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Forecasting Singapore GDP using the SPF Data 

Tian Xie and Jun Yu1 

 

In this article, we use econometric methods, machine learning methods, and a hybrid method 

to forecast the GDP growth rate in Singapore based on the Survey of Professional Forecasters 

(SPF). We compare the performance of these methods with the sample median used by the 

Monetary Authority of Singapore (MAS). It is shown that the relationship between the actual 

GDP growth rates and the forecasts from individual professionals is highly nonlinear and 

non-additive, making it hard for all linear methods and the sample median to perform well. It 

is found that the hybrid method performs the best, reducing the mean squared forecast error 

(MSFE) by about 50% relative to that of the sample median. 

_________________________________________________________________________ 

 

1. Introduction 

 

A very large body of applied works in economics have tried to foresee key macroeconomic 

indicators, including GDP growth rates, unemployment rates, and inflation rates. A 

straightforward reason to justify these extensive studies is that these macroeconomic 

variables are vital to many decision-makers in the economy. In this paper, we focus our 

attention to predicting the GDP growth rate in Singapore using the Survey of Professional 

Forecasters (SPF). 

 

SPF is a leading macroeconomic forecast consensus in Singapore. It has been run by the 

Monetary Authority of Singapore (MAS) since the last quarter of 1999 and is made available 

to the public at https://www.mas.gov.sg/monetary-policy/MAS-Survey-of-Professional-

Forecasters.2 The survey is conducted quarterly following the release of economic data for 

the previous quarter by the Ministry of Trade and Industry of Singapore. It contains forecasts 

for 15 key economic indicators; see the MAS’s SPF. The first of the indicators is the GDP 

growth rate (year-on-year growth in percentage terms and constant prices). It should be noted 

that the SPF results do not represent MAS’s own views or forecasts.  

 

Every quarter MAS reports the sample median and the empirical density of the forecasts 

which are available in the survey. In this article, we denote the sample median as the 

 
1 Tian Xie is Associate Professor in College of Business, Shanghai University of Finance and Economics, 
Shanghai, China. Jun Yu is Lee Kong Chian Professor of Economics and Finance in School of Economics and Lee 
Kong Chian School of Business, Singapore Management University. The views in this article are solely those of 
the authors and should not be attributed to MAS or SHUFE or SMU. 
2 There are some similar surveys internationally with different starting dates. Two well-known examples are 

the SPF produced by the Federal Reserve Bank of Philadelphia since the late 1960s and the SPF collected by 

the European Central Bank for the eurozone since the late 1990s. 

 

https://www.mas.gov.sg/monetary-policy/MAS-Survey-of-Professional-Forecasters
https://www.mas.gov.sg/monetary-policy/MAS-Survey-of-Professional-Forecasters
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benchmark forecast. In the literature, Genre et al. (2013) employ the sample mean as the 

benchmark. We find the difference between the sample median and the sample mean is 

negligible in the SPF. 

  

We first describe the data in Section 2. In Section 3 we introduce alternative methods for 

obtaining the forecasts and discuss criteria to evaluate those forecasts. Section 4 provides an 

empirical analysis to contrast the performance of alternative methods and the benchmark 

method. Section 5 concludes. 

 

2. Data 

In the article, we consider utilizing the individual forecasts from the SPF, denoted as 

{𝑥1𝑡, … , 𝑥𝑝𝑡}, to predict the real GDP growth rate, denoted as 𝑦𝑇+1. Here 𝑖 represents the 𝑖th 

forecasters and 𝑡 represents the period 𝑡 and 𝑡 = 1, … , 𝑇. From the last quarter of 1999 to the 

last quarter of 2019, the SPF collects one-month-ahead quarterly predictions of the real GDP 

growth rate from 66 different forecasters.3 At period 𝑇, the sample median of {𝑥1𝑇 , … , 𝑥𝑝𝑇} , 

acting as the final forecast of 𝑦𝑇+1 , is the “middle” number of these numbers when they are 

listed ascendingly. 

