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a b s t r a c t

Deviance information criterion (DIC) has been widely used for Bayesian model compar-
ison, especially after Markov chain Monte Carlo (MCMC) is used to estimate candidate
models. This paper first studies the problem of using DIC to compare latent variable
models when DIC is calculated from the conditional likelihood. In particular, it is shown
that the conditional likelihood approach undermines theoretical underpinnings of DIC.
A new version of DIC, namely DICL, is proposed to compare latent variable models. The
large sample properties of DICL are studied. A frequentist justification of DICL is provided.
Like AIC, DICL provides an asymptotically unbiased estimator to the expected Kullback–
Leibler (KL) divergence between the DGP and a predictive distribution. Some popular
algorithms, such as the EM, Kalman and particle filtering algorithms, are introduced
to compute DICL for latent variable models. Moreover, this paper studies the problem
of using DIC to compare misspecified models. A new version of DIC, namely DICM , is
proposed and it can be regarded as a Bayesian version of TIC. A frequentist justification
of DICM is provided under misspecification. DICL and DICM are illustrated using asset
pricing models and stochastic volatility models.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Deviance information criterion (DIC) of Spiegelhalter et al. (2002) is a popular method for model selection in the
Bayesian community. It has been used in a wide range of fields such as biostatistics, ecology, etc. According to Spiegelhalter
et al. (2014), Spiegelhalter et al. (2002) is the third most cited paper in international mathematical sciences between
1998 and 2008. Up to April 2019, it has received more than 5,800 citations on the Web of Knowledge and nearly 10,000
citations on Google Scholar. In economics and finance, DIC has received a lot of applications, for example, in stochastic
frontier models (Galán et al., 2014), dynamic factors models (Bai and Wang, 2015), stochastic volatility models (Chan and
Grant, 2016a; Berg et al., 2004), and VAR models (Chan and Eisenstat, 2018).
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The growth in popularity in DIC among applied researchers is understandable from a few aspects. First, DIC is a Bayesian
version of the well-known Akaike Information Criterion (AIC) of Akaike (1973). Like AIC, DIC selects a model to minimize
a plug-in predictive loss. This objective may appeal to applied researchers. Second, unlike AIC which is based on the log-
likelihood function (or deviance) with the maximum likelihood (ML) estimate (MLE) of parameters being plugged in, DIC is
based on the deviance with the posterior mean of parameters being plugged in. Li et al. (2017) gave details about the loss
functions associated with AIC and DIC. The detach of DIC from MLE is important when candidate models are difficult to
estimate by ML. In this case, applied researchers may prefer Bayesian estimation methods over ML. In Bayesian statistics,
the recent development of Markov chain Monte Carlo (MCMC) methods has been a key step in making it possible to
estimate large hierarchical models. Large hierarchical models are typically difficult to estimate by ML, making ML-based
model comparison criteria hard to implement. Third, DIC has a penalty term that can take account of prior information.
This penalty term is different from that in AIC which only depends on the number of parameters in a candidate model.

Li et al. (2017) provided a frequentist justification to DIC by showing that DIC is an asymptotically unbiased estimator
of the expected Kullback–Leibler (KL) divergence between the data generating process (DGP) and a predictive distribution
with the posterior mean plugged in. The justification requires two critical assumptions. The first assumption is the validity
of the Bernstein–von Mises theorem and the standard ML large sample theory (such as consistency and asymptotic
normality). The second assumption is that all candidate models are asymptotically correctly specified. Both assumptions
can be too strong in practice and hence, it is important to relax them.

This paper makes two contributions to the literature on DIC. First, we point out that the Bernstein–von Mises theorem
and the standard ML large sample theory may not hold for the latent variables in latent variable models when DIC is
calculated based on the conditional likelihood (i.e., the probability of observed data conditional on the original model
parameter and the latent variables). We then propose a new version of DIC, namely DICL, in the context of latent
variable models and provide a frequentist justification of DICL under some regularity conditions. We show that DIC L
is asymptotically equivalent to AIC when both are obtained the observed-data likelihood, that is, the likelihood with the
latent variables being integrated out. We also propose three methods to compute DICL in latent variable models.

Second, we propose a new version of DIC, namely DICM , for comparing misspecified models. We then provide a
frequentist asymptotic justification of DICM and show that DICM is asymptotically equivalent to Takeuchi information
criterion (TIC) of Takeuchi (1976).

The paper is organized as follows. Section 2 reviews DIC for model comparison. In Section 3, we review the widely-used
DIC based on the conditional likelihood for comparing latent variable models and explain why the Bernstein–von Mises
theorem may not hold for latent variables. We also introduce DICL based on the integrated likelihood for comparing latent
variable models. Large sample properties of DICL are studied and several general algorithms are introduced to compute
DICL in this section. Section 4 introduces DICM for misspecified models and obtains large sample relationships between
DICM and TIC. Section 5 illustrates the methods using asset pricing models and stochastic volatility models. Section 6
concludes the paper. The Appendix collects proof of theoretical results in the paper. An online supplement proves two
statements in Remark 4.2.

2. DIC for Bayesian model comparison

Arguably the most important development in the Bayesian model comparison literature in recent years is DIC of
Spiegelhalter et al. (2002). Compared with Bayes factors (BFs) that compare models through their “posterior probabilities”
and try to search for the “true” model, DIC tries to find a better model for making “prediction” of replicate data.

DIC enjoys several desirable features. First, DIC is easy to calculate when the likelihood function has a closed-form
expression and the posterior distribution is obtained by MCMC. Second, it applies to a wide range of statistical models.
Third, unlike BFs, it is not subject to the Jeffreys–Lindley paradox and can be used when improper priors are used.

Consider a candidate parametric model, M , denoted by p(y|M, θ) which is used to fit the data y = (y1, y2, . . . , yn)′,
where θ is the parameter with P dimensions and θ ∈ Θ ⊆ RP . We will write p(y|M, θ) as p(y|θ) when there is no
confusion. Letting D(θ) = −2 ln p(y|θ), DIC of Spiegelhalter et al. (2002) is given by

DIC = D
(
θ̄
)
+ 2PD, (1)

where θ̄ is the posterior mean of θ, and PD, known as “effective number of parameters”, is given by:

PD = −2
∫ [

ln p(y|θ) − ln p(y|θ̄)
]
p(θ|y)dθ. (2)

Spiegelhalter et al. interpret D
(
θ̄
)
as the Bayesian measure of model fit and PD as the penalty term to measure model

complexity.
DIC and AIC have some important differences. First, AIC is based on the MLE, while DIC is based on the posterior mean.

Second, in AIC the penalty term depends on the number of parameters, P , which is used to measure the model complexity.
Hence, it is invariant to the prior. When the prior is informative, it imposes additional restrictions on the parameter space.
In DIC the penalty term is determined by PD whose value may depend on the prior. PD may not be the same as P in finite
samples. As commented by Brooks (2002), an important contribution of DIC is to provide a way to measure the model
complexity when an informative prior is used in a finite-sample setting.
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Recently, under some mild regularity conditions, Li et al. (2017) provided a frequentist justification of DIC in the
same manner as how AIC was justified. That is, both DIC and AIC try to find a model that asymptotically minimizes
the expected KL divergence between the DGP and the corresponding predictive distribution. Other information criteria
for comparing candidate models are possible. One example is the Bayesian information criterion (BIC) of Schwarz (1978).
More recently, Geweke and Amisano (2011) proposed a method that compares log predictive scores although, to the best
of our knowledge, no general result is available on how to split samples when computing the log predictive scores. In
Section 4.2, properties of AIC/DIC are compared with those of BFs/BIC. In this section, we first give a simple review of the
justification of AIC/DIC.

Let yrep =
(
y1,rep, . . . , yn,rep

)
be the independent replicate data of n observations generated by the same mechanism

that gives rise to the observed data y and g(y) is the DGP. The quantity that measures the quality of the candidate model
in terms of its ability to make predictions of replicate data is given by the following KL divergence between g

(
yrep

)
and

p(yrep|y):

KL
[
g
(
yrep

)
, p
(
yrep|y

)]
= Eyrep

[
ln

g
(
yrep

)
p
(
yrep|y

)] =

∫ [
ln

g
(
yrep

)
p
(
yrep|y

)] g
(
yrep

)
dyrep

=

∫
ln g

(
yrep

)
g
(
yrep

)
dyrep −

∫
ln p

(
yrep|y

)
g
(
yrep

)
dyrep, (3)

where p
(
yrep|y

)
denote a generic predictive distribution. Clearly the first term is the same across all candidate models

which is denoted by C . Thus,

KL
[
g
(
yrep

)
, p
(
yrep|y

)]
= C −

∫
ln p

(
yrep|y

)
g
(
yrep

)
dyrep.

Let AIC:= −2 ln p
(
y|θ̂(y)

)
+ 2P where θ̂(y) is the MLE of θ based on y. If one chooses p

(
yrep|y

)
in (3) to be the plug-

in distribution p
(
yrep|θ̂(y)

)
, then it is well-known that (see, for example, Burnham and Anderson (2002)), under some

regularity conditions,

Ey
{
2 × KL

[
g
(
yrep

)
, p
(
yrep|θ̂(y)

)]}
= 2C + EyEyrep

[
−2 ln p

(
yrep|θ̂(y)

)]
= 2C + Ey

(
−2 ln p

(
y|θ̂(y)

)
+ 2P

)
+ o(1) = 2C + Ey (AIC)+ o(1), (4)

where the expectations Ey and Eyrep are related to g (y) and g
(
yrep

)
, respectively. Hence, AIC is an asymptotically unbiased

estimator of the expected KL divergence minus 2C , that is,

Ey
{
2 × KL

[
g
(
yrep

)
, p
(
yrep|θ̂(y)

)]}
− 2C := EKLML. (5)

If one chooses p
(
yrep|y

)
in (3) to be the plug-in distribution p

(
yrep|θ̄(y)

)
, where θ̄(y) is the posterior mean of θ based

on y, Li et al. (2017) showed that

Ey
{
2 × KL

[
g
(
yrep

)
, p
(
yrep|θ̄(y)

)]}
= 2C + EyEyrep

[
−2 ln p

(
yrep|θ̄(y)

)]
= 2C + Ey

(
−2 ln p

(
y|θ̄(y)

)
+ 2PD

)
+ o(1) = 2C + Ey (DIC)+ o(1). (6)

DIC is an asymptotically unbiased estimator of the expected KL divergence minus 2C , that is,

Ey
{
2 × KL

[
g
(
yrep

)
, p
(
yrep|θ̄(y)

)]}
− 2C := EKLB. (7)

The smaller AIC/DIC, the better the predictive performance of the candidate model. When the prior information is
dominated by likelihood asymptotically, Li et al. (2017) also showed that DIC and AIC are asymptotically equivalent, that
is,

DIC = AIC + op(1), PD = P + op(1).

This explains why DIC is regarded as a Bayesian version of AIC.
When deriving the asymptotic theory given in (6), Li et al. (2017) imposed a set of regularity conditions. Essentially

these conditions ensure the following key asymptotic properties. First, the Bernstein–von Mises theorem holds. That is,
the posterior distribution converges to a normal distribution with the MLE as its mean and the inverse of the second
derivative of the negative log-likelihood function evaluated at the MLE as its covariance. In addition, the standard large
sample theory for ML holds, including consistency, asymptotic normality with the covariance being the inverse of the
second derivative of the negative log-likelihood function evaluated at the true parameter value. Second, all candidate
models are correctly specified, at least asymptotically.

Unfortunately, the Bernstein–von Mises theorem and the standard large sample theory for ML may not hold for latent
variables in many latent variable models. Moreover, the assumption that all candidate models are asymptotically correctly
specified is too strong. In Section 4 we deal with the latent variables models and in Section 5 we relax the assumption of
correct model specification.
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3. DIC for latent variable models

3.1. MCMC and data augmentation

A typical hierarchical model used in economics and finance involves latent variables. Latent variables have figured
prominently in consumption decision, investment decision, labor force participation, the conduct of monetary policy,
indices of economic activity, inflation dynamics, and other economic, business and financial activities and decisions.
Not surprisingly, latent variable models have been widely used in financial econometrics, macroeconometrics and
microeconometrics. For example, in financial econometrics it is often found that values of stocks, bonds, options, futures,
and derivatives are often determined by a small number of factors. These factors, such as the level, the slope and the
curvature in the term structure of interest rates, are latent. In macroeconomics, a well-known recent example of latent
variable models is the dynamic factor model. Based on macroeconomic theory, the dynamic factor model attempts to
explain aggregate economic phenomena by taking into account the fact that the economy is affected by some important
factors. In microeconometrics, many discrete choice models and panel data models involve unobserved variables to
capture observed heterogeneity across economic entities (Norets, 2009; Stern, 1997).

Let y be the observed data and z = (z1, z2, . . . , zn)′ be the latent variables.1 Let a latent variable model be indexed by
a set of P parameters, θ ∈ Θ ⊆ RP . Let p(y|θ) be the likelihood function of the observed data (denoted the observed-data
likelihood), and p(y, z|θ) be the complete-data likelihood function. The relationship between the two functions is:

p(y|θ) =

∫
p(y, z|θ)dz. (8)

Typically the integral in (8) does not have a closed-form solution. Consequently, the ML method and hence, AIC are difficult
to use as it requires calculations of p(y|θ) for each value of θ during numerical optimizations.

If the Bayesian posterior analysis is conducted based on the observed-data likelihood, p(y|θ), one would end up with
the same problem as in ML since p(y|θ) does not have a closed-form expression and, hence, the calculation of ln p(y|θ)
for each MCMC draw is very time-consuming. An alternative way to conduct the Bayesian posterior analysis is based on
p(y|θ, z) (i.e. the conditional likelihood) which is often available in closed-form. In the conditional likelihood, we treat z
in the same way as θ. In the Bayesian literature, this parameter expansion technique based on p(y|θ, z) is known as data
augmentation; see Tanner and Wong (1987) for further details. The closed-form expression of p(y|θ, z) greatly facilitates
MCMC sampling from the joint posterior distribution p(θ, z|y). After a sufficiently long period for a burn-in phase, the
simulated random samples can be regarded as random observations from the joint distribution. The statistical analysis
can be established from these simulated posterior random observations. As a by-product of the Bayesian analysis, one
also obtains MCMC samples for the latent variables z. From the above discussion, it can be seen that data augmentation
is the key technique for conducting the Bayesian posterior analysis of latent variable models, making MCMC a powerful
alternative to ML as an estimation technique.

When the observed-data likelihood p(y|θ) is not available in closed-form, DIC based on p(y|θ) is very difficult to obtain,
although the MCMC samples from p(θ, z|y) are available. That explains why the widely-used DIC is obtained from the
conditional likelihood p(y|θ, z) but not from p(y|θ) when there are latent variables in a candidate model. In fact, it is the
default choice if one uses WinBUGS, a popular Bayesian software. As acknowledged in Spiegelhalter et al. (2014), this
default way of calculating DIC from p(y|θ, z) for latent variable models “is only to make the technique computationally
feasible”.

Unfortunately, when the DIC is calculated from p(y|θ, z), the Bernstein–von Mises theorem and the standard ML large
sample theory do not hold for latent variables. In fact, the posterior distribution of latent variables may not be normally
distributed as the sample size goes to infinity. The posterior means of latent variables may not be close to the MLE even
asymptotically. The MLE of latent variables may not be consistent. As a result, the asymptotic justification developed in
Li et al. (2017) is no longer applicable.

The problem of calculating DIC from p(y|θ, z) has been pointed out in the literature. For example, Millar (2009)
documented strong evidence of the poor performance of DIC in negative binomial and Poisson-lognormal models using
simulated data. He found that DIC almost always prefers the Poisson-gamma model instead of the Poisson-lognormal
model, even when data are simulated from a Poisson-lognormal model. Millar and McKechnie (2014) documented strong
evidence of the poor performance of DIC in state-space models using simulated data. Chan and Grant (2016a,b) showed
that, in the context of stochastic volatility models, DIC tends to favor overfitted models using simulated data.

3.2. DIC for latent variable models

As described in Section 3.1, in a latent variable model, there are three types of variables, the observed data y, the
latent variables z, and the parameters θ. In the frequentist framework, the likelihood function, p(y|θ) =

∫
p(y, z|θ)dz, is

1 Although we assume that the number of latent variables is the same as that of the observed data points, such an assumption may be relaxed.
A more general assumption is that the number of latent variables grows proportionally with that of the observed data points. In this more general
case, the theory discussed below continues to hold.
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clearly defined. In this case, only θ, not z, are treated as parameters. In the Bayesian framework, however, three likelihood
functions may be used, p(y|θ), p(y, z|θ), and p(y|θ, z) which correspond to the observed-data likelihood, the complete-data
likelihood, and the conditional likelihood. Using the terminology of Celeux et al. (2006), DIC based on p(y|θ) and p(y|θ, z)
can be written, respectively, as

DIC1 = −2 ln p(y|Eθ|y (θ)) + 2
{
−2Eθ|y [ln p(y|θ)] + 2 ln p(y|Eθ|y (θ))

}
:= D

(
θ̄
)
+ 2PD,1,

DIC7 = −2 ln p(y|Eθ,z|y (θ, z)) + 2
{
−2Eθ,z|y [ln p(y|θ, z)] + 2 ln p(y|Eθ,z|y (θ, z))

}
:= D

(
θ̄,z
)
+ 2PD,7.

DIC1 is monitored and reported in WinBUGS when there is no latent variable. To compute DIC1, we approximate
Eθ|y [ln p(y|θ)] by 1

J

∑J
j=1 ln p

(
y|θ(j)). This approximation error can be made arbitrarily small for a large J . When p(y|θ)

be available in closed-form, 1
J

∑J
j=1 ln p

(
y|θ(j)) is easy to compute once the MCMC samples

{
θ(j)}J

j=1 are available even
when J is very large. When there is no latent variable, p(y|θ) is often available in closed-form.

Unfortunately, for many latent variable models, such as state-space models, p(y|θ) is not available in closed-form. In
this case, DIC1 is difficult to compute because it needs to evaluate p(y|θ) for J times. Given that J is usually large, computing
1
J

∑J
j=1 ln p

(
y|θ(j)) without an analytical expression for ln p(y|θ) is time-consuming, making D

(
θ̄
)
and especially PD,1

difficult to obtain. In DIC7, the latent variables are regarded as parameters, and ln p(y|θ, z) often has an analytical
expression. Hence, it is easy to compute 1

J

∑J
j=1 ln p

(
y|z(j), θ(j)) once the MCMC samples

{
θ(j), z(j)

}J
j=1 are available. Clearly,

1
J

∑J
j=1 ln p

(
y|z(j), θ(j)) can arbitrarily well approximate D

(
θ̄,z
)
for large J . That is why, when there are latent variables,

data augmentation is used to obtain Markov chains for both z and θ. Following the suggestion of Spiegelhalter et al.
(2002), DIC7 is monitored and reported in WinBUGS for latent variable models. Clearly, the use of DIC7 is for computational
convenience.

