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Abstract
This paper studies nonlinear cointegrating models with time-varying coefficients and multiple nonsta-

tionary regressors using classic kernel smoothing methods to estimate the coefficient functions. Extending
earlier work on nonstationary kernel regression to take account of practical features of the data, we allow the
regressors to be cointegrated and to embody a mixture of stochastic and deterministic trends, complications
which result in asymptotic degeneracy of the kernel-weighted signal matrix. To address these complications
new local and global rotation techniques are introduced to transform the covariate space to accommodate
multiple scenarios of induced degeneracy. Under certain regularity conditions we derive asymptotic results
that differ substantially from existing kernel regression asymptotics, leading to new limit theory under
multiple convergence rates. For the practically important case of endogenous nonstationary regressors we
propose a fully-modified kernel estimator whose limit distribution theory corresponds to the prototypical pure
(i.e., exogenous covariate) cointegration case, thereby facilitating inference using a generalized Wald-type
test statistic. These results substantially generalize econometric estimation and testing techniques in the
cointegration literature to accommodate time variation and complications of co-moving regressors. Finally
an empirical illustration to aggregate US data on consumption, income, and interest rates is provided.
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1 Introduction

Many time series that are encountered in economics and finance are well known to exhibit nonstationary

characteristics such as the random wandering behavior of financial asset prices and the secular growth

components in aggregate time series data that indicate the presence of some form of deterministic

drift. Following the work of Phillips and Durlauf (1986), Engle and Granger (1987), Phillips and

Perron (1988); Park and Phillips (1989), Phillips (1988, 1991) and Johansen (1991), substantial

investments have been made in econometric methodology to take account of these characteristics in

linear and log linear cointegrating regression estimation and inference.

Notwithstanding this body of work many practical implementations reveal that parametric linear

cointegration models are often rejected by the data even when there is evident co-movement among the

trending series. Acknowledgement of this weakness has led to the recent development of econometric

methodology for treating various nonlinear and nonparametric cointegrating models (Park and Phillips,

2001; Karlsen, Myklebust and Tjøstheim, 2007; Cai, Li and Park, 2009; Wang and Phillips, 2009a,b;

Xiao, 2009; Gao and Phillips, 2013; Li et al, 2017; Phillips, Li and Gao, 2017). For the important case

of multivariate integrated covariates, much of this nonparametric research on nonlinear cointegration

excludes possible co-movement among the regressors and the presence of deterministic drift. Such

restrictions simplify asymptotic theory but limit applicability of the methods to time series without the

commonly occuring characteristics that produce co-movement over time and asymptotic degeneracies

in the signal matrix.

The primary goal of the present paper is to relax these restrictions by allowing more flexible

structures among the covariates, to develop kernel regression asymptotics for a general class of models

that accommodate these key features in the data, and to provide inferential machinery that enables

convenient estimation and inference in practical work. In developing these methods, our main focus

of attention is a multiple regression model with time-varying coefficients of the following form

Yt = β′tXt + et0, t = 1, · · · , T, (1.1)

where βt := β (t/T ) is a d-dimensional vector of coefficients which varies over time, β(·) is a

d-dimensional vector of functions, {Xt} is a d-dimensional nonstationary process, and {et0} is a

stationary random error process. The paper studies three generating structures on Xt of increasing

complexity: (i) Xt is cointegrated with d0 cointegrating vectors and no deterministic trend where

0 ≤ d0 ≤ d − 1; (ii) Xt involves a mixture of deterministic and stochastic trends but without any

cointegrating structure; and (iii) Xt is cointegrated and has deterministic trend components. Scenario
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(iii) is the most general and combines the complications of (i) and (ii). In view of the special

technical difficulties involved, it is convenient to treat these generating structures for the regressors

Xt individually at first, leading ultimately to a complete set of asymptotics for coefficient function

estimation and inference in models of the form (1.1) with time-varying functional coefficients and

co-moving endogenous regressors.

Model (1.1) is motivated by the need for a flexible framework that captures structural change

via temporal evolution in the functional coefficients in regressions with nonstationary data. The

formulation usefully circumvents curse of dimensionality problems that commonly arise in nonpara-

metric regression estimation when the dimension of the covariates is large and that are known to be

exacerbated in the nonstationary nonparametric case due to slower convergence rates (Wang and

Phillips, 2009a). The modelling framework (1.1) includes and extends many linear and nonlinear

cointegration models that have been extensively studied in the literature. For instance, in the constant

coefficient case where βt = β, model (1.1) is a multiple linear regression with integrated regressors

in which scenarios (i)-(iii) above may be present in practical work and for which asymptotic linear

regression theory was developed in early work by Phillips and Perron (1988); Park and Phillips

(1989), Phillips (1988, 1995), and Toda and Phillips (1993). When Xt is not cointegrated and no

deterministic drift is involved, model (1.1) reduces to the model studied in Park and Hahn (1999)

and Phillips, Li and Gao (2017) where sieve estimation and kernel-based estimation techniques were

analyzed, respectively. When the nonstationary regressors Xt are cointegrated, there exist certain

linear combinations of Xt (if d0 ≥ 1) which can lower the order of integration, leading to the presence

of a stationary process component in the regressors. It follows that our modelling framework also

relates to work on time-varying coefficient models with stationary (or locally stationary) regressors

(c.f., Robinson, 1989; Cai, 2007; Zhou and Wu, 2010; Chen and Hong, 2012; Vogt, 2012; Zhang and

Wu, 2012; Giraitis, Kapetanious and Yates, 2014), and may be regarded as an extension of that

work to accommodate nonstationary and trending regressor components. The upshot is that the

results obtained in the present paper have wide potential applicability to economic time series with

stationary, trend stationary, co-moving, and stochastically nonstationary components.

The paper applies standard Nadaraya-Watson kernel method to estimate the coefficient function

β(·) in the presence of a complicating structure of co-moving and co-trending regressors that raises

significant challenges in the development of a limit theory for kernel estimation and inference. The

technical challenges may be explained in a heuristic manner as follows. The central difficulty arises

from the multiple asymptotic singularities that feature in the kernel-weighted signal matrix – the

random matrix that carries the kernel weights and appears in the denominator of the usual kernel

estimator. Rotation techniques are used to conform the covariate space to accommodate signals
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of various orders in developing the asymptotic theory. These techniques extend those that were

developed and are now commonly used in the nonstationary linear regression literature (Phillips, 1988;

Phillips and Perron, 1988; Park and Phillips, 1989) to the kernel regression environment where both

global and local rotators are required. If the regressors are cointegrated, a global rotation technique

is applied to separate out the stationary components and nonstationary components, which carry the

associated signals in kernel estimation with differing strengths. In the multivariate regressor case,

the kernel-weighted random matrix associated with the nonstationary covariate components may

have dimension greater than unity, inducing a further signal degeneracy that we refer to as local

degeneracy throughout the paper.

When the nonstationary components have only stochastic trends, time-varying coefficient kernel

regression naturally concentrates attention on a particular time coordinate of the partial sum process

and, in doing so, the associated stochastic process limit process. This focus on a local time coordinate

produces a limiting kernel signal matrix of deficient rank unity. On the other hand, when the stochastic

trends are themselves asymptotically majorized by deterministic linear trends, the nonstationary

components become dominated asymptotically by these linear trends, which reduces asymptotic

variability across component variables and leads to further degeneracy in the asymptotics. The local

rotation approach used in the present paper addresses this further degeneracy in the nonstationary

components and applies whether these components are dominated by stochastic or deterministic

trends.

This rotation geometry enables the development of a full asymptotic distribution theory for

nonstationary kernel estimation under general regularity conditions. The main results reveal multiple

convergence rates in the different directions associated with the rotations. These directions include

the usual stationary regressor nonparametric convergence rate (
√
Th), a type 1 super-consistency

rate (T
√
h), a type 2 super-consistency rate (Th), and a type 3 rate (T

√
Th) in the direction of the

deterministic linear trends. When nonstationary regressors in time-varying coefficient models are

endogenous, second-order bias terms are present in the kernel regression limit theory, analogous to

the endogeneity bias that occurs in linear cointegrating regression. Although such bias does not affect

convergence rates in the asymptotics, it does influence finite sample performance and inference with

kernel methods. To address this endogeneity bias, a fully-modified (FM) kernel estimator is developed

for which the asymptotic theory corresponds to the pure (exogenous regressor) cointegration case.

A further contribution of the paper is to develop inferential methods for the time-varying coefficient

functions in model (1.1). Two different null hypotheses on the coefficient functions are considered,

which allow for universal restrictions (that is, restrictions that apply uniformly over time) and local

restrictions (that is, restrictions that apply pointwise at some specific time-point corresponding to
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some sample fraction of the data). Generalized Wald-type test statistics are constructed to test these

hypotheses. The limit theory for these tests is developed under both full rank and deficient rank

conditions on the covariance structure of the restricted function coefficients, thereby accommodating

potential implications for rank arising from signal matrix degeneracies in kernel estimation. The

resulting asymptotics involve two types of chi-square limit distributions and possibly divergent degrees

of freedom. This limit theory substantially extends existing work on inference in linear cointegrating

regressions (particularly, Phillips and Perron, 1988; Park and Phillips, 1989; Toda and Phillips, 1993;

Phillips, 1995) to the nonlinear cointegrating model setting.

These contributions combine to bring the limit theory for functional nonparametric nonstationary

regression to a similar level of generality as the earlier limit theory for linear cointegating regression,

allowing for multiple forms of asymptotic degeneracies in the regressor space and delivering asymptot-

ically chi-square tests that enable inference in nonlinear co-moving systems with multiple covariates

under endogeneity. The methods of the paper therefore apply widely and provide a convenient

framework for investigators to test hypotheses concerning time evolution and stability in regression

coefficients in nonstationary time series environments.

The rest of the paper is organized as follows. Section 2 describes the kernel estimation approach,

provides assumptions, develops the double-rotation technique, and derives asymptotic theory when

the regressors are cointegrated. Section 3 generalizes the structure and theory to the case where the

regressors have a mix of stochastic and deterministic trends and the case when the regressors are

cointegrated with deterministic trends. Section 4 introduces the FM kernel estimator and establishes

its limit distribution theory. Section 5 explores methods of inference on the coefficient functions.

Section 6 provides an empirical illustration to aggregate US data on consumption, income and interest

rates. Section 7 concludes the paper. Proofs of the main results are given in Appendix 7. Proofs of

some supplementary results and extensive simulation studies to evaluate the finite sample properties

of the proposed methods in relation to the asymptotic theory are given in Appendices B and C,

respectively, which are included in an online supplementary document.

2 Kernel estimation with cointegrated regressors

In this section, we use kernel smoothing to estimate the coefficient functions in model (1.1) when the

nonstationary integrated regressors are cointegrated. We study the effects of the resulting asymptotic

signal degeneracy, and introduce rotation techniques to derive the limit theory of the kernel estimates.
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2.1 Model estimation and assumptions

Smoothness conditions on the coefficient function β(·) permit local approximation β(z) ≈ β(z0)

for z in any small neighborhood of z0 ∈ (0, 1) , which motivates Nadaraya-Watson-type local level

regression estimation of β(z0) in (1.1) according to the formula

β̂(z0) =
[ T∑
t=1

XtX
′
tK
(t− Tz0

Th

)]+[ T∑
t=1

XtYtK
(t− Tz0

Th

)]
=: Λ+

T (z0)∆T (z0), (2.1)

where A+ denotes the Moore-Penrose generalised inverse of a matrix A, K(·) is some kernel function,

and h is a bandwidth which tends to zero as the sample size T tends to infinity. While the present

paper concentrates on this particular kernel estimation method, other kernel methods such as local

linear smoothing or local polynomial smoothing approaches (Fan and Gijbels, 1996) may be used in

the same way and the methods given here may be suitably modified to accommodate these approaches

with similar asymptotic results.

We commence our analysis with the case where the multivariate integrated regressors Xt are

cointegrated with d0 cointegrating vectors, 0 ≤ d0 ≤ d− 1. Letting d1 = d− d0, there exists a d× d
orthogonal matrix H = (H1,H2) such that

H′1Xt = et1, ∆(H′2Xt) = H′2(∆Xt) = et2, (2.2)

where the sizes for H1 and H2 are d× d0 and d× d1, respectively, ∆ denotes the first-order difference

operator, and (e′t1, e
′
t2)
′ is stationary with et1 being d0-dimensional and et2 being d1-dimensional.

