therefore,

γh (0) =
σ∗2η ∆2H

1− β2
(1 + 2ςH,β,1) <∞

γh (k) =
σ∗2η ∆2H

1− β2
βk
(

1 + δH,β,k + β−2kςH,β,k+1 + ςH,β,1

)
<∞.

Next, we derive properties of the one-sided long run variance, which is defined as

∞∑
k=0

γh (k) = γh (0) +
σ∗2η ∆2H

1− β2

[
β

1− β
+

∞∑
k=1

βk
k∑
l=1

β−lγη (l) +

∞∑
k=1

β−kςH,β,k+1 +

∞∑
k=1

βkςH,β,1

]
.

(1) When H > 0.5, 2H − 1 > 0, 2H − 2 > −1, and

βk
k∑
l=1

β−lγη (l) = βk
k−1∑
l=1

β−lγη (l) + γη (k) > γη (k) ∼ H(2H − 1)k2H−2 > H(2H − 1)k−1

when k is large. Since
∑∞

k=1 k
−1 =∞, we have

∑∞
k=1 β

k
∑k

l=1 β
−lγη (l) =∞ and hence

∞∑
k=0

γh (k) =∞.

(2) When H < 0.5, 2H − 1 < 0. We have

∞∑
k=1

β−kςH,β,k+1 ∼ (− lnβ)1−2H
∞∑
k=1

β−kΓ (2H − 1, zk) ,

where zk = − (k + 1) lnβ → +∞ as k → ∞. By the recurrence property of the incomplete Gamma
function,

Γ (2H − 1, zk) = 2 (H − 1) Γ (2H − 2, zk) + z
2(H−1)
k e−zk .

It follows that when k is large,

β−kΓ (2H − 1, zk) ∼ β−ke−zkz2H−2
k ∼ (k + 1)2H−2 .

By the Cauchy condensation test,
∑∞

k=1 (k + 1)2H−2 <∞ when 2H−2 < −1. Therefore,
∑∞

k=1 β
−kςH,β,k+1

exists. Moreover,

∞∑
k=1

βk
k∑
l=1

β−lγη (l) =
∞∑
l=1

∞∑
k=l

γη (l)βk−l ∼
∞∑
l=1

∞∑
k=l

l2H−2βk−l =
∞∑
l=1

l2H−2
∞∑
k=l

βk−l =
1

1− β

∞∑
l=1

l2H−2,

exists if H < 0.5 but does not exist if H > 0.5. Therefore, when H < 0.5,

∞∑
k=0

γh (k) <∞.
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Proof of Theorem 3.2. When H = 0.5, the covariance (13) becomes

Cov (ht∆, hs∆) = σ∗2η ∆
t∑
i=1

βt+s−2iγη(0) = σ∗2η ∆βs−t
t∑
i=1

β2t−2i

= σ∗2η ∆βk
1− β2t

1− β2
→ σ∗2η ∆

βk

1− β2

since β < 1 and β2t → 0. When H 6= 0.5, (13) can be rewritten as

Cov (ht∆, hs∆)

= σ∗2η ∆2Hβs−t
t∑
i=1

s∑
j=1

β2t−i−jγη (|i− j|)

= σ∗2η ∆2Hβk

 t∑
i=1

β2t−2iγη (0) +
∑
i>j

β2t−i−jγη (i− j) +
∑
j−i>k

β2t−i−jγη (j − i) +
∑

1≤j−i≤k
β2t−i−jγη (j − i)


= σ∗2η ∆2H βk

1− β2

[
1− β2t +

t−1∑
l=1

γη (l)
(
βl − β2t−l

)
+

s−1∑
l=k+1

γη (l)
(
β−2k+l − β2t−l

)
+

k∑
l=1

γη (l)
(
β−l − β2t−l

)]

→ σ∗2η ∆2H βk

1− β2

[
1 +

∞∑
l=1

βlγη (l) + β−2k
∞∑

l=k+1

γη (l)βl +
k∑
l=1

γη (l)β−l

]

= σ∗2η ∆2H βk

1− β2

[
1 +

k∑
l=1

β−lγη (l) + β−2kςH,β,k+1 + ςH,β,1

]

since β < 1 and β2t−l → 0.

