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Abstract

We provide an exhaustive classification of all preference domains that allow

the design of unanimous social choice functions (henceforth, rules) that are

non-dictatorial and strategy-proof. This taxonomy is based on a richness as-

sumption and employs a simple property of two-voter rules called invariance.

The preference domains that form the classification are semi-single-peaked

domains (introduced by Chatterji et al. (2013)) and semi-hybrid domains

(introduced here) which are two appropriate weakenings of the single-peaked

domains, and which, more importantly, are shown to allow strategy-proof

rules to depend on non-peak information of voters’ preferences. As a re-

finement of the classification, single-peaked domains and hybrid domains

emerge as the only preference domains that force strategy-proof rules to be

determined completely by the peaks of voters’ preferences. We also provide

characterization results for strategy-proof rules on these domains.

Keywords: Strategy-proofness; invariance; path-connectedness; (semi)-single-

peaked preference; (semi)-hybrid preference

JEL Classification: D71.

∗The research reported here was supported by the National Natural Science Foundation of

China (No. 71803116), the Program for Professor of Special Appointment (Eastern Scholar)

at Shanghai Institutions of Higher Learning (No. 2019140015), and the Fundamental Research

Funds for the Central Universities (No. 2018110153).
†School of Economics, Singapore Management University, Singapore.
‡School of Economics, Shanghai University of Finance and Economics, and the Key Labora-

tory of Mathematical Economics (SUFE), Ministry of Education, Shanghai 200433, China.

1



1 Introduction

An overarching theme in the theory of incentives is that unanimous social choice

functions (henceforth, rules) that are non-manipulable are dictatorial, and hence

unsuitable for social decisions, unless preferences of voters are restricted in par-

ticular ways so as to yield non-dictatorial domains, i.e., domains of preferences

which allow the design of rules that are strategy-proof and non-dictatorial. Indeed,

single-peaked preference domains in the classical voting model (Moulin, 1980) and

quasi-linear preferences in models with monetary compensations (Roberts, 1979)

are leading instances of non-dictatorial domains. In this paper, we restrict atten-

tion to the voting model, where the large literature notwithstanding1, a compre-

hensive classification of all non-dictatorial domains in terms of the design oppor-

tunities they afford has remain elusive, in part due to the fact that not much is

known about the structure of preferences domains that allow strategy-proof rules

to vary with non-peak information on preferences: We identify and incorporate

such preference domains in our analysis and classify non-dictatorial domains based

on whether they admit two-voter strategy-proof rules that (i) vary with non-peak

information, and (ii) satisfy a simple property called invariance. We show that

under a richness assumption on preferences, the resulting classification turns out

to be an exhaustive one for non-dictatorial domains.

The classification follows from the analysis of two-voter rules on a“rich”domain

of preferences, i.e., a domain that satisfies a form of connectedness, a mild property

called extreme-vertex symmetry, and the existence of a pair of preferences that are

complete reversals of each other.2 We first identify two weakenings of single-peaked

domains, respectively semi-single-peaked and semi-hybrid domains, that allow the

design of non-tops-only and strategy-proof rules, i.e., rules that utilize non-peak

1The literature is taken up in Section 4.
2Some form of richness is needed to study the implications of strategy-proofness, for if the

domain contains only few preferences, strategy-proofness becomes trivial. We postulate the

condition of path-connectedness which has been used in the earlier study of Chatterji et al.

(2013) and is closely related to the idea of connectedness investigated by Grandmont (1978),

Monjardet (2009), Sato (2013) and Puppe (2018).
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information from preferences. We next show that rich non-dictatorial domains are

one of these two varieties and that which of these configurations prevails is, some-

what surprisingly, completely determined by the behavior of the rule at the two

preferences profiles where the two voters are endowed with the completely reversed

preferences: if there exists a two-voter tops-only and strategy-proof rule which is

invariant, that is, selects the same social outcome at the these two test profiles, the

domain must be semi-single-peaked, and otherwise, the domain must be a semi-

hybrid domain. Finally, we specialize to tops-only domains, i.e., domains where

strategy-proof rules are endogenously completely determined by voters’ preference

peaks, and show that the existence of an invariant rule leads us to the classical

single-peaked domain while its non-existence, to a recently introduced variant of it

called the hybrid domain. In particular, our analysis highlights the role of “critical

spots”embedded in the gap between semi-single-peakedness and single-peakedness

(respectively, between semi-hybridness and hybridness) that display a curious and

seemingly paradoxical phenomenon, namely, that adding preferences to a single-

peaked domain may allow non-tops-only rules to emerge in a strategy-proof way

and simultaneously shrink the scope for tops-only rules.3

To put this analysis in perspective, we note that earlier work has shown that

while the Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975)

is robust and survives on restricted domains with enough connectedness (see for

instance Aswal et al., 2003; Sato, 2010; Pramanik, 2015), semi-single-peaked do-

mains are implied by the existence of a tops-only and anonymous strategy-proof

rule on a rich domain (see Chatterji et al., 2013; Chatterji and Massó, 2018). In

order to obtain a more complete picture of non-dictatorial domains, we dispense

with the axioms of tops-onlyness and anonymity, and show (by strengthening

mildly the richness condition) that allowing for non-tops-only, non-anonymous

rules adds exactly one domain, semi-hybrid domain, as a non-dictatorial domain.

3The seeming paradox is of course not a paradox: the non-tops-only rules for a semi-single-

peaked domain continue to be strategy-proof for the single-peaked domain, except that they

become tops-only when restricted to the single-peaked domain and are thus subsumed in the

usual known class of strategy-proof rules for single-peaked domains.
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Since a semi-hybridness is also a weakening of single-peakedness that is in a sense

complementary to semi-single-peakedness (see 1.1 below), our result showing that

these two domains taken together exhaust all non-dictatorial domains may be

seen as demonstrating that appropriate weakenings of single-peakedness charac-

terize non-dictatorial domains, addressing thereby a long standing conjecture in

this field (see Barberà, 2011; Barberà et al., 2020). Our principal focus however is

on distinguishing between these two regimes by showing that semi-hybrid domains,

while being more permissive, are not consistent with the existence of tops-only and

anonymous strategy-proof rules (since invariance is implied by anonymity) while

semi-single-peaked domains are. We contend that this analysis is more than just a

theoretical curiosity since it explains tradeoffs, for instance, between allowing more

permissive preference domains (which is desirable for applications of mechanism

design) that however turn out to admit critical spots and hence non-tops-only and

strategy-proof rules, and more restrictive ones that admit rules that treat all vot-

ers symmetrically and are easier to operationalize, both from the perspective of a

planner and voters by virtue of requiring only peak information on preferences.4

The paper is organized as follows. In Section 1.1 we provide a heuristic presen-

tation of our classification. In Section 2 we specify the model. The main results

are presented in Section 3. Section 4 contains a review of the literature, examples

and suggestions for future work. All proofs are gathered in an Appendix.

1.1 A heuristic description

We begin with an informal description of semi-single-peaked and semi-hybrid pref-

erences. Assume that a finite set of alternatives a1, . . . , am are located on a line

according to the natural order. Select an alternative ak̄, call it a threshold and

assume that every preference with the peak distinct from ak̄ is single-peaked in

4For instance, as suggested by Bartholdi et al. (1989), it would be computationally hard

to detect a manipulation in a voting mechanism that depends too much on information of

preferences, whereas the imposition of tops-onlyness on the voting mechanism helps detect a

voter’s manipulation within a polynomial time via their Greedy-Manipulation algorithm.
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the conventional sense up to the threshold and alternatives beyond ak̄ are ranked

lower than it. A typical semi-single-peaked preference is illustrated in Figure 1(a).

Figure 1: A semi-single-peaked preference and two semi-hybrid preferences

The description of a semi-hybrid preference in Figure 1(b) requires us to fix two

distinct thresholds ap and aq, which separate the line into three intervals: 〈a1, ap〉,

〈ap, aq〉 and 〈aq, am〉. If the peak lies in 〈a1, ap〉 (an analogous condition holds

if the peak lies in 〈aq, am〉), the single-peakedness condition only prevails in the

interval between the peak and the threshold ap, and the two thresholds ap and aq

are required to be top-ranked within 〈ap, aq〉 and 〈aq, am〉 respectively. In Figure

1(c), when the preference peak is located between two thresholds, a semi-hybrid

preference preserves no restriction of single-peakedness, but only keeps ap and aq

top-ranked within their intervals 〈a1, ap〉 and 〈aq, am〉.

The remarkable feature of these two weakenings of single-peakedness that has

been hitherto unnoticed is that while they are much less structured than single-

peaked preferences, they nonetheless allow the design of strategy-proof rules that

are considerably more nuanced than, say a phantom voter rule of Moulin (1980)

and Border and Jordan (1983), in that they remain strategy-proof in spite of

depending on non-peak information.

We adopt the domain of semi-single-peaked preferences to exemplify this fea-

ture.5 Given the line of Figure 1(a), we fix the threshold ak̄ with k̄ > 2, and con-

sider the domain of all semi-single-peaked preferences with respect to this choice

of threshold. We next make an observation that we refer to as (#): There exist

two preferences that have the same peak located in 〈a2, am〉, and which disagree

on the relative ranking of a1 and a2. Finally, we cut the edge between a1 and a2

to separate the line into two parts 〈a1, a1〉 = {a1} and 〈a2, am〉 and construct an

5A similar example can constructed on the domain of semi-hybrid preferences.
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SCF f : D2 → A which selects voter 1’s most preferred alternative when it lies in

〈a2, am〉, the alternative a1 when both voters unanimously prefer it the most, and

voter 2’s preferred alternative between a1 and a2 when voter 1’s preference peak

is a1 and voter 2’s peak is located in 〈a2, am〉, i.e.,

f(P1, P2) =


r1(P1) if r1(P1) ∈ 〈a2, am〉,

a1 if r1(P1) = a1 = r1(P2),

maxP2({a1, a2}) if r1(P1) = a1 and r1(P2) ∈ 〈a2, am〉.

Clearly, f is unanimous by construction, and observation (#) above implies that f

violates the tops-only property. The strategy-proofness of f can be easily verified.6

Of course the phantom voter rule where the phantom is located on the threshold

ak̄ in Figure 1(a) is strategy-proof, and is moreover a tops-only rule that obeys

invariance. This is the key feature that sets the semi-single-peaked domain apart

from semi-hybrid domains, for we prove that any rich non-dictatorial domain that

admits an invariant, tops-only and strategy-proof rule must be semi-single-peaked

(and vice versa), while the non-existence of such a rule implies a semi-hybrid

domain (and vice versa). Next we focus on domains that do not allow the design

of strategy-proof rules that are non-tops-only, and show that the classification

of non-dictatorial domains is refined respectively to single-peaked domains and

hybrid domains.

2 The Model

Let A = {a, b, c, . . . } be a finite set of alternatives with |A| = m ≥ 3. Let

N = {1, . . . , n} be a finite set of voters with |N | = n ≥ 2. Each voter i has a

(strict) preference order Pi over A which is the asymmetric part of a linear order.

For any a, b ∈ A, aPib is interpreted as “a is strictly preferred to b according to

6Rule f can be further simplified: f(P1, P2) = r1(P1) if r1(P1) ∈ 〈a2, am〉, and f(P1, P2) =

maxP2({a1, a2}) otherwise. Next, since all preferences are semi-single-peaked w.r.t. ak̄ where

k̄ > 2, observe that a2 is second ranked in every preference with the peak a1. This observation

immediately ensures the strategy-proofness of the simplified version of f . We intentionally avoid

the simplified configuration of f in the main text so that the reader can easily compare f to its

generalization in Section 3.1.
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Pi”.
7 Let rk(Pi) denote the kth ranked alternative in Pi for all k = 1, . . . ,m. Given

a subset B ⊂ A,8 let maxPi(B) and minPi(B) respectively denote the most and

the least preferred alternatives in B according to Pi. Two preferences Pi and P ′i

are completely reversed if for all a, b ∈ A, [aPib] ⇔ [bP ′ia]. Let P denote the

set containing all linear orders over A. The set of all admissible orders is a set

D ⊆ P, referred to as the preference domain.9 For notational convenience, let

Da = {Pi ∈ D : r1(Pi) = a} denote the set of preferences with the peak a, and

S(Da) = {b ∈ A : b = r2(Pi) for some Pi ∈ Da} collect all alternatives that are

second ranked in the preferences of Da. Accordingly, a domain D is minimally rich

if Da 6= ∅ for every a ∈ A. A preference profile P = (P1, . . . , Pn) = (Pi, P−i) ∈ Dn

is an n-tuple of orders where P−i represents a collection of n−1 voters’ preferences

without considering voter i.

A Social Choice Function (or SCF) is a map f : Dn → A. At every profile

P ∈ Dn, f(P ) is referred to as the “socially desirable” outcome associated to this

preference profile. An SCF f : Dn → A is unanimous if for all a ∈ A and P ∈ Dn,

we have [r1(Pi) = a for all i ∈ N ]⇒ [f(P ) = a]. Henceforth, we call a unanimous

SCF a rule. An SCF f : Dn → A is strategy-proof if for all i ∈ N , Pi, P
′
i ∈ D

and P−i ∈ Dn−1, we have either f(Pi, P−i) = f(P ′i , P−i) or f(Pi, P−i)Pif(P ′i , P−i).

In particular, an SCF f : Dn → A is anonymous if for all (P1, . . . , Pn) ∈ Dn

and permutations σ : N → N , we have f(P1, . . . , Pn) = f(Pσ(1), . . . , Pσ(n)). A

prominent class of SCFs is the class of tops-only SCFs. The value of these SCFs at

every preference profile depends only on voters’ peaks. Formally, an SCF f : Dn →

A satisfies the tops-only property if for all P, P ′ ∈ Dn, we have [r1(Pi) = r1(P ′i )

for all i ∈ N ]⇒ [f(P ) = f(P ′)].

Dictatorships are rules that are tops-only and strategy-proof on arbitrary do-

mains. Formally, an SCF f : Dn → A is a dictatorship if there exists i ∈ N

such that f(P ) = r1(Pi) for all P ∈ Dn. In particular, given a non-empty subset

7In a table, we specify a preference “vertically”. In a sentence, we specify a preference “hori-

zontally”. For instance, Pi = (a b c · · · ) represents that a is the top, b is the second best, c is the

third ranked alternative while the rest of rankings in Pi are arbitrary.
8Throughout the paper, ⊂ and ⊆ denote the strict and weak inclusions respectively.
9We call P the universal domain. When D 6= P, D is referred to as a restricted domain.
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B ⊂ A, we say that an SCF f : Dn → A behaves like a dictatorship on B if

there exists i ∈ N such that f(P1, . . . , Pn) = r1(Pi) for all (P1, . . . , Pn) ∈ Dn with

r1(P1), . . . , r1(Pn) ∈ B. The Gibbard-Satterthewaite Theorem shows that on the

universal domain, an SCF f : Pn → A, n ≥ 2, is a strategy-proof rule if and only

if it is a dictatorship. The same dictatorship characterization result also holds on

some restricted domains (see the literature listed in Section 4.1). We call a domain

D a dictatorial domain if every strategy-proof rule f : Dn → A, n ≥ 2, is a

dictatorship, and call any domain that admits a non-dictatorial strategy-proof rule

a non-dictatorial domain. It is clear that a domain that admits an anonymous

and strategy-proof rule is a non-dictatorial domain. Conversely, a non-dictatorial

domain may not admit an anonymous and strategy-proof rule. Last, a domain D is

a tops-only domain if every strategy-proof rule f : Dn → A, n ≥ 2, satisfies the

tops-only property. Clearly, the set of tops-only domains includes all dictatorial

domains and many non-dictatorial domains.

2.1 Graphs

Let GA = 〈A, EA〉 denote a undirected graph where A is the vertex set and EA is

the set of edges.10 A path in GA is a sequence of non-repeated vertices (x1, . . . , xt)

such that (xk, xk+1) ∈ EA for all k = 1, . . . , t−1. The graph GA is connected if for

every pair of distinct vertices, there exists a path connecting them. Given a ∈ A,

let NA(a) = {b ∈ A : (a, b) ∈ EA} denote the set of alternatives that are neighbor

to a in the graph GA. Let Ext(GA) =
{
x ∈ A : |NA(x)| = 1

}
denote the set of

extreme vertices. Given a subset B ⊂ A, let GB = 〈B, EB〉 denote the subgraph

of GA where the vertex set is B and the edge set is EB = {(a, b) ∈ EA : a, b ∈ B}.

A tree T A = 〈A, EA〉 is a connected graph where each pair of distinct vertices

is connected by a unique path. Given x, y ∈ A, let 〈x, y|T A〉 denote the unique

path connecting x and y in T A.11 Fix a subset B ⊂ A such that the path between

any two alternatives of B is also included in B, i.e., [a, b ∈ B]⇒
[
〈a, b|T A〉 ⊆ B

]
.

10If (a, b) ∈ EA, then a 6= b and (b, a) ∈ EA.
11For notational convenience, we also use 〈x, y|T A〉 to denote the set of alternatives in the

path between x and y. We also call 〈x, y|T A〉 the interval between x and y in T A.
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Then, the subgraph T B = 〈B, EB〉 is also a tree. Furthermore, given a ∈ A, if

a ∈ B, it is evident that the projection of a on T B is itself; otherwise, there exists

a unique a′ ∈ B such that a′ ∈ 〈a, b|T A〉 for all b ∈ B, which can be viewed as

the projection of a on T B. Accordingly, let Proj(a, T B) denote the projection of

a on the subtree T B. A line is a particular tree which has exactly two extreme

vertices. Throughout the paper, we fix LA = (a1, . . . , am) to be the line where

(ak, ak+1) is an edge for all k = 1, . . . ,m − 1. Given a tree T A and two distinct

alternatives x, y ∈ A, we fix the set Ax⇀y =
{
z ∈ A : x ∈ 〈z, y|T A〉

}
to include

every alternative whose path to y always goes through x. Therefore, T Ax⇀y is a

subtree nested in T A. We use the diagram of Figure 2 to illustrate.

r r r rx a b yA
A
A
A

�
�
�@

@

�
�
�
�
�

�
�

��
��

�A
A
A �
�

︸ ︷︷ ︸
T Ax⇀y

︸ ︷︷ ︸
T Ay⇀x︸ ︷︷ ︸

T Aa⇀b

︸ ︷︷ ︸
〈a, b|T A〉

︸ ︷︷ ︸
T Ab⇀a

Figure 2: Four subtrees T Ax⇀y , T Ay⇀x , T Aa⇀b , T Ab⇀a and an interval 〈a, b|T A〉

2.2 Richness condition

Fix a domain D. First, two alternatives a, b ∈ A are adjacent, denoted a ∼ b,

if there exist Pi, P
′
i ∈ D such that r1(Pi) = r2(P ′i ) = a, r1(P ′i ) = r2(Pi) = b

and rk(Pi) = rk(P
′
i ) for all k = 3, . . . ,m. According to D, we construct a graph

GA
∼ = 〈A, EA∼〉 where the vertex set is A and two alternatives a, b ∈ A form an edge

if and only if a ∼ b, i.e., EA∼ = {(a, b) ∈ A2 : a ∼ b}. We call GA
∼ an adjacency

graph. Then, domain D is said path-connected if GA
∼ is a connected graph.

Clearly, path-connectedness implies minimal richness. We further require D satisfy

extreme-vertex symmetry, that is, given x ∈ Ext(GA
∼) and (x, y) ∈ EA∼ , if

|S(Dx)| > 1, there exists z ∈ S(Dx) such that x ∈ S(Dz) and z 6= y.12 Throughout

the paper, we assume that the domain in question is path-connected and satisfies

12If Ext(GA∼) = ∅, or Ext(GA∼) 6= ∅ and |S(Dx)| = 1 for all x ∈ Ext(GA∼), domain D satisfies

extreme-vertex symmetry vacuously.
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extreme-vertex symmetry. Moreover, we say that a domain D is rich if it is path-

connected, satisfies extreme-vertex symmetry, and in addition includes a pair of

completely reversed preferences.

2.3 Single-peaked and hybrid preferences

In this section, we introduce two important preference restrictions, single-peakedness

and hybridness. Single-peaked preferences were discovered by Black (1948) as a

way of avoiding the Condorcet paradox. Demange (1982) generalized Black’s no-

tion to single-peakedness on a tree and showed that majority voting continued to

deliver a Condorcet winner.

Definition 1 Fixing a tree T A, a preference Pi is single-peaked on T A if for

all distinct a, b ∈ A, we have
[
a ∈ 〈r1(Pi), b|T A〉

]
⇒ [aPib]. Let DSP(T A) denote

the single-peaked domain which includes all single-peaked preferences on T A.

A domain D is called a single-peaked domain if there exists a tree T A such

that D ⊆ DSP(T A).

If a single-peaked domain D ⊆ DSP(T A) is path-connected, its adjacency graph

is identical to the underlying tree T A, i.e., GA
∼ = T A. The single-peaked domain

DSP(T A) is naturally a path-connected domain, vacuously satisfies extreme-vertex

symmetry,13 and it includes a pair of completely reversed preferences if and only

if T A is a line.

A hybrid preference is a generalization of a single-peaked preference which

allows some freedom on the rankings of certain alternatives. Given a tree T A, we

consider two distinct alternatives a and b that completely separate T A into the

interval 〈a, b|T A〉 and the two subtrees T Aa⇀b and T Ab⇀a (recall Figure 2).14 Thus,

we have Proj(c, 〈a, b|T A〉) ∈ {a, b} for all c ∈ A\〈a, b|T A〉. We fix such a pair a

and b and call them thresholds in T A.15 The interval 〈a, b|T A〉 can be viewed

13For all x ∈ Ext(GA∼) = Ext(T A), |S(DSP(T A)x)| = 1.
14If we refer to x and y in Figure 2, the combination of the interval 〈x, y|T A〉 and subtrees

T Ax⇀y

and T Ay⇀x

does not recover T A as the branch attached to the interior of 〈x, y|T A〉 is

not covered.
15Note that if a and b form an edge in T A, they are naturally thresholds.
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as a “free zone” for a hybrid preference. A hybrid preference preserves single-

peakedness on the two subtrees T Aa⇀b and T Ab⇀a , but allows the alternatives in

the free zone to be arbitrarily ranked with respect to each other, subject to the

maximum ranking of a (respectively, b) when the preference peak is located in

T Aa⇀b (respectively, T Ab⇀a).16

Definition 2 Fixing a tree T A and two thresholds a, b ∈ A, a preference Pi is

(a, b)-hybrid on T A if it satisfies the following two conditions:

(i) Pi is single-peaked on T Aa⇀b and T Ab⇀a, i.e., for all distinct y, z ∈ Aa⇀b or

y, z ∈ Ab⇀a,
[
y ∈ 〈r1(Pi), z|T A〉

]
⇒ [yPiz], and

(ii) [r1(Pi) ∈ Aa⇀b\{a}]⇒
[

maxPi
(
〈a, b|T A〉

)
= a
]

and

[r1(Pi) ∈ Ab⇀a\{b}]⇒
[

maxPi
(
〈a, b|T A〉

)
= b
]
.

Let DH(T A, a, b) denote the hybrid domain which includes all (a, b)-hybrid pref-

erences on T A. A domain D is called an (a, b)-hybrid domain on T A if

D ⊆ DH(T A, a, b),
∣∣〈a, b|T A〉∣∣ ≥ 3,17 and there exist no tree T̂ A and thresholds

â, b̂ ∈ A such that D ⊆ DH(T̂ A, â, b̂) and 〈â, b̂
∣∣T̂ A〉 ⊂ 〈a, b|T A〉.18 In particular,

D is said to be non-degenerate if either Aa⇀b 6= {a} or Ab⇀a 6= {b} holds, and

degenerate otherwise.

We simply call D “a hybrid domain” if there exist a tree T A and thresholds

a, b ∈ A such that D is an (a, b)-hybrid domain on T A.19

16The idea of a hybrid preference originates from the multiple single-peaked domain of Reffgen

(2015). Achuthankutty and Roy (2020) and Chatterji et al. (2020) establish the formal definition

of a hybrid preference on a line, and study strategy-proof rules and strategy-proof random SCFs

respectively on the hybrid domain.
17If |〈a, b|T A〉| = 2, then DH(T A, a, b) = DSP(T A). In order to separate the definitions of the

hybrid domain and the single-peaked domain, we impose
∣∣〈a, b|T A〉∣∣ ≥ 3.

18The notation 〈â, b̂
∣∣T̂ A〉 ⊂ 〈a, b|T A〉 concerns with the inclusion relation between the two

subsets of alternatives, not the inclusion relation between the two graphs of intervals.
19Evidently, the hybrid domain DH(T A, a, b), where |〈a, b|T A〉| ≥ 3, is an (a, b)-semi-hybrid

domain on T A. Conversely, in most cases, an (a, b)-semi-hybrid domain on T A is strictly included

in the hybrid domain DH(T A, a, b).
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The hybrid domain DH(T A, a, b), where |〈a, b|T A〉| ≥ 3, is naturally a path-

connected domain, vacuously satisfies extreme-vertex symmetry,20 and it includes

a pair of completely reversed preferences if and only if T A is a line.

We provides three diagrams to illustrate a single-peaked preference and two

hybrid preferences on the line LA.

Figure 3: A single-peaked preference and two hybrid preferences on LA

2.4 Semi-single-peaked and semi-hybrid preferences

Next, we weaken single-peakedness and hybridness to the notions of semi-single-

peakedness introduced by Chatterji et al. (2013) and semi-hybridness respectively.

One observes immediately the weakening by comparing the three diagrams of

Figure 1 to their counterparts in Figure 3.

Definition 3 Fixing a tree T A and an alternative x̄ ∈ A which is called a thresh-

old, a preference Pi is semi-single-peaked on T A w.r.t. x̄ if it satisfies the

following two conditions:

(i) for all distinct a, b ∈ 〈r1(Pi), x̄|T A〉,
[
a ∈ 〈r1(Pi), b|T A〉

]
⇒ [aPib], and

(ii) for all a /∈ 〈r1(Pi), x̄|T A〉,
[

Proj
(
a, 〈r1(Pi), x̄|T A〉

)
= a′

]
⇒ [a′Pia].

Let DSSP(T A, x̄) denote the semi-single-peaked domain which includes all

semi-single-peaked preferences on T A w.r.t. x̄. A domain D is called a semi-

single-peaked domain if there exist a tree T A and a threshold x̄ ∈ A such that

D ⊆ DSSP(T A, x̄).

20Let Ext(GA∼) 6= ∅. Then DH(T A, a, b) must be non-degenerate. Given an arbitrary x ∈

Ext(GA∼), it is true that x ∈ Ext(T Aa⇀b

)\{a} or x ∈ Ext(T Ab⇀a

)\{b} which implies x ∈

Ext(T A) and x /∈ {a, b}. Consequently, we have
∣∣S(DH(T A, a, b)x

)∣∣ = 1.
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The semi-single-peaked domain DSSP(T A, x̄) is naturally a path-connected do-

main, and it includes a pair of completely reversed preferences if and only if

|NA(x̄)| ≤ 2.21 Given a path-connected domain D ⊆ DSSP(T A, x̄), it is true

that GA
∼ = T A, and moreover D satisfies extreme-vertex symmetry if and only if

either x̄ /∈ Ext(T A), or x̄ ∈ Ext(T A) and D ⊆ DSSP(T A, x̄) ∩ DSSP(T A, x) where

NA(x̄) = {x}.22 Clearly, DSP(T A) = ∩x̄∈ADSSP(T A, x̄).

Definition 4 Fixing a tree T A and two thresholds a, b ∈ A, a preference Pi is

(a, b)-semi-hybrid on T A if it satisfies one of the following three conditions:

(i) given r1(Pi) ∈ Aa⇀b\{a},

– Pi is semi-single-peaked on T Aa⇀b w.r.t. a, i.e., for all distinct x, y ∈

〈r1(Pi), a|T A
a⇀b〉,

[
x ∈ 〈r1(Pi), y|T A

a⇀b〉
]
⇒ [xPiy], and for all x ∈

Aa⇀b\〈r1(Pi), a|T A
a⇀b〉,

[
Proj

(
x, 〈r1(Pi), a|T A

a⇀b〉
)

= x′
]
⇒ [x′Pix].

– maxPi
(
〈a, b|T A〉

)
= a and maxPi(Ab⇀a) = b.

(ii) given r1(Pi) ∈ Ab⇀a\{b},

– Pi is semi-single-peaked on T Ab⇀a w.r.t. b, i.e., for all distinct x, y ∈

〈r1(Pi), b|T A
b⇀a〉,

[
x ∈ 〈r1(Pi), y|T A

b⇀a〉
]
⇒ [xPiy], and for all x ∈

Ab⇀a\〈r1(Pi), b|T A
b⇀a〉,

[
Proj

(
x, 〈r1(Pi), b|T A

b⇀a〉
)

= x′
]
⇒ [x′Pix].

– maxPi
(
〈a, b|T A〉

)
= b and maxPi(Aa⇀b) = a.

(iii) given r1(Pi) ∈ 〈a, b|T A〉, maxPi(Aa⇀b) = a and maxPi(Ab⇀a) = b.

Let DSH(T A, a, b) denote the semi-hybrid domain which includes all (a, b)-

semi-hybrid preferences on T A.23 A domain D is called an (a, b)-semi-hybrid

domain on T A if the following three conditions are satisfied:

21See Clarification 1 of Appendix G.
22See Clarification 2 of Appendix G.
23When we write the notation DSH(T A, a, b), both |〈a, b|T A〉| = 2 or |〈a, b|T A〉| ≥ 3 are

admissible.

13



(1) D ⊆ DSH(T A, a, b) and
∣∣〈a, b|T A〉∣∣ ≥ 3,24

(2) there exist no tree T̂ A and thresholds â, b̂ ∈ A such that D ⊆ DSH(T̂ A, â, b̂)

and 〈â, b̂
∣∣T̂ A〉 ⊂ 〈a, b|T A〉, and

(3) there exists no T̂ A such that D ⊆ DSSP(T̂ A, a) or D ⊆ DSSP(T̂ A, b).25

In particular, D is said to be non-degenerate if either Aa⇀b 6= {a} or Ab⇀a 6= {b}

holds, and degenerate otherwise.

We simply call D“a semi-hybrid domain” if there exist a tree T A and thresholds

a, b ∈ A such that D is an (a, b)-semi-hybrid domain on T A.26

The semi-hybrid domain DSH(T A, a, b), where |〈a, b|T A〉| ≥ 3, is naturally

a path-connected domain, vacuously satisfies extreme-vertex symmetry, and it

includes a pair of completely reversed preferences if and only if we have [Aa⇀b 6=

{a}] ⇒ [a ∈ Ext(T Aa⇀b)] and [Ab⇀a 6= {b}] ⇒ [b ∈ Ext(T Ab⇀a)].27 Clearly,

DH(T A, a, b) ⊆ DSH(T A, a, b).

Given an arbitrary path-connected domain D ⊆ DSH(T A, a, b), note thatGAa⇀b

∼ =

T Aa⇀b , GAb⇀a

∼ = T Ab⇀a , and that the adjacency subgraph G〈a,b|T
A〉

∼ may be signif-

icantly different from the interval 〈a, b|T A〉 in T A.28 We provide an example to

illustrate.

Example 1 Let A = {a1, a2, a3, a4, a5, a6}. We specify 14 preferences of a domain

D ⊂ DSH(LA, a2, a6) in Table 1. The line LA, interval 〈a2, a6|LA〉, adjacency graph

GA
∼ and adjacency subgraph G〈a2,a6|LA〉

∼ are all specified in Figure 4, respectively.

24If
∣∣〈a, b|T A〉∣∣ = 2, then DSH(T A, a, b) = DSSP(T A, a) ∩ DSSP(T A, b).

25In particular, if domain D is path-connected, to verify this condition, it suffices to show that

either GA∼ is not a tree, or GA∼ is a tree and neither D ⊆ DSSP(GA∼, a) nor D ⊆ DSSP(GA∼, b) holds.

Example 1 below provides an instance where this condition is violated.
26Evidently, the semi-hybrid domain DSH(T A, a, b), where

∣∣〈a, b|T A〉∣∣ ≥ 3, is an (a, b)-semi-

hybrid domain on T A. Conversely, in most cases, an (a, b)-semi-hybrid domain on T A is strictly

contained in the semi-hybrid domain DSH(T A, a, b).
27For instance, in Figure 2, we have Aa⇀b 6= {a} and a ∈ Ext(T Aa⇀b

), whereas Ay⇀x 6= {y}

and y /∈ Ext(T Ay⇀x

). The detailed verification is put in Clarification 3 of Appendix G.
28The graph G〈a,b|T

A〉
∼ has the vertex set 〈a, b|T A〉, and therefore is a subgraph of GA∼.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

a1 a1 a1 a2 a2 a3 a4 a4 a4 a5 a5 a6 a6 a7

a2 a2 a2 a1 a4 a4 a2 a3 a5 a4 a6 a5 a7 a6

a3 a5 a4 a4 a1 a2 a1 a2 a3 a3 a4 a4 a5 a5

a4 a4 a3 a3 a3 a1 a3 a1 a2 a2 a3 a3 a4 a4

a5 a3 a5 a5 a6 a5 a6 a5 a1 a1 a2 a2 a3 a3

a6 a6 a6 a6 a5 a6 a5 a6 a6 a6 a1 a1 a2 a2

a7 a7 a7 a7 a7 a7 a7 a7 a7 a7 a7 a7 a1 a1

Table 1: Domain D

r r r r r r r
a1 a2 a3 a4 a5 a6 a7

Line LA

r r r r r
a2 a3 a4 a5 a6

Interval 〈a2, a6|LA〉

r r r r r r
a1 a2 a4 a5 a6 a7

ra3

Adjacency graph GA∼

r r r r
a2 a4 a5 a6

ra3

Adjacency subgraph G
〈a2,a6|LA〉
∼

Figure 4: Line, interval, adjacency graph and adjacency subgraph

Domain D is path-connected according to the adjacency graph GA
∼ of Figure 4.

Preferences P1 and P14 are complete reversals in D. Domain D vacuously satisfies

extreme-vertex symmetry since |S(Dx)| = 1 for all x ∈ Ext(GA
∼) = {a1, a3, a7}.

Hence, D is a rich domain. One immediately notices the difference between the

interval 〈a2, a6|LA〉 and the adjacency subgraph G〈a2,a6|LA〉
∼ in Figure 4.

Next, we show in Clarification 4 of Appendix G that there exist no tree T̂ A

and thresholds â, b̂ ∈ A such that D ⊆ DSH(T̂ A, â, b̂) and 〈â, b̂|T̂ A〉 ⊂ 〈a2, a6|LA〉.

However, D violates condition (3) of Definition 4 since it is also semi-single-

peaked on the tree GA
∼ of Figure 4 w.r.t. a2. If we add two preferences: P15 =

(a3 a6 a4 a5 a7 a2 a1) and P16 = (a6 a3 a2 a1 a4 a5 a7), which are (a2, a6)-semi-hybrid

on LA as well, the new domain D̂ = D ∪ {P15, P16} turns to meet condition (3) of

Definition 4, and hence becomes a rich (a2, a6)-semi-hybrid domain on LA.29 �

29The adjacency graph of D̂ remains to be GA∼ of Figure 4. Domain D̂ continues to satisfy

extreme-vertex symmetry: (i) Ext(GA∼) = {a1, a3, a7}, (ii) |S(D̂a1)| = 1 and |S(D̂a7)| = 1, and

(iii) given (a3, a4) ∈ EA∼ , we have S(D̂a3) = {a4, a6}, a3 ∈ S(D̂a6) and a6 6= a4. Preference P15

(or P16) indicates that D̂ is never semi-single-peaked on the tree GA∼ w.r.t. a2, while P1 indicates

that D̂ is never semi-single-peaked on the tree GA∼ w.r.t. a6.
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2.5 An Auxiliary Proposition

We identify here a condition on a semi-hybrid domain which is necessary and

sufficient for all strategy-proof rules to behave like dictatorships on the“free zone”.

Definition 5 Fixing a tree T A and two thresholds a, b ∈ A, a domain D ⊆

DSH(T A, a, b) is non-trivial on 〈a, b|T A〉 if either Ext(G〈a,b|T
A〉

∼ ) = ∅, or

Ext(G〈a,b|T
A〉

∼ ) 6= ∅ and the following three conditions are satisfied: given x ∈

Ext
(
G〈a,b|T

A〉
∼

)
and (x, y) ∈ E 〈a,b|T A〉∼ ,

(i) if x /∈ {a, b}, there exists Pi ∈ Dx such that r2(Pi) 6= y,

(ii) if x = a, there exists Pi ∈ D such that r1(Pi) ∈ Aa⇀b and

maxPi
(
〈a, b|T A〉\{a}

)
6= y, and

(iii) if x = b, there exists Pi ∈ D such that r1(Pi) ∈ Ab⇀a and

maxPi
(
〈a, b|T A〉\{b}

)
6= y.

It is evident that the semi-hybrid domain DSH(T A, a, b), where |〈a, b|T A〉| ≥ 3,

is non-trivial on 〈a, b|T A〉 since any two distinct alternatives of 〈a, b|T A〉 are adja-

cent and hence Ext(G〈a,b|T
A〉

∼ ) = ∅. Next, we recall domain D̂ = D ∪ {P15, P16} ⊆

DSH(LA, a2, a6) of Example 1 to illustrate the non-trivialness condition. Accord-

ing to the adjacency subgraph G〈a2,a6|LA〉
∼ of Figure 4, note that Ext

(
G〈a2,a6|LA〉
∼

)
=

{a2, a3, a6}. First, condition (i) of Definition 5 is satisfied by preference P15, i.e.,

given (a3, a4) ∈ E 〈a2,a6|LA〉
∼ , we have r1(P15) = a3 and r2(P15) = a6 6= a4. Next,

preference P1 meets condition (ii) of Definition 5, i.e., given (a2, a4) ∈ E 〈a2,a6|LA〉
∼ ,

we have r1(P1) = a1 ∈ Aa2⇀a6 , maxP1
(
〈a2, a6|LA〉\{a2}

)
= a3 6= a4. Last, prefer-

ence P16 satisfies condition (iii) of Definition 5, i.e., given (a6, a5) ∈ E 〈a2,a6|LA〉
∼ , we

have r1(P16) = a6 ∈ Aa6⇀a2 and maxP16
(
〈a2, a6|LA〉\{a6}

)
= a3 6= a5.

An Auxiliary Proposition Fixing a tree T A and two thresholds a, b ∈ A, let

domain D ⊆ DSH(T A, a, b) be path-connected and satisfy extreme-vertex symmetry.

Then, every strategy-proof rule f : Dn → A, n ≥ 2, behaves likes a dictatorship on

〈a, b|T A〉 if and only if D is non-trivial on 〈a, b|T A〉.

The proof of the Auxiliary Proposition is contained in Appendix A.
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Remark 1 Let domain D ⊆ DSH(T A, a, b) be path-connected and satisfy extreme-

vertex symmetry. If D is non-trivial on 〈a, b|T A〉, it is easy to show that D meets

conditions (1) and (3) of Definition 4, while the sufficiency part of the Auxiliary

Proposition implies that D satisfies condition (2) of Definition 4.30 Therefore, D is

an (a, b)-semi-hybrid domain on T A. Conversely, a rich semi-hybrid domain may

not be non-trivial on its “free zone”.31 �

Remark 2 Aswal et al. (2003) introduced a domain condition called the unique

seconds property, which says that given a domain D, there exists x ∈ A such

that |S(Dx)| = 1, and showed that it is sufficient for a domain to be a non-

dictatorial domain.32 A semi-single-peaked domain by definition satisfies the

unique seconds property.33 Given a tree T A and two thresholds a, b ∈ A, let

D ⊆ DSH(T A, a, b) be path-connected. If Aa⇀b 6= {a} or Ab⇀a 6= {b}, then D

satisfies the unique seconds property by the definition of (a, b)-semi-hybridness on

T A.34 If Aa⇀b = {a} and Ab⇀a = {b}, then D satisfies the unique seconds property

if and only if it violates the non-trivialness condition on 〈a, b|T A〉.35 �

As mentioned earlier, the unique seconds property is sufficient for non-dictatorial

domains. Conversely, consider a non-dictatorial domain D which is assumed to

be path-connected and satisfy extreme-vertex symmetry. Note that D ⊆ P =

DSH(LA, a1, am). Thus, as a non-dictatorial domain, there exists a strategy-proof

rule which does not behave like a dictatorship on A = 〈a1, am|LA〉. Then, the

Auxiliary Proposition implies that D violates the non-trivialness condition on

30See the detailed verification in Clarification 5 of Appendix G.
31For instance, domain D of Example 1, as an (a2, a6)-semi-hybrid domain on the line LA,

violates the non-trivialness condition on 〈a2, a6|LA〉: given Ext(G〈a2,a6|T
A〉

∼ ) = {a2, a3, a6},

we have (1) (a3, a4) ∈ E〈a2,a6|T A〉
∼ and S(Da3) = {a4}, and (2) (a6, a5) ∈ E〈a2,a6|T A〉

∼ and

maxPi
(
〈a2, a6|T A〉\{a6}

)
= a5 for all Pi ∈ D with r1(Pi) ∈ {a6, a7} = Aa6⇀a2 .

32Also see the inseparable top-pair property introduced by Kalai and Ritz (1980).
33Given a domain D ⊆ DSSP(T A, x̄), it is clear that |Ext(T A)| ≥ 2. If x̄ /∈ Ext(T A), then

|S(Dx)| = 1 for all x ∈ Ext(T A). If x̄ ∈ Ext(T A), then |S(Dx)| = 1 for all x ∈ Ext(T A)\{x̄}.
34Since Aa⇀b 6= {a} or Ab⇀a 6= {b}, we have Ext(T A)\{a, b} 6= ∅ and |S(Dx)| = 1 for all

x ∈ Ext(T A)\{a, b}.
35See Clarification 6 of Appendix G. In the end of Clarification 6 of Appendix G, we provide

an example of a rich degenerate semi-hybrid domain that satisfies the unique seconds property.
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〈a1, am|LA〉, and hence satisfies the unique seconds property by Remark 2. Thus,

the Auxiliary Proposition helps us identify the exact boundary between dictato-

rial and non-dictatorial domains in our framework; the boundary is defined by the

unique seconds property.

Corollary 1 Let domain D be path-connected and satisfy extreme-vertex sym-

metry. Then, D is a non-dictatorial domain if and only if it satisfies the unique

seconds property.

We demonstrate Corollary 1 using the diagram of Figure 5.

Domains satisfying path-connectedness and extreme-vertex symmetry

The Unique Seconds Property

Dictatorial Domains Non-dictatorial Domains

︸ ︷︷ ︸
Figure 5: A characterization of non-dictatorial domains

Remark 3 Roy and Storcken (2019) provide another domain richness assumption

which contains three conditions, and show that the unique seconds property is

necessary and sufficient for non-dictatorial domains.36 Path-connectedness implies

their first and third conditions, and is easier to verify. extreme-vertex symmetry

significantly weakens their second condition as it only concerns the extreme vertices

in the adjacency graph. This weakening is meaningful and is critical to our analysis

as it accommodates the class of semi-single-peaked domains, which however is ruled

out by their second condition. �

36Let D be a rich domain of Roy and Storcken (2019). To meet their first condition, for all

distinct a, b ∈ A, there exists a sequence of alternatives {x1, . . . , xv} such that x1 = a, xv = b,

and for all 1 ≤ k < v, xk ∈ S(Dxk+1) and xk+1 ∈ S(Dxk). The second condition requires that

for all a, b ∈ A, [a ∈ S(Db)]⇔ [b ∈ S(Da)]. The third condition says that given a, b, c ∈ A with

a ∈ S(Db), b ∈ S(Da) ∩ S(Dc) and c ∈ S(Db), there exist two preferences Pi ∈ Da and P ′i ∈ Dc

such that given d ∈ A with dPic and dP ′ia, we have dP ′′i a or dP ′′i c at some preference P ′′i ∈ Db.
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3 Results

3.1 Non-tops-only rules and critical spots

We introduce a rule that on a semi-single-peaked (respectively semi-hybrid) do-

main can extract non-peak information from some preference profiles while re-

maining strategy-proof, and identify critical spots as configurations that allow

such rules to arise. These critical spots vanish if and only if the domain is refined

to be single-peaked (respectively hybrid).

Fix a tree T A. Given a preference profile P , we construct the following set

Γ(P ) =
{
a ∈ A : a ∈ 〈r1(Pi), r1(Pj)|T A〉 for some i, j ∈ N

}
which includes all

voters’ preference peaks and alternatives that are located between voters’ pref-

erence peaks. Thus, T Γ(P ) is the minimal subtree nested in T A that covers all

voters’ preference peaks. Then, we construct a rule on T A according to one edge

(x, y) which separates T A into two subtrees T Ax⇀y and T Ay⇀x . We fix two distinct

voters i, j ∈ N . First, at each preference profile, the social outcome equals voter

i’s most preferred alternative if it belongs to Ay⇀x. Next, if both voters i and j

have preference peaks in Ax⇀y, the social outcome is the projection of x on the

minimal subtree of the preference profile. Last, when the two most preferred al-

ternatives of voters i and j lie respectively in Ax⇀y and Ay⇀x, the social outcome

varies according to voter j’s preference over x and y.