However, from a theoretical viewpoint, DIC7 has a few problems. First and foremost, with data augmentation, the
dimension of the parameter space is much bigger, increasing from P to n+P . Since the dimension of the parameter space
grows proportionally with the number of data points, the conditional likelihood p(y|θ, z) is not regular, and it leads to the
well-known incidental parameter problem in econometrics where information about these incidental parameters stops
accumulating after a finite number of observations, often one, have been taken; see for example Neyman and Scott (1948)
and Lancaster (2000). In this case, the MLE is inconsistent. Similarly, the Bernstein–von Mises theorem becomes invalid;
see Page 89–90 of Gelman et al. (2013). Therefore, DIC7 lacks frequentist justification. In fact, DIC7 may not provide an
asymptotically unbiased estimator of the KL divergence. For the same reason, if AIC is constructed based on p(y|θ, z), then
AIC would not provide an asymptotically unbiased estimator of the KL divergence.

To give an example where DIC7 provide an asymptotically biased estimator of the KL divergence, let yi|αi, σ
2

∼

N(αi, σ
2), αi ∼ N(0, 1) for i = 1, . . . , n. Clearly yi|σ 2

∼ N(0, σ 2
+ 1) and thus the MLE of σ 2 is σ̂ 2

=
1
n

∑n
i=1 y

2
i − 1.

It is straightforward to show σ̂ 2 is
√
n-consistent and asymptotically normally distributed. However, if {αi}

n
i=1 are treated

as parameters, they are incidental in the sense of Neyman and Scott (1948). The MLE of αi is α̂i = yi ∼ N(αi, σ
2) which is

correctly centered at αi but inconsistent as the variance of MLE does not go to zero as n grows. If σ 2
= 1 and is assumed

to be known, then P = n and the posterior distribution is αi|yi ∼ N (0.5yi, 0.5). The posterior mean (which is also the
posterior mode) is αi = 0.5yi which is not centered at the MLE. The posterior variance is 0.5 which does not go to zero
as n grows. Clearly, both the standard ML large sample theory and the Bernstein–von Mises theorem fail to hold. These
results are not surprising since only one observation (yi) contains information about αi.

Let α = (α1, α2, . . . , αn)′ and α̃(y) be an estimator of α. By evaluating (3) we have

KL
[
g
(
yrep

)
, p
(
yrep|α̃(y)

)]
= Eyrep

[
ln

g
(
yrep

)
p
(
yrep|α̃ (y)

)]
= C −

∫
ln p

(
yrep|α̃(y)

)
g(yrep)dyrep

= C +

[
n
2
ln(2πσ 2) +

n
(
σ 2

+ 1
)

2σ 2 +

n∑
i=1

α̃2
i (y)
2σ 2

]
. (9)

When σ 2
= 1, by plugging the MLE of αi (i.e., α̂i = yi) into (9), multiplying both sides by 2 and taking expectation with

respect to y, we have

EKLML = n ln(2π ) + 2n +

n∑
i=1

E
(
y2i
)

= n ln(2π ) + 4n.

However,

Ey(AIC) = Ey
(
−2 ln p

(
y|α̂1, . . . , α̂n

))
+ 2n = n ln(2π ) + 2n.
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Similarly, by plugging the posterior mean of αi (i.e., αi = 0.5yi) into (9), multiplying both sides by 2 and taking expectation
with respect to y, we have

EKLB = n ln(2π ) + 2n +

n∑
i=1

E
(
y2i
)

4
= n ln(2π ) + 2.5n.

However,

PD,7 = −2
∫

[ln p(y|α) − ln p (y|α1, . . . , αn)] p(α|y)dα

= −2
∫

[ln p(y|α)] p(α|y)dα + 2 ln p (y|α1, . . . , αn)

=

n∑
i=1

∫
(yi − αi)2p(αi|yi)dαi −

∑n
i=1 y

2
i

2

=

n∑
i=1

[
1
2

+
y2i
4

]
−

∑n
i=1 y

2
i

2
=

n
2

−

∑n
i=1 y

2
i

4
,

Ey (DIC7) = Ey (−2 ln p (y|α1, . . . , αn)+ 2PD)

= Ey

(
n ln(2π ) +

∑n
i=1 y

2
i

2
+ 2PD

)
= n ln(2π ) + n.

Thus,

EKLML = Ey(AIC) + 2n, (10)

EKLB = Ey(DIC7) + 1.5n, (11)

Ey(PD,7) = 0 ̸= n + o(1), (12)

Ey(AIC − DIC7) = n ̸= op(1). (13)

According to (10) and (11), both AIC and DIC7, if calculated from the conditional likelihood, provide the asymptotically
biased estimation of the corresponding expected KL divergence minus 2C . According to (12), on average the effective
number of parameter (PD,7) is zero. According to (13), on average AIC differs from DIC7 by n. All these observations are
at odds with the theory discussed earlier. The source of the problem lies in the presence of latent variables.

Second, sometimes a statistical model without latent variables can be represented by another model with latent
variables. A leading example is the Student t distribution which can be rewritten as a normal–inverse-gamma distribution
where the variance is assumed to follow an inverse-gamma distribution and hence, is treated as a latent variable. These
two equivalent representations, even under the same priors, often lead to very different DIC values. The reason for this
sharp discrepancy is that in the model without latent variables, DIC1 is used while in the model with latent variables,
DIC7 is used. This problem arises in Section 8.2 of Spiegelhalter et al. (2002) and in Model 8 of Berg et al. (2004).

Third, due to data augmentation, the dimension of the parameter space becomes much larger and hence, DIC7
is expected to be sensitive to transformations of latent variables. To illustrate this problem, we consider a simple
transformation of latent variables in the well-known Clark model (Clark, 1973) which is given by,

Model 1 : yt ∼ N(µ, exp(ht )), ht ∼ N(0, σ 2), t = 1, . . . , n. (14)

An equivalent representation of the model is

Model 2 : yt ∼ N(µ, σ 2
t ), σ

2
t ∼ LN(0, σ 2), t = 1, . . . , n, (15)

where LN denotes the log-normal distribution. In both models there are latent variables. In Model 2 the latent variable is
the volatility σ 2

t while the latent variable is the log-volatility ht = ln σ 2
t in Model 1. Hence, following the usual practice

in the literature, DIC7 is the relevant version. Since the two models are identical, we expect the two models give the
same DIC7 value. To calculate DIC7, we simulate 1000 observations from the model with µ = 0, σ 2

= 0.5. Vague
priors are selected for the two parameters, namely, µ ∼ N(0, 100) , σ−2

∼ Γ (0.001, 0.001). We run Gibbs sampler
to make 240,000 simulated draws from the posterior distributions. The first 40,000 are discarded as burn-in samples.
The remaining observations with every 10th observation are collected as effective observations for statistical inference.
With data augmentation, the latent variables, ht and σ 2

t are regarded as parameters, and we find that PD,7 = 89.806 and
DIC7 = 2884.37 for Model 1 but PD,7 = 59.366 and DIC7 = 2852.85 for Model 2. These differences are very large. Given
that we have identical models and priors and use the same dataset, the vast differences suggest that DIC7 and PD,7 are
very sensitive to transformations of latent variables.

To summarize the problems with DIC7 in the context of latent variable models, while DIC7 is easier to calculate and
has been used widely in practice, it suffers from several theoretical problems. While DIC1 has rigorously theoretical
justification, it is very hard to compute from MCMC output since p(y|θ) is not available in closed-form.
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3.3. DICL for latent variable models

Based on the discussion above, there is a great need to introduce a new Bayesian model selection criterion that has
a valid justification and applies to general latent variable models and feasible to compute. In this section, we propose a
new version of DIC, DICL.

When p
(
yrep|y

)
in (3) is chosen to be the plug-in distribution p

(
yrep|θ̄(y)

)
, where θ̄(y) is the posterior mean of θ (we

simply write θ̄(y) as θ̄ when there is no confusion), DICL is defined as,2

DICL = D(θ̄) + 2PL, (16)

PL = tr
{
I(θ̄)V (θ̄)

}
, (17)

where tr denotes the trace of a matrix and

I(θ) = −
∂2 ln p(y|θ)
∂θ∂θ′

, V (θ̄) = E
[(

θ − θ̄
) (

θ − θ̄
)′

|y
]
.

Clearly, the leading term in DICL is the same as that in DIC1. However, the penalty term in DIC1 is 2PD while it is 2PL in
DICL.

To justify DICL, we will develop the large sample properties under some regularity conditions in the same manner
as how DIC1 was justified by Li et al. (2017). In particular, we will show that DICL can approximate AIC, and PL can
approximate P . Moreover, we will show that DICL provides the asymptotically unbiased estimation of the KL divergence
minus 2C .

Let yt := (y0, y1, . . . , yt ) for any 0 ≤ t ≤ n and lt
(
yt , θ

)
= ln p(yt |θ) − ln p(yt−1

|θ) be the log-likelihood for the tth
observation for any 1 ≤ t ≤ n. When there is no confusion, we suppress lt

(
yt , θ

)
as lt (θ) so that ln p(y|θ) =

∑n
t=1 lt (θ).

3

And define l(j)t (θ) to be the jth derivative of lt (θ) and l(j)t (θ) = lt (θ) when j = 0. The Lp-norm of a random matrix X is

defined as ∥X∥p =

(∑
i
∑

j E
⏐⏐Xij
⏐⏐p)1/p, and ∥X∥ denotes the Euclidean norm of the appropriate dimension. We introduce

the following functions

s(yt , θ) :=
∂ ln p(yt |θ)

∂θ
=

t∑
i=1

l(1)i (θ) , H(yt , θ) :=
∂2 ln p(yt |θ)
∂θ∂θ′

=

t∑
i=1

l(2)i (θ) ,

st (θ) := l(1)t (θ) = s(yt , θ) − s(yt−1, θ), Ht (θ) := l(2)t (θ) = H(yt , θ) − H(yt−1, θ),

Bn (θ) := Var

[
1

√
n

n∑
t=1

l(1)t (θ)

]
, H̄n(θ) :=

1
n

n∑
t=1

Ht (θ),

J̄n(θ) :=
1
n

n∑
t=1

st (θ)st (θ)′,Hn(θ) :=

∫
H̄n(θ)g (y) dy, Jn(θ) =

∫
J̄n(θ)g (y) dy.

In this paper, as in Li et al. (2017), we impose the following regularity conditions.

Assumption 1. Θ ⊂ RP is compact.

Assumption 2. {yt}∞t=1 satisfies the strong mixing condition with the mixing coefficient α (m) = O
(
m

−2r
r−2 −ε

)
for some

ε > 0 and r > 2.

Assumption 3. For all t , lt (θ) satisfies the standard measurability and continuity condition, and the eight-times differen-
tiability condition on F t

−∞
× Θ where F t

−∞
= σ (yt , yt−1, . . .).

Assumption 4. For j = 0, 1, 2, for any θ, θ′
∈ Θ ,

l(j)t (θ)− l(j)t
(
θ′
) ≤ c jt

(
yt
) θ − θ′

 in probability, where c jt
(
yt
)
is a

positive random variable with supt

c jt (yt)
1
< ∞ and 1

n

∑n
t=1

(
c jt
(
yt
)
− E

(
c jt
(
yt
))) p

→ 0.

Assumption 5. For j = 0, 1, . . . , 8, there exists a function Mt (yt ) such that for all θ ∈ Θ , l(j)t (θ) exists, supθ∈Θ

l(j)t (θ) ⩽

Mt (yt ), and supt

Mt (yt )

r+δ ≤ M < ∞ for some δ > 0, where r is the same as that in Assumption 2.

2 To estimate DIC, DICL and DICM , one needs to estimate several population quantities. To ensure the sample counterparts of population quantities
from MCMC draws converge, proper conditions are needed. For example, a sufficient condition, originally due to Meyn and Tweedie (2012), is the
Harris ergodicity. For the sake of space, throughout this paper we assume MCMC draws are well-behaved and Harris ergodic.
3 In the definition of log-likelihood, we ignore the initial condition ln p(y0). For weakly dependent data, the impact of the initial condition is

asymptotically negligible.
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Assumption 6.
{
l(j)t (θ)

}
is L2-near epoch dependent with respect to {yt} of size −1 for 0 ⩽ j ⩽ 1 and −

1
2 for j = 2

uniformly on Θ .

Assumption 7. Let θp
n be the pseudo-true value that minimizes the KL loss between the DGP and the candidate model

θp
n = argmin

θ∈Θ

1
n

∫
ln

g(y)
p(y|θ)

g(y)dy,

where
{
θp
n

}
is the sequence of minimizers interior to Θ uniformly in n and limn→∞ θp

n ∈Int(Θ). For all ε > 0,

lim
n→∞

sup sup
Θ\N

(
θ
p
n,ε
) 1
n

n∑
t=1

{
E [lt (θ)] − E

[
lt
(
θp
n

)]}
< 0, (18)

where N
(
θp
n, ε
)
is the open ball of radius ε around θp

n.

Assumption 8. The sequence
{
Hn
(
θp
n

)}
is negative definite and the sequence

{
Bn
(
θp
n

)}
is positive definite, both uniformly

in n.

Assumption 9. Hn
(
θp
n

)
+ Bn

(
θp
n

)
= o (1).

Assumption 10. The prior density p(θ) is eight-times continuously differentiable, p(θp
n) > 0 and

∫
∥θ∥2 p(θ)dθ < ∞.

Remark 3.1. Assumption 1 is the compactness condition. Assumptions 2 and 6 imply weak dependence in yt and lt .
The first part of Assumption 3 is the continuity condition. Assumption 4 is the Lipschitz condition for lt first introduced
in Andrews (1987) to develop the uniform law of large numbers for dependent and heterogeneous stochastic processes.
Assumption 5 contains the dominance condition for lt . Assumption 7 is the identification condition used in Gallant and
White (1988). These assumptions are well-known primitive conditions for developing the ML theory, namely consistency
and asymptotic normality, for dependent and heterogeneous data; see, for example, Gallant and White (1988) and
Wooldridge (1994).

Remark 3.2. A measurable function of a mixing process is mixing if the function only depends on finite number of lagged
values of the mixing process (Gallant and White, 1988). In most latent variable models, however, the likelihood function
and the score function depend on the distant past or future of the process. Assumption 6 is used to control the dependence
of the function; see Gallant and White (1988), Davidson (1992, 1993), de Jong (1997).

Remark 3.3. The eight-times differentiability condition in Assumption 3 and the domination condition for up to the
eighth derivative of lt in Assumption 5 are important to develop a high order stochastic Laplace expansion. In particular,
as shown in Kass et al. (1990), these two conditions, together with the well-known consistency condition for ML given by
(19) below, are sufficient for developing the Laplace expansion. This consistency condition requires that, for any ε > 0,
there exists K1 (ε) > 0 such that

lim
n→∞

Pr

⎛⎝ sup
Θ\N

(
θ
p
n,ε
) 1
n

n∑
t=1

[
lt (θ)− lt

(
θp
n

)]
< −K1 (ε)

⎞⎠ = 1. (19)

Our Assumption 7 is clearly more primitive than the consistency condition (19). In the following lemma, we show that
Assumptions 1–7, including the identification condition (18), are sufficient to ensure (19) as well as the concentration
condition around the posterior mode given by Chen (1985) and the concentration condition around the MLE given by Kim
(1994, 1998). Together with Assumption 10, the concentration condition suggests that the stochastic Laplace expansion
can be applied to the posterior distribution and the asymptotic normality of posterior distribution can be established.

Remark 3.4. Assumption 9 gives the exact requirement for a good model. It generalizes the definition of “information
matrix equality”; see White (1996). It was used in Li et al. (2017) to show that AIC and DIC provide the asymptotically
unbiased estimation of the KL divergence minus 2C . However, as we will show soon, Assumption 9 is not required to
establish the asymptotic equivalence between DIC and AIC.

Remark 3.5. Assumption 10 ensures the second moment of the prior is finite. As argued in Geweke and Keane (2001),
such a condition typically leads to a finite second moment of posterior. Moreover, it implies that the prior is negligible
asymptotically.



458 Y. Li, J. Yu and T. Zeng / Journal of Econometrics 216 (2020) 450–493

Lemma 3.1. If Assumptions 1–7 hold true, then Eq. (19) holds. Furthermore, if Assumptions 1–7 hold true, for any ε > 0,
there exists K2 (ε) > 0 such that

lim
n→∞

Pr

⎛⎝ sup
Θ\N

(
θ̂,ε
) 1
n

[
n∑

t=1

lt (θ)−

n∑
t=1

lt
(
θp
n

)]
< −K2 (ε)

⎞⎠ = 1. (20)

Lemma 3.2 gives a high order approximation to the posterior mean and the posterior variance based on a high order
Laplace expansion. To apply the Laplace expansion, we need to fix more notations. For convenience of exposition, we let
H
(j)
n (θ) =

1
n

∑n
t=1 l

(j)
t (θ) for j = 3, 4, 5. Let π (θ) = ln p (θ), p(j) (θ), π (j) (θ) be the jth order derivatives of p (θ), π (θ) for

j = 1, 2, and p̂, π̂ , p̂(j) and π̂ (j) be the values of functions p (θ), π (θ), p(j) (θ) and π (j) (θ) evaluated at θ̂(y). When there is
no confusion, we write θ̂(y) as θ̂.

Lemma 3.2. Let Var(θ|y) = E
[
(θ − θ̄)(θ − θ̄)′|y

]
be the posterior variance of θ. Under Assumptions 1–8 and 10, it can be

shown that

θ̄ = θ̂ +
1
n
B1
1 +

1
n2

(
B1
2 − B1

3

)
+ Op

(
1
n3

)
,

vec [Var(θ|y)] = −
1
n
vec

(
H̄−1

n (θ̂)
)

+
1
n2 (F1 + F2) + Op

(
1
n3

)
,

where B1
1 is defined in (53), B1

2 defined in (55), B1
3 = B1

1 × B1
4, B

1
4 defined in (62), F1 defined in (76), F2 defined in (77) with vec

denoting the column-wise vectorization of a matrix.

