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Abstract

This paper investigates rationalizable implementation of social choice functions

(SCFs) in incomplete information environments. We identify weak interim ratio-

nalizable monotonicity (weak IRM) as a novel condition and show that weak IRM

is a necessary and almost sufficient condition for rationalizable implementation.

We show by means of an example that interim rationalizable monotonicity (IRM),

found in the literature, is strictly stronger than weak IRM as its name suggests,

and that IRM is not necessary for rationalizable implementation, as had been pre-

viously claimed. The same example also demonstrates that Bayesian monotonicity,

the key condition for full Bayesian implementation, is not necessary for rationaliz-

able implementation. This implies that rationalizable implementation can be more

permissive than Bayesian implementation: one can exploit the fact that there are

no mixed Bayesian equilibria in the implementing mechanism.

JEL Classification: C72, D78, D82.

Keywords: Bayesian incentive compatibility, Bayesian monotonicity, weak interim

rationalizable monotonicity, interim rationalizable monotonicity, implementation,

rationalizability.

1 Introduction

A leading solution concept in game theory is rationalizability (Bernheim (1984), Pearce

(1984), Brandenburger and Dekel (1987), Lipman (1994)). When players are rational

and there is common belief among them that this is the case, they must find themselves

∗We thank Pierpaolo Battigalli for helpful comments and encouragement. All remaining errors are
our own.
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‡Department of Economics, University of Cincinnati, Cincinnati, OH, USA; rene.saran@uc.edu
§Department of Economics, Brown University, Providence, RI, USA; roberto serrano@brown.edu
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playing rationalizable strategies, without necessarily imposing the additional assumption

that their beliefs are correct, as is the case in an equilibrium.1 Its extension to incomplete

information, our concern in this paper, is the notion of interim correlated rationalizability,

due to Dekel, Fudenberg, and Morris (2007), which will be defined in a later section.2

Despite the impressive effort made by implementation theorists in the 1980’s and

1990’s, using a plethora of game-theoretic solution concepts, a characterization of the

rules that are implementable in rationalizable strategies under incomplete information has

remained an open problem. The current paper settles this issue, by essentially providing

such a characterization, for the case of single-valued rules or social choice functions (SCFs).

A previous working paper (Bergemann and Morris (2008)) provides valuable results for

the case of finite mechanisms.3

Our main finding is to propose a novel condition, which we term weak interim rational-

izable monotonicity (weak IRM), that is necessary and almost sufficient for implementa-

tion in interim rationalizable strategies – Theorems 4.5 and 6.3. Weak IRM is a weakening

of the interim rationalizable monotonicity (IRM) condition proposed in Bergemann and

Morris (2008), which will be shown not to be necessary for rationalizable implementation

(Example 7.1). We stress this point because Oury and Tercieux (2012) makes an incorrect

claim that IRM is necessary for interim rationalizable implementation in their footnote

4. IRM – but not weak IRM – implies Bayesian monotonicity, a necessary condition for

implementation in Bayesian equilibrium (Lemma 5.8).4 Indeed, we show in Example 7.1

that weak IRM can be satisfied even when Bayesian monotonicity fails. Our results thus

1Some authors refer to the former property as “common knowledge of rationality” and to the latter
as the “rational-expectations assumption.” We remain neutral about such issues of terminology.

2Battigalli and Siniscalchi (2003) defines ∆-rationalizability by imposing extra restrictions on the first-
order beliefs, and Battigalli et al. (2011) shows that (a suitably defined) ∆-rationalizability is equivalent
to interim correlated rationalizability.

3Important related answers were previously given for the case of virtual or approximate implementation
(Abreu and Matsushima (1992)), with its robust counterparts (Bergemann and Morris (2009), Artemov,
Kunimoto, and Serrano (2013) – the latter paper using ∆-rationalizability). The different conclusions
reached in Bergemann and Morris (2009) and Artemov, Kunimoto, and Serrano (2013) can be traced
back to the different results in the two papers by Serrano and Vohra (2001, 2005), explained by the
issue of negligibility of types that cannot be distinguished by their interim preferences. A recent paper –
Kunimoto and Saran (2020) – studies the robust version of the implementation notion we use here.

4Oury and Tercieux (2012) are mainly concerned with continuous partial Bayesian implementation.
They show that if an SCF is strictly continuously partially Bayesian implementable, then it must satisfy
IRM. It follows from our results that strict continuous partial Bayesian implementation is even more
difficult than interim rationalizable implementation. Di Tillio (2011) shows that continuous interim
implementation in rationalizable strategies is not more demanding than interim rationalizable implemen-
tation when the designer is restricted to use finite mechanisms. That is, if a finite mechanism implements
an SCF in interim rationalizable strategies, then the same mechanism continuously implements the SCF
in interim rationalizable strategies. It remains an open question whether Di Tillio’s result extends to
infinite mechanisms, such as the canonical mechanism that we construct to prove our sufficiency result.
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demonstrate that rationalizable implementation may be more permissive than equilibrium

implementation.

The finding just described, that making the assumption of equilibrium or correct ex-

pectations may be restricting the set of rules that can be decentralized by means of play

in mechanisms, ought to be compared to results in complete information environments.

In contrast to our finding, Bergemann, Morris, and Tercieux (2011) and Xiong (2018)

show that rationalizable implementation of SCFs under complete information is more

restrictive than equilibrium implementation. For set-valued rules, however, Kunimoto

and Serrano (2019) come to the reverse conclusion that rationalizable implementation is

generally more permissive than equilibrium implementation under complete information.5

For general correspondences, Kunimoto and Serrano (2019) identifies uniform monotonic-

ity, which is a weakening of the classic Maskin Monotonicity (Maskin (1999)) and which

reduces to it in the case of SCFs, as a necessary and almost sufficient condition for ratio-

nalizable implementation. Since Maskin monotonicity is necessary and almost sufficient

for Nash implementation, regardless of whether one wishes to implement SCFs or gen-

eral correspondences, finding rules that are Nash implementable but not implementable

in rationalizable strategies is generally very difficult: such rules are Maskin monotonic,

which in addition to the other weak conditions identified in Kunimoto and Serrano (2019),

will also make them rationalizably implementable. On the other hand, it is easy to find

set-valued rules that are implementable in rationalizable strategies, but not in Nash equi-

librium. Our results show that the permissiveness of rationalizable implementation, in

comparison to equilibrium implementation, carries over to incomplete information en-

vironments but now even for SCFs.6 This happens if the implementing mechanism in

rationalizable strategies fails to have equilibria, showcasing the additional requirement of

the best-response correspondence having fixed points (Example 7.1 illustrates this point

well). We plan to generalize the findings in Kunimoto and Serrano (2019) as well as those

in the current study by a separate paper, posing the question of set-valued rules under

incomplete information.

This paper is organized as follows. Section 2 presents preliminaries. Section 3 intro-

duces our notion of implementation in interim rationalizable strategies. Weak IRM, as

the necessary condition for rationalizable strategies, is presented in Section 4. Section 5

relates weak IRM and IRM to previous conditions (Bayesian incentive compatibility and

Bayesian monotonicity). Section 6 shows that weak IRM and an additional weak condition

5See also Jain (2020), which follows the approach in Mezzetti and Renou (2012) of implementation
via supports.

6Kunimoto and Saran (2020) come to a similar conclusion for robust implementation.
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are sufficient for interim rationalizable implementation. Section 7 features our important

Example 7.1 to show that IRM and Bayesian monotonicity are not necessary for interim

rationalizable implementation, and Section 8 discusses the issues of finite mechanisms

and complete information environments. Section 9 concludes the paper with a few open

questions. Some proofs are relegated to the Appendix.

2 Preliminaries

Let I = {1, . . . , n} denote the finite set of agents and Ti be a finite set of types of agent

i. Let T ≡ T1 × · · ·× Tn, and T−i ≡ T1 × · · ·× Ti−1 × Ti+1 × · · ·× Tn.
7 Let ∆(T−i) denote

the set of probability distributions over T−i. Each agent i has a system of “interim”

beliefs that is expressed as a function πi : Ti → ∆(T−i). Then, we call (Ti, πi)i∈I a type

space. Let A denote a finite set of pure outcomes, which are assumed to be independent

of the information state. Let ∆(A) be the set of probability distributions over A. We let

∆∗(A) be any countable dense subset of ∆(A). Agent i’s state dependent von Neumann-

Morgenstern utility function is denoted ui : ∆(A) × T → R. We can now define an

environment as E = (A, {ui, Ti, πi}i∈I).

A (stochastic) social choice function (SCF) is a single-valued function f : T → ∆(A).

Let T ∗ ⊆ T be such that

{t ∈ T : ∃i ∈ I s.t. πi(ti)[t−i] > 0} ⊆ T ∗.

We interpret T ∗ as the set of states the designer cares about. Consider any two SCFs

f, f
′

. We say that f and f
′

are equivalent (denoted by f ≈ f
′

) if f(t) = f
′

(t) for all

t ∈ T ∗.

A mechanism (or game form) Γ = ((Mi)i∈I , g) describes: (i) a nonempty countable

message space Mi for each agent i, and (ii) an outcome function g : M → ∆(A), where

M =
∏

i∈I Mi. Let ΓDR = ((Ti)i∈I , f) denote the direct revelation mechanism associated

with an SCF f , i.e., a mechanism where Mi = Ti for all i and g = f .

In the direct revelation mechanism associated with an SCF f , the interim expected

utility of agent i of type ti who pretends to be of type t′i, while all other agents truthfully

announce their types, is defined as:

Ui(f ; t
′
i|ti) ≡

∑

t−i∈T−i

πi(ti)[t−i]ui
(

f(t′i, t−i), (ti, t−i)
)

.

7Similar notation will be used for products of other sets.
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Let Ui(f |ti) = Ui(f ; ti|ti).

For any i ∈ I and function y : T−i → ∆(A), we define

Ui(y|ti) ≡
∑

t−i∈T−i

πi(ti)[t−i]ui
(

y(t−i), (ti, t−i)
)

.

3 Implementation in Interim Rationalizable Strate-

gies

We adopt interim correlated rationalizability (Dekel, Fudenberg, and Morris (2007)) as

a solution concept and investigate the implications of implementation in interim corre-

lated “rationalizable” strategies.8 We fix a mechanism Γ = (M, g) and define a message

correspondence profile S = (S1, . . . , Sn), where each Si : Ti → 2Mi, and we write S for

the collection of message correspondence profiles. The collection S is a lattice with the

natural ordering of set inclusion: S ≤ S
′

if Si(ti) ⊆ S
′

i(ti) for all i ∈ I and ti ∈ Ti. The

largest element is S̄ = (S̄1, . . . , S̄n), where S̄i(ti) = Mi for each i ∈ I and ti ∈ Ti. The

smallest element is S = (S1, . . . , Sn), where Si(ti) = ∅ for each i ∈ I and ti ∈ Ti.

We define an operator b to iteratively eliminate never best responses. The operator

b : S → S is thus defined as: for every i ∈ I and ti ∈ Ti,

bi(S)[ti] ≡























mi :

∃λi ∈ ∆(T−i ×M−i) such that

(1) λi(t−i, m−i) > 0 ⇒ m−i ∈ S−i(t−i);

(2) margT−i
λi = πi(ti);

(3) mi ∈ argmaxm′

i

∑

t−i,m−i
λi(t−i, m−i)ui(g(m

′
i, m−i), (ti, t−i))























.

Observe that b is increasing by definition: i.e., S ≤ S
′

⇒ b(S) ≤ b(S
′

). By Tarski’s

fixed-point theorem, there is a largest fixed point of b, which we label SΓ(T ). Thus, (i)

b(SΓ(T )) = SΓ(T ) and (ii) b(S) = S ⇒ S ≤ SΓ(T ).

We can also construct the fixed point SΓ(T ) by starting with S̄ – the largest element

of the lattice – and iteratively applying the operator b. Let the message correspondence

profile SΓ(T ),0 = S̄ and, for all i ∈ I, ti ∈ Ti, k ≥ 1, iteratively define,

S
Γ(T ),k
i (ti) ≡ bi

(

SΓ(T ),k−1
)

[ti].

8Unlike Dekel, Fudenberg, and Morris (2007), we do not have the payoff-relevant state space separately
from the type space in our formulation of interim correlated rationalizability. We chose this specification
to be consistent with most of the papers on implementation in incomplete information environments.
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If the message sets are finite, we have

S
Γ(T )
i (ti) ≡

⋂

k≥0

S
Γ(T ),k
i (ti)

for each i ∈ I and ti ∈ Ti. However, since the mechanism Γ may be infinite, transfinite

induction may be necessary to reach the fixed point. Thus, S
Γ(T )
i (ti) are the sets of

messages surviving (transfinite) iterated deletion of never best responses of type ti of

agent i.9 We denote by σi a selection from S
Γ(T )
i and call it a rationalizable strategy of

agent i. We recall the following structure of SΓ(T ):

SΓ(T ) =
∏

i∈I

S
Γ(T )
i .

Definition 3.1. A mechanism Γ implements an SCF f in interim rationalizable strategies

if there exists an SCF f̂ ≈ f such that the following two conditions hold:

1. Nonemptiness: S
Γ(T )
i (ti) 6= ∅ for all ti ∈ Ti and i ∈ I.

2. Uniqueness: for any t ∈ T , m ∈ SΓ(T )(t) implies g(m) = f̂(t).

Remark: The uniqueness requirement in interim rationalizable implementation is stronger

than the usual one, because we require that every rationalizable strategy profile induces

outcomes specified by the equivalent SCF f̂ over the entire T rather than T ∗. This

strengthening allows us to obtain a clean characterization for interim rationalizable im-

plementation.

We say that an SCF f is implementable in interim rationalizable strategies if there

exists a mechanism Γ that implements f in interim rationalizable strategies.

4 Necessity for Implementation of an SCF in Interim

Rationalizable Strategies

In this section, we uncover a necessary condition for interim rationalizable implementation

of an SCF. First, we turn to some preliminary definitions.

Definition 4.1. A deception is a profile of correspondences β = (β1, . . . , βn) such that

βi : Ti → 2Ti \ ∅ and ti ∈ βi(ti) for all ti ∈ Ti and i ∈ I.

9For our necessity result, we require that S
Γ(T )
i (ti) 6= ∅ for all ti. For sufficiency, our implementing

mechanism has the same property.
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Remark: These set-valued deceptions have already been used in previous literature on

interim rationalizable implementation (Bergemenn and Morris (2008), Oury and Tercieux

(2012)). On the other hand, the requirement that ti ∈ βi(ti) for all ti is made to simplify

the writing of some steps in the proof below. It is not essential at all for our results.

Definition 4.2. A deception β is unacceptable for an SCF f if there exist t ∈ T and

t
′

∈ β(t) such that f(t) 6= f(t
′

); otherwise, β is acceptable for f .

Unacceptable deceptions are a concern for the designer since they undermine her goal

of implementing the outcome f(t) for any t ∈ T .

Given an SCF f , for each i ∈ I and ti ∈ Ti, define

Yi[ti, f ] ≡

{

y : T−i → ∆(A) :
either y(ti, t−i) = f(ti, t−i), ∀t−i ∈ T−i

or Ui(f |ti) > Ui(y|ti)

}

.

Thus, Yi[ti, f ] is the collection of all mappings y : T−i → ∆(A) that individual i of type

ti considers to be “equivalent” to f or strictly worse than f .

For any SCF f and individual i ∈ I, we define a binary relation ∼f
i on Ti × Ti as

follows: We say that ti ∼
f
i t

′

i if f is not responsive to this change in i’s type, i.e.,

f(ti, t−i) = f(t
′

i, t−i), ∀t−i ∈ T−i.

Otherwise, we say ti 6∼
f
i t

′

i. Notice that ∼f
i is symmetric, that is, ti ∼

f
i t

′

i if and only if

t
′

i ∼
f
i ti. We say that an SCF f is unresponsive to agent i’s type if ti ∼

f
i t

′

i for all ti, t
′

i ∈ Ti.

Definition 4.3. A deception β that is unacceptable for an SCF f is weakly refutable if

there exist i ∈ I, ti ∈ Ti, and t
′

i ∈ βi(ti) satisfying t
′

i 6∼
f
i ti such that for all ψi ∈ ∆(T−i×T )

satisfying ψi(t−i, t̃) > 0 ⇒ t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃∈T ψi(t−i, t̃) for all t−i ∈ T−i,

there exists an SCF f
′

such that f
′

(t̃i, ·) ∈ Yi[t̃i, f ] for all t̃i ∈ Ti and

∑

t−i,t̃

ψi(t−i, t̃)ui
(

f
′

(t̃), (ti, t−i)
)

>
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f(t
′

i, t̃−i), (ti, t−i)
)

.