Definition 6 An SCF f : Dn → A is a Possibly Non-Tops-only (or PNT)

SCF on a tree T A w.r.t. an edge (x, y) if there exist distinct i, j ∈ N such that

f(P ) =


r1(Pi) if r1(Pi) ∈ Ay⇀x,

Proj
(
x, T Γ(P )

)
if r1(Pi) ∈ Ax⇀y and r1(Pj) ∈ Ax⇀y,

maxPj({x, y}) if r1(Pi) ∈ Ax⇀y and r1(Pj) ∈ Ay⇀x.

By construction, a PNT SCF is unanimous and will henceforth be referred to

as a PNT rule. A PNT rule defined on a minimally rich domain by construction

is non-dictatorial and generalizes the constructed non-dictatorial rule associated

with the unique seconds property.37 Moreover, the following fact generalizes the

37Fix a domain D which satisfies the unique seconds property, say S(Dx) = {y}. We construct
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heuristic example in Section 1.1 and pins down the necessary and sufficient con-

dition for PNT rules to be strategy-proof and non-tops-only.

Fact 1 Fix a minimally rich domain D, a tree T A and an edge (x, y). For all

n ≥ 2, the PNT rule f : Dn → A on T A w.r.t. (x, y) is strategy-proof if and only

if the following two conditions are satisfied: for all Pi ∈ D,

(i) given r1(Pi) ∈ Ax⇀y, Pi is semi-single-peaked on T A w.r.t. y, and

(ii) given r1(Pi) ∈ Ay⇀x, maxPi(Ax⇀y) = x.

Moreover, the PNT rule f : Dn → A on T A w.r.t. (x, y) violates the tops-only

property if and only if an additional condition is satisfied:

(iii) there exist Pi, P
′
i ∈ D such that r1(Pi) = r1(P ′i ) ∈ Ay⇀x, yPix and xP ′iy.

The proof of Fact 1 is contained in Appendix B.

Given a domain D and a tree T A, we call an edge (x, y) a critical spot, if all

conditions (i), (ii) and (iii) of Fact 1 are satisfied. The proposition below shows that

the existence of a critical spot is necessary and sufficient for distinguishing a semi-

single-peaked domain from a single-peaked domain (respectively distinguishing

a semi-hybrid domain from a hybrid domain), and therefore each critical spot

supports a strategy-proof PNT rule that violates the tops-only property.

Proposition 1 Fixing a path-connected domain D and a tree T A, the following

two statements hold:

(i) Given D ⊆ DSSP(T A, x̄) for some threshold x̄ ∈ A, we have D * DSP(T A) if

and only if there exists a critical spot. Therefore, if D * DSP(T A), it admits

a non-tops-only and strategy-proof rule.

(ii) Given D ⊆ DSH(T A, a, b) for some thresholds a, b ∈ A, we have D * DH(T A, a, b)

if and only if there exists a critical spot in T Aa⇀b or T Ab⇀a. Therefore, if

D * DH(T A, a, b), it admits a non-tops-only and strategy-proof rule.

The proof of Proposition 1 is contained in Appendix C.

a line L = (x, y, . . . ) over A. Then, the PNT rule on L w.r.t. the edge (x, y) is identical to rule

(∗) in Appendix A, which is constructed according to the unique seconds property.
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3.2 A classification of non-dictatorial domains

In this section, we establish a classification of non-dictatorial domains using the

notions of semi-single-peakedness and semi-hybridness. We do so by introducing

a pair of completely reversed preferences to the domain and introducing a new

axiom on a two-voter SCF, invariance, which requires that the SCF choose the

same alternative at the two profiles where the voters are endowed with the two

completely reversed preferences. We next refine the classification to single-peaked

domains and hybrid domains on the line LA by requiring additionally that the

domains in question be tops-only domains. Finally, we investigate all tops-only

and strategy-proof rules (either invariant or not) on rich non-dictatorial domains.

Henceforth, we fix P i and P i as two completely reversed preferences included in

every rich domain we hencefort investigate, and moreover we fix P i = (a1 · · · ak ak+1 · · · am)

and P i = (am · · · ak+1 ak · · · a1) by relabelling alternatives as necessary.38

Definition 7 Given a domain D, let P i, P i ∈ D. Then, an SCF f : D2 → A is

invariant if we have f(P 1, P 2) = f(P 1, P 2).

Clearly, invariance is weaker than anonymity in a two-voter SCF.

The following is the main result of the paper.

Theorem Let D be a rich non-dictatorial domain. Then, the following two state-

ments hold:

(i) There exists an invariant, tops-only and strategy-proof rule if and only if D

is a semi-single-peaked domain.

(ii) There exists no invariant, tops-only and strategy-proof rule if and only if D

is a semi-hybrid domain and satisfies the unique seconds property.

The proof of the Theorem is contained in Appendix D.

Remark 4 The Theorem refines the characterization of non-dictatorial domains

obtained in Corollary 1 by showing that all non-dictatorial rich domains can be

classified into one of the three variants illustrated in Figure 6 below:

38In preferences P i and P i, we have akP iak+1 and ak+1P iak for all k = 1, . . . ,m− 1.
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Non-dictatorial Domains

Rich Domains

The Unique Seconds Property

Invariance

Dictatorial Domains
Degenerate

Semi-hybrid Domains

Non-degenerate

Semi-hybrid Domains
Semi-single-peaked Domains

︷ ︸︸ ︷

︸ ︷︷ ︸
Figure 6: A classification of rich non-dictatorial domains

First, semi-single-peaked domains are sorted out according to Statement (i) of the

Theorem as the unique ones that admit an invariant, tops-only and strategy-proof

rule, while every other rich non-dictatorial domain is shown by Statement (ii) of the

Theorem to be an (a, b)-semi-hybrid domain on a tree T A that satisfies the unique

seconds property. Moreover, the proof of Statement (ii) shows that the rich semi-

hybrid domain in question must force every tops-only and strategy-proof rule to

behave like a dictatorship on the “free zone” 〈a, b|T A〉. Such a semi-hybrid domain

can be either non-degenerate or degenerate. If it is non-degenerate, then it admits

a tops-only and strategy-proof rule that is non-dictatorial (see the rule specified in

the verification of Claim 4, Lemma 24, Appendix D). If it is degenerate, then we

have 〈a, b|T A〉 = A (see for instance Example 5 in Clarification 6 of Appendix G),

and hence every tops-only and strategy-proof rule is a dictatorship; however the

unique seconds property ensures the existence of a non-dictatorial strategy-proof

rule. More specifically, in this latter case, all non-dictatorial strategy-proof rules

inevitably violate the tops-only property, and hence a non-tops-only and strategy-

proof rule is called upon to satisfy the non-dictatorial-domain hypothesis, e.g., the

PNT rule associated with the unique seconds property (see footnote 37). �

Remark 5 The Theorem and its proof imply that given a rich domain D ⊆

DSH(T A, a, b), every tops-only and strategy-proof rule behaves like a dictatorship

on 〈a, b|T A〉 if and only if D is an (a, b)-semi-hybrid domain on T A.39 �

Remark 6 Chatterji et al. (2013) have shown that on a path-connected domain,

semi-single-peakedness is implied by the existence of an anonymous, tops-only

and strategy-proof rule with an even number of voters. On our rich domain,

the Theorem strengthens their result as it implies that regardless of the number

39See the detailed verification in Clarification 7 of Appendix G.
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of voters, semi-single-peakedness is necessary for the existence of an anonymous,

tops-only and strategy-proof rule.40 �

If we further restrict the rich non-dictatorial domains in question to be tops-

only domains, the classification is refined in the following three ways: (i) degen-

erate semi-hybrid domains that exogenously satisfy the unique seconds property

are explicitly excluded from the classification as they admit non-tops-only and

strategy-proof rules (recall Remark 4), (ii) non-degenerate semi-hybrid domains

are refined to non-degenerate hybrid domain on the line LA (by statement (ii) of

Proposition 1 and by the existence of the two completely reversed preferences),

and are strengthened to satisfy the non-trivialness condition on their own “free

zones” by the Auxiliary Proposition, and (iii) semi-single-peaked domains are re-

fined to be single-peaked on the line LA (by statement (i) of Proposition 1 and by

the existence of the two completely reversed preferences). Furthermore, we show

that single-peakedness and non-trivial hybridness on LA are also sufficient for a

rich domain to be a tops-only domain.

Corollary 2 Let D be a rich non-dictatorial tops-only domain D. Then, the

following two statements hold:

(i) There exists an invariant and strategy-proof rule if and only if D is a single-

peaked domain on LA.

(ii) There exists no invariant and strategy-proof rule if and only if D is a non-

trivial and non-degenerate hybrid domain on LA.

Moreover, given a rich domain D, it is a tops-only domain if and only if it is

single-peaked or non-trivially hybrid on LA.

40Let a rich domain D admit an anonymous, tops-only and strategy-proof rule. Clearly, D is a

non-dictatorial domain. Suppose that D is not semi-single-peaked. Statement (i) of the Theorem

first implies non-existence of an invariant, tops-only and strategy-proof rule. Then, statement

(ii) implies that D is an (a, b)-semi-hybrid domain on a tree T A, and Remark 5 implies that every

tops-only and strategy-proof rule behaves like a dictatorship on 〈a, b|T A〉. This contradicts the

hypothesis that D admits an anonymous, tops-only and strategy-proof rule.

23



The proof of Corollary 2 is contained in Appendix E.

We use another diagram to illustrate the classification of rich non-dictatorial

domains refined by Corollary 2.

Non-dictatorial Domains

Rich Tops-only Domains

The Unique Seconds Property

Invariance

Dictatorial Domains
Non-trivial and Non-degenerate

Hybrid Domains on LA Single-peaked Domains on LA

︷ ︸︸ ︷

︸ ︷︷ ︸
Figure 7: A classification of rich non-dictatorial tops-only domains

Remark 7 In the literature, specific restricted domains have been verified to be

tops-only domains, and general sufficient conditions have been introduced for es-

tablishing tops-only domains (see the literature review in Section 4.1). Apart from

providing a sufficient condition for tops-only domains, Corollary 2 more impor-

tantly utilizes the classification result to justify the necessity of single-peakedness

and hybridness in establishing tops-only domains; this in turn demonstrates the

salience of critical spots in supporting non-tops-only and strategy-proof rules. �

3.3 Tops-only rules and characterizations

In this section, we utilize our classification results to investigate the structure

of non-dictatorial tops-only and strategy-proof rules41 on the semi-single-peaked

domains and the semi-hybrid domains.42

41We have introduced one class of non-tops-only rules in Section 3.1, and identified the critical

spot on semi-single-peaked and semi-hybrid domains to support its strategy-proofness. Charac-

terizing all non-tops-only and strategy-proof rules on a rich non-dictatorial domains requires a

more thorough investigation of the domain and we leave it for future work.
42On the single-peaked domain DSP(LA), Moulin (1980) characterized all strategy-proof rules

to be generalized median voter rules. On the hybrid domain DH(LA, ap, aq), where q − p > 1,

Theorem 1 of Achuthankutty and Roy (2020) implies that each strategy-proof rule is a restricted

generalized median voter rule where one voter dictates on the interval 〈ap, aq|LA〉. The same

characterization results still hold on a rich single-peaked domain and a rich non-trivial hybrid

domain. The detailed proof can be provided on request.
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3.3.1 Projection rule

First, the fact below introduces a specific anonymous SCF, called the projection

rule (also see Thomson (1993) and Vohra (1999)), and states that semi-single-

peakedness is necessary and sufficient for its strategy-proofness.

Fact 2 Fixing a minimally rich domain D, a tree T A and an alternative x̄ ∈ A,

let SCF f : Dn → A be a projection rule w.r.t. x̄, i.e., f(P ) = Proj
(
x̄, T Γ(P )

)
for all P ∈ Dn. Then, f is a strategy-proof rule if and only if we have D ⊆

DSSP(T A, x̄).

The sufficiency part of Fact 2 follows exactly from the Theorem of Chatterji

et al. (2013), while the necessity part is implied by strategy-proofness of a two-

voter projection rule (see Lemma 14 in Appendix D), which can be directly induced

from an n-voter projection rule by separating all voters into two non-empty groups

and cloning all voters in the same group.

Corollary 1 of Bonifacio and Massó (2020) implies that the projection rule is

the unique anonymous, tops-only and strategy-proof rule on almost all semi-single-

peaked domains.43 This is formally stated below.

Proposition 2 Fixing the semi-single-peaked domain DSSP(T A, x̄), let x̄ /∈ NA(x)

for any x ∈ Ext(T A). Then, an SCF f :
[
DSSP(T A, x̄)

]n → A is an anonymous,

tops-only and strategy-proof rule only if it is a projection rule w.r.t. x̄.

3.3.2 Hybrid rule

Next, the fact below introduces another specific non-dictatorial SCF, called the

hybrid rule, which is a hybrid of a dictatorship and two projection rules, and shows

that semi-hybridness is necessary and sufficient for its strategy-proofness.

43The detailed verification is contained in Clarification 8 of Appendix G.
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Fact 3 Fixing a minimally rich domain D, a tree T A and two thresholds a, b ∈ A,

let SCF f : Dn → A be a hybrid rule w.r.t. a and b, i.e., there exist a voter i ∈ N

and two winning coalitions Wa⇀b,Wb⇀a ⊆ N with i ∈ Wa⇀b ∩Wb⇀a such that

f(P ) =


r1(Pi) if r1(Pi) ∈ 〈a, b|T A〉,

Proj
(
a, T Γ(PWa⇀b)

)
if r1(Pi) ∈ Aa⇀b\{a},

Proj
(
b, T Γ(PWb⇀a)

)
if r1(Pi) ∈ Ab⇀a\{b}.44

Then, given Wa⇀b 6= {i} and Wb⇀a 6= {i}, f is a strategy-proof rule if and only

if we have D ⊆ DSH(T A, a, b).

The verification of the sufficiency part of Fact 3 is similar to the verification

of Claim 1 in the proof of Lemma 24 in Appendix D, while the necessity part is

implied by the strategy-proofness of a two-voter hybrid rule (see Lemma 21 in

Appendix D), which can be induced from an n-voter strategy-proof hybrid rule by

cloning all voters other than the one who dictates on the interval 〈a, b|T A〉.

Last, the proposition below provides a characterization of the hybrid rule on

the semi-hybrid domain.

Proposition 3 Fixing the semi-hybrid domain DSH(T A, a, b), let |〈a, b|T A〉| ≥ 3

and P i, P i ∈ DSH(T A, a, b). Then, an SCF f :
[
DSH(T A, a, b)

]n → A is a tops-only

and strategy-proof rule only if it is a hybrid rule w.r.t. a and b.

The proof of Proposition 3 is contained in Appendix F.

Remark 8 On the one hand, we know by Proposition 1 that semi-single-peaked

domains and semi-hybrid domains admit non-tops-only and strategy-proof rules,

whereas the refinement to single-peaked and hybrid domains in Corollary 2 elim-

inates all non-tops-only and strategy-proof rules. On the other hand, such a

refinement enlarges the scope for designing tops-only and strategy-proof rules, as

the projection rule uniquely characterized in Proposition 2 is generalized to the

44The notation PWa⇀b is a preference profile which only contains the preferences of the voters

in the winning coalitionWa⇀b. IfWa⇀b = {i} (respectively, Wb⇀a = {i}), then voter i dictates

on Aa⇀b ∪ 〈a, b|T A〉 (respectively, 〈a, b|T A〉 ∪ Ab⇀a). If Wa⇀b =Wb⇀a = {i}, then the hybrid

rule degenerates to a dictatorship of voter i.
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class of phantom voter rules on the single-peaked domain, and the hybrid rule of

Proposition 3 is expanded to the whole family of restricted generalized median

voter rules on the hybrid domain. �

Remark 9 According to Theorem 4 of Schummer and Vohra (2002), we know

that each strategy-proof rule defined on the hybrid domain DH(T A, a, b) is an ex-

tended generalized median voter rule which behaves like a dictatorship on 〈a, b|T A〉.

Compared to DH(T A, a, b), the semi-hybrid domain DSH(T A, a, b) is more permis-

sive on the relative rankings of alternatives in Aa⇀b and Ab⇀a. To accommodate

these more permissive rankings while maintaining strategy-proofness, additional

restrictions have to be imposed on the extended generalized median voter rule.

Proposition 3 identifies the additional restrictions (see Claims 2 and 3 in Ap-

pendix F) and shows that these drive the extended generalized median voter rule

to an explicit configuration, a hybrid rule w.r.t. a and b, which is more transparent

from the design point of view. �

4 Literature Review and Final Remarks

4.1 A review of the literature

Following the seminal Gibbard-Satterthwaite Theorem, domain restrictions have

received much attention in the literature on strategic voting. One stream of the lit-

erature examines the robustness of the Gibbard-Satterthwaite Theorem by showing

that some sparse restricted domains, see for instance, FPT (Free Pair at the Top)

domains of Sen (2001), linked domains of Aswal et al. (2003), circular domains of

Sato (2010) and the β and γ domains of Pramanik (2015), are in fact dictatorial

domains. These papers use richness assumptions on the domain variously to con-

struct connectedness relations between alternatives, while the violation of these

richness conditions appear, somewhat surprisingly, to lead to the unique seconds

property in the sense that if the unique seconds property holds, all the aforemen-

tioned richness conditions that precipitate dictatorship are violated.45 Recently,

45This assertion can be made more precise by observing that in the case |A| = 3, any domain

other than the universal domain satisfies the unique seconds property.

27



Roy and Storcken (2019) have concluded the of the unique seconds property in

characterizing non-dictatorial domains. Our Corollary 1 is in the same vein. But

more importantly, our focus on the classification of non-dictatorial domains uncov-

ers more meaningful non-dictatorial strategy-proof rules (recall the projection rule

in Proposition 2 and the hybrid rule in Proposition 3), compared to the specific

non-dictatorial strategy-proof rule associated with the unique seconds property.

Another stream of the literature starts with a specific restricted domain that

not only helps escape the Gibbard-Satterthwaite impossibility, but also accom-

modates the design of various well-behaved strategy-proof rules. Almost all such

domains are variants of the notion of single-peakedness. On the single-peaked do-

main, the seminal paper of Moulin (1980) characterized all anonymous, tops-only

and strategy-proof rules as phantom voter rules, and all tops-only and strategy-

proof rules as generalized median voter rules. In the past four decades, several key

variants of single-peakedness have been developed and non-dictatorial strategy-

proof rules have been explored: Demange (1982) introduced single-peakedness on

a tree and Schummer and Vohra (2002) investigated all corresponding strategy-

proof rules and extended Moulin’s generalized median voter rules; Barberà et al.

(1993) generalized single-peakedness from a one-dimensional underlying line to a

multidimensional grid, and discovered an important class of strategy-proof rules:

multidimensional generalized median voter rules on the multidimensional single-

peaked domain; Nehring and Puppe (2007) adopted a ternary relation to generally

address the geometric relation among alternatives, invented the notion of general-

ized single-peakedness, and characterized all strategy-proof rules;46 and recently,

Reffgen (2015) provided a transition from the single-peaked domain to the uni-

46Using the terminology of Nehring and Puppe (2007), the (inclusion/non-inclusion) separable

domain of Barberà et al. (1991), the multidimensional single-peaked domain of Barberà et al.

(1993) and the separable domain of Le Breton and Sen (1999) can be equivalently translated to

generalized single-peaked domains according to three analogous ternary relations respectively.

Moreover, the important strategy-proof rules, voting by committees of Barberà et al. (1991)

and component-wise dictatorship of Le Breton and Sen (1999) can be translated to two specific

multidimensional generalized median voter rules of Barberà et al. (1993).
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versal domain by taking unions of multiple single-peaked domains which are con-

structed according to different underlying lines, established the notion of a multiple

single-peaked domain and characterized all strategy-proof rules as a specific sub-

set of the generalized median voter rules which simultaneously preserve features

of a dictatorship and of a median voter rule. Two comprehensive survey papers,

Sprumont (1995) and Barberà (2011), provided more detailed discussions on the

development of single-peakedness restrictions and non-dictatorial strategy-proof

rules. All aforementioned restricted preference domains are in fact tops-only do-

mains. Therefore all non-tops-only and strategy-proof rules are implicitly excluded

from the investigation. We depart from this literature by considering non-tops-

only rules; Proposition 1 here identifies a critical spot in a restricted domain that

supports a non-tops-only and strategy-proof rule, and Corollary 2 illustrates its

necessity by showing that non-tops-only and strategy-proof rules disappear as the

critical spot vanishes.

A third stream of the literature poses the following natural“converse”question:

is single-peakedness a consequence of the existence of a “well-behaved” strategy-

proof rule? Earlier literature Barberà et al. (1993) showed that if a minimally rich

domain admits the median voter rule as a strategy-proof rule, then the domain

must be single-peaked on a line. Instead of considering a specific rule, Chatterji

et al. (2013) established that on a path-connected domain, semi-single-peakedness,

rather than single-peakedness, is necessary for the existence of an anonymous,

tops-only and strategy-proof rule, and Chatterji and Massó (2018) showed that

semilattice single-peakedness, a generalization of semi-single-peakedness, arises as

a consequence of the existence of an anonymous, tops-only and strategy-proof

rule on a rich domain (where the richness condition is formulated relative to the

particular rule that is assumed to exist). Recently, Barberà et al. (2020) pro-

vide an insightful survey explaining the single-peakedness restriction, its various

weakenings and the frontier between dictatorial and non-dictatorial domains. This

literature too restricts attention to the class of strategy-proof rules that in addition

satisfy the tops-only property and anonymity, and is therefore silent on domains
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where all tops-only and strategy-proof rules are dictatorships; also excluded are

domains that admit tops-only and strategy-proof rules that violate anonymity

but remain non-dictatorial. Our classification theorem essentially demonstrates

that appropriate weakenings of single-peakedness characterize all non-dictatorial

domains. It emphasizes the role of the unique seconds property and the associ-

ated non-tops-only and strategy-proof rules for a non-dictatorial domain where all

tops-only and strategy-proof rules are dictatorships, retrieves the salience of semi-

single-peakedness in allowing a tops-only and strategy-proof rule that is invariant

(a weakening of anonymity), and discovers non-degenerate semi-hybrid domains

as the ones that allow the existence of a non-dictatorial, tops-only and strategy-

proof rule that fails to meet the full requirement of anonymity. For simplicity, our

analysis restricts attention to the case of two voters. We claim that there is no

loss of generality in doing so, and it helps us to avoid the exogenous assumption

on the number of voters in the literature. First, Remark 6 shows that semi-single-

peakedness is necessary for the existence of an anonymous, tops-only and strategy-

proof rule, regardless of the number of voters. Second, given semi-hybridness re-

vealed from all two-voter non-dictatorial, tops-only and strategy-proof rules, the

Second Ramification Theorem specified in the Supplementary Material essentially

suggests that no preference restriction beyond the revealed semi-hybridness can

be elicited via any n-voter counterpart rule.47 Chatterji and Zeng (2019) intro-

duced a richness condition that endogenously ensures all strategy-proof rules are

tops-only in a multidimensional setting and showed that the existence of a well-

behaved strategy-proof rule implies full multidimensional single-peakedness. We

do not follow this approach here as our intention is to uncover the role of semi-

single-peakedness and semi-hybridness in allowing the design of non-tops-only and

47Via one n-voter non-dictatorial, tops-only and strategy-proof rule, one may refine the prefer-

ence restriction on the two subtrees attached to the two thresholds, and hence push the domain

closer to a hybrid domain. Clearly, such a refinement is still accommodated by the notion of

semi-hybridness. More importantly, we conjecture that such a refinement can also be achieved

by aggregating the preference restrictions revealed from multiple two-voter non-dictatorial, tops-

only and strategy-proof rules.
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strategy-proof rules.

Lastly, our refinement of the classification of non-dictatorial domains provided

in Corollary 2 is also related to the literature on tops-only domains. In this

literature, various restricted domains have been shown to be tops-only domains

(see for instance Barberà et al., 1991, 1993; Ching, 1997; Le Breton and Sen,

1999; Le Breton and Weymark, 1999; Nehring and Puppe, 2007; Weymark, 2008;

Reffgen, 2015; Achuthankutty and Roy, 2020). Chatterji and Sen (2011) provided

two general sufficient conditions for tops-only domains. The non-trivial rich hybrid

domains studied in this paper (see for instance domain D̂ of Example 1), viewed

as tops-only domains, are not covered by the literature. In particular, Corollary

2, to our knowledge, is the first result that fully characterizes tops-only domains,

and therefore reveals the important role of the full single-peakedness requirement,

embedded in either the whole line, or on both the left and right parts of the line,

in establishing a tops-only domain.

4.2 Indispensability

To conclude this paper, we provide three examples to show the indispensability

of our richness condition in establishing the classification of non-dictatorial do-

mains. In the three examples, we drop the completely reversed preferences, path-

connectedness and extreme-vertex symmetry in turn and provide a non-dictatorial

domain beyond the classification. We believe that these three examples also sug-

gest some directions on future investigation of non-dictatorial domains and non-

dictatorial strategy-proof rules.

Example 2 (Indispensability of the completely reversed preferences)

Let A = {a, b, c, d} be allocated on a star-shape tree T A of Figure 8.

r r
r

r
a b c

d

Figure 8: The star-shape tree T A

The corresponding single-peaked domain DSP(T A) is path-connected, satisfies
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extreme-vertex symmetry vacuously, but does not contain a pair of completely

reversed preferences. Clearly, DSP(T A) is a non-dictatorial domain, since the ma-

jority voting rule continues to deliver a Condorcet winner and preserves unanimity,

anonymity and strategy-proofness. Althrough DSP(T A) is covered by the charac-

terization of non-dictatorial domains in Corollary 1, it is exogenously excluded by

our classification in the Theorem. �

Example 3 (Indispensability of path-connectedness)

Let A = {a, b, c, d} be allocated on a box specified in Figure 9, which can be

reinterpreted as a Cartesian product structure {0, 1} × {0, 1}.

r r
rr

(0, 0) = a b = (1, 0)

(0, 1) = c d = (1, 1)

Figure 9: A graph of a box

According to the Cartesian product structure {0, 1} × {0, 1}, we specify the

multidimensional single-peaked domain DMSP in Table 2.48

P1 P2 P3 P4 P5 P6 P7 P8

a a b b c c d d
b c a d a d b c
c b d a d a c b
d d c c b b a a

Table 2: The multidimensional single-peaked domain DMSP

Domain DMSP violates path-connectedness as no pair of alternatives are ad-

jacent. Hence, the adjacency graph GA
∼ has an empty edge set, and DMSP then

satisfies extreme-vertex symmetry vacuously. Indeed, domain DMSP contains four

pairs of completely reversed preferences. By Theorem 1 of Barberà et al. (1991),

a particular non-dictatorial strategy-proof rule can be constructed on DMSP, vot-

ing by committees. Therefore, DMSP is a non-dictatorial domain. Last, we notice

that DMSP violates the unique seconds property as |S(Dx
MSP)| > 1 for all x ∈ A.

Therefore, DMSP is not covered by our classification. �

48The domain specified in Table 2 was initially introduced by Barberà et al. (1991) in a non-

Cartesian-product formulation.

32



Example 4 (Indispensability of extreme-vertex symmetry)

Let A = {a, b, c, d} be allocated on the star-shape tree T A of Figure 8. We specify

a domain D of 9 preferences in Table 3.

P1 P2 P3 P4 P5 P6 P7 P8 P9

a b b b c d a c d
b a c d b b d a c
c c d a d a b b b
d d a c a c c d a

Table 3: Domain D

Notice that the first 6 preferences of D are single-peaked on T A and imply

path-connectedness. In particular, GA
∼ = T A. Domain D has a pair of completely

reversed preferences, P1 and P9. However, D violates extreme-vertex symmetry:

given a ∈ Ext(GA
∼) and (a, b) ∈ EA∼ , we have S(Da) = {b, d} but a /∈ S(Dd).

We construct the following non-tops-only, anonymous and strategy-proof rule

to illustrate that D is a non-dictatorial domain: for all (Pi, Pj) ∈ D2,

f(Pi, Pj) =



d if Pi = P7 and Pj ∈ Dd, or Pi ∈ Dd and Pj = P7,

a if Pi = P8 and Pj ∈ Da, or Pi ∈ Da and Pj = P8,

c if Pi = P9 and Pj ∈ Dc, or Pi ∈ Dc and Pj = P9,

Proj
(
b, 〈r1(Pi), r1(Pj)|T A〉

)
otherwise.49

Last, we observe |S(Dx)| ≥ 2 for all x ∈ A which suggests the failure of the unique

seconds property. Therefore, D is not covered by our classification. �

49The verification of unanimity, anonymity, non-tops-onlyness and strategy-proofness is simple,

and we leave it to the reader.
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Appendix

A Proof of the Auxiliary Proposition

(Necessity) Let domain D ⊆ DSH(T A, a, b) be path-connected and satisfy extreme-

vertex symmetry, where |〈a, b|T A〉| ≥ 3. Suppose that every strategy-proof rule

behaves like a dictatorship on 〈a, b|T A〉. We show that D is non-trivial on 〈a, b|T A〉.

By the definition of (a, b)-semi-hybridness on T A and path-connectedness, we

know that G〈a,b|T
A〉

∼ is a connected graph. Clearly, either Ext
(
G〈a,b|T

A〉
∼

)
= ∅ or

Ext
(
G〈a,b|T

A〉
∼

)
6= ∅ holds. If Ext

(
G〈a,b|T

A〉
∼

)
= ∅, D is non-trivial on 〈a, b|T A〉 by

definition. Henceforth, we assume Ext
(
G〈a,b|T

A〉
∼

)
6= ∅. We fix x ∈ Ext

(
G〈a,b|T

A〉
∼

)
and (x, y) ∈ E 〈a,b|T A〉∼ . First, we consider the case that x /∈ {a, b}, and show that

there exists P ∗i ∈ Dx such that r2(P ∗i ) 6= y. Suppose not, i.e., r2(Pi) = y for all

Pi ∈ Dx. We construct the following SCF:

f(P1, P2) =

 r1(P1) if r1(P1) 6= x,

maxP2({x, y}) otherwise.
(∗)

By construction, f satisfies unanimity and hence is a rule. Moreover, by the

proof of Theorem 5.1 of Aswal et al. (2003), we know that f is strategy-proofness.

Clearly, f does not behave like a dictatorship on 〈a, b|T A〉, since we have x, y ∈

〈a, b|T A〉, [r1(P1) 6= x]⇒ [f(P1, P2) = r1(P1)] and [r1(P ′1) = x and r1(P ′2) = y]⇒

[f(P ′1, P
′
2) = y 6= r1(P ′1)]. This contradicts the hypothesis of the necessity part,

and hence proves condition (i) of Definition 5.

Next, let x = a. We show that there exists P ∗i ∈ D such that r1(P ∗i ) ∈ Aa⇀b and

maxP
∗
i

(
〈a, b|T A〉\{a}

)
6= y. Suppose by contradiction that maxPi

(
〈a, b|T A〉\{a}

)
=

y for all Pi ∈ D with r1(Pi) ∈ Aa⇀b.

Now, we keep the subtree T Aa⇀b , rearrange all alternatives of 〈a, b|T A〉 ∪Ab⇀a

on a line (z1, z2, . . . , zv) such that z1 = a and z2 = y, and combine the subtree

T Aa⇀b and the line (z1, z2, . . . , zv) to construct a new tree T̂ A. Note that a and

y are naturally two thresholds of T̂ A. Accordingly, let Âa⇀y =
{
z ∈ A : a ∈

〈z, y|T̂ A〉
}

and Ây⇀a =
{
z ∈ A : y ∈ 〈z, a|T̂ A〉

}
. Clearly, Âa⇀y = Aa⇀b, Ây⇀a =

{z2, . . . , zv}, and T̂ A is a combination of the subtree T̂ Âa⇀y = T Aa⇀b , the edge
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(a, y) = (z1, z2) and the line T̂ Ây⇀a = (z2, . . . , zv). Thus, by the restriction of

(a, b)-semi-hybridness on T A and the contradictory hypothesis, one would easily

notice that for every preference Pi ∈ D with r1(Pi) ∈ Âa⇀y, the following two

conditions hold:

(1) Pi is semi-single-peaked on the subtree T̂ Âa⇀y∪{y} w.r.t. y, and

(2) maxPi
(
Ây⇀a

)
= y.

Claim 1: According to T̂ A and the thresholds a and y, the following two condi-

tions hold: for all Pi ∈ D,

(i) if r1(Pi) ∈ Âa⇀y, then Pi is semi-single-peaked on T̂ A w.r.t. y, and

(ii) if r1(Pi) ∈ Ây⇀a, then maxPi(Âa⇀y) = a.

Evidently, condition (i) is implied by conditions (1) and (2) above. Next, given

an arbitrary Pi ∈ D with r1(Pi) ∈ Ây⇀a, (a, b)-semi-hybridness on T A implies

a = maxPi(Aa⇀b) = maxPi(Âa⇀y). This completes the verification of the claim.

Now, according to T̂ A, we construct an SCF:

f(P1, P2) =


r1(P1) if r1(P1) ∈ Ây⇀a,

Proj
(
a,
〈
r1(P1), r1(P2)|T̂ A

〉)
if r1(P1) ∈ Âa⇀y and r1(P2) ∈ Âa⇀y,

maxP2({a, y}) if r1(P1) ∈ Âa⇀y and r1(P2) ∈ Ây⇀a.

It is evident that f is unanimous and hence is a rule. Next, we show that f does

not behave like a dictatorship on 〈a, b|T A〉. Note that 〈a, b|T A〉\{a} ⊆ Ây⇀a,

a, y ∈ 〈a, b|T A〉, |〈a, b|T A〉| ≥ 3 and G〈a,b|T
A〉

∼ is a connected graph. Therefore,

we have z ∈ 〈a, b|T A〉\{a, y} such that z ∼ y. Then, there exists P2 ∈ Dz such

that r2(P2) = y. Given P1 ∈ Da, the construction of f implies f(P1, P2) =

maxP2({a, y}) = y /∈ {r1(P1), r1(P2)}. This indicates that f does not behave like

a dictatorship on 〈a, b|T A〉. Therefore, to complete the proof, it suffices to show

that f is strategy-proof.

First, we consider voter 1. Given P = (P1, P2) and P ′ = (P ′1, P2), there are

three possible manipulations:
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(1) f(P ) = Proj
(
a,
〈
r1(P1), r1(P2)|T̂ A

〉)
and f(P ′) = Proj

(
a,
〈
r1(P ′1), r1(P2)|T̂ A

〉)
,

(2) f(P ) = Proj
(
a,
〈
r1(P1), r1(P2)|T̂ A

〉)
and f(P ′) = r1(P ′1), and

(3) f(P ) = maxP2({a, y}) and f(P ′) = r1(P ′1).

In each case, we show that either f(P ) = f(P ′) or f(P )P1f(P ′) holds. In case

(1), r1(P1) ∈ Âa⇀y, r1(P2) ∈ Âa⇀y and r1(P ′1) ∈ Âa⇀y. Consequently, we have

either f(P ) = f(P ′) or f(P )P1f(P ′) by the first condition of Claim 1. In case

(2), r1(P1) ∈ Âa⇀y, r1(P2) ∈ Âa⇀y and r1(P ′1) ∈ Ây⇀a. Then, by construction, we

have f(P ) = Proj
(
a,
〈
r1(P1), r1(P2)|T̂ A

〉)
∈ 〈r1(P1), a|T̂ A〉 and f(P ′) = r1(P ′1) ∈

Ây⇀a. The first condition of Claim 1 implies a = minP1
(
〈r1(P1), a|T̂ A〉

)
, aP1y and

y = maxP1(Ây⇀a). Therefore, f(P )P1f(P ′). In case (3), r1(P1) ∈ Âa⇀y, r1(P2) ∈

Ây⇀a and r1(P ′1) ∈ Ây⇀a. Thus, f(P ′) = r1(P ′1) ∈ Ây⇀a. Since the first condition

of Claim 1 implies aP1y and y = maxP1(Ây⇀a), we have either f(P ) = f(P ′) = y

or f(P )P1f(P ′). Therefore, voter 1 has no incentive to manipulate.

Last, we consider voter 2. Given P = (P1, P2) and P ′ = (P1, P
′
2), there are

three possible manipulations:

(1) f(P ) = Proj
(
a,
〈
r1(P1), r1(P2)|T̂ A

〉)
and f(P ′) = Proj

(
a,
〈
r1(P1), r1(P ′2)|T̂ A

〉)
,

(2) f(P ) = Proj
(
a,
〈
r1(P1), r1(P2)|T̂ A

〉)
and f(P ′) = maxP

′
2({a, y}), and

(3) f(P ) = maxP2({a, y}) and f(P ′) = Proj
(
a,
〈
r1(P1), r1(P ′2)|T̂ A

〉)
.

In each case, we show that either f(P ) = f(P ′) or f(P )P2f(P ′) holds. The

verification of case (1) is symmetric to the verification of case (1) for voter 1. In

case (2), r1(P1) ∈ Âa⇀y, r1(P2) ∈ Âa⇀y and r1(P ′2) ∈ Ây⇀a. Then, by construction,

f(P ) = Proj
(
a,
〈
r1(P1), r1(P2)|T̂ A

〉)
∈ 〈r1(P2), a|T̂ A〉. Since the first condition of

Claim 1 implies a = minP2
(
〈r1(P2), a|T̂ A〉

)
and aP2y, we have either f(P ) = f(P ′)

or f(P )P2f(P ′). In case (3), r1(P1) ∈ Âa⇀y, r1(P2) ∈ Ây⇀a and r1(P ′2) ∈ Âa⇀y.

Thus, by construction, f(P ′) = Proj
(
a,
〈
r1(P1), r1(P ′2)|T̂ A

〉)
∈ 〈r1(P ′2), a|T̂ A〉 ⊆

Âa⇀y. If yP2a, we have f(P ) = maxP2({a, y}) = y, and the second condition of

Claim 1 implies yP2z for all z ∈ Âa⇀y. Therefore, f(P )P2f(P ′). If aP2y, we have

f(P ) = maxP2({a, y}) = a, and furthermore by the second condition of Claim
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1, either f(P ) = f(P ′) = a or f(P )P2f(P ′) holds. Therefore, voter 2 has no

incentive to manipulate. Hence, f is strategy-proof, as required.

In conclusion, we have a strategy-proof rule f which does not behave like a

dictatorship on 〈a, b|T A〉. This contradicts the hypothesis that every strategy-

proof rule defined on D behaves like a dictatorship on 〈a, b|T A〉. Therefore, D

must satisfy condition (ii) of Definition 5. Last, by a symmetric argument, we can

also show that D satisfies condition (iii) of Definition 5. This hence completes the

verification of the necessity part of the Auxiliary Proposition.

(Sufficiency) The proof of the sufficiency part of the Auxiliary Proposition con-

sists of three steps. First, we have established a ramification result in the Sup-

plementary Material (the First Ramification Theorem), which says that given

a domain D ⊆ DSH(T A, a, b) that is assumed to be path-connected and satisfy

extreme-vertex symmetry, if every two-voter strategy-proof rule behaves like a

dictatorship on 〈a, b|T A〉, then every n-voter strategy-proof rule, n ≥ 2, behaves

like a dictatorship on 〈a, b|T A〉. Therefore, we here can restrict attention to the

two-voter strategy-proof rules. The rest of the proof consists of two steps. In the

first step, we provide 4 important independent lemmas (Lemmas 1 - 4) on a path-

connected domain and a two-voter strategy-proof rule, which will be repeatedly

referred to. In the second step, we move to a domain D ⊆ DSH(T A, a, b) where

|〈a, b|T A〉| ≥ 3, assume that D is path-connected, satisfies extreme-vertex symme-

try and is non-trivial on 〈a, b|T A〉, and show that every two-voter strategy-proof

rule behaves like a dictatorship on 〈a, b|T A〉 (see Lemmas 5 - 8).

In the first step, for Lemmas 1 - 4, we fix N = {1, 2}, a path-connected

domain D and a strategy-proof rule f : D2 → A. For notational convenience,

let
(
(x · · · ), (y · · · )

)
denote a preference profile where voter 1 reports an arbitrary

preference with the peak x and voter 2 reports an arbitrary preference with the

peak y. More importantly, let f
(
(x · · · ), (y · · · )) = a denote that “for all P1 ∈ Dx

and P2 ∈ Dy, f(P1, P2) = a.”
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Lemma 1 Given a path π = (x1, . . . , xv) in GA
∼, the following four statements

hold:

(i) If f(P1, P2) = x1 for some P1 ∈ Dx1 and P2 ∈ Dx2, then f
(
(xk · · · ), (xk′ · · · )

)
=

xk for all 1 ≤ k ≤ k′ ≤ v.

(ii) If f(P1, P2) = x1 for some P1 ∈ Dx2 and P2 ∈ Dx1, then f
(
(xk′ · · · ), (xk · · · )

)
=

xk for all 1 ≤ k ≤ k′ ≤ v.

(iii) If f(P1, P2) = xv for some P1 ∈ Dxv and P2 ∈ Dxv−1, then f
(
(xk · · · ), (xk′ · · · )

)
=

xk for all 1 ≤ k′ ≤ k ≤ v.

(iv) If f(P1, P2) = xv for some P1 ∈ Dxv−1 and P2 ∈ Dxv , then f
(
(xk′ · · · ), (xk · · · )

)
=

xk for all 1 ≤ k′ ≤ k ≤ v.

Proof: First, note that the first two statements are symmetric, the last two

statements are symmetric, and the third statement is analogous to the first one.50

Therefore, we focus on the verification of the first statement. Let f(P1, P2) = x1

for some P1 ∈ Dx1 and P2 ∈ Dx2 . Since x1 ∼ x2, by strategy-proofness, it is easy

to show f
(
(x1 · · · ), (x2 · · · )

)
= x1.51

Next, we show f
(
(x2 · · · ), (x3 · · · )

)
= x2. Since x2 ∼ x3, it is easy to show

that either f
(
(x2 · · · ), (x3 · · · )

)
= x2 or f

(
(x2 · · · ), (x3 · · · )

)
= x3 holds. Sup-

pose f
(
(x2 · · · ), (x3 · · · )

)
= x3. Since x1 ∼ x2 and x3 ∼ x2, we have preferences

P̂1 ∈ Dx2 , P̂ ′1 ∈ Dx1 , P̌2 ∈ Dx3 and P̌ ′2 ∈ Dx2 such that r2(P̂1) = x1, r2(P̂ ′1) = x2,

rk(P̂1) = rk(P̂
′
1) for all k = 3, . . . ,m, r2(P̌2) = x2, r2(P̌ ′2) = x3, and rk(P̌2) = rk(P̌

′
2)

for all k = 3, . . . ,m. Thus, f(P̂1, P̌2) = x3. Then, strategy-proofness implies

f(P̂ ′1, P̌2) = f(P̂1, P̌2) = x3. Meanwhile, we also have f(P̂ ′1, P̌
′
2) = x1. Then,

voter 2 will manipulate at (P̂ ′1, P̌
′
2) via P̌2, i.e., f(P̂ ′1, P̌2) = x3P̌

′
2x1 = f(P̂ ′1, P̌

′
2).

50Given the first statement, to prove the third statement, we can relabel alternatives of π as

follows: yk = xv+1−k for all k = 1, . . . , v. Thus, we have P1 ∈ Dxv = Dy1 , P2 ∈ Dxv−1 = Dy2

and f(P1, P2) = xv = y1. Then, the first statement on the path (y1, . . . , yv) implies that

f
(
(yk · · · ), (yk′ · · · )

)
= yk for all 1 ≤ k ≤ k′ ≤ v, which is equivalent to f

(
(xk · · · ), (xk′ · · · )

)
= xk

for all 1 ≤ k′ ≤ k ≤ v.
51See the proof of Claims A and B of Sen (2001).
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Therefore, it must be the case that f
(
(x2 · · · ), (x3 · · · )

)
= x2. Applying the

same argument along the path π from x3 to xv step by step, we eventually have

f
(
(xk · · · ), (xk+1 · · · )

)
= xk for all k = 1, . . . , v − 1.

Last, we show f
(
(xk · · · ), (xk′ · · · )

)
= xk for all 1 ≤ k ≤ k′ ≤ v. We provide

an induction hypothesis: given 2 < l ≤ v, for all 1 ≤ k ≤ k′ < l, we have

f
(
(xk · · · ), (xk′ · · · )

)
= xk. To prove the induction hypothesis, it suffices to show

f
(
(xk · · · ), (xl · · · )

)
= xk for all 1 ≤ k ≤ l. Fixing an arbitrary P2 ∈ Dxl , we first

know f
(
(xk · · · ), P2

)
= xk for both k ∈ {l−1, l}. We next show f

(
(xl−2 · · · ), P2

)
=

xl−2. Since xl−2 ∼ xl−1, we have preferences P̂1 ∈ Dxl−1 and P̂ ′1 ∈ Dxl−2 such that

r2(P̂1) = xl−2, r2(P̂ ′1) = xl−1 and rk(P̂1) = rk(P̂
′
1) for all k = 3, . . . ,m. Since

f(P̂1, P2) = xl−1, strategy-proofness implies f(P̂ ′1, P2) ∈ {xl−1, xl−2}. Suppose

f(P̂ ′1, P2) = xl−1. Then, strategy-proofness implies f
(
P̂ ′1, (xl−1 · · · )

)
= xl−1, which

contradicts the fact f
(
(xl−2 · · · ), (xl−1 · · · )

)
= xl−2. Therefore, f(P̂ ′1, P2) = xl−2,

and then strategy-proofness implies f
(
(xl−2 · · · ), P2

)
= xl−2. Applying the same

argument along the path π from xl−2 to x1 step by step, we eventually have

f
(
(xk · · · ), P2) = xk for all k = 1, . . . , l. This completes the verification of the

induction hypothesis, and hence proves the lemma. �

Lemma 2 Given two subsets Ā, Â ⊆ A with |Ā| > 1 and |Â| > 1, let GĀ
∼ and GÂ

∼

be two connected graphs. Given a path π = (x1, . . . , xv) in GA
∼, let x1 ∈ Ā and

xv ∈ Â. If f behaves like a dictatorship on Ā and Â respectively, then f behaves

like a dictatorship on Ā ∪ π ∪ Â.