Remark 3.6. Under the different regularity conditions, the Bernstein–von Mises theorem states that the posterior
distribution converges to a normal distribution with the MLE as its mean and the inverse of the second derivative of
the negative log-likelihood function evaluated at the MLE as its variance. Based on the Bernstein–von Mises theorem,
when the parameter is one-dimensional, Ghosh and Ramamoorthi (2003) developed similar results with Lemma 3.2 for
the iid case. In particular, Ghosh and Ramamoorthi (2003) showed that

θ̄ − θ̂ = op(n−1/2), Var(θ|y) +
1
n
H̄−1

n

(
θ̂
)

= op(n−1).

Our Lemma 3.2 extends the results of Ghosh and Ramamoorthi (2003) in three aspects: (1) to the weakly dependent case;
(2) to the multi-dimensional case; (3) giving the exact order of the first and second moments of the difference between
the posterior distribution and the asymptotic normal distribution. From Lemma 3.2, we have

θ̄ − θ̂ = Op(n−1), Var(θ|y) +
1
n
H̄−1

n

(
θ̂
)

= Op(n−2).

Based on this lemma, we can obtain the exact order of the difference between DICL and AIC as follows.

Theorem 3.1. Under Assumptions 1–8 and 10, we have

PL = P +
1
n
C1 +

1
n
C2 + Op

(
1
n2

)
,

DICL = AIC +
1
n
D1 +

1
n
D2 + Op

(
1
n2

)
,

where

C1 =
1
2
C11 −

1
2
C12, C2 = −C22,

D1 = C11 +
5
4
C12, D2 = C21 − 2C22 − C23,

C11 = tr
[(

H̄−1
n

(
θ̂
)

⊗ vec
(
H̄−1

n

(
θ̂
))′
)
H̄(4)n

(
θ̂
)]
,

C12 = vec
(
H̄−1

n

(
θ̂
))′

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
)
H̄(3)n

(
θ̂
)′

vec
(
H̄−1

n

(
θ̂
))
,

C21 = π (1)
(
θ̂
)′

H̄−1
n

(
θ̂
)
H̄(3)n

(
θ̂
)′

vec
(
H̄−1

n

(
θ̂
))
,

C22 = tr
[
H̄−1

n

(
θ̂
)
π (2)

(
θ̂
)]
, C23 = π (1)

(
θ̂
)′

H̄−1
n

(
θ̂
)
π (1)

(
θ̂
)
.
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Corollary 3.2. Under Assumptions 1–10, we have

Ey
{
2 × KL

[
g
(
yrep

)
, p
(
yrep|θ̄

)]}
= 2C + Ey

[
−2 ln p

(
y|θ̄
)
+ 2PL

]
+ o(1)

= 2C + Ey (DICL)+ o(1).

Remark 3.7. In Equation (15) on Page 590, Spiegelhalter et al. (2002) obtained the expression for PL and claimed that
PL approximates PD in DIC1 and P in AIC. Unfortunately, to the best of our knowledge, PL has never been implemented
in practice, and WinBUGS does not report PL. Moreover, the conditions under which PL ≈ PD ≈ P holds true were not
specified in Spiegelhalter et al. (2002). The order of the approximation error was unknown. According to Theorem 3.1,
the difference between P and PL and that between AIC and DICL are both Op(n−1). Furthermore, combined with Lemma
3.3 in Li et al. (2017), we can show that the approximation error between PD and PL and that between DIC1 and DICL are
both Op(n−1).

Remark 3.8. Without Assumption 9, Theorem 3.1 clearly shows that the difference between AIC and DICL is Op(n−1). For
this reason, both DICL and DIC1 can be regarded as the Bayesian version of AIC. When the prior is informative and the
sample size is finite, DICL may give a different value from AIC. Like DIC1, an important feature of DICL is that it provides
an approach to measure the model complexity when the informative prior is available. According to Theorem 3.1, an
alternative version of DIC, with or without a latent variable, is D(θ̄)+ 2P . In this case, the penalty term does not take into
account the prior information.

Remark 3.9. Corollary 3.2 is the direct result of Theorem 3.1 and Theorem 3.1 of Li et al. (2017). Since the frequentist
justification of DIC and AIC needs Assumption 9, it is also needed to justify DICL as in Corollary 3.2. As DIC1, DICL is an
asymptotically unbiased estimator of the expected KL divergence minus 2C . Hence, DICL selects a model that minimizes
the expected KL divergence between the DGP and the plug-in predictive distribution. The smaller the value of DICL, the
better the predictive performance of the candidate latent variable model.

Remark 3.10. From the discussion above, DIC1 and DICL share the same asymptotic properties. However, as explained
before, there is an important difference between DIC1 and DICL, that is, the penalty term takes a different expression. It
is this difference that makes DICL easier to compute from MCMC output. To compute PD,1 in DIC1, one has to evaluate
1
J

∑J
j=1 ln p

(
y|θ(j)) and hence calculate p

(
y|θ(j)) for J times. For latent variable models, since p

(
y|θ(j)) is not available in

closed-form, the computational cost is high. However, to compute PL in DICL, one needs to evaluate the second derivative
of observed-data likelihood only once, which is computationally much less expensive. In Section 4.3, we will introduce
some efficient algorithms to evaluate D

(
θ̄
)
and I

(
θ̄
)
.

Remark 3.11. In the context of latent variable models, while DIC7 is trivial to calculate but cannot be justified, DIC1
is justified but hard to compute. DICL solves this dilemma because it is justified and inexpensive to compute. The
corresponding deviance is based on the observed-data likelihood function and the latent variables are not treated as
parameters. It is important to point out that DICL is computed from MCMC output. While DICL does not treat latent
variables as parameters, MCMC output may be obtained based on the data augmentation technique without affecting the
asymptotic justification of DICL. Returning to the Clark model, with the same setting as before, we get PL = 1.75 for Model
1 and PL = 1.80 for Model 2. There is no significant difference between them. Moreover, these two values are close to
2, which is the actual number of parameters in the model. This result is what we expect given that the vague priors are
used. The small difference between PL and P arises due to the simulation error and the priors.

3.4. Computing DICL for latent variable models

To calculate DICL, one needs to calculate p(y|θ) and its derivatives with respect to θ (but there is no need to optimize
p(y|θ)). Since there is no analytical expression for p(y|θ) for many latent variable models, in this section, we show how
to use the EM algorithm, the Kalman filter, and the particle filters to calculate p(y|θ) and its derivatives with respect to θ.

3.4.1. Computing DICL by the EM algorithm
In this subsection, we show how the EM algorithm may be used to evaluate p(y|θ̄), the second derivative of the

observed-data likelihood function, and hence DICL for the latent variable models. The EM algorithm is a powerful tool
to deal with latent variable models. Instead of maximizing the observed-data likelihood function, the EM algorithm
maximizes the so-called Q function given by

Q(θ|θ(r)) = Eθ(r){Lc(y,z|θ)|y, θ(r)
}, (21)

where Lc(y,z|θ) := ln p(y, z|θ) is the complete-data likelihood function. The Q function is the conditional expectation
of Lc(y,z|θ) with respect to the conditional distribution p(z|y, θ(r)) where θ(r) is a current fit of the parameter. The EM
algorithm consists of two steps: the expectation (E) step and the maximization (M) step. The E-step evaluates Q(θ|θ(r)).
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The M-step determines a θ(r) that maximizes Q(θ|θ(r)). Under some mild regularity conditions, for large enough r , {θ(r)
}

obtained from the EM algorithm is the MLE, θ̂. For more details about the EM algorithm, see Dempster et al. (1977).
Although the EM algorithm is a good approach to dealing with latent variable models, the numerical optimization

in the M-step is often unstable. Not surprisingly, the EM algorithm has been less popular to estimate latent variables
models compared with MCMC techniques. However, we will show that, without numerical optimizations in the M-step,
the theoretical properties of the EM algorithm facilitate the computation of DICL for latent variable models.

It is noted that for any θ and θ
∗

in Θ , let H(θ|θ
∗

) =
∫
ln p(z|y, θ)p(z|y, θ

∗

)dz, the so-called H function in the EM
algorithm. It was shown in that

ln p(y|θ) = Q
(
θ|θ

∗
)

− H
(
θ|θ

∗
)
.

Hence, ln p(y|θ̄) may be obtained as

ln p(y|θ̄) = Q(θ̄|θ̄) − H(θ̄|θ̄). (22)

It can be seen that even when Q(θ̄|θ̄) is not available in closed form, it is easy to evaluate from MCMC output because

Q(θ̄|θ̄) =

∫
ln p(y, z|θ̄)p(z|y, θ̄)dz ≈

1
M

M∑
m=1

ln p
(
y, z(m)

|θ̄
)
,

where {z(m)
}
M
m=1 are drawn from the posterior distribution p(z|y, θ̄).

For the second term in (22), if p(z|y, θ̄) is a standard distribution, H(θ̄|θ̄) can be easily evaluated from MCMC output
as

H(θ̄|θ̄) =

∫
ln p(z|y, θ̄)p(z|y, θ̄)dz ≈

1
M

M∑
m=1

ln p
(
z(m)

|y, θ̄
)
.

However, if p(z|y, θ̄) is not a standard distribution, an alternative approach has to be used, depending on the specific
model in consideration. We now consider two situations.

First, if the complete-data (yi, zi) are independent when i ̸= j, and zi is low-dimensional, say ≤ 5, then a nonparametric
approach may be used to approximate p(z|y, θ). Note that

H(θ|θ) =

∫
ln p(z|y, θ)π (z|y, θ)dz =

n∑
i=1

∫
ln p(zi|yi, θ)π (zi|y, θ)dzi =

n∑
i=1

Hi(θ|θ).

Computation of Hi(θ|θ) requires an analytic approximation to p(zi|yi, θ) via a nonparametric method. In particular, MCMC
allows one to draw some effective samples from p (zi|yi, θ). Using these random samples, one can then use nonparametric
techniques such as the kernel-based methods to approximate p (zi|yi, θ). In a recent study, Ibrahim et al. (2008) suggested
using a truncated Hermite expansion to approximate p(zi|yi, θ).

As a simple illustration, we apply this method to the Clark model. When the Gaussian kernel method is used, we get
ln p(y|θ̄) = −1448.97, DICL = 2901.46 for Model 1 and ln p(y|θ̄) = −1449.41, DICL = 2902.42 for Model 2. These two sets
of numbers are nearly identical. However, if the latent variable models are regarded as parameters, we get DIC7 = 2884.37
for Model 1 and DIC7 = 2852.85 for Model 2. The highly distinctive difference between them suggests that DIC7 is not a
reliable model selection criterion for the model. Note that DIC1 is very difficult to compute in this case.

Second, for some latent variable models, the latent variables z follow a multivariate normal distribution, and the
observed variables y are independent conditional on z. This class of models is referred to as the Gaussian latent variable
models in the literature. In economics and finance, many latent variable models belong to this class of models, including
dynamic linear models, dynamic factor models, various forms of stochastic volatility models, and credit risk models. In
these models, the observed-data likelihood is non-Gaussian but has a Gaussian flavor in the sense that the posterior
distribution, p(z|y, θ), may be expressed as,

p(z|y, θ) ∝ exp

(
−

1
2
z′V (θ)z +

n∑
i=1

ln p (yi|zi, θ)

)
.

Rue et al. (2004) and Rue et al. (2009) showed that this type of posterior distribution can be well approximated by a
Gaussian distribution via the Laplace approximation, that is,

p(z|y, θ) ∝ exp
(

−
1
2
z′(V (θ) + diag(c))z

)
,

where c comes from the second-order term in the Taylor expansion of
∑n

i=1 ln p(yi|zi) at the mode of p(z|y, θ). The Laplace
approximation may be employed to compute H(θ̄|θ̄). After p(y|θ̄) is obtained, it is easy to obtain D(θ̄). It is important to
point out that the numerical evaluation of p(y|θ̄) is needed only once, that is, at the posterior mean.
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To compute PL, we have to calculate the second derivative of the observed-data likelihood function in PL. Under the
mild regularity condition, Louis (1982) showed that this second derivative may be expressed as:

I(θ) = −
∂2Lo(y|θ)
∂θ∂θ

′
= Ez|y,θ

{
−
∂2Lc(x|θ)
∂θ∂θ

′

}
− Varz|y,θ {S(x|θ)} (23)

= Ez|y,θ

{
−
∂2Lc(x|θ)
∂θ∂θ′

− S(x|θ)S(x|θ)
′

}
+ Ez|y,θ{S(x|θ)}Ez|y,θ{S(x|θ)}′,

where S(x|θ) = ∂Lc(x|θ)/∂θ and all the expectations are taken with respect to the conditional distribution of z given y
and θ.

IfQ function has an analytical expression, Oakes (1999) showed that the second derivative has an equivalent expression

I(θ) = −
∂2Lo(y|θ)
∂θ∂θ

′
=

{
−
∂2Q(θ|θ

∗

)
∂θ∂θ′

−
∂2Q(θ|θ

∗

)

∂θ∂θ∗′

}
θ
∗
=θ

. (24)

If the analytical Q function not available, we may approximate the second derivatives by,

Ez|y,θ

{
−
∂2Lc(x|θ)
∂θ∂θ

′
− S(x|θ)S(x|θ)

′

}
,

≈ −
1
M

M∑
m=1

{
∂2Lc(y, z(m)

|θ)

∂θ∂θ
′

+ S(y, z(m)
|θ)S(y, z(m)

|θ)
′

}
,

Ez|y,θ{S(x|θ)} ≈
1
M

M∑
m=1

S(y, z(m)
|θ),

where {z(m),m = 1, 2, . . . ,M} are random observations drawn from p(z|y, θ).
Although the EM algorithm is a very general approach to analyzing latent variable models, it is very cumbersome

to deal with dynamic latent variable models, such as state-space models, because we have to compute the derivatives
recursively (Doucet and Shephard, 2012). Alternatively, one can compute DICL using the Kalman filter and particle filters.

3.4.2. Computing DICL by the Kalman filter
In economics, many time series models can be represented by a linear Gaussian state-space form. The Kalman filter is

an efficient recursive method for computing the optimal linear forecasts in such models. It also gives the exact likelihood
function of the model. Here, we only present the basic idea of the Kalman filter for analyzing linear state-space models.
One may refer to Harvey (1989) for the detailed textbook treatment.

Consider a general linear state-space model,

zt = Tzt−1 + Rεt , yt = D + Czt + ξt ,

where εt ∼ N (0,Q ), ξt ∼ N (0,H), T is ns × ns, R is ns × ne, D is n × 1, C is n × ns, Q is ne × ne, H is n × n. These six
coefficient matrices are functions of a vector of parameters θ which is nq × 1.

Let zst = E (zt |ys), Σ s
t = E{

(
zt − zst

) (
zt − zst

)′
|ys}. With the initial conditions, z00 and Σ0

0 , for t = 1, 2, . . . , n, the Kalman
filter recursively implements the following steps

zt−1
t = Tzt−1

t−1 ,Σ
t−1
t = TΣ t−1

t−1 T
′
+ RQR′,

and

ztt = zt−1
t + Kt

(
yt − D − Czt−1

t

)
,Σ t

t =
[
Ins − KtC

]
Σ t−1

t ,

where

Kt = Σ t−1
t C ′

[
CΣ t−1

t C ′
+ H

]−1
.

The observed-data log-likelihood is given by

ln p(y|θ) = −

n∑
t=1

[
n
2
ln 2π +

1
2
ln |Ft | +

1
2

(
yt − D − Czt−1

t

)′
F−1
t

(
yt − D − Czt−1

t

)]

= −

n∑
t=1

[
n
2
ln 2π +

1
2
ln |Ft | +

1
2
ω′

tF
−1
t ωt

]
,

where Ft = CP t−1
t C ′

+H , ωt = yt − D− Czt−1
t . Clearly, ln p(y|θ) has to be calculated recursively since Ft and zt−1

t are only
available recursively. Similarly, st (θ) and ht (θ) has to be computed recursively. To calculate st (θ) and ht (θ), we need to
calculate the first and second-order derivatives of |Ft |, ω′

tF
−1
t ωt recursively. For details, one can refer to Iskrev (2008).
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3.4.3. Computing DICL by particle filters
In practice, the nonlinear non-Gaussian state-space models have been widely used in empirical works, but they cannot

be analyzed using the Kalman filter. Instead, one can use another class of recursive filtering algorithms known as particle
filters. We only present the basic idea of particle filters here and refer the reader to recent review papers on particle
filters by Doucet and Johansen (2009) and Creal (2012) for greater details.

Let zt+1|zt ∼ f (zt+1|zt , θ) and yt |zt ∼ g (yt |zt , θ). Let the initial density of z be µ (z|θ). The joint density of
(
zt , yt

)
is

p
(
zt , yt |θ

)
= µ (z1|θ)

t∏
k=2

f (zk|zk−1, θ)

t∏
k=1

g (yk|zk, θ) ,

and hence,

p
(
yt |θ

)
=

∫
p
(
zt , yt |θ

)
dzt .

For nonlinear non-Gaussian state-space models, neither p
(
zt |yt , θ

)
nor p

(
yt |θ

)
are available in closed-form. The goal

here is to calculate p
(
zt |yt , θ

)
, p
(
yt |θ

)
, and s(yt , θ) sequentially for t = 1, . . . , n. The idea of using particle filters is to

approximate p
(
zt |yt , θ

)
dzt by its empirical measure. An example of particle filters is the Sequential Important Sampling

and Resampling (SISR) algorithm which iterates the following step for i = 1, . . . ,N ,
Step 1: At t = 1, z(i)1 ∼ µ (·),

w1
(
z1(i)

)
=

µ

(
z(i)1 |θ

)
g
(
y1|z

(i)
1 , θ

)
q1
(
z(i)1
) , W (i)

1 =
w1
(
z1(i)

)∑N
i=1w1

(
z1(i)

) ,
z1(i) = z(i)1 . Resample

(
W (i)

1 , z
1(i)
)
to obtain new particles

( 1
N , z̃

1(i)
)
.

Step 2: At t ≥ 2, z(i)t ∼ qn
(
·|̃zt−1(i)

)
,

wt
(
zt(i)

)
=

f
(
z(i)t |̃z(i)t−1, θ

)
g
(
yt |̃z

(i)
t , θ

)
qt
(
z(i)t |̃zt−1(i)

) , W (i)
t =

wt
(
zt(i)

)∑N
i=1wt

(
zt(i)

) ,
zt(i) =

(̃
zt−1(i), z(i)t

)
. Resample

(
W (i)

t , zt(i)
)
to obtain new particles

( 1
N , z̃

t(i)
)
.