Unlike equilibrium, the solution concept of rationalizability allows different types of

an agent to hold distinct beliefs about the behavior of the other agents. To illustrate

this while keeping matters simple, suppose for each type t̃j of each agent j we can find

a strategy profile σ
t̃j
−j such that σ

t̃j
−j(t−j) ∈ S

Γ(T )
−j (t−j), for all t−j, which rationalizes the

behavior of type t̃j (i.e., type t̃j has a rationalizable message that is a best response

to the belief that the other agents play according to the rationalizable strategy profile

σ
t̃j
−j). Now suppose that instead of reporting their own rationalizable messages, agents

7



use the deception β (i.e., agents of types t̂ report rationalizable messages corresponding

to types in β(t̂)). When the deception β is weakly refutable, the designer finds an agent’s

type (type ti of agent i) as an ally to undermine the deception. Specifically, this type

finds a collection of SCFs, one for each belief ψi ∈ ∆(T−i × T ) that is compatible with

the fact that the other agents are using the deception β−i. Notice that the belief ψi is

defined over T−i × T rather than T−i × T−i because player i is aware that types t̂−i are

playing messages that are rationalizable for types β−i(t̂−i), which in turn rationalize the

behavior of different types of player i. Therefore, the rationalizable messages for types

β−i(t̂−i) could vary depending upon which type of player i’s behavior they rationalize. For

instance, σti
−i(β−i(t̂−i)) ∈ S

Γ(T )
−i (β−i(t̂−i)) that rationalize the behavior of type ti of player

i might be different from σ
t
′

i

−i(β−i(t̂−i)) ∈ S
Γ(T )
−i (β−i(t̂−i)) that rationalize the behavior

of type t
′

i of player i. Thus, when contemplating the behavior of types t̂−i under the

deception β, player i needs to form a belief over messages in
⋃

t̃i∈Ti
{σt̃i

−i(β−i(t̂−i))}, which

explains why the domain of ψi includes Ti as a component.

It is instructive to appreciate this feature of ψi in comparison with equilibrium im-

plementation in incomplete information environments. In equilibrium implementation in

incomplete information environments, such as Bayesian implementation, all players share

a common belief that one particular equilibrium strategy profile σ∗ is played in the mech-

anism. Then, when contemplating the behavior of types t̂−i under the deception β, player

i’s belief is simply that types t̂−i report σ
∗(β−i(t̂−i)), which is independent of player i’s

type.

The collection of SCFs that the ally finds to undermine the deception is required to

satisfy the following two properties. First, by definition, each type t̃i places each of these

SCFs f
′

in the strictly lower contour set of f under truth-telling whenever f
′

(t̃i, ·) 6=

f(t̃i, ·). Second, when the deception β is used, then under belief ψi, type ti strictly prefers

the corresponding SCF f
′

in the collection to f . If one insists on restricting the collection

of SCFs to those f
′

that are unresponsive to agent i’s type, then one would speak of

strong refutability. Under this restriction, there is a mapping y : T−i → ∆(A) such that

f
′

(t̃i, ·) = y for all t̃i. Then, the requirement that f
′

(t̃i, ·) ∈ Yi[t̃i, f ] for all t̃i ∈ Ti means

that y ∈
⋂

t̃i∈Ti
Yi[t̃i, f ]. This will be important to understand the difference with the

previous condition proposed in the literature. We discuss this in the next section.

Definition 4.4. An SCF f satisfies weak interim rationalizable monotonicity (weak IRM)

if every deception β that is unacceptable for f is weakly refutable.

If an SCF satisfies weak IRM, the designer can plan on using the services of the

ally identified in the definition of weak refutability in order to succeed in her attempt of

8



implementing f . If she insisted on the deception being strongly refutable, then the SCF

would satisfy interim rationalizable monotonicity (IRM), a stronger condition introduced

in the literature (Bergemann and Morris (2008), Oury and Tercieux (2012)). In particular,

it is claimed in Oury and Tercieux (2012, footnote 4) that IRM is necessary for the interim

rationalizable implementation of SCFs. We will show this claim to be incorrect in the

sequel.

Next, we present our first main result, which shows that weak IRM is necessary for

implementation in rationalizable strategies:

Theorem 4.5. If an SCF f is implementable in interim rationalizable strategies, then

there exists an SCF f̂ ≈ f that satisfies weak IRM.

Proof. Suppose the mechanism Γ = ((Mi)i∈I , g) implements f in rationalizable strategies.

Then, there exists an SCF f̂ ≈ f such that

1. Nonemptiness: S
Γ(T )
i (ti) 6= ∅ for all ti ∈ Ti and i ∈ I.

2. Uniqueness: for any t ∈ T , m ∈ SΓ(T )(t) implies g(m) = f̂(t).

For any i ∈ I, ti ∈ Ti, we set m
ti
i ∈ S

Γ(T )
i (ti) (such a message mti

i exists by the nonempty-

ness requirement of implementability in interim rationalizable strategies). By the unique-

ness requirement,

f̂(t) = g(mt1
1 , . . . , m

tn
n ), ∀t ∈ T.

We now argue that f̂ satisfies weak IRM.

As mti
i ∈ S

Γ(T )
i (ti), by the definition of rationalizable strategies, there exists a belief

λtii ∈ ∆(T−i ×M−i) such that margT−i
λtii = πi(ti); λ

ti
i (t−i, m−i) > 0 ⇒ m−i ∈ S

Γ(T )
−i (t−i);

and

mti
i ∈ arg max

mi∈Mi

∑

t−i,m−i

λtii (t−i, m−i)ui
(

g(mi, m−i), (ti, t−i)
)

.

For each t−i such that πi(ti)[t−i] > 0, define the conditional distribution σti
−i(t−i) ∈

∆(M−i) as follows: for any m−i ∈ M−i,

σti
−i(t−i)[m−i] =

λtii (t−i, m−i)

πi(ti)[t−i]
.

For each t−i such that πi(ti)[t−i] = 0, let σti
−i(t−i) ∈ ∆(M−i) denote the degenerate

distribution that puts probability one on m
t−i

−i , i.e., σ
ti
−i(t−i)[m

t−i

−i ] = 1. In either case,

σti
−i(t−i)[m−i] > 0 ⇒ m−i ∈ S

Γ(T )
−i (t−i). This is true by construction if t−i is such that

πi(ti)[t−i] = 0; whereas if t−i is such that πi(ti)[t−i] > 0, then σti
−i(t−i)[m−i] > 0 ⇒

λtii (t−i, m−i) > 0 ⇒ m−i ∈ S
Γ(T )
−i (t−i).

9



Now for each mi ∈Mi, define y
mi,ti : T−i → ∆(A) as follows: for all t−i ∈ T−i,

ymi,ti(t−i) =
∑

m−i∈M−i

σti
−i(t−i)[m−i]g(mi, m−i).

Since margT−i
λtii = πi(ti), if πi(ti)[t−i] = 0, then λtii (t−i, m−i) = 0 for all m−i ∈ M−i.

Hence,

∑

t−i,m−i

λtii (t−i, m−i)ui
(

g(mi, m−i), (ti, t−i)
)

=
∑

t−i:πi(ti)[t−i]>0

∑

m−i

λtii (t−i, m−i)ui
(

g(mi, m−i), (ti, t−i)
)

(∵ πi(ti)[t−i] = 0 ⇒ λtii (t−i, m−i) = 0, ∀m−i)

=
∑

t−i:πi(ti)[t−i]>0

∑

m−i

πi(ti)[t−i]
λtii (t−i, m−i)

πi(ti)[t−i]
ui
(

g(mi, m−i), (ti, t−i)
)

=
∑

t−i:πi(ti)[t−i]>0

πi(ti)[t−i]
∑

m−i

σti
−i(t−i)[m−i]ui

(

g(mi, m−i), (ti, t−i)
)

(

∵ σti
−i(t−i)[m−i] =

λtii (t−i, m−i)

πi(ti)[t−i]

)

=
∑

t−i:πi(ti)[t−i]>0

πi(ti)[t−i]ui
(

ymi,ti(t−i), (ti, t−i)
)

(∵ by linearity of expected utility ui(·, (ti, t−i)))

= Ui(y
mi,ti|ti). (1)

Define the set

Li(ti) = {ymi,ti : mi ∈Mi}.

Consider the message mti
i set forth in the beginning of the proof. Recall that mti

i ∈

S
Γ(T )
i (ti). By the requirement of implementation and the fact that σti

−i(t−i)[m−i] > 0 ⇒

m−i ∈ S
Γ(T )
−i (t−i), we get

ym
ti
i
,ti(t−i) = f̂(ti, t−i), ∀t−i ∈ T−i.

Therefore, the following is true for all mi ∈Mi:

Ui(f̂ |ti) = Ui(y
m

ti
i
,ti |ti) =

∑

t−i,m−i

λtii (t−i, m−i)ui
(

g(mti
i , m−i), (ti, t−i)

)

≥
∑

t−i,m−i

λtii (t−i, m−i)ui
(

g(mi, m−i), (ti, t−i)
)

10



= Ui(y
mi,ti |ti), (2)

where the second and last equalities follow from (1) and the weak inequality follows

because mti
i is a best response of type ti against the belief λtii .

We now claim that if mi is such that ymi,ti(t−i) 6= f̂(ti, t−i) for some t−i ∈ T−i, then it

must be that

Ui(f̂ |ti) > Ui(y
mi,ti |ti).

If the foregoing strict inequality were not true, then it would follow from (2) that

Ui(f̂ |ti) = Ui(y
mi,ti |ti)

⇒
∑

t−i,m−i

λtii (t−i, m−i)ui
(

g(mti
i , m−i), (ti, t−i)

)

=
∑

t−i,m−i

λtii (t−i, m−i)ui
(

g(mi, m−i), (ti, t−i)
)

.

Thus, mi would also be a best response of type ti against the belief λti , and hence mi ∈

S
Γ(T )
i (ti). Then, by the requirement of implementation and the fact that σti

−i(t−i)[m−i] >

0 ⇒ m−i ∈ S
Γ(T )
−i (t−i), we get

ymi,ti(t−i) = f̂(ti, t−i), ∀t−i ∈ T−i,

which is a contradiction. This establishes that the strict inequality above holds.

We are now ready to prove that f̂ satisfies weak IRM. Consider any deception β.

Define the message correspondence profile S = (S1, . . . , Sn) such that

Si(ti) =
⋃

t
′

i
∈βi(ti)

S
Γ(T )
i (t

′

i).

Suppose β is unacceptable for f̂ but not weakly refutable. Then, by definition of weak

refutability, for all i ∈ I, ti ∈ Ti, and t
′

i ∈ βi(ti) satisfying t
′

i 6∼
f
i ti, there exists ψi ∈

∆(T−i×T ), which satisfies ψi(t−i, t̃) > 0 ⇒ t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃∈T ψi(t−i, t̃)

for all t−i ∈ T−i, such that for all SCFs f
′

that satisfy f
′

(t̃i, ·) ∈ Yi[t̃i, f ] for all t̃i ∈ Ti, we

have
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f̂(t
′

i, t̃−i), (ti, t−i)
)

≥
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f
′

(t̃), (ti, t−i)
)

(3)

We first show that for any i ∈ I, ti ∈ Ti, and t
′

i ∈ βi(ti) satisfying t
′

i ∼f̂
i ti, there

exists ψi ∈ ∆(T−i × T ), which satisfies ψi(t−i, t̃) > 0 ⇒ t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃∈T ψi(t−i, t̃) for all t−i ∈ T−i, such that (3) holds for all SCFs f
′

that satisfy f
′

(t̃i, ·) ∈

11



Yi[t̃i, f ] for all t̃i ∈ Ti.

Pick any i ∈ I, ti ∈ Ti, and t
′

i ∈ βi(ti) satisfying t
′

i ∼f̂
i ti. We set the belief ψi ∈

∆(T−i × T ) such that ψi(t−i, t̃) = 0 whenever either t̃i 6= ti or t̃−i 6= t−i and ψi(t−i, t̃) =

πi(ti)[t−i] whenever t̃i = ti and t̃−i = t−i. As t−i ∈ β−i(t−i), the belief ψi satisfies

ψi(t−i, t̃) > 0 ⇒ t̃−i ∈ β−i(t−i). Moreover, πi(ti)[t−i] =
∑

t̃∈T ψi(t−i, t̃) for all t−i ∈ T−i.

Consider any SCF f
′

such that f
′

(t̃i, ·) ∈ Yi[t̃i, f ] for all t̃i ∈ Ti. Then

∑

t−i,t̃

ψi(t−i, t̃)ui
(

f̂(t
′

i, t̃−i), (ti, t−i)
)

=
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f̂(ti, t̃−i), (ti, t−i)
)

= Ui(f̂ |ti)

≥ Ui(f
′

(ti, ·)|ti)

=
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f
′

(t̃), (ti, t−i)
)

,

where the first equality follows from the fact that t
′

i ∼
f̂
i ti, the second and last equalities

follow from the construction of the belief ψi, and the inequality follows from the fact that

f
′

(ti, ·) ∈ Yi[ti, f̂ ].

Thus, if we combine the above result with the hypothesis that β is not weakly refutable,

then we can hypothesize that for all i ∈ I, ti ∈ Ti, and t
′

i ∈ βi(ti), there exists ψi ∈

∆(T−i×T ), which satisfies ψi(t−i, t̃) > 0 ⇒ t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃∈T ψi(t−i, t̃)

for all t−i ∈ T−i, such that (3) holds for all SCFs f
′

that satisfy f
′

(t̃i, ·) ∈ Yi[t̃i, f ] for all

t̃i ∈ Ti.
10

We next show that b(S) ≥ S. Pick any i ∈ I, ti ∈ Ti, and m
′

i ∈ Si(ti). We now

construct a belief λΓi ∈ ∆(T−i ×M−i) satisfying λ
Γ
i (t−i, m−i) > 0 implies m−i ∈ S−i(t−i)

and margT−i
λΓi = πi(ti) such that m

′

i is a best response for agent i of type ti against λ
Γ
i .

By the definition of S, we have m
′

i ∈ S
Γ(T )
i (t

′

i) for some t
′

i ∈ βi(ti). Then, by our

hypothesis, there exists ψi ∈ ∆(T−i × T ), which satisfies ψi(t−i, t̃) > 0 ⇒ t̃−i ∈ β−i(t−i)

and πi(ti)[t−i] =
∑

t̃∈T ψi(t−i, t̃) for all t−i ∈ T−i, such that (3) holds for all SCFs f
′

that

satisfy f
′

(t̃i, ·) ∈ Yi[t̃i, f ] for all t̃i ∈ Ti.

Define the belief λΓi ∈ ∆(T−i ×M−i) as follows: for any (t−i, m−i),

λΓi (t−i, m−i) =
∑

t̃

ψi(t−i, t̃)× σt̃i
−i(t̃−i)[m−i].

By construction, λΓi (t−i, m−i) > 0 implies that there exists t̃ ∈ T such that ψi(t−i, t̃) > 0

and σt̃i
−i(t̃−i)[m−i] > 0. But ψi(t−i, t̃) > 0 implies t̃−i ∈ β−i(t−i). Moreover, σt̃i

−i(t̃−i)[m−i] >

10We are able to drop t
′

6∼f̂
i ti as part of the qualification in the hypothesis.
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0 implies m−i ∈ S
Γ(T )
−i (t̃−i) – recall the definition of σt̃i

−i(t̃−i)[m−i] from the beginning of

this proof. Since t̃−i ∈ β−i(t−i) and m−i ∈ S
Γ(T )
−i (t̃−i), it follows from the definition of S

that m−i ∈ S−i(t−i).

Again, by construction, for all t−i ∈ T−i,

margT−i
λΓi (t−i) =

∑

m−i

λΓi (t−i, m−i) =
∑

t̃

ψi(t−i, t̃) = πi(ti)[t−i].

Thus, margT−i
λΓi = πi(ti).

Pick any m̃i ∈ Mi and consider ym̃i,t̃i as defined earlier in the proof. Now define

the SCF f m̃i such that f m̃i(t̃) = ym̃i,t̃i(t̃−i) for all t̃ ∈ T . Recall that if m̃i is such that

ym̃i,t̃i(t−i) 6= f̂(t̃i, t−i) for some t−i ∈ T−i, then it must be that Ui(f̂ |t̃i) > Ui(y
m̃i,t̃i |t̃i). So

f m̃i(t̃i, ·) = ym̃i,t̃i ∈ Yi[t̃i, f̂ ] for all t̃i ∈ Ti. So inequality (3) holds for f m̃i .

By the requirement of implementability, we have

f̂(t
′

i, t̃−i) =
∑

m−i∈M−i

σt̃i
−i(t̃−i)[m−i]g(m

′

i, m−i), ∀t̃−i ∈ T−i.

We are ready to show that m
′

i is a best response for agent i of type ti against λ
Γ
i .