In view of (2.2), a rotation of the regressor space conveniently separates out the stationary and

nonstationary components of the covariates in model (1.1). The transformation matrix H is not unique

and the rank of the cointegrating space d0 together with the associated directions of cointegration that

are embodied in the submatrix H1 are generally unknown a priori. We emphasize that knowledge of

d0 and H1 are not needed for application of (2.1) and the methods of the present paper, including the

asymptotic results, can be used in practical work without such knowledge, although there are of course

well-known parametric and nonparametric methods of testing to determine d0 and procedures to

estimate H1 in the existing literature (e.g., Johansen, 1991; Phillips, 1996; Cheng and Phillips, 2009).

The following example illustrates the formulation (2.2) for a simple cointegrated vector autoregression

(VAR) model with general stationary errors (c.f., Cheng and Phillips, 2009).

Example 1. Define the model

∆Xt = αβ′Xt−1 + vt, (2.3)
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where {vt} is a covariance stationary time series with mean zero, the matrices α and β are d× d0
with rank d0, and Id0 + β′α has latent roots inside the unit circle. Let β⊥ be a d× (d− d0) full rank

matrix complement to β so that β′β⊥ = Od0×d1 where d1 = d− d0 and Or×s is an r × s null matrix,

and define

H′1 = (β′β)
−1/2

β′, H′2 = (β′⊥β⊥)
−1/2

β′⊥,

so that H = (H1,H2) is orthogonal. Following standard arguments (Johansen, 1991; Phillips, 1995),

the VAR model (2.3) falls into the framework of (2.2) with transforms

H′1Xt = (β′β)
−1/2

(Id0 + β′α)β′Xt−1 + H′1vt =: et1

and

∆(H′2Xt) = (β′⊥β⊥)
−1/2

β′⊥αβ′Xt−1 + (β′⊥β⊥)
−1/2

β′⊥vt =: et2.

In order to establish limit theory for the kernel estimator in (2.1), we use the following regularity

conditions.

Assumption 1. Let et =
(
et0, e

′
t1, e

′
t2

)′
satisfy

et =
∞∑
j=0

Φjεt−j =
∞∑
j=0

ΦjL
jεt =: Φ(L)εt,

where L is the lag operator, {Φj} is a sequence of (d + 1) × (d + 1) matrices and {εt} is a

sequence of i.i.d. (d + 1)-dimensional random vectors with mean zero, Ωε := E
[
εtε
′
t

]
being

positive definite and E
[
‖εt‖4+δ0

]
<∞ for δ0 > 0, ‖ · ‖ denotes the Euclidean norm. In addition,

the multivariate linear process coefficient matrices satisfy
∑∞

j=0 j‖Φj‖ < ∞ and the matrix

Ω := ΦΩεΦ
′ is positive definite with Φ :=

∑∞
j=0 Φj 6= O(d+1)×(d+1).

Assumption 2. The d-dimensional coefficient function β(·) is continuous with
∥∥β(z0 +z)−β(z0)

∥∥ =

O(|z|γ) as z → 0 for some 1
2
< γ ≤ 1.

Assumption 3. (i) The kernel function K(·) is continuous, positive, symmetric and has compact

support [−1, 1] with µ0 =
∫
K(u)du = 1.

(ii) The bandwidth h satisfies h→ 0 and Th→∞ as T→∞.

Assumption 1 uses a stationary vector linear process specification for {et} that is common in

the literature (c.f., Phillips, 1995; Phillips, Li and Gao, 2017) and includes many popular vector
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time series processes such as stationary VAR and VARMA models. The linear process dependence

structure can be replaced by alternative mixing dependence conditions with some modifications of

the proofs. Assumption 1 combined with (2.2) implies that the nonstationary components H′2Xt are

full rank nonstationary and not cointegrated. In the asymptotic theory developed later, H′2Xt may

be correlated with et0, which implies endogeneity in the system. Assumptions 2 and 3 are commonly

used conditions in the varying-coefficient and kernel smoothing literature – e.g., Wang and Phillips

(2009b) and Phillips, Li and Gao (2017). In particular, if the coefficient function β(·) is Lipschitz

continuous on [0, 1], Assumption 2 is satisfied with γ = 1. When greater smoothness conditions are

imposed on β(·) stronger results are possible with local linear and polynomial smoothing methods,

and these will be mentioned in what follows.

2.2 Kernel degeneracy and double-rotation of the covariate space

By virtue of Assumption 1 and functional limit theory for linear processes (Phillips and Solo, 1992),

1√
T

bTzc∑
t=1

et ⇒ B(z), et =
(
et0, e

′
t1, e

′
t2

)′
, 0 < z ≤ 1 (2.4)

where B(z) is a (d+ 1)-dimensional Brownian motion with variance matrix Ω defined in Assumption

1 and b·c denotes the floor function. Partition the (d+ 1)× (d+ 1) matrix Ω into cell submatrices Ωij

(i, j = 0, 1, 2) conformably with et and set ω = Ω00. Let B(z) =
[
B0(z), B′1(z), B′2(z)

]′
be component

Brownian motion limit process of the following partial sum processes

1√
T

bTzc∑
t=1

et0 ⇒ B0(z),
1√
T

bTzc∑
t=1

et1 ⇒ B1(z),
1√
T

bTzc∑
t=1

et2 ⇒ B2(z), (2.5)

where B0(·), B1(·) and B2(·) are univariate, d0-dimensional and d1-dimensional Brownian motions

with variance matrices ω, Ω11 and Ω22, respectively. The limit theory later in the paper also involves

partitioned components of the one-sided long run covariance matrix defined by Γ = lrcov+ (et, et) :=∑∞
h=0E(e0e

′
h) with cell submatrices Γij (i, j = 0, 1, 2) that are conformable with the partition of et.

When the p-dimensional process {Zt} is stationary and satisfies some standard regularity conditions,

it is not difficult to show that

1

Th

T∑
t=1

ZtZ
′
tK
(t− Tz0

Th

)
= µ0E [ZtZ

′
t] + oP (1) = E [ZtZ

′
t] + oP (1). (2.6)
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Furthermore, if E
[
ZtZ

′
t

]
is positive definite, the limit of the inverse of the kernel weighted sample

moment matrix 1
Th

∑T
t=1 ZtZ

′
tK
(
t−Tz0
Th

)
also exists and conventional asymptotics hold for kernel

estimation with Zt as regressors. However, when {Zt} is generated by a nonstationary full rank unit

root process with innovations that satisfy a functional law similar to (2.4), the weighted sample

moment matrix behaves very differently. First, we have T−1/2ZbTzc ⇒ B�(z) for 0 < z ≤ 1,where

B�(·) is a p-dimensional Brownian motion with positive definite variance matrix, from which it

might be expected that the normalization rate (Th) in (2.6) would simply be replaced by the rate

(T 2h). However, Phillips, Li and Gao (2017) showed that the matrix 1
T 2h

∑T
t=1 ZtZ

′
tK
(
t−Tz0
Th

)
is

asymptotically singular when the dimension p exceeds unity. The reason for this degeneracy is that

time-varying coefficient kernel regression concentrates attention in the nonstationary process on a

particular time coordinate (say Tz0) and the corresponding realized value of the associated limit of

the nonstationary process, in contrast to the time average E
[
ZtZ

′
t

]
in stationary case. When there

are multiple nonstationary regressors, this focus on a single time coordinate produces a limiting signal

matrix of deficient rank unity whose zero eigenspace depends on the value of the limit process at

that time coordinate. In other words, the kernel induced degeneracy which occurs in the matrix
1
T 2h

∑T
t=1 ZtZ

′
tK
(
t−Tz0
Th

)
for multivariate integrated Zt is random, trajectory dependent, and localized

to the time value z0. It may therefore be regarded as a form of local degeneracy.

To deal with degeneracy in a prototypical case, Phillips, Li and Gao (2017) introduced a novel

rotational decomposition for the kernel-weighted signal matrix
∑T

t=1 ZtZ
′
tK
(
t−Tz0
Th

)
to develop the

limit theory. The rotation involved the use of a random direction based on the regressors. In the

present case, this direction takes the form of the (sample size dependent) vector

qT (z0) =
bT (z0)[

bT (z0)′bT (z0)
]1/2 =

bT (z0)

‖bT (z0)‖
, bT (z0) =

1√
T
Zδ(z0), δ(z0) = bT (z0 − h)c,

leading to an associated orthogonal matrix

QT (z0) =
[
qT (z0), q

⊥
T (z0)

]
, QT (z0)

′QT (z0) = Ip,

where q⊥T (z0) is an orthogonal complement to qT (z0). Using the standardization matrix DT =

diag
{
T
√
h, (Th)Ip−1

}
, and Proposition A.1 from Phillips, Li and Gao (2017), we may show that

the matrix

D−1T QT (z0)
′

[
T∑
t=1

ZtZ
′
tK
(t− Tz0

Th

)]
QT (z0)D

−1
T

is of full rank with probability approaching one.
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This random rotation technique needs substantial generalization for the setting of the present

paper. Here the regressors satisfy the framework (2.2), indicating that three different normalization

rates might be needed when d0 ≥ 1 and d1 ≥ 2, where d0 and d1 are the dimensions of the stationary

components and nonstationary components. To see this, we first use the orthogonal transformation

(2.2) to rotate the regressor space and separate out the stationary and nonstationary components.

Define

Xt1 = H′1Xt, Xt2 = H′2Xt,

where Xt1 is the d0-dimensional stationary component and Xt2 is the d1-dimensional nonstationary

component with unit roots. Then, model (1.1) can be re-written as

Yt = β′t1Xt1 + β′t2Xt2 + et0, (2.7)

with β′t1 = β′tH1 and β′t2 = β′tH2. Letting X t = (X ′t1, X
′
t2)
′ = H′Xt, we transform the Nadaraya-

Watson kernel estimate β̂(z0) to

β(z0) := H′β̂(z0) =
[ T∑
t=1

X tX
′
tK
(t− Tz0

Th

)]+[ T∑
t=1

X tYtK
(t− Tz0

Th

)]
, (2.8)

which is the estimate of H′β(z0). The component matrix H1 generates the stationary components

and the convergence rate in this direction will be seen to be the same as the usual convergence

rate in stationary kernel regression. In contrast, the component matrix H2, which is orthogonal to

H1, generates full rank nonstationary variates, leading to faster convergence rates in this direction.

However, the above arguments show that the matrix 1
T 2h

∑T
t=1Xt2X

′
t2K
(
t−Tz0
Th

)
is asymptotically

singular if its dimension d1 exceeds unity. Therefore, further transformation of the nonstationary

component Xt2 is required in order to resolve asymptotic behavior.

To proceed, let qT2(z0) and QT2(z0) be defined just as qT (z0) and QT (z0) above but with Zt

replaced by Xt2. Then define

QT (z0) = diag {Id0 ,QT2(z0)} , DT = diag
{√

ThId0 , T
√
h, (Th)Id1−1

}
. (2.9)

Unlike the transformation matrix H in the global rotation which does not rely on z0, the matrix QT (z0)

used in the further rotation of the nonstationary component space is random and time dependent on
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z0, and is thus called a local rotation. Proposition 1 below shows that the matrix

D
−1
T QT (z0)

′
[ T∑
t=1

X tX
′
tK
(t− Tz0

Th

)]
QT (z0)D

−1
T

is of full rank with probability approaching one as T →∞.

To complete the statement of the proposition we introduce the following notation. Define the

vector

q2(z0) =
b(z0)[

b(z0)′b(z0)
]1/2 =

b(z0)

‖b(z0)‖
with b(z0) = B2(z0),

and let q⊥2 (z0) be a d1 × (d1 − 1) orthogonal complement matrix of q2(z0). Define the d× d matrix

Λ(z0) = diag {Λ11,Λ2(z0)} with Λ2(z0) =

 Λ22(z0) Λ23(z0)

Λ32(z0) Λ33(z0)

 , (2.10)

where Λ11 =E[e11e
′
11] > 0 is independent of z0, Λ22(z0) = λ(z0) = B2(z0)

′B2(z0) is a univariate

random element, Λ23(z0) = Λ32(z0)
′ =
√

2
[
B2(z0)

′B2(z0)
]1/2 [∫ 1

−1B
∗
2( z+1

2
)′K(z)dz

]
q⊥2 (z0), Λ33(z0) =

2q⊥2 (z0)
′
[∫ 1

−1B
∗
2

(
z+1
2

)
B∗2
(
z+1
2

)′
K(z)dz

]
q⊥2 (z0), and B∗2(·) is an independent copy of the Brownian

motion B2(·).