Proof: Since f behaves like a dictatorship on Ā, we assume w.l.o.g. that voter

1 dictates on Ā, i.e., f(P1, P2) = r1(P1) for all P1, P2 ∈ D with r1(P1), r1(P2) ∈ Ā.

The first claims shows that voter 1 also dictates on Â.

Claim 1: For all P1, P2 ∈ D with r1(P1), r1(P2) ∈ Â, f(P1, P2) = r1(P1).

We first consider the case Ā ∩ Â 6= ∅. Let x ∈ Ā ∩ Â. Since GĀ
∼ is a

connected graph and |Ā| > 1, there exists y ∈ Ā such that y ∼ x. Clearly,

f
(
(y · · · ), (x · · · )

)
= y. Symmetrically, since GÂ

∼ is a connected graph and |Â| > 1,

there exists z ∈ Â such that z ∼ x. Note that either y = z or y 6= z holds. If y = z,
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we have f
(
(z · · · ), (x · · · )

)
= z, which, by the dictatorship of f in Â, implies that

voter 1 dictates on Â. If y 6= z, we consider the path (y, x, z). Then, by statement

(i) of Lemma 1, f
(
(y · · · ), (x · · · )

)
= y implies f

(
(x · · · ), (z · · · )

)
= x. Then, by

the dictatorship of f in Â, we infer that voter 1 dictates on Â. Overall, voter 1

dictates on Â when Ā ∩ Â 6= ∅.

Next, we assume Ā ∩ Â = ∅. Given x1 ∈ Ā and xv ∈ Â, we can identify

1 ≤ k ≤ k′ ≤ v such that xk ∈ Ā, xk′ ∈ Â and xl /∈ Ā ∪ Â for all k < l < k′.

Since GĀ
∼ is a connected graph and |Ā| > 1, there exists x ∈ Ā such that x ∼ xk.

Symmetrically, there exists y ∈ Â such that y ∼ xk′ . Thus, we have a path

(x, xk, . . . , xk′ , y). Since voter 1 dictates on Ā, we have f
(
(x · · · ), (xk · · · )

)
= x.

Then, according to the path (x, xk, . . . , xk′ , y), statement (i) of Lemma 1 implies

f
(
(xk′ · · · ), (y · · · )

)
= xk′ . Furthermore, since f behaves like a dictatorship on Â,

we infer that voter 1 dictates on Â. In conclusion, voter 1 dictates on Â. This

completes the verification of the claim.

The next claim shows that that voter 1 dictates on the path π.

Claim 2: For all P1, P2 ∈ D with r1(P1), r1(P2) ∈ π, f(P1, P2) = r1(P1).

If x2 ∈ Ā, we have f
(
(x1 · · · ), (x2 · · · )

)
= x1 by voter 1’s dictatorship on Ā. If

x2 /∈ Ā, we identify x0 ∈ Ā such that x0 ∼ x1 according to the connected graph GĀ
∼.

Clearly, x0 6= x2. Thus, we have f
(
(x0 · · · ), (x1 · · · )

)
= x by voter 1’s dictatorship

on Ā. Then, according to the path (x0, x1, x2), statement (i) of Lemma 1 implies

f
(
(x1 · · · ), (x2 · · · )

)
= x1. Overall, we have f

(
(x1 · · · ), (x2 · · · )

)
= x1. Then,

according to the path π, statement (i) of Lemma 1 implies f
(
(xk · · · ), (xk′ · · · )

)
=

xk for all 1 ≤ k ≤ k′ ≤ v. Symmetrically, by voter 1’s dictatorship on Â and

statement (iii) of Lemma 1 on the path π, we also induce f
(
(xk · · · ), (xk′ · · · )

)
= xk

for all 1 ≤ k′ ≤ k ≤ v. This completes the verification of the claim.

Last, we show that voter 1 dictates on Ā ∪ π ∪ Â. We first show that voter 1

dictates on Ā ∪ π. Given arbitrary preferences P1, P2 ∈ D, let r1(P1) = x ∈ Ā ∪ π

and r1(P2) = y ∈ Ā ∪ π. If x = y, unanimity implies f(P1, P2) = x = r1(P1).

Next, assume x 6= y. Evidently, if x, y ∈ Ā or x, y ∈ π, we have f(P1, P2) = x by

voter 1’s dictatorship on Ā and π respectively. Last, we consider two cases: (i)
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x ∈ Ā\π and y ∈ π\Ā, and (ii) x ∈ π\Ā and y ∈ Ā\π. Note that the two cases

are symmetric, and we hence focus on the verification of the first one. In the first

case, it is clear that x ∈ Ā\{x1} and y = xk for some 1 < k ≤ v. Since GĀ
∼ is

a connected graph, we have a path (z1, . . . , zl) in GĀ
∼ connecting x and x1. Now,

according to the paths (z1, . . . , zl) and (x1, . . . , xk), since zl = x1, z1 = x ∈ Ā\π

and xk = y ∈ π\Ā, we can identify 1 < s ≤ l and 1 ≤ t < k such that zs = xt

and {z1, . . . , zs−1}∩{xt+1, . . . , xk} = ∅. Then, the concatenated path (z1, . . . , zs =

xt, . . . , xk) connects x and y. First, we have f
(
(z1 · · · ), (z2 · · · )

)
= z1 by voter 1’s

dictatorship on Ā. Next, according to the path (z1, . . . , zs = xt, . . . , xk), statement

(i) of Lemma 1 implies f
(
(z1 · · · ), (xk · · · )

)
= z1, and hence, f(P1, P2) = x, as

required. Therefore, voter 1 dictates on Ā∪π. Furthermore, note that both GĀ∪π
∼

and GÂ
∼ are connected graphs, [Ā ∪ π] ∩ Â 6= ∅ and voter 1 dictates on Ā ∪ π

and Â respectively. By the same argument, we can infer that voter 1 dictates on[
Ā ∪ π

]
∪ Â = Ā ∪ π ∪ Â. �

Lemma 3 Given a path π = (x1, . . . , xv), v ≥ 3, in GA
∼, if there exist P̂i ∈ Dx1 and

P̌i ∈ Dxv such that r2(P̂i) = xv and r2(P̌i) = x1, then f behaves like a dictatorship

on π.

Proof: We first establish a claim to show that if f behaves like a dictatorship

on {x1, x2}, then f behaves like a dictatorship on π.

Claim 1: If f behaves like a dictatorship on {x1, x2}, then f behaves like a

dictatorship on π.

We assume w.l.o.g. that voter 1 dictates on {x1, x2}, i.e., f(P1, P2) = r1(P1) for

all P1, P2 ∈ D with r1(P1), r1(P2) ∈ {x1, x2}. By Lemma 2, it suffices to show that

f behaves like a dictatorship on {xv−1, xv}. Since xv−1 ∼ xv, one of the following

three cases occurs:

(1) f behaves like a dictatorship on {xv−1, xv},

(2) f
(
(xv−1 · · · ), (xv · · · )

)
= f

(
(xv · · · ), (xv−1 · · · )

)
= xv, and

(3) f
(
(xv−1 · · · ), (xv · · · )

)
= f

(
(xv · · · ), (xv−1 · · · )

)
= xv−1.

45



To complete the verification, we rule out the last two cases. First, we have

f
(
(x1 · · · ), (x2 · · · )

)
= x1 by voter 1’s dictatorship on {x1, x2}. Then, accord-

ing to the path π, statement (i) of Lemma 1 implies f
(
(xv−1 · · · ), (xv · · · )

)
=

xv−1, which rules out case (2). Suppose that case (3) occurs. First, note that

f
(
(x2 · · · ), (x1 · · · )

)
= x2 and f

(
(xv · · · ), (xv−1 · · · )

)
= xv−1. To be consistent

to statements (ii) and (iii) of Lemma 1, there must exist 1 < k < v such that

f
(
(xk · · · ), (xk′ · · · )

)
= xk for all 1 ≤ k′ ≤ k ≤ k and f

(
(xs · · · ), (xs′ · · · )

)
= xs′

for all k ≤ s′ ≤ s ≤ v.52 Therefore, we have f
(
(xv · · · ), (xk · · · )

)
= xk. Meanwhile,

since f
(
(x1 · · · ), (x2 · · · )

)
= x1, according to the path π, statement (i) of Lemma

1 implies f
(
(x1 · · · ), (xk · · · )

)
= x1. Then, comparing f

(
(xv · · · ), (xk · · · )

)
= xk

and f
(
(x1 · · · ), (xk · · · )

)
= x1, strategy-proofness implies xkPix1 for all Pi ∈ Dxv ,

which contradicts the hypothesis that P̌i ∈ Dxv and r2(P̌i) = x1. Hence, case (3)

is ruled out, as required. This completes the verification of the claim.

Symmetrically, we can show that if f behaves like a dictatorship on {xv−1, xv},

then f behaves like a dictatorship on π.

Last, we show that f behaves like a dictatorship on either {x1, x2} or {xv−1, xv}.

Suppose that it is not true. Then, x1 ∼ x2 implies that either f
(
(x1 · · · ), (x2 · · · )

)
=

f
(
(x2 · · · ), (x1 · · · )

)
= x1, or f

(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
= x2

holds. Suppose f
(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
= x1. Then, according

to the path π, by statements (i) and (ii) of Lemma 1, we have f
(
(xk · · · ), (xk′ · · · )

)
=

f
(
(xk′ · · · ), (xk · · · )

)
= xk for all 1 ≤ k ≤ k′ ≤ v. For each 1 ≤ k < v, since

f
(
(xv · · · ), (xk+1 · · · )

)
= xk+1 and f

(
(xk · · · ), (xk+1 · · · )

)
= xk, strategy-proofness

52The index k can be identified in the following way. First, consider the profile(
(x3 · · · ), (x2 · · · )

)
. Since x2 ∼ x3, it is true that either f

(
(x3 · · · ), (x2 · · · )

)
= x2 or

f
(
(x3 · · · ), (x2 · · · )

)
= x3 holds. If f

(
(x3 · · · ), (x2 · · · )

)
= x2, let k = 2 and then according

to the subpath (x2, x3, . . . , xv), statement (ii) of Lemma 1 implies f
(
(xs · · · ), (xs′ · · · )

)
= xs′

for all k ≤ s′ ≤ s ≤ v. If f
(
(x3 · · · ), (x2 · · · )

)
= x3, we have f

(
(xk · · · ), (xk′ · · · )

)
= xk for all

1 ≤ k′ ≤ k ≤ 3 by statement (iii) of Lemma 1 on the subpath (x1, x2, x3), and then move to

the profile
(
(x4 · · · ), (x3 · · · )

)
. Next, by repeatedly applying the argument above step by step,

bounded by the fact f
(
(xv · · · ), (xv−1 · · · )

)
= xv−1, we eventually can identify 1 < k < v such

that f
(
(xk · · · ), (xk′ · · · )

)
= xk for all 1 ≤ k′ ≤ k ≤ k and f

(
(xs · · · ), (xs′ · · · )

)
= xs′ for all

k ≤ s′ ≤ s ≤ v.

46



implies xk+1Pixk for all Pi ∈ Dxv . This contradicts the hypothesis that P̌i ∈ Dxv

and r2(P̌i) = x1. Therefore, we have f
(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
=

x2. Symmetrically, since f does not behave like a dictatorship on {xv−1, xv} by

the contradictory hypothesis, according to the preference P̂i in the hypothesis of

the lemma, we can show f
(
(xv−1 · · · ), (xv · · · )

)
= f

(
(xv · · · ), (xv−1 · · · )

)
= xv−1.

Recall the preferences P̂i and P̌i in the hypothesis of the lemma. Since r1(P̂i) =

r2(P̌i) = x1 and r1(P̌i) = r2(P̂i) = xv, it is true that either f
(
(x1 · · · ), (xv · · · )

)
=

x1 or f
(
(x1 · · · ), (xv · · · )

)
= xv holds. We will induce a contradiction in each

case. First, let f
(
(x1 · · · ), (xv · · · )

)
= x1. Since xv ∼ xv−1, we have P2, P

′
2 ∈

D such that r1(P2) = r2(P ′2) = xv, r1(P ′2) = r2(P2) = xv−1 and rk(P2) =

rk(P
′
2) for all k = 3, . . . ,m. Let P̂1 = P̂i and P̌1 = P̌i. Thus, f(P̂1, P2) = x1,

and then strategy-proofness implies f(P̂1, P
′
2) = f(P̂1, P2) = x1. Furthermore,

since xv ∼ xv−1, strategy-proofness implies f(P̌1, P
′
2) ∈ {xv, xv−1}. Therefore,

we by strategy-proofness infer f(P̌1, P
′
2)P̌1f(P̂1, P

′
2), which implies f(P̌1, P

′
2) =

xv. This contradicts the induced fact f
(
(xv · · · ), (xv−1 · · · )

)
= xv−1. Last, let

f
(
(x1 · · · ), (xv · · · )

)
= xv. Since x1 ∼ x2, we have P1, P

′
1 ∈ D such that r1(P1) =

r2(P ′1) = x1, r1(P ′1) = r2(P1) = x2 and rk(P1) = rk(P
′
1) for all k = 3, . . . ,m.

Let P̌2 = P̌i and P̂2 = P̂i. Thus, f(P1, P̌2) = xv, and then strategy-proofness

implies f(P ′1, P̌2) = f(P1, P̌2) = xv. Furthermore, since x1 ∼ x2, strategy-

proofness implies f(P ′1, P̂2) ∈ {x1, x2}. Therefore, we by strategy-proofness infer

f(P ′1, P̂2)P̂2f(P ′1, P̌2), which implies f(P ′1, P̂2) = x1. This contradicts the induced

fact f
(
(x2 · · · ), (x1 · · · )

)
= x2. Therefore, f must behave like a dictatorship on

either {x1, x2} or {xv−1, xv}, as required. This proves the lemma. �

According to Lemma 3, one would easily observe that f behaves like a dicta-

torship on a cycle in GA
∼.

Observation 1 Given a cycle C = (x1, . . . , xv, x1), v ≥ 3, in GA
∼, f behaves like

a dictatorship on C.53 �

53A cycle C = (x1, . . . , xv, x1) is a sequence such that x1, . . . , xv are pairwise distinct, v ≥ 3,

and xk ∼ xk+1 for all k = 1, . . . , v, where xv+1 = x1.
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Lemma 4 Fixing a subset B ⊆ A with |B| ≥ 3, let GB
∼ be a connected graph.

Then, the following two statements hold:

(i) If Ext(GB
∼) = ∅, then f behaves likes a dictatorship on B.

(ii) Given Ext(GB
∼) 6= ∅, if f behaves like a dictatorship on {x, y} for all x ∈

Ext(GB
∼) and (x, y) ∈ EB∼ , then f behaves likes a dictatorship on B.

Proof: First, given Ext(GB
∼) = ∅, note that for each x ∈ B, x is included in ei-

ther a cycle or a path that connects two distinct cycles. Therefore, by Observation

1 and Lemma 2, we infer that f behaves like a dictatorship on B.

Next, let Ext(GB
∼) 6= ∅ and assume that f behaves like a dictatorship on {x, y}

for all x ∈ Ext(GB
∼) and y ∈ B such that (x, y) ∈ EB∼ . For notational convenience,

let Ext(GB
∼) = {x1, x2, . . . , xt}, t ≥ 2, and moreover, let (xk, yk) ∈ EB∼ for all

k = 1, . . . , t. Thus, f behaves like a dictatorship on {xk, yk} for all k = 1, . . . , t.

We consider two cases: GB
∼ is not a tree and GB

∼ is a tree.

In the first case, GB
∼ must include a cycle C. Then, we can identify a subset

B̄ ⊆ B such that GB̄
∼ is a connected graph and Ext(GB̄

∼) = ∅. Clearly, C is

included in GB̄
∼ and Ext(GB

∼) ∩ B̄ = ∅. Then, by statement (i), we know that f

behaves like a dictatorship on B̄. For each 1 ≤ k ≤ t, since GB
∼ is a connected

graph there exist zk ∈ B̄ and a path πk = (x1, . . . , xv−1, xv) in GB
∼ that connects

zk and xk. Clearly, zv−1 = yk. Then, Lemma 2 implies that f behaves like a

dictatorship B̄ ∪ πk. Moreover, note that GB
∼ in fact is a combination of GB̄

∼ and

paths π1, . . . , πt. Then, by repeatedly applying Lemma 2, we can conclude that f

behaves like a dictatorship on B.

Last, we assume that GB
∼ is a tree. Evidently, GB

∼ has at least two extreme

vertices, i.e., t ≥ 2. Note that for any two distinct xp, xq ∈ Ext(GB
∼), there exists

a unique path πp,q = (z1, z2, . . . , zv−1, zv) in GB
∼ connecting xp and xq. Clearly,

z2 = yp and zv−1 = yq (it is possible that yp = yq). Then, Lemma 2 implies that f

behaves like a dictatorship on π. Moreover, note that GB
∼ in fact is a combination

of all paths {πp,q : 1 ≤ p < q ≤ t}. Then, by repeatedly applying Lemma 2, we

conclude that f behaves like a dictatorship on B. �

48



This completes the first step of the proof.

Now, we turn to the second step. Henceforth, we fix a domain D ⊆ DSH(T A, a, b),

where |〈a, b|T A〉| ≥ 3 and assume that D is path-connected, satisfies extreme-

vertex symmetry and is non-trivial on 〈a, b|T A〉. Moreover, for Lemmas 5 - 8, we

fix N = {1, 2} and a strategy-proof rule f : D2 → A.

By statement (i) of Lemma 4, if Ext(G〈a,b|T
A〉

∼ ) = ∅, then f behaves likes a dic-

tatorship on 〈a, b|T A〉. Henceforth, we assume Ext(G〈a,b|T
A〉

∼ ) 6= ∅. By statement

(ii) of Lemma 4, to prove that f behaves like a dictatorship on 〈a, b|T A〉, it suffices

to show that for each x ∈ Ext(G〈a,b|T A〉∼ ), f behaves like a dictatorship on x and its

unique neighbor in G〈a,b|T
A〉

∼ . The lemma below first considers an extreme vertex

of G〈a,b|T
A〉

∼ other than a and b.

Lemma 5 Given x ∈ Ext(G〈a,b|T A〉∼ ), let x /∈ {a, b} and (x, y) ∈ E 〈a,b|T A〉∼ . Then f

behaves like a dictatorship on {x, y}.

Proof: First, since x ∈ Ext(G〈a,b|T
A〉

∼ ), x /∈ {a, b} and (x, y) ∈ E 〈a,b|T A〉∼ , by

the non-trivialness condition, we have some Pi ∈ Dx such that r2(Pi) 6= y, and

hence |S(Dx)| > 1. Next, note that by the definition of (a, b)-semi-hybridness

and path-connectedness, x ∈ Ext(G〈a,b|T A〉∼ ) and x /∈ {a, b} imply x ∈ Ext(GA
∼).

Then, extreme-vertex symmetry implies that there exist P̂i, P̌i ∈ D such that

r1(P̂i) = r2(P̌i) = x and r1(P̌i) = r2(P̂i) ≡ z 6= y. Moreover, since P̂i is (a, b)-

semi-hybrid on T A and r1(P̂i) = x ∈ 〈a, b|T A〉, z = r2(P̂i) implies z ∈ 〈a, b|T A〉.

Then, there exists a path π = (x1, x2, . . . , xv) in G〈a,b|T
A〉

∼ connecting x and z.

Furthermore, since r1(P̂i) = r2(P̌i) = x1 and r1(P̌i) = r2(P̂i) = xv, Lemma 3

implies that f behaves like a dictatorship on π. Last, since (x, y) ∈ E 〈a,b|T A〉∼ , it is

clear that x2 = y. Therefore, f behaves like a dictatorship on {x, y}. �

In the rest of the proof, we turn to consider the possibility that a ∈ Ext(G〈a,b|T A〉∼ )

or b ∈ Ext(G〈a,b|T
A〉

∼ ). We first provide two lemmas as a preparation (see Lem-

mas 6 and 7). Then, Lemma 8 concludes that if a ∈ Ext(G〈a,b|T A〉∼ ) (respectively,

b ∈ Ext(G〈a,b|T A〉∼ )), then f behaves like a dictatorship on a (respectively, b) and

its unique neighbor in G〈a,b|T
A〉

∼ .
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Lemma 6 Given x ∈ 〈a, b|T A〉\{a}, let π = (x1, . . . , xv), v ≥ 3, be a path

in G〈a,b|T
A〉

∼ connecting a and x. Given ā ∈ Aa⇀b, let P̂i ∈ Dā be such that

maxP̂i(〈a, b|T A〉\{a}) = a′ ∈ {x3, . . . , xv}. Then, one of the following two state-

ments must hold:

(i) f behaves like a dictatorship on π, and

(ii) f
(
(xv−1 · · · ), (xv · · · )

)
= f

(
(xv · · · ), (xv−1 · · · )

)
= xv−1.

Proof: For notational convenience, let a′ = xk∗ for some 3 ≤ k∗ ≤ v. Clearly,

we have a path π̄ = (x̄1, . . . , x̄u), u ≥ 1, in GAa⇀b

∼ that connects ā and a. If ā = a,

then π̄ is a null path. Since xv−1 ∼ xv, one of the following three cases must occur:

(1) f behaves like a dictatorship on {xv−1, xv},

(2) f
(
(xv−1 · · · ), (xv · · · )

)
= f

(
(xv · · · ), (xv−1 · · · )

)
= xv, and

(3) f
(
(xv−1 · · · ), (xv · · · )

)
= f

(
(xv · · · ), (xv−1 · · · )

)
= xv−1.

We first rule out case (2). Suppose, by contradiction, that case (2) occurs.

Then, according to the concatenated path (π̄, π) which connects ā and x in GA
∼,

statements (iii) and (iv) of Lemma 1 imply

• f
(
(xk · · · ), (xk′ · · · )

)
= f

(
(xk′ · · · ), (xk · · · )

)
= xmax(k,k′) for all 1 ≤ k, k′ ≤ v,

• f
(
(x̄k · · · ), (x̄k′ · · · )

)
= f

(
(x̄k′ · · · ), (x̄k · · · )

)
= x̄max(k,k′) for all 1 ≤ k, k′ ≤ u, and

• f
(
(xk · · · ), (x̄k′ · · · )

)
= f

(
(x̄k′ · · · ), (xk · · · )

)
= xk for all 1 ≤ k ≤ v and 1 ≤ k′ ≤ u.

Thus, given P̂1 = P̂i, P2 ∈ Dx2 and P ′1 ∈ Dxk∗ , we have f(P̂1, P2) = x2 and

f(P ′1, P2) = xk∗ . Then, voter 1 will manipulate at (P̂1, P2) via P ′1, i.e., f(P ′1, P2) =

xk∗P̂1x2 = f(P̂1, P2). Therefore, either case (1) or (3) occurs. Case (3) is identical

to statement (ii) of Lemma 6. Therefore, to complete the proof, we show that

statement (i) holds in case (1).

Henceforth, let case (1) occur. By Lemma 2, to establish statement (i), it

suffices to show that f behaves like a dictatorship on {x1, x2}. Suppose, by

contradiction, that f does not behave like a dictatorship on {x1, x2}. Since
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x1 ∼ x2, it is true that either f
(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
= x1,

or f
(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
= x2 holds. We will induce a con-

tradiction in each situation.

First, let f
(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
= x1. Then, according

to the path π, statements (i) and (ii) of Lemma 1 imply f
(
(xv · · · ), (xv−1 · · · )

)
=

f
(
(xv−1 · · · ), (xv · · · )

)
= xv−1, which contradicts the hypothesis of case (1).

Next, let f
(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
= x2. According to the

path (x2, x1 = x̄u, . . . , x̄1), statements (i) and (ii) of Lemma 1 imply f
(
(x̄k · · · ), (x̄k′ · · · )

)
=

f
(
(x̄k′ · · · ), (x̄k · · · )

)
= x̄max(k,k′) for all 1 ≤ k, k′ ≤ u. Furthermore, according to

case (1), we consider two subcases: (1’) voter 1 dictates on {xv−1, xv} and (2’)

voter 2 dictates on {xv−1, xv}. The verification of these two subcases are symmet-

ric, and we hence focus on the verification of the subcase (1’).

In the subcase (1’), we have f
(
(xv−1 · · · ), (xv · · · )

)
= xv−1 and f

(
(xv · · · ), (xv−1 · · · )

)
=

xv. First, according to the path (x̄1, x̄2, . . . , x̄u = x1, . . . , xv−1, xv), since f
(
(x̄1 · · · ), (x̄2 · · · )

)
=

x̄2 and f
(
(xv−1 · · · ), (xv · · · )

)
= xv−1, to be consistent to statements (i) and (iv)

of Lemma 1, one of the two statements below must hold:54

• There exists 1 ≤ η < v such that

– f
(
(x̄k′ · · · ), (x̄k · · · )

)
= x̄k for all 1 ≤ k′ ≤ k ≤ u,

– f
(
(x̄k′ · · · ), (xk · · · )

)
= xk for all 1 ≤ k′ ≤ u and 1 ≤ k ≤ η,

– f
(
(xk′ · · · ), (xk · · · )

)
= xk for all 1 ≤ k′ ≤ k ≤ η, and

– f
(
(xk′ · · · ), (xk · · · )

)
= xk′ for all η ≤ k′ ≤ k ≤ v.

• There exists 1 < ω < u such that

– f
(
(x̄k′ · · · ), (x̄k · · · )

)
= x̄k for all 1 ≤ k′ ≤ k ≤ ω,

– f
(
(x̄k′ · · · ), (x̄k · · · )

)
= x̄k′ for all ω ≤ k′ ≤ k ≤ u,

– f
(
(x̄k′ · · · ), (xk · · · )

)
= x̄k′ for all ω ≤ k′ ≤ u and 1 ≤ k ≤ v, and

– f
(
(xk′ · · · ), (xk · · · )

)
= xk′ for all 1 ≤ k′ ≤ k ≤ v.

54The detailed verification is similar to the argument in footnote 52.
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Note that the second statement above contradicts the induced fact f
(
(x̄u−1 · · · ), (x̄u · · · )

)
=

x̄u. Therefore, the first statement must hold. Furthermore, recall f
(
(xv · · · ), (xv−1 · · · )

)
=

xv by voter 1’s dictatorship on {xv−1, xv}. Then, according to the path (x̄1, x̄2, . . . , x̄u =

x1, . . . , xv−1, xv), statement (iii) of Lemma 1 implies

• f
(
(xk · · · ), (xk′ · · · )

)
= xk for all 1 ≤ k′ ≤ k ≤ v,

• f
(
(x̄k · · · ), (x̄k′ · · · )

)
= x̄k for all 1 ≤ k′ ≤ k ≤ u, and

• f
(
(xk · · · ), (x̄k′ · · · )

)
= xk for all 1 ≤ k′ ≤ u and 1 ≤ k ≤ v.

Overall, on the path (x̄1, x̄2, . . . , x̄u = x1, . . . , xη, . . . , xv−1, xv), we summarize that

• f
(
(x̄k · · · ), (x̄k′ · · · )

)
= f

(
(x̄k′ · · · ), (x̄k · · · )

)
= x̄max(k,k′) for all 1 ≤ k, k′ ≤ u,

• f
(
(xk · · · ), (x̄k′ · · · )

)
= f

(
(x̄k′ · · · ), (xk · · · )

)
= xk for all 1 ≤ k ≤ η and 1 ≤ k′ < u,

• f
(
(xk · · · ), (xk′ · · · )

)
= f

(
(xk′ · · · ), (xk · · · )

)
= xmax(k,k′) for all 1 ≤ k, k′ ≤ η, and

• f
(
(xk′ · · · ), (xk · · · )

)
= xk′ and f

(
(xk · · · ), (xk′ · · · )

)
= xk for all η ≤ k′ ≤

k ≤ v, which imply that voter 1 dictates on (xη, . . . , xv).
55

Recall the hypothesis that P̂i ∈ Dā = Dx̄1 and maxP̂i(〈a, b|T A〉\{a}) = a′ = xk∗

for some 3 ≤ k∗ ≤ v. We know that either 3 ≤ k∗ ≤ η or η < k∗ ≤ v holds. If

3 ≤ k∗ ≤ η, according to f
(
(x̄1 · · · ), (x2 · · · )

)
= x2 and f

(
(xk∗ · · · ), (x2 · · · )

)
=

xk∗ , strategy-proofness implies x2Pixk∗ for all Pi ∈ Dx̄1 , which contradicts the hy-

pothesis that P̂i ∈ Dx̄1 and maxP̂i(〈a, b|T A〉\{a}) = xk∗ . If η < k∗ ≤ v, according

to f
(
(x̄1 · · · ), (xη · · · )

)
= xη and f

(
(xk∗ · · · ), (xη · · · )

)
= xk∗ ,

56 strategy-proofness

implies xηPixk∗ for all Pi ∈ Dx̄1 , which contradicts the hypothesis that P̂i ∈ Dx̄1

and maxP̂i(〈a, b|T A〉\{a}) = xk∗ . Therefore, subcase (1’) never occurs. In conclu-

sion, the situation f
(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
= x2 never occurs.

Therefore, f must behave like a dictatorship on {x1, x2}, as required. This com-

pletes the verification of the lemma. �

55If subcase (2’) occurs, this conditions becomes that voter 2 dictates on (xη, . . . , xv), while

the first three conditions remain unchanged.
56If subcase (2’) occurs, we refer to f

(
(xη · · · ), (x̄1 · · · )

)
= xη and f

(
(xη · · · ), (xk∗ · · · )

)
= xk∗ .
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Lemma 7 Given ā ∈ Aa⇀b, b̄ ∈ Ab⇀a, let π = (x1, . . . , xp, . . . , xq, . . . , xv) be a

path in GA
∼ connecting ā and b̄, 1 ≤ p < q ≤ v, q − p > 1, xp = a and xq = b. Let

P̂i ∈ Dā and P̌i ∈ Db̄ be such that maxP̂i
(
〈a, b|T A〉\{a}

)
= a′ ∈ {xp+2, . . . , xq} and

maxP̌i
(
〈a, b|T A〉\{b}

)
= b′ ∈ {xp, . . . , xq−2}. Then, f behaves like a dictatorship

on the subpath (xp, . . . , xq).

Proof: For notational convenience, let a′ = xs for some p + 2 ≤ s ≤ q and

b′ = xt for some p ≤ t ≤ q − 2.

Suppose that f does not behave like a dictatorship on (xp, . . . , xq). Then,

according to the subpath (x1, . . . , xp, . . . , xq−1, xq), statement (ii) of Lemma 6

must hold, i.e., f
(
(xq−1 · · · ), (xq · · · )

)
= f

(
(xq · · · ), (xq−1 · · · )

)
= xq−1. Conse-

quently, according to the subpath (xq−1, xq, . . . , xv−1, xv), by statements (i) and

(ii) of Lemma 1, we have f
(
(xv−1 · · · ), (xv · · · )

)
= f

(
(xv · · · ), (xv−1 · · · )

)
= xv−1.

Symmetrically, since f does not behave like a dictatorship on (xp, . . . , xq), ac-

cording to the subpath (xv, . . . , xq, . . . , xp+1, xp), the analogy of statement (ii) of

Lemma 6 must hold, i.e., f
(
(xp+1 · · · ), (xp · · · )

)
= f

(
(xp · · · ), (xp+1 · · · )

)
= xp+1.

Then, according to the subpath (x1, x2, . . . , xp, xp+1), statements (iii) and (iv) of

Lemma 1 imply f
(
(x1 · · · ), (x2 · · · )

)
= f

(
(x2 · · · ), (x1 · · · )

)
= x2. Therefore, on

the subpath (xp, xp+1, . . . , xq−1, xq), according to f
(
(xp · · · ), (xp+1 · · · )

)
= xp+1

and f
(
(xq−1 · · · ), (xq · · · )

)
= xq−1, to be consistent to statements (i) and (iv) of

Lemma 1, there exists p < k < q such that f
(
(xk · · · ), (xk′ · · · )

)
= xk′ for all

p ≤ k ≤ k′ ≤ k and f
(
(xk · · · ), (xk′ · · · )

)
= xk for all k ≤ k ≤ k′ ≤ q. Further-

more, according to the path (x1, . . . , xp, . . . , xk, . . . , xq, . . . , xv), by statements (iv)

and (i) of Lemma 1, we can infer that f
(
(xk · · · ), (xk′ · · · )

)
= xk′ for all 1 ≤ k ≤

k′ ≤ k and f
(
(xk · · · ), (xk′ · · · )

)
= xk for all k ≤ k ≤ k′ ≤ v. Symmetrically,

on the subpath (xp, xp+1, . . . , xq−1, xq), according to f
(
(xp+1 · · · ), (xp · · · )

)
= xp+1

and f
(
(xq · · · ), (xq−1 · · · )

)
= xq−1, to be consistent to statements (ii) and (iii) of

Lemma 1, there exists p < k < q such that f
(
(xk′ · · · ), (xk · · · )

)
= xk′ for all

p ≤ k ≤ k′ ≤ k and f
(
(xk′ · · · ), (xk · · · )

)
= xk for all k ≤ k ≤ k′ ≤ q. Further-

more, according to the path (x1, . . . , xp, . . . , xk, . . . , xq, . . . , xv), by statements (iii)

and (ii) of Lemma 1, we infer that f
(
(xk′ · · · ), (xk · · · )

)
= xk′ for all 1 ≤ k ≤ k′ ≤ k
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and f
(
(xk′ · · · ), (xk · · · )

)
= xk for all k ≤ k ≤ k′ ≤ v. Last, according to k and k,

one of the following three cases must occur:

(1)
[
k < k

]
⇒

f((xk · · · ), (xk′ · · · )) =


xk if k ≤ k ≤ k,

xmax(k,k′) if 1 ≤ k, k′ ≤ k,

xmin(k,k′) if k ≤ k, k′ ≤ v.

,57

(2)
[
k > k

]
⇒

f((xk · · · ), (xk′ · · · )) =


xk′ if k ≤ k′ ≤ k,

xmax(k,k′) if 1 ≤ k, k′ ≤ k,

xmin(k,k′) if k ≤ k, k′ ≤ v.

, and

(3)
[
k = k ≡ k∗

]
⇒

f((xk · · · ), (xk′ · · · )) =

 xmax(k,k′) if 1 ≤ k, k′ ≤ k∗,

xmin(k,k′) if k∗ ≤ k, k′ ≤ v.

.58

In each case, we will induce a contradiction. We first identify the vertices

a′ = xs and b′ = xt on the path π in all three cases.

Claim 1: We have max(k, k) ≤ s ≤ q and p ≤ t ≤ min(k, k).

In case (1), we show k < s ≤ q and p ≤ t < k. By a symmetric argument, we

can show k < s ≤ q and p ≤ t < k in case (2), and k∗ ≤ s ≤ q and p ≤ t ≤ k∗ in

case (3). We focus on showing k < s ≤ q and p ≤ t < k in case (1).

We first show that for every Pi ∈ Dx1 , Pi is single-peaked on the subpath

(x1, . . . , xk) and maxPi
(
{xk, . . . , xk}

)
= xk. Given an arbitrary 1 ≤ k < k, since

f
(
(x1 · · · ), (xk · · · )

)
= xk and f

(
(xk+1 · · · ), (xk · · · )

)
= xk+1, strategy-proofness

implies xkPixk+1 for all Pi ∈ Dx1 . Therefore, every Pi ∈ Dx1 is single-peaked on

57Given k ≤ k ≤ k, if k′ = k, it is evident that f
(
(xk · · · ), (xk′ · · · )

)
= xk; if k > k′, it is

true that 1 ≤ k′ < k ≤ k, and then according to the path (x1, . . . , xk′ , . . . , xk, . . . , xk, . . . , xv),

we have f
(
(xk · · · ), (xk′ · · · )

)
= xk; and if k < k′, it is true that k ≤ k < k′ ≤ v, and then

according to the path (x1, . . . , xk, . . . , xk, . . . , xk′ , . . . , xv), we have f
(
(xk · · · ), (xk′ · · · )

)
= xk.

Given 1 ≤ k, k′ ≤ k, if k′ = k, it is evident that f
(
(xk · · · ), (xk′ · · · )

)
= xk; if k > k′, it is true that

1 ≤ k′ < k ≤ k < k, and then according to the path (x1, . . . , xk′ , . . . , xk, . . . , xk, . . . , xv), we have

f
(
(xk · · · ), (xk′ · · · )

)
= xk = xmax(k,k′); and if k < k′, it is true that 1 ≤ k < k′ ≤ k, and then

according to the path (x1, . . . , xk, . . . , xk′ , . . . , xk, . . . , xv), we have f
(
(xk · · · ), (xk′ · · · )

)
= xk′ =

xmax(k,k′). Symmetrically, given k ≤ k, k′ ≤ v, we can infer f
(
(xk · · · ), (xk′ · · · )

)
= xmin(k,k′).

58Note that all three cases are just partial characterizations of f on the path π.
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(x1, . . . , xk). Next, given an arbitrary k < k ≤ k, since f
(
(x1 · · · ), (xk · · · )

)
= xk

and f
(
(xk · · · ), (xk · · · )

)
= xk, strategy-proofness implies xkPixk for all Pi ∈ Dx1 .

Hence, we have maxPi
(
{xk, . . . , xk}

)
= xk for all Pi ∈ Dx1 . Consequently, the

hypothesis r1(P̂i) = x1, xs = maxP̂i
(
〈a, b|T A〉\{a}

)
and p + 2 ≤ s ≤ q imply

k < s ≤ q. Symmetrically, we can show that for every Pi ∈ Dxv , Pi is single-

peaked on the subpath (xv, . . . , xk) and maxPi
(
{xk, . . . , xk}

)
= xk. Then, the

hypothesis r1(P̌i) = xv, xt = maxP̌i
(
〈a, b|T A〉\{a}

)
and p ≤ t ≤ q − 2 imply

p ≤ t < k. This completes the verification of the claim.

Now, we have the path π specified in each case below:

Case (1) : π = (x1, . . . , xp, . . . , xt, . . . , xk, . . . , xk, . . . , xs, . . . , xq, . . . , xv),

Case (2) : π = (x1, . . . , xp, . . . , xt, . . . , xk, . . . , xk, . . . , xs, . . . , xq, . . . , xv), and

Case (3) : π = (x1, . . . , xp, . . . , xt, . . . . . . , xk∗ , . . . . . . , xs, . . . , xq, . . . , xv).

Given P̂1 = P̂i and P̌2 = P̌i, by Claim 1, each case implies f
(
(xs · · · ), P̌2

)
= xs

and f
(
P̂1, (xt · · · )

)
= xt. First, since f

(
(xs · · · ), P̌2

)
= xs, strategy-proofness

implies f(P̂1, P̌2) ∈ {xs} ∪ {x ∈ A : xP̂1xs}. Next, since f
(
P̂1, (xt · · · )

)
= xt,

strategy-proofness implies f(P̂1, P̌2) ∈ {xt} ∪ {x ∈ A : xP̌2xt}. Therefore, it must

be the case that
[
{xs} ∪ {x ∈ A : xP̂1xs}

]
∩
[
{xt} ∪ {x ∈ A : xP̌2xt}

]
6= ∅. Given

xs = a′ = maxP̂1
(
〈a, b|T A〉\{a}

)
and xt = b′ = maxP̌2

(
〈a, b|T A〉\{b}

)
, by the

definition of (a, b)-semi-hybridness on T A, we know {xs} ∪ {x ∈ A : xP̂1xs} =

{xs} ∪ {x ∈ A : xP̂1a or x = a} ⊆ {xs} ∪ Aa⇀b and {xt} ∪ {x ∈ A : xP̌2xt} =

{xt} ∪ {x ∈ A : xP̌2b or x = b} ⊆ {xt} ∪Ab⇀a, which however imply
[
{xs} ∪ {x ∈

A : xP̂1xs}
]
∩
[
{xt} ∪ {x ∈ A : xP̌2xt}

]
⊆
[
{xs} ∪ Aa⇀b

]
∩
[
{xt} ∪ Ab⇀a

]
= ∅.

Contradiction! Therefore, f must behave like a dictatorship on (xp, . . . , xq). �

According to Lemma 7, we make the following observation.

Observation 2 If G〈a,b|T
A〉

∼ is a tree and Ext(G〈a,b|T
A〉

∼ ) = {a, b}, then f behaves

like a dictatorship on 〈a, b|T A〉.59 �

59Since G〈a,b|T
A〉

∼ is a tree and Ext(G〈a,b|T
A〉

∼ ) = {a, b}, G〈a,b|T A〉
∼ indeed is a line and has

exactly two extreme vertices a and b. Then, the hypothesis of Lemma 7 is implied by path-

connectedness and the non-trivialness condition on 〈a, b|T A〉. Hence, Lemma 7 implies that f

behaves like a dictatorship on 〈a, b|T A〉.
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Lemma 8 The following two statements hold:

(i) Given a ∈ Ext(G〈a,b|T A〉∼ ) and (a, y) ∈ E 〈a,b|T A〉∼ , f behaves like a dictatorship

on {a, y}.

(ii) Given b ∈ Ext(G〈a,b|T A〉∼ ) and (b, y) ∈ E 〈a,b|T A〉∼ , f behaves like a dictatorship

on {b, y}.

Proof: The two statements are symmetric, and we focus on showing the first

one. According to Observation 2, we only need to consider the following two cases:

(i) G〈a,b|T
A〉

∼ is not a tree, and (ii) G〈a,b|T
A〉

∼ is a tree and Ext(G〈a,b|T
A〉

∼ ) 6= {a, b}.

In each case, we show that f behaves like a dictatorship on {a, y}.

First, we assume that G〈a,b|T
A〉

∼ is not a tree. Since G〈a,b|T
A〉

∼ is a connected

graph, G〈a,b|T
A〉

∼ must contain a cycle. Then, we can identify a subset Â ⊆ 〈a, b|T A〉

with |Â| ≥ 3 such that GÂ
∼ is a connected graph and has no extreme vertex.

Furthermore, we can assume that GÂ
∼ is the maximum connected subgraph of

G〈a,b|T
A〉

∼ that has no extreme vertex, i.e., for any non-empty subset B ⊆ 〈a, b|T A〉

with Â ⊂ B, either GB
∼ is not a connected graph, or GB

∼ is a connected graph and

has an extreme vertex. Next, we identify a subset of Ext(G〈a,b|T
A〉

∼ ): B̂ =
{
x ∈

Ext(G〈a,b|T
A〉

∼ ) : x /∈ {a, b}
}

. Note that either B̂ = ∅ or B̂ 6= ∅ holds. In particular,

if B̂ 6= ∅, note that for each x ∈ B̂, there must exist a unique z ∈ Â and a unique

path π in G〈a,b|T
A〉

∼ connecting z and x such that π ∩ Â = {z}. Clearly, Â∩ B̂ = ∅.

Furthermore, we define the subset below:

Ĉ =

c ∈ 〈a, b|T A〉 :
there exist z ∈ Â, x ∈ B̂ and a path π in G〈a,b〉∼ connecting

z and x such that π ∩ Â = {z} and c ∈ π\{z, x}

 .

Clearly, if B̂ = ∅, then Ĉ = ∅. Last, let Ā = Â∪ B̂ ∪ Ĉ. It is evident that GĀ
∼ is a

connected subgraph of G〈a,b〉∼ .

Claim 1: Rule f behaves like a dictatorship on Ā.

By statement (i) of Lemma 4, f behaves like a dictatorship on Â. Given x ∈ B̂,

there exists a unique x′ ∈ Ĉ such that (x, x′) ∈ E 〈a,b|T A〉∼ . Then, Lemma 5 implies

f behaves like a dictatorship on {x, x′}. Moreover, there exists a unique z ∈ Â
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and a unique path π = (x1, x2, . . . , xv−1, xv) in G〈a,b|T
A〉

∼ connecting z and x such

that x2, . . . , xv−1 ∈ Ĉ. Clearly, x′ = xv−1. Then, Lemma 2 implies that f behaves

like a dictatorship on Â∪π. Last, note that GĀ
∼ is a combination of GÂ

∼ and paths

between Â and all extreme vertices of B̂ which cover vertices of Ĉ. Therefore, by

Lemma 2, f must behave like a dictatorship on Ā. This completes the verification

of the claim.

Since a ∈ Ext(G〈a,b|T A〉∼ ), it is clear that a /∈ Ā. Then, there must exist a unique

vertex z∗ ∈ Ā and a unique path π∗ = (z1, . . . , zt) in G〈a,b|T
A〉

∼ connecting z∗ and

a such that z2, . . . , zt /∈ Ā. Clearly, zt−1 = y. By the non-trivialness condition,

there exists P̂i ∈ D such that r1(P̂i) ≡ ā ∈ Aa⇀b and maxP̂i
(
〈a, b|T A〉\{a}

)
≡

a′ 6= y. We then identify a path π̄ in GAa⇀b

∼ that connects ā and a. There are two

situations: a′ ∈ π∗ ∪ Ā and a′ /∈ π∗ ∪ Ā. In the first situation, we can construct

a path π = (x1, . . . , xv) in G〈a,b|T
A〉

∼ connecting a and some x ∈ Ā such that

y = x2, a′ ∈ {x3, . . . , xv} and xv−1, xv ∈ Ā. Since f behaves like a dictatorship on

{xv−1, xv} by Claim 1, statement (i) of Lemma 6 must hold, i.e., f behaves like a

dictatorship on π. Therefore, f behaves like a dictatorship on {x1, x2} = {a, y}.