B Appendix: Figures and Tables
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Figure B.12: The dynamics of rt∆ and xt∆ over the whole sample period

(a) S&P 500: rt∆ (b) S&P 500: xt∆

(c) NIKKEI 225: rt∆ (d) NIKKEI 225: xt∆

(e) EURO/USD (f) EURO/USD

(g) GBP/USD (h) GBP/USD
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Figure B.13: The smoothed volatility (38) from the FSV and FISV models

(a) S&P 500: Sample I (b) S&P 500: Sample II

(c) NIKKEI 100: Sample I (d) NIKKEI 100: Sample II

(e) EURO/USD: Sample I (f) EURO/USD: Sample II

(g) GBP/USD: Sample I (h) GBP/USD: Sample II
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Table B.7: The mean and RMSE of estimated model parameters of FSV. The true model parameters are β = 0.9961, σ∗η = 1.5, σ∗ = 0.1.

β̂ σ∗η Ĥ σ̂∗

Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE
T = 1280

Finite sample variance-covariance matrix
H = 0.1 0.9895 -0.0066 0.0106 1.5601 0.0601 0.2099 0.1304 0.0304 0.0440 0.1027 0.0027 0.0143
H = 0.2 0.9900 -0.0061 0.0116 1.7061 0.2061 0.5124 0.2404 0.0404 0.0874 0.1015 0.0015 0.0186
H = 0.5 0.9923 -0.0038 0.0076 1.9659 0.4659 1.0401 0.5601 0.0601 0.1911 0.0996 -0.0004 0.0181
H = 0.7 0.9950 -0.0011 0.0044 1.6302 0.1302 0.8274 0.6739 -0.0261 0.1803 0.0982 -0.0018 0.0160
H = 0.9 0.9960 -0.0001 0.0037 1.3180 -0.1820 0.6642 0.8246 -0.0754 0.1889 0.0994 -0.0006 0.0174
Asymptotic variance-covariance matrix
H = 0.1 0.9905 -0.0056 0.0100 1.5516 0.0516 0.2061 0.1293 0.0293 0.0432 0.1033 0.0033 0.0160
H = 0.2 0.9902 -0.0059 0.0114 1.6805 0.1805 0.4742 0.2359 0.0359 0.0833 0.1028 0.0028 0.0181
H = 0.5 0.9917 -0.0044 0.0076 1.7551 0.2551 0.7595 0.5167 0.0167 0.1613 0.1046 0.0046 0.0283
H = 0.7 0.9943 -0.0018 0.0040 1.3630 -0.1370 0.5358 0.6021 -0.0979 0.1842 0.1079 0.0079 0.0384
H = 0.9 0.9961 0.0000 0.0023 0.8741 -0.6259 0.7279 0.6467 -0.2533 0.3053 0.1148 0.0148 0.0516

T = 2560
Finite sample variance-covariance matrix
H = 0.1 0.9926 -0.0035 0.0053 1.4798 -0.0202 0.1288 0.1260 0.0260 0.0354 0.1011 0.0011 0.0082
H = 0.2 0.9937 -0.0024 0.0043 1.5491 0.0491 0.1996 0.2205 0.0205 0.0481 0.0999 -0.0001 0.0113
H = 0.5 0.9941 -0.0020 0.0052 1.7270 0.2270 0.7939 0.4986 -0.0014 0.1597 0.0986 -0.0014 0.0176
H = 0.7 0.9953 -0.0008 0.0041 1.6456 0.1456 0.8633 0.6534 -0.0466 0.1791 0.0990 -0.0010 0.0161
H = 0.9 0.9960 -0.0000 0.0027 1.3643 -0.1357 0.5165 0.8395 -0.0605 0.1534 0.1001 0.0001 0.0134
Asymptotic variance-covariance matrix
H = 0.1 0.9932 -0.0029 0.0050 1.4747 -0.0253 0.1289 0.1251 0.0251 0.0347 0.1008 0.0008 0.0091
H = 0.2 0.9938 -0.0023 0.0042 1.5421 0.0421 0.1984 0.2189 0.0189 0.0474 0.0999 -0.0001 0.0118
H = 0.5 0.9942 -0.0019 0.0040 1.5512 0.0512 0.4828 0.4689 -0.0311 0.1340 0.1012 0.0012 0.0240
H = 0.7 0.9955 -0.0006 0.0028 1.3140 -0.1860 0.4583 0.5867 -0.1133 0.1739 0.1056 0.0056 0.0390
H = 0.9 0.9968 0.0007 0.0027 0.9079 -0.5921 0.6887 0.6755 -0.2245 0.2720 0.1155 0.0155 0.0610
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Table B.8: The mean and RMSE of estimated model parameters of FISV. The true model parameters are ρ = 0.9961, σ = 0.1, σu = 0.1∆d.

