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Hybrid Stochastic Local Unit Roots

O¤er Lieberman�and Peter C. B. Phillipsy

November 28, 2017

Abstract

Two approaches have dominated formulations designed to capture small departures from unit
root autoregressions. The �rst involves deterministic departures that include local-to-unity (LUR)
and mildly (or moderately) integrated (MI) speci�cations where departures shrink to zero as the
sample size n ! 1. The second approach allows for stochastic departures from unity, leading to
stochastic unit root (STUR) speci�cations. This paper introduces a hybrid local stochastic unit root
(LSTUR) speci�cation that has both LUR and STUR components and allows for endogeneity in
the time varying coe¢ cient that introduces structural elements to the autoregression. This hybrid
model generates trajectories that, upon normalization, have non-linear di¤usion limit processes that
link closely to models that have been studied in mathematical �nance, particularly with respect to
option pricing. It is shown that some LSTUR parameterizations have a mean and variance which
are the same as a random walk process but with a kurtosis exceeding 3, a feature which is consistent
with much �nancial data. We develop limit theory and asymptotic expansions for the process and
document how inference in LUR and STUR autoregressions is a¤ected asymptotically by ignoring
one or the other component in the more general hybrid generating mechanism. In particular, we
show how con�dence belts constructed from the LUR model are a¤ected by the presence of a STUR
component in the generating mechanism. The import of these �ndings for empirical research are
explored in an application to the spreads on US investment grade corporate debt.

Key words and phrases: Autoregression; Nonlinear di¤usion; Stochastic unit root; Time-varying
coe¢ cient.

JEL Classi�cation: C22

1 Introduction

For over four decades various devices have been employed to study and to model the progressive deteri-
oration of Gaussian asymptotics in the simple �rst order autoregression (AR(1)) as the autoregressive
coe¢ cient (�) approaches unity from below. Edgeworth and saddlepoint approximations (Phillips,
1977, 1978) showed clearly with analytic formulae the extent of the error in the stationary asymptot-
ics as � ! 1 and numerical computations (Evans and Savin, 1981) revealed that the unit root (UR)
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limit distribution typically provides better approximations than stationary limit theory in the imme-
diate neighborhood of unity. The use of local-to-unit root (LUR) autoregressions provided a direct
approach to modeling processes with a root near unity. In independent work using di¤erent methods
and assumptions, Chan and Wei (1987) and Phillips (1987) explored LUR models of the form

Yt = �nYt�1 + "t; �n = e
c=n � 1 + c

n
; t = 1; :::; n; (1)

where c is constant and �n is nearly nonstationary in the sense that c=n is necessarily small as the
sample size n!1:

Under quite general conditions on "t and the initial condition Y0; the asymptotic distribution of
the least squares estimator of �n takes the form of a ratio of quadratic functionals of a linear di¤usion
process that depends on the localizing coe¢ cient c in (1) and nonparametric quantities that depend
on the one-sided and two-sided long run variances of "t. These results provided a natural path to the
analysis of power functions (Phillips, 1987) and power envelopes for UR tests (Elliott et. al., 1995;
Elliott and Stock, 1996), as well as the construction of con�dence intervals (Stock, 1991) and prediction
intervals (Campbell and Yogo, 2006; Phillips, 2014) in models where persistence in the regressors is
relevant in practical work.

The array mechanism of (1) has also proved useful in developing methods of uniform inference.
Giraitis and Phillips (2006) established uniform asymptotic theory for the OLS estimator of �n in
models like (1) but where �n is more distant from unity so that (1� �n)n!1: These models allow
values of stationary �n that include neighborhoods of unity beyond the immediate O

�
n�1

�
vicinity of

unity, such as when �n = 1 � Ln=n, where Ln ! 1 is slowly varying at in�nity. These cases were
explored in detail by Phillips and Magdalinos (2007a, 2007b) by using moderate deviations from unity
of the form

�n = 1 +
c

kn
; with c constant and

1

kn
+
kn
n
! 0: (2)

Models with such roots are considered mildly integrated (MI) as �n lies outside the LUR region as
n ! 1: Phillips and Magdalinos (2007a) and developed central limit theory for the near-stationary
case (c < 0) and, somewhat surprisingly, for the near-explosive case (c > 0), �nding a Cauchy limit
theory in the latter case that matched the known Cauchy limit that applies in the pure explosive case
under Gaussian errors (White, 1958; Anderson, 1959). In a signi�cant advance, Mikusheva (2007,
2012) demonstrated that careful approaches to con�dence interval (CI) construction with appropriate
centering were capable of producing uniform inferences about the true in a wide interval that includes
stationary, MI, LUR, and UR speci�cations.

A di¤erent approach was considered by Lieberman and Phillips (2014, 2017a, 2017b), who consid-
ered localized stochastic departures from unity via the stochastic unit root (STUR) model

Y1 = "1;

Yt = �+ exp

�
a0utp
n

�
Yt�1 + "t; t = 2; :::; n; (3)

where � can be zero or otherwise and in which departures from unity are driven by a possibly endogenous
K�1 vector of explanatory variables ut. In their formulation, Lieberman and Phillips (2017b) allowed
fut; "tg to follow a general linear process satisfying mild summability and moment conditions. This
stochastic formulation of departures from unity has proved useful in empirical applications that include
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dual stocks pricing (Lieberman, 2012), Exchange Traded Fund pricing (Lieberman and Phillips, 2014)
and call option pricing (Lieberman and Phillips, 2017a). This line of stochastic departure from a UR
follows in the tradition of earlier contributions by Leybourne, McCabe and Mills (1996), Leybourne,
McCabe and Tremayne (1996), Granger and Swanson (1997), McCabe and Smith, (1998), and Yoon
(2006).

The present paper investigates a hybrid model that combines both LUR and STUR speci�cations
in a localized stochastic unit root (LSTUR) model of the following form

Y1 = "1;

Yt = �ntYt�1 + "t; t = 2; :::; n; (4)

where

�nt = exp

�
c

n
+
a0utp
n

�
:

In this model the autoregressive coe¢ cient is a stochastic time varying parameter that �uctuates in
the vicinity of unity according to the properties of ut, the value of the localizing constant c, and the
size of the sample n: The time series wt = (u0t; "t)

0 is assumed to be generated according to a linear
process framework that allows for both contemporaneous and serial cross dependence, thereby allowing
the random coe¢ cient �nt to be endogenous.

The paper establishes limit theory for the normalized form of the output process Yt in (4) and
for nonlinear least squares (NLLS) estimation of the components, a and c, of �nt: It turns out that
the limiting output process of (4) is a nonlinear di¤usion process that satis�es a nonlinear stochastic
di¤erential equation corresponding to a structural model of option pricing that has been considered in
the continuous time mathematical �nance literature (Föllmer and Schweizer, 1993). So the model may
be considered a discrete time version of such a system. Working directly with this nonlinear continuous
time system, Tao et. al. (2017) developed an estimation procedure for the structural parameters of the
stochastic di¤erential equation using a realized variance approach and established asymptotic properties
of these estimates under in�ll asymptotics. The model considered in the present paper therefore links
to the continuous time �nance literature and to ongoing work on continuous time econometrics.

A primary goal of the current paper is to examine the properties of this hybrid model and, in doing
so, study the implied empirical features of the model in comparison with the discrete time random
walk (RW), LUR and STUR models. In particular, we show that certain LSTUR parametrizations are
consistent with a mean and variance which are equal to those of a RW process but with a kurtosis
coe¢ cient which is greater than 3 - a feature which is arguably consistent with much �nancial data.
The analysis helps to document how inference in LUR and STUR autoregressions is a¤ected by the
presence of the other component in the time varying autoregressive coe¢ cient �nt in the generating
mechanism. In particular, we show how asymptotic con�dence belts constructed using the LUR model
(Stock, 1991) are a¤ected by the omission of a random coe¢ cient STUR component. The implications
for empirical work of such misspeci�cation of random departures from unity by deterministic from
unity models are explored in an empirical application.

The plan for the rest of the paper is as follows. Notation, assumptions and limit theory for n�1=2Yt
are given in Section 2. Asymptotic theory for parameter estimation follows in Section 3. Some further
results including asymptotic expansions are given in Section 4. Robustness of the misspeci�ed STUR-
based NLLS and IV estimators of a and the covariance parameters are established in Section 5. A
simulation study to the e¤ects of an omitted STUR component on the con�dence belts given by Stock
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(1991) for c and � in the LUR model is provided in Section 6. An empirical application supporting the
analytical �ndings and simulations follows in Section 7. Section 8 concludes. All proofs are placed in
the appendix.