Henceforth, we assume a′ /∈ π∗ ∪ Ā.

Claim 2: We have b ∈ Ext(G〈a,b|T A〉∼ ).

By the definition of B̂, we know either b /∈ Ext(G〈a,b|T A〉∼ ) and Ext(G〈a,b|T
A〉

∼ ) =

B̂ ∪ {a}, or b ∈ Ext(G〈a,b|T
A〉

∼ ) and Ext(G〈a,b|T
A〉

∼ ) = B̂ ∪ {a, b} hold. Accord-

ingly, we know that either G〈a,b|T
A〉

∼ is combination of GĀ
∼ and π∗, or G〈a,b|T

A〉
∼ is

combination of GĀ
∼, π∗ and one path connecting b to some vertex of Ā. Sup-

pose b /∈ Ext(G〈a,b|T
A〉

∼ ). Then, G〈a,b|T
A〉

∼ is a combination of GĀ
∼ and π∗, i.e.,

G〈a,b|T
A〉

∼ = π∗∪GĀ
∼, and hence we have a′ ∈ 〈a, b|T A〉 = π∗∪ Ā, which contradicts

the hypothesis a′ /∈ π∗ ∪ Ā. This completes the verification of the claim.

Now, let (b, y′) ∈ E 〈a,b|T A〉∼ . Thus, there must exist a unique z′ ∈ Ā and a unique

path π′ = (z′1, . . . , z
′
s) in G〈a,b|T

A〉
∼ connecting z′ and b such that z′2, . . . , z

′
s /∈ Ā.

Clearly, y′ = z′s−1 Moreover, by the non-trivialness condition, there exists P̌i ∈ D

such that r1(P̌i) ≡ b̄ ∈ Ab⇀a and maxP̌i
(
〈a, b|T A〉\{b}

)
≡ b′ 6= y′. Let π̌ denote

a path in GAb⇀a

∼ that connects b and b̄. Furthermore, we have to consider two
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subcases: π∗ ∩ π′ = ∅ and π∗ ∩ π′ 6= ∅.

Claim 3: If π∗ ∩ π′ = ∅, then f behaves like a dictatorship on {a, y}.

Since z∗, z′ ∈ Ā and GĀ
∼ is a connected graph, there exists a path π′′ =

(z′′1 , . . . , z
′′
r ) in GĀ

∼ connecting z∗ and z′. We then have a concatenated path

π̃ = (zt, . . . , z1 = z′′1 , . . . , z
′′
r = z′1, . . . , z

′
s) in G〈a,b|T

A〉
∼ that connects a and b. More-

over, since π∗ ∩ π′ = ∅, it must be the case that G〈a,b|T
A〉

∼ is a combination of π∗,

GĀ
∼ and π′, i.e., G〈a,b〉∼ = π∗ ∪GĀ

∼ ∪ π′ (see Figure 10).

GĀ
∼

• • • •••
a y z∗ by′z′︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

π∗ π′π′′︸ ︷︷ ︸
π̃

Figure 10: Adjacency graph G〈a,b|T
A〉

∼

Then, a′ /∈ π∗ ∪ Ā implies a′ ∈ {z′2, . . . , z′s}. We know that either b′ ∈ π′ ∪ Ā

or b′ /∈ π′ ∪ Ā holds. If b′ ∈ π′ ∪ Ā, similar to a′, we can easily infer that f

behaves like a dictatorship on {b, y′}, which indicates the failure of statement (ii)

of Lemma 6 on the path π̃. Consequently, according to the path π̃ in G〈a,b|T
A〉

∼

that connects a and b, and the preference P̂i ∈ D with r1(P̂i) = ā ∈ Aa⇀b and

maxP̂i
(
〈a, b|T A〉\{a}

)
= a′ ∈ {z′2, . . . , z′s}, statement (i) of Lemma 6 must hold,

i.e., f behaves like a dictatorship on π̃. Therefore, f behaves like a dictatorship

on {zt, zt−1} = {a, y}. If b′ /∈ π′ ∪ Ā, it is evident that b′ ∈ {z2, . . . , zt}. Then,

according to the concatenated path (π̄, π̃, π̌) in GA
∼ that connects ā and b̄, and

the preferences P̂i and P̌i, we know that the hypothesis of Lemma 7 is satisfied,

and then Lemma 7 implies that f behaves like a dictatorship on π̃. Therefore, f

behaves like a dictatorship on {zt, zt−1} = {a, y}. This completes the verification

of the claim.

Claim 4: If π∗ ∩ π′ 6= ∅, then f behaves like a dictatorship on {a, y}.

We first show that there exists a unique 1 ≤ k∗ < min(t, s) such that zk = z′k

for all k = 1, . . . , k∗ and (zt, . . . , zk∗ = z′k∗ , . . . , z
′
s) is the unique path in G〈a,b|T

A〉
∼
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that connects a and b. Let zk = z′
k

for some 1 ≤ k < t and 1 ≤ k < s. Since

z∗, z′ ∈ Ā and GĀ
∼ is a connected graph, there exists a path π′′ = (z′′1 , . . . , z

′′
r )

in GĀ
∼ connecting z∗ and z′.60 Thus, we have three paths (z1, . . . , zk), π

′′ =

(z′′1 , . . . , z
′′
r ) and (z′1, . . . , z

′
k
) in G〈a,b〉∼ . If (z1, . . . , zk) 6= (z′1, . . . , z

′
k
), we can iden-

tify a cycle C from these three paths such that either |C ∩ {z1, . . . , zk}| ≥ 2

or |C ∩ {z′1, . . . , z′k}| ≥ 2 holds. Clearly, C ⊆ Â ⊆ Ā. This contradicts the

fact that z2, . . . , zt /∈ Ā and z′2, . . . , z
′
s /∈ Ā. Therefore, it must be the case

(z1, . . . , zk) = (z′1, . . . , z
′
k
), i.e., k = k and zk = z′k for all k = 1, . . . , k. Last,

since zt 6= zs, we can identify 1 ≤ k∗ < min(t, s) such that zk = z′k for all

k = 1, . . . , k∗ and {zk∗+1, . . . , zt} ∩ {z′k∗+1, . . . , z
′
s} = ∅. Then, we have the path

π̂ = (zt, . . . , zk∗+1, zk∗ = z′k∗ , z
′
k∗+1, . . . , z

′
s) in G〈a,b|T

A〉
∼ connecting a and b. Since

z2, . . . , zt /∈ Ā and z′2, . . . , z
′
s /∈ Ā, it is true that either k∗ > 1 and π̂ ∩ Ā = ∅

(see Figure 11(a)), or k∗ = 1 and π̂ ∩ Ā = {z1} (see Figure 11(b)). Therefore,

|π̂ ∩ Ā| ≤ 1.

GĀ
∼

• • • ••

•

a y by′zk∗

z1

︸ ︷︷ ︸
π̂

(a)

GĀ
∼

• • • ••
a y by′z1︸ ︷︷ ︸

π̂

(b)

Figure 11: Adjacency graph G〈a,b|T
A〉

∼

Last, if π̂ is not the unique path in G〈a,b|T
A〉

∼ that connects a and b, we can identify

at least two distinct vertices of π̂ that are included in a cycle, and hence are

contained in Â. This contradicts the fact |π̂ ∩ Ā| ≤ 1. Therefore, π̂ is the unique

path in G〈a,b|T
A〉

∼ connecting a and b. Thus, we can conclude that when k∗ > 1,

G〈a,b|T
A〉

∼ is a combination of GĀ
∼, the path π̂ and the path (z1, . . . , zk∗) (see Figure

11(a)), and when k∗ = 1, G〈a,b|T
A〉

∼ is a combination of GĀ
∼ and the path π̂ (see

Figure 11(b)).

Now, we start to show that f behaves like a dictatorship on {a, y}. First,

60If z∗ = z′, then π′′ is a null path.
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recall that we are in the case a′ /∈ π∗ ∪ Ā, which implies a′ ∈ {z′k∗+1, . . . , z
′
s}. We

know that either b′ ∈ π′ ∪ Ā or b′ /∈ π′ ∪ Ā holds. If b′ ∈ π′ ∪ Ā, similar to a′, we

can easily infer that f behaves like a dictatorship on {b, y′}, which indicates the

failure of statement (ii) of Lemma 6 on the path π̂. Then, according to the path π̂,

and the preference P̂i ∈ D with r1(P̂i) = ā ∈ Aa⇀b and maxP̂i
(
〈a, b|T A〉\{a}

)
=

a′ ∈ {z′k∗+1, . . . , z
′
s}, statement (i) of Lemma 6 must hold, i.e., f behaves like a

dictatorship on π̂. Therefore, f behaves like a dictatorship on {zt, zt−1} = {a, y}.

If b′ /∈ π′ ∪ Ā, then b′ ∈ {zk∗+1, . . . , zt}. Then, according to the concatenated

path (π̄, π̃, π̌) in GA
∼ that connects ā and b̄, and the preferences P̂i and P̌i, Lemma

7 implies that f behaves like a dictatorship on π̃. Therefore, f behaves like a

dictatorship on {zt, zt−1} = {a, y}. This completes the verification of the claim.

Overall, if G〈a,b|T
A〉

∼ is not a tree, f behaves like a dictatorship on {a, y}.

Next, we assume that G〈a,b|T
A〉

∼ is a tree and Ext(G〈a,b|T
A〉

∼ ) 6= {a, b}. Clearly,

|Ext(G〈a,b|T A〉∼ )| ≥ 2 and |Ext(G〈a,b|T A〉∼ )\{a, b}| ≥ 1. Also, recall a ∈ Ext(G〈a,b|T A〉∼ ).

Therefore, there are three subcases: (i) |Ext(G〈a,b|T A〉∼ )| = 2 and |Ext(G〈a,b|T A〉∼ )\{a, b}| =

1, which imply Ext(G〈a,b|T
A〉

∼ ) = {a, x} and x 6= b, (ii) |Ext(G〈a,b|T A〉∼ )| = 3

and |Ext(G〈a,b|T A〉∼ )\{a, b}| = 1 which imply Ext(G〈a,b〉∼ ) = {a, b, x}, and (iii)

|Ext(G〈a,b|T A〉∼ )| ≥ 3 and |Ext(G〈a,b|T A〉∼ )\{a, b}| ≥ 2.

In the first subcase, G〈a,b|T
A〉

∼ is a line which has the extreme vertices a and

x. Let π = (x1, . . . , xv) be such a line. Thus, a = x1, y = x2, x = xv and

b = xs for some 1 < s < v. By the non-trivialness condition, we have ā ∈ Aa⇀b

and P̂i ∈ Dā such that maxP̂i
(
〈a, b|T A〉\{a}

)
= maxP̂i

(
{x2, . . . , xv}

)
≡ a′ ∈

{x3, . . . , xv}. Moreover, Lemma 5 implies that f behaves like a dictatorship on

{xv−1, xv}, which indicates the failure of statement (ii) of Lemma 6 on the path π.

Therefore, statement (i) of Lemma 6 must hold, i.e., f behaves like a dictatorship

on π. Hence, f behaves like a dictatorship on {x1, x2} = {a, y}.

In the second subcase, we know that x is uniquely adjacent to some x′ ∈

〈a, b|T A〉. Let Ā = {x, x′}. First, Lemma 5 implies that f behaves like a dic-

tatorship on Ā, which is analogous to Claim 1 above. Second, note that the

hypothesis b ∈ Ext(G〈a,b|T
A〉

∼ ) is analogous to Claim 2 above. Third, recall the
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vertices z∗, z′ ∈ Ā and the paths π∗, π′ in G〈a,b|T
A〉

∼ that we identify for the proof

in the case that G〈a,b|T
A〉

∼ is not a tree. Note that x′ is analogous to z∗, x′ is anal-

ogous to z′, the unique path connecting x′ and a in G〈a,b|T
A〉

∼ is analogous to π∗,

and the unique path connecting x′ and b in G〈a,b|T
A〉

∼ is analogous to π′. Last, we

can adopt an argument analogous to the proof of Claim 4 to show that f behaves

like a dictatorship on {a, y}.

In the third subcase, there exists a subset Ā ⊆ 〈a, b|T A〉 such that GĀ
∼ is the

minimum subtree ofG〈a,b|T
A〉

∼ that includes all extreme vertices of Ext(G〈a,b|T
A〉

∼ )\{a, b}.

By Lemmas 5 and 2, we know that f behaves like a dictatorship on Ā, which is

analogous to Claim 1 above. Then, by the same verifications of Claims 2, 3 and

4 above,61 we can show that f behaves like a dictatorship on {a, y}. In conclu-

sion, we have shown that if G〈a,b|T
A〉

∼ is a tree and Ext(G〈a,b|T
A〉

∼ ) 6= {a, b}, then f

behaves like a dictatorship on {a, y}. This completes the proof of the lemma. �

This completes the second-step proof, and shows that every two-voter strategy-

proof rule behaves like a dictatorship on 〈a, b|T A〉, as required. This proves the

sufficiency part of the Auxiliary Proposition.

B Proof of Fact 1

(Necessity) Fixing n > 2 and the PNT rule f : Dn → A on T A w.r.t. (x, y), let f

be strategy-proof and violate the tops-only property. For notational convenience,

we let i = 1 and j = 2 in Definition 6.

We fix an arbitrary preference P1 ∈ D with r1(P1) = z ∈ Ax⇀y, and show that

P1 satisfies condition (i) of Fact 1 in two steps. In the first step, we show that P1 is

semi-single-peaked on T Ax⇀y w.r.t. x. Given a, b ∈ 〈z, x|T Ax⇀y〉 = 〈z, x|T A〉, let

a ∈ 〈z, b|T Ax⇀y〉. By minimal richness, we have P ′1 ∈ Db and Pν ∈ Da for all ν 6= 1.

By construction, we have f(P1, P−1) = Proj
(
x, T Γ(P1,P−1)

)
= Proj

(
x, 〈z, a|T A〉

)
=

61Although Claims 2, 3 and 4 are established in the case that G〈a,b|T
A〉

∼ contains a cycle, the

verifications of all these three claims do not rely on the presence of cycles, but depends on the

dictatorship of f on Ā. Therefore, these three claims continue to be applicable in the case that

G〈a,b|T
A〉

∼ is a tree.
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a and f(P ′1, P−1) = Proj
(
x, T Γ(P ′1,P−1)

)
= Proj(x, 〈b, a|T A〉) = b, which by strategy-

proofness imply aP1b. Given a ∈ Ax⇀y\〈z, x|T Ax⇀y〉, let a′ = Proj
(
a, 〈z, x|T Ax⇀y〉

)
.

Thus, a′ = Proj
(
a, 〈z, x|T Ax⇀y〉

)
= Proj(a, 〈z, x|T A〉) = Proj(x, 〈z, a|T A〉). By

minimal richness, we have P ′1 ∈ Da and P̂ν ∈ Da for all ν 6= 1. By construc-

tion, we have f(P1, P̂−1) = Proj
(
x, T Γ(P1,P̂−1)

)
= Proj

(
x, 〈z, a|T A〉

)
= a′ and

f(P ′1, P̂−1) = a, which by strategy-proofness imply a′P1a. Therefore, P1 is semi-

single-peaked on T Ax⇀y w.r.t. x.

In the second step, we show that xP1y and maxP1(Ay⇀x) = y. We construct two

profiles P = (P1, P2, P−{1,2}) and P ′ = (P ′1, P2, P−{1,2}), where P ′1 ∈ Dy, r1(P2) ∈

Dx and r1(Pν) ∈ Ax⇀y for all ν = 3, . . . , n. Then, by construction, we have

f(P ) = Proj
(
x, T Γ(P )

)
= x and f(P ′) = Proj

(
x, T Γ(P ′)

)
= y, which by strategy-

proofness imply xP1y. Next, given an arbitrary a ∈ Ay⇀x\{y}, we construct two

other profiles P = (P1, P2, P−{1,2}) and P ′ = (P ′1, P2, P−{1,2}), where P ′1 ∈ Da,

P2 ∈ Dy and Pν is arbitrary for all ν = 3, . . . , n. By construction, we have

f(P ) = maxP2({x, y}) = y and f(P ′) = a, which by strategy-proofness imply

yP1a. Therefore, maxP1(Ay⇀x) = y. Now, by combining the results in the two

steps, we infer that for all Pi ∈ D with r1(Pi) ∈ Ax⇀y, Pi is semi-single-peaked on

T A w.r.t. y. This proves condition (i) of Fact 1.

To verify condition (ii) of Fact 1, we fix i ∈ N\{1, 2} and an arbitrary pref-

erence Pi ∈ D with r1(Pi) ∈ Ay⇀x, and show maxPi(Ax⇀y) = x. Given an ar-

bitrary z ∈ Ax⇀y\{x}, we construct two profiles P = (P1, P2, Pi, P−{1,2,i}) and

P ′ = (P1, P2, P
′
i , P−{1,2,i}), where P ′i ∈ Dz and Pν ∈ Dz for all ν 6= i. By con-

struction, we have f(P ) = Proj(x, T Γ(P )) = Proj
(
x, 〈r1(Pi), z|T A〉

)
= x and

f(P ′) = z, which by strategy-proofness imply xPiz. Therefore, maxPi(Ax⇀y) = x.

This proves condition (ii) of Fact 1.

Last, since f violates the tops-only property, by construction, there must exist

two profiles P = (P1, P2, P−{1,2}) and P ′ = (P1, P
′
2, P−{1,2}), where r1(P1) ∈ Ax⇀y

and r1(P2) = r1(P ′2) ∈ Ay⇀x such that f(P ) = maxP2({x, y}) = x 6= y =

maxP
′
2({x, y}) = f(P ′). Therefore, xP2y and yP ′2x. This proves condition (iii)

of Fact 1, and hence completes the verification of the necessity part.
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(Sufficiency) Let domain D satisfy conditions (i), (ii) and (iii) of Fact 1. Fix the

PNT rule f : Dn → A, n ≥ 2, on T A w.r.t. (x, y). For notational convenience, let

i = 1 and j = 2 in Definition 6. Clearly, condition (iii) of Fact 1 implies that f

violates the tops-only property. Henceforth, we show strategy-proofness of f .

We first consider voters other than 1 and 2 in the case n > 2. Given an voter i ∈

N\{1, 2} and two profiles P = (P1, P2, Pi, P−{1,2,i}) and P ′ = (P1, P2, P
′
i , P−{1,2,i}),

let f(P ) 6= f(P ′). By construction, it must be the case that r1(P1) ∈ Ax⇀y,

r1(P2) ∈ Ax⇀y, f(P ) = Proj(x, T Γ(P )) and f(P ′) = Proj(x, T Γ(P ′)). Furthermore,

we can infer that r1(Pj) ∈ Ax⇀y for all j ∈ N\{1, 2, i}. Otherwise, x is included

in both Γ(P ) and Γ(P ′), and we induce the contradiction f(P ) = x = f(P ′).

Symmetrically, we can infer that it is impossible that r1(Pi) ∈ Ay⇀x and r1(P ′i ) ∈

Ay⇀x. Therefore, either r1(Pi) ∈ Ax⇀y and r1(P ′i ) ∈ Ay⇀x, or r1(Pi) ∈ Ay⇀x

and r1(P ′i ) ∈ Ax⇀y, or r1(Pi) ∈ Ax⇀y and r1(P ′i ) ∈ Ax⇀y occur. If r1(Pi) ∈

Ax⇀y and r1(P ′i ) ∈ Ay⇀x, we by construction have f(P ) = Proj(x, T Γ(P )) ∈

〈r1(Pi), x|T A〉 and f(P ′) = Proj(x, T Γ(P ′)) = x. Then, condition (i) of Fact 1

implies f(P )Pif(P ′). If r1(Pi) ∈ Ay⇀x and r1(P ′i ) ∈ Ax⇀y, we by construction have

f(P ) = Proj(x, T Γ(P )) = x and f(P ′) = Proj(x, T Γ(P ′)) ∈ Ax⇀y. Then, condition

(ii) of Fact 1 implies f(P )Pif(P ′). Last, if r1(Pi) ∈ Ax⇀y and r1(P ′i ) ∈ Ax⇀y, we

by construction have f(P ) = Proj(x, T Γ(P )) ∈ Ax⇀y and f(P ′) = Proj(x, T Γ(P ′)) ∈

Ax⇀y. Note that condition (i) of Fact 1 implies that Pi is also semi-single-peaked on

T Ax⇀y w.r.t. x. Then, by the sufficiency part of the Theorem of Chatterji et al.

(2013), we have f(P )Pif(P ′). Overall, voter i has no incentive to manipulate.

Henceforth, we focus on the possible manipulations of voters 1 and 2.

First, given two profiles P = (P1, P2, P−{1,2}) and P ′ = (P ′1, P2, P−{1,2}), there

are three possible manipulations of voter 1:

(1) f(P ) = Proj
(
x, T Γ(P )

)
and f(P ′) = Proj

(
x, T Γ(P ′)

)
,

(2) f(P ) = Proj
(
x, T Γ(P )

)
and f(P ′) = r1(P ′1) ∈ Ay⇀x, and

(3) f(P ) = maxP2({x, y}) and f(P ′) = r1(P ′1) ∈ Ay⇀x.

In each case, we show either f(P ) = f(P ′) or f(P )P1f(P ′) holds.

In case (1), r1(P1) ∈ Ax⇀y, r1(P2) ∈ Ax⇀y and r1(P ′1) ∈ Ax⇀y. If there
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exists i ∈ {3, . . . , n} such that r1(Pi) ∈ Ay⇀x, we have f(P ) = y = f(P ′) by

construction. Next, assume r1(Pi) ∈ Ax⇀y for all i ∈ {3, . . . , n}. Note that

condition (i) of Fact 1 implies that P1 is also semi-single-peaked on T Ax⇀y w.r.t.

x. Therefore, by the sufficiency part of the Theorem of Chatterji et al. (2013), we

have either f(P ) = f(P ′) or f(P )P1f(P ′), as required.

In case (2), r1(P1) ∈ Ax⇀y and r1(P2) ∈ Ax⇀y. By construction, we have

f(P ) = Proj
(
x, T Γ(P )

)
∈ 〈r1(P1), x|T A〉. By condition (i) of Fact 1, we know x =

minP1
(
〈r1(P1), x|T A〉

)
, xP1y and y = maxP1(Ay⇀x). Then, f(P ) ∈ 〈r1(P1), x|T A〉

and f(P ′) ∈ Ay⇀x imply f(P )P1f(P ′), as required.

In case (3), r1(P1) ∈ Ax⇀y and r1(P2) ∈ Ay⇀x. By condition (i) of Fact 1, we

have xP1y and y = maxP1(Ay⇀x). Then, f(P ) = maxP2({x, y}) and f(P ′) ∈ Ay⇀x

imply either f(P ) = f(P ′) = y or f(P )P1f(P ′), as required.

Last, given two profiles P = (P1, P2, P−{1,2}) and P ′ = (P1, P
′
2, P−{1,2}), there

are three possible manipulations of voter 2:

(1) f(P ) = Proj
(
x, T Γ(P )

)
and f(P ′) = Proj

(
x, T Γ(P ′)

)
,

(2) f(P ) = Proj
(
x, T Γ(P )

)
and f(P ′) = maxP

′
2({x, y}), and

(3) f(P ) = maxP2({x, y}) and f(P ′) = Proj
(
x, T Γ(P ′)

)
.

In each case, we show either f(P ) = f(P ′) or f(P )P2f(P ′) holds. Clearly, the

verification of case (1) is similar to that of case (1) for voter 1.

In case (2), r1(P1) ∈ Ax⇀y, r1(P2) ∈ Ax⇀y and r1(P ′2) ∈ Ay⇀x. Hence,

f(P ) = Proj
(
x, T Γ(P )

)
∈ 〈r1(P2), x|T A〉. By condition (i) of Fact 1, we know x =

minP2
(
〈r1(P2), x|T A〉

)
and xP2y. Therefore, f(P ) ∈ 〈r1(P2), x|T A〉 and f(P ′) =

maxP
′
2({x, y}) imply either f(P ) = f(P ′) = x or f(P )P2f(P ′), as required.

In case (3), r1(P1) ∈ Ax⇀y, r1(P2) ∈ Ay⇀x and r1(P ′2) ∈ Ax⇀y. Thus, by

construction, f(P ′) = Proj
(
x, T Γ(P ′)

)
∈ 〈r1(P ′2), x|T A〉 ⊆ Ax⇀y. If xP2y, we

have f(P ) = maxP2({x, y}) = x. Then condition (ii) of Fact 1 implies either

f(P ) = f(P ′) = x or f(P )P2f(P ′). If yP2x, we have f(P ) = maxP2({x, y}) = y.

Then, condition (ii) of Fact 1 implies f(P )P2f(P ′), as required.

In conclusion, the PNT rule f is strategy-proof. This completes the verification

of sufficiency part of Fact 1.
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C Proof of Proposition 1

We first show statement (i) of Proposition 1. Let D ⊆ DSSP(T A, x̄) be a path-

connected domain. Because of Fact 1, we only need to show that D * DSP(T A)

if and only if there exists a critical spot. According to condition (iii) of Fact 1, it

is evident that the existence of a critical spot ensures D * DSP(T A). Henceforth,

we focus on showing the necessity part.

Since D is semi-single-peaked, we identify the set of all thresholds Z ⊆ A w.r.t.

which D is semi-single-peaked on T A. Note that either Z = {x̄}, or Z contains

multiple alternatives and T Z is a subtree nested in T A.62 Since D * DSP(T A),

it is true that some extreme vertex of T A and its unique neighbor must not be

contained in Z. Furthermore, we can identify a threshold x′ ∈ Z such that x′ = x̄

if Z = {x̄}, or x′ ∈ Ext(T Z) otherwise, and an edge (x, y) ∈ EA with x, y /∈ Z

and y ∈ 〈x, x′|T A〉 such that the following two conditions are satisfied:

(1) every preference Pi ∈ D with r1(Pi) ∈ Ay⇀x is single-peaked on T Ax⇀y , i.e.,

for all distinct a, b ∈ Ax⇀y,
[
a ∈ 〈b, x|T A〉

]
⇒ [aPib], and

(2) some preference P ∗i ∈ D with r1(P ∗i ) ∈ Ay⇀x is not single-peaked on the

subtree T Ax⇀y∪{y}.63

62Given a tree T A and two distinct alternatives a, b ∈ A, if domain D ⊆ DSSP(T A, a) and

D ⊆ DSSP(T A, b), then D is semi-single-peaked on T A w.r.t. every alternative of 〈a, b|T A〉.
63The subtree T Ax⇀y∪{y} is a combination of the subtree T Ax⇀y

and the edge (x, y). We adopt

a simple instance of the line LA to exemplify how conditions (1) and (2) are specified. Fixing a

path-connected domain D ⊆ DSSP(LA, ak) for some 1 ≤ k ≤ m, let D * DSP(LA). Clearly, we

have Z = 〈ap, aq|LA〉 for some 1 ≤ p ≤ q ≤ m. Hence, D ⊆ DSSP(LA, ak) for all p ≤ k ≤ q,

and D * DSSP(LA, al) for all l < p and q < l. Clearly, D * DSP(LA) implies either p > 2 or

q < m − 1. We assume w.l.o.g. that p > 2. First, according to a1, it is natural that every

preference with the peak located in 〈a2, am|LA〉 is single-peaked on 〈a1, a1|LA〉. Second, since

D ⊆ DSSP(LA, ap) and D * DSSP(LA, ap−1) it must be the case that some preference with the

peak located in 〈ap−1, am|LA〉 is not single-peaked on 〈a1, ap−1|LA〉. Therefore, searching from

a1 to ap−1, we can identify 1 ≤ s < p− 1 such that (i) every preference with the peak located in

〈as+1, am|LA〉 is single-peaked on 〈a1, as|LA〉, and (ii) some preference with the peak located in

〈as+1, am|LA〉 is not single-peaked on 〈a1, as+1|LA〉. The two conditions here are analogous to

conditions (1) and (2) above respectively.
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Since condition (1) implies maxPi(Ax⇀y) = x for all Pi ∈ D with r1(Pi) ∈ Ay⇀x,

we know that condition (ii) of Fact 1 is satisfied. We next show that D satisfies

condition (i) of Fact 1.

Claim 1: For all Pi ∈ D with r1(Pi) ∈ Ax⇀y, Pi is semi-single-peaked on T A

w.r.t. y.

Fix an arbitrary preference Pi ∈ D with r1(Pi) ∈ Ax⇀y. Note that x′ ∈ Ay⇀x,

x, y ∈ 〈r1(Pi), x
′|T A〉 and y ∈ 〈x, x′|T A〉. First, we show Pi is semi-single-peaked

on the subtree T Ax⇀y∪{y} w.r.t. y. Since r1(Pi) ∈ Ax⇀y and Pi is semi-single-

peaked on T A w.r.t. x′, it is true that Pi is also semi-single-peaked on T Ax⇀y

w.r.t. x, and xPiy, which imply that Pi is semi-single-peaked on T Ax⇀y∪{y} w.r.t.

y. Next, we show maxPi(Ay⇀x) = y. Given an arbitrary z ∈ Ay⇀x\{y}, we

show yPiz. We know that either z ∈ 〈y, x′|T A〉, or z /∈ 〈y, x′|T A〉 which further

implies /∈ 〈r1(Pi), x
′|T A〉. If z ∈ 〈y, x′|T A〉, we have y, z ∈ 〈r1(Pi), x

′|T A〉 and

then the first condition of semi-single-peakedness on T A w.r.t. x′ implies yPiz. If

z /∈ 〈y, x′|T A〉, let Proj
(
z, 〈r1(Pi), x

′|T A〉
)

= z′. Clearly, z′ ∈ 〈y, x′|T A〉. Then,

by semi-single-peakedness on T A w.r.t. x′, we know z′Piz and yPiz
′ (if y 6= z′),

which hence imply yPiz by transitivity. Therefore, maxPi(Ay⇀x) = y. Last, since

T A is a combination of the subtree T Ax⇀y , the edge (x, y) and the subtree T Ay⇀x ,

it must be the case that Pi is semi-single-peaked on T A w.r.t. y. This completes

the verification of the claim.

We last show that D satisfies condition (iii) of Fact 1. First, recall the preference

P ∗i in condition (2) above. Since P ∗i is single-peaked on T Ax⇀y by condition (1)

and violates single-peakedness on T Ax⇀y∪{y} by condition (2) above, it must be

the case that maxP
∗
i (Ax⇀y) = x and xP ∗i y.

Claim 2: There exist Pi, P
′
i ∈ D such that r1(Pi) = r1(P ′i ) ∈ Ay⇀x, yPix and

xP ′iy.

Clearly, there exists a preference P̂i ∈ Dy by path-connectedness. Thus, we

have P̂i, P
∗
i ∈ D such that r1(P̂i) ∈ Ay⇀x, r1(P ∗i ) ∈ Ay⇀x, yP̂ix and xP ∗i y. We

separate the subdomain D = {Pi ∈ D : r1(Pi) ∈ Ay⇀x} into two parts: D1 =

{Pi ∈ D : yPix} and D2 = {Pi ∈ D : xPiy}. Clearly, D1 6= ∅ and D2 6= ∅. Since
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D ⊆ DSSP(T A, x̄), it is true that GA
∼ = T A. Recall that T A is a combination of the

subtree T Ax⇀y , the edge (x, y) and the subtree T Ay⇀x . Hence, GAy⇀x

∼ is a subtree.

Now, suppose that the claim is not true, i.e., for all distinct Pi, P
′
i ∈ D with

r1(Pi) = r1(P ′i ), they agree on the relative ranking of x and y. Consequently, for

all z ∈ Ay⇀x, either Dz ⊆ D1 or Dz ⊆ D2 holds. Furthermore, given two arbitrary

distinct z, z′ ∈ Ay⇀x, let Dz ⊆ D1 and Dz′ ⊆ D2. Thus, we have zPiz
′ and yPix

for all Pi ∈ Dz, and z′P ′iz and xP ′iy for all P ′i ∈ Dz′ , which imply that z and z′ are

never adjacent. This contradicts the fact that GAy⇀x

∼ is a subtree. This completes

the verification of the claim, and hence proves the necessity part of statement (i).

Next, we show statement (ii) of Proposition 1. Let D ⊆ DSH(T A, a, b) be a

path-connected domain. Symmetrically, because of Fact 1, we only need to show

that D * DH(T A, a, b) if and only if there exists a critical spot. According to

condition (iii) of Fact 1, it is evident that the existence of a critical spot ensures

D * DH(T A, a, b). Henceforth, we focus on showing the necessity part. Since

D * DH(T A, a, b), there must exist a preference that is not single-peaked on either

T Aa⇀b or T Ab⇀a . We assume w.l.o.g. that there exists a preference that is not

single-peaked in T Aa⇀b . Therefore, Aa⇀b 6= {a}. We separate D into two parts:

D1 = {Pi ∈ D : r1(Pi) ∈ Aa⇀b} and D2 = {Pi ∈ D : r1(Pi) /∈ Aa⇀b}. Thus, we

know either D1 or D2 is not single-peaked on T Aa⇀b . Note that all preferences of

D1 are semi-single-peaked on T Aa⇀b w.r.t. a. If D1 is not single-peaked on T Aa⇀b ,

we can adopt the same proof of the necessity part of statement (i) to identify

a critical spot in T Aa⇀b . Next, assume that D1 is single-peaked on T Aa⇀b , and

D2 is not single-peaked on T Aa⇀b . Note that for every preference Pi ∈ D2, (i)

Pi vacuously satisfies the first condition of semi-single-peakedness on T Aa⇀b w.r.t.

a, and (ii) (a, b)-semi-hybridness on T A implies maxPi(Aa⇀b) = a, which implies

that Pi satisfies the second condition of semi-single-peakedness on T Aa⇀b w.r.t. a.

Therefore, loosely speaking, D2 is semi-single-peaked on T Aa⇀b w.r.t. a. Then, by

an argument similar to the proof of the necessity part of statement (i), we can also

identify a critical spot in T Aa⇀b . This completes the verification of the necessity

part, and hence proves Proposition 1.
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D Proof of the Theorem

We first provide two independent lemmas (Lemmas 9 and 10) which will be repeat-

edly applied in the proof of the Theorem. For Lemmas 9 and 10, we fix N = {1, 2}

and a two-voter tops-only and strategy-proof rule f : D2 → A. Since f satisfies

the tops-only property, we slightly abuse the notation f(a, b) to represent a social

outcome at a preference profile where voter 1 reports a preference with the peak a

and voter 2 reports a preference with the peak b. Also, f(a, P2) represents a social

outcome at a preference profile where voter 1 reports a preference with the peak

a and voter 2 reports preference P2.

Lemma 9 Fixing a path π = (x1, . . . , xv) in GA
∼, the following three statements hold:

(i) f(xs, xt) ∈ {xs, . . . , xt} and f(xt, xs) ∈ {xs, . . . , xt} for all 1 ≤ s < t ≤ v.

(ii) If f(P1, xs) = x /∈ π where xs ∈ π, then f(P1, xk) = x for all k = 1, . . . , v.

Symmetrically, if f(xs, P2) = x /∈ π where xs ∈ π, then f(xk, P2) = x for all

k = 1, . . . , v.

(iii) If f(P1, xs) = xs where xs ∈ π, then f(P1, xp) ∈ {xp, . . . , xs} for all 1 ≤

p < s, and f(P1, xq) ∈ {xs, . . . , xq} for all s < q ≤ v. Symmetrically, if

f(xs, P2) = xs where xs ∈ π, then f(xp, P2) ∈ {xp, . . . , xs} for all 1 ≤ p < s,

and f(xq, P2) ∈ {xs, . . . , xq} for all s < q ≤ v.

Proof: Fix 1 ≤ s < t ≤ v. First, since xs ∼ xs+1, by the proof of Claim A of Sen

(2001), unanimity and strategy-proofness imply f(xs, xs+1) ∈ {xs, xs+1}. Next, we

provide an induction hypothesis: given s + 1 < l ≤ t, for all s + 1 ≤ l′ < l, we

have f(xs, xl′) ∈ {xs, . . . , xl′}. We show f(xs, xl) ∈ {xs, . . . , xl}. By the induction

hypothesis, we first have f(xs, xl−1) ∈ {xs, . . . , xl−2, xl−1}. Next, since xl−1 ∼ xl,

we have P2, P
′
2 ∈ D such that r1(P2) = r2(P ′2) = xl−1, r1(P ′2) = r2(P2) = xl and

rk(P2) = rk(P
′
2) for all k = 3, . . . ,m. If f(xs, P2) = f(xs, xl−1) ∈ {xs, . . . , xl−2},

then the tops-only property and strategy-proofness imply f(xs, xl) = f(xs, P
′
2) =

f(xs, P2) ∈ {xs, . . . , xl−2} ⊂ {xs, . . . , xl}. If f(xs, P2) = f(xs, xl−1) = xl−1,

then the tops-only property and strategy-proofness imply f(xs, xl) = f(xs, P
′
2) ∈
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{xl−1, xl} ⊂ {xs, . . . , xl}. Overall, f(xs, xl) ∈ {xs, . . . , xl}. This completes the ver-

ification of the induction hypothesis. Therefore, f(xs, xt) ∈ {xs, . . . , xt}. Symmet-

rically, f(xt, xs) ∈ {xs, . . . , xt}. This completes the verification of statement (i).

Next, we show statement (ii). By symmetry, we focus on f(P1, xk). Given 1 ≤

k ≤ v, we first assume s < k. We consider the path (xs, . . . , xk). Since xs ∼ xs+1,

we have P2, P
′
2 ∈ D such that r1(P2) = r2(P ′2) = xs, r1(P ′2) = r2(P2) = xs+1 and

rk(P2) = rk(P
′
2) for all k = 3, . . . ,m. Since x /∈ {xs, xs+1}, the tops-only property

and strategy-proofness imply f(P1, xs+1) = f(P1, P
′
2) = f(P1, P2) = f(P1, xs) = x.

Following the path (xs, . . . , xk) from xs+1 to xk and repeatedly applying the same

argument step by step, we eventually have f(P1, xk) = x. Similarly, if s > k, we

also induce f(P1, xk) = x. Therefore, f(P1, xk) = x for all k = 1, . . . , v. This

completes the verification of statement (ii).

Last, we prove statement (iii). By symmetry, we focus on f(P1, xp) and

f(P1, xq). Given 1 ≤ p < s, suppose f(P1, xp) = x /∈ {xp, . . . , xs}. Then, ac-

cording to the path (xp, . . . , xs), statement (ii) implies f(P1, xs) = x 6= xs. Con-

tradiction! Therefore, f(P1, xp) ∈ {xp, . . . , xs}. Similarly, f(P1, xq) ∈ {xs, . . . , xq}

for all s < q ≤ v. This completes the verification of statement (iii). �

Lemma 10 Fixing a path π = (x1, . . . , xv), v ≥ 3, in GA
∼, let f(x1, xv) = xk and

f(xv, x1) = xk. The following three statements hold:

(i)
[
k < k

]
⇒

f(xs, xt) =


xs if k ≤ s ≤ k,

xmed(s,t,k) if s < k,

xmed(s,t,k) if s > k.



(ii)
[
k > k

]
⇒

f(xs, xt) =


xt if k ≤ t ≤ k,

xmed(s,t,k) if t < k,

xmed(s,t,k) if t > k.


(iii)

[
k = k ≡ k∗

]
⇒
[
f(xs, xt) = xmed(s,t,k∗) for all 1 ≤ s, t ≤ v

]
.

Proof: First, according to f(x1, xv) = xk, we establish the following claim.

69



Claim 1: We have f(xk, xk′) =


xk′ if 1 ≤ k ≤ k′ ≤ k,

xk if k ≤ k ≤ k′ ≤ v,

xk if 1 ≤ k < k < k′ ≤ v.

Since f(x1, xv) = xk, strategy-proofness implies f(x1, xk) = xk. If k = 1, then

it is evident by unanimity that f(xk, xk′) = xk′ for all 1 ≤ k ≤ k′ ≤ k. Next,

assume k > 1. According to the subpath (x1, . . . , xk), by statement (iv) of Lemma

1, to show f(xk, xk′) = xk′ for all 1 ≤ k ≤ k′ ≤ k, it suffices to show f(xk−1, xk) =

xk. By statement (i) of Lemma 9, we first know f(xk−1, xk) ∈ {xk−1, xk}. Suppose

f(xk−1, xk) = xk−1. Then, according to the subpath (x1, . . . , xk−1), statement

(iii) of Lemma 9 implies f(x1, xk) ∈ {x1, . . . , xk−1}. Contradiction! Therefore,

f(xk−1, xk) = xk, as required.

Symmetrically, since f(x1, xv) = xk implies f(xk, xv) = xk by strategy-proofness,

we can refer to the subpath (xk, . . . , xv) and show that f(xk, xk′) = xk for all

k ≤ k ≤ k′ ≤ v.

Last, given 1 ≤ k < k < k′ ≤ v, according to the subpath (x1, . . . , xk), by

statement (ii) of Lemma 9, f(x1, xv) = xk implies f(xk, xv) = xk. Furthermore,

according to the subpath (xk′ , . . . , xv), by statement (ii) of Lemma 9, f(xk, xv) =

xk implies f(xk, xk′) = xk. This completes the verification of the claim.

Symmetrically, according to f(xv, x1) = xk, we can establish the claim below.

Claim 2: We have f(xk′ , xk) =


xk′ if 1 ≤ k ≤ k′ ≤ k,

xk if k ≤ k ≤ k′ ≤ v,

xk if 1 ≤ k < k < k′ ≤ v.

Last, we combine two claims to prove the lemma. Note that the verifications

of the three cases k < k, k > k and k = k are symmetric. Hence, we focus on the

verification of the first case k < k. Let k < k and fix an arbitrary profile (xs, xt).

First, let k ≤ s ≤ k. If s ≤ t, we have k ≤ s < t ≤ v and Claim 1 implies

f(xs, xt) = xs. If t < s, we have 1 ≤ t ≤ s ≤ k and Claim 2 implies f(xs, xt) = xs.

Overall, f(xs, xt) = xs, as required.

Second, let s < k. If t ≤ s, we have 1 ≤ t < s < k < k and Claim 2 implies

f(xs, xt) = xs = xmed(s,t,k). If s < t ≤ k, we have 1 ≤ s < t ≤ k and Claim 1

70



implies f(xs, xt) = xt = xmed(s,t,k). If k < t, we have 1 ≤ s < k < t ≤ v and Claim

1 implies f(xs, xt) = xk = xmed(s,t,k). Overall, f(xs, xt) = xmed(s,t,k), as required.

Last, let s > k. If t < k, we have 1 ≤ t < k < s ≤ v and Claim 2 implies

f(xs, xt) = xk = xmed(s,t,k). If k ≤ t ≤ s, we have k ≤ t < s ≤ v and Claim 2

implies f(xs, xt) = xt = xmed(s,t,k). If s < t, we have k < k < s < t ≤ v and Claim

1 implies f(xs, xt) = xs = xmed(s,t,k). Overall, f(xs, xt) = xmed(s,t,k), as required.

This proves the lemma. �

Proof of Statement (i). The sufficiency part of Statement (i) holds, since by

the proof of the sufficiency part of the Theorem of Chatterji et al. (2013), a semi-

single-peaked domain D ⊆ DSSP(T A, x̄) admits the following two-voter anonymous,

tops-only and strategy-proof rule: f(P1, P2) = Proj
(
x̄, 〈r1(P1), r1(P2)|T A〉

)
for all

P1, P2 ∈ D, which hence satisfies invariance.

Henceforth, we focus on the necessity part. Let D be a rich domain and f :

D2 → A be an invariant, tops-only and strategy-proof rule. The proof consists

of two steps: (1) we show that GA
∼ is a tree (see Lemmas 11 and 12), and (2)

we completely characterize SCF f (see Lemma 13), which by strategy-proofness

implies that D is semi-single-peaked on GA
∼ w.r.t. the threshold which equals the

social outcome f(P 1, P 2) = f(P 1, P 2) (see Lemma 14).

Lemma 11 There exists a unique path in GA
∼ connecting a1 and am.

Proof: Since GA
∼ is a connected graph, there exists a path in GA

∼ connecting

a1 and am. Suppose that the lemma is not correct, i.e., there are two distinct

paths π = (x1, . . . , xp) and π′ = (y1, . . . , yq) in GA
∼ connecting a1 and am. Then,

we can identify 1 ≤ s < t ≤ p and 1 ≤ s′ < t′ ≤ q with either t − s > 1 or

t′−s′ > 1 such that xs = ys′ , xt = yt′ and {xs+1, . . . , xt−1}∩{ys′+1, . . . , yt′−1} = ∅.

Consequently, we construct a cycle C = (xs, . . . , xt = yt′ , . . . , ys′+1, ys′ = xs). Note

that (x1, . . . , xs) is a path in GA
∼ connecting a1 to the cycle C, and (xp, . . . , xt) is

a path in GA
∼ connecting am to the cycle C.