Step 3: Approximate the conditional distribution pθ

(
dzt |yt , θ

)
by its empirical measure

p̂
(
dzt |yt , θ

)
=

N∑
i=1

W (i)
t δzt(i)

(
dzt
)

or p̃θ

(
dzt |yt , θ

)
=

1
N

N∑
i=1

δ̃zt(i)
(
dzt
)
,

and

p̂
(
yt |yt−1, θ

)
=

1
N

N∑
i=1

wt
(
zt(i)

)
,

where N is the number of particles and qt (·|·) is the proposal density.
With the empirical measure

{
p̂
(
dzt |yt , θ

)}
t=1:n, we can approximate the integral

It =

∫
ϕt
(
zt
)
p
(
zt |yt , θ

)
dzt ,

by

Ît =

∫
ϕt
(
zt
)
p̂
(
dzt |yt , θ

)
=

N∑
i=1

W (i)
t ϕt

(
zt(i)

)
,

for t = 1, . . . , n, where ϕt
(
zt
)
is the target function. If ϕt

(
zt
)

= ∂ ln p
(
zt , yt |θ

)
/∂θ, then

s(yt , θ) =

∫
∂ ln p

(
zt , yt |θ

)
∂θ

p
(
zt |yt , θ

)
dzt , −H(yt , θ) = s(yt , θ)s(yt , θ)′ −

∂2p
(
yt |θ

)
/∂θ∂θ′

p (yt |θ)
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where

∂2p
(
yt |θ

)
/∂θ∂θ′

p (yt |θ)
=

∫
∂ ln p

(
zt , yt |θ

)
∂θ

∂ ln p
(
zt , yt |θ

)
∂θ

′

p
(
zt |yt , θ

)
dzt

+

∫
∂2 ln p

(
zt , yt |θ

)
∂θ∂θ′

p
(
zt |yt , θ

)
dzt ,

by the Fisher and Louis identities that are based only on the marginal density p
(
zt |yt , θ

)
(Poyiadjis et al., 2011). Therefore,

s(yt , θ) and H(yt , θ) can be obtained recursively.
Based on different proposal densities qt (·|·), different particle filtering algorithms have been proposed in the literature,

including the bootstrap particle filters of Gordon et al. (1993) and the auxiliary particle filters of Pitt and Shephard (1999).
In this paper, we use the auxiliary particle filters to compute s(yt , θ), H(yt , θ). The details about how to compute them
via particle filters can be found in Poyiadjis et al. (2011) and Doucet and Shephard (2012).

4. DIC for misspecified models

According to Assumption 9, DICL requires all candidate models to be good approximations to DGP. The same
requirement is needed for AIC and DIC1. In most applications, however, this assumption is too strong. Quoting Box (1976),
“all models are wrong, but some are useful.” In this section, following a referee’s suggestion, we relax this assumption
and introduce a new DIC (namely DICM ) to compare misspecified models, namely, when all candidate models violate
Assumption 9. We first develop DICM and obtain its asymptotic properties. Following a suggestion of another referee, we
then discuss BFs and BIC in the context of misspecified models. Finally, we design a simple simulation study to compare
the performance of alternative model selection criteria.

4.1. DICM for misspecified models

The asymptotic justification of AIC and DIC1 requires all candidate models to be correctly specified or good approxi-
mations to the DGP. If a candidate model is misspecified, the expected KL divergence between the DGP and p

(
yrep|θ̂(y)

)
can be expressed as

Ey
{
2 × KL

[
g
(
yrep

)
, p
(
yrep|θ̂(y)

)]}
= 2C + EyEyrep

[
−2 ln p

(
yrep|θ̂(y)

)]
= 2C + Ey

{
−2 ln p

(
y|θ̂(y)

)
− 2tr

{
Bn
(
θp
n

)
H−1

n

(
θp
n

)}}
+ o(1), (25)

where θ̂(y) denotes the MLE of θ in the misspecified model. As before, we write θ̂(y) as θ̂. Note the difference between
(25) and (4) for AIC. Based on (25), TIC is defined as

TIC = −2 ln p
(
y|θ̂
)

+ 2PT , (26)

where PT is a consistent estimator of −tr
{
Bn
(
θp
n

)
H−1

n

(
θp
n

)}
. TIC is an asymptotically unbiased estimator of the expected

KL divergence minus 2C when a candidate model is misspecified. Eq. (26) was first proposed by Takeuchi (1976) for
independent data. Stone (1977) derived the same results from the viewpoint of cross-validation. Clearly, finding a
consistent estimator for −tr

{
Bn
(
θp
n

)
H−1

n

(
θp
n

)}
is critical to TIC.

Under Assumptions 1–8, H̄−1
n

(
θ̂
)
is a consistent estimator for H−1

n

(
θp
n

)
, that is,

H̄−1
n

(
θ̂
)

− H−1
n

(
θp
n

) p
→ 0. (27)

Newey and West (1987) proposed a heteroskedasticity and autocorrelation consistent (HAC) estimator of Bn
(
θp
n

)
defined

by

Ω̄n

(
θ̂
)

=
1
n

n∑
t=1

n∑
τ=1

st
(
θ̂
)
sτ
(
θ̂
)′

k
(
t − τ

γn

)
,

where k(·) is a kernel function and γn is the bandwidth. The penalty term PT then becomes

PT = −tr
{
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
)}
. (28)

To ensure consistency and positive semidefiniteness of Ω̄n

(
θ̂
)
, following de Jong and Davidson (2000), we add three

more assumptions. The first two are about the kernel function and the bandwidth parameter, while the last one is about
the score function st

(
θp
n

)
.
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Assumption 11. Assume the kernel function k (·) ∈ H, where

H =

⎧⎨⎩
k (·) : R → [−1, 1] , k (x) = k (−x) , for any x ∈ R,∫

+∞

−∞
|k (x)| dx < ∞,

∫
+∞

−∞
ψ (ξ) dξ < ∞,

k (·) is continuous at 0 and at all but a finite number of points in R

⎫⎬⎭ ,
where

ψ (ξ) = (2π)−1
∫

+∞

−∞

k (x) eiξxdx.

Assumption 12. The bandwidth parameter γn is an increasing function of sample size n and γn = o
(
n1/2

)
.

Assumption 13. The expectation of the score function E
(
st
(
θp
n

))
= 0 for any t .

Remark 4.1. In Assumption 11, the function class H includes many well-known kernel functions, such as Bartlett, Parzen,
Quadratic Spectral, and Tukey–Hanning kernels. It ensures that Ω̄n

(
θ̂
)

is positive semidefinite with probability 1; see
Andrews (1991). Note that H does not include truncated kernels. If Assumption 9 is satisfied, PT = P + op (1).

Remark 4.2. From Assumptions 1–8, we have
√
n
(
θ̂ − θp

n

)
= Op (1); see Gallant and White (1988). In the online

supplement, we show that our Assumptions 1–8 and 11–13 imply the set of regularity conditions of de Jong and Davidson
(2000) which in turn implies that

Ω̄n

(
θ̂
)

− Bn
(
θp
n

) p
→ 0. (29)

Our assumptions are more primitive than those imposed by de Jong and Davidson (2000). In the same online supplement,
we also show that if Assumption 13 does not hold, it may not be true that Ω̄n

(
θ̂
)

− Bn
(
θp
n

) p
→ 0. Together with (27),

(29) implies that

PT − tr
{
Bn
(
θp
n

)
H−1

n

(
θp
n

)}
= tr

{
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
)}

− tr
{
Bn
(
θp
n

)
H−1

n

(
θp
n

)} p
→ 0. (30)

Hence, the frequentist asymptotic justification of TIC is provided under misspecified models, and the asymptotic justifi-
cation of TIC requires Assumption 13.

Clearly, TIC requires the MLE of θ to be available in the misspecified model. If only MCMC samples for θ are available,
a model selection criterion based on θ̄ is needed. We propose the following DIC to compare misspecified models,

DICM = D
(
θ̄
)
+ 2PM with PM = tr

{
nΩ̄n

(
θ̄
)
V
(
θ̄
)}
, (31)

where V
(
θ̄
)
is the posterior covariance matrix given by V

(
θ̄
)

= E
[(

θ − θ̄
) (

θ − θ̄
)′

|y
]
which, when multiplied by −n,

consistently estimate H−1
n

(
θp
n

)
according to Lemma 3.2 . From Li et al. (2017), we have D

(
θ̄
)

= D
(
θ̂
)

+Op (1/n).4 So the

only thing that remains to be verified is Ω̄n
(
θ̄
)
− Bn

(
θp
n

) p
→ 0.

Theorem 4.1. Under Assumptions 1–8 and 10–12, we have

Ω̄n
(
θ̄
)
− Ω̄n

(
θ̂
)

p
→ 0, (32)

PM = PT +
γn

n
CM
1 +

1
n
CM
2 + Op

(γn
n2

)
, (33)

DICM = TIC +
γn

n
DM
1 +

1
n
DM
2 + Op

(γn
n2

)
, (34)

where γn is defined in Assumption 12 and

CM
1 = vec

(
H̄n

(
θ̂
)−1

)′

Ũ1H̄n

(
θ̂
)−1 p̂(1)

p̂

−
1
2
vec

(
H̄n

(
θ̂
)−1

)′

Ũ1H̄n

(
θ̂
)−1

H̄(3)
n

(
θ̂
)′

vec
(
H̄n

(
θ̂
)−1

)
,

4 While Li et al. (2017) assumed correct model specification, such an assumption is not needed to obtain the relationship between D
(
θ̄
)
and

D
(
θ̂
)
.
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CM
2 = −

1
2n

tr
[
Ω̄n

(
θ̂
)
H̄n

(
θ̂
)−1

(
H̄n

(
θ̂
)−1

⊗ vec
(
H̄n

(
θ̂
)−1

)′)
H̄(4)n

(
θ̂
)]

+
1
2n

tr

⎡⎢⎢⎣ Ω̄n

(
θ̂
)
H̄n

(
θ̂
)−1

H̄(3)n

(
θ̂
)′

×

[(
vec

(
H̄n

(
θ̂
)−1

)′

H̄(3)n

(
θ̂
)
H̄n

(
θ̂
)−1

)′

⊗ H̄n

(
θ̂
)−1

]
⎤⎥⎥⎦

+
1
2n

tr
[
Ω̄n

(
θ̂
)
H̄n

(
θ̂
)−1

H̄(3)n

(
θ̂
)′
[
H̄n

(
θ̂
)−1

⊗ H̄n

(
θ̂
)−1

]
H̄(3)n

(
θ̂
)
H̄n

(
θ̂
)−1

]
−

1
n
tr

[[(
H̄n

(
θ̂
)−1 p̂(1)

p̂

)′

⊗ H̄n

(
θ̂
)−1

]
H̄(3)n

(
θ̂
)
H̄n

(
θ̂
)−1

Ω̄n

(
θ̂
)]

+
1
n
tr
[
Ω̄n

(
θ̂
)
H̄n

(
θ̂
)−1 p̂(2)

p̂
H̄n

(
θ̂
)−1

]
−

1
n
tr

[
Ω̄n

(
θ̂
)
H̄n

(
θ̂
)−1 p̂(1)

p̂
p̂(1)

p̂

′

H̄n

(
θ̂
)−1

]
,

Ũ1 =
1

nγn

n∑
t=1

n∑
τ=1

[
l(2)τ
(
θ̂
)

⊗ st
(
θ̂
)

+ sτ
(
θ̂
)

⊗ l(2)t

(
θ̂
)]

k
(
t − τ

γn

)
,

DM
1 = 2CM

1 ,D
M
2 = C21 − C23 −

1
4
C12 + 2CM

2 .

Remark 4.3. According to Theorem 4.1, under Assumptions 1–8 and 10–12, DICM and TIC are asymptotically equivalent.
Thus, DICM can be regarded as a Bayesian version of TIC. If, in addition, Assumption 13 holds, then both (29) and (30)
hold, justifying TIC asymptotically. The same frequentist justification applies to DICM due to (32). Therefore, DICM and TIC
provide the asymptotically unbiased estimation of the corresponding expected KL divergence.

Remark 4.4. For misspecified latent variable models, if DICM is calculated based on p(y|θ) not on p(y|θ, z), the frequentist
asymptotic justification of DICM is also applicable.

Remark 4.5. Since DICM applies to both correctly specified and misspecified models while DICL applies only to
asymptotically correctly specified models, it may be attempting to use DICM rather than DICL to select a model. However,
DICM requires the Fisher information matrix, while is usually easier to compute than the Hessian information matrix
required by DIC L. Hence, if a candidate model that is “locally” misspecified in the sense of Assumption 9 and the empirical
Fisher information matrix is too difficult to evaluate or numerically unstable, DICL is preferable. This comparison applies
to AIC and TIC, which may help explain why AIC is used more widely than TIC in practice.

4.2. BF and BIC

There are two strands of literature on model selection. The first strand aims to answer the following question: which
model gives the best prediction of out-of-sample observations generated by the same mechanism that gives rise to the
observed data? Clearly, this is a utility-based approach where the utility is the prediction. Based on hypothetically replicate
data generated by the same mechanism that gives rise to the observed data, some predictive information criteria have
been proposed for model comparison. These criteria minimize an expected loss function associated with the prediction.
AIC, TIC, DIC, DICL, and DICM all belong to this strand.

The second strand aims to answer the following question: which model best explains the observed data? The BF and
BIC belong to this strand. They compare competing models by examining model posterior probabilities and search for the
“true” model. Recent development of the BF in economics is found in Inoue and Shintani (2018). BIC is a large sample
approximation to the log-marginal likelihood, although it is based on the MLE. Many applications of BIC in economics can
be found. Both BFs and BIC enjoy the property of consistency, that is, when the true DGP is one of the candidate models,
BFs and BIC select it with probability approaching 1 when the sample size goes to infinity. For more information about
different model selection criteria, see Burnham and Anderson (2002) and Vehtari and Ojanen (2012).

In the Bayesian framework, the BF is arguably the most widely used statistic for model comparison. Suppose there are
two candidate models, M1 and M2. The BF of M1 against M2 is defined as

B12 =
p(y|M1)
p(y|M2)

, (35)

where p(y|Mk) is the marginal likelihood of model Mk which is obtained by

p(y|Mk) =

∫
Θk

p(y|θk,Mk)p(θk|Mk)dθk, θk ∈ Θk, k = 1, 2,
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where θk is the set of parameters in Mk, p(y|θk,Mk) the likelihood function of Mk, p(θk|Mk) the prior of θk in Mk. If B12 > 1,
M1 is preferred to M2 and vice versa.

Remark 4.6. In practice, the BF is subject to several problems. First, it is not well-defined with improper priors. Second,
the calculation of BFs requires comparing marginal likelihoods. When the dimension of parameter space is large, as is
typical in latent variable models, high-dimensional integrations pose a formidable computational challenge. Third, it is
well-known that the BF suffers from the Jeffreys–Lindley paradox when a vague and proper prior is employed; see Kass
and Raftery (1995).

Based on the Laplace approximation, Schwarz (1978) showed that the log-marginal likelihood can be approximated
by

ln p (y|Mk) = ln p
(
y|θ̂k,Mk

)
+ ln p

(
θ̂k|Mk

)
+

Pkπ
2

−
Pk ln n

2
−

⏐⏐⏐−H̄n

(
θ̂k

)⏐⏐⏐
2

+ Op

(
1
n

)
, (36)

where θ̂k is the MLE of θk and H̄n

(
θ̂k

)
=

1
n

∂2 ln p
(
y|θ̂k,Mk

)
∂θk∂θ

′
k

, and Pk is the dimension of θk. Ignoring all the Op(1) terms in
(36) and under noninformative priors such as p (θk|Mk) ∝ 1, Schwarz defined BICk as

BICk := −2 ln p
(
y|θ̂k,Mk

)
+ Pk ln n,

where, as in AIC and TIC, −2 ln p
(
y|θ̂k,Mk

)
is used to measure the model fit, but Pk ln n is the new penalty term. Obviously,

BICk provides an approximation of −2 ln (y|Mk).

Remark 4.7. From the theoretical viewpoint, different criteria have different theoretical properties. BIC and BFs are
consistent if the true model is one of the candidate models while AIC, TIC, DICL, and DICM aim to provide the asymptotically
unbiased estimator of the expected KL divergence between the DGP and a predictive distribution. When the true model
is not included as a candidate model, which is often the case in practice, it is not clear what the best model selected
by BIC and BFs can achieve. In this case, if one is concerned with the KL divergence between the DGP and a predictive
distribution, it is expected that TIC and DICM perform better than BIC and BFs. Moreover, when the sample size is small,
even when the true model is a candidate model, BIC and BFs may not select the true model. Again, if one is concerned
with the KL divergence between the DGP and a predictive distribution, AIC and DICL can perform better than BIC and BFs.

4.3. A simulation study

In this subsection, we design a simple experiment to compare alternative model selection criteria when the true DGP
is not included in the set of candidate models. In other words, all candidate models are misspecified.

Following Ding et al. (2019), we generate data from the following model

yi = ln(1 + 46xi) + ei, ei ∼ N (0, 1) , i = 1, . . . , n, (37)

where xi = 0.7(i − 1)/n which is fixed under repeated sampling by design. In practice, researchers do not know the
functional form. Suppose the following set of polynomial regressions is considered,

Mk : yi =

k−1∑
j=0

βk,j+1x
j
i + ui, (38)

where k = 1, . . . ,
⌊
n1/3

⌋
and ui is assumed to be N

(
0, σ 2

)
. When k → ∞ as n → ∞, the polynomial regression is

related to the sieve estimator which uses progressively more complex models to estimate an unknown function as more
data becomes available. In our experiment, we estimate and compare all the candidate models

{
Mk, k = 1, . . . ,

⌊
n1/3

⌋}
.

In Mk,
∑k−1

j=0 βk,j+1x
j
i is used to approximate ln(1 + 46xi). Let βk = (β1, . . . , βk)

′ so that θk =
(
β′

k, σ
2
)
and the number of

parameters is k + 1. Let xj =

(
xj1, x

j
2, . . . , x

j
n

)′

, Xk =
(
x0, x1, . . . , xk−1

)
, and X =

(
x0, x1, . . . , x[n1/3]−1

)
.