2 Preliminary Limit theory for the LSTUR Model

We start with the following assumption that will be used in the sequel detailing the generating mech-
anism for wt:

Assumption 1. The vector wt is a linear process satisfying

wt = G (L) �t =

1X
j=0

Gj�t�j ,
1X
j=1

j kGjk <1, G (1) has full rank K + 1, (5)

�t is iid, zero mean with E (�t�
0
t) = �� > 0 and maxE j�i0j

p <1, for some p > 4.

Under Assumption 1, wt is zero mean, strictly stationary and ergodic, with partial sums satisfying
the invariance principle

n�1=2
bn�cX
t=1

wt ) B (�) � BM
�
�`r
�
; �`r =

 
�`ru �`ru"
�`r0u"

�
�`r"
�2 ! ; (6)

where b�c is the �oor function and B = (Bu; B")
0 is a vector Brownian motion. The matrix �`r =

G (1)��G (1)
0 > 0 is the long run covariance matrix of wt, with K � K submatrix �`ru > 0, scalar�

�`r"
�2
> 0 and K � 1 vector �`ru". In component form, we write (5) as

wt =

�
ut
"t

�
=

�
G11 (L) G12 (L)
G21 (L) G22 (L)

��
�1t
�2t

�
=

�
G1 (L)

G2 (L)

��
�1t
�2t

�
(7)

=

�P1
j=0G1;j�t�jP1
j=0G2;j�t�j

�
where �1t is K � 1; �2t is scalar, G1;j is K � (K + 1) and G2;j is 1� (K + 1).

We denote the contemporaneous covariance matrix of wt by � > 0, with corresponding components
�u" = E (utu

0
t) > 0; �u" = E (ut"t) and �

2
" = E

�
"2t
�
> 0. The one-sided long run covariance matrices

are similarly denoted by � =
P1
h=1E (w0w

0
h) and � =

P1
h=0E (w0w

0
h) = � + �, with corresponding

component submatrices �u" =
P1
h=1E (u0"h), �"" =

P1
h=1E ("0"h), �u" =

P1
h=0E (u0"h), �"" =P1

h=0E ("0"h).
We use H and L to denote the zero-one duplication and elimination matrices for which

vec (A) = Hvech (A) and vech (A) = Lvec (A) ; (8)

where A is a symmetric matrix of order K+1: Under Assumption 1, centred partial sums of �t�
0
t satisfy

the invariance principle

1p
n

bnrcX
t=1

vech
�
�t�

0
t � ��

�
) � (r) ; (9)
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where � (r) is vector Brownian motion with covariance matrix

��
� = E
�
L ((�t 
 �t)� E (�t 
 �t))

��
�0t 
 �0t

�
� E

�
�0t 
 �0t

��
L0
�
:

Furthermore, for any l 6= 0 we denote by � (r) the vector Brownian motion with covariance matrix

E
��
�t�

0
t 
 �t�l�0t�l

��
= E

�
�t�

0
t

�

 E

�
�t�l�

0
t�l
�
= �� 
 ��:

Finally, the matrix of third order moments of �t is denoted

M3 = E
�
(�t 
 �t) �0t

�
: (10)

The limit process of the scaled time series Yt is given in the following Lemma.

Lemma 1 For the model (4), under Assumption 1,

Yt=bnrcp
n

) Ga;c (r) := e
rc+a0Bu(r)

�Z r

0
e�pc�a

0Bu(p)dB" (p)� a0�u"
Z r

0
e�pc�a

0Bu(p)dp

�
: (11)

Lemma 1 extends the limit theory for the special case where there is no LUR component (c = 0)
and the case where there is no STUR component (a = 0). The latter case leads to the familiar limit

Ytp
n
) �`r"

Z r

0
e(r�s)cdW (s) =: �lr" Jc (r) = G0;c (r) =: Gc (r) ; say

where W (r) is standard BM and Jc (r) is a linear di¤usion (Phillips, 1987).

3 Parameter Estimation

Let ân and ĉn denote the NLLS of a and c. Explicit formulae for these estimates are not available but
�rst order conditions are given in (65) of the Appendix. This section presents the limit theory for these
estimates in various cases. We use the following sample covariance limit theory.

Lemma 2 For the model (4), under Assumption 1

1

n

nX
t=2

"tYt�1 )
Z 1

0
Ga;c (r) dB" (r) + �

0
u"a

Z 1

0
Ga;c (r) dr + �"": (12)

The limit in (12) reduces to the standard result
R 1
0 G0;c (r) dB" (r) + �"" when a = 0.

We start with the case where a is known, which enables us to relate results to earlier literature on
the LUR model in a convenient way. This simpli�cation is relaxed below.

Theorem 3 For the model (4), under Assumption 1 and when a is known,

ĉn � c)
�Z 1

0
G2a;c (r) dr

��1�Z 1

0
Ga;c (r) dB" (r) + �

0
u"a

Z 1

0
Ga;c (r) dr + �""

�
: (13)
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When a = 0 the result in (13) reduces to the standard limit theory for the least squares estimate ĉn of
the localizing coe¢ cient c in a LUR model, viz.,

ĉn � c)
�Z 1

0
G2c (r) dr

��1�Z 1

0
Gc (r) dB" (r) + �""

�
: (14)

The presence of the stochastic UR component alters the usual limit theory (14) by (i) modifying the
limiting output process to Ga;c (r) in which the e¤ects of the random autoregressive coe¢ cient �gure,
and (ii) introducing the additional bias term, �0u"a

R 1
0 Ga;c (r) dr to the limit distribution:

Next consider the case in which a is unknown.

Theorem 4 For the model (4) under Assumption 1 with �u" 6= 0

(ân � a))
�Z 1

0
G2a;c (r) dr

��1�Z 1

0
Ga;c (r) dr

�
��1u �u"; (15)

and

(ĉn � c))
�Z 1

0
G2a;c (r) dr

��1�Z 1

0
Ga;c (r) dB" (r) + �

0
u"a

Z 1

0
Ga;c (r) dr + �""

�

��0u"��1u

R 1
0 G

2
a;c (r) dBu (r) + 2

�
�0uua

R 1
0 G

2
a;c (r) dr + �u"

R 1
0 Ga;c (r) dr

�
�R 1
0 G

2
a;c (r) dr

�2 Z 1

0
Ga;c (r) dr:

When �u" = 0,

p
n (ân � a))

��1uR 1
0 G

2
a;c (r) dr

0@ 1X
j=0

(G2;j 
G1;j)H
Z 1

0
Ga;c (r) d� (r)

+

1X
j=1

(G2;j 
G1;j)M3

0@ j�1X
i=0

G1;i

!0
a

Z 1

0
Ga;c (r) dr +

 
j�1X
i=0

G2;i

!01A
+
X
j 6=k

(G2;k 
G1;j)
Z 1

0
Ga;c (r) d� (r) + E

�
"tutu

0
tân
� Z 1

0
Ga;c (r) dr

1A
and (ĉn � c))

�R 1
0 G

2
a;c (r) dr

��1 �R 1
0 Ga;c (r) dB" (r) + �

0
u"a
R 1
0 Ga;c (r) dr + �""

�
:

The distribution of ân depends on the localizing coe¢ cient c through Ga;c (r). The estimator is
consistent when �u" = 0. When �u" 6= 0; the parameter a may be estimated consistently using in-
strumental variables (Lieberman and Phillips, 2017b) or by in�ll asymptotics via a two-stage process
involving realized variance when high frequency data is available (Tao et al., 2017)). Unlike ân, ĉn is
inconsistent irrespective of whether �u" = 0 and this accords with known results for simpler models
without STUR e¤ects (Phillips, 1987). However, the localizing coe¢ cient c may be estimated consis-
tently under certain conditions when the data support joint large span and in�ll asymptotics, as shown
in Tao et al. (2017).
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The next result concerns the OLS estimator of the autoregressive coe¢ cient �nt. Its asymptotic
distribution and that of the t-statistic for testing the hypothesis of a unit root are used later in the
paper to construct con�dence intervals for the autoregressive parameter.