By Observation 1, f behaves like a dictatorship on C. We assume w.l.o.g. that

voter 1 dictates on C. Thus, f(xs, xt) = xs and f(xt, xs) = xt. According to the
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subpaths (xt, . . . , xp) and (xs, . . . , x1), by statements (ii) of Lemma 9, f(xs, xt) =

xs implies f(xs, xp) = xs, and f(xt, xs) = xt implies f(xt, x1) = xt. Further-

more, according to the subpaths (xs, . . . , x1) and (xt, . . . , xp), by statements (iii)

of Lemma 9, f(xs, xp) = xs implies f(x1, xp) ∈ {x1, . . . , xs} and f(xt, x1) = xt

implies f(xp, x1) ∈ {xt, . . . , xp}. Consequently, f(x1, xp) 6= f(xp, x1), which con-

tradicts invariance. �

Let π∗ = (x1, . . . , xp) be the unique path connecting a1 and am in GA
∼. Note

that this path may not include all alternatives of A.

Lemma 12 The graph GA
∼ is a tree.

Proof: Suppose not, i.e., there exists a cycle C = (b1, . . . , bv, b1), v ≥ 3. By

Observation 1, f behaves like a dictatorship on C. We assume w.l.o.g. that voter

1 dictates on C, i.e., f(P1, P2) = r1(P1) for all P1, P2 ∈ D with r1(P1), r1(P2) ∈ C.

We know either C ∩ π∗ = ∅ or C ∩ π∗ 6= ∅. If C ∩ π∗ = ∅, we can identify

bs ∈ C, xk ∈ π∗ and a path (y1, . . . , yu) in GA
∼ connecting bs and xk such that

{y2, . . . , yu−1} ∩ [C ∪ π∗] = ∅ (see Figure 12(a)). If C ∩ π∗ 6= ∅, it must be the case

that |C∩π∗| = 1, for otherwise, we can identify two distinct paths in GA
∼ connecting

a1 and am, which then contradicts Lemma 11. Accordingly, let bs = xk ∈ π∗ be

the unique alternative of π∗ contained in C (see Figure 12(b)). Overall, we have

the cycle C = (b1, . . . , bv, b1), the path π∗ = (x1, . . . , xp) and the path (y1, . . . , yu)

which may be a null path when bs = xk. We consider three cases: (i) 1 < k < p,

(ii) k = 1 and (iii) k = p, and induce a contradiction in each case.

C

• • •

•
•

x1 xpxk

bs
bt

(a)

C

• • •

•

x1 xpxk

bs

bt

(b)

Figure 12: The relation between the cycle C and the path π∗

In the first case, fixing bt ∈ C\{bs}, we have f(bt, bs) = bt and f(bs, bt) = bs by

voter 1’s dictatorship on C. According to the paths (bs = y1, . . . , yu = xk, . . . , x1)
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and (bs = y1, . . . , yu = xk, . . . , xp), by statement (ii) of Lemma 9, f(bt, bs) = bt

implies f(bt, x1) = bt and f(bt, xp) = bt. Furthermore, according to the paths

(bt, . . . , bs = y1, . . . , yu = xk, . . . , xp) and (bt, . . . , bs = y1, . . . , yu = xk, . . . , x1),

statement (iii) of Lemma 9 implies f(xp, x1) ∈ {bt, . . . , bs = y1, . . . , yu = xk, . . . , xp}

and f(x1, xp) ∈ {bt, . . . , bs = y1, . . . , yu = xk, . . . , x1}. Then, invariance implies

f(xp, x1) = f(x1, xp) ∈ {bt, . . . , bs = y1, . . . , yu = xk, . . . , xp} ∩ {bt, . . . , bs =

y1, . . . , yu = xk, . . . , x1} = {bt, . . . , bs = y1, . . . , yu = xk}. Moreover, according to

the path π∗, invariance and statement (i) of Lemma 9 imply f(xp, x1) = f(x1, xp) ∈

{x1, . . . , xp}. Therefore, f(xp, x1) = f(x1, xp) ∈ {bt, . . . , bs = y1, . . . , yu = xk} ∩

{x1, . . . , xp} = {xk}, and hence f(xp, x1) = f(x1, xp) = xk. Last, given P 1 = P 2 =

P i and P 1 = P 2 = P i, the tops-only property implies f(P 1, P 2) = f(xp, x1) = xk

and f(P 1, P 2) = f(x1, xp) = xk. Recall f(bt, P 2) = f(bt, x1) = bt and f(bt, P 2) =

f(bt, xp) = bt. Then, strategy-proofness implies f(P 1, P 2) = xkP 1bt = f(bt, P 2)

and f(P 1, P 2) = xkP 1bt = f(bt, P 2). This contradicts the hypothesis that P 1 and

P 1 are completely reversed. This completes the verification in the first situation.

The second and third case are symmetric. We focus on the verification on the

second case k = 1. Fixing bt ∈ C\{bs}, we have f(bt, bs) = bt. According to the

path (bs = y1, . . . , yu = x1, . . . , xp), by statement (ii) of Lemma 9, f(bt, bs) = bt

implies f(bt, xp) = bt and f(bt, x1) = bt. Furthermore, according to the path

(bt, . . . , bs = y1, . . . , yu = x1), by statement (iii) of Lemma 9, f(bt, xp) = bt implies

f(x1, xp) ∈ {bt, . . . , bs = y1, . . . , yu = x1}. Meanwhile, according to the path π∗,

statement (i) of Lemma 9 implies f(x1, xp) ∈ {x1, . . . , xp}. Therefore, f(x1, xp) ∈

{bt, . . . , bs = y1, . . . , yu = x1} ∩ {x1, . . . , xp} = {x1}, and hence, f(x1, xp) = x1.

Then, given P 1 = P i and P 2 = P i, the tops-only property and invariance imply

f(P 1, P 2) = f(xp, x1) = f(x1, xp) = x1. Recall f(bt, P 2) = f(bt, x1) = bt. Since

P i and P i are completely reversed, x1 = a1 is the bottom-ranked alternative in

P i, and hence btP 1x1. Consequently, voter 1 will manipulate at (P 1, P 2), i.e.,

f(bt, P 2) = btP 1x1 = f(P 1, P 2). This completes the verification in the second

situation, and hence proves the lemma. �
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According to the path π∗, by statement (i) of Lemma 9, we fix f(x1, xp) =

f(xp, x1) = xk̄ for some 1 ≤ k̄ ≤ p. The next lemma completely characterizes f .

Lemma 13 According to the tree GA
∼, we have f(y, z) = f(z, y) = Proj

(
xk̄, 〈y, z|GA

∼〉
)

for all y, z ∈ A.

Proof: We first consider the path π∗ = (x1, . . . , xp). Clearly, statement (iii) of

Lemma 10 implies f(xs, xt) = f(xt, xs) = xmed(s,t,k̄) = Proj
(
xk̄, 〈xs, xt|GA

∼〉
)

for all

1 ≤ s, t ≤ p.

Claim 1: Given y /∈ π∗, we have f(y, xk̄) = f(xk̄, y) = xk̄ = Proj
(
xk̄, 〈xk̄, y|GA

∼〉
)
.

We focus on showing f(y, xk̄) = xk̄. By a symmetric proof, one would imme-

diately conclude that f(xk̄, y) = xk̄. First, let 〈xk̄, y|GA
∼〉 = (y1, . . . , yu) be the

unique path connecting xk̄ and y in the tree GA
∼. We first show f(y2, y1) = y1.

If y2 ∈ π∗, we have y2 = xk for some 1 ≤ k < k̄ or k̄ < k ≤ p, and hence

f(y2, y1) = f(xk, xk̄) = xk̄ = y1. Next, assume y2 /∈ π∗. Since y1 ∼ y2, statement

(i) of Lemma 9 implies f(y2, y1) ∈ {y1, y2}. Suppose f(y2, y1) = y2. Conse-

quently, according to the paths (y1 = xk̄, . . . , x1) and (y1 = xk̄, . . . , xp), statement

(ii) of Lemma 9 implies f(y2, x1) = y2 and f(y2, xp) = y2. Meanwhile, given

P 1 = P i and P 1 = P i, since f(P 1, x1) = f(xp, x1) = xk̄ = y1 and f(P 1, xp) =

f(x1, xp) = xk̄ = y1, strategy-proofness implies f(P 1, x1) = y1P 1y2 = f(y2, x1)

and f(P 1, xp) = y1P 1y2 = f(y2, xp). This contradicts the hypothesis that P 1 and

P 1 are completely reversed. Therefore, f(y2, y1) = y1. Then, according to the

path (y2, . . . , yu), statement (ii) of Lemma 9 implies f(y, xk̄) = f(yu, y1) = y1 =

xk̄ = Proj
(
xk̄, 〈xk̄, y|GA

∼〉
)
. This completes the verification of the claim.

Henceforth, we fix arbitrary y, z ∈ A and let 〈y, z|GA
∼〉 = (y1, . . . , yu). There

are three situations: (1) Proj
(
xk̄, 〈y, z|GA

∼〉
)

= y, (2) Proj
(
xk̄, 〈y, z|GA

∼〉
)

= z and

(3) Proj
(
xk̄, 〈y, z|GA

∼〉
)

= yl for some 1 < l < u. In each situation, we show

f(y, z) = f(z, y) = Proj
(
xk̄, 〈y, z|GA

∼〉
)
. Note that the first two situations are

symmetric, and we hence focus on situation (1).

Claim 2: In situation (1), f(y, z) = f(z, y) = y = Proj
(
xk̄, 〈y, z|GA

∼〉
)
.
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If y = xk̄, this claim is implied by Claim 1. Next, assume y 6= xk̄. Since

Proj
(
xk̄, 〈y, z|GA

∼〉
)

= y, we can construct a path π = (z = yu, . . . , y1 = y =

z1, . . . , zv−1, zv = xk̄), where v ≥ 2. By Claim 1, we first have f(zv, zv−1) =

f(zv−1, zv) = zv. Then, according to the path π, by statements (iii) and (iv)

of Lemma 1, f(zv, zv−1) = zv implies f(y, z) = y and f(zv−1, zv) = zv implies

f(z, y) = y. Therefore, we have f(y, z) = f(z, y) = y = Proj
(
xk̄, 〈y, z|GA

∼〉
)
. This

completes the verification of the claim.

Claim 3: In situation (3), f(y, z) = f(z, y) = yl = Proj
(
xk̄, 〈y, z|GA

∼〉
)
.

First, Let (z1, . . . , zq) denote the unique path connecting xk̄ and yl in GA
∼, which

may be a null path if xk̄ = yl. We focus on showing f(y, z) = yl. By the symmetric

argument, one would immediately conclude that f(z, y) = yl. First, according to

the path 〈y, z|GA
∼〉 = (y1, . . . , yu), statement (i) of Lemma 9 implies f(y, z) = yk

for some 1 ≤ k ≤ u. Suppose k 6= l. Thus, either 1 ≤ k < l or l < k ≤ u holds.

If 1 ≤ k < l, then according to the path π = (z = yu, . . . , yl = zq, . . . , z1 = xk̄).

by statement (ii) of Lemma 9, f(y, z) = yk /∈ π implies f(y, xk̄) = yk 6= xk̄, which

contradicts Claim 1. Symmetrically, if l < k ≤ u, according to the path π′ =

(y = y1, . . . , yl = zq, . . . , z1 = xk̄), by statement (ii) of Lemma 9, f(y, z) = yk /∈ π′

implies f(xk̄, z) = yk 6= xk̄, which contradicts Claim 1. Therefore, f(y, z) = yl =

Proj
(
xk̄, 〈y, z|GA

∼〉
)
. This completes the verification of the claim.

In conclusion, for all y, z ∈ A, f(y, z) = f(z, y) = Proj
(
xk̄, 〈y, z|GA

∼〉
)
. �

Lemma 14 Domain D is a semi-single-peaked domain on the tree GA
∼ w.r.t. xk̄.

Proof: Fixing an arbitrary preference Pi ∈ D, let r1(Pi) = x. First, given

a, b ∈ 〈x, xk̄|GA
∼〉, let a ∈ 〈x, b|GA

∼〉. By Lemma 13, given P1 = Pi, we have

f(P1, a) = Proj
(
xk̄, 〈x, a|GA

∼〉
)

= a and f(b, a) = Proj
(
xk̄, 〈b, a|GA

∼〉
)

= b. Then,

strategy-proofness implies aP1b, and we hence have aPib, which proves the first

condition of Definition 3. Last, given a /∈ 〈x, xk̄|GA
∼〉, let Proj

(
a, 〈x, xk̄|GA

∼〉
)

= a′.

Given P1 = Pi, we have f(P1, a) = Proj
(
xk̄, 〈x, a|GA

∼〉
)

= Proj
(
a, 〈x, xk̄|GA

∼〉
)

= a′

by Lemma 13, and f(a, a) = a by unanimity. Then, strategy-proofness implies
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a′P1a, and we hence have a′Pia, which confirms the second condition of Definition

3. Hence, D ⊆ DSSP(GA
∼, xk̄). This proves Statement (i) of the Theorem. �

Proof of Statement (ii): (Sufficiency) Let D be a rich (a, b)-semi-hybrid

domain on a tree T A. By Statement (i), to show that there exists no invariant,

tops-only and strategy-proof rule, we show that D is never semi-single-peaked.

Suppose by contradiction that D is semi-single-peaked, i.e., there exist a tree

T̃ A and a threshold x̄ such that D ⊆ DSSP(T̃ A, x̄). Immediately, since D is path-

connected, D ⊆ DSSP(T̃ A, x̄) implies GA
∼ = T̃ A. Meanwhile, since D is path-

connected and (a, b)-semi-hybrid on T A, it is also true that GAa⇀b

∼ = T Aa⇀b and

GAb⇀a

∼ = T Ab⇀a . Thus, according to both T̃ A and T A and their relations to

GA
∼, we can infer that T A and T̃ A induce the same subtrees on the subsets Aa⇀b

and Ab⇀a respectively, i.e., T̃ Aa⇀b = T Aa⇀b and T̃ Ab⇀a = T Ab⇀a .64 Furthermore,

since G〈a,b|T
A〉

∼ is a connected subgraph and GA
∼ = T̃ A, it must be the case that

G〈a,b|T
A〉

∼ = T̃ 〈a,b|T A〉 is a subtree nested in T̃ A. Thus, T̃ A is a union of the subtrees

T Aa⇀b , G〈a,b|T A〉∼ and T Ab⇀a . Since GA
∼ = T̃ A is a tree, we have a unique path

〈a1, am|GA
∼〉 = (x1, . . . , xv) connecting a1 and am.

Claim 1: Alternative x̄ is included in 〈a1, am|GA
∼〉, and has at most two neighbors

in T̃ A.

Claim 2: If Aa⇀b 6= {a}, then a has a unique neighbor in the subtree T Aa⇀b .

Symmetrically, if Ab⇀a 6= {b}, then b has a unique neighbor in the subtree T Ab⇀a .

The verification of the two claims follows from Clarifications 1 and 3 in Ap-

pendix G respectively.

Henceforth, let x̄ = xk∗ for some 1 ≤ k∗ ≤ v, ā be the unique neighbor of a

in T Aa⇀b , provided Aa⇀b 6= {a}, and let b̄ be the unique neighbor of b in T Ab⇀a ,

provided Ab⇀a 6= {b}. There are four cases: (1) Aa⇀b 6= {a} and Ab⇀a 6= {b}, (2)

Aa⇀b = {a} and Ab⇀a 6= {b}, (3) Aa⇀b 6= {a} and Ab⇀a = {b}, and (4) Aa⇀b = {a}

and Ab⇀a = {b}. In each case, we will induce a contradiction.

64Note that Aa⇀b and Ab⇀a are two subsets identified according to T A. The notation T̃ Aa⇀b

(respectively, T̃ Ab⇀a

) represents a subgraph of T̃ A induced on the alternatives of Aa⇀b (respec-

tively, Ab⇀a).
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Let case (1) occur. Since D includes the completely reversed preferences P i

and P i, it must be the case that either a1 ∈ Aa⇀b\{a} and am ∈ Ab⇀a\{b}, or

am ∈ Aa⇀b\{a} and a1 ∈ Ab⇀a\{b} hold. We assume w.l.o.g. that a1 ∈ Aa⇀b\{a}

and am ∈ Ab⇀a\{b}. Then, we have a’s unique neighbor ā in T Aa⇀b and b’s

unique neighbor b̄ in T b⇀a by Claim 2. Moreover, since D is rich (a, b)-semi-

hybrid on T A, it must be the case that all ā, a, b and b̄ are included in the path

〈a1, am|GA
∼〉 = (x1, . . . , xv) such that a = xs and b = xt for some 1 < s < t < v,

ā = xs−1 and b̄ = xt+1. Since D is (a, b)-semi-hybrid on T A and semi-single-peaked

on T̃ A w.r.t. xk∗ , condition (3) of Definition 4 implies xk∗ /∈ {a, b}. Thus, we have

three situations s < k∗ < t, 1 ≤ k∗ < s and t < k∗ ≤ v. In the first situation,

we induce a statement that contradicts condition (2) of Definition 4, while in each

of the last two situations, we induce a statement that contradicts condition (3) of

Definition 4.

Claim 3: The following three statements hold:

(i) If s < k∗ < t, there exists a tree T̂ A such that xk∗ and b are two thresholds,

〈xk∗ , b|T̂ A〉 ⊂ 〈a, b|T A〉 and D ⊆ DSH(T̂ A, xk∗ , b).

(ii) If 1 ≤ k∗ < s, then D ⊆ DSSP(T̃ A, a).

(iii) If t < k∗ ≤ v, then D ⊆ DSSP(T̃ A, b).

The last two statements are symmetric, and we hence focus on verifying state-

ments (i) and (ii).

First, let s < k∗ < t. Thus, xk∗ and xk∗+1 are the exactly two neighbors of

xk∗ in T̃ A by Claim 1. According to the paths π = (xk∗−1, xk∗ , . . . , xt, xt+1) and

π′ = (xk∗ , . . . , xt) in GA
∼ = T̃ A, we identify the following subset of alternatives:

M̃ = {x ∈ A : Proj(x, π) ∈ π′}. Clearly, xk∗ , xk∗+1, b ∈ M̃ . Then, we construct

a line (z1, z2, . . . , zη) over M̃ , where z1 = xk∗ , z2 = xk∗+1 and zη = b. Moreover,

recall that T̃ A is a union of the subtrees T Aa⇀b , G〈a,b|T A〉∼ and T Ab⇀a . Then, the

definition of M̃ implies M̃ ⊂ 〈a, b|T A〉. Next, since (xk∗ , xk∗+1) is an edge in

T̃ A, xk∗ and xk∗+1 are naturally two thresholds in T̃ A. We then identify the

subset Ãxk∗⇀xk∗+1 =
{
x ∈ A : xk∗ ∈ 〈x, xk∗+1|T̃ A〉

}
and the subtree T̃ Ã

xk∗⇀xk∗+1
.
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Last, we construct a new tree T̂ A by combining the subtree T̃ Ã
xk∗⇀xk∗+1

, the line

(z1, z2, . . . , zη) and subtree T Ab⇀a .65 Clearly, z1 and zη are two thresholds of T̂ A.

Let Âz1⇀zη =
{
x ∈ A : z1 ∈ 〈x, zη|T̂ A〉

}
and Âzη⇀z1 =

{
x ∈ A : zη ∈ 〈x, z1|T̂ A〉

}
.

Note that Âz1⇀zη = Ãxk∗⇀xk∗+1 , T̂ Âz1⇀zη = T̃ Ã
xk∗⇀xk∗+1

, 〈z1, zη|T̂ A〉 = M̃ ⊂

〈a, b|T A〉, Âzη⇀z1 = Ab⇀a and T̂ Âzη⇀z1 = T Ab⇀a .

Now, we show D ⊆ DSH(T̂ A, z1, zη). Fix an arbitrary preference Pi ∈ D. We

know that either r1(Pi) ∈ Âz1⇀zη\{z1}, or r1(Pi) ∈ Âzη⇀z1\{zη}, or r1(Pi) ∈

〈z1, zη|T̂ A〉 holds. First, let r1(Pi) ∈ Âz1⇀zη\{z1}. It is clear that r1(Pi) /∈

Âzη⇀z1\{zη} = Ab⇀a\{b}. Since Pi is semi-single-peaked on T̃ A w.r.t. xk∗ =

z1 by the contradictory hypothesis, it is true that Pi is semi-single-peaked on

T̃ Ã
xk∗⇀xk∗+1

= T̂ Âz1⇀zη w.r.t. z1, and z1Piz for all z ∈ A\Ãxk∗⇀xk∗+1 = A\Âz1⇀zη

which further implies maxPi
(
〈z1, zη|T̂ A〉

)
= z1. Moreover, since Pi is (a, b)-semi-

hybrid on T A, r1(Pi) /∈ Ab⇀a\{b} implies maxPi
(
Âzη⇀z1

)
= maxPi(Ab⇀a) = b =

zη. Therefore, Pi is (z1, zη)-semi-hybrid on T̂ A. Second, let r1(Pi) ∈ Âzη⇀z1\{zη}.

Since Pi is (a, b)-semi-hybrid on T A, r1(Pi) ∈ Âzη⇀z1\{zη} = Ab⇀a\{b} implies

that Pi is semi-single-peaked on T Ab⇀a = T̂ Ãzη⇀z1 w.r.t. b = zη, and zηPiz for

all z ∈ A\Ab⇀a = A\Âzη⇀z1 which further implies maxPi
(
〈z1, zη|T̂ A〉

)
= zη.

Moreover, recall that T̃ A is a union of the subtrees T Aa⇀b , G〈a,b|T A〉∼ and T Ab⇀a ,

and z1 = xk∗ ∈ 〈a, b|T̃ A〉. Then, r1(Pi) ∈ Ab⇀a\{b} ⊂ Ãxk∗+1⇀xk∗ implies

z1 = xk∗ ∈ 〈x, r1(Pi)|T̃ A〉 for all x ∈ Ãxk∗⇀xk∗+1 . Consequently, since Pi is

semi-single-peaked on T̃ A w.r.t. xk∗ by the contradictory hypothesis, we have

maxPi
(
Âz1⇀zη

)
= maxPi

(
Ãxk∗⇀xk∗+1

)
= xk∗ = z1. Therefore, Pi is (z1, zη)-semi-

hybrid on T̂ A. Last, let r1(Pi) ∈ 〈z1, zη|T̂ A〉. Since Pi is (a, b)-semi-hybrid on

T A, r1(Pi) ∈ 〈z1, zη|T̂ A〉 ⊂ 〈a, b|T 〉 implies maxPi(Âzη⇀z1) = maxPi(Ab⇀a) = b =

zη. Meanwhile, r1(Pi) ∈ 〈z1, zη|T̂ A〉 ⊂ {xk∗} ∪ Ãxk∗+1⇀xk∗ implies z1 = xk∗ ∈

〈x, r1(Pi)|T̃ A〉 for all x ∈ Ãxk∗⇀xk∗+1 . Consequently, since Pi is semi-single-peaked

on T̃ A w.r.t. xk∗ by the contradictory hypothesis, we have maxPi
(
Âz1⇀zη

)
=

maxPi
(
Ãxk∗⇀xk∗+1

)
= xk∗ = z1. Therefore, Pi is (z1, zη)-semi-hybrid on T̂ A.

Overall, we have D ⊆ DSH(T̂ A, z1, zη) = DSH(T̂ A, xk∗ , b). This completes the

65It is easy to show that A = Ãxk∗⇀xk∗+1 ∪ {z1, z2, . . . , zη} ∪ Ab⇀a, Ãxk∗⇀xk∗+1 ∩

{z1, z2, . . . , zη} = {z1}, {z1, z2, . . . , zη} ∩Ab⇀a = {zη} and Ãxk∗⇀xk∗+1 ∩Ab⇀a = ∅.
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verification of statement (i).

Second, let 1 ≤ k∗ < s. Recall that ā is the unique neighbor of a in the

subtree T Aa⇀b = GAa⇀b

∼ . Since (ā, a) is an edge in GA
∼ = T̃ A, ā and a are naturally

two thresholds in T̃ A. We then define Ãā⇀a =
{
x ∈ A : ā ∈ 〈x, a|T̃ A〉

}
and

Ãa⇀ā =
{
x ∈ A : a ∈ 〈x, ā|T̃ A〉

}
. According to T A and T̃ A and their relations

to GA
∼, it is true that Aa⇀b = Ãā⇀a ∪ {a} and T Aa⇀b = GAa⇀b

∼ = GÃā⇀a∪{a}
∼ =

T̃ Ãā⇀a∪{a}. We show D ⊆ DSSP(T̃ A, a). Fix an arbitrary preference Pi ∈ D.

We know that either r1(Pi) ∈ Ãā⇀a ∪ {a}, or r1(Pi) ∈ Ãa⇀ā\{a} holds. First,

let r1(Pi) ∈ Ãā⇀a ∪ {a}. Since Pi is (a, b)-semi-hybrid on T A, we know that Pi is

semi-single-peaked on T Aa⇀b = T̃ Ãā⇀a∪{a} w.r.t. a, and aPix for all x ∈ A\Aa⇀b =

Ãa⇀ā\{a}. This implies that Pi is semi-single-peaked on T̃ A w.r.t. a. Second, let

r1(Pi) ∈ Ãa⇀ā\{a}. Since 1 ≤ k∗ < s, we know a = xs ∈ 〈xk∗ , r1(Pi)|T̃ A〉.

Since Pi is semi-single-peaked on T̃ A w.r.t. xk∗ by the contradictory hypothesis,

a ∈ 〈xk∗ , r1(Pi)|T̃ A〉 implies that Pi is also semi-single-peaked on T̃ A w.r.t. a.

Overall, D ⊆ DSSP(T̃ A, a). This completes the verification of statement (ii), and

proves the claim.

In conclusion, we induce a contradiction for case (1).

Next, let case (2): Aa⇀b = {a} and Ab⇀a 6= {b} occur. Since D contains the

completely reversed preferences P i and P i, either a1 ∈ Ab⇀a\{b} or am ∈ Ab⇀a\{b}

holds. We assume w.l.o.g. that am ∈ Ab⇀a\{b}. Then, it must be the case that

a1 ∈ 〈a, b|T A〉\{b}. Recall the path 〈a1, am|GA
∼〉 = (x1, . . . , xv). Since D is (a, b)-

semi-hybrid on T A, it is true that b is included in 〈a1, am|GA
∼〉, i.e., b = xt for some

1 < t < v.66 Meanwhile, since D is semi-single-peaked on T̃ A w.r.t. xk∗ , condition

(3) of Definition 4 implies t 6= k∗. Then, one of the following three situations must

hold: 1 < k∗ < t, t < k∗ ≤ v and k∗ = 1. In fact, by the proof of Claim 3, we

can induce two statements that respectively contradicts conditions (2) and (3) of

Definition 4 in the first two situations here. Hence, we focus on the third situation

and induce a statement that contradicts condition (2) of Definition 4.

66It is not clear whether a is included in the path 〈a1, am|GA∼〉.
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Claim 4: If k∗ = 1, there exists a tree T̂ A such that x2 and b are two thresholds,

〈x2, b|T̂ A〉 ⊂ 〈a, b|T A〉, and D ⊆ DSH(T̂ A, x2, b).

We first show a1 ∈ Ext(GA
∼). Suppose by contradiction x1 = a1 /∈ Ext(GA

∼).

Since x1 ∼ x2, x1 /∈ Ext(GA
∼) implies that there exists x ∈ A such that x 6= x2

and x ∼ a1. Since GA
∼ = T̃ A is a tree, x must not be included in the path

〈a1, am|GA
∼〉 = 〈a1, am|T̃ A〉. Hence, (x, x1, . . . , xv) is the unique path in T̃ A that

connects x and am. Consequently, the contradictory hypothesis D ⊆ DSSP(T̃ A, x1)

implies x1Pix for all Pi ∈ Dam , which contradicts the fact that x1 = a1 is bottom

ranked in the preference P i ∈ Dam . Therefore, a1 ∈ Ext(GA
∼). Then, x2 is unique

neighbor of a1 in GA
∼ = T̃ A. Consequently, extreme-vertex symmetry and the

contradictory hypothesis D ⊆ DSSP(T̃ A, x1) together imply D ⊆ DSSP(T̃ A, x2).67

Now, we construct a line (z1, z2 . . . , zη) over the alternatives of 〈a, b|T A〉 such

that z1 = a1, z2 = x2 and zη = b. Furthermore, we construct a tree T̂ A by combin-

ing the line (z1, z2, . . . , zη) and the subtree T Ab⇀a . Clearly, z2 and zη are two thresh-

olds of T̂ A and 〈z2, zη|T̂ A〉 ⊂ 〈a, b|T A〉. Let Âz2⇀zη = {x ∈ A : z2 ∈ 〈x, zη|T̂ A〉}

and Âzη⇀z2 = {x ∈ A : zη ∈ 〈x, z2|T̂ A〉}. It is evident that Âz2⇀zη = {a1, z2},

Âzη⇀z2 = Ab⇀a and T̂ Âzη⇀z2 = T Ab⇀a . We last show D ⊆ DSH(T̂ A, z2, zη). Fix an

arbitrary preference Pi ∈ D. First, let r1(Pi) ∈ Âz2⇀zη\{z2}. Then, r1(Pi) = a1 ∈

〈a, b|T A〉, Pi ∈ DSSP(T̃ A, z2) implies r2(Pi) = z2, and Pi ∈ DSH(T A, a, b) implies

maxPi(Âzη⇀z2) = maxPi(Ab⇀a) = b. Therefore, Pi ∈ DSH(T̂ A, z2, zη). Second, let

r1(Pi) ∈ Âzη⇀z2\{zη}. Then, r1(Pi) 6= a1, r1(Pi) ∈ Ab⇀a\{b}, Pi ∈ DSSP(T̃ A, z2)

implies z2Pia1 and hence maxPi(Âz2⇀zη) = z2, and Pi ∈ DSH(T A, a, b) implies that

Pi is semi-single-peaked on T Ab⇀a = T̂ Azη⇀z2 w.r.t. b = zη and maxPi(〈a, b|T A〉) =

maxPi({z1, z2, . . . , zη}) = b = zη which implies maxPi(〈z2, zη|T̂ A〉) = zη. There-

fore, Pi ∈ DSH(T̂ A, z2, zη). Last, let r1(Pi) ∈ 〈z2, zη|T̂ A〉. Then, r1(Pi) 6= a1,

r1(Pi) ∈ 〈a, b|T A〉, Pi ∈ DSSP(T̃ A, z2) implies z2Pia1 and hence maxPi(Âz2⇀b) = z2,

and Pi ∈ DSH(T A, a, b) implies maxPi(Âzη⇀z2) = maxPi(Ab⇀a) = b = zη. There-

fore, Pi ∈ DSH(T̂ A, z2, zη). Overall, D ⊆ DSH(T̂ A, z2, zη) = DSH(T̂ A, x2, b). This

completes the verification of the claim.

67The detailed verification follows from Clarification 2 in Appendix G.
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In conclusion, we induce a contradiction for case (2).

Symmetrically, we can induce a contradiction for case (3).

Last, let case (4): Aa⇀b = {a} and Ab⇀a = {b} occur. Thus, 〈a, b|T A〉 is a line

which contains all alternatives of A. Recall the path 〈a1, am|GA
∼〉 = 〈a1, am|T̃ A〉 =

(x1, . . . , xv) and the contradictory hypothesis D ⊆ DSSP(T̃ A, xk∗).

By the proof of statement (iii) of Claim 4, we infer that xk∗ 6= a1 and anal-

ogously xk∗ 6= am. Hence, 1 < k∗ < v, which by Claim 1 implies that xk∗−1

and xk∗+1 are the exactly two neighbors of xk∗ in GA
∼ = T̃ A. Since (xk∗ , xk∗+1)

is an edge in T̃ A, xk∗ and xk∗+1 are two thresholds in T̃ A. Let Ãxk∗⇀xk∗+1 ={
x ∈ A : xk∗ ∈ 〈x, xk∗+1|T̃ A〉

}
and Ãxk∗+1⇀xk∗ =

{
x ∈ A : xk∗+1 ∈ 〈x, xk∗|T̃ A〉

}
.

We construct a line (z1, z2, . . . , zη) over {xk∗} ∪ Ãxk∗+1⇀xk∗ where z1 = xk∗ and

z2 = xk∗+1. Furthermore, we construct a new tree T̂ A by combining the sub-

tree T̃ Ã
xk∗⇀xk∗+1

and the line (z1, z2, . . . , zη). Clearly, z1 and zη are two thresh-

olds in T̂ A. Let Âz1⇀zη =
{
x ∈ A : z1 ∈ 〈x, zη|T̂ A〉

}
and Âzη⇀z1 =

{
x ∈

A : zη ∈ 〈x, z1|T̂ A〉
}

. Clearly, Âz1⇀zη = Ãxk∗⇀xk∗+1 , T̂ Âz1⇀zη = T̃ Ã
xk∗⇀xk∗+1

,

〈z1, zη|T̂ A〉 = {xk∗} ∪ Ãxk∗+1⇀xk∗ ⊂ A = 〈a, b|T A〉 and Âzη⇀z1 = {zη}. Then, we

induce D ⊆ DSH(T̂ A, z1, zη), which contradicts condition (2) of Definition 4.

Fix Pi ∈ D. Clearly, Âzη⇀z1 = {zη} implies maxPi(Âzη⇀z1) = zη and Âzη⇀z1\{zη} =

∅. First, let r1(Pi) ∈ Âz1⇀zη\{z1}. Thus, r1(Pi) ∈ Ãxk∗⇀xk∗+1\{xk∗}, which further

implies xk∗ ∈ 〈x, r1(Pi)|T̃ A〉 for all x ∈ Ãxk∗+1⇀xk∗ . Since Pi ∈ DSSP(T̃ A, xk∗) by

the contradictory hypothesis, we know that Pi is semi-single-peaked on the sub-

tree T̃ Ã
xk∗⇀xk∗+1

= T̂ Âz1⇀zη w.r.t. xk∗ = z1, and xk∗Pix for all x ∈ Ãxk∗+1⇀xk∗ =

{z2, . . . , zη} which implies z1 = maxPi
(
〈z1, zη|T̂ A〉

)
. Therefore, Pi ∈ DSH(T̂ A, z1, zη).

Second, let r1(Pi) ∈ 〈z1, zη|T̂ A〉. Thus, r1(Pi) ∈ {xk∗} ∪ Ãxk∗+1⇀xk∗ , which fur-

ther implies xk∗ ∈ 〈x, r1(Pi)|T̃ A〉 for all x ∈ Ãxk∗⇀xk∗+1 . Then, the contradic-

tory hypothesis Pi ∈ DSSP(T̃ A, xk∗) implies z1 = xk∗ = maxPi
(
Ãxk∗⇀xk∗+1

)
=

maxPi
(
Âz1⇀zη

)
. Therefore, Pi ∈ DSH(T̂ A, z1, zη). Overall, we have shown D ⊆

DSH(T̂ A, z1, zη), as required.

In conclusion, we have induced a contradiction for each one of the four cases.

This implies that the contradictory hypothesis that D is semi-single-peaked cannot
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hold. Hence, D is never semi-single-peaked, as required. This completes the

verification of the sufficiency part of Statement (ii).

(Necessity) Now, we turn to the verification of the necessity part of Statement

(ii). Let D be a rich domain, and admit no invariant, tops-only and strategy-proof

rule. Since D is a rich non-dictatorial domain, Corollary 1 implies that D satisfies

the unique seconds property. Hence, we force on showing that D is semi-hybrid.

The proof consists of five steps: (1) we construct a line over all alternatives

that are involved in the path(s) connecting a1 and am in the adjacency graph

GA
∼ (see all proofs before Lemma 15), fix an arbitrary two-voter tops-only and

strategy-proof rule f : D2 → A, and partially characterize f according to the

constructed line (see Lemma 15), (2) we construct a tree T Af using GA
∼ and the

partial characterization of f in the first step (see Lemmas 16, 17 and 18), (3)

we completely characterize f using the constructed tree T Af (see Lemmas 19 and

20) and elicit preference restrictions via strategy-proofness of f , (4) we apply the

second and third steps to all two-voter tops-only and strategy-proof rules, elicit

all preference restrictions via strategy-proofness of all rules (see Observation 3),

identify two particular rules and specify their relations to other rules and to each

other (see Lemmas 22 and 23), and (5) we aggregate the trees associated to the

two identified rules to formulate a tree T A, identify two thresholds a and b in T A,

and aggregate the elicited preference restrictions from these two rules to show that

D is semi-hybrid on T A w.r.t. a and b (see Lemma 24).

Consider the set of paths connecting a1 and am in GA
∼, denoted by Π(a1, am).

SinceGA
∼ is a connected graph, Π(a1, am) 6= ∅. There are two cases: |Π(a1, am)| = 1

and |Π(a1, am)| > 1.

First, assume |Π(a1, am)| = 1. Thus, let L = (x1, . . . , xv) be the unique path

in GA
∼ that connects a1 and am.

Next, assume |Π(a1, am)| > 1. Since all paths of Π(a1, am) start from a1 and

end at am, we can identify two distinct alternatives x, y ∈ A such that the following

four conditions are satisfied: (i) x, y ∈ π for all π ∈ Π(a1, am), (ii) for all π ∈

Π(a1, am), x ∈ 〈a1, y|π〉 and y ∈ 〈x, am|π〉, (iii) for all distinct π, π′ ∈ Π(a1, am),
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〈a1, x|π〉 = 〈a1, x|π′〉 and 〈y, am|π〉 = 〈y, am|π′〉, and (iv) there exists a path

π ∈ Π(a1, am) such that |〈x, y|π〉| ≥ 3. We collect all alternatives that are involved

in the paths of Π(a1, am), i.e., let Â = {a ∈ A : a ∈ π for some π ∈ Π(a1, am)}.

Note that Â may not include all alternatives of A, and all paths of Π(a1, am) are

included in GÂ
∼. More important, we make three important observations on the

adjacency graph GÂ
∼: (i) GÂ

∼ is a connected graph, (ii) there exists a unique path,

denoted πL, in GÂ
∼ connecting a1 and x, and there exists a unique path, denoted

πR, in GÂ
∼ connecting y and am, and (iii) the set O = {a ∈ Â : a /∈ πL∪πR}∪{x, y}

contains at least three alternatives, GO∼ is a connected graph and has no extreme

vertex (see the first diagram of Figure 14). Furthermore, we arrange all alternatives

of O on a line, denoted (x, . . . , y), and combine πL, (x, . . . , y) and πR to construct

a line L = (x1, . . . , xs, . . . , xt, . . . , xv), where v = |Â|, 1 ≤ s < t ≤ v, t − s > 1,

x1 = a1, xv = am, xs = x, xt = y, (x1, . . . , xs) = πL, (xs, . . . , xt) = (x, . . . , y) and

(xt, . . . , xv) = πR (see the second diagram of Figure 14).68

GO∼• • • •
a1 x y am︸ ︷︷ ︸

πL
︸ ︷︷ ︸

πR︸ ︷︷ ︸
GÂ
∼

• • • •
a1 = x1 x = xs xt = y xv = am︸ ︷︷ ︸

πL
︸ ︷︷ ︸

(x, . . . , y)
︸ ︷︷ ︸

πR︸ ︷︷ ︸
L

•
xk

•
xk

Figure 13: Adjacency graph GÂ
∼ and the constructed line L

Note that the set of two-voter tops-only and strategy-proof rules defined on D

is not empty as the dictatorships are always included. We fix an arbitrary two-

68We intentionally make the notation of the constructed line L in the case |Π(a1, am)| > 1

identical to the line L in the case |Π(a1, am)| = 1. This helps us unify the henceforth proof

for both cases, and does not create any loss of generality. Note that the line L in the case

|Π(a1, am)| = 1 is also a path in GA∼, while the constructed line L in the case |Π(a1, am)| > 1

may not be a path in GA∼. Note that the line L is independent of the rule f .
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voter tops-only and strategy-proof rule f : D2 → A. Since D does not admit an

invariant, tops-only and strategy-proof rule, we have f(P 1, P 2) 6= f(P 1, P 2). In

the case |Π(a1, am)| = 1, by statement (i) of Lemma 9, we know f(x1, xv) = xk

and f(xv, x1) = xk for some distinct 1 ≤ k, k ≤ v. Since f(P 1, P 2) 6= f(P 1, P 2),

it is clear that k 6= k. We assume w.l.o.g. that k < k, which then by statement

(i) of Lemma 10 implies that voter 1 dictates on 〈xk, xk|L〉.

In the case |Π(a1, am)| > 1, since GO∼ is a connected graph and has no extreme

vertex, statement (i) of Lemma 4 implies that f behaves like a dictatorship on

O = 〈xs, xt|L〉. We assume that voter 1 dictates on 〈xs, xt|L〉, i.e., f(xk, xk′) = xk

for all s ≤ k, k′ ≤ t.69 Furthermore, we show f(x1, xv) = xk for some 1 ≤ k ≤ s and

f(xv, x1) = xk for some t ≤ k ≤ v. By voter 1’s dictatorship on 〈xs, xt|L〉, we have

f(xs, xt) = xs and f(xt, xs) = xt. Then, according to the paths (xt, . . . , xv) and

(x1, . . . , xs), statement (ii) of Lemma 9 implies f(xs, xv) = xs and f(xt, x1) = xt.

Moreover, according to the paths (x1, . . . , xs) and (xt, . . . , xv), by statement (iii)

of Lemma 9, f(xs, xv) = xs implies f(x1, xv) = xk for some 1 ≤ k ≤ s, and

f(xt, x1) = xt implies f(xv, x1) = xk for some t ≤ k ≤ v.

The next lemma provide a unified characterization of f on the line L in both

cases of |Π(a1, am)| = 1 and |Π(a1, am)| > 1.

Lemma 15 According to the line L, for all 1 ≤ k, k′ ≤ v, we have

f(xk, xk′) =


xk if k ≤ k ≤ k,

xmed(k,k′,k) if k < k,

xmed(k,k′,k) if k > k.

Proof: If |Π(a1, am)| = 1, the lemma follows exactly from statement (i) of

Lemma 10. Henceforth, we assume |Π(a1, am)| > 1.

Given an arbitrary path π ∈ Π(a1, am), since f(a1, am) = f(x1, xv) = xk ∈

〈a1, x|π〉 and f(am, a1) = f(xv, x1) = xk ∈ 〈y, am|π〉, it is true that statement (i)

of Lemma 10 holds on π. To prove the lemma, we fix an arbitrary profile (xk, xk′).

69In the case |Π(a1, am)| = 1, we assume that voter 1 dictates on 〈xk, xk|L〉. Here, we also

assume that voter 1 dictates on 〈xs, xt|L〉. This helps us unify the henceforth proof for both

cases, and does not create any loss of generality.
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First, let k ≤ k ≤ k. If k ≤ k′ ≤ k, then by voter 1’s dictatorship on

〈xk, xk′|L〉, we have f(xk, xk′) = xk. If k′ < k or k′ > k, we know that there exists

a path π ∈ Π(a1, am) which includes both xk and xk′ . Clearly, xk ∈ 〈xk, xk|π〉.

Then, statement (i) of Lemma 10 on the path π implies f(xk, xk′) = xk. Overall,

f(xk, xk′) = xk, as required.

Second, let k < k. Then, there exists a path π ∈ Π(a1, am) which includes

both xk and xk′ . Clearly, xk ∈ 〈x1, xk|π〉. Then, statement (i) of Lemma 10 the

path π implies f(xk, xk′) = xmed(k,k′,k), as required.

Last, let k > k. Then, there exists a path π ∈ Π(a1, am) which includes both

xk and xk′ . Clearly, xk ∈ 〈xk, xv|π〉. Then, statement (i) of Lemma 10 the path π

implies f(xk, xk′) = xmed(k,k′,k), as required. This proves the lemma. �

Lemma 16 Fixing an alternative z ∈ A and a path π = (z1, . . . , zs−1, zs) in GA
∼,

the following two statements hold:

(i) If z1 = z, zs−1 = xk−1 and zs = xk, then π is the unique path in GA
∼

connecting z and xk.

(ii) If z1 = z, zs−1 = xk+1 and zs = xk, then π is the unique path in GA
∼

connecting z and xk.

Proof: The two statements are symmetric, and we hence focus on the verifi-

cation of the first one. Suppose that there exists another path π′ = (y1, . . . , yt)

in GA
∼ connecting z and xk. Then, we can identify a cycle C in GA

∼ such that (i)

C ⊆ π ∪ π′, (ii) π ∩ C 6= ∅ and (iii) every edge in C is an edge in π or π′. Clearly,

by Observation 1, f behaves like a dictatorship on C. Given π∩C 6= ∅, we identify

the alternative in π ∩ C that has the maximum index, i.e., zk∗ ∈ π ∩ C and zk /∈ C

for all k > k∗. We consider two cases: k∗ = s and k∗ < s.

In the first case, we first show that xk−1 is also included in C. On the one

hand, since xk = zk∗ ∈ C, xk has two distinct neighbors in C. On the other hand,

note that xk has a unique neighbor in π, which is xk−1, and a unique neighbor in

π′. Moreover, since every edge in C is an edge in π or π′, it must be true that
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xk−1 is included in C. Recall that voter 1 dictates on 〈xk, xk|L〉 by Lemma 15.