Proposition 1. Suppose that Assumptions 1 and 3 are satisfied, d ≥ 3 with 1 ≤ d0 ≤ d− 2 and

2 ≤ d1 ≤ d− d0. Then we have

D
−1
T QT (z0)

′H′ΛT (z0)HQT (z0)D
−1
T = D

−1
T QT (z0)

′

[
T∑
t=1

X tX
′
tK
(t− Tz0

Th

)]
QT (z0)D

−1
T

⇒ Λ(z0) > 0 a.s. (2.11)

for fixed 0 < z0 < 1, where the notation “ > 0” denotes positive definiteness.

Remark 1. This proposition resolves the asymptotic degeneracy of the kernel-weighted signal matrix

through a double-rotation of the nonstationary regressor space involving the global rotation H and

local rotation QT (z0). This transformation leads to three different normalization rates embodied in

the standardization matrix DT . For a special case d1 = 1, kernel degeneracy is circumvented and the

rate (Th) disappears in DT , leaving only the global rotation H. If there is no cointegration among

the regressors, the global rotation is not needed in transforming the regressors and the rate (
√
Th)

would disappear in DT , specializing the result to Proposition A.1 in Phillips, Li and Gao (2017).
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2.3 Asymptotic theory for cointegrated regressors

This section derives asymptotic theory for the kernel estimator β̂(z0) when the nonstationary regressors

are cointegrated. We start by introducing notation. Let DT2 = diag
{
T
√
h, (Th)Id1−1

}
and define

∆2(z0) :=
[
δ(z0),∆⊥(z0)

′]′ with

δ(z0) :=
[
2B2(z0)

′B2(z0)
]1/2 ∫ 1

−1
K(z)dB0

(z + 1

2

)
,

∆⊥(z0) := 2q⊥2 (z0)
′
[∫ 1

−1
K(z)B∗2

(z + 1

2

)
dB0

(z + 1

2

)
+

1

2
Γ20

]
,

where the one sided long run covariance Γ20 = lrcov+ (et2, et0) is as defined earlier. The following

theorem gives the asymptotic distribution of β̂(z0).

Theorem 1. Suppose Assumptions 1–3 are satisfied, d ≥ 3 with 1 ≤ d0 ≤ d− 2 and 2 ≤ d1 ≤ d− d0,
Λ(z0) is non-singular with probability one, and for s ≥ t, E[es0et1] = 0d0 , where 0r is an r-dimensional

vector of zeros.

(i) If, in addition, Th1+2γ = o(1), then as T →∞

√
ThH′1

[
β̂(z0)− β(z0)

]
⇒ ξ (2.12)

for fixed z0 ∈ (0, 1), where ξ is a d0-dimensional normal vector with mean zero and covariance matrix

Vξ := ν0Λ
+
11

{ ∞∑
s=−∞

E [(e10es0)(e11e
′
s1)]
}

Λ+
11, ν0 =

∫
K2(u)du.

(ii) If, in addition, T 2h1+2γ = o(1), then as T →∞

DT2QT2(z0)
′H′2

[
β̂(z0)− β(z0)

]
⇒ Λ−12 (z0)∆2(z0) (2.13)

for fixed z0 ∈ (0, 1).

Remark 2. (a) The limit theory in Theorem 1 shows that double-rotation of the regressor space is

needed to characterize the asymptotics: the global rotator H addresses potential cointegration among

the nonstationary regressors; and the local rotator QT (z0) addresses the kernel degeneracy that arises

from the fixed design functional framework. The limit theory in (2.12) and (2.13) encompasses several

interesting results from the existing literature. For the case d1 = 0 corresponding to a stationary

12



regressor model, taking H = H1 = Id we have from (2.12) that

√
Th
[
β̂(z0)− β(z0)

]
⇒ ξ, (2.14)

which delivers results similar to those in the literature on kernel estimation with locally stationary

regressors (c.f., Robinson, 1989; Cai, 2007; Vogt, 2012). For the case d0 = 0 corresponding to a full

rank integrated regressor model, taking H = H2 = Id we obtain Theorem 3.1 in Phillips, Li and Gao

(2017) as a corollary of (2.13).

(b) The assumption E[es0et1] = 0 for s ≥ t implies no contemporaneous or feedforward correlation

between the stationary regressor components et1 and the equation error et0, which ensures kernel

estimation is consistent in the direction associated with the stationary components H′1Xt (c.f., Park

and Phillips, 1989). Theorem 1 does not specify the relationship between the limit distributions of

the stationary and nonstationary component estimators in parts (i) and (ii) and to do so we impose

the following explicit exogeneity condition.

Assumption 1∗. Let Ft−1 = σ(et1, et2, et−1, et−2, · · · ) be the σ-algebra generated by {es1, es2}s≤t and

{es0}s≤t−1. Then {(et0,Ft)} is a stationary sequence of martingale differences with σ2
e =E[e2t0|Ft−1] > 0

a.s.

Under Assumption 1∗, the asymptotic distribution in the direction H1 is independent of that in the

direction H2, so that the limit variate ξ is independent of the limit variate Λ+
2 (z0)∆2(z0), which

facilitates inference concerning the time varying coefficient function. Further, the one-sided long run

covariance matrix Γ02 is eliminated in the random variate ∆2(z0) for this pure cointegration case.

Assumption 1∗ is common in the literature when stationarity is present and appears, for instance, in

both Cai, Li and Park (2009) and Li, Phillips and Gao (2016).

(c) From (2.12) and (2.13) in Theorem 1, we find three different convergence rates that apply in

different directions. In the direction H1, by (2.12) we have the well-known stationary rate given by

H′1

[
β̂(z0)− β(z0)

]
= OP

(
1√
Th

)
, (2.15)

which holds for stationary kernel regression. In the direction H2qT2(z0), we have the faster rate

qT2(z0)
′H′2

[
β̂(z0)− β(z0)

]
= OP

(
1

T
√
h

)
, (2.16)

which is called type 1 super-consistency in Li, Phillips and Gao (2016) and Phillips, Li and Gao

13



(2017). Finally, in direction H2q
⊥
T2(z0), we have type 2 super-consistency with rate given by

q⊥T2(z0)
′H′2

[
β̂(z0)− β(z0)

]
= OP

(
1

Th

)
. (2.17)

The type 2 super-consistency rate is slower than the rate in (2.16), but is still faster than the stationary

rate in (2.15). Interestingly, therefore, nonstationary regressors raise the rate of convergence over the

standard stationary rate in the two relevant directions of nonstationarity in the data.

(d) The bandwidth conditions Th1+2γ = o(1) and T 2h1+2γ = o(1) in Theorem 1 may appear

restrictive. However, if the coefficient function has continuous derivatives up to the second order

and if we apply local linear kernel smoothing rather than local costant estimation, then following

the proof of Theorem 3.2 in Phillips, Li and Gao (2017), we may relax the above two bandwidth

restrictions to Th5 = o(1) and T 2h5 = o(1), respectively.

(e) Theorem 1 implies that β̂(z0) has a degenerate asymptotic normal distribution dominated by

the slowest convergent component in (2.12), viz.,

√
Th
[
β̂(z0)− β(z0)

]
⇒ H1ξ. (2.18)

In spite of this apparent simplification arising from the dominating direction H1, inference about the

full vector of parameters β is typically not degenerate and involves the asymptotic behavior of the

components of β in other directions.

3 Extensions of kernel estimation theory

This section develops kernel estimation theory for the following two cases: (i) the regressors Xt have

a mixture of deterministic and stochastic trends but no internal cointegrating structure; and (ii) the

regressors Xt have deterministic trends and are cointegrated among themselves.

3.1 Kernel estimation with stochastic and deterministic trends

We assume the regressors are generated as stochastic trends with drift according to the scheme

Xt = Xt−1 + µ + ut, (3.1)

14



where µ is a d-dimensional parameter vector representing the accompanying drift of the unit root

process, and where ut = (e′t1, e
′
t2)
′ with et1 and et2 satisfying Assumption 1 in Section 2.1. From (3.1),

we have

Xt =
t∑

j=1

uj + µt+X0 =: St +Dt +X0, (3.2)

where X0 = OP (1), St :=
∑t

j=1 uj is the stochastic trend and Dt := µt is the deterministic drift.

Although we consider only a linear trend for Dt in what follows, the method and theory developed in

this section are readily extendable to polynomial trends. But general power trends such as tα with

unknown power parameter α involve further complications of asymptotic singularity - see Phillips

(2007) and Baek, Cho and Phillips (2015), which are not pursued here.

Since St = OP

(
t1/2
)
, the stochastic trend St is asymptotically dominated by the deterministic

trend Dt. Therefore, we have

T∑
t=1

XtX
′
tK
(t− Tz0

Th

)
= µµ′(bTz0c)2Th(1 + oP (1)). (3.3)

When the dimension d exceeds unity, the matrix µµ′ is singular, complicating normalization of the

kernel-weighted signal matrix
T∑
t=1

XtX
′
tK
(t− Tz0

Th

)
, (3.4)

which is degenerate at the dominating rate (T 3h) associated with the deterministic component Dt.

Degeneracy of this form has long been studied in the linear nonstationary regression literature, where

Phillips and Perron (1988) gave a global rotation technique (with non-random transformation matrix)

to separate out the stochastic and deterministic trend components with associated standardization

rates for the corresponding directions. This global rotation technique cannot be applied in the present

setting, however, as will be demonstrated later in this section. Since the kernel-weighted signal matrix

(3.4) embodies both stochastic and deterministic trends, a local rotation technique similar to that in

Section 2.2 is instead required.

To proceed, define

q̃T (z0) =
b̃T (z0)[̃

bT (z0)′b̃T (z0)
]1/2 =

b̃T (z0)

‖b̃T (z0)‖
, b̃T (z0) = Xδ(z0) = Sδ(z0) +Dδ(z0) +X0,
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and introduce the orthogonal matrix

Q̃T (z0) =
[
q̃T (z0), q̃

⊥
T (z0)

]
, Q̃T (z0)

′Q̃T (z0) = Id,

where q̃⊥T (z0) is a d× (d− 1) orthogonal complement matrix of q̃T (z0), and define the standardization

matrix

D̃T = diag
{
T
√
Th, (Th)Id−1

}
. (3.5)

Proposition 2 below shows that asymptotic degeneracy of (3.4) is addressed via application of the

local rotator and path-dependent transformation matrix Q̃T (z0). Some further notation is needed to

state the proposition. Let µ̃⊥ be a d× (d− 1) orthogonal complement of µ̃ := (µ′µ)−1/2µ = µ/‖µ‖,
and J = (µ̃, µ̃⊥) be the corresponding orthogonal transformation matrix, as used in Phillips and

Perron (1988). Define the d× d matrix

Λ̃(z0) =

 Λ̃11(z0) Λ̃12(z0)

Λ̃21(z0) Λ̃22

 ,
where Λ̃11(z0) = λ̃(z0) = ‖µz0‖2 is non-random and univariate,

Λ̃12(z0) = Λ̃21(z0)
′ =
√

2‖µz0‖
[∫ 1

−1
B̃(

z + 1

2
)′K(z)dz

]
µ̃⊥,

Λ̃22 = 2µ̃′⊥

[∫ 1

−1
B̃
(z + 1

2

)
B̃
(z + 1

2

)′
K(z)dz

]
µ̃⊥,

B̃(·) = [B1(·)′, B2(·)′]′, B1(·) and B2(·) are defined earlier in (2.5).

Proposition 2. Suppose Assumptions 1 and 3 are satisfied, µ 6= 0d and d ≥ 2. Then

D̃−1T Q̃T (z0)
′ΛT (z0)Q̃T (z0)D̃

−1
T ⇒ Λ̃(z0) > 0 a.s. (3.6)

for fixed 0 < z0 < 1.