Two different sample sizes are considered, n = 100, 500. For each candidate model Mk, we obtain the MLE of θk,
denoted by θ̂k = (β̂

′

k, σ̂
2), and then calculate AIC, TIC, and BIC. θ̂k, which is also the least squares estimate, has a

closed-form expression for this model.
The following g-prior is used for θk when we conduct the Bayesian analysis,

π
(
σ 2)

∝
1
σ 2 , βk ∼ N

(
βk,0, gσ

2 (X′

kXk
)−1
)
, (39)

where g = n denotes the unit information prior (Kass and Wasserman, 1995) in the normal regression case. The posterior
mean and the posterior variance of θk are

E(βk|y,X) =
g

g + 1

(
βk,0

g
+ β̂k

)
, (40)
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Table 1
The average value of (EKL(k∗) − 1 − ln (2π )), scaled by 1,000, across 1,000 replications, under different criteria.
Criteria AIC TIC DICL DICM BIC BF

n = 100 67.80293 67.47593 61.38793 60.36793 79.35193 76.49893
n = 500 15.68993 15.67293 15.27493 15.20993 20.13193 19.98293

E
(
σ 2

|y,X
)

=

s2 +
1

g+1

(
β̂k − βk,0

)′

X′

kXk

(
β̂k − βk,0

)
n − 2

, (41)

Var(βk|y,X) =
g

g + 1

(
X′

kXk
)−1 E

(
σ 2

|y,X
)
, (42)

Var(σ 2
|y,X) =

2E
(
σ 2

|y,X
)2

n − 4
, (43)

Cov(βk, σ
2
|y,X) = 0. (44)

These closed-form expressions are used to calculate DICL and DICM . For comparison, we also calculate the BF of Mk against
M1 when the g-prior is used for both θk and θ1. The BF has a closed-form expression given by

BF (Mk,M1) =
(1 + g)(n−k−1)/2(

1 + g
(
1 − R2

k

))(n−1)/2 , (45)

where R2
k = 1 −

(y−Xkβ̂k)′(y−Xkβ̂k)
(y−ȳ)′(y−ȳ) with ȳ =

1
n

∑n
i=1 yi. For the details about the g -prior and the BF, see Liang et al. (2008).

Each of the six criteria is used to select the best model (call it Mk∗ ). Based on Mk∗ , we then calculate EKL(k∗) where
EKL(k∗) is EKLML(k∗) defined in Eq. (5) for AIC, TIC, and BIC and is EKLB(k∗) defined in Eq. (7) for DICL, DICM , and the BF.
In general EKL(k∗) does not have a closed-form expression and a numerical method is needed. To compute EKL(k∗), we
first simulate 1,000 replications of y from Mk, denoted by yl for l = 1, 2, . . . , 1, 000. Then, for each yl, we simulate 1,000
replications of yl from Mk, denoted by ymrep for m = 1, 2, . . . , 1, 000. These simulations are possible here because we know
what the true DGP is. Then we calculate EKL(k∗) by

ÊKLML(k∗) =
1

1000

1000∑
l=1

1
1000

1000∑
m=1

D
(
ymrep |̂θk∗

(
yl
)
,Mk∗

)
, for AIC, TIC, BIC;

ÊKLB(k∗) =
1

1000

1000∑
l=1

1
1000

1000∑
m=1

D
(
ymrep|θk∗

(
yl
)
,Mk∗

)
, for DICL, DICM , BF.

The relative frequencies of the selected models by each of six criteria (namely AIC, TIC, DICL, DICM , BF, and BIC) are
reported in Fig. 1. Also reported in Fig. 1 are the average values of k∗, all across 1,000 replications. Several interesting
results can be found in Fig. 1. The models selected by the BF and BIC tend to be more parsimonious than those selected
by AIC, TIC, DICL, and DICM . This result is not surprising as BIC has a larger penalty term than AIC. Second, the average k∗s
selected by the BF and BIC are very similar to each other, suggested that they tend to select the same model, especially
when n = 500. Similarly, the average k∗s selected by AIC and DICL are very similar, suggested that they tend to select
the same model. Also, the average k∗s selected by TIC and DICM are very similar, suggested that they tend to select the
same model. Third, as the sample size increases, the average k∗s selected by all criteria, including BIC and the BF, tend to
increase. This is not surprising as the true DGP is not a candidate model.

Table 1 reports the average values of (EKL(k∗)−1−ln (2π )), scaled by 1,000, where EKL(k∗) is EKLML(k∗) for AIC, TIC, and
BIC and EKLB(k∗) for DICL, DICM , and the BF, all across 1, 000 replications. We report (EKL(k∗)− 1− ln (2π ))× 103 instead
of EKL(k∗) to better highlight differences in the expected KL divergence under different criteria. The most important result
from Table 1 is that DICM leads to a much smaller value of the expected KL divergence than the BF when n = 100 and 500.
Even though DICL is not asymptotically justified in this case due to the omission of the true DGP in the set of candidate
models, DICL leads to a small value of the expected KL divergence than the BF. Interestingly and not surprisingly, TIC leads
to a small value of the expected KL divergence than BIC. Results obtained from this Monte Carlo study indicate that if
one’s objective is to choose a model that leads to a smaller value for the KL divergence between the DGP and p

(
yrep|θ̄(y)

)
,

it is better to use DICM than the BF. Similarly, if one’s objective is to choose a model that leads to a smaller value for the
KL divergence between the DGP and p

(
yrep |̂θ(y)

)
, it is better to use TIC than BIC.

5. Applications

We now illustrate the proposed method in two applications. The first example is asset pricing models under the Student
t distribution. The likelihood functions of these models not only have an analytical form but also can be rewritten in a
latent variable form. We choose this example to compare the two alternative formulations of the same model, paying
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Fig. 1. The figure plots relative frequencies of the polynomial orders selected by different criteria. The numbers in parentheses are the average
values of k∗s.

particular attention to the impact the two equivalent formulations on DIC, DICL, DICM . In the second example p
(
y|θ̄
)
is

not available in closed-form. Given that DIC1 is too difficult to compute, we calculate DICL and DICM by particle filters
proposed in Section 3.4.3.

5.1. Factor asset pricing models

Factor asset pricing models are important in modern finance. These models generally assume that the return distribu-
tion is normal. Unfortunately, there has been overwhelming empirical evidence against normality for asset returns, which
have led researchers to investigate asset pricing models with heavy-tailed distributions. Zhou (1993) suggested using the
multivariate t distribution to replace the multivariate normal distribution. Moreover, based on the efficient market theory,
the asset excess premium should not be statistically different from zero. At last, the multivariate t distribution can be
rewritten as a scale-mixture framework to become a latent variable model. Hence, we consider the following six asset
pricing models:

Model 1:Rt = βF t + ϵt , ϵt ∼ N[0,Σ ],

Model 2:Rt = α + βF t + ϵt , ϵt ∼ N[0,Σ ],

Model 3:Rt = βF t + ϵt , ϵt ∼ t[0,Σ , ν],

Model 4:Rt = βF t + ϵt , ϵt ∼ N(0,Σ/ωt ), ωt ∼ Γ

(ν
2
,
ν

2

)
,

Model 5:Rt = α + βF t + ϵt , ϵt ∼ t[0,Σ , ν],

Model 6:Rt = α + βF t + ϵt , ϵt ∼ N(0,Σ/ωt ), ωt ∼ Γ

(ν
2
,
ν

2

)
,

where Rt is the excess return of portfolio at period t with N × 1 dimension, Ft a K × 1 vector of factor portfolio excess
returns, α an N × 1 vector of intercepts, β an N ×K vector of scaled covariances, ϵt the random error, t = 1, 2, . . . , n. For
convenience, we restrict Σ to be a diagonal matrix and ν to be a known constant as ν = 3. It is noted that Model 4 is the
scale-mixture distributional representation of Model 3, and Model 5 is the scale mixture distributional representation of
Model 6.
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Table 2
Model selection results for Fama–French three factor models.
Model M1 M2 M3 M4 M5 M6

P 100 125 100 100 125 125

PD,1 100 125 100 100 125 125
DIC1 −132196 −132762 −143510 −143510 −144635 −144635

PD,7 NA NA NA 1090 NA 1115
DIC7 NA NA NA −145159 NA −146339

PL 100 125 100 100 126 126
DICL −132196 −132762 −143509 −143509 −144634 −144634

PM 997 1015 291 291 403 403
DICM −130402 −130982 −143128 −143128 −144079 −144079

Monthly returns of 25 portfolios, constructed at the end of each June, are the intersections of 5 portfolios formed on
size (market equity, ME) and 5 portfolios formed on the ratio of book equity to market equity (BE/ME). The Fama/French’s
three factors, market excess return, SMB (Small Minus Big), HML (High Minus Low) are used as explanatory factors (Fama
and French, 1993). The sample period is from July 1926 to November 2017, so that N = 25, n = 1097. The data are freely
available from the data library of Kenneth French.5

Bayesian inference for factor asset pricing models has attracted a considerable amount of attention in the empirical
asset pricing literature. Avramov and Zhou (2010) provided an excellent review of the literature on Bayesian portfolio
analysis. To obtain MCMC output, we need to specify the prior distributions for parameters. Here, to represent the prior
ignorance, we assign some vague conjugate prior distributions,

αi ∼ N[0, 100], βij ∼ N[0, 100],Σ−1
ii ∼ Γ [0.01, 0.01].

Here, we draw 100,000 random observations from the posterior distributions in each model where the first 40,000 is used
as the burn-in sample, and the next 60,000 iterations are collected with every 3rd observation as effective observations.
Hence, these are 20,000 effective observations.

To compare these models, based on 20,000 effective observations, we calculate DIC1, PD,1, DICL, PL, DICM , PM , for all
candidate models, and DIC7 and PD,7 for Model 4 and Model 6 as there are latent variables in these two models. The results
are reported in Table 2. Several interesting findings emerge from Table 2. First, DIC1 in Model 3 is very different from DIC7
in Model 4, although these two models are the same. The reason for the difference is that in Model 3 there is no latent
variable, whereas in Model 4 the scale-mixture representation of the Student t distribution introduces latent variables,
{ωt}. Due to the difference, the common practice of DIC for Model 3 is DIC1 and for Model 4 is DIC7 . The sharp difference
between the two DIC values for the identical model is clearly unsatisfactory. For the same reason, DIC1 in Model 5 is very
different from DIC7 in Model 6. Second, the asymptotic results developed in Li et al. (2017) and in Theorem 3.1 above
suggest that PD,1 and PL should be close to the actual number of the parameters, P , if the prior distribution is dominated
by the likelihood function. The results are confirmed by Table 2. Not surprisingly, PD,1 is almost identical to PL and DIC1
and DICL are almost the same for each candidate model. Finally, DIC, DICL, DICM , all pick Model 6 (and Model 5) as the
best model.

5.2. Stochastic volatility models

Stochastic volatility (SV) models have been found very useful for pricing derivative securities. In the discrete-time
log-normal SV models, the log-volatility is the state variable which is often assumed to follow an AR(1) model. The basic
log-normal SV model is of the form:

yt = exp(ht/2)ut , ut ∼ N(0, 1),
ht = µ+ φ(ht−1 − µ) + τvt , vt ∼ N(0, 1),

where t = 1, 2, . . . , n, yt is the continuously compounded return, ht the unobserved log-volatility, h0 = µ, ut and vt are
independent for all t . In this paper, we denote this model M1.

To carry out the MCMC analysis of M1, following Meyer and Yu (2000), the prior distributions are specified as follows:

µ ∼ N (0, 100) , φ ∼ Beta (1, 1) , 1/τ 2 ∼ Γ (0.001, 0.001) .

An important and well documented empirical feature in many financial time series is the leverage effect. Following
Yu (2005), we define the leverage effect SV model as:

yt = exp (ht/2) ut , ut ∼ N (0, 1)

5 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 3
Posterior mean and standard error of parameters in M1 and M2 .

M1 M2

Parameter Mean SE Mean SE

µ −0.6733 0.3282 −0.6485 0.3377
φ 0.9733 0.0127 0.9802 0.0138
ρ NA NA −0.0575 0.1570
τ 0.1698 0.0378 0.1661 0.0391

Table 4
Model selection results for M1 and M2 .

Model PD,7 D(θ̄) DIC7 PL D(θ̄) DICL PM D(θ̄) DICM

M1 53.60 1695.40 1802.52 2.32 1837.81 1842.50 4.44 1837.81 1846.69
M2 31.33 1693.36 1756.21 3.24 1837.78 1844.30 5.02 1837.78 1847.82

ht+1 = µ+ φ (ht − µ)+ τvt+1, vt+1 ∼ N (0, 1)

with (
ut
vt+1

)
i.i.d
∼ N

{(
0
0

)
,

(
1 ρ

ρ 1

)}
and h0 = µ. In this model, ρ captures the leverage effect if ρ < 0. In this case, there is a negative relationship between
the expected future volatility and the current return. We denote this model M2 and specify the prior distribution of ρ as
ρ ∼Unif(−1, 1).

Our goal here is to compare the two models using DIC7, DICL, and DICM . In both cases, p(y|θ) is not available in closed-
form. Since both specifications are nonlinear non-Gaussian state-space models, the Kalman filter is not applicable, making
DIC1 is time-consuming to compute. To compute DICL and DICM , we use the particle filters to evaluate the observed-data
likelihood and its second derivatives.

The dataset consists of 945 daily mean-corrected returns on Pound/Dollar exchange rates, covering the period between
01/10/81 and 28/06/85. For MCMC, after a burn-in period of 10,000 iterations, we save every 20th value for the next
100,000 iterations to get 5,000 effective draws. The same dataset was used in Kim et al. (1998) and Meyer and Yu (2000).
The posterior mean and standard error of parameters in the two competing models are reported in Table 3. Note that the
in M2, the posterior mean of ρ is very close to zero, relative to its posterior standard error.

Table 4 reports DIC7, PD,7, DICL, PL, DICM , PM . The following findings can be obtained from Table 3. First and foremost,
DICL and DICBP

L suggest the same ranking of the competing models, but DIC7 is different. In particular, DIC7 suggests that
M2 is better than M1. According to DIC7, M1 and M2 perform nearly the same judged by D

(
θ̄
)
. However, M2 reduces the

effective number of parameters by 22.3 over M1. This reduction of the model complexity is the reason why DIC7 prefers
M2. This result is surprising as the posterior mean of the leverage effect is nearly zero, as reported in Table 2. On the other
hand, DICL suggests that M1 is slightly better than M2 although the difference is not worth to mention. In DICL, PL is 2.32
in M1 and 3.24 in M2. These values are very close to the actual numbers of parameters in the two models. Similar results
are found in DICM . PM is 4.44 in M1 and 5.02 in M2. Given that M2 has one extra parameter, this difference is reasonable.
Moreover, M1 and M2 perform nearly the same judged by D

(
θ
)
. These two observations explain why M1 is slightly better

than M2. This empirical example clearly demonstrates that DICL and DICM can select more reasonable models than DIC7.
We can compare the computational time. The CPU time for computing DICL and DICM together is 345 s.6 For DIC1, the
CPU time is 1922 s. If one increases the number of effective draws, the CPU time will increase linearly for DIC1 but remain
the same order for DICL and DICM .

6. Conclusion

Although latent variable models can be conveniently estimated in the Bayesian framework via MCMC if the data
augmentation technique is used, we argue that the conditional likelihood function should not be used to obtain DIC.
This is because, the conditional likelihood invalidate the standard Bayesian large sample theory and the ML asymptotic
theory, which are needed to show that DIC is an asymptotically unbiased estimator of the expected KL divergence between
the DGP and the predictive distribution. An example is given where DIC provides an asymptotically biased estimator of
the expected KL divergence between the DGP and the predictive distribution.

While in principle one can use the standard DIC (i.e. DIC1), in practice, DIC1 is very difficult to calculate for many
latent variable models because the observed-data likelihood is not available in closed-form. In particular, one has to

6 The CPU time is based on Laptop Intel (R) Core (TM) i7-7500H CPU @2.70 GHz, implementing MATLAB R2017b.
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numerically evaluate the observed-data likelihood at each MCMC iteration. It makes the implementation of DIC1 practically
non-operational for many latent variable models.

We introduce DICL for comparing latent variable models. We show that DIC L can be justified by the standard Bayesian
asymptotic theory. In particular, we show that DICL is an asymptotically unbiased estimator of the expected KL divergence
minus 2C when the loss function is based on a plug-in predictive distribution. We then develop a simple and general
approach to computing DICL for latent variable models. Since the latent variables are not treated as parameters in defining
DICL, DICL is robust to nonlinear transformations of the latent variables.

The justification of DIC1 and DICL requires the candidate model is a good approximation to the true DGP. We develop
DICM to compare misspecified models. DICM can be regarded as the Bayesian version of TIC. Under a set of regularity
conditions, we show that DICM is an asymptotically unbiased estimator of the expected KL divergence minus 2C when
the loss function is based on a plug-in predictive distribution. The advantages of DICL and DICM are illustrated using two
popular models. Empirical examples demonstrate that DICL and DICM can select more reasonable models than DIC7, a
widely-used Bayesian model selection criterion to compare latent variables. The detail of the implementation of DICL and
DICM can be found in Li et al. (2019) where the R code may be downloaded.

Appendix A

A.1. Notations

:= definitional equality
p

→ converge in probability
o(1) tend to zero θ̂ ML estimate
op(1) tend to zero in probability θp

n pseudo true parameter
θ posterior mean DIC1 DIC based on p(y|θ)
DIC7 DIC based on p(y|θ, z) DICL DIC for latent variable models
DICM DIC for misspecified models

Proof of Lemma 3.1. We can decompose 1
n

∑n
t=1

[
lt (θ)− lt

(
θp
n

)]
as

1
n

n∑
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[
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(
θp
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)]
=
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.

From (18), we know that for any ε > 0, there exists δ1(ε) > 0 and N(ε) > 0, for all n > N (ε),

1
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n∑
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< −δ1(ε),
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)
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)
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(lt (θ)− E [lt (θ)])
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Under Assumptions 1–6, the uniform convergence condition is satisfied, that is,

P

(
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θ∈Θ

⏐⏐⏐⏐⏐1n
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(lt (θ)− E [lt (θ)])

⏐⏐⏐⏐⏐ < ε

)
→ 1, (47)
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From the uniform convergence, if we choose δ2 such that 0 < δ2 < δ1 (ε) /2, we have

P

[
sup
θ∈Θ

⏐⏐⏐⏐⏐1n
n∑

t=1

(lt (θ)− E [lt (θ)])

⏐⏐⏐⏐⏐ < δ2

]
→ 1.

Hence,

P

[
2 sup

θ∈Θ

⏐⏐⏐⏐⏐1n
n∑

t=1

(lt (θ)− E [lt (θ)])

⏐⏐⏐⏐⏐− δ1 (ε) < 2δ2 − δ1 (ε)

]
→ 1.