Theorem 5 The ols estimator of �nt in the model (4) and under Assumption 1 satis�es

n
�
�̂nt � 1

�
) c+

a0�ua

2

+
a0
�R 1
0 G

2
a;c (r) dBu (r) + 2

�
�0uua

R 1
0 G

2
a;c (r) dr +

3
2�u"

R 1
0 Ga;c (r) dr

��
+
R 1
0 Ga;c (r) dB" (r) + �""R 1

0 G
2
a;c (r) dr

:

When wt is a martingale di¤erence, the one-sided long run covariances are zero and the limit result
reduces to

n
�
�̂nt � 1

�
) c+

a0�ua
2

+
a0
R 1
0 G

2
a;c (r) dBu (r) +

R 1
0 Ga;c (r) dB" (r)R 1

0 Ga;c (r)
2 dr

: (16)

4 Empirical Implications and Further Results

This section explores the relationships among the RW, LUR and LSTUR models in more detail in the
univariate case (K = 1) with �u" = 0 and for iid (u0t; "t). This special case highlights the distinguishing
features of these models and some key elements in their relationships that are important for empirical
work. The output limit process (11) in this case has the simpler form

Ga;c (r) = e
rc+aBu(r)

Z r

0
e�pc�a

0Bu(p)dB" (p) ; (17)

which satis�es the generating di¤erential equation

dGa;c (r) = aGa;c (r) dBu (r) + dB" (r) +

�
c+

b

2

�
Ga;c (r) dr; (18)

where b = (a�u)
2 : The covariance kernel and moments of the output process Ga;c (r) are given in the

following result.

Lemma 6 For the model (4), under the assumptions that K = 1, �u" = 0, and ut and "t are iid,

E (Ga;c (r)) = 0;

Cov (Ga;c (r) ; Ga;c (s)) = �
2
"e
(c+ b

2)(r_s�r^s)
e2(c+b)r^s � 1
2 (c+ b)

=: Ga;c (r; s) ; (19)

and

E
�
G4a;c (r)

�
=
3�4"e

4(c+2b)r

c+ b

 
1� e�2(c+3b)r
2 (c+ 3b)

� 1� e
�4(c+2b)r

4 (c+ 2b)

!
: (20)

An immediate consequence of Lemma 6 is that

V ar (Ga;c (r)) = E
�
G2a;c (r)

�
= �2"

e2(c+b)r � 1
2 (c+ b)

: (21)

7



The function (ezr � 1) =z is monotonically increasing and equals r at z = 0: It follows from (21) that
an LSTUR process with c = �b has a limit process with variance �2"r, which is the variance of a
Brownian motion. However, the process Ga;c (r) is non-Gaussian in this case and has covariance kernel

Ga;c=�b (r; s) = �2"e
� b
2
(r_s�r^s)r ^ s 6= r ^ s: Thus, the particular case where c + b = 0 provides an

interesting example of a non-Gaussian LSTUR limit process whose �rst two moments match those of
Brownian motion. For c+ b < 0 the variance of the LSTUR limit is less than that of Brownian motion
and for c + b > 0 the variance is larger and increasing with the value of c + b. In particular, given c,
the variance of the process increases with b (equivalently, with either jaj or �u). Alternatively, given b,
the variance of the process increases with c. A small b expansion of (21) yields

V ar (Ga;c (r)) = �
2
"

 
e2cr � 1
2c

+

�
1 + e2cr (2cr � 1)

�
2c2

b+O
�
b2
�!
;

showing that the lead term of the variance is the variance of the linear di¤usion LUR process, as
expected, coupled with a second linear term in b.

Even though the special case c+ b = 0 matches the �rst two moments of the LSTUR limit process
with a Brownian motion, the kurtosis of the processes di¤er. In particular, using Lemma 6, we have

lim
b+c!0

E
�
G4a;c (r)

�
=
3�4"

�
e�4cr + 4cr � 1

�
8c2

= 3�4"
�
r2 +O (c)

�
; and lim

b+c!0
E
�
G2a;c (r)

�
= �2"r; (22)

so that in this case the kurtosis of the process,
�
3�4"

�
r2 +O (c)

�	
=
�
�2"r
�2
= 3 + O (c) ; matches that

of Brownian motion when c! 0 because the variances are the same when c+ b = 0: However, kurtosis
exceeds 3 in the case c + b = 0 and c < 0 and kurtosis increases as c becomes more negative when
c+ b = 0. The case c+ b = 0 and c > 0 is excluded because b = (a�u)

2 � 0.
An instantaneous kurtosis measure for the process increments dGa;c(r) at r may be de�ned as

�b;c (r) =
E
�
E
h
(dGa;c (r))

4 jFr
i�

n
E
�
E
h
(dGa;c (r))

2 jFr
i�o2 ;

which has the following explicit form for the di¤usion process (18)

�b;c (r) = 3 +
3b2
h
E
�
G4a;c (r)

�
�
�
E
�
G2a;c (r)

��2i
b2
�
E
�
G2a;c (r)

��2
+ �4" + 2b�

2
"E
�
G2a;c (r)

� + op (1) ; (23)

as shown in Lemma 12 of the Appendix. The second term on the right side of (23) shows the excess
kurtosis in the process increments arising from the non-Gaussianity of Ga;c(r). As b ! 0 we have
�b;c (r)! 3; as expected since in that case Ga;c (r)! Gc (r) =

R r
0 e

�(r�p)cdB" (p) = �"Jc (r) ; which is
a linear Gaussian di¤usion. But when c ! 0; Ga;c (r) ! Ga (r) = e

aBu(r)
R r
0 e

�a0Bu(p)dB" (p) which is
still non-Gaussian and �b;0 (r) > 3. A large b expansion of (23) shows that �b;c (r) � 9

6e
4br; with kurtosis

increasing exponentially with b = a2�2u; measuring the impact of non-Gaussianity in the process Ga;c(r)
as either a2 or �2u rise, which originates in the nonlinear dependence of Ga;c(r) on aBu (r).

These results are summarized in the following remark.
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For the model (4) with K = 1, �u" = 0, and iid (ut; "t) ; the instantaneous kurtosis measure of the
increment process dGa;c(r) is

�b;c (r) = 3 +
3b2V ar

�
G2a;c (r)

�
b2
�
E
�
G2a;c (r)

��2
+ �4" + 2b�

2
"E
�
G2a;c (r)

� + op (1) ;
and the kurtosis of the process Ga;c (r) itself satis�es

lim
c+b!0

E
�
G4a;c (r)

��
E
�
G2a;c (r)

��2 = 3
�
e�4cr + 4cr � 1

�
8 (cr)2

;

which rises as c! �1 and has minimum of 3 at c = 0:
Financial data are well known to resemble trajectories generated by a RW but with the important

exception that the kurtosis coe¢ cient of asset returns exceeds 3, typically by a large margin. This
stylized feature of �nancial times series matches the corresponding characteristic of the LSTUR limit
process Ga;c (r) ; which has random wandering behavior similar to a Gaussian RW but with kurtosis
of its increments in excess of Gaussian increments. These features give the LSTUR process a desirable
property for empirical work.

In spite of their common features, the limit processes corresponding to RW, LUR, and LSTUR
time series are very di¤erent, including the special parameter con�guration c + b = 0 in LSTUR. In
particular, when K = 1, �u" = 0, and (ut; "t) are iid, the limit process Ga;c (r) satis�es the stochastic
di¤erential equation (18). Non-Gaussianity in the process Ga;c (r) is then governed by the magnitude
of the coe¢ cient b = a2�2u: The following result sheds light on the composition of the process Ga;c (r)
when the parameter b is small.