 

Figure 1: An illustration of the entries and exits of individual forecasters 

 

However, an initial data cleaning is necessary since a specific forecaster may or may not 

submit a survey response each time throughout the whole period. Figure 1 describes the 

entries and exits of individual forecasters over the survey period. A blue dot represents a 

 
3 Take Q1 as an example. Questionnaires are sent out to forecasters in the middle of February and forecasting 
results must be submitted before the end of February. 
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specific forecaster (labeled in the vertical axis) if he or she submitted a survey response and a 

blank space indicates otherwise. 

 

The data clearly exhibit severe sparsity in the submission of forecasters. To avoid the issues 

caused by missing observations, we follow Genre et al. (2013) to first remove irregular 

respondents if he or she misses more than near 50% of the observations. In the end, we 

narrow down to 𝑝 = 15 qualified forecasters. Then the missing observations for each 

forecaster 𝑖 are filled using the approach suggested in Genre et al. (2013). 

 

3. Methods 

 

Let 𝐗t = [1, 𝑥1𝑡 , … , 𝑥𝑝𝑡]′. If all the 𝑝 forecasters are employed, and the relationship between 

𝑦𝑡+1 and all the elements in 𝑿𝑡 is linear and additive, the following linear model can then be 

presumed: 

 𝑦𝑡+1 = 𝜷′X𝑡 + 𝜀𝑡, (1) 

   

where 𝜷 is a vector of slope parameters and 𝜀𝑡 is the error term. There are 𝑝+1 slope 

parameters in Equation (1). In practice, 𝑝 can be very large and therefore the estimation error 

can be large as well. If 𝑝 > 𝑇 − 2, it is not viable to estimate 𝜷 by least squares.  

 

In practice, we do not know if all the 𝑝 forecasters are beneficial ex-ante. If most of the 

variables in 𝐗𝑡 are not useful, which means there is sparsity in Equation (1), one needs to deal 

with the problem of variable selection and parameter estimation simultaneously. Furthermore, 

there is no reason to believe why the relationship between 𝑦𝑡+1 and 𝐗𝑡 should be linear and 

additive. Although it is theoretically possible to specify a general functional form to relate 

𝑦𝑡+1 and 𝐗𝑡  as follows 

 𝑦𝑡+1 = 𝑓(X𝑡) + 𝜀𝑡, (2) 

 

the nonparametric estimation of 𝑓(X𝑡) incurs the well-known problem of the curse of 

dimensionality even when 𝑝 is of a moderate magnitude. 

 

In this section, we review 4 methods employed to forecast the Singapore GDP based on the 

SPF survey outcomes. Other than the benchmark method of the sample median, we also use 

the complete subset regression of Elliott et al. (2013), the elastic net method of Zou and 

Hastie (2005), the LSSVR method of Suykens and Vandewalle (1999),  the Mallows-type 

model averaging LSSVR method of Qiu et al. (2020). The first method is a conventional 

econometric method. The second method is a variable selection method. The third method is 

a machine learning technique. The last method combines an econometric method with a 

machine learning method. A more extensive survey of both econometric methods and 

machine learning methods for a forecasting purpose can be found in Xie et al (2020) 
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3.1 Complete Subset Regression 

 

The complete subset regression (CSR) of Elliott et al. (2003) is a method for mixing forecasts 

from all possible linear regression models, each of which has a fixed number of predictors 

from a given set of potential predictor variables. The weight assigned to each model can be 

the same or different. 

 

To explain the idea, let the number of predictor variables be fixed at 1, although we use 5 

predictor variables in our empirical study. In this case, the equally weighted forecast of 𝑦𝑇+1 

is given by 

 

�̂�𝑇+1 =
1

𝑝
∑[�̂�0𝑖 + �̂�1𝑖𝑥𝑖𝑇]

𝑝

𝑖=1

, 
(3) 

   

where �̂�𝑖 = [�̂�0𝑖, �̂�1𝑖]′ is the least squares estimate of 𝜷𝑖 = [𝛽0𝑖, 𝛽1𝑖]′ from the following 

linear regression model 

 𝑦𝑡+1 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑖𝑡 + 𝜀𝑡, 𝑡 = 1, … , 𝑇 − 1. (4) 

 

One of the successful applications of CSR in economics and finance is Rapach et al. (2010) 

where each of potentially valuable predictors is used to predict stock returns. 