From (46), we have

P

[
2 sup

θ∈Θ

⏐⏐⏐⏐⏐1n
n∑

t=1

(lt (θ)− E [lt (θ)])

⏐⏐⏐⏐⏐− δ1 (ε) < 2δ2 − δ1 (ε)

]

⩽ P

⎡⎣ sup
Θ\N

(
θ
p
n,ε
) 1
n

[
n∑

t=1

lt (θ)−

n∑
t=1

lt
(
θp
n

)]
< 2δ2 − δ1 (ε)

⎤⎦ .
Letting K1 (ε) = − (2δ2 − δ1 (ε)) > 0, we have, for any ε,

lim
n→∞

P

⎡⎣ sup
Θ\N

(
θ
p
n,ε
) 1
n

[
n∑

t=1

lt (θ)−

n∑
t=1

lt
(
θp
n

)]
< −K1 (ε)

⎤⎦ = 1,

which proves the consistency condition given by (19). The proof of the other two concentration conditions (20) can be
done similarly and hence omitted.

A.2. Proof of Lemma 3.2

In this subsection, for any function f (θ), let f (j) (θ) be the jth order derivative of f (θ) for j = 1, 2, 3, 4, 5. Furthermore,
let f̂ be the value of function f evaluated at θ̂, that is, f̂ := f

(
θ̂
)

and for convenience of exposition, we write
∂d

∂θj1 ∂θj2 ···∂θjd
f (θ) as fj1···jd and let f̂j1···jd := fj1···jd

(
θ̂
)
. For the definition of high order derivatives, we follow Magnus and

Neudecker (1999), except that the first-order derivative of a scalar function in our setting is a column vector. Then
the Hessian matrix at θ is denoted by h(2)n (θ) which is briefly written as h(2) and its (i, j)-component is written as hij
while the components of its inverse are written as σij. Let µ4

ijkq, µ
6
ijkqrs, µ

8
ijkqrstw , µ

10
ijkqrstwvβ , µ

12
ijkqrstwvβτφ be the fourth,

sixth, eighth, tenth, and twelfth central moments of a multivariate Normal distribution whose covariance matrix is
ĥ(−2) :=

(
h(2) (θ)

)−1
|
θ=θ̂

.
We say the pair ({hn} , b) satisfies the analytical assumptions for the stochastic Laplace method on ℘θ , if the following

assumptions are met. There exist positive numbers ε,M and η such that (i) with probability approach one (w.p.a.1), for
all θ ∈ Bε

(
θ̂
)
and all 1 ≤ j1, . . . , jd ≤ P with 0 ≤ d ≤ 8, ∥hn (θ)∥ < M and

hj1···jd (θ)
 < M; (ii) w.p.a.1, ĥ(2) is positive

definite and det
(
ĥ(2)

)
> η ; (iii) For all ε > 0, there exists K1 (ε) > 0, sup

Θ\B
(
θ
p
n,ε
) 1

n

[
−hn (θ)−

(
−hn

(
θp
n

))]
< −K1 (ε),

w.p.a.1; (iv) w.p.a.1, for all θ ∈ Bε
(
θ̂
)
and all 1 ≤ j1, . . . , jd ≤ P , with 0 ≤ d ≤ 6, ∥b (θ)∥ < M and

bj1···jd (θ)
 < M .

Note that our assumptions are different from those in Section 3 of Kass et al. (1990) in two aspects. First, we require
hn(θ ) be eight-times continuously differentiable and b(θ) be six-times continuously differentiable. Second, for conditions
(ii) and (iii), instead of almost sure boundedness and almost sure convergence, we assume they hold w.p.a.1. We do so
because we are interested in convergence in probability only. To prove Lemma 3.2, we first review a result of Li et al.
(2017).

Lemma A.1. For some real-valued function g(θ), if both ({hn(θ)} , g(θ)bD(θ)) and ({hn(θ)} , bD(θ)) satisfy the analytical
assumptions for the stochastic Laplace method on ℘θ , then∫

g (θ) bD (θ) exp (−nhn (θ)) dθ∫
bD (θ) exp (−nhn (θ)) dθ

= ĝ +
1
n
B1 +

1
n2 (B2 − B3)+ Op

(
1
n3

)
,

where

B1 =
1
2

∑
ij

σ̂ijĝij +

∑
ij σ̂ijb̂D,jĝi

b̂D
−

1
6

∑
ijkq

ĥijkµ
4
ijkqĝq,
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B2 = −
1

120

∑
ijkqrs

ĥijkqrµ
6
ijkqrsĝs +

1
144

∑
ijkqrstw

ĥijkĥqrstµ
8
ijkqrstw ĝw

−
1

1296

∑
ijkqrstwvβ

ĥijkĥqrsĥtwvµ
10
ijkqrstwvβ ĝβ −

1
24

∑
ijkqrs ĥijkqµ

6
ijkqrsb̂D,sĝr

b̂D

+
1
72

∑
ijkqrstw ĥijkĥqrsµ

8
ijkqrstw b̂D,w ĝt

b̂D
−

1
12

∑
ijkζηξ ĥijkµ

6
ijkζηξ b̂D,ηξ ĝζ

b̂D

+
1
6

∑
ζηξω µ

4
ζηξωb̂D,ηξωĝζ

b̂D
−

1
48

∑
ijkqrs

ĥijkqµ
6
ijkqrsĝrs

+
1

144

∑
ijkqrstw

ĥijkĥqrsµ
8
ijkqrstw ĝtw −

1
36

∑
ijkζηξ

ĥijkµ
6
ijkζηξ ĝζηξ

+
1
24

∑
ζηξω

µ4
ζηξωĝζηξω −

1
12

∑
ijkζηξ ĥijkµ

6
ijkζηξ ĝζηb̂D,ξ

b̂D

+
1
6

∑
ζηξω µ

4
ζηξωĝζηξ b̂D,ω

b̂D
+

1
4

∑
ζηξω µ

4
ζηξωĝζηb̂D,ξω

b̂D
,

B3 = B4 × B1,

B4 =
1
2

∑
ij

σ̂ij
b̂D,ij
b̂D

−
1
6

∑
ijkq

ĥijkµ
4
ijkq

b̂D,q
b̂D

+
1
72

∑
ijkqrs

ĥijkĥqrsµ
6
ijkqrs −

1
24

∑
ijkq

ĥijkqµ
4
ijkq.

Lemma A.2 (The Generalized Isserlis Theorem). If A = {α1, . . . , α2N} is a set of integers such that 1 ≤ αi ≤ P, for each
i ∈ [1, 2N] and X ∈ RP is a zero mean multivariate normal random vector then

EXA = ΣΠ
A

E
(
XiXj

)
, (48)

where XA =
∏
αi∈A

Xαi and the notation ΣΠ means summing over all distinct ways of partitioning Xα1 , . . . , Xα2N into pairs(
Xi, Xj

)
and each summand is the product of the N pairs. This yields (2N)!/

(
2NN!

)
= (2N − 1)!! terms in the sum where

(2N − 1)!! is the double factorial such that (2N − 1)!! = (2N − 1) (2N − 3) . . . 1.

The Isserlis theorem, first obtained by Isserlis (1918), expresses the higher-order moments of a zero-mean Gaussian
vector in terms of its covariance matrix. The generalized Isserlis theorem is due to Withers (1985) and Vignat (2012). For
instance, let A = {1, 1, 2, 4}, we have

EXA = E
(
X2
1X2X4

)
= ΣΠ

A
E
(
XiXj

)
= E

(
X2
1

)
E (X2X4)+ 2E (X1X2) E (X1X4) .

Next, we introduce some useful matrix properties about the vectorization operator.

(B ⊗ C) (D ⊗ E) = BD ⊗ CE (49)

for four matrices B, C , D, and E if BD and CE exist.

vec (BCD) =
(
D′

⊗ B
)
vec (C) (50)

for three matrices B, C , and D if the product BCD is defined. And the property between the vectorization operator and
trace operator

tr
(
A′BCD′

)
= vec (A)′ (D ⊗ B) vec (C) . (51)

On the basis of Lemma A.1, A.2, (49)–(51) in the following, we prove Lemma 3.2.

Proof. First, we define a function g (θ) = θ, and each element of g (θ) is given as gz (θ) = θz , z = 1, . . . , P . Denote g(1), a
P × P matrix, is the first-order derivative of g evaluated at θ and g(1)·z is the zth column of g(1). Note that since g (θ) = θ,
g(1) = IP which is the P × P identity matrix.

For z = 1, . . . , P , gz (θ) is a real-valued function. Hence, using Lemma A.1, we can get that for each z∫
gz(θ)bD (θ) exp (−nhn (θ)) dθ∫

bD (θ) exp (−nhn (θ)) dθ
= gz(θn) +

1
n
B1
1,z +

1
n2

(
B1
2,z − B1

3,z

)
+ Op

(
1
n3

)
,
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Then, in the matrix form, we get∫
g(θ)bD (θ) exp (−nhn (θ)) dθ∫
bD (θ) exp (−nhn (θ)) dθ

= g(θ̂) +
1
n
B1
1 +

1
n2

(
B1
2 − B1

3

)
+ Op

(
1
n3

)
.

For each z, note that gz,ij =
∂g2z (θ)
∂θ∂θ ′ |ij= 0ij. Following Lemma A.1, we have

B1
1,z = 0 +

∑
ij

ĝz,iσ̂ij
b̂D,j
b̂D

−
1
6

∑
ijkq

ĥijkµ
4
ijkqĝz,q.

Thus, in the matrix form, we have

B1
1 =

∑
ij

ĝ(1)
·i σ̂ij

b̂D,j
b̂D

−
1
2

∑
ijkq

ĝ(1)
·q ĥijkσ̂ijσ̂kq =

∑
ij

ĝ(1)
·i σ̂ij

b̂D,j
b̂D

−
1
2

∑
ijkq

ĝ(1)
·q σ̂qkĥijkσ̂ij

= ĝ(1)ĥ(−2) b̂
(1)
D

b̂D
−

1
2
ĝ(1)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
, (52)

Hence, we get

B1
1 = ĥ(−2) b̂

(1)
D

b̂D
−

1
2
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
. (53)

Furthermore, for each z

B1
2,z = −

1
120

∑
ijkqrs

ĥijkqrµ
6
ijkqrsĝz,s +

1
144

∑
ijkqrstw

ĥijkĥqrstµ
8
ijkqrstw ĝz,w

−
1

1296

∑
ijkqrstwvβ

ĥijkĥqrsĥtwvµ
10
ijkqrstwvβ ĝz,β −

1
24

∑
ijkqrs ĥijkqµ

6
ijkqrsb̂D,sĝz,r

b̂D

+
1
72

∑
ijkqrstw ĥijkĥqrsµ

8
ijkqrstw b̂D,w ĝz,t

b̂D
−

1
12

∑
ijkζηξ ĥijkµ

6
ijkζηξ b̂D,ηξ ĝz,ζ

b̂D

+
1
6

∑
ζηξω µ

4
ζηξωb̂D,ηξωĝz,ζ

b̂D
.

Thus, in the matrix form, we have

B1
2 = −

1
120

∑
ijkqrs

ĝ·sĥijkqrµ
6
ijkqrs +

1
144

∑
ijkqrstw

ĝ·wĥijkĥqrstµ
8
ijkqrstw

−
1

1296

∑
ijkqrstwvβ

ĝ·β ĥijkĥqrsĥtwvµ
10
ijkqrstwvβ −

1
24

∑
ijkqrs ĝ·r ĥijkqµ

6
ijkqrsb̂D,s

b̂D

+
1
72

∑
ijkqrstw ĝ·t ĥijkĥqrsµ

8
ijkqrstw b̂D,w

b̂D
−

1
12

∑
ijkζηξ ĝ·ζ ĥijkµ

6
ijkζηξ b̂D,ηξ

b̂D

+
1
6

∑
ζηξω ĝ·ζµ

4
ζηξωb̂D,ηξω

b̂D
. (54)

We can write each item on the right-hand side of (54) in the matrix form using (48), that is,

−
1

120

∑
ijkqrs

ĝ·sĥijkqrµ
6
ijkqrs = −

1
8

∑
ijkqrs

ĝ·sσ̂sr ĥijkqr σ̂ijσ̂kq = −
1
8
ĝ (1)ĥ(−2)ĥ(5)′vec

[
ĥ(−2)

⊗ vec
(
ĥ(−2)

)]
,

1
144

∑
ijkqrstw

ĝ·wĥijkĥqrstµ
8
ijkqrstw

=
1
4
ĝ (1)ĥ(−2)ĥ(4)′

[
vec

(
ĥ(−2)

)
⊗

(
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)
)′]

+
1
6
ĝ (1)ĥ(−2)ĥ(4)′

[
ĥ(−2)

⊗ ĥ(−2)
⊗ ĥ(−2)

]
vec

(
ĥ(3)

)
+

1
16

ĝ (1)ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)
tr
[(

ĥ(−2)
⊗ vec

(
ĥ(−2)

))′

ĥ(4)
]
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+
1
4
ĝ (1)ĥ(−2)ĥ(3)′vec

((
ĥ(−2)

⊗ vec
(
ĥ(−2)

)′
)
ĥ(4)ĥ(−2)

)
,

−
1

1296

∑
ijkqrstwvβ

ĝ·β ĥijkĥqrsĥtwvµ
10
ijkqrstwvβ

= −
3
8
ĝ (1)ĥ(−2)ĥ(3)′

[
ĥ(−2)

⊗ ĥ(−2)
]
ĥ(3)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
−

1
4
ĝ (1)ĥ(−2)ĥ(3)′

[
ĥ(−2)

⊗ ĥ(−2)
]
vec

(
ĥ(3)′

[
ĥ(−2)

⊗ ĥ(−2)
]
ĥ(3)

)
−

1
16

ĝ (1)ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)[
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)]
−

1
24

ĝ (1)ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)
vec

(
ĥ(3)

)′ [
ĥ(−2)

⊗ ĥ(−2)
⊗ ĥ(−2)

]
vec

(
ĥ(3)

)
,

−
1
24

∑
ijkqrs ĝ·r ĥijkqµ

6
ijkqrsb̂D,s

b̂D

= −
1
8
ĝ (1)ĥ(−2) b̂

(1)
D

b̂D
tr
[[

ĥ(−2)
⊗ vec

(
ĥ(−2)

)]
ĥ(4)′

]
−

1
2
ĝ (1)ĥ(−2)ĥ(4)′

[
vec

(
ĥ(−2)

)
⊗

(
ĥ(−2) b̂

(1)
D

b̂D

)]
,

1
72

∑
ijkqrstw ĝ·t ĥijkĥqrsµ

8
ijkqrstw b̂D,w

b̂D

=
1
8
ĝ (1)ĥ(−2) b̂

(1)
D

b̂D
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)
+

1
12

ĝ (1)ĥ(−2) b̂
(1)
D

b̂D
vec

(
ĥ(3)

)′ [
ĥ(−2)

⊗ ĥ(−2)
⊗ ĥ(−2)

]
vec

(
ĥ(3)

)
+

1
2
ĝ (1)ĥ(−2)ĥ(3)′vec

(
ĥ(−2) b̂

(1)
D

b̂D
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)

)′

+
1
4
ĝ (1)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

) b̂(1)D

b̂D

′

ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)′

+
1
2
ĝ (1)ĥ(−2)ĥ(3)′vec

((
ĥ(−2)

⊗

(
ĥ(−2) b̂

(1)
D

b̂D

)′)
ĥ(3)ĥ(−2)

)
,

−
1
12

∑
ijkζηξ ĝ·ζ ĥijkµ

6
ijkζηξ b̂D,ηξ

b̂D

= −
1
2
ĝ (1)ĥ(−2) b̂

(2)
D

b̂D
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
−

1
2
ĝ (1)ĥ(−2)ĥ(3)

′

vec

(
ĥ(−2) b̂

(2)
D

b̂D
ĥ(−2)

)

−
1
4
ĝ (1)ĥ(−2)ĥ(3)

′

vec
(
ĥ(−2)

)
tr

[
b̂(2)D

b̂D
ĥ(−2)

]
.

1
6

∑
ζηξω ĝ·ζµ

4
ζηξωb̂D,ηξω

b̂D
=

3
6

∑
ζηξω

ĝζ σ̂ζησ̂ξω
b̂D,ηξω
b̂D

=
1
2
ĝ (1)ĥ(−2) b̂

(3)
D

b̂D

′ [
vec

(
ĥ(−2)

)]
.

Hence, we have

B1
2 = −

1
8
ĥ(−2)ĥ(5)′vec

[
ĥ(−2)

⊗ vec
(
ĥ(−2)

)]
(55)

+
1
4
ĥ(−2)ĥ(4)′

[
vec

(
ĥ(−2)

)
⊗

(
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)
)′]

+
1
6
ĥ(−2)ĥ(4)′

[
ĥ(−2)

⊗ ĥ(−2)
⊗ ĥ(−2)

]
vec

(
ĥ(3)

)
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+
1
16

ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)
tr
[(

ĥ(−2)
⊗ vec

(
ĥ(−2)

))′

ĥ(4)
]

+
1
4
ĥ(−2)ĥ(3)′vec

((
ĥ(−2)

⊗ vec
(
ĥ(−2)

)′
)
ĥ(4)ĥ(−2)

)
−

3
8
ĥ(−2)ĥ(3)′

[
ĥ(−2)

⊗ ĥ(−2)
]
ĥ(3)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
−

1
4
ĥ(−2)ĥ(3)′

[
ĥ(−2)

⊗ ĥ(−2)
]
vec

(
ĥ(3)′

[
ĥ(−2)

⊗ ĥ(−2)
]
ĥ(3)

)
−

1
16

ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)[
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)]
−

1
24

ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)
vec

(
ĥ(3)

)′ [
ĥ(−2)

⊗ ĥ(−2)
⊗ ĥ(−2)

]
vec

(
ĥ(3)

)
−

1
8
ĥ(−2) b̂

(1)
D

b̂D
tr
[[

ĥ(−2)
⊗ vec

(
ĥ(−2)

)]
ĥ(4)′

]
−

1
2
ĥ(−2)ĥ(4)′

[
vec

(
ĥ(−2)

)
⊗

(
ĥ(−2) b̂

(1)
D

b̂D

)]

+
1
8
ĥ(−2) b̂

(1)
D

b̂D
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)
+

1
12

ĥ(−2) b̂
(1)
D

b̂D
vec

(
ĥ(3)

)′ [
ĥ(−2)

⊗ ĥ(−2)
⊗ ĥ(−2)

]
vec

(
ĥ(3)

)
+

1
2
ĥ(−2)ĥ(3)′vec

(
ĥ(−2) b̂

(1)
D

b̂D
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)

)′

+
1
4
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

) b̂(1)D

b̂D

′

ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)′

+
1
2
ĥ(−2)ĥ(3)′vec

((
ĥ(−2)

⊗

(
ĥ(−2) b̂

(1)
D

b̂D

)′)
ĥ(3)ĥ(−2)

)

−
1
2
ĥ(−2) b̂

(2)
D

b̂D
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
−

1
2
ĥ(−2)ĥ(3)

′

vec

(
ĥ(−2) b̂

(2)
D

b̂D
ĥ(−2)

)

−
1
4
ĥ(−2)ĥ(3)

′

vec
(
ĥ(−2)

)
tr

[
b̂(2)D

b̂D
ĥ(−2)

]
+

1
2
ĥ(−2) b̂

(3)
D

b̂D

′ [
vec

(
ĥ(−2)

)]
.