Remark 3. In the proof of (3.6) in Appendix 7, the two random and trajectory-dependent directions

q̃T (z0) and q̃⊥T (z0) are shown to converge to µ̃ and µ̃⊥, respectively. Both µ̃ and µ̃⊥ are non-random,

and neither of them rely on z0. This is unsurprising as the nonstationary process Xt is asymptotically

dominated by its linear trend Dt. A natural question in view of this asymptotic behavior is whether

the local transformation matrix Q̃T (z0) can be replaced by the global matrix J = (µ̃, µ̃⊥) in (3.6)?
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The question is simply answered by examining the special case d = 2. Define

X̃t := J′Xt =
(
µ̃′Xt, µ̃

′
⊥Xt

)′
=: (X̃t1, X̃t2)

′. (3.7)

It is easy to see that the univariate component X̃t1 represents the deterministic trend term, whereas

X̃t2 represents a unit root process without the involvement of the deterministic trend. Defining

D̃T∗ = diag
{
T
√
Th, T

√
h
}
, we can show that

D̃−1T∗

[
T∑
t=1

X̃tX̃
′
tK
(t− Tz0

Th

)]
D̃−1T∗ ⇒

 ‖µz0‖2 ‖µz0‖‖µ̃′⊥B̃(z0)‖

‖µz0‖‖µ̃′⊥B̃(z0)‖ ‖µ̃′⊥B̃(z0)‖2

 . (3.8)

The above result is easily established by noting that the asymptotic leading terms for X̃t1 and X̃t2

are ‖µz0‖ · T and Sδ(z0), respectively, when T (z0 − h) ≤ t ≤ T (z0 + h). Clearly, the matrix on the

right side of (3.8) is singular with probability one. This outcome shows that use of the global (limit)

transformation matrix J = (µ̃, µ̃⊥) inadequately deals with the kernel signal matrix degeneracy even

though the two relevant directions µ̃ and µ̃⊥ figure prominently in the limit. Instead, the local rotator

Q̃T (z0) and the associated normalization matrix D̃T = diag
{
T
√
Th, (Th)Id−1

}
in place of D̃T∗ play

key roles in achieving a non-degenerate limit theory.

With Proposition 2 in hand, the limit theory for the kernel estimator β̂(z0) can now be obtained

for stochastic trend with drift regressors, as in (3.1). Let

∆̃(z0) =
[
δ̃(z0), ∆̃

′
⊥

]′
with

δ̃(z0) =
√

2‖µz0‖
∫ 1

−1
K(z)dB0

(z + 1

2

)
, ∆̃⊥ = 2µ̃′⊥

[∫ 1

−1
K(z)B̃

(z + 1

2

)
dB0

(z + 1

2

)
+

1

2
Γ̃

]
,

where Γ̃ = (Γ′10,Γ
′
20)
′, and the one-sided long run covariance matrices Γ10 = lrcov+ (et1, et0) , Γ20 =

lrcov+ (et2, et0) are defined in Section 2.2. The following theorem gives the asymptotic distribution of

β̂(z0).

Theorem 2. Suppose Assumptions 1–3 are satisfied, µ 6= 0d, and d ≥ 2. Then, as T →∞, we have

D̃T Q̃T (z0)
′
[
β̂(z0)− β(z0) +OP (hγ)

]
⇒ Λ̃−1(z0)∆̃(z0), (3.9)
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for fixed z0 ∈ (0, 1).

Remark 4. (a) Since the limit of the direction q̃⊥T (z0) is independent of z0, it is interesting to find

that both the random matrix Λ̃22 (the lower-right block matrix of Λ̃(z0)) and the random vector ∆̃⊥

are also independent of z0. In the above theorem, in order to make the bias term asymptotically

negligible, we have to impose the strong restriction T 3h1+2γ = o(1), which contradicts the normal

bandwidth condition Th→∞ made in Assumption 3(ii) since γ ∈ (0.5, 1]. However, as discussed in

Remark 2(d), if local linear smoothing estimation of the coefficient function is used, we may replace

the requirement T 3h1+2γ = o(1) by the weaker condition T 3h5 = o(1), which is compatible with

Th→∞.

(b) Compared with Theorem 1 in Section 2.3, there is a single rotator matrix Q̃T (z0) involved in

the limit theory. In consequence, we have two different convergence rates. In the direction q̃T (z0), we

have

q̃T (z0)
′
[
β̂(z0)− β(z0)

]
= OP

(
1

T
√
Th

+ hγ
)
, (3.10)

where 1/(T
√
Th) is the new super-consistency convergence rate for nonstationary kernel regression

that exceeds the rates in (2.15)–(2.17). This fast rate is mainly due to the strong signal from the

linear trend of Xt in the direction q̃T (z0). In contrast, in the direction of q̃⊥T (z0), from (3.9), we have

q̃⊥T (z0)
′
[
β̂(z0)− β(z0)

]
= OP

(
1

Th
+ hγ

)
, (3.11)

which is the same rate as that for type 2 super-consistency in (2.17) if the bias term order is ignored

asymptotically. This rate is due to the relatively weaker signal that emerges in the direction q̃⊥T (z0)

as the linear trend cancels out through the transform q̃⊥T (z0).

3.2 Kernel cointegrating regression with deterministic trends

Next, we combine the structures (2.2) and (3.1) and assume that Xt satisfies

H′1Xt = et1, ∆ (H′2Xt) = H′2 (∆Xt) = et2 + µ, (3.12)

where H1, H2, et1 and et2 are defined as in Section 2.1 and µ is defined as in Section 3.1. The

following example shows that the structure (3.12) is satisfied for a cointegrated VAR model with a

deterministic drift component.
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Example 2. Consider the VAR model defined by

∆Xt = αβ′Xt−1 + ν + vt, (3.13)

where {vt} is a covariance stationary sequence of random vectors with mean zero, α and β are d× d0
matrices of rank d0, and ν is a d-dimensional parameter vector. Letting β⊥ and α⊥ be d× (d− d0)
matrices of full rank satisfying β′β⊥ = Od0×d1 and α′α⊥ = Od0×d1 , and defining C = β⊥(α′⊥β⊥)−1α′⊥,

we have the Granger representation

Xt = C
t∑

j=1

vj + Cνt+ CX0 + Vt,

where Vt = α(β′α)−1
∑∞

i=0 Riβ′vt−i is a stationary linear process and the matrix R = Id0 + β′α has

eigenvalues within the unit circle (Johansen, 1991; Cheng and Phillips, 2009). By choosing H1 and

H2 as in Example 1, it is clear that the cointegrated VAR model (3.13) satisfies the structure (3.12).

To derive the limit theory of β̂(z0) under the generating mechanism (3.12) for Xt, we first apply

the transformation matrix H = (H1,H2) on the covariate space as in Section 2.2 to separate out

stationary and nonstationary components as Xt1 = H′1Xt and Xt2 = H′2Xt. For the nonstationary

elements Xt2, a further local rotation using the matrix QT (z0) defined in (2.9) is applied to overcome

kernel degeneracy. Proposition 3 below shows that this double-rotation technique leads to a well

defined limit theory for the kernel-weighted signal matrix when Xt is generated by (3.12).

Define the standardization matrix

D̊T = diag
{√

ThId0 , T
√
Th, (Th)Id1−1

}
, (3.14)

and the d× d matrix

Λ̊(z0) = diag
{

Λ11, Λ̊2(z0)
}

with Λ̊2(z0) =

 Λ̊22(z0) Λ̊23(z0)

Λ̊32(z0) Λ̊33

 ,
where Λ11 is defined as in Section 2.2, Λ̊22(z0) = λ̊(z0) = ‖µz0‖2 is non-random and univariate,

Λ̊23(z0) = Λ̊32(z0)
′ =
√

2‖µz0‖
[∫ 1

−1
B2(

z + 1

2
)′K(z)dz

]
µ̃⊥,

Λ̊33 = 2µ̃′⊥

[∫ 1

−1
B2

(z + 1

2

)
B2

(z + 1

2

)′
K(z)dz

]
µ̃⊥,

19



B2(·) is defined in (2.5) and µ̃⊥ is defined as in Section 3.1.

Proposition 3. Suppose Assumptions 1 and 3 are satisfied, µ 6= 0d, d ≥ 3 with 1 ≤ d0 ≤ d− 2 and

2 ≤ d1 ≤ d− d0. Then

D̊−1T QT (z0)
′H′ΛT (z0)HQT (z0)D̊

−1
T ⇒ Λ̊(z0) > 0 a.s. (3.15)

for fixed 0 < z0 < 1.

Remark 5. The limit result is similar to that in Proposition 1, with two differences. First, the

normalization rate (T
√
h) in DT is replaced by the rate (T

√
Th) in D̊T , which is due to the fact

that the stochastic trend is asymptotically dominated by the linear trend in the direction of H2.

Second, the limits of the directions qT2(z0) and q⊥T2(z0) in the above proposition are non-random and

independent of the point z0 (i.e., µ̃ and µ̃⊥), whereas the corresponding limits in Proposition 1 are

random and depend on z0.

To provide the limit distribution of the kernel estimator under (3.12), we introduce further notation,

defining D̊T2 = diag
{
T
√
Th, (Th)Id1−1

}
and ∆̊2(z0) =

[̊
δ(z0), ∆̊

′
⊥
]′
, with

δ̊(z0) =
√

2‖µz0‖
∫ 1

−1
K(z)dB0

(z + 1

2

)
,

∆̊⊥ = 2µ̃′⊥

[∫ 1

−1
K(z)B2

(z + 1

2

)
dB0

(z + 1

2

)
+

1

2
Γ20

]
.

The limit theory for β̂(z0) is as follows.

Theorem 3. Suppose that Assumptions 1–3 are satisfied, µ 6= 0d, d ≥ 3 with 1 ≤ d0 ≤ d− 2 and

2 ≤ d1 ≤ d− d0, and Λ̊(z0) is non-singular with probability one. For s ≥ t, E[es0et1] = 0d0 .

(i) If, in addition, Th1+2γ = o(1), then (2.12) holds as T →∞.

(ii) For fixed z0 ∈ (0, 1),

D̊T2QT2(z0)
′H′2

[
β̂(z0)− β(z0) +OP (hγ)

]
⇒ Λ̊−12 (z0)∆̊2(z0) (3.16)

as T →∞.

Remark 6. Theorem 3 combines parts of Theorems 1 and 2, showing that application of the rotation

matrices H and QT (z0) resolves the degeneracy issue in kernel-weighted signal matrices in a similar

way to the transformations in Section 2. However, due to the presence of deterministic trends, the

standardization matrix needs modification and leads to a faster convergence rate in the direction
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H2qT2(z0), viz.,

qT2(z0)
′H′2

[
β̂(z0)− β(z0)

]
= OP

(
1

T
√
Th

+ hγ
)
, (3.17)

analogous to that in (3.10). Furthermore, as noted in Remark 2(b), under the additional Assumption

1∗, the limit distributions in Theorem 3(i) and (ii) are mutually independent.

4 FM-kernel estimation

As is apparent in the limit distributions obtained earlier, second-order bias effects are present in

the asymptotics whenever the regressors are endogenous. Just as in linear cointegration regression

asymptotics, endogeneity may be addressed by using modified estimation methods, such as those

in Phillips and Hansen (1990). This section provides a kernel modification of the Phillips-Hansen

approach that is called FM-kernel estimation. This method effectively removes second-order bias

effects in the limit distribution associated with the nonstationary direction H2. To save space, we

mainly focus on the case of cointegrated regressors studied in Section 2, and the development of

FM-kernel regression is entirely analogous for the cases of mixed stochastic and deterministic trend

regressors and cointegrated regressors with deterministic trends considered in Section 3. Methods

other than FM-kernel regression may also be designed to resolve endogeneity and serial correlation

induced bias issues, just as they are in simple cointegrated regression models. But these are not

pursued here.

From Theorem 1(ii), the presence of the one-sided long run covariance Γ20 between et0 and et2,

induces a second-order bias effect in the limit distribution in the direction H2q
⊥
T2(z0). In addition,

there is endogeneity arising from correlation between the limit Brownian motions B0(·) and B2(·).
These bias effects relate directly to those that are present in linear cointegrating regression limit

theory as discussed originally in Phillips and Perron (1988); Park and Phillips (1989) and Phillips

and Hansen (1990). Although the existence of this bias does not affect the super-consistency rates of

kernel estimation, centering is affected, with consequential impact on statistical inference concerning

the coefficient functions. The need to remove these sources of bias and to provide valid inferential

machinery motivates the development of an FM-kernel estimator.