Consider any m̃i ∈ Mi. Then

∑

t−i,m−i

λΓi (t−i, m−i)ui
(

g(m
′

i, m−i), (ti, t−i)
)

=
∑

t−i,m−i

(

∑

t̃

ψi(t−i, t̃)× σt̃i
−i(t̃−i)[m−i]ui

(

g(m
′

i, m−i), (ti, t−i)
)

)

(by definition of λΓi )

=
∑

t−i,t̃

ψi(t−i, t̃)





∑

m−i

σt̃i
−i(t̃−i)[m−i]ui

(

g(m
′

i, m−i), (ti, t−i)
)





=
∑

t−i,t̃

ψi(t−i, t̃)ui





∑

m−i

σt̃i
−i(t̃−i)[m−i]g(m

′

i, m−i), (ti, t−i)





(by linearity of expected utility ui(·, (ti, t−i)))

=
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f̂(t
′

i, t̃−i), (ti, t−i)
)

(by the requirement of implementability of f̂)

≥
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f m̃i(t̃), (ti, t−i)
)

13



(∵ inequality (3) holds for f m̃i)

=
∑

t−i,t̃

ψi(t−i, t̃)ui
(

ym̃i,t̃i(t̃−i), (ti, t−i)
)

(by definition of f m̃i)

=
∑

t−i,t̃

ψi(t−i, t̃)





∑

m−i

σt̃i
−i(t̃−i)[m−i]ui

(

g(m̃i, m−i), (ti, t−i)
)





(by definition of ym̃i,t̃i and linearity of expected utility ui(·, (ti, t−i)))

=
∑

t−i,m−i

λΓi (t−i, m−i)ui
(

g(m̃i, m−i), (ti, t−i)
)

(by definition of λΓi ).

Since m
′

i is a best response of player i of type ti against λ
Γ
i satisfying λΓi (t−i, m−i) >

0 ⇒ m−i ∈ S−i(t−i) and margT−i
λΓi = πi(ti), it follows by definition that m

′

i ∈ bi(S)[ti].

As b(S) ≥ S, we have S ≤ SΓ(T ). Consider any t ∈ T and t
′

∈ β(t). Pick a

message profile mt
′

∈ SΓ(T )(t
′

) as defined in the beginning of the proof. By definition,

g(mt
′

) = f̂(t
′

). Now SΓ(T )(t
′

) ⊆ S(t) ⊆ SΓ(T )(t), where the first set inclusion follows

from the definition of the message correspondence profile S and the second set inclusion

follows from S ≤ SΓ(T ). Therefore, mt
′

∈ SΓ(T )(t). Hence, g(mt
′

) = f̂(t) by the uniqueness

requirement of implementation. Thus, f̂(t
′

) = f̂(t). So β is acceptable for f̂ , which is a

contradiction. This completes the proof.

5 Weak IRM, IRM, and Other Relevant Conditions

In this section, we investigate the connections between weak IRM, IRM, and the condi-

tions of incentive compatibility and Bayesian monotonicity, central in the characterization

of SCFs that are implementable in Bayesian equilibrium. Further connections will be un-

covered in a later section, after we state and prove our sufficiency result.

Definition 5.1. An SCF f satisfies Bayesian incentive compatibility (BIC) if for all i ∈ I

and ti ∈ Ti,

Ui(f |ti) ≥ Ui(f ; t
′

i|ti), ∀t
′

i ∈ Ti

If these constraints are strict whenever ti 6∼f
i t

′

i, then we say that f satisfies strict-if-

responsive Bayesian incentive compatibility (SIRBIC).

Clearly, SIRBIC is a strenghthening of BIC, while it is a weakening of strict IC, which

imposes strict inequalities on all incentive constraints. Then, we can show the following:

14



Lemma 5.2. If an SCF f satisfies weak IRM, then it satisfies SIRBIC.

Proof. Suppose the SCF f satisfies weak IRM. Fix i ∈ I and ti ∈ Ti. Pick any t
′

i ∈ Ti. If

ti ∼
f
i t

′

i, then clearly Ui(f |ti) = Ui(f ; t
′

i|ti).

Next, suppose ti 6∼
f
i t

′

i. Consider the deception β such that βj(tj) = {tj} for all tj ∈ Tj

and j 6= i but

βi(t̃i) =

{

{ti, t
′

i}, if t̃i = ti

{t̃i}, otherwise.

Since ti 6∼f
i t

′

i, the deception β is unacceptable for f . Hence, by weak IRM, it must

be weakly refutable. That is, there exist j ∈ I, t̂j ∈ Tj , and t̂
′

j ∈ βj(t̂j) satisfying

t̂
′

j 6∼f
j t̂j such that for any ψj ∈ ∆(T−j × T ) satisfying ψj(t−j, t̃) > 0 ⇒ t̃−j ∈ β−j(t−j)

and πj(t̂j)[t−j] =
∑

t̃∈T ψj(t−j, t̃) for all t−j ∈ T−j, there exists an SCF f
′

such that

f
′

(t̃j , ·) ∈ Yj[t̃j , f ] for all t̃j ∈ Tj and

∑

t−j ,t̃

ψj(t−j, t̃)uj
(

f
′

(t̃), (t̂j , t−j)
)

>
∑

t−j ,t̃

ψj(t−j , t̃)uj
(

f(t̂
′

j, t̃−j), (t̂j , t−j)
)

.

Since t̂
′

j 6∼
f
j t̂j and t̂

′

j ∈ βj(t̂j), it must be that j = i, t̂j = ti and t̂
′

j = t
′

i.

Consider the belief ψi such that (i) ψi(t−i, t̃) = 0 whenever either t̃i 6= ti or t̃−i 6= t−i

and (ii) ψi(t−i, t̃) = πi(ti)[t−i] whenever t̃i = ti and t̃−i = t−i. As t−i ∈ β−i(t−i), the belief

ψi satisfies ψi(t−i, t̃) > 0 ⇒ t̃−i ∈ β−i(t−i). Moreover, πi(ti)[t−i] =
∑

t̃∈T ψi(t−i, t̃) for all

t−i ∈ T−i. Hence, we must have some SCF f
′

such that f
′

(t̃i, ·) ∈ Yi[t̃i, f ] for all t̃i ∈ Ti

such that

Ui(f
′

|ti) =
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f
′

(t̃), (ti, t−i)
)

>
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f(t
′

i, t−i), (ti, t−i)
)

= Ui(f ; t
′

i|ti).

But f
′

(ti, ·) ∈ Yi[ti, f ] implies that Ui(f |ti) ≥ Ui(f
′

|ti). Therefore, Ui(f |ti) > Ui(f ; t
′

i|ti),

which completes the proof.

As discussed in the previous section when we defined weak refutability, one can propose

a stronger notion of refutability.

Definition 5.3. A deception β that is unacceptable for an SCF f is strongly refutable if

there exist i ∈ I, ti ∈ Ti, and t
′

i ∈ βi(ti) satisfying t
′

i 6∼
f
i ti such that for all ψi ∈ ∆(T−i×T )

satisfying ψi(t−i, t̃) > 0 ⇒ t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃∈T ψi(t−i, t̃) for all t−i ∈ T−i,

there exists an SCF f
′

such that f
′

is unresponsive to agent i’s type, f
′

(t̃i, ·) ∈ Yi[t̃i, f ]
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for all t̃i ∈ Ti, and

∑

t−i,t̃

ψi(t−i, t̃)ui
(

f
′

(t̃), (ti, t−i)
)

>
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f(t
′

i, t̃−i), (ti, t−i)
)

.

Remark: Note how the SCF f
′

in the statement for strong refutability is required to

be unresponsive to agent i’s type, as opposed to allowing f
′

that could respond to a

change in agent i’s type in the statement for weak refutability. This additional require-

ment for strong refutability, in conjunction with the stipulation that f
′

(t̃i, ·) ∈ Yi[t̃i, f ]

for all t̃i ∈ Ti, implies that there exists a mapping y ∈
⋂

t̃i∈Ti
Yi[t̃i, f ] that is strictly

preferred to f by type ti of agent i when the deception β is used. Interim rationalizable

monotonicity introduced by Bergemann and Morris (2008) requires the existence of such

mappings y ∈
⋂

t̃i∈Ti
Yi[t̃i, f ] in order to undermine unacceptable deceptions. Indeed, as

we show next, interim rationalizable monotonicity is equivalent to strong refutability of

every unacceptable deception.

Definition 5.4. An SCF f satisfies interim rationalizable monotonicity (IRM) if, for

every deception β that is unacceptable for f , there exist i ∈ I, ti ∈ Ti, and t
′

i ∈ βi(ti)

satisfying t
′

i 6∼f
i ti such that for all φi ∈ ∆(T−i × T−i) satisfying φi(t−i, t̃−i) > 0 ⇒

t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃−i∈T−i
φi(t−i, t̃−i) for all t−i ∈ T−i, there exists y ∈

⋂

t̃i∈Ti
Yi[t̃i, f ] such that

∑

t−i,t̃−i

φi(t−i, t̃−i)ui
(

y(t̃−i), (ti, t−i)
)

>
∑

t−i,t̃−i

φi(t−i, t̃−i)ui
(

f(t
′

i, t̃−i), (ti, t−i)
)

.

Lemma 5.5. An SCF f satisfies IRM if and only if every deception β that is unacceptable

for f is strongly refutable.11

As it is clear that strong refutability implies its weak version, we state the following

result without proof:

Corollary 5.6. If an SCF f satisfies IRM, it also satisfies weak IRM.

A single-valued deception βs is a profile of functions (βs
1, . . . , β

s
n) such that βs

i : Ti → Ti

for all i ∈ I. The single-valued deception βs is unacceptable for an SCF f if f(βs(t)) 6= f(t)

for some t ∈ T ; otherwise, βs is acceptable for f .

Next, we introduce a necessary condition for full implementation in Bayesian equilib-

rium:

11Proof is relegated to the Appendix.
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Definition 5.7. An SCF f satisfies Bayesian monotonicity (BM) if, for every single-

valued deception βs that is unacceptable for f , there exist i ∈ I, ti ∈ Ti, and y : T−i →

∆(A) such that

Ui(y ◦ β
s
−i|ti) > Ui(f ◦ βs|ti),

while for all t̃i ∈ Ti,

Ui(f |t̃i) ≥ Ui(y|t̃i).

By undermining an unacceptable deception, as with weak IRM or IRM, type ti can be

used as an ally to a designer who wishes to implement f , this time in Bayesian equilibrium.

However, since equilibrium (as opposed to rationalizability) is the solution concept used,

the deceptions considered in BM are single-valued and the requirements on beliefs over

the preference reversal are significanly reduced. For IRM, but not for weak IRM, we can

show the following implication:

Lemma 5.8. If an SCF f satisfies IRM, it satisfies BM.

Proof. Suppose that the SCF f satisfies IRM. Fix a single-valued deception βs that is

unacceptable for f . Define the “multi-valued” deception β such that βi(ti) = {ti, β
s
i (ti)}

for all ti ∈ Ti and i ∈ I. Since βs is unacceptable, the deception β is also unacceptable.

By IRM, there exist i ∈ I, ti ∈ Ti, and t
′

i ∈ βi(ti) satisfying t
′

i 6∼f
i ti such that for

all φi ∈ ∆(T−i × T−i) satisfying φi(t−i, t̃−i) > 0 ⇒ t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃−i∈T−i
φi(t−i, t̃−i) for all t−i ∈ T−i, there exists y ∈

⋂

t̃i∈Ti
Yi[t̃i, f ] such that

∑

t−i,t̃−i

φi(t−i, t̃−i)ui
(

y(t̃−i), (ti, t−i)
)

>
∑

t−i,t̃−i

ψi(t−i, t̃−i)ui
(

f(t
′

i, t̃−i), (ti, t−i)
)

.

For each (t−i, t̃−i) ∈ T−i × T−i, we set

φi(t−i, t̃−i) =

{

πi(ti)[t−i], if t̃−i = βs
−i(t−i)

0, if t̃−i 6= βs
−i(t−i).

By construction, φi(t−i, t̃−i) > 0 ⇒ t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃−i∈T−i
φi(t−i, t̃−i) for

all t−i ∈ T−i. Moreover, since t
′

i ∈ βi(ti) is such that t
′

i 6∼
f
i ti, it follows from construction

of β that t
′

i = βs
i (ti). Therefore, the above inequality becomes

∑

t−i

πi(ti)[t−i]ui
(

y(βs
−i(t−i)), (ti, t−i)

)

>
∑

t−i

πi(ti)[t−i]ui
(

f(βs
i (ti), β

s
−i(t−i)), (ti, t−i)

)

,

which is equivalent to Ui(y ◦β
s
−i|ti) > Ui(f ◦β

s|ti). In addition, y ∈
⋂

t̃i∈Ti
Yi[t̃i, f ] implies
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that for any t̃i ∈ Ti,

Ui(f |t̃i) ≥ Ui(y|t̃i).

Hence, f satisfies BM.

6 Sufficiency for Implementation of an SCF in In-

terim Rationalizable Strategies

In this section, we show that weak IRM is sufficient for implementation in interim ratio-

nalizable strategies under a mild additional assumption: weak no-worst-rule (NWR) (as

discussed below, our definition is weaker than the one appearing in Kunimoto (2019)).

For each i ∈ I and ti ∈ Ti, define

Y w
i [ti, f ] ≡ {y : T−i → ∆(A) : Ui(f |ti) ≥ Ui(y|ti)} .

Thus, Y w
i [ti, f ] is the collection of all mappings y : T−i → ∆(A) such that y is weakly

worse than f for individual i of type ti. Notice that Yi[ti, f ] is a subset of Y w
i [ti, f ].

Definition 6.1. The SCF f satisfies the weak no-worst-rule condition (weak NWR) if,

for all i ∈ I, ti ∈ Ti, and φi ∈ ∆(T−i × T−i), there exist y, y
′

∈ Y w
i [ti, f ] such that

∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

y(t
′

−i), (ti, t−i)
)

6=
∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

y
′

(t
′

−i), (ti, t−i)
)

.

Remark: The weak NWR condition implies that the strictly lower contour set of f is

nonempty for all types. Kunimoto (2019) also defines a “no worst rule” condition which

is stronger than our definition. Kunimoto (2019) requires the existence of mappings y

and y
′

in the set
⋂

t̃i∈Ti
Y w
i [t̃i, f ] whereas we only require the existence of y and y

′

in the

set Y w
i [ti, f ].

In the sufficiency result below, we focus on a countable subset of Y w
i [ti, f ], as defined

next. Recall that ∆∗(A) is a countable dense subset of ∆(A). For each i ∈ I and ti ∈ Ti,

define

Y ∗
i [ti, f ] ≡

{

y : T−i → ∆(A) :
(i) y(t−i) ∈ ∆∗(A)

⋃

t
′

i
∈Ti

{f(t
′

i, t−i)}, ∀t−i ∈ T−i, and

(ii) Ui(f |ti) ≥ Ui(y|ti).

}

Note that Y ∗
i [ti, f ] ⊆ Y w

i [ti, f ]. Since T−i is finite and ∆∗(A)
⋃

t
′

i
∈Ti

{f(t
′

i, t−i)} is countable,
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Y ∗
i [ti, f ] is also countable. Thus, we denote Y

∗
i [ti, f ] by {y

0
i [ti, f ], y

1
i [ti, f ], . . . , y

k
i [ti, f ], . . .}.

For each i ∈ I and ti ∈ Ti, we then define yti,fi such that

yti,fi (t−i) = (1− δ)

∞
∑

k=0

δkyki [ti, f ](t−i), ∀t−i,

where δ ∈ (0, 1).

Similarly, since A is countable, we denote it by {a0, a1, . . . , ak, . . .}. Then, we define

ᾱ = (1− η)
∞
∑

k=0

ηkak,

where η ∈ (0, 1).

The following lemma notes two important consequences of weak NWR (proof is rele-

gated to the Appendix):

Lemma 6.2. If an SCF f satisfies weak NWR, then the following statements are true:

(a) For all i ∈ I, ti ∈ Ti, and φi ∈ ∆(T−i × T−i), there exists y ∈ Y ∗
i [ti, f ] such that

∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

y(t
′

−i), (ti, t−i)
)

>
∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

yti,fi (t
′

−i), (ti, t−i)
)

.

(b) For all i ∈ I, ti ∈ Ti, and z
1
i ∈ ∆(T−i), there exists a ∈ A such that

∑

t−i

z1i (t−i)ui
(

a, (ti, t−i)
)

>
∑

t−i

z1i (t−i)ui
(

ᾱ, (ti, t−i)
)

.

We now state and prove our sufficiency result for implementation in interim rational-

izable strategies:

Theorem 6.3. For any SCF f , if there exists an SCF f̂ ≈ f such that f̂ satisfies weak

IRM and weak NWR, then the SCF f is implementable in interim rationalizable strategies.

Proof. We propose the following mechanism Γ = ((Mi)i∈I , g) to prove the sufficiency

result: For each individual i, pick any one type from Ti. We denote this type as t∗i .