Lemma 7 For the model (4) when K = 1, �u" = 0, and ut and "t are iid,

Ga;c (r) = Gc (r) + Vc;a (r) +Op (b) ; (24)

where Gc (r) =
R r
0 e

(r�p)cdB" (p) is a Gaussian process, Vc;a (r) = a
R r
0 e

(r�p)c (Bu (r)�Bu (p)) dB" (p)
is a mixed Gaussian process, and Gc (r) and Vc;a (r) are uncorrelated. To �rst order in b

V ar (Ga;c (r)) = �
2
"

 
e2cr � 1
2c

+
b
�
e2cr (2cr � 1) + 1

�
(2c)2

!
+O (b) : (25)

According to (24) and (25) the STUR component e¤ect is small when b = a2�2u is small, in which
case the limit process Ga;c (r) is approximately mixed Gaussian, with variance that exceeds the variance
of the LUR process component, viz.,

�2"

 
e2cr � 1
2c

+
b
�
e2cr (2cr � 1) + 1

�
(2c)2

!
� �2"

�
e2cr � 1
2c

�
:

In the special con�guration c + b = 0 when b is small, c is also small and then the LSTUR process is
approximately Brownian motion with variance �2"r:
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5 Robustness to Misspeci�cation

This section explores the robustness of STUR-based NLLS and IV parameter estimation to misspeci-
�cation that arises from an LSTUR generating mechanism. Let

�
~an; ~�

2
";n

�
be the STUR-based NLLS

estimates of
�
a; �2"

�
, so that

~an = argmin
a

X
t

�
Yt � ea

0ut=
p
nYt�1

�2
, ~�2";n =

1

n

X
t

�
Yt � e~a

0
nut=

p
nYt�1

�2
:

When �u" = 0; (ut; "t) is iid, and the generating mechanism is LSTUR, ~an and ~�2";n are still consistent
for a and �2"; as shown below.

Lemma 8 For the model (4) when �u" = 0 and (ut; "t) is iid,
(i)

p
n (~an � a)) 1R 1

0 Ga;c(r)dr
��1u

n
fE ("tutu0t)g a

R 1
0 Ga;c (r) dr +

R 1
0 Ga;c (r) dBu" (r)

o
;

(ii) ~�2";n !p �
2
";

(iii) If ~Y pt =
�
1 + ~a0nutp

n
+ (~a0nut)

2

2n

�
Yt�1 and Ŷ

p
t =

�
1 + ~a0nutp

n
+ 1

n

�
c+ (~a0nut)

2

2

��
Yt�1 are in-sample

predictors based on STUR and LSTUR speci�cations, then

1p
n

X
t

�
Yt � ~Y pt

�
) B" (1) + c

Z 1

0
Ga;c (r) dr;

1p
n

X
t

�
Yt � Ŷ pt

�
) B" (1) ;

and
P
t

�
~Y pt � Ŷ

p
t

�2
) c2

R 1
0 G

2
a;c (r) dr:

Parts (i) and (ii) of Lemma 8 are obtained in the same way as Theorems 2 and 3 of Lieberman and
Phillips (2017a). The only di¤erence in the limit distribution in (i) compared to the case where STUR
is the correct speci�cation the limit process is now Ga;c (r) rather than Ga (r). An implication of this
result is that the n�1-normalized sum of squared errors of (the misspeci�ed) STUR and LSTUR will
be identical asymptotically and therefore, for large enough n, AIC and BIC should always favor STUR
over LSTUR, even when LSTUR is the true DGP. This �nding corresponds with the known result that
information criteria such as BIC are typically blind to local departures of the LUR variety (Phillips
and Ploberger, 2003; Leeb and Pötscher, 2005).

In part (iii) of the Lemma, ~Y pt and Ŷ
p
t are the STUR- and LSTUR-based predictors of Yt: The latter

is infeasible as c is unknown but may be replaced by an inconsistent estimate or by imposing a special
restriction such as c = �b; which is discussed in Section 4. In this case, the n�1=2-normalized error
sums di¤er by the term c

R 1
0 Ga;c (r) dr and the sum of squared discrepancies between the two predictors

converges to c2
R 1
0 Ga;c (r)

2 dr so that the value of the localizing coe¢ cient c a¤ects these di¤erentials
directly as well as through the correct limit process Ga;c (r) corresponding to LSTUR rather than Ga (r)

In the case �u" 6= 0, even the correctly speci�ed LSTUR-based NLLS estimator is inconsistent. For-
tunately, for the LSTUR model the misspeci�ed STUR-based IV estimators (Lieberman and Phillips,
2017b) of a and the covariance parameters are still consistent. Let ~aIVn , ~

IV
";n (j) and ~

IV
u;";n (j) be the

STUR-based IV estimators of a, " (j) = Cov ("t; "t�j) and u;" (j) = Cov (ut; "t�j) for (j = 0; 1; 2; :::).
That is, ~aIVn solves the K-moment conditions

nX
t=2

�
Yt � �nt

�
~aIVn
�
Yt�1

�
Zt = 0; (26)
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where Zt is a vector of instruments which satisfy Assumption 3 of Lieberman and Phillips (2017b),

~IV";n (j) =
1

n

nX
t=j+2

eIVt e
IV
t�j ; ~

IV
u;";n (j) =

1

n

nX
t=j+2

ute
IV
t�j ;

and
eIVt = Yt � e~a

IV 0
n ut=

p
nYt�1; t = 2; :::; n: (27)

In the misspeci�ed model case, the STUR-IV estimators are still consistent. In particular, for the model
(4) and under Assumptions 2-3 of Lieberman and Phillips (2017b), we have ~aIVn � a = Op

�
n�1=2

�
,

~IV";n (j)� " (j) = Op
�
n�1=2

�
and ~IVu;";n (j)� u;" (j) = Op

�
n�1=2

�
for all �xed and �nite j. The proof

follows the arguments given in Theorems 3 and 4 of Lieberman and Phillips (2017b) and is omitted.
These results are employed in the empirical section below.

6 The E¤ects of Misspeci�cation on CI Construction

Stock (1991) constructed con�dence belts for the localizing coe¢ cient c in the LUR model from which
con�dence intervals (CIs) valid within a vicinity of unity for the autoregressive coe¢ cient � could
be deduced from unit root tests. Application of this methodology to the Nelson Plosser (1982) data
produced very wide con�dence bands. Hansen (1999) showed how the accuracy of these simulation-
based CIs deteriorated as the stationary regrion was approached. He suggested a grid bootstrap
procedure for the construction of the CIs which helped to improve coverage accuracy of the bands.
Phillips (2014) provided an asymptotic analysis that explained the deterioration of the CIs as the
generating process moves deeper into the LUR region and ultimately the stationary region, reinforcing
the work of Hansen (1999) and Mikusheva (2007) on the role of correctly centred statistics in the
development of uniformly valid con�dence bands.

This work was all conducted using LUR formulations of departures from unity. The present section
addresses the issue of how con�dence band accuracy is a¤ected by an underspeci�cation of an LSTUR
process as an LUR process. To this end, we consider the limit distribution given in (16). The t-ratio
for the UR hypothesis is given by

t� =
n
�
�̂n � 1

�
�
�̂2"=n

�2P
t Y

2
t�1
�1=2 ) 1

�"

�Z 1

0
Ga;c (r)

2 dr

�1=2 
c+

a0�ua
2

+
a0
R 1
0 G

2
a;c (r) dBu (r) +

R 1
0 Ga;c (r) dB" (r)R 1

0 Ga;c (r)
2 dr

!
;

(28)
where �̂2" is a consistent estimator of �

2
", such as the IV estimator ~IV";n (0), discussed in Section 5.

When a = 0, the result (28) reduces to equation (2) of Phillips (2014), or equation (5) of Stock (1991)1.
To get an idea of how the con�dence belts of Stock (1991) would be a¤ected by the omission of a
stochastic component, we simulated the right side of (28) with parameter settings �2" = 1, �u" = 0,
a = (0; 1; 2; 3; 4), �2u = (0:1; 1) and c = (1; 0;�1;�5;�10; :::;�35). As b = (a�u)

2, the setting includes
parameter combinations under which �35 < c+b < 17. Table 1 was constructed with 5000 replications
and 400 integral points and includes the 5th, 10th, 50th, 90th and 95th percentiles of the simulated
asymptotic distribution, as well as the width of the 80%- and 90%-CIs in each case.

The most striking feature of the results is that the CIs become wider as the value of c+ b increases.