Note that both C and G
〈xk,xk|L〉∼ are connected graphs and each has at least two

alternatives. Then, by xk ∈ C∩〈xk, xk|L〉, the proof of Lemma 2 implies that voter

1 dictates on C∪〈xk, xk|L〉. Thus, we have f(xk−1, xk) = xk−1 6= xmed(k−1,k,k) which

contradicts Lemma 15. In the second case, we have the path (zk∗ , . . . , zs−1, zs)

which connects the cycle C and the connected graph G
〈xk,xk|L〉∼ . Since voter 1

dictates on 〈xk, xk|L〉 by Lemma 15, the proof of Lemma 2 implies that voter 1

dictates on {zk∗ , . . . , zs−1, zs}. Thus, we have f(xk−1, xk) = f(zs−1, zs) = zs−1 =

xk−1 6= xmed(k−1,k,k), which contradicts Lemma 15. Therefore, π is the unique path

in GA
∼ connecting z and xk. �

We construct the following five sets:

B =

z ∈ A :
there exists a path (z1, . . . , zs−1, zs) in GA

∼

connecting z and xk such that zs−1 = xk−1

 ,

B =

z ∈ A :
there exists a path (z1, . . . , zs−1, zs) in GA

∼

connecting z and xk such that zs−1 = xk+1

 ,

A = B ∪ {xk}, A = B ∪ {xk} and M =
{
z ∈ A : z /∈ B ∪B

}
.

Lemma 17 We have GA
∼ = GA

∼ ∪GM
∼ ∪GA

∼.

Proof: First, it is clear that A = A ∪M ∪ A and EA∼ ⊇ EA∼ ∪ EM∼ ∪ EA∼ . To

complete the proof, we show EA∼ = EA∼ ∪ EM∼ ∪ EA∼ . It suffices to show that in GA
∼,

no alternative of B is adjacent to any alternative not in A, and no alternative of

B is adjacent to any alternative not in A.

Given z ∈ B and y /∈ A, we show (z, y) /∈ EA∼ . Suppose not, i.e., z ∼ y. By

Lemma 16, let (z1, . . . , zs−1, zs) denote the unique path in GA
∼ that connects z and

xk. Thus, z1, . . . , zs−1 ∈ B and hence y /∈ {z1, . . . , zs−1}. Clearly, y /∈ A implies

y 6= xk = zs. Therefore, we can construct a path (y, z1, . . . , zs−1, zs) in GA
∼ that

connects y and xk. Since zs−1 = xk−1, the definition of B implies y ∈ B ⊂ A.

Contradiction! Therefore, (z, y) /∈ EA∼ . Symmetrically, given z′ ∈ B and y′ /∈ A,

we have (z′, y′) /∈ EA∼ . �
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Lemma 18 Adjacency graphs GA
∼ and GA

∼ are two trees. Moreover, we have
[
A 6=

{xk}
]
⇒
[
xk ∈ Ext

(
GA
∼
)]

and
[
A 6= {xk}

]
⇒
[
xk ∈ Ext

(
GA
∼
)]

.

Proof: If A = {xk} is a singleton set, and vacuously GA
∼ is a tree. Next, assume

A 6= {xk}. Given an arbitrary alternative z ∈ B, by statement (i) of Lemma 16,

we have a unique path (z1, . . . , zs−1, zs) in GA
∼ connecting z and xk. Moreover, we

know {z1, . . . , zs−1 = xk−1} ⊆ B by the definition of B. Therefore, there exists a

unique path in GA
∼ connecting z and xk. Hence, GA

∼ is a tree. Furthermore, given

A 6= {xk}, we notice that xk−1 ∼ xk which implies xk−1 ∈ B, and furthermore by

the definition of B and statement (i) of Lemma 16, there exists no z ∈ B\{xk−1}

such that z ∼ xk. Therefore, xk ∈ Ext
(
GA
∼
)
. Symmetrically, GA

∼ is also a tree and[
A 6= {xk}

]
⇒
[
xk ∈ Ext

(
GA
∼
)]

. �

Now, we arrange all alternatives of M on a line, denoted (xk, . . . , xk). Then,

by Lemmas 17 and 18, we combine the tree GA
∼, the line (xk, . . . , xk) and the tree

GA
∼ to construct a tree T Af . Clearly, T Af = GA

∼, 〈xk, xk|T Af 〉 = (xk, . . . , xk) and

T Af = GA
∼. By construction, xk and xk are two thresholds in T Af . Hence, we have

Axk⇀xk = A and Axk⇀xk = A. In the rest of proof, for notational convenience, we

use the notation A and A, instead of Axk⇀xk and Axk⇀xk .

The next lemma shows that voter 1 dictates on M = 〈xk, xk|T Af 〉.

Lemma 19 We have f(z, z′) = z for all z, z′ ∈ 〈xk, xk|T Af 〉.

Proof: We first show 〈xk, xk|L〉 ⊆M . Suppose that there exists z ∈ 〈xk, xk|L〉∩

B. By definition, xk−1 /∈ 〈xk, xk|L〉 and z 6= xk. On the one hand, by the def-

inition of B, statement (i) of Lemma 16 and Lemma 17, we have a path π =

(z1, . . . , zs−1, zs) in GA
∼ that connects z and xk. Moreover, we have zs−1 = xk−1.

On the other hand, since G
〈xk,xk|L〉∼ is a connected graph, there exists a path

π′ = (z′1, . . . , z
′
t−1, z

′
t) in G

〈xk,xk|L〉∼ connecting z and xk. Clearly, zt−1′ 6= xk−1.

Thus, according to paths π and π′, we identify two distinct neighbors for xk. Con-

sequently, since both paths connect z and xk, we infer that there exists a cycle

C such that C ⊆ π ∪ π′ and xk−1, xk ∈ C. Since voter 1 dictates on 〈xk, xk|L〉 by
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Lemma 15, by xk ∈ C ∩ 〈xk, xk|L〉, the proof of Lemma 2 implies that voter 1 dic-

tates on C. Consequently, we have f(xk−1, xk) = xk−1 6= xmed(k−1,k,k) which contra-

dicts Lemma 15. Therefore, 〈xk, xk|L〉∩B = ∅. Symmetrically, 〈xk, xk|L〉∩B = ∅.

Therefore, it is true that 〈xk, xk|L〉 ⊆M .

Since GA
∼ is a connected graph and both GA

∼ and GA
∼ are trees, Lemma 17

implies that GM
∼ = G

〈xk,xk|T
A
f 〉

∼ must be a connected graph. Thus, for each z ∈

〈xk, xk|T Af 〉, there exists a path in G
〈xk,xk|T

A
f 〉

∼ that connects xk and z. Recall that

voter 1 dictates on 〈xk, xk|L〉 by Lemma 15 and G
〈xk,xk|L〉∼ is a connected graph.

To complete the proof, by Lemma 2, it suffices to show that given an arbitrary

z ∈ 〈xk, xk|T Af 〉\〈xk, xk|L〉 and a path (z1, . . . , zt) in G
〈xk,xk|T

A
f 〉

∼ that connects xk

and z, voter 1 dictates on 〈xk, xk|L〉 ∪ {z1, . . . , zt}.

Since z1 = xk, we have 〈xk, xk|L〉 ∪ {z1} = 〈xk, xk|L〉. Therefore, by Lemma

15, voter 1 dictates on 〈xk, xk|L〉∪{z1}. Next, we provide an induction hypothesis:

given 1 < l ≤ t, for all 1 ≤ l′ < l, voter 1 dictates on 〈xk, xk|L〉 ∪ {z1, . . . , zl′}.

We show that voter 1 dictates on 〈xk, xk|L〉 ∪ {z1, . . . , zl}. If zl ∈ 〈xk, xk|L〉, then

〈xk, xk|L〉 ∪ {z1, . . . , zl} = 〈xk, xk|L〉 ∪ {z1, . . . , zl−1}, and hence by the induction

hypothesis, voter 1 dictates on 〈xk, xk|L〉 ∪ {z1, . . . , zl}. Henceforth, we assume

zl /∈ 〈xk, xk|L〉. Note that voter 1 dictates on 〈xk, xk|L〉 ∪ {z1, . . . , zl−1} by the

induction hypothesis and the adjacency graph over 〈xk, xk|L〉 ∪ {z1, . . . , zl−1} is a

connected graph. Therefore, if we show that voter 1 dictates on {zl−1, zl}, then

the proof of Lemma 2 implies that voter 1 dictates on 〈xk, xk|L〉∪{z1, . . . , zl−1, zl},

which hence proves the induction hypothesis. Hence, in the rest of the proof, we

show f(zl−1, zl) = zl−1 and f(zl, zl−1) = zl.

Since zl−1 ∼ zl, statement (i) of Lemma 9 implies f(zl−1, zl) ∈ {zl−1, zl} and

f(zl, zl−1) ∈ {zl−1, zl}. Suppose f(zl−1, zl) = zl. Then, according to the path

(zl−1, . . . , z1), statement (ii) of Lemma 9 implies f(z1, zl) = zl. Given P 2 = P i

and P 2 = P i, Lemma 15 implies f(z1, P 2) = f(xk, x1) = xk = z1 and f(z1, P 2) =

f(xk, xv) = xk = z1. Then, strategy-proofness implies z1P 2zl and z1P 2zl which

contradicts the hypothesis that P 2 and P 2 are completely reversed. Therefore,

f(zl−1, zl) = zl−1, as required.
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Next, we show f(zl, zl−1) = zl. Suppose not, i.e., f(zl, zl−1) = zl−1. We first

fix a path π ∈ Π(a1, am) = Π(x1, xv). We know that xk, xk ∈ π, 〈x1, xk|π〉 =

(x1, . . . , xk), 〈xk, xv|π〉 = (xk, . . . , xv), xk ∈ 〈x1, xk|π〉 and xk ∈ 〈xk, xv|π〉. Ac-

cording to the paths (zl−1, . . . , z1 = xk) and 〈xk, xk|π〉, by statement (iii) of

Lemma 9, f(zl, zl−1) = zl−1 implies f(zl, z1) ∈ {z1, . . . , zl−1} and f(zl, xk) ∈

{z1, . . . , zl−1} ∪ 〈xk, xk|π〉. Meanwhile, by the induction hypothesis, we have

f(zl−1, z1) = zl−1 and f(zl−1, xk) = zl−1. Then, according to zl ∼ zl−1, statement

(iii) of Lemma 9 implies f(zl, z1) ∈ {zl−1, zl} and f(zl, xk) ∈ {zl−1, zl}. Therefore,

f(zl, z1) ∈ {z1, . . . , zl−1} ∩ {zl−1, zl} = {zl−1} and f(zl, xk) ∈
[
{z1, . . . , zl−1} ∪

〈xk, xk|π〉
]
∩{zl−1, zl} = {zl−1}. Hence, f(zl, xk) = f(zl, z1) = zl−1 and f(zl, xk) =

zl−1. We will show f(zl, x1) = zl−1 and f(zl, xv) = zl−1. There are three cases: (i)

zl−1 /∈ {xk, xk}, (ii) zl−1 = xk and (iii) zl−1 = xk.

In case (i), according to the paths 〈x1, xk|π〉 and 〈xk, xv|π〉, by statement (ii)

of Lemma 9, f(zl, xk) = zl−1 implies f(zl, x1) = zl−1, and f(zl, xk) = zl−1 implies

f(zl, xv) = zl−1. In case (ii), we first refer to the path 〈xk, xv|π〉. Then, by

statement (ii) of Lemma 9, f(zl, xk) = zl−1 implies f(zl, xv) = zl−1. We next claim

f(zl, x1) = zl−1. Given f(zl, xk) = zl−1 = xk, according to the path 〈x1, xk|π〉,

statement (iii) of Lemma 9 implies f(zl, x1) ∈ 〈x1, xk|π〉 = (x1, . . . , xk). Suppose

f(zl, x1) = xk for some 1 ≤ k < k. Then, we combine (zl, zl−1 = xk) and 〈xk, xv|π〉

to construct a path from zl to xv, which clearly excludes xk. According to this

path, by statement (ii) of Lemma 9, f(zl, x1) = xk implies f(xv, x1) = xk, which

contradicts the fact f(xv, x1) = xk. Therefore, it must be the case that f(zl, x1) =

xk = zl−1. Symmetrically, in case (iii), we have f(zl, x1) = zl−1 and f(zl, xv) =

xk = zl−1. Overall, given P 2 = P i and P 2 = P i, we have f(zl, P 2) = f(zl, x1) =

zl−1 and f(zl, P 2) = f(zl, xv) = zl−1. Then, strategy-proofness implies f(zl, P 2) =

zl−1P 2zl = f(zl, zl) and f(zl, P 2) = zl−1P 2zl = f(zl, zl) which contradict the

hypothesis that P 2 and P 2 are completely reversed. Therefore, f(zl, zl−1) = zl, as

required. This completes the proof of the lemma. �
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Lemma 20 According to the tree T Af and the two thresholds xk and xk, we have

f(x, y) =


x if x ∈ 〈xk, xk|T Af 〉,

Proj
(
xk, 〈x, y|T Af 〉

)
if x ∈ A\{xk},

Proj
(
xk, 〈x, y|T Af 〉

)
if x ∈ A\{xk}.

Proof: We first know that voter 1 dictates on 〈xk, xk|T Af 〉 by Lemma 19. Next,

given x ∈ 〈xk, xk|T Af 〉 and y ∈ A\{xk} or y ∈ A\{xk}, we show f(x, y) = x.

We assume w.l.o.g. that y ∈ A\{xk}. The verification for the case y ∈ A\{xk}

is symmetric. Since y ∈ A\{xk}, we know A 6= {xk} and hence xk−1 ∈ A\{xk}

by the construction of T Af . Then, we have f(xk, xk−1) = xk by Lemma 15. In

G
〈xk,xk|T

A
f 〉

∼ , there exists a path (z1, . . . , zs) connecting xk and x. Then, by state-

ment (iii) of Lemma 9, f(xk, xk−1) = xk implies f(x, xk−1) ∈ {z1, . . . , zs}. Sup-

pose f(x, xk−1) = zk for some 1 ≤ k < s. Then, strategy-proofness implies

f(x, zk) = zk which contradicts the fact that voter 1 dictates on 〈xk, xk|T Af 〉.

Therefore, f(x, xk−1) = zs = x. Furthermore, in the tree GA
∼, we have a path

(y1, . . . , yt) that connects xk−1 and y, and excludes x. Then, by statement (ii) of

Lemma 9, f(x, xk−1) = x implies f(x, y) = x, as required.

Second, given x ∈ A\{xk} and y ∈ A, we show f(x, y) = Proj
(
xk, 〈x, y|T Af 〉

)
.

Since x ∈ A\{xk}, we know A 6= {xk} and hence xk−1 ∈ A\{xk} by the construc-

tion of T Af . We consider two cases: y ∈ 〈xk, xk|T Af 〉∪A and y ∈ A\{xk}. First, let

y ∈ 〈xk, xk|T Af 〉 ∪ A. By Lemma 15, we know f(xk−1, xk) = xk. In the adjacency

graph over 〈xk, xk|T Af 〉∪A, we have a path (y1, . . . , ys) connecting xk and y. Thus,

by statement (iii) of Lemma 9, f(xk−1, xk) = xk implies f(xk−1, y) ∈ {y1, . . . , ys}.

Meanwhile, since f(xk, y) = xk and xk−1 ∼ xk, statement (iii) of Lemma 9 implies

f(xk−1, y) ∈ {xk, xk−1}. Therefore, f(xk−1, y) ∈ {xk = y1, . . . , ys} ∩ {xk, xk−1} =

{xk}, and hence f(xk−1, y) = xk. Furthermore, we have a path (z1, . . . , zt) in

the tree GA
∼ that connects xk−1 and x, and excludes xk. Then, by statement (ii)

of Lemma 9, f(xk−1, y) = xk implies f(x, y) = xk = Proj
(
xk, 〈x, y|T Af 〉

)
, as re-

quired. Next, let y ∈ A\{xk}. We have a path π in the tree GA
∼ connecting

x and y. Then, statement (i) of Lemma 9 implies f(x, y) ∈ π. Meanwhile, we

have f(xk, y) = xk and f(x, xk) = Proj
(
xk, 〈x, xk|T Af 〉

)
= xk by the first case.
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Note that in the tree GA
∼, there exist a path π′ connecting xk and x and a path

π′′ connecting xk and y. Then, by statement (iii) of Lemma 9, f(xk, y) = xk

implies f(x, y) ∈ π′, and f(x, xk) = xk implies f(x, y) ∈ π′′. Last, since GA
∼

is a tree, it is true that f(x, y) ∈ π ∩ π′ ∩ π′′ =
{

Proj(xk, 〈x, y|T Af 〉)
}

. Hence,

f(x, y) = Proj
(
xk, 〈x, y|T Af 〉

)
, as required.

Symmetrically, we can show f(x, y) = Proj
(
xk, 〈x, y|T Af 〉

)
when x ∈ A\{xk}.

This completes the characterization of f . �

Lemma 21 We have D ⊆ DSH(T Af , xk, xk).

Proof: To prove D ⊆ DSH(T Af , xk, xk), we fix an arbitrary preference Pi ∈ D,

let r1(Pi) = z and show that the three conditions of Definition 4 are satisfied on

the tree T Af w.r.t. the thresholds xk and xk.

First, we show the first condition of Definition 4, i.e., given z ∈ A\{xk}, Pi is

semi-single-peaked on T Af w.r.t. xk, maxPi
(
〈xk, xk|T Af 〉

)
= xk and maxPi(A) = xk.

By the characterization of f in Lemma 20, we infer f(x, y) = Proj
(
xk, 〈x, y|T Af 〉

)
=

Proj
(
xk, 〈x, y|T Af 〉

)
for all x, y ∈ A. Then, by the proof of Lemma 14, strategy-

proofness of f implies that Pi is semi-single-peaked on T Af w.r.t. xk, as required.

Fixing an arbitrary alternative x ∈ 〈xk, xk|T Af 〉\{xk}, given P1 = Pi, we have

f(P1, x) = Proj
(
xk, 〈z, x|T Af 〉

)
= xk by Lemma 20. Then, strategy-proofness im-

plies f(P1, x) = xkP1x = f(x, x). Therefore, we have maxPi
(
〈xk, xk|T Af 〉

)
= xk, as

required. Symmetrically, fixing an arbitrary alternative y ∈ A\{xk}, given P2 =

Pi, we have f(y, P2) = Proj
(
xk, 〈y, z|T Af 〉

)
= xk by Lemma 20. Then, strategy-

proofness implies f(y, P2) = xkP2y = f(y, y). Therefore, we have maxPi(A) = xk,

as required.

Symmetrically, given z ∈ A\{xk}, we can show that Pi is semi-single-peaked

on T Af w.r.t. xk, maxPi
(
〈xk, xk|T Af 〉

)
= xk and maxPi(A) = xk. This confirms the

second condition of Definition 4.

Last, we show the third condition of Definition 4, i.e., given z ∈ 〈xk, xk|T Af 〉,

we show maxPi(A) = xk and maxPi(A) = xk. Fixing arbitrary alternatives x ∈

A\{xk} and y ∈ A\{xk}, given P2 = Pi, we have f(x, P2) = Proj
(
xk, 〈x, z|T Af 〉

)
=
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xk and f(y, P2) = Proj
(
xk, 〈y, z|T Af 〉

)
= xk by Lemma 20. Then, strategy-

proofness implies f(x, P2) = xkP2x = f(x, x) and f(y, P2) = xkP2y = f(y, y).

Therefore, we have maxPi(A) = xk and maxPi(A) = xk, as required.

In conclusion, we have D ⊆ DSH(T Af , xk, xk). �

Let Ω denote the set of two-voter tops-only and strategy-proof rules defined on

D. Clearly, Ω is a finite and non-empty set, and we hence label Ω = {f 1, . . . , f η}.

We apply the aforementioned characterization of f on every rule of Ω and sum-

marize all results in the following observation.

Observation 3 For each k = 1, . . . , η, we construct a tree T Ak and identify two

thresholds ak, bk ∈ A such that the following six conditions are satisfied:

(i) thresholds ak and bk are contained in the line L = (x1, . . . , xv), where ak = xk

and bk = xk for some 1 ≤ k < k ≤ v,

(ii) given Ak = Aa
k⇀bk , GAk

∼ = T A
k

k , {x1, . . . , xk} ⊆ Ak, (x1, . . . , xk) is the unique

path in GA
∼ connecting a1 and ak, and

[
Ak 6= {ak}

]
⇒
[
ak ∈ Ext(T A

k

k )
]
,

(iii) given A
k

= Ab
k⇀ak , GA

k

∼ = T A
k

k , {xk, . . . , xv} ⊆ A
k
, (xk, . . . , vv) is the unique

path in GA
∼ connecting bk and am, and

[
A
k 6= {bk}

]
⇒
[
bk ∈ Ext(T A

k

k )
]
,

(iv) set {xk, . . . , xk} ⊆ 〈ak, bk|T Ak 〉, 〈ak, bk|T Ak 〉 is a line constructed over all al-

ternatives of
[
A\(Ak ∪ Ak)

]
∪ {ak, bk} where ak and bk are the two extreme

vertices, and G
〈ak,bk|T Ak 〉∼ is a connected graph,

(v) the adjacency graph GA
∼ = GAk

∼ ∪G
〈ak,bk|T Ak 〉∼ ∪GA

k

∼ , and

(vi) D ⊆ DSH

(
T Ak , ak, bk

)
, and fk behaves like a dictatorship on 〈ak, bk|T Ak 〉. �

According to condition (i) of Observation 3, among a1, . . . , aη, we can iden-

tify as such that ak ∈ 〈x1, a
s|L〉 for all k = 1, . . . , η, and symmetrically, among

b1, . . . , bη, we can identify bt such that bk ∈ 〈bt, xv|L〉 for all k = 1, . . . , η. Thus,

we refer to the rules f s and f t. Accordingly, we have the pair of thresholds as and

bs and the pair of thresholds at and bt.
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Lemma 22 The following two statements hold:

(i) For all k ∈ {1, . . . , η} with ak 6= as, we have T A
k

k ⊂ T Ass .

(ii) For all k ∈ {1, . . . , η} with bk 6= bt, we have T A
k

k ⊂ T A
t

t .

Proof: The two statements are symmetric. We focus on verifying the first one.

Given k ∈ {1, . . . , η} with ak 6= as, by Observation 3(i) on both fk and f s,

let ak = xp ∈ L and as = xq ∈ L. Since ak 6= as, the definition of as implies

1 ≤ p < q. Then, Observation 3(ii) on both fk and f s implies ak = xp ∈ As and

as = xq /∈ Ak.

Next, we show T A
k

k ⊂ T Ass . Given an arbitrary alternative z ∈ Ak\{ak}, since

GAk

∼ = T A
k

k by Observation 3(ii) on fk, there exists a unique path (z1, . . . , zw)

in GAk

∼ connecting z and ak = xp. Moreover, by items (iii) and (iv) of Ob-

servation 3 on fk, we know xp+1, . . . , xq−1, xq /∈ Ak. Therefore, {z1, . . . , zw} ∩

{xp+1, . . . , xq−1, xq} = ∅. Since xp ∼ xp+1, we have a concatenated path (z1, . . . , zw =

xp, xp+1, . . . , xq−1, xq) in GA
∼ that connects z and as = xq and includes xq−1. Conse-

quently, by the construction of T As , z must be included in As. Therefore, Ak ⊆ As.

More precisely, since as ∈ As and as /∈ Ak, we have Ak ⊂ As and Ak ⊆ As\{as}.

Since the proof also implies that for each z ∈ Ak\{ak}, its unique path to ak in

T Ak is contained in T As , Ak ⊂ As implies EA
k

k ⊂ EA
s

s , and hence T A
k

k ⊂ T Ass . �

Given k ∈ {1, . . . , η}, if ak = as, it is true by the construction of T Ak and T As
that T A

k

k = T Ass . Symmetrically, if bk = bt, then T A
k

k = T A
t

t .

Lemma 23 We have As ∩ At = ∅.

Proof: The proof consists of four claims.

Claim 1: If as /∈ At and bs /∈ At, we have As ∩ At = ∅.

Suppose z ∈ As ∩ At. Since as /∈ At and bt /∈ As, it is clear that z /∈ {as, bt}.

Now, according to Observation 3(vi) on f s, by the definition of (as, bs)-semi-

hybridness on T As , z ∈ As and bt /∈ As imply asPib
t for all Pi ∈ Dz. However,

according to Observation 3(vi) on f t, by the definition of (at, bt)-semi-hybridness
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on T At , z ∈ At and as /∈ At imply blPia
k for all Pi ∈ Dz. Contradiction! Therefore,

As ∩ At = ∅. This completes the verification of the claim.

By Claim 1, to complete the verification, it suffices to show as /∈ At and bs /∈ At.

We focus on showing as /∈ At. By a symmetric argument, one would immediately

prove bs /∈ At. By Observation 3(i) on both f t and f s, let at = xp and bt = xq for

some 1 ≤ p < q ≤ v, and let as = xr for some 1 ≤ r < v.

Suppose as ∈ A
t

by contradiction. By items (ii) and (iv) of Observation 3

on f t, it is clear that x1, . . . , xq−1 /∈ At. Therefore, xr = as ∈ At implies r ≥ q.

By Observation 3(ii) on f s, we know that {x1, . . . , xp, . . . , xq, . . . , xr} ⊆ As and

(x1, . . . , xp, . . . , xq, . . . , xr) is the unique path in GAs

∼ connecting a1 and as. Thus,

at = xp ∈ As and at 6= xr = as. Then, Lemma 22 implies T A
t

t ⊂ T Ass and hence

At ⊂ As. Next, we show 〈at, bt|T At 〉 ⊆ As. There are two cases: bt 6= as and bt = as.

Claim 2: Given bt 6= as, we have 〈at, bt|T At 〉 ⊆ As.

Clearly, xq = bt 6= as = xr implies q < r. Fixing an arbitrary alterna-

tive z ∈ 〈at, bt|T At 〉, we show z ∈ As. By Observation 3(iv) on f t, we know

that there exists a path (z1, . . . , zw) in G〈a
t,bt|T At 〉∼ connecting z and bt = xq.

Since xr = as ∈ A
t

by the contradictory hypothesis, we infer, by Observation

3(iii) on f t, that (xq, . . . , xr−1, xr) is the unique path in GA
t

∼ connecting bt and

ak. Therefore, xq+1, . . . , xr−1, xr /∈ 〈at, bt|T At 〉. Then, the concatenated path

(z1, . . . , zw = xq, . . . , xr−1, xr) in GA
∼ connects z and ak = xr, and includes xr−1.

Consequently, by the construction of T As , it is true that z ∈ As, as required. This

completes the verification of the claim.

Claim 3: Given bt = as, we have 〈at, bt|T At 〉 ⊆ As.

Clearly, xq = bt = as = xr implies q = r. First, Observation 3(ii) on f s implies

that (x1, . . . , xp, . . . , xr) is the unique path in GA
∼ connecting a1 and as. Similarly,

according to f t, Observation 3(iii) implies that (xq, . . . , xv) is the unique path

in GA
∼ connecting bt and am. Consequently, the line L = (x1, . . . , xp, . . . , xr =

xq, . . . , xv) must be the unique path in GA
∼ connecting a1 and am.

Let NA
∼ (as) = {z ∈ A : z ∼ as}. We next show NA

∼ (as) = NA
∼ (as) ∩ L, in

other words, there exists no z ∈ A\L such that z ∼ as. Suppose not, i.e., there
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exists z ∈ A\L such that z ∼ as. On the one hand, if As = {as}, it is clear that

z ∈ A\As; if As 6= {as}, then Observation 3(ii) on f s implies as ∈ Ext(T Ass ) which

by z ∼ as and z ∈ A\L further implies z ∈ A\As. Given a1 ∈ As by Observation

3(ii) on f s, by Observation 3(vi) on f s, (as, bs)-semi-hybridness on T As implies

asP iz. On the other hand, if A
t

= {bt}, it is clear that z ∈ A\At; if A
t 6= {bt},

then Observation 3(iii) on f t implies bt ∈ Ext(T Att ) which by z ∼ as = bt and

z ∈ A\L further implies z ∈ A\At. Given am ∈ A
t

by Observation 3(iii) on f t,

by Observation 3(vi) on f t, (at, bt)-semi-hybridness on T At implies btP iz. Thus,

P i and P i agree on the relative ranking of as = bt and z, which contradicts the

hypothesis that P i and P i are complete reversals. Hence, there exists no z ∈ A\L

such that z ∼ as, as required. Thus, we have NA
∼ (as) = NA

∼ (as)∩L = {xq−1, xq+1}

(if q < v) and NA
∼ (as) = NA

∼ (as) ∩ L = {xq−1} (if q = v). Furthermore, since

Observation 3(iv) on f t implies xq−1 ∈ 〈at, bt|T At 〉 and xq+1 /∈ 〈at, bt|T At 〉, we have

NA
∼ (as) ∩ 〈at, bt|T At 〉 = {xq−1}.

Now, we prove the claim. Fixing an arbitrary z ∈ 〈at, bt|T At 〉 in T At , we show

z ∈ As. By Observation 3(iv) on f t, there exists a path (z1, . . . , zw−1, zw) in

G〈a
t,bt|T At 〉∼ connecting z and bt = as. Since zw−1 ∼ zw = as and zw−1 ∈ 〈at, bt|T At 〉,

we know zw−1 ∈ NA
∼ (as) ∩ 〈at, bt|T At 〉. Therefore, zw−1 = xq−1 = xr−1. Conse-

quently, we have a path (z1, . . . , zw−1, zw) in GA
∼ that connects z and as = xr, and

includes xr−1. This by the construction of T As implies z ∈ As, as required. This

completes the verification of the claim.

Henceforth, for notational convenience, let B = At∪〈at, bt|T At 〉. Thus, B ⊆ As.

Claim 4: The adjacency graph GA
∼ is a tree.

Since B ⊆ As, it is clear that GB
∼ ⊆ GAs

∼ . According to f t, Observation 3(v)

implies that GB
∼ = GAt

∼ ∪ G〈a
t,bt|T At 〉∼ is a connected graph. By Observation 3(ii)

on f s, we know that GAs

∼ = T Ass is a tree. Therefore, GB
∼ ⊆ GAs

∼ implies that GB
∼

must be a tree nested in GAs

∼ = T Ass . Last, according to f t, since GA
t

∼ = T A
t

t is

tree, GA
∼ = GAt

∼ ∪ G〈a
t,bt|T At 〉∼ ∪ GA

t

∼ = GB
∼ ∪ GA

t

∼ in Observation 3(v) implies that

GA
∼ is a tree. This completes the verification of the claim.

Claim 5: According to the tree GA
∼, for all z ∈ B, we have bt ∈ 〈z, as|GA

∼〉.
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Given z ∈ B, we have the unique path 〈z, bt|GA
∼〉 connecting z and bt in GA

∼.

Since GB
∼ is a tree nested in GA

∼ and z, bt ∈ B, it is true that 〈z, bt|GA
∼〉 ⊆ B.

Next, since as ∈ A
t

by the contradictory hypothesis, we know, by Observation

3(iii) on f t, that (xq, . . . , xr) is the unique path in GA
t

∼ that connects bt and as,

and {xq, . . . , xr} ⊆ A
t
. In particular, if bt = as, then q = r and hence (xq, . . . , xr)

is a null path. Then, the concatenation of 〈z, bt|GA
∼〉 and (bt = xq, . . . , xr = as)

forms a path in GA
∼ connecting z and as. Last, since GA

∼ is a tree, it is true that the

concatenated path equals 〈z, as|GA
∼〉. Therefore, bt ∈ 〈z, as|GA

∼〉. This completes

the verification of the claim.

Claim 6: Domain D is semi-single-peaked on the tree GA
∼ w.r.t. bt.

Fix an arbitrary preference Pi ∈ D and let r1(Pi) = x. Note that bt separates

GA
∼ into two subtrees GA

t

∼ and GB
∼. If x = bt, Pi by definition is semi-single-peaked

on GA
∼ w.r.t. bt. Henceforth, we consider two cases: x ∈ At\{bt} and z ∈ B\{bt}.

First, assume x ∈ A
t\{bt}. According to f t, by Observation 3(vi), the defi-

nition of (at, bt)-semi-hybridness on T At implies that Pi is semi-single-peaked on

T A
t

t w.r.t. bt, where T A
t

t = GA
t

∼ by Observation 3(iii), maxPi
(
〈at, bt|T At 〉

)
= bt

and maxPi(At) = at. Since At ∩ 〈at, bt|T At 〉 = {at}, bt = maxPi
(
〈at, bt|T At 〉

)
and

at = maxPi(At) together imply bt = maxPi
(
At ∪ 〈at, bt|T At 〉

)
= maxPi(B). There-

fore, Pi is semi-single-peaked on GA
∼ w.r.t. bt.

Next, assume z ∈ B\{bt}. Since B ⊆ As, we have x ∈ As. Then, by Observa-

tion 3(vi) on f s, (as, bs)-semi-hybridness w.r.t. T As implies that Pi is semi-single-

peaked on T Ass w.r.t. as. Recall that GB
∼ is a tree nested in GAs

∼ , and GAs

∼ = T Ass by

Observation 3(ii) on f s. Then, Claim 5 implies that Pi is semi-single-peaked on GB
∼

w.r.t. bt. Furthermore, since x ∈ B\{bt} ⊂ At ∪ 〈at, bt|T At 〉, by Observation 3(vi)

on f t, (at, bt)-semi-hybridness w.r.t T At implies maxPi(A
t
) = bt. Therefore, Pi is

semi-single-peaked on GA
∼ w.r.t. bt. This completes the verification of the claim.

Thus, D is semi-single-peaked, and hence admits an invariant, tops-only and

strategy-proof rule by the sufficiency part of Statement (i), which contradictions

the hypothesis of Statement (ii). Therefore, the contradictory hypothesis as ∈ At

cannot hold, and hence as /∈ At holds, as required. This proves the lemma. �
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Now, let M∗ = {x ∈ A : x /∈ As ∪ At} ∪ {as, bt}. Clearly, M∗ 6= ∅. Then,

we arrange all alternatives of M∗ on a line (as, . . . , bt) where a and b are the

two extreme vertices. By the definition of M∗ and Lemma 23, we know As ∩

M∗ = {as}, At ∩ M∗ = {bt} and As ∩ At = ∅. Then, we combine the tree

T Ass , the line (as, . . . , bt) and the tree T A
t

t to construct a tree T A, i.e., T A =

T Ass ∪ (as, . . . , bt) ∪ T A
t

t . Clearly, as and bt are thresholds in T A. Henceforth, for

notational convenience, let a = as and b = bt. Thus, according to T A, we have

Aa⇀b = As, 〈a, b|T A〉 = (as, . . . , bt) and Ab⇀a = A
t
. Note that 〈a, b|T A〉 = M∗ ⊆

[A\As] ∪ {as} = A\[As\{as}] and 〈a, b|T A〉 = M∗ ⊆ [A\At] ∪ {bt} = A\[At\{bt}].

Lemma 24 Domain D is an (a, b)-semi-hybrid domain on T A.

Proof: The proof consists of 4 claims.

Claim 1: Domain D ⊆ DSH(T A, a, b).

We fix an arbitrary preference Pi ∈ D and let r1(Pi) = x.

First, let x ∈ Aa⇀b\{a} = As\{as}. By Observation 3(vi) on f s, (as, bs)-semi-

hybridness on T As implies that Pi is semi-single-peaked on T Ass = T Aa⇀b w.r.t.

as = a, and maxPi
(
〈as, bs|T As 〉 ∪ A

t)
= as = a. Furthermore, since 〈a, b|T A〉 ⊆

〈as, bs|T As 〉 ∪ A
t
, it is evident that maxPi

(
〈a, b|T A〉

)
= a. Moreover, since x ∈

As\{as}, we know x /∈ At by Lemma 23. Then, according to f t, by Observation

3(vi), (at, bt)-semi-hybridness on T At implies maxPi(A
t
) = bt. Hence, we have

maxPi(Ab⇀a) = b, as required by Definition 4.

Symmetrically, if x ∈ Ab⇀a\{b}, we can show that Pi is semi-single-peaked

on T Ab⇀a w.r.t. b, maxPi
(
〈a, b|T A〉

)
= b and maxPi(Aa⇀b) = a, as required by

Definition 4.

Last, let x ∈ 〈a, b|T A〉. Since x ∈ 〈a, b|T A〉, we know x /∈ Aa⇀b\{a} = As\{as}

and x /∈ Ab⇀a\{b} = A
t\{bt}. Furthermore, according to T As , x /∈ As\{as} implies

x ∈ 〈as, bs|T As 〉 ∪ A
s
. Then, according to f s, by Observation 3(vi), (as, bs)-semi-

hybridness on T As implies maxPi(As) = bs. Hence, we have maxPi(Aa⇀b) = a, as

required by Definition 4. Symmetrically, according to T At , x /∈ A
t\{bt} implies

x ∈ At ∪ 〈at, bt|T At 〉. Then, according to f t, by Observation 3(vi), (at, bt)-semi-

hybridness on T At implies maxPi(A
s
) = bt. Hence, maxPi(Ab⇀a) = b, as required
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by Definition 4. This confirms the third condition of Definition 4. Therefore,

Pi ∈ DSH(T A, a, b). This completes the verification of the claim.

Claim 2: We have |〈a, b|T A〉| ≥ 3.

Clearly |〈a, b〉| ≥ 2. Suppose |〈a, b〉| = 2. Consequently, DSH(T A, a, b) =

DSSP(T A, a) ∩ DSSP(T A, b). Therefore, D is semi-single-peaked on T A, which im-

plies that D admits an invariant, tops-only and strategy-proof rule by the suffi-

ciency part of Statement (i). This contradicts the hypothesis of Statement (ii).

Therefore, |〈a, b〉| ≥ 3. This completes the verification of the claim.

Claim 3: Every tops-only and strategy-proof rule behaves like a dictatorship on

〈a, b|T A〉.

First, by the Second Ramification Theorem, to prove the claim, it suffices to

show that every rule of Ω behaves like a dictatorship on 〈a, b|T A〉. Next, recall

by Observation 3(vi) that for each k = 1, . . . , η, fk behaves like a dictatorship on

〈ak, bk|T Ak 〉. Then, it suffices to show 〈a, b|T A〉 ⊆ 〈ak, bk|T Ak 〉 for all k = 1, . . . , η.

Given 1 ≤ k ≤ η, suppose by contradiction that we have x ∈ 〈a, b|T A〉\〈ak, bk|T Ak 〉.

Thus, according to T Ak , it is true that either x ∈ Ak\{ak} or x ∈ Ak\{bk} holds.

We assume w.l.o.g. that x ∈ Ak\{ak}. On the one hand, recall 〈a, b|T A〉 ⊆

A\[As\{as}]. Therefore, x ∈ A\[As\{as}], and hence x /∈ As\{as}. On the other

hand, it is clear that either ak 6= as or ak = as holds. If ak 6= as, the proof of

Lemma 22 implies Ak ⊆ As\{as}. Hence, x ∈ As\{as}. If ak = as, we know

Ak = As by the construction of T Ak and T As . Hence, x ∈ Ak\{ak} = As\{as}.

Overall, x ∈ As\{as}. Contradiction! Therefore, 〈a, b|T A〉 ⊆ 〈ak, bk|T Ak 〉, as

required. This completes the verification of the claim.

Since by hypothesis there exists no invariant, tops-only and strategy-proof,

Statement (i) of the Theorem implies that D is never semi-single-peaked. There-

fore, there exists no tree T̂ A such that D ⊆ DSSP(T̂ A, a) or D ⊆ DSSP(T̂ A, b).

Now, by Definition 4, to prove that D is an (a, b)-semi-hybrid domain on T A, it

suffices to show that there exist no tree T̂ A and thresholds â, b̂ ∈ A such that

D ⊆ DSH(T̂ A, â, b̂) and 〈a, b|T A〉 ⊂ 〈â, b̂|T̂ A〉.
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Claim 4: There exist no tree T̂ A and thresholds â, b̂ ∈ A such that D ⊆

DSH(T̂ A, â, b̂) and 〈â, b̂|T̂ A〉 ⊂ 〈a, b|T A〉.

Suppose that the claim is not correct. Thus, we have a tree T̂ A and thresholds

â, b̂ ∈ A such that D ⊆ DSH(T̂ A, â, b̂) and 〈â, b̂|T̂ A〉 ⊂ 〈a, b|T A〉. Let Âa⇀b =
{
x ∈

A : a ∈ 〈x, b|T̂ A〉
}

and Âb⇀a =
{
x ∈ A : b ∈ 〈x, a|T̂ A〉

}
. According to T̂ A, we

construct the following SCF:

f ∗(P1, P2) =


r1(P1) if r1(P1) ∈ 〈â, b̂|T̂ A〉,

Proj
(
â, 〈r1(P1), r1(P2)|T̂ A〉

)
if r1(P1) ∈ Ââ⇀b̂\{â},

Proj
(
b̂, 〈r1(P1), r1(P2)|T̂ A〉

)
if r1(P1) ∈ Âb̂⇀â\{b̂}.

It is clear that f ∗ is unanimous, and hence is a rule. Moreover, f ∗ satisfies the

tops-only property. Next, we show that f ∗ is strategy-proof.

Given (P1, P2) and (P1, P
′
2), voter 2 has two possible manipulations:

(1) f ∗(P1, P2) = Proj
(
â, 〈r1(P1), r1(P2)|T̂ A〉

)
and f ∗(P1, P

′
2) = Proj

(
â, 〈r1(P1), r1(P ′2)|T̂ A〉

)
, and

(2) f ∗(P1, P2) = Proj
(
b̂, 〈r1(P1), r1(P2)|T̂ A〉

)
and f ∗(P1, P

′
2) = Proj

(
b̂, 〈r1(P1), r1(P ′2)|T̂ A〉

)
.

The two possible manipulations are symmetry, and we hence focus on the first one.

In the first possible manipulation, it is true that r1(P1) ∈ Ââ⇀b̂\{â}. Thus, we

induce f ∗(P1, P2) = Proj
(
â, 〈r1(P1), r1(P2)|T̂ A〉

)
∈ 〈r1(P1), â|T̂ A〉 ⊆ Ââ⇀b̂ and

f ∗(P1, P
′
2) = Proj

(
â, 〈r1(P1), r1(P ′2)|T̂ A〉

)
∈ 〈r1(P1), â|T̂ A〉 ⊆ Ââ⇀b̂. We consider

two cases: r1(P2) ∈ 〈â, b̂|T̂ A〉 ∪ Âb̂⇀â and r1(P2) ∈ Ââ⇀b̂\{â}. In the first case,

f ∗(P1, P2) = â. Since P2 is (â, b̂)-semi-hybrid on T̂ A and r1(P2) ∈ 〈â, b̂|T̂ A〉∪Âb̂⇀â,

we have â = maxP2
(
Ââ⇀b̂

)
, which implies either f(P1, P2) = f(P1, P

′
2) = â or

f(P1, P2)P2f(P1, P
′
2). In the second case, P2 is semi-single-peaked on T̂ Ââ⇀b̂ w.r.t.

â, and f ∗(P1, P2) = Proj
(
â, 〈r1(P1), r1(P2)|T̂ A〉

)
= Proj

(
â, 〈r1(P1), r1(P2)|T̂ Âa⇀b〉

)
∈

〈r1(P2), â|T̂ Âa⇀b〉. If r1(P ′2) ∈ 〈â, b̂|T̂ A〉 ∪ Âb̂⇀â, then f(P1, P
′
2) = â. Furthermore,

since P2 is semi-single-peaked on T̂ Ââ⇀b̂ w.r.t. â, we have â = minP2
(
〈r1(P2), â|T̂ Ââ⇀b̂〉

)
.

Hence, either f ∗(P1, P2) = f ∗(P1, P
′
2) or f ∗(P1, P2)P2f

∗(P1, P
′
2) holds. If r1(P ′2) ∈

Ââ⇀b̂, f ∗(P1, P
′
2) = Proj

(
â, 〈r1(P1), r1(P ′2)|T̂ A〉

)
= Proj

(
â, 〈r1(P1), r1(P ′2)|T̂ Âa⇀b〉

)
.

Then, either f ∗(P1, P2) = f ∗(P1, P
′
2) holds, or f ∗(P1, P2) 6= f ∗(P1, P

′
2) and semi-

single-peakedness of P2 on T̂ Ââ⇀b̂ w.r.t. â implies f ∗(P1, P2)P2f
∗(P1, P

′
2). There-

fore, voter 2 has no incentive to manipulate.
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Given (P1, P2) and (P ′1, P2), voter 1 has six possible manipulations:

(1) f ∗(P1, P2) = Proj
(
â, 〈r1(P1), r1(P2)|T̂ A〉

)
and f ∗(P ′1, P2) = Proj

(
â, 〈r1(P ′1), r1(P2)|T̂ A〉

)
,

(2) f ∗(P1, P2) = Proj
(
b̂, 〈r1(P1), r1(P2)|T̂ A〉

)
and f ∗(P ′1, P2) = Proj

(
b̂, 〈r1(P ′1), r1(P2)|T̂ A〉

)
,

(3) f ∗(P1, P2) = Proj
(
â, 〈r1(P1), r1(P2)|T̂ A〉

)
and f ∗(P ′1, P2) = Proj

(
b̂, 〈r1(P ′1), r1(P2)|T̂ A〉

)
,

(4) f ∗(P1, P2) = Proj
(
b̂, 〈r1(P1), r1(P2)|T̂ A〉

)
and f ∗(P ′1, P2) = Proj

(
â, 〈r1(P ′1), r1(P2)|T̂ A〉

)
,

(5) f ∗(P1, P2) = Proj
(
â, 〈r1(P1), r1(P2)|T̂ A〉

)
and f ∗(P ′1, P2) = r1(P ′1), and

(6) f ∗(P1, P2) = Proj
(
b̂, 〈r1(P1), r1(P2)|T̂ A〉

)
and f ∗(P ′1, P2) = r1(P ′1).