FM least squares estimation was introduced by Phillips and Hansen (1990) in the context of

traditional linear cointegrating models, and was recently generalized by Phillips, Li and Gao (2017)

to nonparametric kernel-based estimation in models with full rank integrated regressors. When

nonstationary regressors are cointegrated, they are necessarily of deficient rank asymptotically,
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therefore complicating the development of FM-kernel estimation methodology. To present the

required modifications more clearly, we start the development under the assumption (which is later

relaxed) that the cointegration rank d0 and the transformation matrix H are known a priori, together

with the long-run covariance matrices Ω02, Ω20, Ω22, Γ20 and Γ22. Correction for endogeneity is

achieved by removing the following term in kernel estimation

B?
T1(z0) =

T∑
t=1

K
(t− Tz0

Th

)
Xt �

[
0′d0 ,

(
Ω02Ω

+
22∆Xt21d1

)′]′
, (4.1)

where 1d1 is a d1-dimensional column vector of ones and� denotes component-wise product. Correction

for serial correlation is achieved by removing the term

B?
T2(z0) = HQT (z0)DT

{
0′d0+1,

[
q⊥T2(z0)

′ (Γ20 − Γ22Ω
+
22Ω20

)]′}′
. (4.2)

Combining (4.1) and (4.2), the (infeasible) FM-kernel estimator is constructed as

β̂?(z0) = Λ+
T (z0)∆

?
T (z0), with ∆?

T (z0) = ∆T (z0)−B?
T1(z0)−B?

T2(z0), (4.3)

where ΛT (z0) and ∆T (z0) are defined in (2.1). Since the quantities d0, H, Ω02, Ω20, Ω22, Γ20 and Γ22

are generally unknown, the estimator (4.3) is infeasible in practice. But estimation of these unknown

elements has been extensively studied in the literature and similar methods may be utilized in the

present context, as we now overview, to produce consistent estimators d̂, Ĥ, Ω̂02, Ω̂20, Ω̂22, Γ̂20 and

Γ̂22, that may be used to construct a feasible version of the FM-kernel estimator.

To simplify, it is convenient to consider the case where the integrated regressors are generated

from the cointegrated VAR process (2.3) discussed in Example 1. Then, as in Cheng and Phillips

(2009), we may use the Bayesian information criterion to consistently estimate the cointegrating

rank d0 and use reduced rank regression to consistently estimate (under normalizing restrictions)

the matrices α and β in (2.3), and thus obtain a consistent estimator of H that applies in a general

semiparametric setting. Denote the corresponding estimates d̂ and Ĥ = (Ĥ1, Ĥ2). Feasible FM-kernel

estimation further requires estimation of the various long run covariance matrices that appear in (4.1)

and (4.2). We illustrate by estimating Ω20. The remaining long run covariance matrix estimates may

be constructed in a similar manner. Let

êt0 = Yt −X ′tβ̂(t/T ) = Yt −X ′tβ̂t
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be the estimated equation errors from kernel regression of (1.1). Let êt2 = X̂t2 − X̂t−1,2 = ∆(Ĥ′2Xt)

with X̂t2 = Ĥ′2Xt, and construct estimates of the component autocovariances Ω20(j) =E[e02ej0] using

Ω̂20(j) =
1

b(1− τ)T c − bτT c

b(1−τ)T c∑
t=bτT c+1

êt−j,2êt0, j = −lT , · · · , 0, · · · , lT , (4.4)

in which 0 < τ < 1/2 is usually close to zero and lT � T is the lag truncation number which tends to

infinity as T → ∞. Unlike the existing literature in parametric linear cointegration models where

the cross product êt−j,2êt0 is summed over the full domain of t (i.e., 1 ≤ t, t − j ≤ T ) to estimate

the covariance, our method uses only information over the subinterval from bτT c+ 1 to b(1− τ)T c
to avoid possible boundary effects when applying kernel estimation. Although such construction

of covariance estimates may lose some useful information by taking τ close to zero, consistency of

the covariance estimate is unaffected. The corresponding long run covariance estimate based on the

components (4.4) is

Ω̂20 =

lT∑
j=−lT

k (j/lT ) Ω̂20(j), (4.5)

where k(·) is a lag kernel function. Using the known uniform consistency of the kernel estimates such

as Theorem 4.1 in Li, Phillips and Gao (2016) and following similar arguments to those in the proof

of Theorem 4.2 in Phillips, Li and Gao (2017), consistency of Ω̂20 can be established under mild

conditions on the lag kernel function k(·) and the truncation number lT (c.f., Phillips, 1995). The

proof is standard and details are omitted to save the space.

With consistent estimates of these parameters in hand, we can construct a feasible version of

the FM-kernel estimator of the coefficient functions. Define a feasible version of the endogeneity

correction as

B#
T1(z0) =

T∑
t=1

K
(t− Tz0

Th

)
Xt �

[
0′
d̂
,
(
Ω̂02Ω̂

+
22∆X̂t21d−d̂

)′]′
, (4.6)

and a feasible version of the serial correlation correction as

B#
T2(z0) = ĤQ

#

T (z0)DT

{
0′
d̂+1

,
[
q⊥#T2 (z0)

′
(
Γ̂20 − Γ̂22Ω̂

+
22Ω̂20

)]′}′
, (4.7)

where q⊥#T2 (z0) and Q
#

T (z0) are defined similarly to q⊥T2(z0) and QT (z0) but with Xt2 replaced by X̂t2.

23



Using the corrections (4.6) and (4.7), we propose the feasible FM-kernel estimator

β̂#(z0) = Λ+
T (z0)∆

#
T (z0), ∆#

T (z0) = ∆T (z0)−B#
T1(z0)−B#

T2(z0), (4.8)

and proceed to analyze its asymptotic behavior.

Because of the removal of the endogeneity bias via the correction in ∆#
T (z0), the stochastic integral

in the limit distribution ∆2(z0) is modified accordingly. We define ∆#
2 (z0) =

[
δ#(z0),∆

#
⊥(z0)

′]′ with

δ#(z0) =
[
2B2(z0)

′B2(z0)
]1/2 ∫ 1

−1
K(z)dB#

0

(z + 1

2

)
,

∆#
⊥(z0) = 2q⊥2 (z0)

′
∫ 1

−1
K(z)B∗2

(z + 1

2

)
dB#

0

(z + 1

2

)
,

where the univariate Brownian motion B#
0 (·) has (conditional) variance ω0|2 = ω − Ω02Ω

+
22Ω20

following the endogeneity correction and is independent of the d1-dimensional Brownian motions B2(·)
and B∗2(·). Hence, the component ∆#

2 (z0) has a mixed normal distribution which facilitates inference

on the time-varying coefficient functions in the same way as the usual FM corrections do in linear

cointegrating regression. Noting that the bias correction occurs in the direction H2, the component

transform H′1β̂#(z0) has the same asymptotic distribution as H′1β̂(z0). Hence, we only examine the

asymptotic distribution of β̂#(z0) in the direction H2. The following result gives the limit theory in

this direction. The asymptotic distribution is mixed normal, giving a nonparametric generalization

to the kernel regression case of the original finding in Phillips and Hansen (1990). The asymptotic

mixed normality in this direction, coupled with the asymptotic normality in the stationary direction

open the way to inference using the FM-kernel estimator.

Theorem 4. Suppose the conditions of Theorem 1 hold, T 2h1+2γ = o(1), and(
d̂0, Ĥ, Ω̂02, Ω̂20, Ω̂22, Γ̂20, Γ̂22

)
→p (d0,H,Ω02,Ω20,Ω22,Γ20,Γ22) . (4.9)

Then, as T →∞
DT2QT2(z0)

′H′2

[
β̂#(z0)− β(z0)

]
⇒ Λ−12 (z0)∆

#
2 (z0) (4.10)

for fixed z0 ∈ (0, 1).
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5 Nonparametric statistical inference

In practical work interest often focuses on whether time-varying coefficients are well approximated

by constant coefficients. To provide apparatus for formal consideration of such hypotheses, in this

section we develop an inferential framework of tests for the coefficient functions in model (1.1) and

derive asymptotics that enable formal testing.

5.1 Testing the global null hypothesis

As in Section 4, we concentrate on the case of cointegrated regressors. The methodology and theory

are similar for the other cases studied in Section 3, and so the details are omitted here. Specifically,

we consider testing the following null hypothesis

H0 : R
[
β(z)− β0

]
= 0r, 0 ≤ z ≤ 1,

where R is an r × d restriction matrix of rank r < d and β0 is a d-dimensional vector of unknown

parameters. As R does not rely on z, we refer to H0 as a global null hypothesis.

Before developing a statistic for testing the hypothesis H0, we derive a useful result from the limit

distributions given in Theorem 1. From (2.12) and (2.13) and as in Remark 2(e), we note that

√
Th
[
β̂(z0)− β(z0)

]
=
√
ThHH′

[
β̂(z0)− β(z0)

]
=
√
ThH1H

′
1

[
β̂(z0)− β(z0)

]
+
√
ThH2H

′
2

[
β̂(z0)− β(z0)

]
⇒ H1ξ +OP

(
1/
√
Th
)

= H1ξ + oP (1), (5.1)

under the assumptions of Theorem 1, where ξ is the Gaussian vector defined in Theorem 1(i).

Further, under Assumption 1∗, the vector ξ is a d0-dimensional centred normal vector with covariance

matrix ν0σ
2
eΛ

+
11, where σ2

e is defined in Assumption 1∗. The covariance matrix of H1ξ is therefore

ν0σ
2
eH1Λ

+
11H

′
1, which has degenerate rank.

Construction of a test statistic based on (5.1) requires consistent estimation of the unknown

elements σ2
e and H1Λ

+
11H

′
1 in the covariance structure. From Phillips (1988) and using Proposition 1

in Section 2, we may use the matrix
[

1
Th

∑T
t=1XtX

′
tK
(
t−Tz0
Th

)]+
as an estimate of H1Λ

+
11H

′
1 in view
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of the fact that [
1

Th

T∑
t=1

XtX
′
tK
(t− Tz0

Th

)]+
= H1Λ

+
11H

′
1 + oP (1), h ≤ z0 ≤ 1− h. (5.2)

The above convergence holds uniformly over h ≤ z0 ≤ 1 − h. Let the residual êt0 be defined as in

Section 4, and construct the equation error variance estimate

σ̂2
e =

1

b(1− τ)T c − bτT c

b(1−τ)T c∑
t=bτT c+1

ê2t0,

where τ is defined as in Section 4, which gives a consistent estimate of σ2
e in view of Theorem 4.1 in

Li, Phillips and Gao (2016), so that

σ̂2
e = σ2

e + oP (1). (5.3)

Next let {zk}mk=1 be an equidistant grid of points that satisfy 0 < h = z1 < z2 < · · · < zm−1 <

zm = 1− h and are chosen from the interval (0, 1), where the number m is a fixed positive integer.

The extension to divergent m will be discussed later in Remark 7. Using (5.1)–(5.3), we construct

point-wise Wald test statistics of H0 as

WT (zk) = (Th)
{

R
[
β̂(zk)− β̂

]}′σ̂2
eν0R

[
1

Th

T∑
t=1

XtX
′
tK
(t− Tzk

Th

)]+
R′


+ {

R
[
β̂(zk)− β̂

]}
,

(5.4)

where β̂ is a conventional parametric estimate of β0 under the global null hypothesis H0. Assume

that

rank
(
RH1Λ

+
11H

′
1R
′) = r (5.5)

and that under the null

β̂ − β0 = oP (1/
√
Th). (5.6)

It is natural to propose a generalized Wald test statistic by summing the component statistics WT (zk)

over k = 1, · · · ,m giving

WT =
m∑
k=1

WT (zk). (5.7)

The following theorem gives the limit distribution of the generalized Wald test statistic.

Theorem 5. Suppose the conditions of Theorem 1, Assumption 1∗, (5.5), (5.6), and Th1+2γ = o(1)
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hold. Letting the positive integer m be fixed, we have WT ⇒ χ2
mr under the null hypothesis H0, where

χ2
mr is a central chi-square distribution with (mr) degrees of freedom. In addition, if (4.9) holds,

W#
T ⇒ χ2

mr under the null hypothesis H0, where W#
T is constructed in the same manner as WT but

using FM-kernel estimates of the time-varying coefficients.