For B1
3, following Lemma A.1, note that, for any element z, B1

4,z = B1
4 which is a constant and independent of z. We

have

B1
3 = B1

1 × B1
4, (56)

where

B1
4 =

1
2

∑
ij

σ̂ij
b̂D,ij
b̂D

−
1
6

∑
ijkq

ĥijkµ
4
ijkq

b̂D,q
b̂D

+
1
72

∑
ijkqrs

ĥijkĥqrsµ
6
ijkqrs −

1
24

∑
ijkq

ĥijkqµ
4
ijkq. (57)

We can write each item on the right-hand side of (57) as

1
2

∑
ij

σ̂ij
b̂D,ij
b̂D

=
1
2
tr

[
ĥ(−2) b̂

(2)
D

b̂D

]
, (58)

−
1
6

∑
ijkq

ĥijkµ
4
ijkq

b̂D,q
b̂D

= −
3
6

∑
ijkq

ĥijkσ̂ijσ̂kq
b̂D,q
b̂D

= −
1
2
vec

(
ĥ(−2)

)′

ĥ(−3)ĥ(−2) b̂
(1)
D

b̂D
, (59)

1
72

∑
ijkqrs

ĥijkĥqrsµ
6
ijkqrs (60)
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=
1
8
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)
+

1
12
vec

(
ĥ(3)

)′ [
ĥ(−2)

⊗ ĥ(−2)
⊗ ĥ(−2)

]
vec

(
ĥ(3)

)
,

−
1
24

∑
ijkq

ĥijkqµ
4
ijkq = −

3
24

∑
ijkq

ĥijkqσ̂ijσ̂kq = −
1
8
tr
[[

ĥ(−2)
⊗ vec

(
ĥ(−2)

)]
ĥ(4)′

]
. (61)

From (57), (58), (59), (60), (61), in the matrix form, we have

B1
4 =

1
2
tr

[
ĥ(−2) b̂

(2)
D

b̂D

]
−

1
2
vec

(
ĥ(−2)

)′

ĥ(−3)ĥ(−2) b̂
(1)
D

b̂D

+
1
8
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)
+

1
12
vec

(
ĥ(3)

)′ [
ĥ(−2)

⊗ ĥ(−2)
⊗ ĥ(−2)

]
vec

(
ĥ(3)

)
−

1
8
tr
[[

ĥ(−2)
⊗ vec

(
ĥ(−2)

)]
ĥ(4)′

]
. (62)

From (52), (56) and (56), we have

θ = θ̂ +
1
n
B1
1 +

1
n2

(
B1
2 − B1

3

)
+ Op

(
1
n3

)
= θ̂ +

1
n
B1
1 +

1
n2

(
B1
2 − B1

4B
1
1

)
+ Op

(
1
n3

)
.

This ends the proof for the first part of the lemma.
In the following, we prove the second part of the lemma. Define a function f (θ) = vec

(
θθ′
)
which is a P2

× 1
vector. Hence, we can get the first and second derivatives of f with respect to θ as f(1) (θ) = θ ⊗ IP + IP ⊗ θ and
f(2) (θ) = (KPP ⊗ IP) [IP ⊗ vec (IP)]+ [vec (IP)⊗ IP ] following Magnus and Neudecker (1999), where Kmn is a commutation
matrix, which is defined by KmnvecA = vecA′ for a m × n matrix A. If m = n, Kmn is simplified as Km. By properties of
commutation matrix, we have

Kmn (Y ⊗ x) = x ⊗ Y , (63)(
Y ⊗ x′

)
Ksm = x′

⊗ Y , (64)

where Y is an n × s matrix, x is an m × 1 vector. Furthermore, for any matrix A1 and A2, if A1 is an n × s dimensional
matrix and A2 is an m × t dimensional matrix, then,

Kmn (A1 ⊗ A2) = (A2 ⊗ A1)Kts. (65)

For more details about matrix properties, one can refer to Magnus and Neudecker (1999).
Following Lemma A.1, since each element fz(θ) is a real-valued function, we have∫

fz (θ) bD (θ) exp (−nhn (θ)) dθ∫
bD (θ) exp (−nhn (θ)) dθ

= fz
(
θ̂
)

+
1
n
B2
1,z +

1
n2

(
B2
2,z − B2

3,z

)
+ Op

(
1
n3

)
.

Again, we can rewrite it in the matrix form,∫
f (θ) bD (θ) exp (−nhn (θ)) dθ∫

bD (θ) exp (−nhn (θ)) dθ
= f(θ) +

1
n
B2
1 +

1
n2

(
B2
2 − B2

3

)
+ Op

(
1
n3

)
.

For each z, we have

B2
1,z =

1
2

∑
ij

σ̂ij f̂z,ij +
∑
ij

f̂z,iσ̂ij
b̂D,j
b̂D

−
1
6

∑
ijkq

ĥijkµ
4
ijkq f̂z,q.

Thus, in the matrix form

B2
1 =

1
2

[
IP2 ⊗ vec

(
ĥ(−2)

)′
]
vec

(
f̂(2)′KPP2

)
+

∑
ij

f̂(1)
·i σ̂ij

b̂D,j
b̂D

−
1
2

∑
ijkq

f̂(1)
·q ĥijkσ̂ijσ̂kq. (66)

Note that[
IP2 ⊗ vec

(
ĥ(−2)

)′
]
vec

(
f̂(2)′KPP2

)
=

[
IP2 ⊗ vec

(
ĥ(−2)

)′
]
vec

([
IP ⊗ vec (IP)′

]
(KPP ⊗ IP)KPP2

)
+

[
IP2 ⊗ vec

(
ĥ(−2)

)′
]
vec

([
vec (IP)′ ⊗ IP

]
KPP2

)
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where ⎡⎣IP2 ⊗ vec

⎛⎝∑
ij

σ̂ijeie′

j

⎞⎠′⎤⎦ vec ([IP ⊗ vec (IP)′
]
KPP2 (IP ⊗ KPP)

)
(67)

=

∑
ij

σ̂ij
[(
IP2 ⊗ e′

j ⊗ e′

i

) (
(IP ⊗ KPP)⊗

[
IP ⊗ vec (IP)′

])]
vec(KPP2 )

=

∑
ij

σ̂ij
[((

IP2 ⊗ e′

j

)
(IP ⊗ KPP)

)
⊗
(
e′

i

[
IP ⊗ vec (IP)′

])]
vec(KPP2 )

=

∑
ij

σ̂ij
[[(

IP ⊗ IP ⊗ e′

j

)
(IP ⊗ KPP)

]
⊗
(
e′

i ⊗ vec (IP)′
)]
vec(KPP2 )

=

∑
ij

σ̂ij
[[
IP ⊗

(
e′

j ⊗ IP
)]

⊗
(
e′

i ⊗ vec (IP)′
)]
vec(KPP2 )

=

∑
ij

σ̂ijvec
[(
e′

i ⊗ vec (IP)′
)
KPP2

(
IP ⊗ ej ⊗ IP

)]
=

∑
ij

σ̂ijvec
[(
vec (IP)′ ⊗ e′

i

) (
IP ⊗ ej ⊗ IP

)]
=

∑
ij

σ̂ijvec
[(
vec (IP)′

(
IP ⊗ ej

))
⊗ e′

i

]
=

∑
ij

σ̂ijvec
[((

IP ⊗ e′

j

)
vec (IP)

)′
⊗ e′

i

]
=

∑
ij

σ̂ijvec
[
ej ⊗ e′

i

]
= vec

(
ĥ(−2)′

)
and [

IP2 ⊗ vec
(
ĥ(−2)

)′
]
vec

([
vec (IP)′ ⊗ IP

]
KPP2

)
(68)

=

∑
ij

σ̂ij
[(
IP2 ⊗ e′

j ⊗ e′

i

) (
IP3 ⊗ vec (IP)′ ⊗ IP

)]
vec(KPP2 )

=

∑
ij

σ̂ij
[(
IP2 ⊗ e′

j

)
⊗
(
vec (IP)′ ⊗ e′

i

)]
vec(KPP2 )

=

∑
ij

σ̂ijvec
[(
vec (IP)′ ⊗ e′

i

)
KPP2

(
IP2 ⊗ ej

)]
=

∑
ij

σ̂ijvec

[∑
s

(
e′

s ⊗ e′

s ⊗ e′

i

) (
ej ⊗ IP2

)]

=

∑
ij

σ̂ijvec

[∑
s

e′

sej
(
e′

s ⊗ e′

i

)]
=

∑
ij

σ̂ij
∑
s

vec
(
eie′

jese
′

s

)
=

∑
ij

σ̂ijvec

(
eie′

j

∑
s

ese′

s

)
=

∑
ij

σ̂ijvec
(
eie′

j

)
= vec

(
ĥ(−2)

)
by (50) and (51). Then from (67) and (68), we have[

IP2 ⊗ vec
(
ĥ(−2)

)′
]
vec

(
f̂(2)′KPP2

)
= vec

(
ĥ(−2)

)
+ vec

(
ĥ(−2)′

)
. (69)

Moreover, from (66)

B2
1 = vec

(
ĥ(−2)

)
+ f̂(1)ĥ(−2) b̂

(1)
D

b̂D
−

1
2
f̂(1)ĥ(−2)ĥ(−3)′vec

(
ĥ(−2)

)
= vec

(
ĥ(−2)

)
+ f̂(1)B1

1. (70)

And for each z

B2
2,z = −

1
120

∑
ijkqrs

ĥijkqrµ
6
ijkqrs f̂z,s +

1
144

∑
ijkqrstw

ĥijkĥqrstµ
8
ijkqrstw f̂z,w

−
1

1296

∑
ijkqrstwvβ

ĥijkĥqrsĥtwvµ
10
ijkqrstwvβ f̂z,β −

1
24

∑
ijkqrs ĥijkqµ

6
ijkqrsb̂D,s f̂z,r

b̂D

+
1
72

∑
ijkqrstw ĥijkĥqrsµ

8
ijkqrstw b̂D,w f̂z,t

b̂D
−

1
12

∑
ijkζηξ ĥijkµ

6
ijkζηξ b̂D,ηξ f̂z,ζ

b̂D
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+
1
6

∑
ζηξω µ

4
ζηξωb̂D,ηξω f̂z,ζ

b̂D
−

1
48

∑
ijkqrs

ĥijkqµ
6
ijkqrs f̂z,rs

+
1

144

∑
ijkqrstw

ĥijk̂hqrsµ
8
ijkqrstw f̂z,tw −

1
12

∑
ijkζηξ ĥijkµ

6
ijkζηξ f̂z,ζ η̂bD,ξ

b̂D

+
1
4

∑
ζηξω µ

4
ζηξω f̂z,ζ η̂bD,ξω
b̂D

.

Let B2
2,z = B2

21,z + B2
22,z , where

B2
21,z = −

1
120

∑
ijkqrs

ĥijkqrµ
6
ijkqrs f̂z,s +

1
144

∑
ijkqrstw

ĥijkĥqrstµ
8
ijkqrstw f̂z,w

−
1

1296

∑
ijkqrstwvβ

ĥijkĥqrsĥtwvµ
10
ijkqrstwvβ f̂z,β −

1
24

∑
ijkqrs ĥijkqµ

6
ijkqrsb̂D,s f̂z,r

b̂D

+
1
72

∑
ijkqrstw ĥijkĥqrsµ

8
ijkqrstw b̂D,w f̂z,t

b̂D
−

1
12

∑
ijkζηξ ĥijkµ

6
ijkζηξ b̂D,ηξ f̂z,ζ

b̂D

+
1
6

∑
ζηξω µ

4
ζηξωb̂D,ηξω f̂z,ζ

b̂D
,

B2
22,z = −

1
48

∑
ijkqrs

ĥijkqµ
6
ijkqrs f̂z,rs

+
1

144

∑
ijkqrstw

ĥijk̂hqrsµ
8
ijkqrstw f̂z,tw −

1
12

∑
ijkζηξ ĥijkµ

6
ijkζηξ f̂z,ζ η̂bD,ξ

b̂D

+
1
4

∑
ζηξω µ

4
ζηξω f̂z,ζ η̂bD,ξω
b̂D

.

Then, we rewrite them in the matrix form so that we have

B2
2 = B2

21 + B2
22, (71)

where

B2
21 = f̂(1)B1

2 =

(
θ̂ ⊗ IP + IP ⊗ θ̂

)
B1
2 = vec

(
B1
2θ̂

′

+ θ̂B1′
2

)
. (72)

By Li et al. (2017)

B2
22 (73)

= −
1
8
vec

(
ĥ(−2)

)
tr
[(

ĥ(−2)
⊗ vec

(
ĥ(−2)

)′
)
ĥ(4)

]
−

1
4
vec

[(
ĥ(−2)

⊗ vec
(
ĥ(−2)

)′
)
ĥ(4)ĥ(−2)

]
−

1
4
vec

[
ĥ(−2)ĥ(4)′

(
ĥ(−2)

⊗ vec
(
ĥ(−2)

))]
+

1
8
vec

(
ĥ(−2)

)[
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)]
+

1
12
vec

(
ĥ(−2)

)
tr
[
ĥ(3)′

[
ĥ(−2)

⊗ ĥ(−2)
]
ĥ(3)ĥ(−2)

]
+

1
4
vec

[[(
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)
)

⊗ ĥ(−2)
]
ĥ(3)ĥ(−2)

]
+

1
4
vec

[
ĥ(−2)ĥ(3)′

[(
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)
)′

⊗ ĥ(−2)
]]

+
1
4
vec

[
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)
]

+
1
2
vec

[
ĥ(−2)ĥ(3)′

[
ĥ(−2)

⊗ ĥ(−2)
]
ĥ(3)ĥ(−2)

]
−

1
2
vec

[
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

) b̂(1)D

b̂D

′

ĥ(−2)

]



480 Y. Li, J. Yu and T. Zeng / Journal of Econometrics 216 (2020) 450–493

−
1
2
vec

[
ĥ(−2) b̂

(1)
D

b̂D
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)

]
−

1
2
vec

[[(
ĥ(−2) b̂

(1)
D

b̂D

)′

⊗ ĥ(−2)

]
ĥ(3)ĥ(−2)

]

−
1
2
vec

[
ĥ(−2)ĥ(3)′

[(
ĥ(−2) b̂

(1)
D

b̂D

)
⊗ ĥ(−2)

]]
−

1
2
vec

(
ĥ(−2)

)
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2) b̂
(1)
D

b̂D

+
1
2
vec

(
ĥ(−2)

)
tr

[
ĥ(−2) b̂

(2)
D

b̂D

]
+ vec

(
ĥ(−2) b̂

(2)
D

b̂D
ĥ(−2)

)
(74)

We can also get

B2
3 = B2

1 × B1
4 =

(
vec

(
ĥ(−2)

)
+ f̂(1)B1

1

)
B1
4, (75)

where

f̂(1)B1
1 = vec

(
B1
1θ̂

′

+ θ̂B1′
1

)
.

Note that

θ = θ̂ +
1
n
B1
1 +

1
n2

(
B1
2 − B1

3

)
+ Op

(
1
n3

)
= θ̂ +

1
n
B1
1 +

1
n2

(
B1
2 − B1

4B
1
1

)
+ Op

(
1
n3

)
.

Thus, we have

vec
(

¯θ θ̄
′
)

= vec
(

ˆ
θ θ̂ ′

)
+

1
n
vec

(
θ̂B1′

1 + B1
1θ̂

′
)

+
1
n2 vec

[
θ̂
(
B1
2 − B1

4B
1
1

)′
+
(
B1
2 − B1

4B
1
1

)
θ̂

′

+ B1
1B

1′
1

]
+ Op

(
1
n3

)
.

From (70), (71) and (75), we can show that∫
vec

(
θθ′
)
bD (θ) exp (−nhn (θ)) dθ∫

bD (θ) exp (−nhn (θ)) dθ

= vec
(

ˆ
θ θ̂ ′

)
+

1
n
B2
1 +

1
n2

(
B2
2 − B2

3

)
+ Op

(
1
n3

)
= vec

(
ˆ
θ θ̂ ′

)
+

1
n

[
vec

(
ĥ(−2)

)
+ f̂(1)B1

1

]
+

1
n2

[
f̂(1)B1

2 + B2
22 − B1

4

(
vec

(
ĥ(−2)

)
+ f̂(1)B1

1

)]
+ Op

(
1
n3

)
= vec

(
ˆ
θ θ̂ ′

)
+

1
n

[
vec

(
ĥ(−2)

)
+ vec

(
B1
1θ̂

′

+ θ̂B1′
1

)]
+

1
n2

[
vec

(
B1
2θ̂

′

+ θ̂B1′
2

)
+ B2

22 − B1
4

(
vec

(
ĥ(−2)

)
+ vec

(
B1
1θ̂

′

+ θ̂B1′
1

))]
+ Op

(
1
n3

)
= vec

(
ˆ
θ θ̂ ′

)
+

1
n

[
vec

(
ĥ(−2)

)
+ vec

(
B1
1θ̂

′

+ θ̂B1′
1

)]
+

1
n2

[
B2
22 + θ̂

(
B1
2 − B1

4B
1
1

)′
+
(
B1
2 − B1

4B
1
1

)
θ̂

′

− B1
4vec

(
ĥ(−2)

)]
+ Op

(
1
n3

)
.