 

3.2 Elastic Net 

 

When the number of predictors 𝑝 is large and a significant subset of predictors is not 

informative in predicting 𝑦, Model (1) and the least squares method does not perform well 

out-of-sample. Many penalized regressions have been proposed to select predictors which in 

turn can improve the predictive performance. One of the successful methods is the elastic net 

of Zou and Hastie (2005). The idea of the elastic net is to shrink the slope parameter towards 

zero if the corresponding predictor is not significant. 

 

The elastic net imposes a constraint on the sum of squared coefficients excluding intercept, 

that is, 

 

 

�̂�∗ = argmin
𝛽∗

{∑ [𝑦𝑡+1 − 𝛽0 − ∑ 𝛽𝑖𝑥𝑖𝑡

𝑝

𝑖=1

]

2

+ 𝜆 [𝛼 ∑|𝛽𝑖|

𝑝

𝑖=1

+ (1 − 𝛼) ∑ 𝛽𝑖
2

𝑝

𝑖=1

]

𝑇−1

𝑡=1

}, 
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where the second term in the bracket is the penalty that contains two components (one is the 

𝐿1-penalty and the other is 𝐿2-penalty), 𝜆 is a tuning parameter that determines the severity of 

the penalty, and 𝛼 is a mixing parameter that determines the trade-off between two penalty 

terms. The penalty term is used to shrink the slope parameters to accommodate possible 

sparsity in potential predictors.  

 

3.3 Least Squares Support Vector Regression 

 

Instead of locating a consistent estimator of 𝑓(X𝒕) in Equation (2), most machine learning 

techniques try to find a good approximation to 𝑓(X𝑡) so that the approximation leads to an 

accurate forecast of 𝑦𝑡+1.  

 

The support vector regression (SVR) of Drucker et al. (1996) approximates 𝑓(X𝑡) by a set of 

basis functions {ℎ𝑠(X𝑡)}𝑠=1
𝑆  that can be of infinite-dimensional. Equation (1) can thus be 

rewritten in the following form 

 
𝑦𝑡+1 = 𝑓(X𝑡) + 𝜀𝑡 ≈ ∑ 𝛽𝑠ℎ𝑠(X𝑡)

𝑆

𝑠=1
+ 𝜀𝑡. 

(5) 

 

To estimate 𝜷 = [𝛽1, … , 𝛽𝑆]′, we minimize 

 

𝐻(𝜷) = ∑ 𝑉𝑒

𝑇−1

𝑡=1

(𝑦𝑡+1 − 𝑓(X𝑡)) + 𝜆 ∑ 𝛽𝑠
2

𝑆

𝑠=1

, 
(6) 

 

where 𝑉𝑒(∙) is the loss function given by 

 
𝑉𝑒(𝑥) = {

0, 𝑖𝑓 |𝑥| < 𝑒
|𝑥| − 𝑒, 𝑖𝑓 |𝑥| ≥ 𝑒

  . 
(7) 

 

Suykens and Vandewalle (1999) modify the SVR algorithm which results in solving a set of 

linear equations under a squared loss function. This method, also known as least squares SVR 

(LSSVR), minimizes 

 

𝐻(𝜷) = ∑(𝑦𝑡+1 − 𝑓(X𝑡))
2

𝑇−1

𝑡=1

+ 𝜆 ∑ 𝛽𝑠
2

𝑆

𝑠=1

, 
(8) 

 

where the loss function is specified to be a squared loss function in LSSVR. To minimize the 

quantity in Equation (8), the Lagrangian equation may be set up so that we have the 

following expression for the optimal solution, 

 

𝑓(X𝑡) = ∑ �̂�𝑡𝐾(𝒙, X𝑡)

𝑇−1

𝑡=1

, 
(9) 
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where 𝒙 is any given values for predictors, {�̂�𝑡}𝑡=1
𝑇  are the estimated Lagrangian multipliers, 

and 𝐾(∙,∙) is the predetermined kernel function. In this article, we consider the Gaussian 

kernel function given by  

 𝐾(𝒙, 𝑿) = 𝑒−(‖𝒙−𝑿‖)/(2𝜎𝑥
2), (10) 

 

where 𝜎𝑥
2 is a hyperparameter that users specify in advance.  