Remark 7. (a) The methodology and theory developed above are applicable if we generalize the

global null hypothesis H0 to

H?
0 : R

[
β(z)− β(z,γ)

]
= 0r, 0 ≤ z ≤ 1,

where β(·,γ) =
[
β1(·,γ1), · · · , βd(·,γd)

]τ
, βi(·,γi), i = 1, · · · , d, are pre-specified nonlinear functional

coefficients with γi being an unknown parameter vector, γ = (γτ1, · · · ,γτd)
τ . We let γ̂ be the

conventional nonlinear least squares estimator of the parameter vector γ and correspondingly construct

the generalized Wald test statistic as ŴT =
∑m

k=1 ŴT (zk), where

ŴT (zk) = (Th)
{

R
[
β̂(zk)− β(zk, γ̂)

]}′σ̂2
eν0R

[
1

Th

T∑
t=1

XtX
′
tK
(t− Tzk

Th

)]+
R′


+

{
R
[
β̂(zk)− β(zk, γ̂)

]}
. (5.8)

By replacing (5.6) by γ̂ − γ = oP (1/
√
Th) and imposing appropriate smoothness condition on the

pre-specified functional coefficients β(·, ·), we may show the limit distribution of ŴT is similar to

those given in Theorem 5.

(b) We next briefly discuss the case that m diverges to infinity as T →∞. Using (5.2) and (5.3),

we may prove that

WT (zk) = (Th)
[
β̂(zk)− β0

]′
R′
[
σ2
eν0RH1Λ

+
11H

′
1R
′]+ R

[
β̂(zk)− β0

]
(1 + oP (1)). (5.9)

Following the proof of Theorem 1 in Appendix 7 and noting that the kernel function K(·) has

the compact support [0, 1], β̂(zk) − β0 is asymptotically determined by (et0, et1), T (zk − h) ≤ t ≤
T (zk + h). By (5.9) and Assumption 1 in Section 2.1, we may show that {WT (zk)}mk=1 is a sequence

of asymptotically independent random elements when zk+1 − zk ≥ 2h. So the generalized Wald test

statistic WT can be viewed as a sum of asymptotically independent random variables. By appropriately

centralizing WT and using standard central limit arguments, it is clear that the generalized Wald

statistic is asymptotically normal when m→∞.
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5.2 Testing the local null hypothesis

We next turn to the more challenging case where the rank condition (5.5) fails. Our approach follows

Phillips (1995) in the application of FM regression to models with cointegrated variates where Wald

test statistics suffer from rank condition failure asymptotically. As will become apparent, kernel FM

regression tests involve further complications under rank condition failure in (5.5).

To proceed, we consider the localized version of the null hypothesis:

H�0 : R(z)
[
β(z)− β0

]
= 0r, 0 ≤ z ≤ 1, (5.10)

where R(z) is an r × d restriction matrix. As discussed in Phillips (1995) rank condition failure

occurs when the restriction matrix isolates some of the nonstationary variable coefficients, thereby

necessarily involving estimates of these coefficients in the limit theory of Wald-type test statistics.

Motivated by Phillips (1995), under such rank condition failure, the restriction matrix can be written

in the following form

R(z)′ =
[
R1(z)

... R2(z)
]

= (H1,H2)

 S1 Sh1
... Od0×r2

Od1×r0 QT2(z)Sh2
... QT2(z)S2


=

[
H1S1,H1Sh1 + H2QT2(z)Sh2

... H2QT2(z)S2

]
, (5.11)

which in the present case involves the localized structure where R1(z) and R2(z) are d× r1 and d× r2
matrices with r1 + r2 = r, S1, Sh1, Sh2 and S2 are the matrices with sizes d0 × r0, d0 × (r1 − r0),
d1 × (r1 − r0) and d1 × r2, respectively, Sh1 has full column rank. From (5.11), we have that (5.5)

reduces as follows

R(z)H1Λ
+
11H

′
1R(z)′ =

 R1(z)H1Λ
+
11H

′
1R1(z)′ Or1×r2

Or2×r1 Or2×r2

 (5.12)

whose rank is smaller than r.

The rank deficiency in (5.12) implies that the arguments used above to prove Theorem 5 no

longer apply to the generalized Wald statistic for testing the H�0 and different methods are required.

Instead of using Theorem 1 in Section 2, we make use of Theorem 4 in Section 4. In the remainder

of this section, we apply the test statistic constructed from the FM-kernel estimates for which the

mixed normal distribution derived in Theorem 4 plays an important role in achieving the limit theory.

Further, to simplify derivations, we use the uniform kernel K(u) = I(−1 ≤ u ≤ 1) where I(·) denotes
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the indicator function. We remark that µ0 = 2 in this case, which differs from the unit normalization

condition used in Assumption 3(ii).

Again, we start by defining the following point-wise Wald statistics based on FM-kernel estimation

W �
T (zk) = (Th)

{
R(zk)

[
β̂#(zk)− β̂

]}′σ̂2
eν0R(zk)

[
1

Th

T∑
t=1

XtX
′
tK
(t− Tzk

Th

)]+
R(zk)

′


+

{
R(zk)

[
β̂#(zk)− β̂

]}
, (5.13)

where ν0 = 2 since K(u) = I(−1 ≤ u ≤ 1). As in (5.7), we construct the generalized Wald test

statistic by summing W �
T (zk) over k = 1, · · · ,m, i.e.,

W �
T =

m∑
k=1

W �
T (zk). (5.14)

Define

D
�
T = diag

{
Id0 ,
√
T , (
√
Th)Id1−1

}
and assume √

ThD
�
TH′(β̂ − β0) = oP (1). (5.15)

The following limit theorem provides the asymptotic distribution of W �
T defined in (5.14) under the

local null hypothesis, which differs from the earlier limit distribution given in (5.10) and can be

viewed as a nonparametric kernel-FM test generalization of Theorem 4.5 in Phillips (1995).

Theorem 6. Suppose that the conditions of Theorem 1, Assumption 1∗, (5.15) and T 2h1+2γ = o(1)

are all satisfied. Letting the positive integer m be fixed, we have

W �
T ⇒ χ2

mr1
+
ω0|2

σ2
e

χ2
mr2,∗, (5.16)

under the null hypothesis H�0 with (5.11), where χ2
mr1

and χ2
mr2,∗ are two independent chi-square

distributions with degrees of freedom mr1 and mr2, respectively, and ω0|2 = ω −Ω02Ω
+
22Ω20.

Remark 8. Note that ω0|2 = ω −Ω02Ω
+
22Ω20 ≤ ω so that the ratio in (5.16) can be written in the

form
ω0|2

σ2
e

=
ω −Ω02Ω

+
22Ω20

ω

ω

σ2
e

≤ ω

σ2
e

.
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It follows that

P (W �
T > w)→ P

(
χ2
mr1

+
ω0|2

σ2
e

χ2
mr2,∗ > w

)
≤ P

(
χ2
mr1

+
ω

σ2
e

χ2
mr2,∗ > w

)
,

so that a test of H�0 based on critical values of the distribution of χ2
mr1

+ ω
σ2
e
χ2
mr2,∗ would be an

asymptotically conservative test if r1 and r2 were known and consistent estimates of ω = lrvar (et0)

and σ2
e were employed in calculating critical values. Further, under Assumption 1∗, we have ω0|2 =

σ2
e −Ω02Ω

+
22Ω20 ≤ σ2

e and then

χ2
mr1

+
ω

σ2
e

χ2
mr2,∗ ≤ χ2

mr1
+ χ2

mr2,∗ =d χ
2
mr,

so that a conservative test can be computed directly by using critical values from a χ2
mr distribution.

6 Empirics: time-varying consumption behavior

We next apply the time-varying coefficient model and kernel estimation methodology to aggregate US

data on consumption, income, and nominal interest rate obtained from Federal Reserve Economic

Data (FRED). We consider a quarterly data set over the first quarter of 1960 to the last quarter of

2009 with 200 observations: ct is log consumption expenditure, it is log disposable income, and nrt is

the nominal interest rate expressed as a percentage. All the three series are plotted in Figure 1, which

shows that ct and it have co-moving trend components. The unit root tests confirm nonstationarity

for all variables.1

Set Yt = ct and Xt = (it, it−1, nrt)
′, where it and it−1 are cointegrated regressors, and nrt follows

a unit root process. Noting that it − it−1 is stationary, as in Section 2.1 we may apply the global

transformation matrix H = (H1,H2) with

H1 = (
√

2/2,−
√

2/2, 0)′ and H2 =
(√

2/2
√
2/2 0

0 0 1

)′
,

on the covariate space to separate out stationary and nonstationary components as Xt1 = H′1Xt and

Xt2 = H′2Xt, respectively. We first fit the following time-varying coefficient model:

Yt = β′tX t + et, βt = β(t/T ), t = 1, · · · , T, (6.1)

1The PP tests proposed by Phillips and Perron (1988) with fitted mean and linear trend were conducted for ct and
it, giving p-values of 0.7248 and 0.7603. The PP test with fitted mean for nrt gave a p-value of 0.2661.
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Figure 1: Aggregate US data on consumption, income and nominal interest rate over 1960–2009.

where X t = H′Xt = (Xt1, X
′
t2)
′ and T = 200. For given 0 < τ < 1, the coefficient function

β(τ) = [β1(τ), β2(τ), β3(τ)]′ is estimated by local level regression as

β̂(τ) =
[
β̂1(τ), β̂2(τ), β̂3(τ)

]′
=

[
T∑
t=1

X tX
′
tK

(
t− Tτ
Th

)]+ [ T∑
t=1

X tYtK

(
t− Tτ
Th

)]
, (6.2)

where K(u) = 3
4
(1− u2)I(−1 ≤ u ≤ 1) and the bandwidth h is chosen by cross-validation. The three

nonparametrically estimated curves β̂i(·) with their 95% confidence intervals are exhibited in Figures

2–4, where the confidence intervals are computed using the bootstrap approach.

For comparision, we also consider a traditional linear consumption function of the following form

Yt = γ ′X t + vt, γ = (γ1, γ2, γ3)
′, (6.3)

whose constant coefficients are estimated as γ̂ = (−0.4099, 0.7019,−0.0065)′. The constant coefficient

specification (6.3) fails to capture any time-varying components in the coefficients, whereas plots of

the fitted functions β̂1(·), β̂2(·) and β̂3(·) in Figures 2–4 strongly support the presence of nonlinear

functional forms for these coefficients. Based on the observed patterns of β̂j(·), a high-order polynomial

function might be a good parametric candidate for approximating the estimated time-varying coefficient

functions. Accordingly, we fitted 4th order polynomial functions for each of the coefficient functions.
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Figure 2: Nonparametric function estimate β̂1 with confidence intervals (β̂1a, β̂1b) together with the
4th order parametric polynomial ĝ1 estimate of β1.
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Figure 3: Nonparametric function estimate β̂2 with confidence intervals (β̂2a, β̂2b) together with the
4th order parametric polynomial ĝ2 estimate of β2.

The plots of these fitted polynomial functions2 are shown in Figures 2–4. Standard t-tests were used

to select the chosen specifications of the polynomial functions and, although not detailed here, the

coefficients in the selected specifications were significant with p-values close to zero. Figures 2–4 show

that the nonparametric fits are well captured by the 4th order parametric polynomial approximations

2The fitted functions are ĝ1(τ) = 0.2968 + 0.5368τ − 9.8343τ2 + 19.8220τ3 − 10.8344τ4, ĝ2(τ) = 0.6983− 0.0120τ +
0.0715τ2 − 0.0858τ3 + 0.0303τ4, ĝ3(τ) = −0.0028 + 0.0150τ − 0.0763τ2 + 0.0762τ3 − 0.0159τ4.
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Figure 4: Nonparametric function estimate β̂3 with confidence intervals (β̂3a, β̂3b) together with the
4th order parametric polynomial ĝ3 estimate of β3.

with no need for higher order specifications.

Proceeding further we analyzed residuals from the time-varying coefficient model (6.1) and the

linear model (6.3), which are plotted in Figure S.1 available in Appendix C of the Online Supplementary

Document. The residuals v̂t from the linear consumption function show a clear upward drift when

compared with the residuals êt of the time-varying coefficient model. Standard residual based unit

root tests3, shown in Table 1, indicate stronger evidence for stationarity in êt than v̂t. For example,

when the PP test is applied, the null hypothesis is rejected at the 1% level for êt but the null fails to

be rejected at the 5% level for v̂t. In addition, the KPSS test suggests that v̂t may have a unit root

at the 1% level. Based on these results, we conclude that êt is stationary, but v̂t is nonstationary,

indicating that a time-varying coefficient consumption function is more appropriate in capturing

cointegrating links between the variables than a linear model for consumption behavior.