1To be precise, Stock (1991, equation (5)) used a demeaned ADF t-statistic in constructing the con�dence belts.
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In other words, given a c-value, the e¤ect of misspeci�cation becomes more pronounced as the value of
a and/or �2u increases. This is expected, as a very negative value of (c+ b), for instance, is consistent
with a dominant LUR - relative to STUR - component. Each value of c gives a point on each con�dence
line in Stock�(1991) con�dence belts, from which the permissible values of the test statistic can be
implied, given a con�dence level, and vice versa. Therefore, wider CIs for the test statistic for larger a
and/or �2u values translate to wider CIs for c and for �, implying that Stock�s (1991) conclusion that
the CIs for � are typically wide applies with greater force in the presence of a STUR component in
the process. In e¤ect, the CIs grow wider as the STUR signal becomes more dominant. For instance,
suppose that the observed value t�̂ = �2:0. Reading from Table 1, the value c = 0 is not in the 90%
CI if a = 0; 1; 2 and �2u = 0:1, but it is inside the 90% CI if a = 3; 4 and �2u = 0:1. Put di¤erently,
when b = [0; 0:4], c = 0 is not in the 90% CI, given a t�̂-value of �2:0, but for larger b-values, the value
of c = 0 is within the 90% CI.

The above discussion pertains to a given c-value. In practice, as shown in the next section, a
�tted LSTUR model may lead to a substantially narrower CI for c, compared with the CI for c that
would be obtained from an LUR model. The results shown in this simulation are simply illustrative
of the implications of having a generating mechanism that involves random as well as deterministic
departures from unity. Comprehensive tabulation is a multidimensional task, involving a constellation
of conceivable parameter values, and the limit theory is non-pivotal so that practical work would require
consistent estimates of many unknown parameters and an approach that led to uniformly valid (over
LUR and STUR departures from unity as well as stationary departures) con�dence intervals. Such a
program is beyond the scope of the present paper.

7 An Empirical Application

Lieberman and Phillips (2017b) estimated a STUR model in which the dependent variable is the log
spread between an index of U.S. dollar denominated investment grade rated corporate debt publicly
issued in the U.S. domestic market and the spot Treasury curve. The variable ut was taken to be the
demeaned 100 log(SPUS;t=SPUS;t�1), where SPUS;t is the opening rate of the SPDR S&P 500 ETF
Trust. The sample correlation between ut and �Y was �0:52, supporting Kwan�s (1996) report of a
negative correlation between stock returns and bond spread changes. In this case the NLLS estimator
is inconsistent. The IV estimator, which is consistent, was estimated with 1454 daily observations over
the period January 5, 2010, through to December 30, 2015, giving a value âIVn = �0:245. In addition,
the misspeci�ed STUR-based IV estimators of the covariance parameters are consistent as discussed in
Section 5. Using these results we calculated the t-statistic (28) with error variance estimated by ~IV";n (0)
obtaining a value of t�̂ = �0:659: The 5th, 10th, 50th, 90th and 95th percentiles of the asymptotic
distribution were simulated2 using (28), with parameters replaced by their IV-consistent estimates.
The 90% CI for c is given by the intersection of the horizontal line t�̂ = �0:659 and the 5th and 95th
percentiles lines, in the

�
c; t�̂

�
plane, as shown in Figure 1, yielding the CI lower and upper limits

caL = �0:64 and caU = 0:53. The intersection points of t�̂ = �0:659 with the percentiles are summarized
in Table 2, from which we deduce that the median unbiased estimate of c in the LSTUR model is
ĉmed = �0:21. The procedure was repeated for the LUR model, where the asymptotic distribution is

2A MATHEMATICA program was written to evaluate the percentiles using 400 integration points, 5000 replications
and a grid of 0:1 over the c-values.
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given by (28), with a = 0, �2u = 0, �u" = 0. The results are shown in in Figure 2 and Table 2. For this
model we obtain the 90% CI limits cL = �4:05 and cU = 3:27, and a mean unbiased estimator for c
equal to �0:35.

Figures 1-2 as well as Table 2 reveal that the 90% CI for c; which is LSTUR-based, is much narrower
and is in fact fully within the 90% LUR-based CI. Thus, at least in this case, LSTUR attenuates the
estimated impact of c on the time varying autoregressive coe¢ cient �nt. The induced 90% CI for �nt
which is LUR-based is approximately [1� 4:05=n; 1 + 3:27=n], whereas the variation of ut needs to be
accounted for in the construction of an LSTUR-based 90% CI for �nt. Conditional on ut and on the

values of the nuisance parameters, the LSTUR-based 90% CI for �nt is
h
e�0:64=n+aut=

p
n; e0:53=n+aut=

p
n
i
,

so that the width of the interval is approximately 1:17=n, compared with a width of 7:31=n for the LUR-
based CI. The means of the CI bounds, taken with respect to ut and assuming that wt is multivariate
normal, are Eec

a
L+aut=

p
n = e(c

a
L+b=2)=n and Eec

a
U+aut=

p
n = e(c

a
U+b=2)=n. Plugging in the IV estimates,

âIVn = �0:245 and �̂2u = n�1
P
u2t = 0:983

3 into these formulae, the estimated means of the bounds are
1� 0:61=n and 1 + 0:56=n, which are much smaller in absolute values than the respective LUR-based
bounds. Furthermore, Given the model parameters, and assuming that wt is multivariate normal,

Pr
�
e
c
n
+
autp
n < L

�
= � i¤ L = e

c
n
+ c�

p
bp

n ;

where c� is the ��th percentile of the standard normal distribution. Thus, given the model parameters
and the distribution of wt, the induced 90% CI for �nt ish

e
� 0:64

n
� 0:4p

n ; e
0:53
n
+ 0:4p

n

i
:

So, the width of the CI is approximately 0:8=
p
n + 1:17=n. Compared with the LUR-based induced

CI for �nt, the LSTUR-based induced CI has a term which is O
�
n�1=2

�
, to account for the additional

variability in �nt which is due to ut. On the other hand, the O
�
n�1

�
term in the CI which is due to

c and b in LSTUR and due to c only in LUR, is much smaller in absolute value in the LSTUR-based
bounds than in LUR. These �ndings are illustrated in Figure 3.

We remark that an �exact�analytical CI which accounts for the variability in the estimates of a
and the covariance parameters is analytically intractable, because these estimates in�uence both the
percentiles of t�̂ (and, hence, the values c

a
L and c

a
U ) as well as the summand â

IV
n ut=

p
n. Nevertheless,

qualitatively, the message from the empirical application is that the reported CI for c can be substan-
tially wrong and, in reality, much wider when an LSTUR process is misspeci�ed as a LUR model. On
the other hand, unconditionally, the induced CI for �nt is wider when a STUR component is present
as is expected from the additional random variability that is embodied in the LSTUR representation
of the time variation in the autoregressive coe¢ cient.

8 Discussion

It is widely acknowledged that with much economic and �nancial data the unit root hypothesis may
only hold approximately or in some sense on average over a given sample. A more general modeling
perspective that o¤ers greater �exibility is that the generating mechanism may involve temporary de-

3The variable ut is demeaned and its standard variance estimator is consistent as it does not depend on a.
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partures from unity at any sample point that can move the process in stationary or explosive directions.
Recognition of this type of functional coe¢ cient �exibility and its relevance for applied work has led to
the literature on LUR, functional LUR (Bykovskaya and Phillips, 2017a, 2017b), and STUR models,
which seek to capture certain non-random and random departures from an autoregressive unit root
process. The hybrid model introduced in this paper incorporates two streams of this literature as
special cases and the limit theory generalizes results already known for the LUR and STUR models.
As expected, ignoring one or other of these component departures introduces inferential bias. Both
simulations and empirics reveal how the construction of uniform con�dence intervals for autoregressive
coe¢ cients using a LUR model formulation are a¤ected by misspeci�cation in which the random de-
partures of the LSTUR mechanism are neglected. Of particular relevance in applications is the fact
that an LSTUR process, may have the same mean and variance as a Gaussian random walk but with
kurtosis that is well in excess of 3, a feature that is consonant with the heavy tails of much observed
�nancial return data.
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Table 1. Percentiles and Con�dence Intervals for t�̂, �
2
u = 0:1

c a 5 10 50 90 95 80% CI 90% CI
1 0 �1:724 �1:361 0:3 2:466 3:144 3:827 4:868
1 1 �1:73 �1:355 0:273 2:588 3:423 3:943 5:152
1 2 �1:716 �1:367 0:151 2:935 4:199 4:302 5:915
1 3 �1:807 �1:4917 �0:1127 3:988 6:432 5:479 8:239
1 4 �1:974 �1:641 �0:467 4:921 9:538 6:562 11:512

0 0 �1:913 �1:62 �0:508 0:9445 1:311 2:564 3:224
0 1 �1:919 �1:607 �0:534 0:907 1:374 2:514 3:293
0 2 �1:976 �1:641 �0:562 1:068 1:753 2:71 3:729
0 3 �2:03 �1:712 �0:736 1:25 2:264 2:962 4:294
0 4 �2:054 �1:817 �0:94 1:882 3:437 3:698 5:492