Similar to voter 2, voter 1’s first two possible manipulations are not profitable. In

the third case, we know r1(P1) ∈ Ââ⇀b̂\{â}, f ∗(P1, P2) = Proj
(
â, 〈r1(P1), r1(P2)|T̂ A〉

)
∈

〈r1(P1), â|T̂ A〉 ⊆ Ââ⇀b̂ and f ∗(P ′1, P2) = Proj
(
b̂, 〈r1(P ′1), r1(P2)|T̂ A〉

)
∈ Âb̂⇀â.

Since P1 is (â, b̂)-semi-hybrid on T̂ A and r1(P1) ∈ Ââ⇀b̂\{â}, it is true that â =

minP1
(
〈r1(P1), â|T̂ A〉

)
and â = maxP1

(
〈â, b̂|T̂ A〉∪Âb̂⇀â

)
. Therefore, f ∗(P1, P2)P1f

∗(P ′1, P2).

Symmetrically, in the fourth case, we have f ∗(P1, P2)P1f
∗(P ′1, P2). In the fifth

case, we know r1(P1) ∈ Ââ⇀b̂\{â}, f ∗(P1, P2) = Proj
(
â, 〈r1(P1), r1(P2)|T̂ A〉

)
∈

〈r1(P1), â|T̂ A〉, r1(P ′1) ∈ 〈â, b̂|T̂ A〉 and f ∗(P ′1, P2) = r1(P ′1) ∈ 〈â, b̂|T̂ A〉. Since

P1 is (â, b̂)-semi-hybrid on T̂ A, it is true that â = minP1
(
〈r1(P1), â|T̂ A〉

)
and â =

maxP1
(
〈â, b̂|T̂ A〉

)
. Therefore, either f ∗(P1, P2) = f ∗(P ′1, P2) = â or f ∗(P1, P2)P1f

∗(P ′1, P2)

holds. Symmetrically, in the last case, we have f ∗(P1, P2) = f ∗(P ′1, P2) = b̂ or

f ∗(P1, P2)P1f
∗(P ′1, P2). Therefore, voter 1 has no incentive to manipulate. In

conclusion, f ∗ is strategy-proof.

Now, we are ready to induce a contradiction from f ∗. Since f ∗ is strategy-proof,

we know f ∗ ∈ Ω. Since 〈â, b̂|T̂ A〉 ⊂ 〈a, b|T A〉, we have x ∈ 〈a, b|T A〉\〈â, b̂|T̂ A〉.

According to T̂ A, it is clear that x ∈ Ââ⇀b̂\{â} or x ∈ Âb̂⇀â\{b̂}. We assume

w.l.o.g. that x ∈ Ââ⇀b̂\{â}. On the one hand, by construction, we have f ∗(x, â) =

Proj
(
â, 〈x, â|T̂ A〉

)
= â. On the other hand, since f ∗ ∈ Ω, Claim 3 implies that f ∗

behaves like a dictatorship on 〈a, b|T A〉. Then, by the construction of f ∗, it must

be the case that voter 1 dictates on 〈a, b|T A〉. Consequently, given x, â ∈ 〈a, b|T A〉,

we have f ∗(x, â) = x. Contradiction! This completes the verification of the claim.

This complete the verification of the lemma, and hence proves the necessity

part of Statement (ii) of the Theorem. �
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E Proof of Corollary 2

To prove statements (i) and (ii) of Corollary 2, we fix a rich non-dictatorial tops-

only domain D.

We first show statement (i). Clearly, the sufficiency part follows from the

sufficiency part of Statement (i) of the Theorem. Next, given that D admits an

invariant and strategy-proof rule, by the necessity part of Statement (i) of the

Theorem, we know that D is semi-single-peaked on a tree T A w.r.t. some x̄ ∈ A.

Furthermore, since D is a tops-only domain, statement (i) of Proposition 1 implies

that D must be single-peaked on T A. Last, since D includes the pair of completely

reversed preferences P i = (a1 · · · ak ak+1 · · · am) and P i = (am · · · ak+1 ak · · · a1),

it must be the case that T A = LA. Therefore, D is single-peaked on LA. This

proves statement (i) of Corollary 2.

We next move to statement (ii). To verify the sufficiency part, we further let D

be a non-trivial (ap, aq)-hybrid domain on LA, where 1 < q − p < m− 1. Clearly,

D is also a semi-hybrid domain, and hence the sufficiency part of Statement (ii)

of the Theorem implies that there exists no invariant, tops-only and strategy-

proof rule. Moreover, since D is a tops-only domain, there exists no invariant and

strategy-proof rule. This proves the sufficiency part of statement (ii).

To prove the necessity part of statement (ii), let D admit no invariant and

strategy-proof rule. We show that D is a non-trivial (ap, aq)-hybrid domain on

LA, where 1 < q − p < m − 1. Since D is a tops-only domain, the hypothesis

also implies that D admits no invariant, tops-only and strategy-proof rule. Then,

by applying Statement (ii) of the Theorem and its proof on D, we know that (i)

D is a semi-hybrid domain on a tree T A w.r.t. some thresholds a and b, and (ii)

every tops-only and strategy-proof rule behaves likes a dictatorship on 〈a, b|T A〉.

Moreover, since D is a tops-only domain, it is natural that every strategy-proof

rule behaves likes a dictatorship on 〈a, b|T A〉. Then, the necessity part of the

Auxiliary Proposition implies that D is non-trivial on 〈a, b|T A〉. Furthermore,

since D is a tops-only domain, statement (ii) of Proposition 1 refines D to be

(a, b)-hybrid on T A. Therefore, D is a non-trivial (a, b)-hybrid domain on T A. We
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next show that D is non-degenerate. Otherwise, D is a non-trivial and degenerate

(a, b)-hybrid domain on T A. Consequently, the sufficiency part of the Auxiliary

Proposition implies that every strategy-proof rule behaves like a dictatorship on

〈a, b|T A〉 = A, and hence D is a dictatorial domain which contradicts the non-

dictatorial-domain hypothesis. Therefore, D is a non-trivial and non-degenerate

(a, b)-hybrid domain on T A. Furthermore, since D includes the completely reversed

preferences P i = (a1 · · · ak ak+1 · · · am) and P i = (am · · · ak+1 ak · · · a1), to be

compatible with (a, b)-hybridness on T A, it must be the case that T A is a line.

Thus, T Aa⇀b is a line if Aa⇀b 6= {a}, and T Ab⇀a is a line if Ab⇀a 6= {b}. We last

refine D to be an (ap, aq)-hybrid domain on the line LA, where 1 < q−p < m−1.70

Lemma 25 Domain D is an (ap, aq)-hybrid domain on LA, where 1 < q − p <

m− 1.

Proof: Recall Step 1 in the proof of Statement (ii) of the Theorem, where we

elicit the line L = (a1 = x1, . . . , xv = am) (when there exists a unique path in

GA
∼ connecting a1 and am) and construct the line L = (a1 = x1, . . . , xv = am)

(when there are multiple paths in GA
∼ connecting a1 and am). Furthermore, by the

construction of T A right above Lemma 24 and the definition of (a, b)-hybridness

on T A, we know that (i) a = xp and b = xt for some 1 ≤ p < t ≤ v, (ii) (x1, . . . , xp)

is included in T Aa⇀b , and (iii) (xt, . . . , xv) is included in T Ab⇀a .

We next show T Aa⇀b = (x1, . . . , xp). If Aa⇀b = {a}, it is evident that T Aa⇀b is

a graph of the singleton vertex a = x1. Next, let Aa⇀b 6= {a}. Then, the inclusion

of two completely reversed preferences implies xp = a ∈ Ext(T Aa⇀b) (see Clari-

fication 3 of Appendix G). Recall that T Aa⇀b is a line and contains (x1, . . . , xp).

Hence, to show T Aa⇀b = (x1, . . . , xp), it suffices to show x1 ∈ Ext(T A
a⇀b

). Sup-

pose not, i.e., we have x ∈ Aa⇀b such that x 6= x2 and (x, x1) ∈ EAa⇀b . Clearly,

(x, x1) ∈ EA. Note that am = xv ∈ A\Aa⇀b. Thus, since T A is a line, it is

true that x1 ∈ 〈am, x|T A〉. Consequently, (a, b)-hybridness on T A implies x1Pix

for all Pi ∈ Dam . This contradicts the fact that x1 = a1 is bottom ranked in

70Note that so far the line T A here is not necessarily the line LA.
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the preference P i. Therefore, x1 ∈ Ext(T A
a⇀b

), and hence T Aa⇀b = (x1, . . . , xp).

Symmetrically, we have T Ab⇀a = (xt, . . . , xv).

Moreover, according to the labeling of alternatives in the preference P i =

(a1 · · · ak ak+1 · · · am) which is (a, b)-hybrid on T A, T Aa⇀b = (x1, . . . , xp) and

T Ab⇀a = (xt, . . . , xv) respectively imply xk = ak for all k = 1, . . . , p, and xl =

am−v+l for all l = t, . . . , v. For notational convenience, let q = m− v + t. There-

fore, a = ap, b = aq, T A
a⇀b

= (a1, . . . , ap) and T Ab⇀a = (aq, . . . , am). Since

|〈a, b|T A〉| ≥ 3 by the definition of (a, b)-hybridness on T A, we know Aa⇀b∪Ab⇀a =

{a1, . . . , ap, aq, . . . , am} 6= A and hence q−p > 1. Therefore, D is an (ap, aq)-hybrid

domain on LA. Last, since D is non-degenerate, we know that either p > 1 or q < m

holds, which implies q − p < m− 1. This completes the verification of the lemma

and hence proves the necessity part of statement (ii) of Corollary 2. �

Next, we show that given a rich domain D, it is a tops-only domain if and only

if it is single-peaked on LA or non-trivially hybrid on LA.

First, let D be a rich tops-only domain. We know that D is either a non-

dictatorial domain or a dictatorial domain. If D is a non-dictatorial domain,

statements (i) and (ii) of Corollary 2 imply that D is either single-peaked on

LA, or non-trivially and non-degenerate hybrid on LA. Next, let D be a dicta-

torial domain. Clearly, D ⊆ P = DSH(LA, a1, am). Thus, as a dictatorial do-

main, every strategy-proof rule behaves like a dictatorship on A = 〈a1, am|LA〉.

Then, by the necessity part of the Auxiliary Proposition and Remark 1, we know

that D is a non-trivial (a1, am)-semi-hybrid domain on 〈a1, am|LA〉. Furthermore,

D ⊆ DSH(LA, a1, am) = DH(LA, a1, am) implies that D is also a non-trivial and

degenerate (a1, am)-hybrid domain on LA. In conclusion, D is either single-peaked

on LA or non-trivially hybrid on LA.

Second, let a rich domain D be single-peaked on LA, or non-trivially hybrid on

LA. We show that D is a tops-only domain. If D is single-peaked on LA, we can

apply Theorem 3 of Achuthankutty and Roy (2018) to show that D is a tops-only

domain.71

71Achuthankutty and Roy (2018) study a single-peaked domain on LA satisfying the following
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Last, let D be a non-trivial (ap, aq)-hybrid domain on LA where q− p > 1. We

show that D is a tops-only domain. We will adopt an inductive argument for the

proof. To simplify the proof, we follow the method of Chatterji and Sen (2011) by

including the single-voter SCFs into consideration.

Clearly, unanimity implies the tops-only property in every single-voter SCF.

We then provide an induction hypothesis.

Induction Hypothesis: Given n ≥ 2, for all 1 ≤ n′ < n, every strategy-proof

rule f ′ : Dn′ → A satisfies the tops-only property.

We show that every n-voter strategy-proof rule satisfies the tops-only property.

Henceforth, we fix an arbitrary n-voter strategy-proof rule f : Dn → A, and show

that it satisfies the tops-only property. It suffices to show that for all i ∈ N and

(Pi, P−i), (P
′
i , P−i) ∈ Dn,

[
r1(Pi) = r1(P ′i )

]
⇒
[
f(Pi, P−i) = f(P ′i , P−i)

]
.

First, by the sufficiency part of the Auxiliary Proposition, we know that f

behaves like a dictatorship on
〈
ap, aq|LA

〉
. Furthermore, we can identify 1 ≤ s ≤ p

and q ≤ t ≤ m such that (i) f behaves like a dictatorship on 〈as, at|LA〉, and (ii)

for all 1 ≤ s′ ≤ s and t ≤ t′ ≤ m with t′ − s′ > t − s, f does not behaves like

a dictatorship on
〈
as′ , at′|LA

〉
. In particular, if condition (i) is satisfied at s = 1

and t = m, then f is a dictatorship and hence satisfies the tops-only property.

Henceforth, we further assume either s > 1 or t < m. According to condition (i),

we assume w.l.o.g. that voter 1 dictates on 〈as, at|LA〉 at f . Furthermore, if n > 2,

according to f , we induce a two-voter function: h(P1, P2) = f(P1, P2, · · · , P2) for

all P1, P2 ∈ D. It is clear that h is a well defined SCF, inherits unanimity and

strategy-proofness from f , and hence is a strategy-proof rule.

The claim below shows that when voter 1 reports a preference with the peak

in 〈as, at|LA〉, the social outcome follows exactly from voter 1’s peak regardless of

the others’ preferences.

Claim 1: Given a preference P ∗1 ∈ D with r1(P ∗1 ) = ak ∈ 〈as, at|LA〉, we have

f(P ∗1 , P−1) = ak for all P−1 ∈ Dn−1.

richness assumption: ak ∈ S(Dak+1) and ak+1 ∈ S(Dak) for all 1 ≤ k ≤ m− 1, which is weaker

than the imposition of path-connectedness on a single-peaked domain on LA.
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Suppose not, i.e., there exists P−1 ∈ Dn−1 such that f(P ∗1 , P−1) = ar 6= ak.

It is clear that strategy-proofness implies f
(
P ∗1 , (ar · · · )

)
= ar (if n = 2) and

f
(
P ∗1 , (ar · · · ), . . . , (ar · · · )

)
= ar (if n > 2). There are three cases: (i) ar ∈

〈as, at|LA〉, (ii) ar ∈
〈
a1, as−1|LA

〉
and (iii) ar ∈

〈
at+1, am|LA

〉
. In each case, we

induce a contradiction.

In case (i), since voter 1 dictates 〈as, at|LA〉, we have f
(
P ∗1 , (ar · · · )

)
= ak (if

n = 2) and f
(
P ∗1 , (ar · · · ), . . . , (ar · · · )

)
= ak (if n > 2). Contradiction! In case

(ii), we first identify a path (x1, . . . , xv) in GA
∼ that connects ak and ar. By the

definition of (ap, aq)-hybridness on LA, according to GA
∼, there exist 1 ≤ η < v such

that xη = as, the subpath (x1, . . . , xη) is contained in G〈as,at|L
A〉

∼ , and the subpath

(xη, . . . , xv) = 〈as, ar|LA〉 is the unique path in GA
∼ connecting as and ar. If η > 1,

x1, x2 ∈ 〈as, at|LA〉. If η = 1, we identify x0 ∈ 〈as, at|LA〉 such that x0 ∼ x1, and

construct the path (x0, x1, . . . , xv). Overall, we have a path π = (x1, x2, . . . , xv),

v ≥ 3, in GA
∼ such that x1, x2 ∈ 〈as, at|LA〉, ak ∈ {x1, x2} and ar = xv.

We first consider the case n = 2. On the one hand, given a preference

P ∗2 ∈ Dar by path-connectedness, we have f(P ∗1 , P
∗
2 ) = ar. On the other hand,

since voter 1 dictates on 〈as, at|LA〉 at f , we have f
(
(x1 · · · ), (x2 · · · )

)
= x1. Then,

according to the path π = (x1, x2, . . . , xv), statement (i) of Lemma 1 implies

f
(
(x1 · · · ), (xv · · · )

)
= x1 and f

(
(x2 · · · ), (xv · · · )

)
= x2. Since ak ∈ {x1, x2},

we have either f(P ∗1 , P
∗
2 ) = x1 6= ar or f(P ∗1 , P

∗
2 ) = x2 6= ar. Contradic-

tion! Next, assume n > 2. On the one hand, given a preference P ∗2 ∈ Dar

by path-connectedness, we have h(P ∗1 , P
∗
2 ) = f(P ∗1 , P

∗
2 , . . . , P

∗
2 ) = ar. On the

other hand, given P̂1 ∈ Dx1 and P̂2 ∈ Dx2 by path-connectedness, by voter 1’s

dictatorship on 〈as, at|LA〉 at f , we have h(P̂1, P̂2) = f(P̂1, P̂2, . . . , P̂2) = x1.

Then, according to the path π = (x1, x2, . . . , xv), statement (i) of Lemma 1

implies h
(
(x1 · · · ), (xv · · · )

)
= x1 and h

(
(x2 · · · ), (xv · · · )

)
= x2. Consequently,

since ak ∈ {x1, x2}, we have either f(P ∗1 , P
∗
2 , . . . , P

∗
2 ) = h(P ∗1 , P

∗
2 ) = x1 6= ar or

f(P ∗1 , P
∗
2 , . . . , P

∗
2 ) = h(P ∗1 , P

∗
2 ) = x2 6= ar. Contradiction!

By a symmetric argument, a contradiction can induced in case (iii). This

completes the verification of the claim.
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The next claim shows that when voter 1 reports a preference with a peak

ak ∈ 〈a1, as−1|LA〉 (respectively, ak ∈ 〈at+1, am|LA〉), then social outcome falls

into the interval 〈ak, as|LA〉 (respectively, 〈at, ak|LA〉).

Claim 2: Given a preference P ∗1 ∈ D with r1(P ∗1 ) = ak /∈ 〈as, at|LA〉, the following

two statements hold:

(i) If ak ∈ 〈a1, as−1|LA〉, then f(P ∗1 , P−1) ∈ 〈ak, as|LA〉 for all P−1 ∈ Dn−1.

(ii) If ak ∈ 〈at+1, am|LA〉, then f(P ∗1 , P−1) ∈ 〈at, ak|LA〉 for all P−1 ∈ Dn−1.

The two statements are symmetric, and we hence focus on showing state-

ment (i). Given P−1 ∈ Dn−1, let f(P ∗1 , P−1) = ar. Clearly, Claim 1 implies

f
(
(as · · · ), P−1

)
= as, and (ap, aq)-hybridness on LA implies as = maxP

∗
1

(
〈as, am|LA〉

)
.

Suppose ar /∈ 〈ak, as|LA〉. Clearly, either ar ∈ 〈as+1, am|LA〉 or ar ∈ 〈a1, ak−1|LA〉

holds. If ar ∈ 〈as+1, am|LA〉, then voter 1 will manipulate at (P ∗1 , P−1) via

some P1 ∈ Das , i.e., f(P1, P−1) = asP
∗
1 ar = f(P ∗1 , P−1). Next, assume ar ∈

〈a1, ak−1|LA〉. Consider the unique path π = (ar, ar+1, . . . , ak, ak+1, . . . , as) in

GA
∼ that connects ar and as. Since ar ∼ ar+1, we have P̂1, P̂

′
1 ∈ D such that

r1(P̂1) = r2(P̂ ′1) = ar, r1(P̂ ′1) = r2(P̂1) = ar+1 and rl(P̂1) = rl(P̂
′
1) for all

l = 3, . . . ,m. Clearly, strategy-proofness first implies f(P̂1, P−1) = ar = r2(P̂ ′1).

Then, strategy-proofness implies f(P̂ ′1, P−1) ∈
{
r2(P̂ ′1), r1(P̂ ′1)

}
= {ar, ar+1}. Sup-

pose f(P̂ ′1, P−1) = ar. Then, strategy-proofness implies f
(
P̂ ′1, (ar · · · )

)
= ar (if

n = 2) and f
(
P̂ ′1, (ar · · · ), . . . , (ar · · · )

)
= ar (if n > 2).

We first consider the case n = 2. Given a preference P ∗2 ∈ Dar , we have

f(P̂ ′1, P
∗
2 ) = ar. Then, according to the path π = (ar, ar+1, . . . , ak, ak+1, . . . , as),

statement (ii) of Lemma 1 implies f
(
(as · · · ), (ar · · · )

)
= ar 6= as. This con-

tradicts Claim 1. Next, assume n > 2. Given a preference P ∗2 ∈ Dar , we

have h(P̂ ′1, P
∗
2 ) = f(P̂ ′1, P

∗
2 , . . . , P

∗
2 ) = ar. Then, according to the path π =

(ar, ar+1, . . . , ak, ak+1, . . . , as), statement (ii) of Lemma 1 implies h
(
(as · · · ), (ar · · · )

)
=

ar. Consequently, we have f
(
(as · · · ), P ∗2 , . . . , P ∗2

)
= h

(
(as · · · ), P ∗2

)
= ar 6=

as, which contradicts Claim 1. This means that the contradictory hypothesis

f(P̂ ′1, P−1) = ar cannot hold. Therefore, f(P̂ ′1, P−1) = ar+1 = r1(P̂ ′1) holds,
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and hence strategy-proofness implies f
(
(ar+1 · · · ), P−1

)
= ar+1. Following the

path π from ar+1 to ak, by repeatedly applying the argument above step by

step, we eventually induce f
(
(ak · · · ), P−1

)
= ak, which contradicts the hypoth-

esis f(P ∗1 , P−1) = ar /∈ 〈ak, as|LA〉. Therefore, f(P ∗1 , P−1) ∈ 〈ak, as|LA〉. This

completes the verification of the claim.

Claim 3: Given two distinct profiles (P1, P−1), (P ′1, P−1) ∈ Dn with r1(P1) =

r1(P ′1) = ak /∈ 〈as, at|LA〉, we have f(P1, P−1) = f(P ′1, P−1).

We know that either ak ∈ 〈a1, as−1|LA〉 or ak ∈ 〈at+1, am|LA〉 holds. The

verification for these two cases are symmetric. We hence assume w.l.o.g. that ak ∈

〈a1, as−1|LA〉. Then, by Claim 2, we can assume f(P1, P−1) = ar ∈ 〈ak, as|LA〉

and f(P ′1, P−1) = ar′ ∈ 〈ak, as|LA〉. Suppose ar 6= ar′ . We know that either

k ≤ r < r′ ≤ s or k ≤ r′ < r ≤ s holds. If k ≤ r < r′ ≤ s, (ap, aq)-hybridness

on LA implies arP
′
1ar′ , and hence voter 1 will manipulate at (P ′1, P−1) via P1,

i.e., f(P1, P−1) = arP
′
1ar′ = f(P ′1, P−1). If k ≤ r′ < r ≤ s, (ap, aq)-hybridness

on LA implies ar′P1ar, and hence voter 1 will manipulate at (P1, P−1) via P ′1,

i.e., f(P ′1, P−1) = ar′P1ar = f(P1, P−1). Therefore, it must be the case that

f(P1, P−1) = f(P ′1, P−1). This completes the verification of the claim.

Now, one would easily observe from Claims 1 and 3 that for all distinct prefer-

ence profiles (P1, P−1), (P ′1, P−1) ∈ Dn with r1(P1) = r1(P ′1), we have f(P1, P−1) =

f(P ′1, P−1). Next, we move to voters other than 1.

Claim 4: Given i 6= 1 and two distinct profiles (P1, Pi, P−{1,i}), (P1, P
′
i , P−{1,i}) ∈

Dn with r1(Pi) = r1(P ′i ), we have f(P1, Pi, P−{1,i}) = f(P1, P
′
i , P−{1,i}).

72

For notational convenience, let r1(P1) = ak and r1(Pi) = r1(P ′i ) = ao. Clearly,

if ak ∈ 〈as, at|LA〉, Claim 1 implies f(P1, Pi, P−{1,i}) = f(P1, P
′
i , P−{1,i}) = ak.

Next, we assume ak /∈ 〈as, at|LA〉. Thus, either ak ∈ 〈a1, as−1|LA〉 or ak ∈

〈at+1, am|LA〉 holds. The verification for these two cases are symmetric. We hence

assume w.l.o.g. that ak ∈ 〈a1, as−1|LA〉. Suppose f(P1, Pi, P−{1,i}) = ar 6= ar′ =

f(P1, P
′
i , P−{1,i}). Clearly, strategy-proofness implies arPiar′ and ar′P

′
iar, and

72If n = 2, then i = 2 and the notation (P1, Pi, P−{1,i}) represents the profile (P1, P2).
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Claim 2 implies ar, ar′ ∈ 〈ak, as|LA〉. We can assume w.l.o.g. that k ≤ r < r′ ≤ s.

The verification for the case k ≤ r′ < r ≤ s is symmetric and hence is omitted.

We first show ao ∈ 〈ar+1, ar′−1|LA〉. If ao ∈ 〈a1, ar|LA〉, (ap, aq)-hybridness on

LA implies arP
′
iar′ . Contradiction! If ao ∈ 〈ar′ , am|LA〉, (ap, aq)-hybridness on LA

implies ar′Piar. Contradiction! Therefore, ao ∈ 〈ar+1, ar′−1|LA〉.

We next induce a manipulation in the case n = 2. Thus, i = 2, and unanimity

implies f(P ′2, P
′
2) = ao. Since r1(P1) = ak ∈ 〈a1, as−1|LA〉, ar, ar′ ∈ 〈ak, as|LA〉 and

ao ∈ 〈ar+1, ar′−1|LA〉, (ap, aq)-hybridness on LA implies aoP1ar′ . Consequently,

voter 1 will manipulate at (P1, P
′
2) via P ′2, i.e., f(P ′2, P

′
2) = aoP1ar′ = f(P1, P

′
2).

Therefore, it must be the case that f(P1, P2) = f(P1, P
′
2).

Last, we induce a manipulation in the case n > 2. We combine voters 1 and

i as one, and induce an (n − 1)-voter function: g(P̂1, P̂−{1,i}) = f(P̂1, P̂1, P̂−{1,i})

for all P̂1 ∈ D and P̂−{1,i} ∈ Dn−2. Clearly, g is a well defined SCF, inherits una-

nimity and strategy-proofness from f , and hence is an (n−1)-voter strategy-proof

rule. Therefore, the induction hypothesis implies that g satisfies the tops-only

property. Hence, we have f(Pi, Pi, P−{1,i}) = g(Pi, P−{1,i}) = g(P ′i , P−{1,i}) =

f(P ′i , P
′
i , P−{1,i}) ≡ aw. Furthermore, according to the profile (Pi, Pi, P−{1,i}),

Claim 2 implies aw ∈ 〈ao, as|LA〉. Thus, since ao ∈ 〈ar+1, ar′−1|LA〉, either aw ∈

〈ao, ar′−1|LA〉 or aw ∈ 〈ar′ , as|LA〉 holds. If aw ∈ 〈ao, ar′−1|LA〉, (ap, aq)-hybridness

on LA implies awP1ar′ , and then voter 1 will manipulate at (P1, P
′
i , P−{1,i}) via

P ′i , i.e., f(P ′i , P
′
i , P−{1,i}) = awP1ar′ = f(P1, P

′
i , P−{1,i}). Therefore, it must be

the case that aw ∈ 〈ar′ , as|LA〉. Recall arPiar′ by strategy-proofness of f , and

ar′ = maxPi
(
〈ar′ , as|LA〉

)
by the definition of (ap, aq)-hybridness on LA. There-

fore, arPiaw. Consequently, voter 1 will manipulate at (Pi, Pi, P−{1,i}) via P1, i.e.,

f(P1, Pi, P−{1,i}) = arP1aw = f(Pi, Pi, P−{1,i}). Therefore, it must be the case that

f(P1, Pi, P−{1,i}) = f(P1, P
′
i , P−{1,i}). This completes the verification of the claim.

Now, by Claims 1, 3 and 4, we know that for all i ∈ N and (Pi, P−i), (P
′
i , P−i) ∈

Dn,
[
r1(Pi) = r1(P ′i )

]
⇒
[
f(Pi, P−i) = f(P ′i , P−i)

]
, as required. Therefore, f

satisfies the tops-only property. This completes the verification of the induction

hypothesis, and hence shows that D is a tops-only domain.
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F Proof of Proposition 3

Fixing a tree T A and thresholds a, b ∈ A, let |〈a, b|T A〉| ≥ 3 and the semi-hybrid

domain DSH(T A, a, b) contain a pair of completely reversed preferences. We fix a

tops-only and strategy-proof rule f :
[
DSH(T A, a, b)

]n → A. We henceforth assume

w.l.o.g. that Aa⇀b 6= {a} and Ab⇀a 6= {b}, and show that f is a hybrid rule w.r.t.

a and b.73 Since DSH(T A, a, b) includes the completely reversed preferences P i

and P i, we infer that a ∈ Ext(T Aa⇀b) and b ∈ Ext(T Ab⇀a). Henceforth, let ā be

the unique neighbor of a in T Aa⇀b , and b̄ be the unique neighbor of b in T Ab⇀a .

Furthermore, note that every two alternatives of 〈a, b|T A〉 are adjacent, and hence

Ext(G〈a,b|T
A〉

∼ ) = ∅ which implies that DSH(T A, a, b) is non-trivial on 〈a, b|T A〉.

Then, the sufficiency part of the Auxiliary Proposition implies that f behaves like

a dictatorship on 〈a, b|T A〉. Henceforth, we assume w.l.o.g. that voter 1 dictates

on 〈a, b|T A〉, i.e., for all P ∈
[
DSH(T A, a, b)

]n
,
[
r1(Pi) ∈ 〈a, b|T A〉 for all i ∈ N

]
⇒[

f(P ) = r1(P1)
]
.

Claim 1: For all P ∈
[
DSH(T A, a, b)

]n
, if r1(P1) ∈ 〈a, b|T A〉, then f(P ) = r1(P1).

We can employ the verification of Claim 1 in the proof of Corollary 2 to prove

this claim.

Given arbitrary x ∈ Ext(T A) ∩ Aa⇀b and y ∈ Ext(T A) ∩ Ab⇀a, we can label

the path 〈x, y|T A〉 = (x1, . . . , xs−1, xs, . . . , xt, xt+1, . . . , xv) where x1 = x, xs−1 = ā,

xs = a, xt = b, xt+1 = b̄ and xv = y. Clearly, (x1, . . . , xs−1, xs) = 〈x, a|T A〉 =

〈x, a|T Aa⇀b〉 = 〈x, a|GAa⇀b

∼ 〉 and (xt, xt+1, . . . , xv) = 〈b, y|T A〉 = 〈b, y|T Ab⇀a〉 =

〈b, y|GAb⇀a

∼ 〉. Furthermore, since every two alternatives of 〈a, b|T A〉 form an edge

in GA
∼, it is true that the line 〈a, b|T A〉 is contained in the adjacency subgraph

G〈a,b|T
A〉

∼ . Therefore, (xs, . . . , xt) is a path in G〈a,b|T
A〉

∼ that connects a and b, and

includes all alternatives of 〈a, b|T A〉. Last, we construct a linear order ≺x,y over

all alternatives of 〈x, y|T A〉 such that xk ≺x,y xk+1 for all k = 1, . . . , v − 1.74

Since DSP(T A) ⊆ DSH(T A, a, b), we can extract an SCF from f : f̄(P ) = f(P )

for all P ∈
[
DSP(T A)

]n
. Clearly, f̄ inherits unanimity, the tops-only property and

73When Aa⇀b = {a} or Ab⇀a = {b} holds, the proof is relative simpler.
74For notational convenience, given c, d ∈ 〈x, y|T A〉, let c �x,y d denote c = d or c ≺x,y d.
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strategy-proofness from f . Then, by Theorem 1 of Schummer and Vohra (2002),

we know that

(1) for all x ∈ Ext(T A) ∩ Aa⇀b and y ∈ Ext(T A) ∩ Ab⇀a, f̄ behaves like a

generalized median voter rule on 〈x, y|T A〉, i.e., there exists a fixed ballot

bx,yJ = f̄
(
y
J
, x
N\J

)
∈ 〈x, y|T A〉 for each coalition J ⊆ N , which satisfies

ballot unanimity, bx,yN = y and bx,y∅ = x, and monotonicity, [J ⊂ J ′] ⇒[
bx,yJ �x,y b

x,y
J ′

]
, such that for all P ∈

[
DSP(T A)

]n
, we have

[
r1(Pi) ∈ 〈x, y|T A〉 for all i ∈ N

]
⇒
[
f̄(P ) = max

J⊆N
≺x,y

(
min
j∈J

≺x,y (r1(Pj), b
x,y
J

))]
.

(2) for all x, x′ ∈ Ext(T A) ∩ Aa⇀b and y, y′ ∈ Ext(T A) ∩ Ab⇀a, given x 6= x′ or

y 6= y′, f̄ behaves consistently on 〈x, y|T A〉 and 〈x′, y′|T A〉, i.e., given the

two families of fixed ballots (bx,yJ )J⊆N and (bx
′,y′

J )J⊆N , for all J ⊆ N , we have

[∣∣〈x, y|T A〉 ∩ 〈x′, y′|T A〉 ∩ 〈y, y′|T A〉∣∣ ≤ 1
]
⇒
[∣∣〈x, y|T A〉 ∩ 〈x′, y′|T A〉 ∩ 〈bx,yJ , bx

′,y′

J |T A〉
∣∣ ≤ 1

]
and[∣∣〈x, y|T A〉 ∩ 〈x′, y′|T A〉 ∩ 〈x, x′|T A〉∣∣ ≤ 1

]
⇒
[∣∣〈x, y|T A〉 ∩ 〈x′, y′|T A〉 ∩ 〈bx,yJ , bx

′,y′

J |T A〉
∣∣ ≤ 1

]
.

Since both DSP(T A) and DSH(T A, a, b) are minimally rich, by the tops-only

property of f and the construction of f̄ , condition (1) implies that for all x ∈

Ext(T A)∩Aa⇀b and y ∈ Ext(T A)∩Ab⇀a, f also behaves like a generalized median

voter rule on 〈x, y|T A〉 w.r.t. the fixed ballots (bx,yJ )J⊆N . Hence, bx,yJ = f
(
y
J
, x
N\J

)
for all J ⊆ N .

The claim below shows that by voter 1’s dictatorship on 〈x, y|T A〉 and the def-

inition of DSH(T A, a, b), additional restrictions are embedded in the fixed ballots.

Claim 2: Given x ∈ Ext(T A) ∩ Aa⇀b and y ∈ Ext(T A) ∩ Ab⇀a, we have [1 ∈

J ]⇒
[
bx,yJ ∈ {b, y}

]
and [1 /∈ J ]⇒

[
bx,yJ ∈ {x, a}

]
.

We focus on showing [1 ∈ J ]⇒
[
bx,yJ ∈ {b, y}

]
. The verification for [1 /∈ J ]⇒[

bx,yJ ∈ {x, a}
]

is symmetric.

Fixing a coalition J ⊆ N , let 1 ∈ J . Clearly, J is non-empty. If J = N ,

bx,yJ = y by definition. We next assume J ⊂ N . Consider the profile
(
b, y

J\{1} ,
x

N\J

)
.

Claim 1 first implies f
(
b, y

J\{1} ,
x

N\J

)
= b. Next, along the path 〈b, y|T A〉 =
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〈b, y|GAb⇀a

∼ 〉, similar to statement (iii) of Lemma 9, f
(
b, y

J\{1} ,
x

N\J

)
= b implies

f
(
y, y

J\{1} ,
x

N\J

)
∈ 〈b, y|T A〉. Hence, bx,yJ ∈ 〈b, y|T A〉.

Suppose bx,yJ = z ∈ 〈b, y|T A〉\{b, y}. We induce a two-voter SCF: f̂(Pi, Pj) =

f
(
Pi
J
,
Pj
N\J

)
for all Pi, Pj ∈ DSH(T A, a, b). Clearly, f̂ is well defined, and inher-

its unanimity, tops-onlyness and strategy-proofness from f . Thus, f̂(y, x) =

f
(
y
J
, x
N\J

)
= bx,yJ = z. By the definition of DSH(T A, a, b), we have a prefer-

ence Pj ∈ DSH(T A, a, b) such that r1(Pj) = x and yPjz. Consequently, agent j

will manipulate at f̂ , i.e., f̂(y, y) = yPjz = f̂(y, Pj). Therefore, bx,yJ ∈ {b, y}. This

completes the verification of the claim.

Claim 3: Given x ∈ Ext(T A) ∩ Aa⇀b and y ∈ Ext(T A) ∩ Ab⇀a, there exist

W y ⊆ N and W x ⊆ N with 1 ∈ W y ∩W x such that the following two statements

hold: for all J ⊆ N ,

(i) given 1 ∈ J , [W y ⊆ J ]⇒ [bx,yJ = y] and [W y * J ]⇒ [bx,yJ = b], and

(ii) given 1 /∈ J , [W x ⊆ J ∪ {1}]⇒ [bx,yJ = x] and [W y * J ∪ {1}]⇒ [bx,yJ = a].

The two statements are symmetric, and we hence focus on showing the first

one. Clearly, bx,y{1} ∈ {b, y} by Claim 2. If bx,y{1} = y, monotonicity implies bx,yJ = y

for all J ⊆ N with 1 ∈ J . Then, we set W y = {1} to meet statement (i). Next, we

assume bx,y{1} = b. Since bx,yN = y by definition, there exists W y ⊆ N with 1 ∈ W y

such that bx,yW y = y and [1 ∈ J and |J | < |W y|]⇒ [bx,yJ = b]. By monotonicity, we

know that for all J ⊆ N , [W y ⊆ J ] ⇒ [bx,yJ = y]. In the rest of verification, we

consider an arbitrary coalition J ⊆ N such that 1 ∈ J and W y * J .

For notational convenience, let W y = {1, . . . , l, l + 1, . . . , k}, W y\J = {l +

1, . . . , k} and J\W y = {k + 1, . . . , r}. Clearly, W y\J 6= ∅, J = {1, . . . , l, k +

1, . . . , r} and N\J = {l+ 1, . . . , k, r+ 1, . . . , n} 6= ∅. Note that if J\W y = ∅, then

|J | < |W y|, and hence the definition ofW y implies bx,yJ = b. Henceforth, we assume

J\W y 6= ∅. Then, according to f , we induce an SCF: f̂ :
[
DSH(T A, a, b)

]3 → A

such that f̂(Pi, Pj, Pν) = f
(

Pi
{1,...,l} ,

Pj
{k+1,...,r} ,

Pν
N\J

)
for all Pi, Pj, Pν ∈ DSH(T A, a, b).

Clearly, f̂ is well defined and inherits unanimity, tops-onlyness and strategy-

proofness from f .
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We show bx,yJ = b by contradiction. Suppose bx,yJ 6= b. Thus, bx,yJ = y by Claim

2. First, since {1, . . . , l} ⊂ W y, we have f̂(y, x, x) = f
(

y
{1,...,l} ,

x
{k+1,...,r} ,

x
N\J

)
=

bx,y{1,...,l} = b. Then, strategy-proofness implies f̂(y, b, x) = b. Furthermore, since

b̄ ∼ b, strategy-proofness implies f̂(y, b̄, x) ∈ {b, b̄}.

Second, we have f̂(y, y, x) = f
(

y
{1,...,l} ,

y
{k+1,...,r} ,

x
N\J

)
= f

(
y
J
, x
N\J

)
= bx,yJ = y.

According to the path 〈y, b̄|T A〉 = 〈y, b̄|GAb⇀a

∼ 〉, similar to statement (iii) of Lemma

9, f̂(y, y, x) = y implies f̂(y, b̄, x) ∈ 〈y, b̄|T A〉. Therefore, we have f̂(y, b̄, x) ∈

{b, b̄} ∩ 〈y, b̄|T A〉 = {b̄} and hence f̂(y, b̄, x) = b̄.

Third, since W y ⊆ {1, . . . , l, l + 1, . . . k, r + 1, . . . , n} = {1, . . . , l} ∪ [N\J ],

bx,yW y = y implies bx,y{1,...,l}∪[N\J ] = y by monotonicity. Then, we have f̂(y, x, y) =

f
(

y
{1,...,l} ,

x
{k+1,...,r} ,

y
N\J

)
= bx,y{1,...,l}∪[N\J ] = y. Moreover, according to GA

∼, we have

a path π that connects x and b̄, and excludes y. Then, along the path π, similar

to statement (ii) of Lemma 9, f̂(y, x, y) = y implies f̂(y, b̄, y) = y.

Last, by the definition of DSH(T A, a, b), we have Pν ∈ DSH(T A, a, b) such that

r1(Pv) = x and yPν b̄. Then, voter ν will manipulate at f̂ , i.e., f̂(y, b̄, y) = yPν b̄ =

f̂(y, b̄, Pν). Therefore, the hypothesis bx,yJ = y cannot hold, and hence we have

bx,yJ = b. This completes the verification of the claim.

Claim 4: Given x, x′ ∈ Ext(T A)∩Aa⇀b and y, y′ ∈ Ext(T A)∩Ab⇀a, the following

two statements hold:

(i) Given y 6= y′, we have [bx,yJ = b] ⇔ [bx
′,y′

J = b] and [bx,yJ = y] ⇔ [bx
′,y′

J = y′]

for all J ⊆ N with 1 ∈ J .

(ii) Given x 6= x′, we have [bx,yJ = a]⇔ [bx
′,y′

J = a] and [bx,yJ = x]⇔ [bx
′,y′

J = x′]

for all J ⊆ N with 1 /∈ J .

The two statements are symmetric, and we hence focus on showing the first

one. Let y 6= y′. Given J ⊆ N with 1 ∈ J , we have bx,yJ ∈ {b, y} and bx
′,y′

J ∈ {b, y′}

by Claim 2. Suppose by contradiction that bx,yJ = b and bx
′,y′

J = y′.75 Let y′′ =

Proj
(
b, 〈y, y′|T A〉

)
. Clearly, 〈x, y|T A〉 ∩ 〈x′, y′|T A〉 ∩ 〈y, y′|T A〉 = {y′′}. Then,

condition (2) above implies
∣∣〈x, y|T A〉 ∩ 〈x′, y′|T A〉 ∩ 〈b, y′|T A〉∣∣ =

∣∣〈x, y|T A〉 ∩
75The verification for the case bx,yJ = y and bx

′,y′

J = b is symmetric, and we hence omit it.
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〈x′, y′|T A〉 ∩ 〈bx,yJ , bx
′,y′

J |T A〉
∣∣ ≤ 1, which contradicts the fact b, b̄ ∈ 〈x, y|T A〉 ∩

〈x′, y′|T A〉 ∩ 〈b, y′|T A〉. Therefore, we have [bx,yJ = b] ⇔ [bx
′,y′

J = b] and [bx,yJ =

y]⇔ [bx
′,y′

J = y′] for all J ⊆ N . This completes the verification of the claim.

Now, by combining Claims 2, 3 and 4, we induce two coalitions Wb⇀a ⊆ N

and Wa⇀b ⊆ N with 1 ∈ Wb⇀a ∩ Wa⇀b such that for all x ∈ Ext(T A) ∩ Aa⇀b,

y ∈ Ext(T A) ∩ Ab⇀a and J ⊆ N , we have that

• given 1 ∈ J , [Wb⇀a ⊆ J ]⇒ [bx,yJ = y] and [Wb⇀a * J ]⇒ [bx,yJ = b], and

• given 1 /∈ J , [Wa⇀b ⊆ J ∪ {1}]⇒ [bx,yJ = x] and [Wa⇀b * J ∪ {1}]⇒ [bx,yJ = a].

We call Wb⇀a and Wa⇀b winning coalitions.

For the next three claims, we fix an arbitrary preference profile (P1, P−1) ∈[
DSH(T A, a, b)

]n
with r1(P1) ∈ Ab⇀a\{b} and let f(P1, P−1) = z. Clearly, strategy-

proofness implies f(z, P−1) = z. For notational convenience, let zi = r1(Pi) for

all i ∈ N and Wb⇀a = {1, . . . , k}. We fix arbitrary x ∈ Ext(T A) ∩ Aa⇀b and

y ∈ Ext(T A) ∩Ab⇀a such that z1 ∈ 〈b, y|T A〉. Then, we have the path 〈x, y|T A〉.

Furthermore, let yi = Proj(zi, 〈x, y|T A〉) for all i ∈ N . Clearly, z1 = y1, and

〈zi, yi|T A〉 is a path in GA
∼ connecting zi and yi for all i ∈ N\{1}, which may be

a null path when zi = yi. We use the following diagram to illustrate.

•
x

•
ā

•
a

•
b
•
b̄

•
y

•
y4

•z4

•
y1

z1 •
y2

•
z2

•
y3

•z3

•
y5

z5

Figure 14: Given Wb⇀a = {1, 2, 3, 4, 5}, the peaks z1, z2, z3, z4, z5 and their pro-

jections y1, y2, y3, y4, y5 on 〈x, y|T A〉

By Claim 1, we know f(b, P−1) = b. Then, according to the path 〈b, z1|T A〉 =

〈b, z1|GAb⇀a

∼ 〉, similar to statement (iii) of Lemma 9, f(b, P−1) = b implies z =

f(z1, P−1) ∈ 〈b, z1|T A〉. Note that b̄ ∈ 〈b, z1|T A〉 and b̄ is the unique neighbor of b

in T Ab⇀a = GAb⇀a

∼ . Then, we have two cases: z ∈ 〈b̄, z1|T A〉 and z = b.

Claim 5: We have f(y1, . . . , yk, yk+1, . . . , yn) = z.
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Since y1 = z1, f(y1, P−1) = f(z1, P−1) = z. We next show f(y1, y2, P−{1,2}) = z.

Evidently, either z = y2 or z 6= y2 holds. If z = y2, strategy-proofness im-

plies f(y1, y2, P−{1,2}) = z. If z 6= y2, given z ∈ 〈b, z1|T A〉 ⊂ 〈x, y|T A〉, y2 =

Proj(z2, 〈x, y|T A〉) implies z /∈ 〈z2, y2|T A〉. Then, along the path 〈z2, y2|T A〉, sim-

ilar to statement (ii) of Lemma 9, f(y1, z2, P−{1,2}) = f(y1, P2, P−{1,2}) = z implies

f(y1, y2, P−{1,2}) = z. By repeatedly applying this argument from voter 3 to n, we

eventually have f(y1, . . . , yk, yk+1, . . . , yn) = z. This completes the verification of

the claim.