In order to capture the drift presented in v̂t, we fitted a fixed design nonparametric specification

v̂t = m(t/T ) + ut, t = 1, · · · , T , to the residuals using local level kernel estimation

m̂(τ) =

(
T∑
t=1

K
(t− Tτ

Th

)
v̂t

)
/

(
T∑
t=1

K
(t− Tτ

Th

))
, 0 < τ < 1.

3Formal residual based unit root tests (c.f. Phillips and Ouliaris (1990)) are unavailable for specifically testing
residuals from time varying coefficient cointegrating regressions and are presently under development by the authors in
other work. Standard unit root tests are used here instead.
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Table 1: Unit root tests for the residuals

ADF DF-GLS PP KPSS

êt -3.85∗∗∗ -2.82∗∗∗ -4.03∗∗∗ 0.33

v̂t -2.99∗∗ -2.74∗∗∗ -2.85∗ 1.36∗∗∗

∗, ∗∗, and ∗∗∗ imply rejection of the null hypothesis at 10%, 5%, and 1% level.

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Time

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

v̂t: Residuals from linear model
m̂(τ): Estimated trend function

Figure 5: The estimated nonlinear trend of the residuals v̂t from the linear model

to estimate the trend function m(·). The estimated trend is shown in Figure 5, which is strongly

indicative of a nonlinear trend in v̂t. The detrended residuals ût := v̂t − m̂(t/T ) from this nonpara-

metric regression are plotted in Figure S.2 (available in Appendix C of the Online Supplementary

Document) against the residuals êt from the time varying coefficient consumption function. The close

correspondence of these residuals provides further confirmation of the presence of time variation in

the consumption function.

7 Conclusions

Nonparametric methods offer empirical researchers considerable flexibility in model specifications,

allowing for time dependent formulations that are useful when models with constant coefficients prove

inadequate. In time series regressions, this flexibility is particularly useful when series move together

over time but fail cointegration tests because of evolving coefficients.

The kernel estimation approach studied in the present paper allows empirical research with time-
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varying coefficient cointegrating models when the regressors are multivariate and embody a mixture

of stochastic and deterministic trends combined with potential co-movement among themselves.

This structure is sufficiently rich to accommodate many empirical applications with co-moving

nonstationary time series. Standard local level kernel regression technique forms the basis of the

approach and the FM-kernel methodology extends to nonparametric regression the FM-OLS method

of estimating linear cointegrating regressions with endogenous regressors and serially dependent error

processes.

The methods are straightforward to implement and have the advantage that conventional limit

theory can be used in a way that facilitates inference, even though the model complexities imply signal

matrix degeneracies that lead to multiple convergence rates in different directions of the parameter

space. In particular, the usual kernel convergence rate (
√
Th) applies in the stationary direction, a

type 1 super-consistency rate (T
√
h) and a type 2 super-consistency rate (Th) apply in nonstationary

directions, and a type 3 rate (T
√
Th) applies in the direction of the deterministic linear trends. The

local and global rotation techniques used in the paper to address these challenges are a technical

device only. While they produce new asymptotic theory for kernel estimation techniques that differs

considerably from standard kernel limit theory, the rotation methods are not needed in empirical

research with these kernel estimators or with the test statistics that are based on them.

In addition to the estimation methodology and new limit theory for time-varying parameter

cointegrating regression, a generalized Wald-type statistic is introduced to provide a statistical test of

whether the time-varying coefficients can be approximated by constant coefficients. That methodology

also allows for testing the adequacy of specific functional forms such as polynomial time-varying

parameter specifications. These specification tests enable researchers to evaluate whether greater

flexibility is needed in the formulation of cointegration regression models to allow for the coefficients

in these models to evolve over time. Empirical application of these methods to aggregate consumption

behavior in the US is strongly indicative of the need for such flexibility.
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Appendix A: Proofs of the main results

This appendix provides proofs of the main results in the paper.

Proof of Proposition 1. Define

ΛT11(z0) =
1

Th

T∑
t=1

Xt1X
′
t1Kth(z0),

ΛT12(z0) = ΛT12(z0)
′ =

1

T 3/2h

T∑
t=1

Xt1X
′
t2qT2(z0)Kth(z0),

ΛT13(z0) = ΛT13(z0)
′ =

1

T 3/2h3/2

T∑
t=1

Xt1X
′
t2q
⊥
T2(z0)Kth(z0),

ΛT22(z0) =
1

T 2h

T∑
t=1

qT2(z0)
′Xt2X

′
t2qT2(z0)Kth(z0),

ΛT23(z0) = ΛT32(z0)
′ =

1

T 2h3/2

T∑
t=1

qT2(z0)
′Xt2X

′
t2q
⊥
T2(z0)Kth(z0),

ΛT33(z0) =
1

T 2h2

T∑
t=1

q⊥T2(z0)
′Xt2X

′
t2q
⊥
T2(z0)Kth(z0),

where Kth(z0) = K
(
t−Tz0
Th

)
, qT2(z0) is defined as in Section 2.2 and q⊥T2(z0) is the d1 × (d1 − 1) orthogonal

complement of qT2(z0). Observe that

D
−1
T QT (z0)

′H′ΛT (z0)HQT (z0)D
−1
T =


ΛT11(z0) ΛT12(z0) ΛT13(z0)

ΛT21(z0) ΛT22(z0) ΛT23(z0)

ΛT31(z0) ΛT32(z0) ΛT33(z0)

 . (A.1)

We next prove that, as T →∞,

ΛT11(z0)
P−→ Λ11, ΛT1k(z0) = oP (1), ΛTk1(z0) = oP (1) (A.2)

for k = 2, 3, and

ΛT2(z0)⇒ Λ2(z0), (A.3)

where Λ11 and Λ2(z0) are defined in Section 2.2, and

ΛT2(z0) =

 ΛT22(z0) ΛT23(z0)

ΛT32(z0) ΛT33(z0)

 .
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Note that Xt1 = H′1Xt = et1 is a stationary linear process by Assumption 1(i), and

ΛT11(z0) =
1

Th

T∑
t=1

Xt1X
′
t1Kth(z0) =

1

Th

T∑
t=1

et1e
′
t1Kth(z0)

= E
[
e11e

′
11

]
·

[
1

Th

T∑
t=1

Kth(z0)

]
+

1

Th

T∑
t=1

{
et1e

′
t1 − E[et1e

′
t1]
}
Kth(z0)

=: ΛT11(z0, 1) + ΛT11(z0, 2). (A.4)

As shown in Appendix B, by applying a truncation technique for the linear process et1, we may prove that

ΛT11(z0, 2) = oP (1), (A.5)

which implies that the leading term of ΛT11(z0) is ΛT11(z0, 1). The detailed proof of (A.5) is given in Appendix

B of the supplementary document. On the other hand, by Assumption 3 and some basic calculation, we have

ΛT11(z0, 1)
P−→ µ0E[e11e

′
11] = E[e11e

′
11] =: Λ11. (A.6)

Thus, (A.5) and (A.6) lead to the first assertion in (A.2).

We next consider ΛT12(z0). Note that

ΛT12(z0) =
1

T 3/2h

T∑
t=1

Xt1X
′
t2qT2Kth(z0)

=
[
qT2(z0)

′qT2(z0)
]
·

[
1

Th

T∑
t=1

Xt1Kth(z0)

]
+

1

T 3/2h

T∑
t=1

Xt1

[
Xt2 −Xδ(z0)2

]′
qT2(z0)Kth(z0)

=: ΛT12(z0, 1) + ΛT12(z0, 2). (A.7)

By the weak convergence results (2.4) and (2.5), and the standardization |qT2(z0)′qT2(z0)| = ‖qT2(z0)‖ = 1,

we have

1

Th

T∑
t=1

Xt1

[
Xt2 −Xδ(z0)2

]′
Kth(z0)⇒ 2

∫ 1

−1
K (z)

[
dB1

(z + 1

2

)] [
B2

(z + 1

2

)]′
+ Γ12. (A.8)

The proof of (A.8) is provided in Appendix B. The above results, together with the fact that

1

Th

T∑
t=1

Xt1Kth(z0) = OP (1/
√
Th) = oP (1),
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imply that ∥∥ΛT12(z0)
∥∥ =

∥∥ΛT12(z0, 1)
∥∥+

∥∥ΛT12(z0, 2)
∥∥ = OP (1/

√
Th) +OP (1/

√
T ) = oP (1), (A.9)

and thus the second assertion in (A.2) holds with k = 2. The third assertion in (A.2) with k = 2 is proved in

exactly the same way.

For ΛT13(z0), we observe that

ΛT13(z0) =
1

T 3/2h3/2

T∑
t=1

Xt1X
′
t2q
⊥
T2(z0)Kth(z0)

=
1

T 3/2h3/2

T∑
t=1

Xt1

[
Xt2 −Xδ(z0)2

]′
q⊥T2(z0)Kth(z0) (A.10)

as X ′δ(z0)2q
⊥
T (z0) = 0 by virtue of the construction of q⊥T2(z0) in Section 2.2. By (A.8), (A.10) and the fact

that ‖q⊥T2(z0)‖ = OP (1), we can easily prove that the second assertion in (A.2) holds with k = 3. Similarly,

we can also prove the third assertion in (A.2) with k = 3. By Proposition A.1 in Phillips, Li and Gao (2017),

we can prove (A.3), where Λ2(z0) is positive definite almost surely by virtue of Lemma A in Appendix B,

thereby completing the proof of Proposition 1. �

Proof of Theorem 1. Letting

ST (z0) = D
−1
T QT (z0)

′

[
T∑
t=1

XtX
′
tKth(z0)

]
QT (z0)D

−1
T ,

we observe that

DTQT (z0)
′H′β̂(z0) = S

+
T (z0)

[
D
−1
T QT (z0)

′
T∑
t=1

XtYtKth(z0)

]

as DTD
−1
T = Id, QT (z0)

′QT (z0) = Id and H′Xt = Xt. Hence, we have the following decomposition:

DTQT (z0)
′H′
[
β̂(z0)− β(z0)

]
= S

+
T (z0)VT (z0) + S

+
T (z0)BT (z0), (A.11)

where

VT (z0) = D
−1
T QT (z0)

′
T∑
t=1

Xtet0Kth(z0),

BT (z0) = D
−1
T QT (z0)

′
T∑
t=1

XtX
′
t

[
β(

t

T
)− β(z0)

]
Kth(z0).
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We proceed to establish the limit distributions given in parts (i) and (ii).

(i) By Assumption 2, note that β( tT ) = β(z0) +O(hγ) when T (z0 − h) ≤ t ≤ T (z0 + h). Then, following

the proof of Proposition 1, we can show that

S
+
T (z0)BT (z0) = OP (DTh

γ), (A.12)

which indicates that the first d0 elements of S
+
T (z0)BT (z0) have asymptotic order of OP

(√
Thhγ

)
. This

order is asymptotically negligible because of the condition Th1+2γ = o(1) in Theorem 1(i). On the other

hand, note that

VT (z0) =
[
VT1(z0)

′,VT2(z0)
′]′ (A.13)

with

VT1(z0) =
1√
Th

T∑
t=1

Xt1et0Kth(z0),

VT2(z0) = D
−1
T2QT2(z0)

′
T∑
t=1

Xt2et0Kth(z0).

Using the central limit theorem for the kernel-weighted sum of a locally stationary process (c.f., Zhou and

Wu, 2010), we may show that

VT1(z0) =
1√
Th

T∑
t=1

Xt1et0Kth(z0)⇒ N

(
0, ν0

∞∑
s=−∞

E
[
(e10es0)(e11e

′
s1)
])

. (A.14)

By (A.12) and (A.14), we readily have (2.12), completing the proof of part (i) of Theorem 1.