-1 0 �2:145 �1:852 �0:877 0:125 0:432 1:977 2:576
-1 1 �2:136 �1:812 �0:887 0:101 0:472 1:914 2:608
-1 2 �2:195 �1:889 �0:955 0:171 0:592 2:059 2:786
-1 3 �2:195 �1:905 �1:021 0:21 0:862 2:115 3:057
-1 4 �2:255 �1:986 �1:187 0:32 1:277 2:306 3:532

-5 0 �2:746 �2:472 �1:642 �0:996 �0:81 1:476 1:936
-5 1 �2:755 �2:501 �1:656 �0:996 �0:802 1:505 1:953
-5 2 �2:757 �2:496 �1:664 �1:01 �0:819 1:486 1:938
-5 3 �2:788 �2:52 �1:7 �1:023 �0:804 1:497 1:983
-5 4 �2:875 �2:556 �1:755 �1:102 �0:838 1:454 2:037

-10 0 �3:283 �3:047 �2:257 �1:628 �1:468 1:419 1:815
-10 1 �3:274 �3:026 �2:269 �1:63 �1:463 1:396 1:811
-10 2 �3:297 �3:053 �2:285 �1:642 �1:475 1:411 1:821
-10 3 �3:308 �3:064 �2:272 �1:624 �1:462 1:44 1:846
-10 4 �3:35 �3:116 �2:299 �1:685 �1:496 1:431 1:854

Note: The entries in the table are the percentiles- and con�dence interval width (last two columns) of
the limit distribution of the statistic t�̂ , based on 5000 replications and 400 integral points, with

�2" = 1, �u" = 0:
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Table 1 (continued). Percentiles and Con�dence Intervals for t�̂, �
2
u = 0:1

c a 5 10 50 90 95 80% CI 90% CI
-15 0 �3:744 �3:514 �2:738 �2:093 �1:917 1:421 1:827
-15 1 �3:756 �3:51 �2:756 �2:099 �1:941 1:411 1:815
-15 2 �3:74 �3:522 �2:75 �2:082 �1:931 1:44 1:81
-15 3 �3:754 �3:488 �2:763 �2:103 �1:918 1:385 1:835
-15 4 �3:792 �3:547 �2:762 �2:122 �1:958 1:424 1:834

-20 0 �4:11 �3:885 �3:104 �2:462 �2:3 1:424 1:81
-20 1 �4:108 �3:909 �3:146 �2:488 �2:332 1:421 1:776
-20 2 �4:15 �3:923 �3:136 �2:485 �2:315 1:438 1:835
-20 3 �4:144 �3:896 �3:143 �2:474 �2:31 1:422 1:834
-20 4 �4:192 �3:938 �3:159 �2:492 �2:331 1:446 1:861

-25 0 �4:469 �4:236 �3:48 �2:785 �2:627 1:451 1:842
-25 1 �4:46 �4:24 �3:452 �2:79 �2:645 1:449 1:815
-25 2 �4:473 �4:225 �3:456 �2:784 �2:602 1:441 1:872
-25 3 �4:491 �4:218 �3:469 �2:793 �2:628 1:425 1:863
-25 4 �4:507 �4:247 �3:469 �2:818 �2:641 1:428 1:866

-30 0 �4:74 �4:512 �3:75 �3:073 �2:895 1:44 1:845
-30 1 �4:756 �4:54 �3:757 �3:087 �2:935 1:453 1:821
-30 2 �4:744 �4:52 �3:768 �3:097 �2:926 1:423 1:818
-30 3 �4:759 �4:524 �3:768 �3:102 �2:926 1:421 1:833
-30 4 �4:78 �4:554 �3:777 �3:093 �2:909 1:46 1:871

-35 0 �5:038 �4:794 �4:012 �3:325 �3:131 1:469 1:906
-35 1 �5:013 �4:802 �4:034 �3:357 �3:171 1:446 1:842
-35 2 �5:077 �4:812 �4:037 �3:357 �3:193 1:455 1:884
-35 3 �5:044 �4:811 �4:036 �3:357 �3:177 1:454 1:868
-35 4 �5:021 �4:804 �4:039 �3:337 �3:165 1:466 1:857

Note: The entries in the table are the percentiles- and con�dence interval width (last two columns) of
the limit distribution of the statistic t�̂, based on 5000 replications and 400 integral points, with

�2" = 1, �u" = 0:
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Table 1 (continued). Percentiles and Con�dence Intervals for t�̂ , �
2
u = 1

c a 5 10 50 90 95 80% CI 90% CI
1 0 �1:685 �1:329 0:316 2:427 3:058 3:756 4:743
1 1 �1:789 �1:469 �0:1421 4:009 6:849 5:478 8:638
1 2 �8:473 �4:854 �1:68 7:822 22:755 12:676 31:228
1 3 �110:893 �46:739 �4:215 9:609 54:083 56:348 164:976
1 4 �1398:42 �423:387 �13:242 13:956 142:768 437:343 1541:18

0 0 �2:0288 �1:652 �0:5106 0:9 1:286 2:552 3:315
0 1 �2:01 �1:701 �0:746 1:333 2:599 3:034 4:609
0 2 �6:253 �3:799 �1:816 2:35 7:526 6:148 13:779
0 3 �68:45 �29:095 �3:747 3:687 25:273 32:782 93:723
0 4 �736:13 �233:141 �11:1434 3:057 63:583 236:199 799:713

-1 0 �2:114 �1:823 �0:865 0:102 0:414 1:925 2:528
-1 1 �2:159 �1:866 �1:014 0:217 0:891 2:083 3:05
-1 2 �4:517 �3:164 �1:887 0:458 3:22 3:62 7:737
-1 3 �42:348 �19:889 �3:537 0:222 7:327 20:111 49:676
-1 4 �397:271 �142:957 �8:921 �0:499 20:427 142:459 417:698

-5 0 �2:731 �2:473 �1:646 �1:019 �0:832 1:454 1:899
-5 1 �2:767 �2:494 �1:716 �1:04 �0:828 1:454 1:939
-5 2 �3:067 �2:808 �2:103 �1:345 �0:964 1:462 2:1
-5 3 �9:954 �6:511 �3:1 �1:879 �0:91 4:632 9:043
-5 4 �63:291 �28:508 �5:263 �2:579 �0:089 25:928 63:202

-10 0 �3:316 �3:068 �2:279 �1:622 �1:47 1:446 1:846
-10 1 �3:317 �3:071 �2:305 �1:65 �1:463 1:422 1:853
-10 2 �3:45 �3:191 �2:437 �1:794 �1:601 1:398 1:849
-10 3 �4:579 �3:973 �3:018 �2:189 �1:898 1:784 2:681
-10 4 �16:424 �10:077 �4:282 �2:789 �2:23 7:287 14:194

Note: The entries in the table are the percentiles- and con�dence interval width (last two columns) of
the limit distribution of the statistic t�̂, based on 5000 replications and 400 integral points, with

�2" = 1, �u" = 0:
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Table 1 (continued). Percentiles and Con�dence Intervals for t�̂ , �
2
u = 1

c a 5 10 50 90 95 80% CI 90% CI
-15 0 �3:7256 �3:476 �2:728 �2:085 �1:93 1:391 1:791
-15 1 �3:721 �3:501 �2:743 �2:093 �1:923 1:408 1:798
-15 2 �3:879 �3:593 �2:828 �2:181 �2:01 1:412 1:869
-15 3 �4:229 �3:968 �3:177 �2:418 �2:143 1:55 2:086
-15 4 �7:522 �5:798 �3:999 �2:866 �2:476 2:932 5:047

-20 0 �4:127 �3:879 �3:112 �2:48 �2:313 1:4 1:815
-20 1 �4:148 �3:908 �3:129 �2:4891 �2:323 1:419 1:825
-20 2 �4:213 �3:975 �3:185 �2:528 �2:359 1:447 1:853
-20 3 �4:471 �4:22 �3:433 �2:69 �2:468 1:53 2:003
-20 4 �5:761 �5:154 �3:958 �3:002 �2:699 2:152 3:063