Each individual i sends a message mi = (m1
i , m

2
i , m

3
i , m

4
i ), where

• m1
i = (m1

i [j])j∈I such that m1
i [j] ∈ Tj for all j ∈ I,

• m2
i ∈ N,
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• m3
i = (m3

i [ti])ti∈Ti
such that m3

i [ti] ∈ Y ∗
i [ti, f̂ ] for all ti ∈ Ti,

• and m4
i ∈ A.

Note that each Mi is countable.

The outcome function g :M → ∆(A) is defined as follows: For each m ∈M ,

Rule 1: m2
i = 1 for all i ∈ I ⇒ g(m) = f̂(m1

1[1], m
1
2[2], . . . , m

1
n[n]).

Rule 2: If there exists i ∈ I such that m2
i > 1 but m2

j = 1 for all j ∈ I\{i}, then one of

the following sub-rules apply:

Rule 2-1: If there exists ti ∈ Ti such that m1
j [i] = ti for all j ∈ I\{i}, then

g(m) =

{

m3
i [ti]
(

(m1
j [j])j 6=i

)

with probability m2
i /(m

2
i + 1),

yti,f̂i

(

(m1
j [j])j 6=i

)

with probability 1/(m2
i + 1).

Rule 2-2: If m1
j
′ [i] 6= m1

k[i] for some j
′

, k ∈ I\{i}, then

g(m) =

{

m3
i [t

∗
i ]
(

(m1
j [j])j 6=i

)

with probability m2
i /(m

2
i + 1),

y
t∗i ,f̂

i

(

(m1
j [j])j 6=i

)

with probability 1/(m2
i + 1).

Rule 3: In all other cases:

g(m) =



































m4
1 with probability m2

1/(1 +m2
1)n,

m4
2 with probability m2

2/(1 +m2
2)n,

...
...

m4
n with probability m2

n/(1 +m2
n)n,

ᾱ with the remaining probability.

We now prove that the mechanism Γ implements the SCF f in interim rationalizable

strategies. The proof consists of Steps 1 through 3.

Step 1: mi ∈ S
Γ(T )
i (ti) ⇒ m2

i = 1.

Proof. Suppose by way of contradiction that mi ∈ S
Γ(T )
i (ti) but m2

i > 1. Then, mi is

a best response of individual i of type ti against some conjecture λi ∈ ∆(T−i × M−i)

satisfying margT−i
λi = πi(ti).
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For each t
′

i 6= t∗i and t
′

−i ∈ T−i, we define

M2
−i(t

′

i, t
′

−i) =
{

m−i : m
2
j = 1 and m1

j [i] = t
′

i, ∀j 6= i, and (m1
j [j])j 6=i = t

′

−i

}

.

For t∗i and each t
′

−i ∈ T−i, we define

M2
−i(t

∗
i , t

′

−i) =











m−i :

(m1
j [j])j 6=i = t

′

−i and

either m2
j = 1 and m1

j [i] = t∗i , ∀j 6= i,

or m2
j = 1, ∀j 6= i, but m1

j
′ [i] 6= m1

k[i] for some j
′

, k 6= i











.

Also, define

M3
−i =

{

m−i : there exist one or more j 6= i such that m2
j > 1

}

.

Note that
(

(M2
−i(t̃i, t

′

−i))t̃i∈Ti,t
′

−i
∈T−i

,M3
−i

)

defines a partition of M−i. As m2
i > 1, if

m−i ∈M2
−i(t̃i, t

′

−i), then Rule 2 is used under the profile (mi, m−i), whereas if m−i ∈M3
−i,

then Rule 3 is used under the profile (mi, m−i).

For each t̃i ∈ Ti, define

Λ2,t̃i
i =

∑

t−i,t
′′

−i

∑

m−i∈M
2

−i
(t̃i,t

′′

−i
)

λi(t−i, m−i).

Thus, Λ2,t̃i
i is the probability of the event that all other individuals report a message profile

in
⋃

t
′′

−i
M2

−i(t̃i, t
′′

−i).

Also, define

Λ3
i =

∑

t−i

∑

m−i∈M
3

−i

λi(t−i, m−i).

Thus, Λ3
i is the probability of the event that all other individuals report a message profile

in M3
−i.

If t̃i is such that Λ2,t̃i
i > 0, then define φ2,t̃i

i ∈ ∆(T−i×T−i) such that for all t−i, t
′

−i ∈ T−i,

φ2,t̃i
i (t−i, t

′

−i) =
∑

m−i∈M
2

−i
(t̃i,t

′

−i
)

λi(t−i, m−i)

Λ2,t̃i
i

.

Thus, φ2,t̃i
i (t−i, t

′

−i) is the conditional probability of the event that the type profile of all

other individuals is t−i and they report a message profile in M2
−i(t̃i, t

′

−i) given the event

that all other individuals report a message profile in
⋃

t
′′

−i
M2

−i(t̃i, t
′′

−i).

If the type profile of all other individuals is t−i and they report a message profile in
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M2
−i(t̃i, t

′

−i), then when individual i of type ti plays mi, she expects the outcome to be

given by the lottery

(

m2
i

1 +m2
i

)

m3
i [t̃i]

(

t
′

−i

)

+

(

1−
m2

i

1 +m2
i

)

y t̃i,f̂i

(

t
′

−i

)

.

As a result, conditional on the event that all other individuals report a message profile in
⋃

t
′′

−i
M2

−i(t̃i, t
′′

−i), the expected payoff of individual i of type ti when she plays mi is

(

m2
i

1 +m2
i

)

∑

t−i,t
′

−i

φ2,t̃i
i (t−i, t

′

−i)ui
(

m3
i [t̃i](t

′

−i), (ti, t−i)
)

+

(

1−
m2

i

1 +m2
i

)

∑

t−i,t
′

−i

φ2,t̃i
i (t−i, t

′

−i)ui
(

y t̃i,f̂i (t
′

−i), (ti, t−i)
)

. (4)

If Λ3
i > 0, then define φ3

i ∈ ∆(T−i) such that, for any t−i ∈ T−i,

φ3
i (t−i) =

∑

m−i∈M
3

−i

λi(t−i, m−i)

Λ3
i

.

Thus, φ3
i (t−i) is the conditional probability of the event that the type profile of all other

individuals is t−i and they report a message profile in M3
−i given the event that all other

individuals report a message profile in M3
−i.

If the type profile of all other individuals is t−i and they report a message profile

m−i ∈ M3
−i, then when individual i of type ti plays mi, she expects the outcome to be

given by the lottery

1

n

(

m2
i

1 +m2
i

)

m4
i +

1

n

(

1−
m2

i

1 +m2
i

)

ᾱ +
∑

j 6=i

(

1

n

(

m2
j

1 +m2
j

)

m4
j +

1

n

(

1−
m2

j

1 +m2
j

)

ᾱ

)

.

As a result, conditional on the event that all other individuals report a message profile in

M3
−i, the expected payoff of individual i of type ti when she plays mi is

1

n

(

m2
i

1 +m2
i

)

∑

t−i

φ3
i (t−i)ui

(

m4
i , (ti, t−i)

)

+
1

n

(

1−
m2

i

1 +m2
i

)

∑

t−i

φ3
i (t−i)ui

(

ᾱ, (ti, t−i)
)

+
∑

t−i

∑

m−i∈M
3

−i

λi(t−i, m−i)

Λ3
i

∑

j 6=i

(

1

n

(

m2
j

1 +m2
j

)

ui
(

m4
j , (ti, t−i)

)

+
1

n

(

1−
m2

j

1 +m2
j

)

ui
(

ᾱ, (ti, t−i)
)

)

.

(5)
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Now let individual i of type ti deviate to m̂i = (m1
i , m̂

2
i , m̂

3
i , m̂

4
i ) such that

• m̂2
i = m2

i + 1.

• m̂3
i is defined as follows: for each t̃i ∈ Ti:

⊲ If Λ2,t̃i
i > 0, then let m̂3

i [t̃i] ∈ Y ∗
i [t̃i, f̂ ] be such that

∑

t−i,t
′

−i

φ2,t̃i
i (t−i, t

′

−i)ui
(

m̂3
i [t̃i](t

′

−i), (ti, t−i)
)

≥
∑

t−i,t
′

−i

φ2,t̃i
i (t−i, t

′

−i)ui
(

m3
i [t̃i](t

′

−i), (ti, t−i)
)

and
∑

t−i,t
′

−i

φ2,t̃i
i (t−i, t

′

−i)ui
(

m̂3
i [t̃i](t

′

−i), (ti, t−i)
)

>
∑

t−i,t
′

−i

φ2,t̃i
i (t−i, t

′

−i)ui(y
t̃i,f̂
i (t

′

−i), (ti, t−i)
)

.

Note that such m̂3
i [t̃i] exists because of Lemma 6.2.

⊲ If Λ2,t̃i
i = 0, then let m̂3

i [t̃i] = m3
i [t̃i].

• m̂4
i is defined as follows:

⊲ If Λ3
i > 0, then let m̂4

i ∈ A be such that

∑

t−i

φ3
i (t−i)ui

(

m̂4
i , (ti, t−i)

)

≥
∑

t−i

φ3
i (t−i)ui

(

m4
i , (ti, t−i)

)

and
∑

t−i

φ3
i (t−i)ui

(

m̂4
i , (ti, t−i)

)

>
∑

t−i

φ3
i (t−i)ui

(

ᾱ, (ti, t−i)
)

.

Note that such m̂4
i exists because of Lemma 6.2.

⊲ If Λ3
i = 0, then let m̂4

i = m4
i .

If Λ2,t̃i
i > 0, then conditional on the event that all other individuals report a message

profile in
⋃

t
′′

−i
M2

−i(t̃i, t
′′

−i), the expected payoff of individual i of type ti when she plays

m̂i is

(

m̂2
i

1 + m̂2
i

)

∑

t−i,t
′

−i

φ2,t̃i
i (t−i, t

′

−i)ui
(

m̂3
i [t̃i](t

′

−i), (ti, t−i)
)

+

(

1−
m̂2

i

1 + m̂2
i

)

∑

t−i,t
′

−i

φ2,t̃i
i (t−i, t

′

−i)ui
(

y t̃i,f̂i (t
′

−i), (ti, t−i)
)

,

which is, by construction, greater than her expected payoff in (4) when she plays mi.
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If Λ3
i > 0, then conditional on the event that all other individuals report a message

profile in M3
−i, the expected payoff of individual i of type ti when she plays m̂i is

1

n

(

m̂2
i

1 + m̂2
i

)

∑

t−i

φ3
i (t−i)ui

(

m̂4
i , (ti, t−i)

)

+
1

n

(

1−
m̂2

i

1 + m̂2
i

)

∑

t−i

φ3
i (t−i)ui

(

ᾱ, (ti, t−i)
)

+
∑

t−i

∑

m−i∈M
3

−i

λi(t−i, m−i)

Λ3
i

∑

j 6=i

(

1

n

(

m2
j

1 +m2
j

)

ui
(

m4
j , (ti, t−i)

)

+
1

n

(

1−
m2

j

1 +m2
j

)

ui
(

ᾱ, (ti, t−i)
)

)

,

which is, by construction, greater than her expected payoff in (5) when she plays mi.

As
∑

t̃i
Λ2,t̃i

i + Λ3
i = 1 (because m2

i > 1), it follows that m̂i is a better response for

individual i of type ti against λi, a contradiction. This completes the proof of Step 1.

Step 2: For each i ∈ I and ti ∈ Ti, let

βi(ti) = {ti} ∪ {t
′

i ∈ Ti : ∃mi ∈ S
Γ(T )
i (ti) such that m1

i [i] = t
′

i}.

Then, the deception β = (βi)i∈I is acceptable for f̂ .

Proof. Suppose not, that is, β is unacceptable for f̂ . Then, by weak IRM, β must be

weakly refutable. That is, there exist i ∈ I, ti ∈ Ti, and t
′

i ∈ βi(ti) satisfying t
′

i 6∼
f
i ti such

that for all ψi ∈ ∆(T−i × T ) satisfying ψi(t−i, t̃) > 0 ⇒ t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃∈T ψi(t−i, t̃) for all t−i ∈ T−i, there exists an SCF f
′

such that f
′

(t̃i, ·) ∈ Yi[t̃i, f̂ ] for all

t̃i ∈ Ti and

∑

t−i,t̃

ψi(t−i, t̃)ui
(

f
′

(t̃), (ti, t−i)
)

>
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f̂(t
′

i, t̃−i), (ti, t−i)
)

.

As t
′

i 6∼
f
i ti and t

′

i ∈ βi(ti), we can find a message mi ∈ S
Γ(T )
i (ti) such that m1

i [i] = t
′

i.

From Step 1, we know that m2
i = 1. Then, mi is a best response to some belief λi ∈

∆(T−i ×M−i) such that λi(t−i, m−i) > 0 ⇒ m−i ∈ S
Γ(T )
−i (t−i) and margT−i

λi = πi(ti).

From Step 1, it follows that λi(t−i, m−i) > 0 implies m2
j = 1 for all j 6= i. We next define

a partition of all those message profiles in M−i such that m2
j = 1 for all j 6= i.

For each t̂i 6= t∗i and t̃−i ∈ T−i, we define

M1
−i(t̂i, t̃−i) =

{

m−i : m
2
j = 1 and m1

j [i] = t̂i, ∀j 6= i, and (m1
j [j])j 6=i = t̃−i

}

.
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For t∗i and each t̃−i ∈ T−i, we define

M1
−i(t

∗
i , t̃−i) =











m−i :

(m1
j [j])j 6=i = t̃−i and

either m2
j = 1 and m1

j [i] = t∗i , ∀j 6= i,

or m2
j = 1, ∀j 6= i, but m1

j
′ [i] 6= m1

k[i] for some j
′

, k 6= i











.

Define the belief ψ1
i ∈ ∆(T−i × T ) as follows: For each t−i ∈ T−i and t̃ ∈ T , let

ψ1
i (t−i, t̃) =

∑

m−i∈M
1

−i
(t̃i,t̃−i)

λi(t−i, m−i).

Thus, ψ1
i (t−i, t̃) is the probability of the event that the type profile of all other individuals

is t−i and they report a message profile in M1
−i(t̃i, t̃−i). In this event, individual i of type

ti expects the outcome to equal f̂(t
′

i, t̃−i) when she plays mi. As a result, the expected

payoff of individual i of type ti when she plays mi is

∑

t−i,t̃

ψ1
i (t−i, t̃)ui

(

f̂(t
′

i, t̃−i), (ti, t−i)
)

. (6)

Now, ψ1
i (t−i, t̃) > 0 implies that λi(t−i, m−i) > 0 for some m−i ∈ M1

−i(t̃i, t̃−i). But

λi(t−i, m−i) > 0 also implies that m−i ∈ S
Γ(T )
−i (t−i). Hence, due to the construction of β,

we have t̃−i ∈ β−i(t−i). Moreover, since λi(t−i, m−i) > 0 implies m2
j = 1 for all j 6= i, it

follows that

πi(ti)[t−i] =
∑

m−i∈M−i

λi(t−i, m−i) =
∑

m−i∈
⋃

t̃∈T M1

−i
(t̃)

λi(t−i, m−i) =
∑

t̃∈T

ψ1
i (t−i, t̃).

So, it follows from weak refutability of β that there exists and SCF f
′

such that f
′

(t̃i, ·) ∈

Yi[t̃i, f̂ ] for all t̃i ∈ Ti and

∑

t−i,t̃

ψ1
i (t−i, t̃)ui

(

f
′

(t̃), (ti, t−i)
)

>
∑

t−i,t̃

ψ1
i (t−i, t̃)ui

(

f̂(t
′

i, t̃−i), (ti, t−i)
)

.

It is without loss of generality to assume that the SCF f
′

is such that f
′

(t̃i, ·) ∈ Y ∗
i [t̃i, f̂ ]

for all t̃i ∈ Ti. To see this, pick any t̃i ∈ Ti.

If f
′

(t̃i, ·) ∈ Y ∗
i [t̃i, f̂ ], then for each integer z ≥ 1 and t−i ∈ T−i, define f

z(t̃i, t−i) =

f
′

(t̃i, t−i). Then f
z(t̃i, ·) ∈ Y ∗

i [t̃i, f̂ ] for all z.

If f
′

(t̃i, ·) 6∈ Y ∗
i [t̃i, f̂ ], then for each integer z ≥ 1 and t−i ∈ T−i, define f

z(t̃i, t−i) ∈

∆∗(A)
⋃

t
′

i
∈Ti

{f̂(t
′

i, t−i)} such that (a) if f
′

(t̃i, t−i) = f̂(t̃i, t−i), then f
z(t̃i, t−i) = f

′

(t̃i, t−i)
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for all z whereas (b) if f
′

(t̃i, t−i) 6= f̂(t̃i, t−i), then f
z(t̃i, t−i) converges to f

′

(t̃i, t−i) as z →

∞. Since f
′

(t̃i, ·) ∈ Yi[t̃i, f̂ ] but f
′

(t̃i, ·) 6∈ Y ∗
i [t̃i, f̂ ], it must be that f

′

(t̃i, t−i) 6= f̂(t̃i, t−i)

for some t−i ∈ T−i. This implies that Ui(f̂ |t̃i) > Ui(f
′

(t̃i, ·)|t̃i). As f z(t̃i, ·) converges

pointwise to f
′

(t̃i, ·), T−i is finite, and ui(·, t) is continuous over ∆(A), we can find a

sufficiently large integer ẑ[t̃i] such that

Ui(f̂ |t̃i) > Ui(f
ẑ[t̃i](t̃i, ·)|t̃i), ∀z > z[t̃i].