 

3.4 LSSVRMA 

 

Most machine learning methods, including LSSVR, do not account for model uncertainty. 

While the CSR method accounts for model uncertainty, it assumes that the relationship 

between 𝑦𝑡+1 and each 𝑥𝑖𝑡 is linear. If the relationship between 𝑦𝑡+1 and some 𝑥𝑖𝑡 is 

nonlinear and hence model uncertainty needs to be accounted for, then a reasonable approach 

is to apply the idea of forecast combinations to a set of machine learning strategies, as 

suggested in Qiu et al. (2020). In this article, following Qiu et al. (2020), we blend the idea of 

forecast combination with the LSSVR method. The new method is denoted LSSVRMA , where 

the superscript MA indicates model averaging. 

 

Let 𝒚 = [𝑦2, … , 𝑦𝑇]′. Suppose the 𝑚th LSSVR strategy uses Xt
(𝒎)

, which is a subset of X𝑡, to 

forecast 𝑦𝑇+1 with 𝑚 = 1, … , 𝑀. That is, in total there are 𝑀 strategies. Denote �̂�𝑇+1(𝑚) the 

forecast of 𝑦𝑇+1 under the 𝑚th LSSVR strategy. Qiu et al. (2020) show that LSSVR leads to 

𝑓(X𝑡
(𝒎)

) = 𝑷(𝑚)𝒚 ∶= 𝑷(𝐗(𝒎), 𝐗(𝒎))𝒚 where 𝐗(𝒎) = [X1
(𝒎)

, … , X𝑇−1
(𝒎)

] for any 𝑚 = 1, … , 𝑀. 

Let the weighted average forecast of 𝑦𝑇+1 be 

 

𝑓(𝒘) = ∑ 𝑤(𝑚)𝑓(X𝑡
(𝒎)

)

𝑀

𝑚=1

= ∑ 𝑤(𝑚)𝑷(𝑚)𝒚

𝑀

𝑚=1

= 𝑷(𝒘)𝒚, 
(11) 

 

where 𝑷(𝒘) ≔ ∑ 𝑤(𝑚)𝑷(𝑚)
𝑀
𝑚=1  and the weight vector 𝒘 ∈ ℋ with ℋ being a 𝑀-

dimensional simplex. 

 

Based on a Mallows-type criterion, Qiu et al. (2020) propose the following method to choose 

the weights, 

 

𝒘∗ = argmin
𝒘∈𝐻

 ‖𝒚 − 𝑷(𝒘)𝒚‖2 + 2�̂�2(𝒘) ∑ 𝑷𝑡𝑡

𝑇

𝑡=1

(𝒘), 
(12) 

 

where 𝑷𝑡𝑡(𝒘) is the 𝑡th diagonal term in 𝑷(𝒘). 

 

 

4. Empirical Results 
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We conduct forecasting exercises using the data described in Section 2. We list the 5 

forecasting methods, the tuning parameters, and the model settings in Table 1.4  

 

Table 1: Summary of the 5 methods to forecast the Singapore GDP growth 

Method Parameter 

Median Median of all available forecasts 

CSR 5 predictors, 1000 models, equal weight 

Elastic Net 𝜆 = 0.5, 𝛼 = 0.5 

LSSVG Gaussian kernel, 𝜎𝑥 = 10 

LSSVRMA  Gaussian kernel, 𝜎𝑥 = 10, Full combination 

 

 

A rolling window approach is implemented to obtain a one-quarter-ahead forecast of the 

Singapore GDP growth. The initial period for making the forecast is the last quarter of 2009. 

The window length is set to 40. The out-of-sample performance of the 5 methods is evaluated 

by mean squared forecast error (MSFE) and mean absolute forecast error (MAFE) as defined 

by 

 

 

MSFE =
1

𝐾
∑(𝑦𝑇+𝑘 − �̂�𝑇+𝑘)2

𝐾

𝑘=1

, 
(13) 

 

 

MAFE =
1

𝐾
∑|𝑦𝑇+𝑘 − �̂�𝑇+𝑘|

𝐾

𝑘=1

, 
(14) 

   

where 𝐾 is the total number of quarters when we forecast the GDP growth, �̂�𝑇+𝑘 is the one-

step-ahead forecasted value of 𝑦𝑇+𝑘 at period 𝑇 + 𝑘 by one of the 5 methods. 