ρ̂ σ̂u d̂ σ̂
Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE Mean Bias RMSE

T = 1, 280
Finite sample variance-covariance matrix
d = −0.4 0.9872 -0.0089 0.0145 0.7799 -0.1390 0.1533 -0.3212 0.0788 0.0967 0.1032 0.0032 0.0205
d = −0.3 0.9909 -0.0052 0.0085 0.4845 -0.0433 0.0840 -0.2581 0.0419 0.0870 0.1024 0.0024 0.0222
d = 0 0.9928 -0.0033 0.0063 0.0946 -0.0054 0.0279 0.0265 0.0265 0.0544 0.1023 0.0023 0.0127
d = 0.2 0.9945 -0.0016 0.0049 0.0499 0.0169 0.0422 0.1492 -0.0508 0.1812 0.1003 0.0003 0.0148
d = 0.4 0.9960 -0.0001 0.0036 0.0296 0.0187 0.0380 0.2229 -0.1771 0.2462 0.0991 -0.0009 0.0118
Asymptotic variance-covariance matrix
d = −0.4 0.9881 -0.0079 0.0114 0.7825 -0.1364 0.1505 -0.3264 0.0736 0.0898 0.1050 0.0050 0.0248
d = −0.3 0.9904 -0.0057 0.0095 0.4898 -0.0380 0.0817 -0.2630 0.0370 0.0832 0.1029 0.0029 0.0199
d = 0 0.9915 -0.0046 0.0077 0.1101 0.0101 0.0530 0.0104 0.0104 0.1457 0.1043 0.0043 0.0282
d = 0.2 0.9936 -0.0025 0.0046 0.0578 0.0248 0.0452 0.1006 -0.0994 0.1780 0.1053 0.0053 0.0337
d = 0.4 0.9952 -0.0009 0.0031 0.0387 0.0278 0.0432 0.1482 -0.2518 0.2963 0.1074 0.0074 0.0420

T = 2, 560
Finite sample variance-covariance matrix
d = −0.4 0.9903 -0.0058 0.0074 0.7480 -0.1710 0.1750 -0.3150 0.0850 0.0903 0.1032 0.0032 0.0137
d = −0.3 0.9928 -0.0033 0.0050 0.4648 -0.0630 0.0764 -0.2522 0.0478 0.0649 0.1015 0.0015 0.0160
d = 0 0.9937 -0.0024 0.0042 0.0971 -0.0029 0.0305 0.0265 0.0265 0.0924 0.1020 0.0020 0.0161
d = 0.2 0.9948 -0.0013 0.0051 0.0421 0.0091 0.0256 0.1727 -0.0273 0.1467 0.1000 0.0000 0.0140
d = 0.4 0.9957 -0.0004 0.0056 0.0204 0.0096 0.0167 0.2813 -0.1187 0.1755 0.0999 -0.0001 0.0141
Asymptotic variance-covariance matrix
d = −0.4 0.9905 -0.0056 0.0073 0.7491 -0.1699 0.1739 -0.3170 0.0830 0.0887 0.1037 0.0037 0.0134
d = −0.3 0.9927 -0.0034 0.0049 0.4662 -0.0616 0.0751 -0.2540 0.0460 0.0636 0.1024 0.0024 0.0141
d = 0 0.9936 -0.0025 0.0045 0.1087 0.0087 0.0459 0.0044 0.0044 0.1311 0.1033 0.0033 0.0237
d = 0.2 0.9948 -0.0013 0.0037 0.0484 0.0154 0.0279 0.1288 -0.0712 0.1423 0.1064 0.0064 0.0343
d = 0.4 0.9961 -0.0000 0.0028 0.0263 0.0154 0.0216 0.2130 -0.1870 0.2181 0.1111 0.0111 0.0510
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