Therefore, f ẑ[t̃i](t̃i, ·) ∈ Y ∗
i [t̃i, f̂ ] for all z > z[t̃i].

Consider the sequence of SCFs {f z}z∈N as defined above. As f z converges pointwise

to f
′

, Ti is finite, and ui(·, t) is continuous over ∆(A), we can find a sufficiently large

integer ẑ such that f ẑ(t̃i, ·) ∈ Y ∗
i [t̃i, f̂ ] for all t̃i ∈ Ti and

∑

t−i,t̃

ψ1
i (t−i, t̃)ui

(

f ẑ(t̃), (ti, t−i)
)

>
∑

t−i,t̃

ψ1
i (t−i, t̃)ui

(

f̂(t
′

i, t̃−i), (ti, t−i)
)

.

Therefore, f
′

(t̃i, ·) ∈ Y ∗
i [t̃i, f̂ ] for all t̃i ∈ Ti.

Now, let individual i of type ti deviate to m̂i = (m1
i , m̂

2
i , m̂

3
i , m

4
i ) such that

• m̂2
i > 1, where the specific value is chosen later.

• m̂3
i is defined as follows: m̂3

i [t̃i] = f
′

(t̃i, ·) for all t̃i ∈ Ti.

Consider the event that the type profile of all other individuals is t−i and they report a

message profile inM1
−i(t̃i, t̃−i). In this event, after the deviation to m̂i, type ti of individual

i expects the outcome to equal

(

m̂2
i

1 + m̂2
i

)

f
′

(t̃i, t̃−i) +

(

1−
m̂2

i

1 + m̂2
i

)

y t̃i,f̂i (t̃−i).

As a result, the expected payoff of individual i of type ti when she deviates to m̂i is

(

m̂2
i

1 + m̂2
i

)

∑

t−i,t̃

ψ1
i (t−i, t̃)ui

(

f
′

(t̃), (ti, t−i)
)

+

(

1−
m̂2

i

1 + m̂2
i

)

∑

t−i,t̃

ψ1
i (t−i, t̃)ui

(

y t̃i,f̂i (t̃−i), (ti, t−i)
)

.

If m̂2
i is large enough, then the above expression is greater than her expected payoff in

(6) when she plays mi. It follows that m̂i is a better response for individual i of type

ti against λi, a contradiction. Thus, β is acceptable. This completes the proof of Step

2.

It follows from Steps 1 and 2 that m ∈ SΓ(T )(t) ⇒ g(m) = f̂(t).
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Step 3: Define the message correspondence profile S = (S1, . . . ,Sn) where each Si : Ti →

2Mi such that for all i ∈ I and ti ∈ Ti,

Si(ti) = {(m1
i , 1, m

3
i , m

4
i ) : m

1
i [i] = ti}.

Then, we have b(S) ≥ S, which implies that S ≤ SΓ(T ).

Proof. Pick any i ∈ I, ti ∈ Ti, andmi ∈ Si(ti). Pick any σ̃−i : T−i →M−i such that, for all

j 6= i and tj ∈ Tj , (i) σ̃j(tj) ∈ Sj(tj) and (ii) σ̃1
j (tj)[i] = ti. Let the belief λi ∈ ∆(T−i×M−i)

be such that for all t−i ∈ T−i, λi(t−i, m−i) = 0 whenever m−i 6= σ̃−i(t−i). Then, by

construction, λi(t−i, m−i) > 0 implies that m−i ∈ S−i(t−i) and margT−i
λi = πi(ti). When

individual i of type ti holds the belief λi and plays mi, then she expects the payoff of

∑

t−i

πi(ti)[t−i]ui
(

f̂(ti, t−i), (ti, t−i)
)

.

On the one hand, if she deviates to m̂i such that m̂1
i [i] = t

′

i and m̂
2
i = 1, then she expects

the payoff of
∑

t−i

πi(ti)[t−i]ui
(

f̂(t
′

i, t−i), (ti, t−i)
)

,

which is not improving due to SIRBIC. Recall that weak IRM of f̂ implies that f̂ satisfies

SIRBIC (Lemma 5.2). On the other hand, if she deviates to m̂i such that m̂2
i > 1, then

she expects the payoff of

(

m̂2
i

1 + m̂2
i

)

∑

t−i

πi(ti)[t−i]ui
(

m̂3
i [ti](t−i), (ti, t−i)

)

+

(

1−
m̂2

i

1 + m̂2
i

)

∑

t−i

πi(ti)[t−i]ui
(

yti,f̂i (t−i), (ti, t−i)
)

.

As m̂3
i [ti] ∈ Y ∗

i [ti, f̂ ], she cannot improve her payoff by any such deviation. Hence, mi ∈

bi(S)[ti]. This completes the proof of Step 3.

Steps 1 through 3 together comprise the proof of the theorem.

7 IRM Is Not Necessary for Interim Rationalizable

Implementation

In this section, we disprove the claim made in Oury and Tercieux (2012, footnote 4) that

IRM is necessary for interim rationalizable implementation. We base our arguments on
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the following example, which is built upon the example presented in Kunimoto and Saran

(2020).

Example 7.1. There are two players i ∈ {1, 2}. Player 1 has three types: T1 = {t1, t
′

1, t
′′

1}

and player 2 has two types: T2 = {t2, t
′

2}. The beliefs of the players are as follows:

π1(t1)[t2] = 0.99, π1(t
′

1)[t2] = π1(t
′′

1)[t2] = 0

and

π2(t2)[t1] = π2(t2)[t
′

1] = π2(t2)[t
′′

1 ] =
1

3
, π2(t

′

2)[t
′

1] = 1.

Notice that T ∗ = T since for every state, there is a type of a player who puts positive

probability on that state. Thus, we need not discuss equivalent SCFs in this setup.

There are six pure alternatives: A = {a, b, c, d, z, z
′

}. The following tables list the

payoffs of the two players:

a t2 t
′

2

t1 4, 4 4, 0

t
′

1 0, 0 4, 1

t
′′

1 1, 1 4, 0

b t2 t
′

2

t1 0, 0 3, 3

t
′

1 1, 1 2, 0

t
′′

1 0, 0 2, 1

c t2 t
′

2

t1 0, 0 3, 1

t
′

1 3, 3 3, 0

t
′′

1 3, 3 3, 0

d t2 t
′

2

t1 3, 4 2, 0

t
′

1 0, 3 3, 3

t
′′

1 0, 3 3, 3

z t2 t
′

2

t1 4, 1 2, 0

t
′

1 2, 2 5, 0

t
′′

1 2, 2 2, 0

z
′

t2 t
′

2

t1 4, 0 4, 1

t
′

1 2, 0 2, 2

t
′′

1 2, 0 5, 0

The SCF f selects the alternative which maximizes the aggregate payoff in each state.

f t2 t
′

2

t1 a b

t
′

1 c d

t
′′

1 c d

We first show that f fails BM.

Claim 7.2. The SCF f violates BM.

Proof. Consider the single-valued deception βs such that

βs
1(t1) = t

′

1, βs
1(t

′

1) = t
′

1, βs
1(t

′′

1) = t
′′

1 ,

28



and

βs
2(t2) = t

′

2, βs
2(t

′

2) = t
′

2.

First, consider player 2 of type t2. There exists no y : T1 → ∆(A) such that

U2(y ◦ β
s
1|t2) =

1

3
u2
(

y(t
′

1), (t1, t2)
)

+
1

3
u2
(

y(t
′

1), (t
′

1, t2)
)

+
1

3
u2
(

y(t
′′

1), (t
′′

1 , t2)
)

> U2(f ◦ βs|t2) =
1

3
u2
(

f(t
′

1, t
′

2), (t1, t2)
)

+
1

3
u2
(

f(t
′

1, t
′

2), (t
′

1, t2)
)

+
1

3
u2
(

f(t
′′

1 , t
′

2), (t
′′

1 , t2)
)

,

because f(t
′

1, t
′

2) = f(t
′′

1 , t
′

2) = d is one of the best alternatives for player 2 of type t2 in

each state.

Second, consider player 2 of type t
′

2. There exists no y : T1 → ∆(A) such that

U2(y ◦ β
s
1|t

′

2) > U2(f ◦ βs|t
′

2) and U2(f |t
′

2) ≥ U2(y|t
′

2).

Since U2(f ◦ βs|t
′

2) = u2(f(t
′

1, t
′

2), (t
′

1, t
′

2)) = U2(f |t
′

2), if the above inequalities were true,

then we must have U2(y ◦β
s
1|t

′

2) > U2(y|t
′

2). But that is impossible because U2(y ◦β
s
1|t

′

2) =

u2
(

y(t
′

1), (t
′

1, t
′

2)
)

= U2(y|t
′

2).

Third, consider player 1 of type t1. Pick any y : T2 → ∆(A) such that

U1(f |t1) ≥ U1(y|t1), U1(f |t
′

1) ≥ U1(y|t
′

1), and U1(f |t
′′

1) ≥ U1(y|t
′′

1).

The last two inequalities imply that

u1
(

f(t
′

1, t
′

2), (t
′

1, t
′

2)
)

≥ u1
(

y(t
′

2), (t
′

1, t
′

2)
)

u1
(

f(t
′′

1 , t
′

2), (t
′′

1 , t
′

2)
)

≥ u1
(

y(t
′

2), (t
′′

1 , t
′

2)
)

.

These two inequalities lead to

2y(t
′

2)[z] + y(t
′

2)[a] ≤ y(t
′

2)[z
′

] + y(t
′

2)[b] and 2y(t
′

2)[z
′

] + y(t
′

2)[a] ≤ y(t
′

2)[z] + y(t
′

2)[b],

where y(t
′

2)[x] is the probability of alternative x in the lottery y(t
′

2). Summing these two

inequalities, we obtain y(t
′

2)[z] + y(t
′

2)[z
′

] + 2y(t
′

2)[a] ≤ 2y(t
′

2)[b].

In order to find the required preference reversal for type t1, we must satisfy U1(y ◦

βs
2|t1) > U1(f ◦ βs|t1), that is,

0.99u1
(

y(t
′

2), (t1, t2)
)

+0.01u1
(

y(t
′

2), (t1, t
′

2)
)

> 0.99u1
(

f(t
′

1, t
′

2), (t1, t2)
)

+0.01u1
(

f(t
′

1, t
′

2), (t1, t
′

2)
)

.
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The above inequality is translated into

0.99(y(t
′

2)[z] + y(t
′

2)[z
′

] + y(t
′

2)[a]) + 0.01(2y(t
′

2)[a] + y(t
′

2)[b] + y(t
′

2)[c] + 2y(t
′

2)[z
′

])

> 0.99(3y(t
′

2)[b] + 3y(t
′

2)[c]).

As y(t
′

2)[z] + y(t
′

2)[z
′

] + 2y(t
′

2)[a] ≤ 2y(t
′

2)[b], we must have y(t
′

2)[z
′

] ≤ 2y(t
′

2)[b]. Plugging

this into the left-hand side of the above inequality gives us

0.99(y(t
′

2)[z] + y(t
′

2)[z
′

] + y(t
′

2)[a]) + 0.01(2y(t
′

2)[a] + 5y(t
′

2)[b] + y(t
′

2)[c])

> 0.99(3y(t
′

2)[b] + 3y(t
′

2)[c]).

We claim that this inequality is impossible to be satisfied. Now plugging y(t
′

2)[z] +

y(t
′

2)[z
′

] + 2y(t
′

2)[a] ≤ 2y(t
′

2)[b] into the right-hand side of the above inequality, we obtain

− 0.99y(t
′

2)[a] + 0.01(2y(t
′

2)[a] + 5y(t
′

2)[b] + y(t
′

2)[c]) > 0.99(y(t
′

2)[b] + 3y(t
′

2)[c])

⇒ −0.97y(t
′

2)[a]− 0.94y(t
′

2)[b]− 2.96y(t
′

2)[c] > 0,

which is indeed impossible.

Fourth, consider player 1 of type t
′

1. There does not exist any y : T2 → ∆(A) such

that

U1(y ◦ β
s
2|t

′

1) > U1(f ◦ βs|t
′

1) and U1(f |t
′

1) ≥ U1(y|t
′

1).

Since U1(f ◦ βs|t
′

1) = u1
(

f(t
′

1, t
′

2), (t
′

1, t
′

2)
)

= U1(f |t
′

1), if the above inequalities were true,

then we must have U1(y ◦β
s
2|t

′

1) > U1(y|t
′

1). But that is impossible because U1(y ◦β
s
2|t

′

1) =

u1
(

y(t
′

2), (t
′

1, t
′

2)
)

= U1(y|t
′

1).

Finally, consider player 1 of type t
′′

1 . There does not exist any y : T2 → ∆(A) such

that

U1(y ◦ β
s
2|t

′′

1) > U1(f ◦ βs|t
′′

1) and U1(f |t
′′

1) ≥ U1(y|t
′′

1).

Since U1(f ◦ βs|t
′′

1) = u1
(

f(t
′′

1 , t
′

2), (t
′′

1 , t
′

2)
)

= U1(f |t
′′

1), if the above inequalities were true,

then we must have U1(y◦β
s
2|t

′′

1) > U1(y|t
′′

1). But that is impossible because U1(y◦β
s
2|t

′′

1) =

u1
(

y(t
′

2), (t
′′

1 , t
′

2)
)

= U1(y|t
′′

1).

We therefore conclude that the SCF f does not satisfy BM.

Since we know from Lemma 5.8 that IRM implies BM, we state the following result

without proof.

Claim 7.3. The SCF f violates IRM.

Next, we argue that f satisfies weak IRM.
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Claim 7.4. The SCF f satisfies weak IRM.

Proof. First, we consider any unacceptable deception β such that either t
′

1 ∈ β1(t1) or

t
′′

1 ∈ β1(t1). Pick any belief ψ1 ∈ ∆(T2 × T ). Then

∑

t̂2,t̃

ψ1(t̂2, t̃)u1
(

f(t
′

1, t̃2), (t1, t̂2)
)

=
∑

t̃1

ψ1(t2, t̃1, t2)u1
(

f(t
′

1, t2), (t1, t2)
)

+
∑

t̃1

ψ1(t2, t̃1, t
′

2)u1
(

f(t
′

1, t
′

2), (t1, t2)
)

+
∑

t̃1

ψ1(t
′

2, t̃1, t2)u1
(

f(t
′

1, t2), (t1, t
′

2)
)

+
∑

t̃1

ψ1(t
′

2, t̃1, t
′

2)u1
(

f(t
′

1, t
′

2), (t1, t
′

2)
)

= 3
∑

t̃1

ψ1(t
′

2, t̃1, t2) + 3
∑

t̃1

ψ1(t2, t̃1, t
′

2) + 2
∑

t̃1

ψ1(t
′

2, t̃1, t
′

2).

Since f(t
′

1, t2) = f(t
′′

1 , t2) = c and f(t
′

1, t
′

2) = f(t
′′

1 , t
′

2) = d, we also obtain

∑

t̂2,t̃

ψ1(t̂2, t̃)u1
(

f(t
′′

1 , t̃2), (t1, t̂2)
)

= 3
∑

t̃1

ψ1(t
′

2, t̃1, t2) + 3
∑

t̃1

ψ1(t2, t̃1, t
′

2) + 2
∑

t̃1

ψ1(t
′

2, t̃1, t
′

2).

Consider the SCF f
′

defined as follows:

f
′

t2 t
′

2

t1 a 2
3
z + 1

3
z
′

t
′

1 a z
′

t
′′

1 a 1
5
c+ 4

5
z

It is straightforward to confirm that f
′

(t̃1, ·) ∈ Y1[t̃1, f ] for all t̃1 ∈ T1. Moreover,

∑

t̂2,t̃

ψ1(t̂2, t̃)u1
(

f
′

(t̃), (t1, t̂2)
)

=
∑

t̂2,t̃2

ψ1(t̂2, t1, t̃2)u1
(

f
′

(t1, t̃2), (t1, t̂2)
)

+
∑

t̂2,t̃2

ψ1(t̂2, t
′

1, t̃2)u1
(

f
′

(t
′

1, t̃2), (t1, t̂2)
)

+
∑

t̂2,t̃2

ψ1(t̂2, t
′′

1 , t̃2)u1
(

f
′

(t
′′

1 , t̃2), (t1, t̂2)
)

.