 

The values of MSFE and MAFE and their associated ranking for all the 5 models are reported 

in Tables 2. The lowest MSFE and MAFE are presented in boldface. 

 

Table 2. Out-of-sample forecasting comparison of 5 methods 

 

Methods                     MSFE                    MAFE 

   value ranking value ranking 

Median 26.7336 4 3.5439 5 

CSR 28.8199 5 3.5042 4 

Elastic Net 25.7032 3 3.2725 3 

LSSVR 14.2397 2 2.7383 2 

LSSVRMA  13.9567 1 2.6861 1 

 
4 We also consider alternative settings of tuning parameters. The results are qualitatively intact. 
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A few conclusions can be drawn from Table 2. First and foremost, LSSVRMA always performs 

the best followed by LSSRV. The sound performance of LSSVRMA relative to LSSVR 

suggests that there exists model uncertainty. Second, these two methods perform much better 

than the other three methods, implying a nonlinear dependence between 𝑦𝑡+1 and 𝑥𝑖𝑡s. For 

example, compared to the benchmark method, LSSVRMA gains at reducing the MSFE value 

by almost 50%. If we fit a partially linear model, one could see a strong nonlinear 

relationship between 𝑦𝑡+1 and individual 𝑥𝑖𝑡. To save space, we do not report empirical 

results for the partially linear model. Third, the fact that the elastic net slightly outperforms 

CSR and the sample median indicates that there is no strong evidence of sparsity in 𝑥𝑖𝑡s.  

 

To visually compare the forecast accuracy of the benchmark method and the LSSVRMA 

method, we plot two forecasted series of the above two methods against the actual data in 

Figure 2. It is apparent that the median forecast often underestimates the actual values, 

especially for the recent 5 years. Although flatter than the actual values, the forecasts by the 

LSSVRMA method captures the level and the trend reasonably well. 

 

Figure 2: A comparison of two forecasts 

 

 

To examine if the improvement in forecast accuracy is significant, we perform the 

Giacomini-White (GW) test of the null hypothesis that the column method performs equally 

well as the row method in terms of absolute forecast errors (Giacomini and White, 2006). 

Table 3 reports the 𝑝-values of the GW test in all pair-wise comparisons. The 5 methods can 

be divided into 2 groups. The sample median, CSR, and the elastic net form the first group. 
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There is no statistically significant difference in the forecasting performance of the methods 

in this group. LSSVR and LSSVRMA form the second group. There is no statistically 

significant difference in the forecasting performance of the methods in the second group. 

However, the methods in the second group statistically significantly outperform the methods 

in the first group at either the 5% level or the 10% level.  

 

Table 3: the 𝑝-values of the GW test in all pair-wise comparisons 

Methods Median CSR Elastic Net LSSVR 

Median - - - - 

CSR 0.4345 - - - 

Elastic Net 0.4931 0.6245 - - 

LSSVR 0.0345 0.0508 0.0870 - 

LSSVRMA  0.0325 0.0589 0.0929 0.6881 

 

5. Conclusion 

 

We have considered five methods, including two conventional econometric methods, a 

variable selection method, a machine learning method, and a hybrid method, to forecast the 

GDP growth rate in Singapore based on the SPF. In particular, the performance of these 

methods is compared to the sample median used by the MAS. It is demonstrated that the 

hybrid method performs the best, reducing MSFE by about 50% over that of the sample 

median. The gain is verified to be statistically significant at the 5% level.  

 

Our exercise suggests that it is possible to produce more accurate forecasts of the Singapore 

GDP growth rates than the median forecast of the SPF. Since forecasts of most, if not all, of 

the professional forecasters contain useful information about the next-quarter Singapore GDP 

growth rate, they should not be given a zero weight. Since the relationship between 

macroeconomic variables is nonlinear and complicated, a machine learning method is helpful 

in this case. Moreover, since the hybrid method can accommodate model uncertainty, it leads 

to the most accurate forecasts. 
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