Claim 6: Given z ∈ 〈b̄, z1|T A〉, we have z = Proj
(
b, T Γ(PWb⇀a)

)
.

We first show that yi ∈ 〈z, y|T A〉 for all i ∈ Wb⇀a. Suppose not, i.e., there

exists i ∈ Wb⇀a such that yi ∈ 〈x, z|T A〉\{z}. Thus, yi ≺x,y z which fur-

ther implies that for all J ⊆ N with i ∈ J , min≺x,y
j∈J

(
yj, b

x,y
J

)
�x,y yi ≺x,y z.

Moreover, for all J ⊆ N with i /∈ J , we know either 1 /∈ J which implies

min≺x,y
j∈J

(
yj, b

x,y
J

)
�x,y bx,yJ �x,y a ≺x,y z, or 1 ∈ J and Wb⇀a * J which imply

min≺x,y
j∈J

(
yj, b

x,y
J

)
�x,y bx,yJ = b ≺x,y z. Overall, we have min≺x,y

j∈J

(
yj, b

x,y
J

)
≺x,y z

for all J ⊆ N . Consequently, we induce the following contradiction:

z = f(y1, . . . , yk, yk+1, . . . , yn) = max
J⊆N

≺x,y
(

min
j∈J

≺x,y (yj, bx,yJ )) ≺x,y z.
Therefore, yi ∈ 〈z, y|T A〉 for all i ∈ Wb⇀a.

We next show that there exists i ∈ Wb⇀a such that yi = z. Suppose not, i.e.,

yi 6= z for all i ∈ Wb⇀a. Thus, yi ∈ 〈z, y|T A〉\{z} for all i ∈ Wb⇀a. Conse-

quently, we have z ≺x,y min≺
x,y

j∈Wb⇀a

(
yj, b

x,y
Wb⇀a

)
, which further induces the following

contradiction:

z ≺x,y min≺
x,y

j∈Wb⇀a

(
yj, b

x,y
Wb⇀a

)
�x,y max

J⊆N
≺x,y

(
min
j∈J

≺x,y (yj, bx,yJ ))
= f(y1, . . . , yk, yk+1, . . . , yn) = z.

Therefore, there exists i ∈ Wb⇀a such that yi = z.

Now, we have ∩i∈Wb⇀a〈b, zi|T A〉 = ∩i∈Wb⇀a

[
〈b, yi|T A〉 ∪

[
〈yi, zi|T A〉\{yi}

]]
=[

∩i∈Wb⇀a〈b, yi|T A〉
]
∪
[
∩i∈Wb⇀a

[
〈yi, zi|T A〉\{yi}

]]
= 〈b, z|T A〉,76 which further

76First, note that ∩i∈Wb⇀a〈b, yi|T A〉 = 〈b, z|T A〉. Second, since 1 ∈ Wb⇀a and z1 = y1, we

have 〈y1, z1|T A〉\{y1} = ∅.
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implies Proj
(
b, T Γ(PWb⇀a)

)
= z. This completes the verification of the claim.

Claim 7: Given z = b, we have z = Proj
(
b, T Γ(PWb⇀a)

)
.

Clearly, y1 = z1 ∈ Ab⇀a\{b} implies b ≺x,y y1. We first show Wb⇀a 6= {1}.

Suppose by contradiction that Wb⇀a = {1}. Thus, we have bx,y{1} = y and induce

the following contradiction:

y1 = min≺
x,y (

y1, b
x,y
{1}
)
�x,y max

J⊆N
≺x,y

(
min
j∈J

≺x,y (yj, bx,yJ ))
= f(y1, . . . , yk, yk+1, . . . , yn) = z = b.

Therefore, Wb⇀a 6= {1}.

Clearly, we have Proj
(
b, T Γ(PWb⇀a)

)
= b if and only if b is included in the

tree T Γ(PWb⇀a). Furthermore, given z1 ∈ Ab⇀a\{b}, we know that b is included

in the tree T Γ(PWb⇀a) if and only if there exists i ∈ Wb⇀a\{1} such that zi ∈

Aa⇀b ∪ 〈a, b|T A〉. Hence, in the rest of verification, we show that there exists

i ∈ Wb⇀a\{1} such that zi ∈ Aa⇀b ∪ 〈a, b|T A〉. Suppose not, i.e., zi ∈ Ab⇀a\{b}

for all i ∈ Wb⇀a\{1}. This implies yi ∈ 〈b̄, y|T A〉 for all i ∈ Wb⇀a. Consequently,

we induce

b̄ �x,y min≺
x,y

j∈Wb⇀a

(
yj, b

x,y
Wb⇀a

)
�x,y max

J⊆N
≺x,y

(
min
j∈J

≺x,y (yj, bx,yJ ))
= f(y1, . . . , yk, yk+1, . . . , yn) = z = b,

which contradicts the fact b ≺x,y b̄. Therefore, there exists i ∈ Wb⇀a\{1} such

that zi ∈ Aa⇀b ∪ 〈a, b|T A〉, as required. This completes the verification of the

claim.

Overall, Claims 6 and 7 imply that for P ∈
[
DSH(T A, a, b)

]n
with r1(P1) ∈

Ab⇀a\{b}, f(P ) = Proj
(
b, T Γ(PWb⇀a)

)
. Symmetrically, we can show that for

P ∈
[
DSH(T A, a, b)

]n
with r1(P1) ∈ Aa⇀b\{a}, f(P ) = Proj

(
a, T Γ(PWa⇀b)

)
. This

proves Proposition 3.
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G Other Clarifications

G.1 Clarification 1

Given the semi-single-peaked domain DSSP(T A, x̄), we show that DSSP(T A, x̄) in-

cludes a pair of completely reversed preferences if and only if |NA(x̄)| ≤ 2.

(Sufficiency) Since |NA(x̄)| ≤ 2, we have a path (x1, . . . , xv) in T A such that

(i) x̄ = xk∗ for some 1 ≤ k∗ ≤ v, (ii) x1, xv ∈ Ext(T A) and (iii) [1 < k∗ < v] ⇒

[NA(x̄) = {xk∗−1, xk∗+1}].

Given k∗ = 1, since x̄ = x1 ∈ Ext(T A), we by definition have a preference

Pi ∈ DSSP(T A, x1) such that r1(Pi) = xv and rm(Pi) = x1. Next, we construct

a linear order P ′i that is a complete reversal of Pi. Since r1(P ′i ) = x1, it is true

that P ′i ∈ DSSP(T A, x1). Symmetrically, if k∗ = v, we also have two completely

reversed preferences in DSSP(T A, x̄). Last, let 1 < k∗ < v. Since NA(x̄) =

{xk∗−1, xk∗+1}, it is natural that xk∗−1 and xk∗ are two thresholds in T A, and xk∗

and xk∗+1 are two thresholds in T A. Then, we identify the two subsets Axk∗−1⇀xk∗

and Axk∗+1⇀xk∗ . Note that xk∗ /∈ Axk∗−1⇀xk∗ and xk∗ /∈ Axk∗+1⇀xk∗ . Moreover,

since NA(x̄) = {xk∗−1, xk∗+1}, it is true that Axk∗−1⇀xk∗ ∩ Axk∗+1⇀xk∗ = ∅ and

Axk∗−1⇀xk∗ ∪{xk∗}∪Axk∗+1⇀xk∗ = A. Now, pick two arbitrary preferences Pi, P
′
i ∈

DSSP(T A, x̄) such that r1(Pi) = x1 and r1(P ′i ) = xv. Then, we construct two linear

orders: P̂i and P̂ ′i over A such that (i) for all x ∈ Axk∗−1⇀xk∗ , y ∈ Axk∗+1⇀xk∗ ,

xP̂ixk∗ and xk∗P̂iy; and yP̂ ′ixk∗ and xk∗P̂
′
ix, (ii) P̂i and Pi agree on the relative

rankings over Axk∗−1⇀xk∗ , i.e., for all x, y ∈ Axk∗−1⇀xk∗ , [xP̂iy] ⇔ [xPiy], and

P̂i and P ′i completely disagree on the relative rankings over Axk∗+1⇀xk∗ , i.e., for

all x, y ∈ Axk∗+1⇀xk∗ , [xP̂iy] ⇔ [yP ′ix], and (iii) P̂ ′i and P ′i agree on the relative

rankings over Axk∗+1⇀xk∗ , i.e., for all x, y ∈ Axk∗+1⇀xk∗ , [xP̂ ′iy] ⇔ [xP ′iy], and P̂ ′i

and Pi completely disagree on the relative rankings over Axk∗−1⇀xk∗ , i.e., for all

x, y ∈ Axk∗−1⇀xk∗ , [xP̂ ′iy]⇔ [yPix]. It is easy to show that P̂i and P̂ ′i are complete

reversals and both are semi-single-peaked on T A w.r.t. x̄, i.e., DSSP(T A, x̄).

(Necessity) Let Pi, P
′
i ∈ DSSP(T A, x̄) be two completely reversed preferences.

We assume w.l.o.g. that r1(Pi) = a1 and r1(P ′i ) = am. We first show that
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x̄ is included in the path between a1 and am in T A. Suppose not, i.e., x̄ /∈

〈a1, am|T A〉. We identify x̂ = Proj(x̄, 〈a1, am|T A〉). Clearly, x̂ ∈ 〈a1, x̄|T A〉 and

x̂ ∈ 〈am, x̄|T A〉. Consequently, the definition of DSSP(T A, x̄) implies x̂Pix̄ and

x̂P ′i x̄, which contradict the hypothesis that Pi and P ′i are complete reversals.

Therefore, x̄ ∈ 〈a1, am|T A〉.

Now, we show |NA(x̄)| ≤ 2. Suppose by contradiction |NA(x̄)| > 2. Then,

there exists x ∈ A such that x ∈ NA(x̄) and x /∈ 〈a1, am|T A〉. Thus, x̄ ∈ 〈a1, x|T A〉

and x̄ ∈ 〈am, x|T A〉. Consequently, the definition of DSSP(T A, x̄) implies x̄Pix and

x̄P ′ix, which contradict the hypothesis that Pi and P ′i are complete reversals.

Therefore, |NA(x̄)| ≤ 2.

G.2 Clarification 2

Given a path-connected domain D ⊆ DSSP(T A, x̄), we show that D satisfies extreme-

vertex symmetry if and only if either x̄ /∈ Ext(T A), or x̄ ∈ Ext(T A) and D ⊆

DSSP(T A, x̄) ∩ DSSP(T A, x) where NA(x̄) = {x}.

(Sufficiency) First, let x̄ /∈ Ext(T A). Then, semi-single-peakedness on T A

w.r.t. x̄ implies |S(Dz)| = 1 for all z ∈ Ext(T A). Next, let x̄ ∈ Ext(T A) and

D ⊆ DSSP(T A, x̄)∩DSSP(T A, x) whereNA(x̄) = {x}. Clearly, x /∈ Ext(T A). Then,

semi-single-peakedness on T A w.r.t. x implies |S(Dz)| = 1 for all z ∈ Ext(T A).

Overall, |S(Dz)| = 1 for all z ∈ Ext(T A). Last, since D ⊆ DSSP(T A, x̄) is path-

connected, it is true that GA
∼ = T A. Then, we have |S(Dz)| = 1 for all z ∈

Ext(T A) = Ext(GA
∼). Therefore, extreme-vertex symmetry is vacuously satisfied.

(Necessity) Let the path-connected domain D ⊆ DSSP(T A, x̄) satisfy extreme-

vertex symmetry. Clearly, GA
∼ = T A. Note that either x̄ /∈ Ext(T A) or x̄ ∈

Ext(T A) holds. If x̄ /∈ Ext(T A), the verification is completed. Henceforth, let

x̄ ∈ Ext(T A) and NA(x̄) = {x}. Clearly, GA
∼ = T A implies x̄ ∈ Ext(GA

∼) and

x ∈ S(Dx̄). Given the hypothesis D ⊆ DSSP(T A, x̄), to prove D ⊆ DSSP(T A, x̄) ∩

DSSP(T A, x), it suffices to show D ⊆ DSSP(T A, x).

Fix an arbitrary preference Pi ∈ D. Either r1(Pi) 6= x̄ or r1(Pi) = x̄ holds.

First, let r1(Pi) 6= x̄. Then, x̄ ∈ Ext(T A) andNA(x̄) = {x} imply x ∈ 〈r1(Pi), x̄|T A〉.
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Hence, semi-single-peakedness on T A w.r.t. x̄ implies that Pi is also semi-single-

peaked on T A w.r.t. x. Second, let r1(Pi) = x̄. According to x̄ ∈ Ext(T A) and

NA(x̄) = {x}, to show that Pi is semi-single-peaked on T A w.r.t. x, it suffices

to show r2(Pi) = x. Suppose not, i.e., r2(Pi) 6= x. Thus, |S(Dx̄)| > 1, and then

extreme-vertex symmetry implies that there exists z ∈ S(Dx̄) such that x̄ ∈ S(Dz)

and z 6= x. Clearly, z 6= x̄ and x ∈ 〈z, x̄|T A〉. Then, by semi-single-peakedness on

T A w.r.t. x̄, we have xP ′i x̄ for all P ′i ∈ Dz, which implies x̄ /∈ S(Dz). Contradic-

tion! Therefore, we have r2(Pi) = x, as required.

G.3 Clarification 3

Given the semi-hybrid domain DSH(T A, a, b), where |〈a, b|T A〉| ≥ 3, we show that

DSH(T A, a, b) includes a pair of completely reversed preferences if and only if we

have [Aa⇀b 6= {a}]⇒ [a ∈ Ext(T Aa⇀b)] and [Ab⇀a 6= {b}]⇒ [b ∈ Ext(T Ab⇀a)].

(Sufficiency) If Aa⇀b = {a} and Ab⇀a = {b}, then DSH(T A, a, b) = P includes

a pair of completely reversed preference. If Aa⇀b = {a} and Ab⇀a 6= {b}, we

know that b has a unique neighbor in the line 〈a, b|T A〉, and [Ab⇀a 6= {b}]⇒ [b ∈

Ext(T Ab⇀a)] implies that b has a unique neighbor in the subtree T Ab⇀a . Since T A

is a union of the line 〈a, b|T A〉 and the subtree T Ab⇀a , it is true that |NA(b)| = 2.

Moreover, since Aa⇀b = {a}, it is true that DSSP(T A, b) ⊂ DSH(T A, a, b). Then,

the sufficiency part of Clarification 1 implies that DSSP(T A, b) contains a pair

of completely reversed preferences. Therefore, DSH(T A, a, b) includes a pair of

completely reversed preferences. Symmetrically, if Aa⇀b 6= {a} and Ab⇀a = {b},

DSH(T A, a, b) includes a pair of completely reversed preferences.

Last, we consider the situation that Aa⇀b 6= {a} and Ab⇀a 6= {b}. Thus, we

have a ∈ Ext(T Aa⇀b) and b ∈ Ext(T Ab⇀a). Let ā be the unique neighbor of a in

the subtree T Aa⇀b and b̄ be the unique neighbor of b in the subtree T Ab⇀a . Note

that DSP(T A) ⊂ DSH(T A, a, b). We fix two arbitrary alternatives x, y ∈ Ext(T A)

such that x ∈ Aa⇀b and y ∈ Ab⇀a. Clearly, x /∈ {a, b} and y /∈ {a, b}. According

to DSP(T A), we fix two single-peaked preferences Pi and P ′i such that r1(Pi) = x

and r1(P ′i ) = y. Clearly, Pi and P ′i completely disagree on the relative rankings
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over 〈a, b|T A〉, i.e., for all z, z′ ∈ 〈a, b|T A〉, [zPiz
′] ⇔ [z′P ′iz]. Now, we construct

two linear orders P̂i and P̂ ′i over A such that the following three conditions are

satisfied: (i) for all z ∈ Aa⇀b\{a}, z′ ∈ 〈a, b|T A〉 and z′′ ∈ Ab⇀a\{b}, zP̂iz′, z′P̂iz′′,

z′′P̂ ′iz
′ and z′P̂ ′iz, (ii) P̂i and Pi agree on the relative rankings over Aa⇀b∪〈a, b|T A〉,

and P̂i and P ′i completely disagree on the relative rankings over Ab⇀a\{b}, and

(iii) P̂ ′i and P ′i agree on the relative rankings over 〈a, b|T A〉 ∪Ab⇀a, and P̂ ′i and Pi

completely disagree on the relative rankings over Aa⇀b\{a}. By construction, it is

easy to show that P̂i and P̂ ′i are (a, b)-semi-hybrid on T A and complete reversals.

(Necessity) Let Pi, P
′
i ∈ DSH(T A, a, b) be two completely reversed preferences.

We assume w.l.o.g. that r1(Pi) = a1 and r1(P ′i ) = am. Let Aa⇀b 6= {a}.

Thus, either a1 ∈ Aa⇀b\{a} or am ∈ Aa⇀b\{a} holds. We assume w.l.o.g. that

a1 ∈ Aa⇀b\{a}. Then, it must be the case that am ∈ A\Aa⇀b. Suppose by con-

tradiction that a /∈ Ext(T Aa⇀b). Then, we have distinct x, y ∈ Aa⇀b such that

(x, a) ∈ EAa⇀b and (y, a) ∈ EAa⇀b . Immediately, the definition of DSH(T A, a, b)

implies aP ′ix and aP ′iy. Clearly, either x /∈ 〈a1, a|T A
a⇀b〉 or y /∈ 〈a1, a|T A

a⇀b〉

holds. We assume w.l.o.g. that x /∈ 〈a1, a|T A
a⇀b〉. Then, (x, a) ∈ EAa⇀b implies

Proj(x, 〈a1, a|T A
a⇀b〉) = a, and hence the definition of DSH(T A, a, b) implies aPix,

which contradicts the hypothesis that Pi and P ′i are complete reversals. Therefore,

a ∈ Ext(T Aa⇀b). Symmetrically, we have [Ab⇀a 6= {b}]⇒ [b ∈ Ext(T Ab⇀a)].

G.4 Clarification 4

Suppose by contradiction that there exist a tree T̂ A and thresholds â, b̂ ∈ A such

that D ⊆ DSH(T̂ A, â, b̂) and 〈â, b̂|T̂ A〉 ⊂ 〈a2, a6|LA〉 = {a2, a3, a4, a5, a6}. Thus,

â, b̂ ∈ {a2, a3, a4, a5, a6}. Let Ââ⇀b̂ = {x ∈ A : â ∈ 〈x, b̂|T̂ A〉} and Âb̂⇀â = {x ∈

A : b̂ ∈ 〈x, â|T̂ A〉}. Note that either a1 ∈ Ââ⇀b̂\{â} or a1 ∈ Âb̂⇀â\{b̂} holds. We

assume w.l.o.g. that a1 ∈ Ââ⇀b̂\{â}.

Then, according to path-connectedness and (â, b̂)-semi-hybridness on T̂ A, we

know that GA
∼ is a union of the subtree GÂâ⇀b̂

∼ = T̂ Ââ⇀b̂ , the connected graph

G〈â,b̂|T̂
A〉

∼ and the subtree GÂb̂⇀â

∼ = T̂ Âb̂⇀â .

First, since Ââ⇀b̂ 6= {â} and |〈â, b̂|T̂ A〉| ≥ 2, it is true that â has at least two
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neighbors in GA
∼. Therefore, â 6= a3 and hence â ∈ {a2, a4, a5, a6}. Next, we show

â = a2. Suppose â = a6. Since a1 ∈ Ââ⇀b̂, the path 〈a1, a6|GA
∼〉 = (a1, a2, a4, a5, a6)

must be included in GÂâ⇀b̂

∼ = T̂ Ââ⇀b̂ . Moreover, since a3 ∼ a4, a3 must be

contained in Ââ⇀b̂ as well. Hence, {a1, a2, a3, a4, a5, a6} ⊆ Ââ⇀b̂ and the sub-

graph G{a1,a2,a3,a4,a5,a6}
∼ of GA

∼ in Figure 4 is included in GÂâ⇀b̂

∼ = T̂ Ââ⇀b̂ . Thus,

it must be the case that Proj(a3, 〈a1, a6|T̂ Â
â⇀b̂〉) = Proj(a3, 〈a1, a6|GA

∼〉) = a4.

Consequently, (â, b̂)-semi-hybridness on T̂ A implies that a4 ranks above a3 in

every preference of Da1 , which contradicts preference P1 of Table 1. Suppose

â = a5. Since a1 ∈ Ââ⇀b̂, the path 〈a1, a5|GA
∼〉 = (a1, a2, a4, a5) must be in-

cluded in GÂâ⇀b̂

∼ = T̂ Ââ⇀b̂ . Moreover, since a3 ∼ a4, a3 must be contained in

Ââ⇀b̂ as well. Hence, {a1, a2, a3, a4, a5} ⊆ Ââ⇀b̂ and the subgraph G{a1,a2,a3,a4,a5}
∼

of GA
∼ in Figure 4 is included in GÂâ⇀b̂

∼ = T̂ Ââ⇀b̂ . Thus, it must be the case

that Proj(a3, 〈a1, a5|T̂ A〉) = Proj(a3, 〈a1, a5|GA
∼〉) = a4. Consequently, (â, b̂)-semi-

hybridness on T̂ A implies that a4 ranks above a3 in every preference of Da1 , which

contradicts preference P1 of Table 1. Last, suppose â = a4. Recall that D in-

cludes two completely reversed preference. Then, a1 ∈ Ââ⇀b̂\{â} implies that a4

has a unique neighbor in T̂ Ââ⇀b̂ = GÂâ⇀b̂

∼ . Hence, T̂ Ââ⇀b̂ must be identical to the

line 〈a1, a4|GA
∼〉 = (a1, a2, a4). Thus, a3 /∈ Ââ⇀b̂, and (â, b̂)-semi-hybridness on

T̂ A implies that a4 ranks above a3 in every preference of Da1 , which contradicts

preference P1 of Table 1. Therefore, it must be the case that â = a2.

Now, according to the adjacency graph GA
∼ of Figure 4, we can infer Ââ⇀b̂ =

{a1, a2}. Recall 〈â, b̂|T̂ A〉 ⊂ {a2, a3, a4, a5, a6}. Then, it must be the case that

b̂ 6= a2 and a7 ∈ Âb̂⇀â\{b̂}. Consequently, symmetric to â, b̂ also has two

neighbors in GA
∼, which further implies b̂ 6= a3. Therefore, b̂ ∈ {a4, a5, a6}.

We will induce a contradiction in each case. Suppose b̂ = a6. We first infer

according to the adjacency graph GA
∼ of Figure 4 that Âb̂⇀â = {a6, a7}. Con-

sequently, Ââ⇀b̂ = {a1, a2} = Aa2⇀a6 and Âb̂⇀â = {a6, a7} = Aa6⇀a2 imply

〈â, b̂|T̂ A〉 = 〈a2, a6|LA〉. Contradiction! Suppose b̂ = a5. Since a7 ∈ Âb̂⇀â,

the path 〈a5, a7|GA
∼〉 = (a5, a6, a7) must be included in GÂb̂⇀â

∼ = T̂ Âb̂⇀â . Then,

(â, b̂)-semi-hybridness on T̂ A implies that a5 ranks above a6 in every preference of
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Da2 , which contradicts preference P5 of Table 1. Suppose b̂ = a4. Since a7 ∈ Âb̂⇀â,

the path 〈a4, a7|GA
∼〉 = (a4, a5, a6, a7) in GA

∼ must be included in GÂb̂⇀â

∼ = T̂ Âb̂⇀â .

Then, (â, b̂)-semi-hybridness on T̂ A implies that a4 ranks above a5 in every pref-

erence of Da1 , which contradicts preference P2 of Table 1.

In conclusion, there exist no tree T̂ A and thresholds â and b̂ such that D ⊆

DSH(T̂ A, â, b̂) and 〈â, b̂|T̂ A〉 ⊂ 〈a2, a6|LA〉.

G.5 Clarification 5

Let domain D ⊆ DSH(T A, a, b) be path-connected and satisfy extreme-vertex sym-

metry. Moreover, let D be non-trivial on 〈a, b|T A〉. We show that D is an (a, b)-

semi-hybrid domain on T A.

Since D ⊆ DSH(T A, a, b) is path-connected, we know that GA
∼ is a union of the

subtree T Aa⇀b , the connected graph G〈a,b|T
A〉

∼ and the subtree T Ab⇀a .

First, we show that D satisfies condition (1) of Definition 4. Suppose by con-

tradiction that |〈a, b|T A〉| = 2. Thus, 〈a, b|T A〉 = {a, b}. Since G〈a,b|T
A〉

∼ is a

connected graph, it is true that E 〈a,b|T A〉∼ = {(a, b), (b, a)}. Hence, Ext(G〈a,b|T
A〉

∼ ) =

{a, b}. Consequently, we have maxPi(〈a, b|T A〉\{a}) = maxPi({b}) = b for all

Pi ∈ D with r1(Pi) ∈ Aa⇀b and maxP
′
i (〈a, b|T A〉\{b}) = maxP

′
i ({a}) = a for all

P ′i ∈ D with r1(P ′i ) ∈ Ab⇀a, which respectively violate conditions (ii) and (iii) of

Definition 5. Therefore, |〈a, b|T A〉| ≥ 3.

Second, we show that D satisfies condition (3) of Definition 4. Suppose by

contradiction that there exists a tree T̂ A such that either D ⊆ DSSP(T̂ A, a) or

D ⊆ DSSP(T̂ A, b) holds. We assume w.l.o.g. that D ⊆ DSSP(T̂ A, a). Since D is

path-connected, it is true that GA
∼ = T̂ A. Recall that GA

∼ is a union of the subtree

GAa⇀b

∼ = T Aa⇀b , the connected graph G〈a,b|T
A〉

∼ and the subtree GAb⇀a

∼ = T Ab⇀a .

Then, GA
∼ = T̂ A implies T̂ Aa⇀b = T Aa⇀b = GAa⇀b

∼ , T̂ Ab⇀a = T Ab⇀a = GAb⇀a

∼ and

G〈a,b|T
A〉

∼ = T̂ 〈a,b|T A〉 is a subtree nested in T̂ A. Thus, T̂ A = GA
∼ is a union of

GAa⇀b

∼ = T̂ Aa⇀b = T Aa⇀b , G〈a,b|T A〉∼ = T̂ 〈a,b|T A〉 and GAb⇀a

∼ = T̂ Ab⇀a = T Ab⇀a .

We consider two cases: (i) T̂ 〈a,b|T A〉 has an extreme vertex x which is nei-

ther a nor b, and (ii) T̂ 〈a,b|T A〉 has exactly two extreme vertices which are a
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and b. In the first case, x ∈ Ext(T̂ 〈a,b|T A〉)\{a, b} = Ext(G〈a,b|T
A〉

∼ )\{a, b} im-

plies x ∈ Ext(GA
∼) = Ext(T̂ A). On the one hand, since x ∈ Ext(T̂ A) and

x 6= a, semi-single-peakedness on T̂ A w.r.t. a implies |S(Dx)| = 1. On the

other hand, since x ∈ Ext(G〈a,b|T
A〉

∼ )\{a, b}, condition (i) of Definition 5 im-

plies |S(Dx)| > 1. Contradiction! In the second case, we know that G〈a,b|T
A〉

∼ =

T̂ 〈a,b|T A〉 is a line which contains all alternatives of 〈a, b|T A〉 and has the extreme

vertices a and b. For notational convenience, let T̂ 〈a,b|T A〉 = (z1, . . . , zη−1, zη)

where z1 = a and zη = b. Since T̂ A is a union of the subtree T Aa⇀b , the line

T̂ 〈a,b|T A〉 = (z1, . . . , zη−1, zη) and the subtree T Ab⇀a , we know that for all Pi ∈ D

with r1(Pi) ∈ Ab⇀a and 1 ≤ k < η − 1, it is true that zk, zη−1 ∈ 〈r1(Pi), a|T̂ A〉

and zη−1 ∈ 〈r1(Pi), zk|T̂ A〉. Consequently, semi-single-peakedness on T̂ A w.r.t. a

implies zη−1 = maxPi({z1, . . . , zη−1}) = maxPi(〈a, b|T A〉\{b}) for all Pi ∈ D with

r1(Pi) ∈ Ab⇀a, which contradicts condition (iii) of Definition 5. Therefore, there

exists no tree T̂ A such that D ⊆ DSSP(T̂ A, a) or D ⊆ DSSP(T̂ A, b).

Last, we show that D satisfies condition (2) of Definition 4. Suppose by

contradiction that there exists a tree T̂ A and thresholds â, b̂ ∈ A such that

D ⊆ DSH(T̂ A, â, b̂) and 〈â, b̂|T̂ A〉 ⊂ 〈a, b|T A〉. Let Ââ⇀b̂ = {x ∈ A : â ∈ 〈x, b̂|T̂ A〉}

and Âb̂⇀â = {x ∈ A : b̂ ∈ 〈x, â|T̂ A〉}. Since 〈â, b̂|T̂ A〉 ⊂ 〈a, b|T A〉, we have

x ∈ 〈a, b|T A〉\〈â, b̂|T̂ A〉. We assume w.l.o.g. that x ∈ Ââ⇀b̂. On the one hand, by

the sufficiency part of the Auxilliary Proposition, we know that every strategy-

proof rule defined on D behaves like a dictatorship on 〈a, b|T A〉. On the other

hand, according to the contradictory hypothesis D ⊆ DSH(T̂ A, â, b̂), by the verifi-

cation of Claim 3 in the proof of Lemma 24, we know that the following SCF:

f(P1, P2) =


r1(P1) if r1(P1) ∈ 〈â, b̂|T̂ A〉,

Proj
(
â, 〈r1(P1), r1(P2)|T̂ A〉

)
if r1(P1) ∈ Ââ⇀b̂\{â},

Proj
(
b̂, 〈r1(P1), r1(P2)|T̂ A〉

)
if r1(P1) ∈ Âb̂⇀â\{b̂}.

is a strategy-proof rule on D. Clearly, voter 1 by construction dictates on 〈â, b̂|T̂ A〉 ⊂

〈a, b|T A〉. Recall x ∈ 〈a, b|T A〉 and â ∈ 〈a, b|T A〉. According to x ∈ Ââ⇀b̂

and â ∈ 〈â, b̂|T̂ A〉, given P1 ∈ Dx and P2 ∈ Dâ, the construction of f implies

f(P1, P2) = Proj
(
â, 〈r1(P1), r1(P2)|T̂ A〉

)
= â 6= r1(P1). This indicates that voter
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1 does not dictate on {x, â}, and hence does not dictate on 〈a, b|T A〉. Contra-

diction! Therefore, there exist no tree T̂ A and thresholds â, b̂ ∈ A such that

D ⊆ DSH(T̂ A, â, b̂) and 〈â, b̂|T̂ A〉 ⊂ 〈a, b|T A〉.

In conclusion, D is an (a, b)-semi-hybrid domain on T A.

G.6 Clarification 6

Fixing a tree T A and two thresholds a, b ∈ A with Aa⇀b = {a} and Ab⇀a = {b}, let

domain D ⊆ DSH(T A, a, b) be path-connected. Thus, 〈a, b|T A〉 = A. We show that

D satisfies the unique seconds property if and only if it violates the non-trivialness

condition on 〈a, b|T A〉.

(Sufficiency) Let the path-connected domain D violate the non-trivialness con-

dition on 〈a, b|T A〉. Thus, it must be the case that Ext(G〈a,b|T
A〉

∼ ) 6= ∅ and there

exist x ∈ Ext(G〈a,b|T A〉∼ ) and y ∈ 〈a, b|T A〉 with (x, y) ∈ E 〈a,b|T A〉∼ such that one of

the following three conditions is satisfied:

(i) x /∈ {a, b} and r2(Pi) = y for all Pi ∈ Dx,

(ii) x = a and r2(Pi) = maxPi(〈a, b|T A〉\{a}) = y for all Pi ∈ D with r1(Pi) ∈

Aa⇀b = {a}, and

(iii) x = b and r2(Pi) = maxPi(〈a, b|T A〉\{b}) = y for all Pi ∈ D with r1(Pi) ∈

Ab⇀a = {b}.

Each of these three conditions implies S(Dx) = {y} and hence |S(Dx)| = 1.

Therefore, domain D satisfies the unique seconds property.

(Necessity) Let the path-connected domain D satisfy the unique second property.

Thus, we have some x ∈ A such that |S(Dx)| = 1. We assume S(Dx) = {y}. Since

D is path-connected, S(Dx) = {y} implies that y is the unique neighbor of x in

GA
∼. Thus, x ∈ Ext(GA

∼) = Ext(G〈a,b|T
A〉

∼ ) and hence Ext(G〈a,b|T
A〉

∼ ) 6= ∅. Clearly,

either x /∈ {a, b}, or x = a, or x = b holds. If x /∈ {a, b}, then S(Dx) = {y}

violates condition (i) of Definition 5. If x = a, then S(Da) = {y} and Aa⇀b = {a}

imply maxPi(〈a, b|T A〉\{a}) = r2(Pi) = y for all Pi ∈ D with r1(Pi) ∈ Aa⇀b,
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which clearly violates condition (ii) of Definition 5. Symmetrically, if x = b, then

S(Db) = {y} and Ab⇀a = {b} imply maxPi(〈a, b|T A〉\{b}) = r2(Pi) = y for all

Pi ∈ D with r1(Pi) ∈ Ab⇀a, which clearly violates condition (iii) of Definition 5.

Therefore, domain D violates the non-trivialness condition on 〈a, b|T A〉.

Moreover, we provide an example of a degenerate semi-hybrid domain that

satisfies the unique seconds property.

Example 5 Let A = {a1, a2, a3, a4}. All 9 preferences of the domain D and the

adjacency graph GA
∼ are respectively specified in Table 4 and Figure 15.

P1 P2 P3 P4 P5 P6 P7 P8 P9

a1 a1 a1 a2 a2 a3 a3 a3 a4

a2 a2 a3 a1 a3 a1 a2 a4 a3

a3 a4 a2 a3 a1 a3 a1 a2 a2

a4 a3 a4 a4 a4 a4 a4 a1 a1

Table 4: Domain D

r
r

r r
a1

a2

a3 a4









J
J
JJ

Figure 15: The adjacency graph GA
∼

First, D is path-connected according to the adjacency graph of Figure 15,

satisfies extreme-vertex property vacuously, i.e., Ext(GA
∼) = {a4} and |S(Da4)| =

1, and includes two completely reversed preferences P1 and P4. Therefore, D is a

rich domain. Second, since |S(Da4)| = 1, D satisfies the unique seconds property.

Last, we observe that the adjacency graph GA
∼ contains a cycle, coincides with the

counterpart adjacency graph of the semi-hybrid domain DSH(LA, a1, a3), and is

strictly included in the counterpart adjacency graph of DSH(LA, a1, a4). Moreover,

since D ⊂ P = DSH(LA, a1, a4) and P2 is excluded by DSH(LA, a1, a3), we infer that

D is an (a1, a4)-semi-hybrid domain on LA, and hence a degenerate semi-hybrid

domain. �
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G.7 Clarification 7

Fixing a tree T A and two thresholds a, b ∈ A, let D ⊆ DSH(T A, a, b) be a rich

domain. We show that every tops-only and strategy-proof rule behaves like a

dictatorship on 〈a, b|T A〉 if and only if D is an (a, b)-semi-hybrid domain on T A.

(Sufficiency) Let D be a rich (a, b)-semi-hybrid domain on T A. First, since

D ⊆ DSH(T A, a, b), by the verification of Claim 4 in the proof of Lemma 24, we

know that the following SCF:

f(P1, P2) =


r1(P1) if r1(P1) ∈ 〈a, b|T A〉,

Proj
(
a, 〈r1(P1), r1(P2)|T A〉

)
if r1(P1) ∈ Aa⇀b\{a},

Proj
(
b, 〈r1(P1), r1(P2)|T A〉

)
if r1(P1) ∈ Ab⇀a\{b},

is a tops-only and strategy-proof rule. Note that f by construction behaves like

a dictatorship on 〈a, b|T A〉, and does not behave like a dictatorship on any non-

empty set that is not included in 〈a, b|T A〉.

Second, by the sufficiency part of Statement (ii) of the Theorem, since D is

a rich (a, b)-semi-hybrid domain on T A, it never admits an invariant, tops-only

and strategy-proof rule. Then, as a rich domain, the proof of the necessity part of

the Theorem implies that D is a (â, b̂)-semi-hybrid domain on some tree T̂ A, and

every tops-only and strategy-proof rule behaves like a dictatorship on 〈â, b̂|T̂ A〉.

Therefore, rule f above must behave like a dictatorship on 〈â, b̂|T̂ A〉, which implies

〈â, b̂|T̂ A〉 ⊆ 〈a, b|T A〉. Last, since D is an (a, b)-semi-hybrid domain on T A, condi-

tion (2) of Definition 4 implies 〈a, b|T A〉 = 〈â, b̂|T̂ A〉. Therefore, every tops-only

and strategy-proof rule behaves like a dictatorship on 〈a, b|T A〉.

(Necessity) Let every tops-only and strategy-proof rule defined on D behave like

a dictatorship on 〈a, b|T A〉.

First, suppose |〈a, b|T A〉| = 2. Then, D ⊆ DSH(T A, a, b) = DSSP(T A, a) ∩

DSSP(T A, b). Consequently, D is semi-single-peaked on T A w.r.t. a, and hence by

the sufficiency part of Statement (i) of the Theorem admits the following invariant,

tops-only and strategy-proof rule: f(P1, P2) = Proj(a, 〈r1(P1), r1(P2)|T A〉) for all

P1, P2 ∈ D. Clearly, rule f does not behave like a dictatorship on 〈a, b|T A〉.
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Contradiction! Therefore, |〈a, b|T A〉| ≥ 3, and hence D satisfies condition (1) of

Definition 4.

Second, suppose that there exist a tree T̂ A and thresholds â, b̂ ∈ A such that

D ⊆ DSH(T̂ A, â, b̂) and 〈â, b̂|T̂ A〉 ⊂ 〈a, b|T A〉. Consequently, the verification of

Claim 4 in the proof of Lemma 24 indicates that D admits a tops-only and strategy-

proof rule that does not behave like a dictatorship on 〈a, b|T A〉. Contradiction!

Therefore, D satisfies condition (2) of Definition 4.

Last, suppose that there exists a tree T̂ A such that either D ⊆ DSSP(T̂ A, a) or

D ⊆ DSSP(T̂ A, b) holds. We assume w.l.o.g. that D ⊆ DSSP(T̂ A, a). Then, by the

sufficiency part of Statement (i) of the Theorem, D admits the following invariant,

tops-only and strategy-proof rule: f(P1, P2) = Proj(a, 〈r1(P1), r1(P2)|T̂ A〉) for all

P1, P2 ∈ D. Clearly, rule f does not behave like a dictatorship on 〈a, b|T A〉.

Contradiction! Therefore, D satisfies condition (3) of Definition 4.

In conclusion, D is an (a, b)-semi-hybrid domain on T A.

G.8 Clarification 8

We explain in detail how Corollary 1 of Bonifacio and Massó (2020) is applied to

establish Proposition 2.

Fix a tree T A and an alternative x̄ ∈ A such that x̄ /∈ NA(x) for any

x ∈ Ext(T A). We fix an anonymous, tops-only and strategy-proof rule f :[
DSSP(T A, x̄)

]n → A.

First, we induce a binary relation � over A such that for all x, y ∈ A, x � y

if and only if x ∈ 〈x̄, y|T A〉. It is easy to show that � is a semilattice, i.e.,

sup�(x, y) uniquely exists for all x, y ∈ A. Clearly, for all x ∈ A\{x̄}, x̄ � x i.e.,

x̄ � x and x 6� x̄. Moreover, it turns out that for all non-empty subset B ⊆ A,

sup�(B) = Proj(x̄, T Γ(B)).

According to the semilattice �, we construct the semilattice single-peaked

domain SSP(�) of Bonifacio and Massó (2020), which contains every linear

order Pi over A satisfying the following condition: given r1(Pi) = x, for all

y, z ∈ A,
[

sup�(x, y) 6= sup�(z, y)
]
⇒ [sup�(x, y)Pi sup�(z, y)]. We next show
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DSSP(T A, x̄) = SSP(�).

Fixing Pi ∈ DSSP(T A, x̄), we show Pi ∈ SSP(�). Let r1(Pi) = x. Given

y, z ∈ A, we know sup�(x, y) = Proj(x̄, 〈x, y|T A〉) = Proj(y, 〈x, x̄|T A〉) ≡ ȳ and

sup�(z, y) = Proj(x̄, 〈z, y|T A〉) = Proj(z, 〈y, x̄|T A〉) ≡ z̄. Assume ȳ 6= z̄, and

we show ȳPiz̄. We consider two cases: y ∈ 〈x, x̄|T A〉 and y /∈ 〈x, x̄|T A〉. If y ∈

〈x, x̄|T A〉, then ȳ = y. Since z̄ = Proj(z, 〈y, x̄|T A〉) ∈ 〈y, x̄|T A〉 = 〈ȳ, x̄|T A〉, we

know ȳ, z̄ ∈ 〈x, x̄|T A〉 and ȳ ∈ 〈x, z̄|T A〉. Consequently, semi-single-peakedness on

T A w.r.t. x̄ implies ȳPiz̄, as required. Next, let y /∈ 〈x, x̄|T A〉. Note that 〈y, x̄|T A〉

is the concatenation of 〈y, ȳ|T A〉 and 〈ȳ, x̄|T A〉. Thus, z̄ = Proj(z, 〈y, x̄|T A〉) ∈

〈y, x̄|T A〉 and z̄ 6= ȳ imply either z̄ ∈ 〈y, ȳ|T A〉\{ȳ}, or z̄ ∈ 〈ȳ, x̄|T A〉\{ȳ}. If

z̄ ∈ 〈y, ȳ|T A〉\{ȳ}, it is true that z̄ /∈ 〈x, x̄|T A〉 and Proj(z̄, 〈x, x̄|T A〉) = ȳ.

Then, semi-single-peakedness on T A w.r.t. x̄ implies ȳPiz̄, as required. If z̄ ∈

〈ȳ, x̄|T A〉\{ȳ}, it is true that z̄ ∈ 〈x, x̄|T A〉 and ȳ ∈ 〈x, z̄|T A〉. Then, semi-single-

peakedness on T A w.r.t. x̄ implies ȳPiz̄, as required. Overall, we have ȳPiz̄.

Therefore, Pi ∈ SSP(�) and hence DSSP(T A, x̄) ⊆ SSP(�).

Conversely, fixing Pi ∈ SSP(�), we show Pi ∈ DSSP(T A, x̄). Let r1(Pi) = x.

First, given distinct y, z ∈ 〈x, x̄|T A〉 such that y ∈ 〈x, z|T A〉, we show yPiz.

Clearly, y ∈ 〈x, x̄|T A〉 implies sup�(x, y) = y. Furthermore, y, z ∈ 〈x, x̄|T A〉

and y ∈ 〈x, z|T A〉 imply z ∈ 〈y, x̄|T A〉, which further implies sup�(z, y) = z.

Then, sup�(x, y)Pi sup�(z, y) induces yPiz, as required. Next, given y /∈ 〈x, x̄|T A〉

and ȳ = Proj(y, 〈x, x̄|T A〉), we show ȳPiy. Clearly, ȳ = Proj(y, 〈x, x̄|T A〉) =

Proj(x̄, 〈x, y|T A〉) implies sup�(x, y) = ȳ. Then, Pi ∈ SSP(�) implies ȳ =

sup�(x, y)Pi sup�(y, y) = y, as required. Therefore, Pi ∈ DSSP(T A, x̄) and hence

DSSP(T A, x̄) ⊇ SSP(�). In conclusion, DSSP(T A, x̄) = SSP(�). Thus, the

anonymous, tops-only and strategy-proof rule f :
[
DSSP(T A, x̄)

]n → A can be

equivalently transferred to an anonymous, tops-only and strategy-proof rule f :

SSP(�)n → A.

Furthermore, let A∗(�) =
{
x ∈ A : for each y ∈ A\{x̄}, [y 6= x] ⇒ [x 6�

y and y 6� x]
}

. Recall that x̄ /∈ NA(x) for any x ∈ Ext(T A). We show A∗(�) = ∅.

Suppose by contradiction that A∗(�) 6= ∅. Then, we have x ∈ A∗(�). Note that

127



x̄ � x, x 6� y and y 6� x for all y ∈ A\{x̄, x}. Accordingly, by the definition

of �, we know that for all y ∈ A\{x̄, x}, x /∈ 〈y, x̄|T A〉 and y /∈ 〈x, x̄|T A〉,

which imply x ∈ Ext(T A) and x̄ ∈ NA(x). This contradicts the hypothesis that

x̄ /∈ NA(z) for any z ∈ Ext(T A). Therefore, A∗(�) = ∅. Now, we can apply

Corollary 1 of Bonifacio and Massó (2020), which implies that the anonymous,

tops-only and strategy-proof rule f : SSP(�)n → A has a supremum functional

form, i.e., for all P ∈ SSP(�)n, f(P ) = sup�
(
r1(P1), . . . , r1(Pn)

)
. Therefore, for

all P ∈
[
DSSP(T A, x̄)

]n
= SSP(�)n, we have f(P ) = sup�

(
r1(P1), . . . , r1(Pn)

)
=

Proj(x̄, T Γ(P )).
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