We consider each term on the right-hand side of the above equation separately. The

first term is:

∑

t̂2,t̃2

ψ1(t̂2, t1, t̃2)u1
(

f
′

(t1, t̃2), (t1, t̂2)
)

= ψ1(t2, t1, t2)u1
(

f
′

(t1, t2), (t1, t2)
)

+ ψ1(t2, t1, t
′

2)u1
(

f
′

(t1, t
′

2), (t1, t2)
)
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+ψ1(t
′

2, t1, t2)u1
(

f
′

(t1, t2), (t1, t
′

2)
)

+ ψ1(t
′

2, t1, t
′

2)u1
(

f
′

(t1, t
′

2), (t1, t
′

2)
)

= 4ψ1(t2, t1, t2) + 4ψ1(t
′

2, t1, t2) + 4ψ1(t2, t1, t
′

2) +
8

3
ψ1(t

′

2, t1, t
′

2).

The second term is:

∑

t̂2,t̃2

ψ1(t̂2, t
′

1, t̃2)u1
(

f
′

(t
′

1, t̃2), (t1, t̂2)
)

= ψ1(t2, t
′

1, t2)u1
(

f
′

(t
′

1, t2), (t1, t2)
)

+ ψ1(t2, t
′

1, t
′

2)u1
(

f
′

(t
′

1, t
′

2), (t1, t2)
)

+ψ1(t
′

2, t
′

1, t2)u1
(

f
′

(t
′

1, t2), (t1, t
′

2)
)

+ ψ1(t
′

2, t
′

1, t
′

2)u1
(

f
′

(t
′

1, t
′

2), (t1, t
′

2)
)

= 4ψ1(t2, t
′

1, t2) + 4ψ1(t
′

2, t
′

1, t2) + 4ψ1(t2, t
′

1, t
′

2) + 4ψ1(t
′

2, t
′

1, t
′

2).

The third term is:

∑

t̂2,t̃2

ψ1(t̂2, t
′′

1 , t̃2)u1
(

f
′

(t
′′

1 , t̃2), (t1, t̂2)
)

= ψ1(t2, t
′′

1 , t2)u1
(

f
′

(t
′′

1 , t2), (t1, t2)
)

+ ψ1(t2, t
′′

1 , t
′

2)u1
(

f
′

(t
′′

1 , t
′

2), (t1, t2)
)

+ψ1(t
′

2, t
′′

1 , t2)u1
(

f
′

(t
′′

1 , t2), (t1, t
′

2)
)

+ ψ1(t
′

2, t
′′

1 , t
′

2)u1
(

f
′

(t
′′

1 , t
′

2), (t1, t
′

2)
)

= 4ψ1(t2, t
′′

1 , t2) + 4ψ1(t
′

2, t
′′

1 , t2) +
16

5
ψ1(t2, t

′′

1 , t
′

2) +
11

5
ψ1(t

′

2, t
′′

1 , t
′

2).

Summing the three terms, we get

∑

t̂2,t̃

ψ1(t̂2, t̃)u1
(

f
′

(t̃), (t1, t̂2)
)

= 4
∑

t̃1

ψ1(t2, t̃1, t2) + 4
∑

t̃1

ψ1(t
′

2, t̃1, t2)

+

(

4ψ1(t2, t1, t
′

2) + 4ψ1(t2, t
′

1, t
′

2) +
16

5
ψ1(t2, t

′′

1 , t
′

2)

)

+

(

8

3
ψ1(t

′

2, t1, t
′

2) + 4ψ1(t
′

2, t
′

1, t
′

2) +
11

5
ψ1(t

′

2, t
′′

1 , t
′

2)

)

≥ 4
∑

t̃1

ψ1(t2, t̃1, t2) + 4
∑

t̃1

ψ1(t
′

2, t̃1, t2) +
16

5

∑

t̃1

ψ1(t2, t̃1, t
′

2) +
11

5

∑

t̃1

ψ1(t
′

2, t̃1, t
′

2)

> 3
∑

t̃1

ψ1(t
′

2, t̃1, t2) + 3
∑

t̃1

ψ1(t2, t̃1, t
′

2) + 2
∑

t̃1

ψ1(t
′

2, t̃1, t
′

2).

We therefore conclude that

∑

t̂2,t̃

ψ1(t̂2, t̃)u1
(

f
′

(t̃), (t1, t̂2)
)

>
∑

t̂2,t̃

ψ1(t̂2, t̃)u1
(

f(t
′

1, t̃2), (t1, t̂2)
)

.
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Similarly,

∑

t̂2,t̃

ψ1(t̂2, t̃)u1
(

f
′

(t̃), (t1, t̂2)
)

>
∑

t̂2,t̃

ψ1(t̂2, t̃)u1
(

f(t
′′

1 , t̃2), (t1, t̂2)
)

.

It follows that any unacceptable deception β satisfying t
′

1 ∈ β1(t1) is weakly refutable

using the tuple (1, t1, t
′

1) whereas any unacceptable deception β satisfying t
′′

1 ∈ β1(t1) is

weakly refutable using the tuple (1, t1, t
′′

1).

Second, we consider any unacceptable deception β such that t
′

2 ∈ β2(t2) and β1(t1) =

{t1}. Pick any belief ψ2 ∈ ∆(T1×T ) such that ψ2(t̂1, t̃) > 0 ⇒ t̃1 ∈ β1(t̂1) and π2(t2)[t̂1] =
∑

t̃ ψ2(t̂1, t̃) for all t̂1. Then we have ψ2(t1, t̃) = 0 whenever t̃1 6= t1 and
∑

t̃2
ψ2(t1, t1, t̃2) =

1/3. Therefore,

∑

t̂1,t̃

ψ2(t̂1, t̃)u2
(

f(t̃1, t
′

2), (t̂1, t2)
)

=
∑

t̃

ψ2(t1, t̃)u2
(

f(t̃1, t
′

2), (t1, t2)
)

+
∑

t̃

ψ2(t
′

1, t̃)u2
(

f(t̃1, t
′

2), (t
′

1, t2)
)

+
∑

t̃

ψ2(t
′′

1 , t̃)u2
(

f(t̃1, t
′

2), (t
′′

1 , t2)
)

=
∑

t̃2

ψ2(t1, t1, t̃2)u2
(

f(t1, t
′

2), (t1, t2)
)

+
∑

t̃2

ψ2(t
′

1, t1, t̃2)u2
(

f(t1, t
′

2), (t
′

1, t2)
)

+
∑

t̃2

ψ2(t
′

1, t
′

1, t̃2)u2
(

f(t
′

1, t
′

2), (t
′

1, t2)
)

+
∑

t̃2

ψ2(t
′

1, t
′′

1 , t̃2)u2
(

f(t
′′

1 , t
′

2), (t
′

1, t2)
)

+
∑

t̃2

ψ2(t
′′

1 , t1, t̃2)u2
(

f(t1, t
′

2), (t
′′

1 , t2)
)

+
∑

t̃2

ψ2(t
′′

1 , t
′

1, t̃2)u2
(

f(t
′

1, t
′

2), (t
′′

1 , t2)
)

+
∑

t̃2

ψ2(t
′′

1 , t
′′

1 , t̃2)u2
(

f(t
′′

1 , t
′

2), (t
′′

1 , t2)
)

=
∑

t̃2

ψ2(t
′

1, t1, t̃2) + 3
∑

t̃2

(

ψ2(t
′

1, t
′

1, t̃2) + ψ2(t
′

1, t
′′

1 , t̃2) + ψ2(t
′′

1 , t
′

1, t̃2) + ψ2(t
′′

1 , t
′′

1 , t̃2)
)

.

Consider the SCF f
′

defined as follows:

f
′

t2 t
′

2

t1 z z

t
′

1 d d

t
′′

1 d d

It is straightforward to confirm that f
′

(·, t̃2) ∈ Y2[t̃2, f ] for all t̃2 ∈ T2. Moreover, because
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f
′

(t̃1, t2) = f
′

(t̃1, t
′

2) for all t̃1 ∈ T1, we have

∑

t̂1,t̃

ψ2(t̂1, t̃)u2
(

f
′

(t̃), (t̂1, t2)
)

=
∑

t̂1,t̃

ψ2(t̂1, t̃)u2
(

f
′

(t̃1, t
′

2), (t̂1, t2)
)

.

Since ψ2(t1, t̃) = 0 whenever t̃1 6= t1 and
∑

t̃2
ψ2(t1, t1, t̃2) = 1/3, by applying here similar

arguments as in the case of the SCF f , we obtain that

∑

t̂1,t̃

ψ2(t̂1, t̃)u2
(

f
′

(t̃1, t
′

2), (t̂1, t2)
)

=
∑

t̃2

ψ2(t1, t1, t̃2) + 2
∑

t̃2

(

ψ2(t
′

1, t1, t̃2) + ψ2(t
′′

1 , t1, t̃2))

+3
∑

t̃2

(

ψ2(t
′

1, t
′

1, t̃2) + ψ2(t
′

1, t
′′

1 , t̃2) + ψ2(t
′′

1 , t
′

1, t̃2) + ψ2(t
′′

1 , t
′′

1 , t̃2)
)

>
∑

t̃2

ψ2(t
′

1, t1, t̃2) + 3
∑

t̃2

(

ψ2(t
′

1, t
′

1, t̃2) + ψ2(t
′

1, t
′′

1 , t̃2) + ψ2(t
′′

1 , t
′

1, t̃2) + ψ2(t
′′

1 , t
′′

1 , t̃2)
)

.

It follows that

∑

t̂1,t̃

ψ2(t̂1, t̃)u2
(

f
′

(t̃), (t̂1, t2)
)

>
∑

t̂1,t̃

ψ2(t̂1, t̃)u2
(

f(t̃1, t
′

2), (t̂1, t2)
)

.

Therefore, any unacceptable deception β such that t
′

2 ∈ β2(t2) and β1(t1) = {t1} is weakly

refutable using the tuple (2, t2, t
′

2).

Third, we consider any unacceptable deception β such that t2 ∈ β2(t
′

2) and β1(t1) =

{t1}. Pick any belief ψ2 ∈ ∆(T1× T ) such that ψ2(t̂1, t̃) > 0 ⇒ t̃1 ∈ β1(t̂1). Then we have

that ψ2(t1, t̃) = 0 whenever t̃1 6= t1. Therefore,

∑

t̂1,t̃

ψ2(t̂1, t̃)u2
(

f(t̃1, t2), (t̂1, t
′

2)
)

=
∑

t̃

ψ2(t1, t̃)u2
(

f(t̃1, t2), (t1, t
′

2)
)

+
∑

t̃

ψ2(t
′

1, t̃)u2
(

f(t̃1, t2), (t
′

1, t
′

2)
)

+
∑

t̃

ψ2(t
′′

1 , t̃)u2
(

f(t̃1, t2), (t
′′

1 , t
′

2)
)

=
∑

t̃2

ψ2(t1, t1, t̃2)u2
(

f(t1, t2), (t1, t
′

2)
)

+
∑

t̃2

ψ2(t
′

1, t1, t̃2)u2
(

f(t1, t2), (t
′

1, t
′

2)
)

+
∑

t̃2

ψ2(t
′

1, t
′

1, t̃2)u2
(

f(t
′

1, t2), (t
′

1, t
′

2)
)

+
∑

t̃2

ψ2(t
′

1, t
′′

1 , t̃2)u2
(

f(t
′′

1 , t2), (t
′

1, t
′

2)
)

+
∑

t̃2

ψ2(t
′′

1 , t1, t̃2)u2
(

f(t1, t2), (t
′′

1 , t
′

2)
)

+
∑

t̃2

ψ2(t
′′

1 , t
′

1, t̃2)u2
(

f(t
′

1, t2), (t
′′

1 , t
′

2)
)
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+
∑

t̃2

ψ2(t
′′

1 , t
′′

1 , t̃2)u2
(

f(t
′′

1 , t2), (t
′′

1 , t
′

2)
)

=
∑

t̃2

ψ2(t
′

1, t1, t̃2).

Consider the constant SCF f
′

such that f
′

(t̃) = 1
4
b + 3

4
z
′

for all t̃ ∈ T . It is

straightforward to confirm that f
′

(·, t̃2) ∈ Y2[t̃2, f ] for all t̃2 ∈ T2. Moreover, because

f
′

(t̃1, t2) = f
′

(t̃1, t
′

2) for all t̃1 ∈ T1, we have

∑

t̂1,t̃

ψ2(t̂1, t̃)u2
(

f
′

(t̃), (t̂1, t
′

2)
)

=
∑

t̂1,t̃

ψ2(t̂1, t̃)u2
(

f
′

(t̃1, t2), (t̂1, t
′

2)
)

.

Since ψ2(t1, t̃) = 0 whenever t̃1 6= t1, by applying here similar arguments as in the case of

the SCF f , we obtain that

∑

t̂1,t̃

ψ2(t̂1, t̃)u2
(

f
′

(t̃1, t2), (t̂1, t
′

2)
)

=
3

2

∑

t̃2

ψ2(t1, t1, t̃2) +
3

2

∑

t̃2

(

ψ2(t
′

1, t1, t̃2) + ψ2(t
′

1, t
′

1, t̃2) + ψ2(t
′

1, t
′′

1 , t̃2)
)

+
1

4

∑

t̃2

(

ψ2(t
′′

1 , t1, t̃2) + ψ2(t
′′

1 , t
′

1, t̃2) + ψ2(t
′′

1 , t
′′

1 , t̃2)
)

>
∑

t̃2

ψ2(t
′

1, t1, t̃2).

It follows that

∑

t̂1,t̃

ψ2(t̂1, t̃)u2
(

f
′

(t̃), (t̂1, t
′

2)
)

>
∑

t̂1,t̃

ψ2(t̂1, t̃)u2
(

f(t̃1, t2), (t̂1, t
′

2)
)

.

Therefore, any unacceptable deception β such that t2 ∈ β2(t
′

2) and β1(t1) = {t1} is weakly

refutable using the tuple (2, t
′

2, t2).

Fourth, we consider any unacceptable deception such that β1(t1) = {t1}, β2(t2) = {t2},

and β2(t
′

2) = {t
′

2}. Such a deception involves either t1 ∈ β1(t
′

1) or t1 ∈ β1(t
′′

1). Then the

fact that f satisfies SIRBIC implies that β is weakly refutable. We show this formally

for the case when t1 ∈ β1(t
′

1) and we skip the case when t1 ∈ β1(t
′′

1), as we can show it

similarly. So suppose t1 ∈ β1(t
′

1). Pick any belief ψ1 ∈ ∆(T2 × T ) such that ψ1(t̂2, t̃) >
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0 ⇒ t̃2 ∈ β2(t̂2). Then we have that ψ1(t̂2, t̃) = 0 whenever t̃2 6= t̂2. Therefore,

∑

t̂2,t̃

ψ1(t̂2, t̃)u1
(

f(t1, t̃2), (t
′

1, t̂2)
)

=
∑

t̃1

ψ1(t2, t̃1, t2)u1(f(t1, t2), (t
′

1, t2)) +
∑

t̃1

ψ1(t
′

2, t̃1, t
′

2)u1(f(t1, t
′

2), (t
′

1, t
′

2))

= 2
∑

t̃1

ψ1(t
′

2, t̃1, t
′

2).

Consider the SCF f
′

defined as follows:

f
′

t2 t
′

2

t1 c d

t
′

1 c d

t
′′

1 c d

It is straightforward to confirm that f
′

(t̃1, ·) ∈ Y1[t̃1, f ] for all t̃1 ∈ T1. Moreover, since

ψ1(t̂2, t̃) = 0 whenever t̃2 6= t̂2,

∑

t̂2,t̃

ψ1(t̂2, t̃)u1
(

f
′

(t̃), (t
′

1, t̂2)
)

=
∑

t̃1

ψ1(t2, t̃1, t2)u1(f
′

(t̃1, t2), (t
′

1, t2)) +
∑

t̃1

ψ1(t
′

2, t̃1, t
′

2)u1(f
′

(t̃1, t
′

2), (t
′

1, t
′

2)

= 3
∑

t̃1

(

ψ1(t2, t̃1, t2) + ψ1(t
′

2, t̃1, t
′

2)
)

> 2
∑

t̃1

ψ1(t
′

2, t̃1, t
′

2)

=
∑

t̂2,t̃

ψ1(t̂2, t̃)u1
(

f(t1, t̃2), (t
′

1, t̂2)
)

.

It follows that the deception β is weakly refutable using the tuple (1, t
′

1, t1).

We thus conclude that every unacceptable deception is weakly refutable, and hence f

satisfies weak IRM.

We now check that the SCF f satisfies weak NWR.

Claim 7.5. The SCF f satisfies weak NWR.