-25 0 �4:451 �4:235 �3:477 �2:796 �2:629 1:439 1:821
-25 1 �4:504 �4:26 �3:473 �2:808 �2:622 1:452 1:883
-25 2 �4:526 �4:292 �3:502 �2:827 �2:647 1:465 1:879
-25 3 �4:675 �4:449 �3:686 �2:911 �2:714 1:539 1:961
-25 4 �5:43 �5:084 �4:104 �3:19 �2:901 1:894 2:53

-30 0 �4:796 �4:538 �3:768 �3:069 �2:91 1:468 1:886
-30 1 �4:828 �4:555 �3:773 �3:085 �2:914 1:471 1:914
-30 2 �4:815 �4:552 �3:791 �3:109 �2:916 1:443 1:899
-30 3 �4:977 �4:732 �3:948 �3:194 �2:973 1:538 2:003
-30 4 �5:419 �5:148 �4:212 �3:343 �3:073 1:804 2:346

-35 0 �5:043 �4:819 �4:037 �3:354 �3:184 1:465 1:859
-35 1 �5:064 �4:809 �4:029 �3:336 �3:16 1:473 1:903
-35 2 �5:1 �4:879 �4:083 �3:359 �3:165 1:52 1:935
-35 3 �5:249 �5:014 �4:177 �3:418 �3:218 1:596 2:031
-35 4 �5:605 �5:305 �4:406 �3:562 �3:317 1:743 2:288

Note: The entries in the table are the percentiles- and con�dence interval width (last two columns) of
the limit distribution of the statistic t�̂, based on 5000 replications and 400 integral points, with

�2" = 1, �u" = 0:
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Table 2. Intersections of t�̂ with con�dence lines.

Percentiles
Model 5th 10th 50th 90th 95th
LUR 3.268 2.367 -0.347 -3.260 -4.047
LSTUR 0.532 0.442 -0.213 -0.546 -0.640

Note: The �gures in the Table are the intersections of the line t�̂ = �0:659 with the con�dence lines
for the LUR and LSTUR models.
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This implies the result given in (12) and the Lemma is established. �
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Lemma 9 For the model (4), under Assumption 1,
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n

�
Yt�2 + "t�1

�2
= G1;1

Z 1

0
G2a;c (r) dB� (r) +

1

n3=2

nX
t=2

G1;1�t�1
2a0ut�1p

n
Y 2t�2 +

2

n3=2

nX
t=2

G1;1�t�1Yt�2"t�1 + op (1)

) G1;1

Z 1

0
G2a;c (r) dB� (r) + 2G1;1��G

0
1;0a
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0
G2a;c (r) dr + 2G1;1��G2;0
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0
Ga;c (r) dr:

For j = 2,

1

n3=2

nX
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G1;2�t�2Y
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=
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nX
t=2
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�
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�
2c

n
+
a0 (ut�1 + ut�2)p

n

�
Yt�3 + exp

�
c

n
+
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n

�
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�2
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= G1;2

Z 1

0
G2a;c (r) dB� (r) +

1

n3=2

nX
t=2

G1;2�t�2
2a0 (ut�1 + ut�2)p

n
Y 2t�3

+
2

n3=2

nX
t=2

G1;2�t�2Yt�3 ("t�2 + "t�1) + op (1)

) G1;2

Z 1

0
G2a;c (r) dB� (r) + 2G1;2�� (G1;0 +G1;1)

0 a

Z 1

0
G2a;c (r) dr + 2G1;2�� (G2;0 +G2;1)

0
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0
Ga;c (r) dr:

Continuing this scheme and using summability, we deduce that

1

n3=2

X
t

utY
2
t�1 )

1X
j=0

G1;j

Z 1

0
G2a;c (r) dB� (r)+2

1X
j=1
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G01;ka

Z 1

0
G2a;c (r) dr +

j�1X
k=0

G02;k

Z 1

0
Ga;c (r) dr

!
:

and the proof of the Lemma is completed by using (51) and (52). �

Lemma 11 For the model (4), under Assumption 1,

nX
t=2

ut"tYt�1 = n
3=2�u"

Z 1

0
Ga;c (r) dr + n

8<:
1X
j=0

(G2;j 
G1;j)H
Z 1

0
Ga;c (r) d� (r)

+

1X
j=1

(G2;j 
G1;j)M3

0@ j�1X
i=0

G1;i

!0
a

Z 1

0
Ga;c (r) dr +

 
j�1X
i=0

G2;i

!01A
+
X
j 6=k

(G2;k 
G1;j)
Z 1

0
Ga;c (r) d� (r)

9=;+ op (n) :
Proof of Lemma 11. The proof is similar to that of Lemma 8 of Lieberman and Phillips (2017b)

and is omitted.

Lemma 12 For the model (18) where K = 1, �u" = 0, ut and "t are iid, and with the �ltration
Fr = � f(Bu (s) ; B" (s)) ; 0 � s � rg the instantaneous kurtosis measure is

�b;c (r) =
E
�
E
h
(dGa;c (r))

4 jFr
i�

n
E
�
E
h
(dGa;c (r))

2 jFr
i�o2 = 3 + 3b2

h
E
�
G4a;c (r)

�
�
�
E
�
G2a;c (r)

��2i
b2
�
E
�
G2a;c (r)

��2
+ �4" + 2b�

2
"E
�
G2a;c (r)

� + op (1)
Proof of Lemma 12. The process increments dGa;c(r) at r satisfy (18)

dGa;c(r) = aGa;c (r) dBu (r) + dB" (r) +

�
c+

b

2

�
Ga;c (r) dr; (53)

where b = a2�2u: Then

E
h
(dGa;c (r))

4 jFr
i
= E

�
aGa;c (r) dBu (r) + dB" (r) +

�
c+

b

2

�
Ga;c (r) drjFr

�4
26



= E
h
(aGa;c (r) dBu (r) + dB" (r))

4 jFr
i
+ 4

�
c+

b

2

�
E
h
(aGa;c (r) dBu (r) + dB" (r))

3Ga;c (r) jFr
i
dr
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�
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b

2

�2
E
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2Ga;c (r)
2 jFr
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b

2
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E
h
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3 jFr
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�
c+

b

2

�4
E
h
Ga;c (r)

4 jFr
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=
h
3b2Ga;c (r)

4 + 6b�2"Ga;c (r)
2 + 3�4"

i
(dr)2 + 6

�
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b

2

�2 h
bGa;c (r)

4 +Ga;c (r)
2 �2"

i
(dr)3 +Op

�
(dr)4

�
(54)

since E
h
(aGa;c (r) dBu (r) + dB" (r))

3Ga;c (r) jFr
i
dr = 0;

E
n
E
h
(aGa;c (r) dBu (r) + dB" (r))

4 jFr
io

= 3a4�4uE
�
G4a;c (r)

�
+ 6a2�2u�

2
"E
�
G2a;c (r)

�
+ 3�4"

= 3b2E
�
G4a;c (r)

�
+ 6b�2"E

�
G2a;c (r)

�
+ 3�4"; (55)

and
E
h
(aGa;c (r) dBu (r) + dB" (r))

2Ga;c (r)
2 jFr

i
=
h
a2�2uG

4
a;c (r) + �

2
"Ga;c (r)

2
i
dr:

Similarly

E
h
(dGa;c (r))

2 jFr
i
= E

�
aGa;c (r) dBu (r) + dB" (r) +

�
c+

b

2

�
Ga;c (r) drjFr

�2
= E

h
(aGa;c (r) dBu (r) + dB" (r))

2 jFr
i
+

�
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b

2

�2
E
h
Ga;c (r)

2 jFr
i
(dr)2

= E
h�
a2�2uGa;c (r)

2 + �2"

�
jFr
i
dr +

�
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b

2

�2
E
h
Ga;c (r)

2 jFr
i
(dr)2

=
h
bGa;c (r)

2 + �2"

i
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�
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b

2

�2
Ga;c (r)

2 (dr)2 : (56)

Using (54) - (56) gives

�b;c (r) =
E
�
E
h
(aGa;c (r) dBu (r) + dB" (r))

4 jFr
i�
+ op

�
(dr)2

�
n
E
�
E
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2 jFr
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=
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bE
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27



=
3b2E
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G4a;c (r)

�
+ 6b�2"E

�
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�
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�
E
�
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��2
+ �4" + 2b�

2
"E
�
G2a;c (r)

� + op (1)
= 3 +

3b2
h
E
�
G4a;c (r)