(ii) From (A.12), the last d1 elements of S
+
T (z0)BT (z0) have order OP

(
T
√
hhγ

)
, which is asymptotically

negligible because of the condition T 2h1+2γ = o(1) in Theorem 1(ii). By (2.4), Proposition 1, and continuous

mapping we have

VT2(z0) = D
−1
T2QT2(z0)

′
T∑
t=1

Xt2et0Kth(z0)⇒∆2(z0). (A.15)

The nonsingularity of ∆2(z0) follows from Proposition 1 and Lemma A in Appendix B, and this completes

the proof of Theorem 1(ii). �

Proof of Proposition 2. Observe that

D̃−1T Q̃T (z0)
′ΛT (z0)Q̃T (z0)D̃

−1
T =

 Λ̃T11(z0) Λ̃T12(z0)

Λ̃T21(z0) Λ̃T22(z0)

 , (A.16)
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where

Λ̃T11(z0) =
1

T 3h

T∑
t=1

q̃T (z0)
′XtX

′
tq̃T (z0)Kth(z0),

Λ̃T12(z0) = Λ̃T21(z0)
′ =

1

T 5/2h3/2

T∑
t=1

q̃T (z0)
′XtX

′
tq̃
⊥
T (z0)Kth(z0),

Λ̃T22(z0) =
1

T 2h2

T∑
t=1

q̃⊥T (z0)
′XtX

′
tq̃
⊥
T (z0)Kth(z0).

Noting that the asymptotic leading term of q̃T (z0)′Xt is (µ′µ)1/2bTz0c = ‖µ‖bTz0c for any T (z0 − h) ≤
t ≤ T (z0 + h), we may show that

Λ̃T11(z0) =
µ′µ · z20
Th

T∑
t=1

Kth(z0) + oP (1) = ‖µz0‖2 + oP (1) =: Λ̃11(z0) + oP (1). (A.17)

By (3.2) and the construction of q̃⊥T (z0), we have for any T (z0 − h) ≤ t ≤ T (z0 + h),

X ′tq̃
⊥
T (z0) = X ′δ(z0)q̃

⊥
T (z0) +

[
Xt −Xδ(z0)

]′
q̃⊥T (z0)

=
[
St − Sδ(z0)

]′
q̃⊥T (z0) +

[
Dt −Dδ(z0)

]′
q̃⊥T (z0)

=
[
St − Sδ(z0)

]′
q̃⊥T (z0) +

t− δ(z0)
δ(z0)

[
µ · δ(z0) + Sδ(z0) +X0

]′
q̃⊥T (z0)

− t− δ(z0)
δ(z0)

[
Sδ(z0) +X0

]′
q̃⊥T (z0)

=
[
St − Sδ(z0)

]′
q̃⊥T (z0)−

t− δ(z0)
δ(z0)

[
Sδ(z0) +X0

]′
q̃⊥T (z0)

=
[
St − Sδ(z0)

]′
q̃⊥T (z0) +OP

(
T 1/2h

)
. (A.18)

Then, using the fact that q̃T (z0)
′Xt = ‖µz0‖T (1 + oP (1)) for any T (z0 − h) ≤ t ≤ T (z0 + h), we may show

that

Λ̃T12(z0) =
‖µz0‖
T 3/2h3/2

T∑
t=1

[
St − Sδ(z0)

]′
q̃⊥T (z0)Kth(z0) +OP

(
h1/2

)
. (A.19)

Similarly, using (A.18), we can further prove that

Λ̃T22(z0) =
1

T 2h2

T∑
t=1

q̃⊥T (z0)
′ [St − Sδ(z0)] [St − Sδ(z0)]′ q̃⊥T (z0)Kth(z0). (A.20)

Then, by (A.14), (A.19), (A.20), the weak convergence result (2.4), the continuous mapping theorem and
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the fact that q̃T (z0) = µ/‖µ‖+ oP (1), we may complete the proof of Proposition 2. Positive definiteness of

the limit matrix Λ̃(z0) follows as in Lemma A in Appendix B and Proposition 1. �

Proof of Theorem 2. Define

S̃T (z0) = D̃−1T Q̃T (z0)
′

[
T∑
t=1

XtX
′
tKth(z0)

]
Q̃T (z0)D̃

−1
T ,

ṼT (z0) = D̃−1T Q̃T (z0)
′
T∑
t=1

Xtet0Kth(z0),

B̃T (z0) = D̃−1T Q̃T (z0)
′
T∑
t=1

XtX
′
t

[
β(

t

T
)− β(z0)

]
Kth(z0).

Note that

D̃T Q̃T (z0)
′
[
β̂(z0)− β(z0)

]
= S̃+

T (z0)ṼT (z0) + S̃+
T (z0)B̃T (z0). (A.21)

Similar to the proof of Theorem 1, we may show that the asymptotic bias term has the order of OP (D̃Th
γ).

Hence, we need only derive the limiting distribution theory for the first term on the right hand side of (A.21).

Note that

ṼT (z0) =
[
ṼT1(z0), ṼT2(z0)

′]′, (A.22)

where

ṼT1(z0) =
1

T
√
Th

T∑
t=1

q̃T (z0)
′Xtet0Kth(z0),

ṼT2(z0) =
1

Th

T∑
t=1

q̃⊥T (z0)
′Xtet0Kth(z0).

Following the argument in the proof of Proposition 2, we may show that

ṼT1(z0) = ‖µz0‖
1√
Th

T∑
t=1

et0Kth(z0) + oP (1) (A.23)

and

ṼT2(z0) =
1

Th

T∑
t=1

q̃⊥T (z0)
′ [St − Sδ(z0)] et0Kth(z0) + oP (1). (A.24)

Then, by (2.4), (A.23), (A.24), Proposition 2, and the continuous mapping theorem, we have

ṼT (z0)⇒ ∆̃(z0), (A.25)
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where ∆̃(z0) is defined as in Section 3.1, thereby completing the proof of Theorem 2. �

Proof of Proposition 3. The proof is a combination of the relevant arguments in the proofs of Propositions

1 and 2 above. Details are omitted to save space. �

Proof of Theorem 3. By using Proposition 3, the proof is similar to the relevant arguments in the proofs

of Theorems 1 and 2 above. Details are omitted to save space. �

Proof of Theorem 4. By (4.9), we may argue that H′2β̂#(z0) is asymptotically equivalent to H′2β̂?(z0),

i.e.,

DT2QT2(z0)
′H′2

[
β̂#(z0)− β̂?(z0)

]
= oP (1),

which indicates that we need only show

DT2QT2(z0)
′H′2

[
β̂?(z0)− β(z0)

]
⇒ Λ−12 (z0)∆

#
2 (z0). (A.26)

From the definition of B?
T2(z0), we have

D
−1
T QT (z0)

′H′B?
T2(z0) =

{
0′d0+1,

[
q⊥T2(z0)

′ (Γ20 − Γ22Ω
+
22Ω20

)]′}′
. (A.27)

On the other hand, by standard arguments, we may show that

D
−1
T QT (z0)

′H′

[
T∑
t=1

Xtet0Kth(z0)−B?
T1(z0)

]
=
[
0′d0 ,V

?
T2(z0)

′
]′

(A.28)

with

V
?
T2(z0) = D

−1
T QT2(z0)

′
T∑
t=1

Xt2e
?
t0Kth(z0), e?t0 = et0 −Ω02Ω

+
22et2.

Combining (A.27) and (A.28), using the continuous mapping theorem and the arguments in the proof of

Theorem 1, we can prove (A.26), completing the proof of Theorem 4. �

Proof of Theorem 5. By (5.2) and (5.3), we have

σ̂2eR

[
1

Th

T∑
t=1

XtX
′
tK
( t− Tzk

Th

)]+
R′ = σ2eRH1Λ

+
11H

′
1R
′ + oP (1) (A.29)

over z1, · · · , zm. In view of (5.5), the limit matrix in (A.29) is of rank r and does not rely on zk. By (5.1)

and (5.6), and noting that Th1+2γ = o(1), it follows immediately that

√
ThR

[
β̂(zk)− β̂

]
=
√
ThRH1H

′
1

[
β̂(zk)− β0

]
+ oP (1)

⇒ RH1ξ =d N
(
0r, ν0σ

2
eRH1Λ

+
11H

′
1R
′) (A.30)
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under H0, k = 1, · · · ,m. By (A.29) and (A.30), we may further show that under H0,

WT (zk)⇒ χ2
r(k), k = 1, · · · ,m, (A.31)

i.e., the point-wise Wald test statistic WT (zk) defined in (5.4) is central chi-square with r degrees of freedom

in the limit. As z1 < z2 < · · · < zm are an equidistant grid points in (0, 1) and m is a fixed positive integer,

we must have zk − zk−1 > 2h, which together with the arguments in the proof of Theorem 1, indicates that

the components {WT (zk) : k = 1, · · · ,m} are asymptotically independent. This fact, together with (A.31),

leads to the conclusion that the limit distributions χ2
r(1), · · · , χ2

r(m) are independent, and consequently

WT ⇒ χ2
mr (A.32)

under the null hypothesis H0.

Note that the FM-kernel estimator defined in (4.8) only makes the bias corrections in the direction H2,

which ensures that the asymptotic distributions given in (5.1) and (A.30) continue to hold for the FM-kernel

estimator β̂#(·). As W#
T is constructed in the same manner as WT but using FM-kernel estimates of the

time-varying coefficients, the same arguments can show that the limit distribution in (A.32) continues to

apply, which completes the proof of Theorem 5. �

Proof of Theorem 6. We first analyze the asymptotic form of the matrix

R(zk)

[
1

Th

T∑
t=1

XtX
′
tK
( t− Tzk

Th

)]+
R(zk)

′

to extract the limit distribution for W �T (zk). From (5.11), we may rewrite R(z)′ as

R(z)′ =
[
H1S∗ + (Od×r0 ,H2QT2(z)Sh2)

... H2QT2(z)S2

]
, (A.33)

where S∗ = (S1,Sh1). As in the proof of Theorem 4.5 in Phillips (1995), we may neglect the component

submatrix (Od×r0 ,H2QT2(z)Sh2) in the following analysis because its associated term is of negligible

asymptotic order. Then, by (A.33), we have

R(zk)

[
1

Th

T∑
t=1

XtX
′
tK
( t− Tzk

Th

)]+
R(zk)

′

=

 S′∗H
′
1

[
1
Th

∑T
t=1XtX

′
tK
(
t−Tzk
Th

)]+
H1S∗ S′∗H

′
1

[
1
Th

∑T
t=1XtX

′
tK
(
t−Tzk
Th

)]+
H2S2

S′2H
′
2

[
1
Th

∑T
t=1XtX

′
tK
(
t−Tzk
Th

)]+
H1S∗ S′2H

′
2

[
1
Th

∑T
t=1XtX

′
tK
(
t−Tzk
Th

)]+
H2S2

 .
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Noting that[
1

Th

T∑
t=1

XtX
′
tK
( t− Tzk

Th

)]+
= ThHQT (zk)D

−1
T

[
D
−1
T QT (zk)

′H′ΛT (zk)HQT (zk)D
−1
T

]+
D−1T QT (zk)

′H′,

and letting D
�
T = diag

{
Id0 ,
√
T , (
√
Th)Id1−1

}
, as in the proof of Proposition 1, we have

D
�
TR(zk)

[
1

Th

T∑
t=1

XtX
′
tK
( t− Tzk

Th

)]+
R(zk)

′D
�
T =

 S′∗Λ
+
11S∗ Or1×r2

Or2×r1 S′2Λ
+
T2(zk)S2

 , (A.34)

where the definition of ΛT2(·) can be found in the proof of Proposition 1. Lemma B.3 in Phillips, Li and

Gao (2017) further shows that ΛT2(z) is asymptotically non-singular for any z ∈ [h, 1− h].

On the other hand, by (5.15) and using Assumption 1∗ and Theorem 4, we have

√
ThD

�
TR(zk)

[
β̂#(zk)− β̂

]
⇒ ξ#(zk) =

[
ξ#1 (zk)

′, ξ#2 (zk)
′
]′

(A.35)

under the null hypothesis H�0, where

ξ#1 (zk) =d N
(
0r1 , σ

2
eS
′
∗Λ

+
11S∗

)
,[

S′2Λ
+
T2(zk)S2

]−1/2
ξ#2 (zk) ⇒ N

(
0r2 , ω0|2Ir2

)
, ω0|2 = ω −Ω02Ω

+
22Ω20,

and ξ#1 (zk) is independent of ξ#2 (zk) according to Remark 2(b). Hence, using (A.34) and (A.35), we may

show that

W#
T (zk)⇒ χ2

r1 +
ω0|2

σ2e
χ2
r2,∗, (A.36)

where χ2
r1 and χ2

r2,∗ are two independent chi-square distributions with degrees of freedom r1 and r2, respectively.

Furthermore, as the limit variates
{
ξ#(zk) : k = 1, · · · ,m

}
, are mutually independent when zk − zk−1 ≥ 2h,

we finally obtain the following limit distribution in (5.16). �
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