Proof. First, we consider player 1 of type t1. Let y : T2 → ∆(A) be such that y(t2) = a

and y(t
′

2) = z. Also, let y
′

: T2 → ∆(A) be such that y
′

(t2) = b and y
′

(t
′

2) = d. It is
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straightforward to confirm that y, y
′

∈ Y w
1 [t1, f ]. Now,

∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y(t̃
′

2), (t1, t̃2)
)

= φ1(t2, t2)u1
(

y(t2), (t1, t2)
)

+ φ1(t2, t
′

2)u1
(

y(t
′

2), (t1, t2)
)

+φ1(t
′

2, t2)u1
(

y(t2), (t1, t
′

2)
)

+ φ1(t
′

2, t
′

2)u1
(

y(t
′

2), (t1, t
′

2)
)

= 4φ1(t2, t2) + 4φ1(t2, t
′

2) + 4φ1(t
′

2, t2) + 2φ1(t
′

2, t
′

2).

whereas

∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y
′

(t̃
′

2), (t1, t̃2)
)

= φ1(t2, t2)u1
(

y
′

(t2), (t1, t2)
)

+ φ1(t2, t
′

2)u1
(

y
′

(t
′

2), (t1, t2)
)

+φ1(t
′

2, t2)u1
(

y
′

(t2), (t1, t
′

2)
)

+ φ1(t
′

2, t
′

2)u1
(

y
′

(t
′

2), (t1, t
′

2)
)

= 3φ1(t2, t
′

2) + 3φ1(t
′

2, t2) + 2φ1(t
′

2, t
′

2).

We therefore have that

∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y(t̃
′

2), (t1, t̃2)
)

=
∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y
′

(t̃
′

2), (t1, t̃2)
)

⇔ φ1(t
′

2, t
′

2) = 1.

Thus, for all φ1 ∈ ∆(T2 × T2) such that φ1(t
′

2, t
′

2) < 1, we have found y, y
′

∈ Y w
1 [t1] that

satisfy the requirement for weak NWR. If φ1 is such that φ1(t
′

2, t
′

2) = 1, then we define

y : T2 → ∆(A) such that y(t2) = y(t
′

2) = b and y
′

: T2 → ∆(A) such that y
′

(t2) =

y
′

(t
′

2) = d. It is straightforward to confirm that y, y
′

∈ Y w
1 [t1, f ]. Since φ1(t

′

2, t
′

2) = 1,

u1(y(t
′

2), (t1, t
′

2)) = u1(b, (t1, t
′

2)) = 3 and u1(y
′

(t
′

2), (t1, t
′

2)) = u1(d, (t1, t
′

2)) = 2, we obtain

∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y(t̃
′

2), (t1, t̃2)
)

>
∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y
′

(t̃
′

2), (t1, t̃2)
)

.

Thus, if φ1 is such that φ1(t
′

2, t
′

2) = 1, then the requirement for weak NWR is also satisfied.

Second, we consider player 1 of type t
′

1. Then we define y : T2 → ∆(A) such that

y(t2) = y(t
′

2) = c and y
′

: T2 → ∆(A) such that y
′

(t2) = y
′

(t
′

2) = b. It is straightforward

to confirm that y, y
′

∈ Y w
1 [t

′

1, f ]. Fix φ1 ∈ ∆(T2 × T2). Now,

∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y(t̃
′

2), (t
′

1, t̃2)
)
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= φ1(t2, t2)u1
(

y(t2), (t
′

1, t2)
)

+ φ1(t2, t
′

2)u1
(

y(t
′

2), (t
′

1, t2)
)

+φ1(t
′

2, t2)u1
(

y(t2), (t
′

1, t
′

2)
)

+ φ1(t
′

2, t
′

2)u1
(

y(t
′

2), (t
′

1, t
′

2)
)

= 3φ1(t2, t2) + 3φ1(t2, t
′

2) + 3φ1(t
′

2, t2) + 3φ1(t
′

2, t
′

2)

whereas

∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y
′

(t̃
′

2), (t
′

1, t̃2)
)

= φ1(t2, t2)u1
(

y
′

(t2), (t
′

1, t2)
)

+ φ1(t2, t
′

2)u1
(

y
′

(t
′

2), (t
′

1, t2)
)

+φ1(t
′

2, t2)u1
(

y
′

(t2), (t
′

1, t
′

2)
)

+ φ1(t
′

2, t
′

2)u1
(

y
′

(t
′

2), (t
′

1, t
′

2)
)

= φ1(t2, t2) + φ1(t2, t
′

2) + 2φ1(t
′

2, t2) + 2φ1(t
′

2, t
′

2).

This implies that for any φ1 ∈ ∆(T2 × T2),

∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y(t̃
′

2), (t
′

1, t̃2)
)

>
∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y
′

(t̃
′

2), (t
′

1, t̃2)
)

.

Thus, the requirement for weak NWR is met.

Third, we consider player 1 of type t
′′

1 . Once again, we define y : T2 → ∆(A) such that

y(t2) = y(t
′

2) = c and y
′

: T2 → ∆(A) such that y
′

(t2) = y
′

(t
′

2) = b. It is straightforward

to confirm that y, y
′

∈ Y w
1 [t

′′

1 , f ]. Fix φ1 ∈ ∆(T2 × T2). Now

∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y(t̃
′

2), (t
′′

1 , t̃2)
)

= φ1(t2, t2)u1
(

y(t2), (t
′′

1 , t2)
)

+ φ1(t2, t
′

2)u1
(

y(t
′

2), (t
′′

1 , t2)
)

+φ1(t
′

2, t2)u1
(

y(t2), (t
′′

1 , t
′

2)
)

+ φ1(t
′

2, t
′

2)u1
(

y(t
′

2), (t
′′

1 , t
′

2)
)

= 3φ1(t2, t2) + 3φ1(t2, t
′

2) + 3φ1(t
′

2, t2) + 3φ1(t
′

2, t
′

2)

whereas

∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y
′

(t̃
′

2), (t
′′

1 , t̃2)
)

= φ1(t2, t2)u1
(

y
′

(t2), (t
′′

1 , t2)
)

+ φ1(t2, t
′

2)u1
(

y
′

(t
′

2), (t
′′

1 , t2)
)

+φ1(t
′

2, t2)u1
(

y
′

(t2), (t
′′

1 , t
′

2)
)

+ φ1(t
′

2, t
′

2)u1
(

y
′

(t
′

2), (t
′′

1 , t
′

2)
)

= 2φ1(t
′

2, t2) + 2φ1(t
′

2, t
′

2).
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This implies that for any φ1 ∈ ∆(T2 × T2),

∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y(t̃
′

2), (t
′′

1 , t̃2)
)

>
∑

t̃2,t̃
′

2

φ1(t̃2, t̃
′

2)u1
(

y
′

(t̃
′

2), (t
′′

1 , t̃2)
)

.

Thus, the requirement for weak NWR is satisfied as well.

Fourth, we consider player 2 of type t2. Then we define y : T1 → ∆(A) such that

y(t1) = y(t
′

1) = y(t
′′

1) =
1
2
a+ 1

2
c and y

′

: T1 → ∆(A) such that y
′

(t1) = y
′

(t
′

1) = y(t
′′

1) = b.

It is straightforward to confirm that y, y
′

∈ Y w
2 [t2, f ]. Fix φ2 ∈ ∆(T2 × T2). Now

∑

t̃1,t̃
′

1

φ2(t̃1, t̃
′

1)u2(y(t̃
′

1), (t̃1, t2))

= φ2(t1, t1)u2
(

y(t1), (t1, t2)
)

+ φ2(t1, t
′

1)u2
(

y(t
′

1), (t1, t2)
)

+ φ2(t1, t
′′

1)u2(y(t
′′

1), (t1, t2))

+φ2(t
′

1, t1)u2
(

y(t1), (t
′

1, t2)
)

+ φ2(t
′

1, t
′

1)u2
(

y(t
′

1), (t
′

1, t2)
)

+ φ2(t
′

1, t
′′

1)u2(y(t
′′

1), (t
′

1, t2))

+φ2(t
′′

1 , t1)u2
(

y(t1), (t
′′

1 , t2)
)

+ φ2(t
′′

1 , t
′

1)u2
(

y(t
′

1), (t
′′

1 , t2)
)

+ φ2(t
′′

1 , t
′′

1)u2(y(t
′′

1), (t
′′

1 , t2))

= 2(φ1(t1, t1) + φ1(t1, t
′

1) + φ1(t1, t
′′

1)) +
3

2
(φ2(t

′

1, t1) + φ2(t
′

1, t
′

1) + φ2(t
′

1, t
′′

1))

+2(φ2(t
′′

1 , t1) + φ2(t
′′

1 , t
′

1) + φ2(t
′′

1 , t
′′

1)),

whereas

∑

t̃1,t̃
′

1

φ2(t̃1, t̃
′

1)u2(y
′

(t̃
′

1), (t̃1, t2))

= φ2(t1, t1)u2
(

y
′

(t1), (t1, t2)
)

+ φ2(t1, t
′

1)u2
(

y
′

(t
′

1), (t1, t2)
)

+ φ2(t1, t
′′

1)u2(y
′

(t
′′

1), (t1, t2))

+φ2(t
′

1, t1)u2
(

y
′

(t1), (t
′

1, t2)
)

+ φ2(t
′

1, t
′

1)u2
(

y
′

(t
′

1), (t
′

1, t2)
)

+ φ2(t
′

1, t
′′

1)u2(y
′

(t
′′

1), (t
′

1, t2))

+φ2(t
′′

1 , t1)u2
(

y
′

(t1), (t
′′

1 , t2)
)

+ φ2(t
′′

1 , t
′

1)u2
(

y
′

(t
′

1), (t
′′

1 , t2)
)

+ φ2(t
′′

1 , t
′′

1)u2(y
′

(t
′′

1), (t
′′

1 , t2))

= φ2(t
′

1, t1) + φ2(t
′

1, t
′

1) + φ2(t
′

1, t
′′

1).

This implies that for any φ2 ∈ ∆(T1 × T1),

∑

t̃1,t̃
′

1

φ2(t̃1, t̃
′

1)u2(y(t̃
′

1), (t̃1, t2)) >
∑

t̃1,t̃
′

1

φ2(t̃1, t̃
′

1)u2(y
′

(t̃
′

1), (t̃1, t2)).

Thus, the requirement for weak NWR is also met.

And finally, we consider player 2 of type t
′

2. Then we define y : T1 → ∆(A) such that

y(t1) = y(t
′

1) = y(t
′′

1) =
1
2
b+ 1

2
d and y

′

: T1 → ∆(A) such that y
′

(t1) = y
′

(t
′

1) = y(t
′′

1) = c.
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It is straightforward to confirm that y, y
′

∈ Y w
2 [t

′

2, f ]. Fix φ2 ∈ ∆(T1 × T1). Then

∑

t̃1,t̃
′

1

φ2(t̃1, t̃
′

1)u2(y(t̃
′

1), (t̃1, t
′

2))

= φ2(t1, t1)u2
(

y(t1), (t1, t
′

2)
)

+ φ2(t1, t
′

1)u2
(

y(t
′

1), (t1, t
′

2)
)

+ φ2(t1, t
′′

1)u2(y(t
′′

1), (t1, t
′

2))

+φ2(t
′

1, t1)u2
(

y(t1), (t
′

1, t
′

2)
)

+ φ2(t
′

1, t
′

1)u2
(

y(t
′

1), (t
′

1, t
′

2)
)

+ φ2(t
′

1, t
′′

1)u2(y(t
′′

1), (t
′

1, t
′

2))

+φ2(t
′′

1 , t1)u2
(

y(t1), (t
′′

1 , t
′

2)
)

+ φ2(t
′′

1 , t
′

1)u2
(

y(t
′

1), (t
′′

1 , t
′

2)
)

+ φ2(t
′′

1 , t
′′

1)u2(y(t
′′

1), (t
′′

1 , t
′

2))

=
3

2
(φ1(t1, t1) + φ1(t1, t

′

1) + φ1(t1, t
′′

1)) +
3

2
(φ2(t

′

1, t1) + φ2(t
′

1, t
′

1) + φ2(t
′

1, t
′′

1))

+2(φ2(t
′′

1 , t1) + φ2(t
′′

1 , t
′

1) + φ2(t
′′

1 , t
′′

1))

whereas

∑

t̃1,t̃
′

1

φ2(t̃1, t̃
′

1)u2(y
′

(t̃
′

1), (t̃1, t
′

2))

= φ2(t1, t1)u2
(

y
′

(t1), (t1, t
′

2)
)

+ φ2(t1, t
′

1)u2
(

y
′

(t
′

1), (t1, t
′

2)
)

+ φ2(t1, t
′′

1)u2(y
′

(t
′′

1), (t1, t
′

2))

+φ2(t
′

1, t1)u2
(

y
′

(t1), (t
′

1, t
′

2)
)

+ φ2(t
′

1, t
′

1)u2
(

y
′

(t
′

1), (t
′

1, t
′

2)
)

+ φ2(t
′

1, t
′′

1)u2(y
′

(t
′′

1), (t
′

1, t
′

2))

+φ2(t
′′

1 , t1)u2
(

y
′

(t1), (t
′′

1 , t
′

2)
)

+ φ2(t
′′

1 , t
′

1)u2
(

y
′

(t
′

1), (t
′′

1 , t
′

2)
)

+ φ2(t
′′

1 , t
′′

1)u2(y
′

(t
′′

1), (t
′′

1 , t
′

2))

= φ2(t1, t1) + φ2(t1, t
′

1) + φ2(t1, t
′′

1).

This implies that for any φ2 ∈ ∆(T1 × T1),

∑

t̃1,t̃
′

1

φ2(t̃1, t̃
′

1)u2(y(t̃
′

1), (t̃1, t
′

2)) >
∑

t̃1,t̃
′

1

φ2(t̃1, t̃
′

1)u2(y
′

(t̃
′

1), (t̃1, t
′

2)).

Thus, the requirement for weak NWR is satisfied.

We therefore conclude that f satisfies weak NWR.

We now show that the SCF f is implementable in interim rationalizable strategies.

Claim 7.6. The SCF f is implementable in interim rationalizable strategies by the canon-

ical mechanism we used in Theorem 6.3.

Proof. We have shown that the SCF f satisfies weak IRM and weak NWR. Thus, by

Theorem 6.3, f is implementable in interim rationalizable strategies by the canonical

mechanism used in the proof of the theorem.

We further claim that there are no mixed Bayesian equilibria in that canonical mech-

anism.
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Claim 7.7. There are no mixed Bayesian equilibria in the canonical mechanism imple-

menting the SCF f used in Theorem 6.3.

Proof. Since the SCF f fails BM, which is a necessary condition for Bayesian implemen-

tation, in particular it cannot be implemented in equilibrium (mixed or pure) by our

canonical mechanism.12 But every strategy profile induced by an equilibrium is rational-

izable. Therefore, if there are any equilibria in the canonical mechanism, their outcome

should be the SCF (because the SCF is implemented in rationalizable strategies). It then

follows that the reason for the failure of implementation in Bayesian equilibrium by the

canonical mechanism is that it does not have any equilibria in mixed or pure strategies.

To illustrate the fact that there are no mixed Bayesian equilibria in the canonical

mechanism, we consider the following strategy profile σ where σi(ti) = (m1
i , m

2
i , m

3
i , m

4
i ):

• m1
i [i] = ti (i.e., each player announces her own type truthfully)

• m1
1[2] = t2 and m1

2[1] = t1 (i.e., player 1 always announces t2 as player 2’s type

and player 2 always announces t1 as player 1’s type in the first component of the

message)

• m2
1 = m2

2 = 1 (i.e., each player announces 1 in the second component of the message)

By Step 1 of the proof of Theorem 6.3, every rationalizable strategy profile induces

Rule 1. By construction, the strategy profile σ induces Rule 1. In Step 3 of the proof

of Theorem 6.3, each such σi(ti) is rationalizable. However, we argue that the strategy

profile σ does not constitute a Bayesian equilibrium. If this were true, either player 1 of

some type or player 2 of some type has a profitable deviation that triggers Rule 2-1. We

indeed show that type t
′

1 of player 1 has a profitable deviation that triggers Rule 2-1.

Player 1 of type t1 receives the following payoff under σ:

U1(f |t1) = 0.99× 4 + 0.01× 3 = 3.99.

Define y : T2 → ∆(A) such that y(t2) = y(t
′

2) = 0.99× a + 0.01× b. Then, we obtain

U1(y|t1) = 0.99U1(a|t1) + 0.01U1(b|t1) = 0.99× 4 + 0.01× 0.03 = 3.9603 < 3.99,

12See Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1989), and Jackson (1991) for the
necessity of BM for implementation in pure Bayesian equilibrium, and Serrano and Vohra (2010) and
Kunimoto (2019) for the necessity of mixed BM for implementation in mixed Bayesian equilibrium. Note
that mixed BM is a strictly stronger condition than BM, as shown in Example 1 of Serrano and Vohra
(2010).
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where U1(a|t1) = 4 and U1(b|t1) = 0.03. This implies that y ∈ Y ∗
1 [t1, f ]. Next, we compute

U1(y|t
′

1) = 0.99U1(a|t
′

1) + 0.01U1(b|t
′

1) = 0.99× 4 + 0.01× 2 = 3.98 > 3 = U1(f |t
′

1),

where U1(a|t
′

1) = 4 and U1(b|t
′

1) = 2. Define m̂1 = (m̂1
1, m̂

2
1, m̂

3
1, m̂

4
1) as being the same as

σ1(t
′

1) except that we set m
3
1[t1] = y and m̂2

1 as an integer high enough. Then, m̂1 becomes

type t
′

1’s profitable deviation that triggers Rule 2-1 where player 2 announces m1
2[1] = t1.