�
�
�
E
�
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��2i
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�
E
�
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��2
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2
"E
�
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� + op (1) ;
as stated. For large b; note that

E
�
G4a;c (r)

�
=

3�4"e
4(c+2b)r

c+ b

�
1

2 (c+ 3b)
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;

and E
�
G2a;c (r)

�
= �2"

e2(c+b)r�1
2(c+b) � �2" e

2(c+b)r

2(c+b) : Hence, as b!1

�b;c (r) =
3b2E
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�
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�
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�2 � 3 3�4"e
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4(c+3b)(c+2b)�
�2"

e2(c+b)r

2(c+b)

�2
= 9

e4br (c+ b)2

(c+ 3b) (c+ 2b)
� 9

6
e4br;

and kurtosis of the process increments dGa;c (r) grows exponentially with b irrespective of the �xed
value of c:

9.2 Proofs of the Main Results

Proof of Lemma 1. By repeated substitution, we obtain

Yt =
tX
j=1

exp

 
(t� j) c
n

+
a0
Pt
i=j+1 uip
n

!
"j ; t � 2: (57)

Therefore, setting t = bnrc,

Yt=bnrcp
n

= erc+a
0Bu(r)+op(1)

bnrcX
j=1

exp
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n
� a

0Pj
i=1 uip
n

!
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n
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n
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n
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1� a

0ujp
n
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�
n�1

�� "jp
n
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e
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n
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n

"jp
n
�
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n

�a0Bu( j�1n )
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n

9=;+ op (1) : (58)
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Let e�
(j�1)c
n

�a0
Pj�1
i=1

ujp
n =: f

�
� (j�1)c

n � a0 1p
n

Pj�1
i=1 uj

�
: Then,

@

@X
f

�
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n
� a0X

�
X= 1p

n

Pj�1
i=1 ui

= �af
 
�(j � 1) c

n
� a0 1p

n

j�1X
i=1

ui

!

and by Ibragimov and Phillips (2008; equation (4.9)) we obtain the following sample covariance limit

bnrcX
j=1

exp

 
�(j � 1) c

n
� a

0Pj�1
i=1 uip
n

!
"jp
n
) �a0�u"
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0
e�pc�a

0Bu(p)dp+

Z r

0
e�pc�a

0Bu(p)dB" (p) : (59)

Furthermore,
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�
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n
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�
j � 1
n

��
a0uj"j
n

= a0�u"
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0
e�pc�a

0Bu(p)dp+ op (1) : (60)

It follows from (58), (59) and (60) that

Ytp
n

) erc+a
0Bu(r)

�
�a0�u"
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0
e�pc�a

0Bu(p)dp+
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0
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�
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�Z r

0
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0Bu(p)dB" (p)� a0�u"
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0
e�pc�aBu(p)dp

�
;

which is the stated result. �
Proof of Theorem 3. The NLLS ĉn of c; given known a; is de�ned as the solution to the equationX

t

(Yt � �nt (ĉn; a)Yt�1) _�nt (ĉn; a)Yt�1 = 0; (61)

where _�nt (c; a) =
@�nt(c;a)

@c = 1
n�nt (c; a) : The solution to (61) is equivalent to the solution ofX
t

Yt�nt (ĉn; a)Yt�1 =
X
t

�2nt (ĉn; a)Y
2
t�1:

or X
t

(�nt (c; a)Yt�1 + "t)�nt (ĉn; a)Yt�1 =
X
t

�nt (2ĉn; 2a)Y
2
t�1:

Rearranging the last equation, we seek a solution toX
t

e2a
0ut=

p
n
h
e2ĉ=n � e(c+ĉn)=n

i
Y 2t�1 =

X
t

ea
0ut=

p
neĉn=n"tYt�1: (62)
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Expanding the left side of (62) we get

X
t
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0ut=

p
n

24 1X
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(2ĉn)
j � (c+ ĉn)j
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njj!

35Y 2t�1:
At the true value of c, the objective function Qan (c) = n

�1 (Yt � �nt (c; a)Yt�1)2 converges in probability
to �2" and therefore, the only term in the square brackets which contributes asymptotically is the �rst
order term, (ĉn � c) =n. The leading term on the left side of (62) is thereforeX
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Upon scaling by 1=n; we have the following asymptotic form
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Z 1
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Scaling by 1=n; the dominant term on the right side of (62) is

1

n

X
t
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n

X
t

a0ut"t
Yt�1p
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and

1
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X
t
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Using Lemma 2, we obtain

1

n

X
t
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1

n3=2

X
t

a0ut"tYt�1 )
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The result of the theorem then follows from (63) and (64). �

Proof of Theorem 4. Write the autoregressive coe¢ cient as �nt = e
c
n
+
a0utp
n =: ex

0
t ; with x0t =�

1
n ;

u0tp
n

�
and 0 = (c; a0). The NLLS ̂n of  is de�ned as the solution to the equationX

t

(Yt � �nt (̂n)Yt�1) _�nt (̂n)Yt�1 = 0: (65)

Since the derivative vector _�nt () = xt�nt; we need to solve the systemX
t
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X
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2
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Expanding (67) we obtain
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Using x0t =
�
1
n ;
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n

�
we have the system
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(ĉn � c)
n

+
(ân � a)0 utp

n
+
1

2

�
2

�
ĉn
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The leading term of the upper element of the left side of (69) is
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Now,
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and by Lemma 10,

(ân � a)0
X
t

utp
n

�
Yt�1p
n

�2
�a (ân � a)0

�Z 1

0
G2a;c (r) dBu (r) + 2

�
�0uua

Z 1

0
G2a;c (r) dr + �u"

Z 1

0
Ga;c (r) dr

��
:

(72)
By Lemma 2, the asymptotic form of the leading term of the top element of the right side of (69) is
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Using (70), (71) and (72), the solution to the �rst equation has the asymptotic form
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Next continue with the lower element of the system (69). The leading term of the left side of the
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and by Lemma 9,
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Taking the lower element of the right side of (69) and scaling by 1=n we have
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Thus, the leading term of the lower elements of the right side of (69) is
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and the remaining terms in (76) are all no larger than Op
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Combining (78) with (77) we obtain the following asymptotics for ân in the case where �u" 6= 0
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Using (79) in (73) we �nd that
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which, together with (79), gives the �rst part of the theorem.
When �u" = 0; we have
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Correspondingly rescaling (78) by
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n we have
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It now follows from (83) and (82) that
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which establishes the �nal part of the theorem, in conjunction with (81). �
Proof of Theorem 5: The ols estimator of �nt in (4) satis�es
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and by Lemma 2, the second term yields
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which simpli�es to the stated result. �
Proof of Lemma 6. As Bu (p) is independent of dB" (p), the expected value of Ga;c (r) is zero.
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as stated. The fourth order moment is given by
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which gives the stated result. �
Proof of Lemma 7: Expansion of the limit process in this case yields
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and fourth moment
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It follows that E
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Finally,
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giving (25). The moment expansion (88) is valid based on the stochastic expansion (86) because all
moments of the component Gaussian processes (Bu (r) ; B" (r)) are �nite and bounded. �
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Figure 1: Asymptotic con�dence belts for t�̂ - the LSTUR case. Y-axis - t�̂
values, X-axis - c values, solid blue - 5th percentile belt, dashed green - 10th
percentile belt, dotted black - median belt, dashed magenta, 90th - percentile
belt, solid brown - 95th - percentile belt, horizontal red line - the sample�s t�̂ ,

a = �0:245, � = �0:150, �2u = 0:983, �2" = 7 � 10�5, t̂� = �0:659. Calculated
with a grid step of 0:1, 400 integral points and 5000 replications.
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Figure 2: Asymptotic con�dence belts for t�̂ - the LUR case. Y-axis - t�̂ values,
X-axis - c values, solid blue - 5th percentile belt, dashed green - 10th percentile
belt, dotted black - median belt, dashed magenta, 90th - percentile belt, solid
brown - 95th - percentile belt, horizontal red line - the sample�s t�̂ , a = 0,

�2" = 7 � 10�5, t̂� = �0:659. Calculated with a grid step of 0:1, 400 integral
points and 5000 replications.
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Figure 3: Solid blue - the width of the LSTUR-based 90% CI, dashed black -
the width of the LUR - based 90% CI. Based on the data of Section 7.
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