This shows that σ is not an equilibrium.

8 Discussion of Other Issues

In this section, we briefly discuss and raise other questions that are connected to our

work.

8.1 Finite Mechanisms

Bergemann and Morris (2008) shows that, if an SCF f is implementable in rationalizable

strategies by a finite mechanism, it satisfies IRM. Therefore, it follows as a simple corollary

of our Lemma 5.8 that, if an SCF f is implementable in rationalizable strategies by a

finite mechanism, it satisfies BM. It also follows that, if an SCF satisfies weak IRM but

not IRM (as in Example 7.1), the SCF could be implemented in rationalizable strategies,

but the implementing mechanism could never be finite.

For complete information environments, Chen et al. (2020b) characterizes rational-

izable implementation by means of finite mechanisms when lotteries and transfers are

allowed. The characterization is in terms of Maskin monotonicity*, a strenghthening of

Maskin monotonicity.13 Chen et al. (2020a) also shows, in the same environments, that

Maskin monotonicity is necessary and sufficient for Nash implementation in finite mech-

anisms, thereby identifying a class of domains for which rationalizable implementation is

more restrictive than Nash implementation. However, this result does not stand if one

performs robust implementation: as shown in Kunimoto and Saran (2020), using finite

mechanisms, robust implementation in rationalizable strategies and in interim equilibria

are equivalent.

13This condition features in Bergemann et al. (2011) for the rationalizable implementation of SCFs,
albeit allowing general mechanisms.
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8.2 Complete information environments

Example 7.1 shows that rationalizable implementation could be more permissive than

equilibrium implementation. Interestingly, this relation reverses in complete information

environments for SCFs, that is, equilibrium implementation of SCFs is more permissive

than rationalizable implementation in complete information environments. Bergemann et

al. (2011) show that the necessary condition for rationalizable implementation is stronger

than Maskin monotonicity, which is necessary for Nash implementation (Maskin, 1999).

They also give an example of an SCF that is implementable in Nash equilibrium but not in

rationalizable strategies. Xiong (2018) provides a complete characterization of SCFs that

are implementable in rationalizable strategies. For the sufficiency part of the argument,

he constructs a mechanism in which the set of Nash equilibria is nonempty; therefore,

the mechanism implements the SCF both in rationalizable strategies and Nash equilib-

rium. However, we emphasize that the restriction to SCFs is not innocuous. Indeed,

as shown in Kunimoto and Serrano (2019), when it comes to multi-valued social choice

correspondences, rationalizable implementation is more permissive than equilibrium im-

plementation in complete information environments.

9 Concluding Remarks

We have proposed weak interim rationalizable monotonicity (IRM) as a novel condition

and showed that it is a necessary and almost sufficient condition for interim rationalizable

implementation of social choice functions. We also show by means of an example that IRM

and Bayesian monotonicity are not necessary for interim rationalizable implementation.

This suggests that interim rationalizable implementation can be more permissive than

Bayesian implementation. We plan to generalize the findings in this paper to multi-

valued social choice rules, i.e., social choice sets, in a separate paper. We conclude the

paper with mentioning two open questions left for future research.

Double implementation: The foregoing discussion may lead to the question of double

implementation in Bayesian equilibrium and rationalizable strategies. Let BΓ(T ) be the

set of (possibly mixed) Bayesian equilibria in the game Γ(T ). That is,

BΓ(T ) = {σ ∈ Σ| σ constitutes a Bayesian equilibrium of the game Γ(T )} ,

where Σ = Σ1×· · ·×Σn and Σi = {σi| σi : Ti → ∆(Mi)}. Recall that any message profile

that is played by some types in a Bayesian equilibrium is rationalizable for those types.

This leads to the following definition of double implementation:
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Definition 9.1. A mechanism Γ doubly implements an SCF f in Bayesian equilibria

and rationalizable strategies if there exists an SCF f̃ ≈ f such that the following two

conditions hold:

1. Nonemptiness: BΓ(T ) 6= ∅.

2. Uniqueness: for any t ∈ T , m ∈ SΓ(T )(t) implies g(m) = f̂(t).

As we argue in the example of Section 7 that IRM is not necessary for interim ra-

tionalizable implementation and our canonical mechanism exploits the feature that there

are no mixed Bayesian equilibria, one could investigate the connections between IRM and

double implementation.

Responsive SCFs: An SCF f is responsive if, for all i ∈ I and ti, t
′

i ∈ Ti: ti 6= t
′

i ⇒

ti 6∼f
i t

′

i. Otherwise, f is nonresponsive. Then, for a responsive SCF, one could also

investigate whether weak IRM and IRM are identical conditions. It is possible that the

global inequalities embodied in the definition of responsiveness leave room to translate

weak refutability into strong refutability, which makes weak IRM and IRM equivalent.

Appendix

Proof of Lemma 5.5: Pick any deception β that is unacceptable for an SCF f .

(Only-if part) Suppose f satisfies IRM. Then, there exist i ∈ I, ti ∈ Ti, and t
′

i ∈

βi(ti) satisfying t
′

i 6∼f
i ti such that for all φi ∈ ∆(T−i × T−i) satisfying φi(t−i, t̃−i) >

0 ⇒ t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃−i∈T−i
φi(t−i, t̃−i) for all t−i ∈ T−i, there exists

y ∈
⋂

t̃i∈Ti
Yi[t̃i, f ] such that

∑

t−i,t̃−i

φi(t−i, t̃−i)ui
(

y(t̃−i), (ti, t−i)
)

>
∑

t−i,t̃−i

φi(t−i, t̃−i)ui
(

f(t
′

i, t̃−i), (ti, t−i)
)

.

We argue that the tuple (i, ti, t
′

i) satisfies the requirement for strong refutability of

β. Pick any belief ψi ∈ ∆(T−i × T ) satisfying ψi(t−i, t̃) > 0 ⇒ t̃−i ∈ β−i(t−i) and

πi(ti)[t−i] =
∑

t̃∈T ψi(t−i, t̃) for all t−i ∈ T−i.

Let φ
′

i ∈ ∆(T−i × T−i) be such that, for all t−i, t̃−i ∈ T−i,

φ
′

i(t−i, t̃−i) =
∑

t̃i

ψi(t−i, t̃i, t̃−i).

Then, by construction, φ
′

i(t−i, t̃−i) > 0 ⇒ t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃−i∈T−i
φ

′

i(t−i, t̃−i)

for all t−i ∈ T−i. Therefore, it follows from IRM that there exists y
′

∈
⋂

t̃i∈Ti
Yi[t̃i, f ] such

44



that

∑

t−i,t̃−i

φ
′

i(t−i, t̃−i)ui
(

y
′

(t̃−i), (ti, t−i)
)

>
∑

t−i,t̃−i

φ
′

i(t−i, t̃−i)ui
(

f(t
′

i, t̃−i), (ti, t−i)
)

. (7)

Define the SCF f
′

such that f
′

(t̃) = y
′

(t̃−i) for all t̃ ∈ T . Then f
′

(t̃i, ·) = y
′

for all t̃i.

Hence, f
′

is unresponsive to agent i’s type and f
′

(t̃i, ·) ∈ Yi[t̃i, f ] for all t̃i. Moreover, it

follows from (7) that

∑

t−i,t̃

ψi(t−i, t̃)ui
(

f
′

(t̃), (ti, t−i)
)

=
∑

t−i,t̃

ψi(t−i, t̃)ui
(

y
′

(t̃−i), (ti, t−i)
)

=
∑

t−i,t̃−i

φ
′

i(t−i, t̃−i)ui
(

y
′

(t̃−i), (ti, t−i)
)

>
∑

t−i,t̃−i

φ
′

i(t−i, t̃−i)ui
(

f(t
′

i, t̃−i), (ti, t−i)
)

=
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f(t
′

i, t̃−i), (ti, t−i)
)

.

Thus, β is strongly refutable.

(If-part) Suppose that every unacceptable deception for f is strongly refutable. Then,

there exist i ∈ I, ti ∈ Ti, and t
′

i ∈ βi(ti) satisfying t
′

i 6∼
f
i ti such that for all ψi ∈ ∆(T−i×T )

satisfying ψi(t−i, t̃) > 0 ⇒ t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃∈T ψi(t−i, t̃) for all t−i ∈ T−i,

there exists an SCF f
′

such that f
′

is unresponsive to agent i’s type, f
′

(t̃i, ·) ∈ Yi[t̃i, f ]

for all t̃i ∈ Ti, and

∑

t−i,t̃

ψi(t−i, t̃)ui
(

f
′

(t̃), (ti, t−i)
)

>
∑

t−i,t̃

ψi(t−i, t̃)ui
(

f(t
′

i, t̃−i), (ti, t−i)
)

.

We argue that the tuple (i, ti, t
′

i) satisfies the requirement in IRM for deception β. Pick

any belief φi ∈ ∆(T−i × T−i) satisfying φi(t−i, t̃−i) > 0 ⇒ t̃−i ∈ β−i(t−i) and πi(ti)[t−i] =
∑

t̃−i∈T−i
φi(t−i, t̃−i) for all t−i ∈ T−i.

Let ψ
′

i ∈ ∆(T−i × T ) be such that ψ
′

i(t−i, t̃) = 0 whenever t̃i 6= ti and ψ
′

i(t−i, t̃) =

φi(t−i, t̃−i) whenever t̃i = ti. Then, by construction, ψ
′

i(t−i, t̃) > 0 ⇒ t̃−i ∈ β−i(t−i) and

πi(ti)[t−i] =
∑

t̃∈T ψ
′

i(t−i, t̃) for all t−i ∈ T−i. Therefore, it follows from strong refutability

of β that there exists an SCF f
′′

such that f
′′

is unresponsive to agent i’s type, f
′′

(t̃i, ·) ∈

Yi[t̃i, f ] for all t̃i ∈ Ti, and

∑

t−i,t̃

ψ
′

i(t−i, t̃)ui
(

f
′′

(t̃), (ti, t−i)
)

>
∑

t−i,t̃

ψ
′

i(t−i, t̃)ui
(

f(t
′

i, t̃−i), (ti, t−i)
)

. (8)
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Define the mapping y : T−i → ∆(A) such that y(t̃−i) = f
′′

(ti, t̃−i) for all t̃−i ∈ T−i. Since

f
′′

is unresponsive to agent i’s type, we have y = f
′′

(t̃i, ·) for all t̃i. Hence, y = f
′′

(t̃i, ·) ∈

Yi[t̃i, f ] for all t̃i ∈ Ti. That is, y ∈
⋂

t̃i∈Ti
Yi[t̃i, f ]. Moreover, it follows from (8) that

∑

t−i,t̃−i

φi(t−i, t̃−i)ui
(

y(t̃−i), (ti, t−i)
)

=
∑

t−i,t̃

ψ
′

i(t−i, t̃)ui
(

f
′′

(t̃), (ti, t−i)
)

>
∑

t−i,t̃

ψ
′

i(t−i, t̃)ui
(

f(t
′

i, t̃−i), (ti, t−i)
)

=
∑

t−i,t̃−i

φi(t−i, t̃−i)ui
(

f(t
′

i, t̃−i), (ti, t−i)
)

.

Thus, f satisfies IRM.

Proof of Lemma 6.2: We prove separate proofs of the two statements in the lemma.

We prove (a) first. Suppose an SCF f satisfies weak NWR. Pick any i ∈ I, ti ∈ Ti,

and φi ∈ ∆(T−i × T−i).

First, it follows from the definition of weak NWR that there exists ỹ ∈ Y w
i [ti, f ] such

that Ui(f |ti) > Ui(ỹ|ti). To see this, consider the belief φ̃i such that φ̃i(t−i, t
′

−i) = 0

whenever t
′

−i 6= t−i and φ̃i(t−i, t
′

−i) = πi(ti)[t−i] whenever t
′

−i = t−i. Then, there must

exist ỹ, ỹ
′

∈ Y w
i [ti, f ] such that

Ui(f |ti) ≥ Ui(ỹ
′

|ti) =
∑

t−i,t
′

−i

φ̃i(t−i, t
′

−i)ui
(

ỹ
′

(t
′

−i), (ti, t−i)
)

>
∑

t−i,t
′′

−i

φ̃i(t−i, t
′

−i)ui
(

ỹ(t
′

−i), (ti, t−i)
)

= Ui(ỹ|ti),

where the first weak inequality follows from the fact that ỹ
′

∈ Y w
i [ti, f ] and the strict

inequality follows from weak NWR.

Second, since f satisfies weak NWR, there exist y, y
′

∈ Y w
i [ti, f ] such that

∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

y(t
′

−i), (ti, t−i)
)

>
∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

y
′

(t
′

−i), (ti, t−i)
)

.

Pick any ǫ ∈ (0, 1) and define yǫ : T−i → ∆(A) such that yǫ(t−i) = (1− ǫ)y(t−i) + ǫỹ(t−i)

for all t−i ∈ T−i. We similarly define y
′ǫ. By construction, yǫ and y

′ǫ are such that

Ui(f |ti) > Ui(y
ǫ|ti) and Ui(f |ti) > Ui(y

′ǫ|ti).
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For ǫ sufficiently close to 1, we have

∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

yǫ(t
′

−i), (ti, t−i)
)

>
∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

y
′ǫ(t

′

−i), (ti, t−i)
)

.

We fix any such sufficiently large ǫ.

Third, since ∆∗(A) is a dense subset of ∆(A), for each t−i, there exists a sequence

of lotteries {ℓz(t−i)}
∞
z=1 ∈ ∆∗(A) converging to yǫ(t−i). For each z ≥ 1, define yz :

T−i → ∆∗(A) such that yz(t−i) = ℓz(t−i) for all t−i ∈ T−i. Similarly, we can define

y
′z : T−i → ∆∗(A) such that y

′z(t−i) converges to y
′ǫ(t−i) for all t−i ∈ T−i. As T−i is

finite, there exists a sufficiently large integer z such that

Ui(f |ti) > Ui(y
z|ti) and Ui(f |ti) > Ui(y

′z|ti).

and

∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

yz(t
′

−i), (ti, t−i)
)

>
∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

y
′z(t

′

−i), (ti, t−i)
)

. (9)

The first set of inequalities imply that yz, y
′z ∈ Y ∗

i [ti, f ].

Lastly, since yti,fi , by construction, assigns a positive weight to all y ∈ Y ∗
i [ti, f ], if,

contrary to what we want to establish, we had

∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

yti,fi (t
′

−i), (ti, t−i)
)

≥
∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

y(t
′

−i), (ti, t−i)
)

, ∀y ∈ Y ∗
i [ti, f ],

then it must be that

∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

yz(t
′

−i), (ti, t−i)
)

=
∑

t−i,t
′

−i

φi(t−i, t
′

−i)ui
(

y
′z(t

′

−i), (ti, t−i)
)

,

which contradicts (9).

We prove (b) next. Suppose that an SCF f satisfies weak NWR. Pick any i ∈ I, ti ∈ Ti,

and z1i ∈ ∆(T−i). As ᾱ assigns a positive weight to all a ∈ A, if

∑

t−i

z1i (t−i)ui
(

ᾱ, (ti, t−i)
)

≥
∑

t−i

z1i (t−i)ui
(

a, (ti, t−i)
)

, ∀a ∈ A,
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then it must be that

∑

t−i

z1i (t−i)ui
(

a, (ti, t−i)
)

=
∑

t−i

z1i (t−i)ui
(

a
′

, (ti, t−i)
)

,

for all a, a
′

∈ A. Now consider the belief φ̃i ∈ ∆(T−i×T−i) such that φ̃i(t−i, t−i) = z1i (t−i)

for all t−i ∈ T−i. Then, by weak NWR, there must exist ỹ, ỹ
′

∈ Y w
i [ti, f ] such that

∑

t−i,t
′

−i

φ̃i(t−i, t
′

−i)ui
(

ỹ(t
′

−i), (ti, t−i)
)

>
∑

t−i,t
′

−i

φ̃i(t−i, t
′

−i)ui
(

ỹ
′

(t
′

−i), (ti, t−i)
)

.

But the left-hand side of the above inequality equals
∑

t−i
z1i (t−i)ui

(

ỹ(t−i), (ti, t−i)
)

, while

the right-hand side equals
∑

t−i
z1i (t−i)ui

(

ỹ
′

(t−i), (ti, t−i)
)

, which contradicts the fact that

type ti is indifferent over all alternatives when she holds the belief z1i .
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