Hence, we have∫
vec

[(
θ − θ̄

) (
θ − θ̄

)′]
bD (θ) exp (−nhn (θ)) dθ∫

bD (θ) exp (−nhn (θ)) dθ

=

∫
vec

(
θθ′
)
bD (θ) exp (−nhn (θ)) dθ∫

bD (θ) exp (−nhn (θ)) dθ
− vec

(
¯θ θ̄

′
)

=
1
n
vec

(
ĥ(−2)

)
+

1
n2

[
B2
22 − B1

4vec
(
ĥ(−2)

)
− vec

(
B1
1B

1′
1

)]
+ Op

(
1
n3

)
.
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Note that

vec
(
ĥ(−2)

)
B1
4

=
1
2
vec

(
ĥ(−2)

)
tr

[
ĥ(−2) b̂

(2)
D

b̂D

]
−

1
2
vec

(
ĥ(−2)

)
vec

(
ĥ(−2)

)′

ĥ(−3)ĥ(−2) b̂
(1)
D

b̂D

+
1
8
vec

(
ĥ(−2)

)
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)ĥ(3)′vec
(
ĥ(−2)

)
+

1
12
vec

(
ĥ(−2)

)
vec

(
ĥ(3)

)′ [
ĥ(−2)

⊗ ĥ(−2)
⊗ ĥ(−2)

]
vec

(
ĥ(3)

)
−

1
8
vec

(
ĥ(−2)

)
tr
[[

ĥ(−2)
⊗ vec

(
ĥ(−2)

)]
ĥ(4)′

]
,

and that

B1
1B

1′
1 =

[
ĥ(−2) b̂

(1)
D

b̂D
−

1
2
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)][
ĥ(−2) b̂

(1)
D

b̂D
−

1
2
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)]′

= ĥ(−2) b̂
(1)
D

b̂D

b̂(1)D

b̂D

′

ĥ(−2)
−

1
2
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

) b̂(1)D

b̂D

′

ĥ(−2)

−
1
2
ĥ(−2) b̂

(1)
D

b̂D
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)
+

1
4
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2).

We have

B2
22 − B1

4vec
(
ĥ(−2)

)
= −

1
4
vec

[(
ĥ(−2)

⊗ vec
(
ĥ(−2)

)′
)
ĥ(4)ĥ(−2)

]
−

1
4
vec

[
ĥ(−2)ĥ(4)′

(
ĥ(−2)

⊗ vec
(
ĥ(−2)

))]
+

1
4
vec

[[(
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)
)

⊗ ĥ(−2)
]
ĥ(3)ĥ(−2)

]
+

1
4
vec

[
ĥ(−2)ĥ(3)′

[(
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)
)′

⊗ ĥ(−2)
]]

+
1
4
vec

[
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)
]

+
1
2
vec

[
ĥ(−2)ĥ(3)′

[
ĥ(−2)

⊗ ĥ(−2)
]
ĥ(3)ĥ(−2)

]
−

1
2
vec

[
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

) b̂(1)D

b̂D

′

ĥ(−2)

]

−
1
2
vec

[
ĥ(−2) b̂

(1)
D

b̂D
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)

]
−

1
2
vec

[[(
ĥ(−2) b̂

(1)
D

b̂D

)′

⊗ ĥ(−2)

]
ĥ(3)ĥ(−2)

]

−
1
2
vec

[
ĥ(−2)ĥ(3)′

[(
ĥ(−2) b̂

(1)
D

b̂D

)
⊗ ĥ(−2)

]]
+ vec

(
ĥ(−2) b̂

(2)
D

b̂D
ĥ(−2)

)
.

We can further decompose B2
22 − B1

4vec
(
ĥ(−2)

)
−vec

(
B1
1B

1′
1

)
as

B2
22 − B1

4vec
(
ĥ(−2)

)
− vec

(
B1
1B

1′
1

)
= F1 + F2,

where

F1 = −
1
4
vec

[(
ĥ(−2)

⊗ vec
(
ĥ(−2)

)′
)
ĥ(4)ĥ(−2)

]
−

1
4
vec

[
ĥ(−2)ĥ(4)′

(
ĥ(−2)

⊗ vec
(
ĥ(−2)

))]
+

1
4
vec

[
ĥ(−2)ĥ(3)′

[(
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)
)′

⊗ ĥ(−2)
]]

+
1
4
vec

[[(
vec

(
ĥ(−2)

)′

ĥ(3)ĥ(−2)
)

⊗ ĥ(−2)
]
ĥ(3)ĥ(−2)

]
+

1
2
vec

[
ĥ(−2)ĥ(3)′

[
ĥ(−2)

⊗ ĥ(−2)
]
ĥ(3)ĥ(−2)

]
, (76)
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F2 = −
1
2
vec

[[(
ĥ(−2) b̂

(1)
D

b̂D

)′

⊗ ĥ(−2)

]
ĥ(3)ĥ(−2)

]
−

1
2
vec

[
ĥ(−2)ĥ(3)′

[(
ĥ(−2) b̂

(1)
D

b̂D

)
⊗ ĥ(−2)

]]

+ vec

(
ĥ(−2) b̂

(2)
D

b̂D
ĥ(−2)

)
− vec

(
ĥ(−2) b̂

(1)
D

b̂D

b̂(1)D

b̂D

′

ĥ(−2)

)
. ■ (77)

A.3. Proof of Theorem 3.1

It is noted that hn (θ) = −ln (θ) = −
1
n

∑n
t=1 lt (θ), bD (θ) = p (θ), π (θ) = ln p (θ) and H̄(j)n (θ) =

1
n

∑n
t=1 l

(j)
t (θ) = l

(j)
n (θ)

for j = 3, 4,. Thus, according to Lemma 3.2, we have

θ =

∫
θp (θ) exp (−nhn (θ)) dθ∫
p (θ) exp (−nhn (θ)) dθ

= θ̂ −
1
n
H̄−1

n

(
θ̂
) p̂(1)

p̂

+
1
2n

H̄n

(
θ̂
)−1

H̄(3)n

(
θ̂
)′

vec
(
H̄−1

n

(
θ̂
))

+ Op

(
1
n2

)
, (78)

and

vec
(
V
(
θ
))

=

∫
vec

[(
θ − θ̄

) (
θ − θ̄

)′]
p (θ) exp (−nhn (θ)) dθ∫

p (θ) exp (−nhn (θ)) dθ

= −
1
n
vec

(
Ĥn

(
θ̂
)−1

)
+

1
n2 F1 +

1
n2 F2 + Op

(
1
n3

)
, (79)

where

F1 = −
1
4
vec

[(
H̄−1

n

(
θ̂
)

⊗ vec
(
H̄−1

n

(
θ̂
))′
)
H̄(4)n

(
θ̂
)
H̄−1

n

(
θ̂
)]

(80)

−
1
4
vec

[
H̄−1

n

(
θ̂
)
H̄(4)n

(
θ̂
)′ (

H̄−1
n

(
θ̂
)

⊗ vec
(
H̄−1

n

(
θ̂
)))]

+
1
4
vec

[
H̄−1

n

(
θ̂
)
H̄(3)n

(
θ̂
)′
[(
vec

(
H̄−1

n

(
θ̂
))′

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
))′

⊗ H̄−1
n

(
θ̂
)]]

+
1
4
vec

[[(
vec

(
H̄−1

n

(
θ̂
))′

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
))

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
)]

+
1
2
vec

[
H̄−1

n

(
θ̂
)
H̄(3)n

(
θ̂
)′ [

H̄−1
n

(
θ̂
)

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
)]

F2 = −
1
2
vec

[[(
H̄−1

n

(
θ̂
) p̂(1)

p̂

)′

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
)]

(81)

−
1
2
vec

[
H̄−1

n

(
θ̂
)
H̄(3)n

(
θ̂
)′
[(

H̄−1
n

(
θ̂
) p̂(1)

p̂

)
⊗ H̄−1

n

(
θ̂
)]]

+ vec
(
H̄−1

n

(
θ̂
) p̂(2)

p̂
H̄−1

n

(
θ̂
))

− vec

(
H̄−1

n

(
θ̂
) p̂(1)

p̂
p̂(1)

p̂

′

H̄−1
n

(
θ̂
))

From (78), by the Taylor expansion of vec
(
H̄n
(
θ̄
))

at θ̂, we have

vec
(
H̄n
(
θ̄
))

= vec
[
H̄n

(
θ̂
)

+ H̄ (3)
n

(
θ̂
)(

θ̄ − θ̂
)]

+ Op

(
1
n2

)
. (82)

Hence, we get

PL = tr
[
−nH̄n

(
θ̄
)
V
(
θ̄
)]

= −nvec
(
H̄n
(
θ̄
))′
vec

(
V
(
θ
))

= −nvec
(
H̄n

(
θ̂
))′

vec
(
V
(
θ̄
))

− nvec
(
H̄(3)n

(
θ̂
)(

θ̄ − θ̂
))′

vec
(
V
(
θ
))

− nvec
(
V
(
θ̄
))

Op

(
1
n2

)
(83)
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By (67), (68), and (70), we can have

nvec
(
H̄(3)n

(
θ̂
)(

θ − θ̂
))′

vec
(
V
(
θ
))

(84)

= vec
[
H̄(3)n

(
θ̂
)(

θ − θ̂
)]′

vec
(
−H̄−1

n

(
θ̂
))

+ Op(
1
n2 )

=
1
n
vec

[
H̄(3)n

(
θ̂
)(

−H̄−1
n

(
θ̂
) p̂(1)

p̂
+

1
2
H̄n

(
θ̂
)−1

H̄(3)
n

(
θ̂
)′

vec
(
H̄−1

n

(
θ̂
)))]′

[
vec

(
−H̄n

(
θ̂
)−1

)]
+ Op(

1
n2 )

=
1
n

(
H̄−1

n

(
θ̂
) p̂(1)

p̂

)′

H̄(3)n

(
θ̂
)′

vec
(
H̄n

(
θ̂
)−1

)
−

1
2n
vec

(
H̄−1

n

(
θ̂
))′

H̄(3)
n

(
θ̂
)
H̄n

(
θ̂
)−1

H̄(3)
n

(
θ̂
)′

vec
(
H̄n

(
θ̂
)−1

)
+ Op(

1
n2 )

where

vec
[
H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
) p̂(1)

p̂

]′

vec
(
H̄n

(
θ̂
)−1

)
(85)

= vec
(
H̄n

(
θ̂
)−1

)′

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
) p̂(1)

p̂

= vec
(
IP × IP × H̄n

(
θ̂
)−1

)′

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
) p̂(1)

p̂

= vec (IP)′ vec
[[

H̄n

(
θ̂
)−1

⊗ IP
]
H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
) p̂(1)

p̂

]
= vec (IP)′

[(
H̄−1

n

(
θ̂
) p̂(1)

p̂

)′

⊗ H̄n

(
θ̂
)−1

⊗ IP

]
vec

(
H̄(3)n

(
θ̂
))

= tr
[
IP × IP × H̄(3)n

(
θ̂
)′

×

[(
H̄−1

n

(
θ̂
) p̂(1)

p̂

)
⊗ H̄n

(
θ̂
)−1

]]
= tr

[
H̄(3)n

(
θ̂
)′
[(

H̄−1
n

(
θ̂
) p̂(1)

p̂

)
⊗ H̄n

(
θ̂
)−1

]]
,

by (50) and (51). For the same reason

vec
(
H̄−1

n

(
θ̂
))′

H̄(3)
n

(
θ̂
)
H̄n

(
θ̂
)−1

H̄(3)
n

(
θ̂
)′

vec
(
H̄n

(
θ̂
)−1

)
(86)

= tr
[[(

vec
(
H̄−1

n

(
θ̂
))′

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
))

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)]
.

Then from (84)–(86), we have

nvec
(
H̄(3)n

(
θ̂
)(

θ − θ̂
))′

vec
(
V
(
θ
))

(87)

=
1
n
tr
[
H̄(3)n

(
θ̂
)′
[(

H̄−1
n

(
θ̂
) p̂(1)

p̂

)
⊗ H̄n

(
θ̂
)−1

]]
−

1
2n

tr
[[(

vec
(
H̄−1

n

(
θ̂
))′

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
))

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)]

+ Op(
1
n2 ).

And note that

nvec
(
H̄n

(
θ̂
))′

vec
(
V
(
θ
))

= vec
(
H̄n

(
θ̂
))′

[
−vec

(
H̄−1

n

(
θ̂
))

+
1
n
F1 +

1
n
F2

]
+ Op

(
1
n2

)
= −P +

1
n
vec

(
H̄n

(
θ̂
))′

F1 +
1
n
vec

(
H̄n

(
θ̂
))′

F2 + Op

(
1
n2

)
. (88)
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Furthermore, from (80) and (81), we have

vec
(
H̄n

(
θ̂
))′

F1

= −
1
2
tr
[(

H̄−1
n

(
θ̂
)

⊗ vec
(
H̄−1

n

(
θ̂
))′
)
H̄(4)n

(
θ̂
)]

+
1
2
tr
[[(

vec
(
H̄−1

n

(
θ̂
))′

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
))

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)]

+
1
2
tr
[
H̄(3)n

(
θ̂
)′ [

H̄−1
n

(
θ̂
)

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
)]

(89)

vec
(
H̄n

(
θ̂
))′

F2

= −tr
[
H̄(3)n

(
θ̂
)′
[(

H̄−1
n

(
θ̂
) p̂(1)

p̂

)
⊗ H̄−1

n

(
θ̂
)]]

+ tr
[
H̄−1

n

(
θ̂
) p̂(2)

p̂

]
− tr

[
H̄−1

n

(
θ̂
) p̂(1)

p̂
p̂(1)

p̂

′
]

(90)

Hence, from (89) and (90), we have

nvec
(
H̄n

(
θ̂
))′

vec
(
V
(
θ
))

(91)

= −P −
1
2n

tr
[(

H̄−1
n

(
θ̂
)

⊗ vec
(
H̄−1

n

(
θ̂
))′
)
H̄(4)n

(
θ̂
)]

+
1
2n

tr
[[(

vec
(
H̄−1

n

(
θ̂
))′

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
))

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)]

+
1
2n

tr
[
H̄(3)n

(
θ̂
)′ [

H̄−1
n

(
θ̂
)

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
)]

− tr
[
H̄(3)n

(
θ̂
)′
[(

H̄−1
n

(
θ̂
) p̂(1)

p̂

)
⊗ H̄−1

n

(
θ̂
)]]

+ tr
[
H̄−1

n

(
θ̂
) p̂(2)

p̂

]
− tr

[
H̄−1

n

(
θ̂
) p̂(1)

p̂
p̂(1)

p̂

′
]
.

Then, from (83) and (91), we have

PL = P +
1
n
C1 +

1
n
C2 + Op

(
1
n2

)
,

where

C1 =
1
2
tr
[(

H̄−1
n

(
θ̂
)

⊗ vec
(
H̄−1

n

(
θ̂
))′
)
H̄(4)n

(
θ̂
)]

−
1
2
tr
[
H̄(3)n

(
θ̂
)′ [

H̄−1
n

(
θ̂
)

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
)]

C2 = −tr
[
H̄−1

n

(
θ̂
) p̂(2)

p̂

]
+ tr

[
H̄−1

n

(
θ̂
) p̂(1)

p̂
p̂(1)

p̂

′
]

= −tr
[
H̄−1

n

(
θ̂
)
π (2)

(
θ̂
)]
.

We can rewrite C1 and C2 as

C1 =
1
2
C11 −

1
2
C12, C2 = −C22,

where

C11 = tr
[(

H̄n

(
θ̂
)−1

⊗ vec
(
H̄−1

n

(
θ̂
))′
)
H̄(4)n

(
θ̂
)]
,

C12 = tr
[
H̄(3)n

(
θ̂
)′ [

H̄−1
n

(
θ̂
)

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
)]

= vec
(
H̄n

(
θ̂
)−1

)′

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
)
H̄(3)n

(
θ̂
)′

vec
(
H̄n

(
θ̂
)−1

)
,
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C22 = tr
[
H̄n

(
θ̂
)−1

π (2)
(
θ̂
)]

, C23 = π (1)
(
θ̂
)′

H̄−1
n

(
θ̂
)
π (1)

(
θ̂
)
.

And from Li et al. (2017)

ln p
(
y|θ
)

= ln p
(
y|θ̂
)

−
1
2n

C21 +
1
2n

C23 +
1
8n

C12 + Op
(
n−2) (92)

where

C21 = tr
[
H̄(3)n

(
θ̂
)′ [(

H̄−1
n

(
θ̂
)
π (1)

(
θ̂
))

⊗ H̄−1
n

(
θ̂
)]]

= π (1)
(
θ̂
)′

H̄−1
n

(
θ̂
)
H̄(3)n

(
θ̂
)′

vec
(
H̄n

(
θ̂
)−1

)
.

Hence

DICL = −2 ln p
(
y|θ
)

+ 2PL

= −2 ln p
(
y|θ̂
)

+
1
n
C21 −

1
n
C23 −

1
4n

C12 + 2P +
2
n
C1 +

2
n
C2 + Op

(
1
n2

)
= AIC +

1
n
D1 +

1
n
D2 + Op

(
1
n2

)
,

where

D1 = C11 +
5
4
C12,

D2 = C21 − 2C22 − C23.

A.4. Proof of Theorem 4.1

By the second-order Taylor expansion of st
(
θ̄
)
at θ̂, Ω̄n

(
θ̄
)
can be written as

Ω̄n
(
θ̄
)

=
1
n

n∑
t=1

n∑
τ=1

[
st
(
θ̂
)

+ l(2)t

(
θ̂
)(

θ̄ − θ̂
)

+

(
Ip ⊗

(
θ̄ − θ̂

)′
)
l(3)t

(
θ̃t

)(
θ̄ − θ̂

)]
×

[
sτ
(
θ̂
)

+ l(2)τ
(
θ̂
)(

θ̄ − θ̂
)

+

(
Ip ⊗

(
θ̄ − θ̂

)′
)
l(3)τ
(
θ̃τ

)(
θ̄ − θ̂

)]′

k
(
t − τ

γn

)
=

1
n

n∑
t=1

n∑
τ=1

st
(
θ̂
)
sτ
(
θ̂
)′

k
(
t − τ

γn

)
+

1
n

n∑
t=1

n∑
τ=1

st
(
θ̂
)(

θ̄ − θ̂
)′

l(2)τ
(
θ̂
)′

k
(
t − τ

γn

)

+
1
n

n∑
t=1

n∑
τ=1

l(2)t

(
θ̂
)(

θ̄ − θ̂
)
sτ
(
θ̂
)′

k
(
t − τ

γn

)

+
1
n

n∑
t=1

n∑
τ=1

l(2)t

(
θ̂
)(

θ̄ − θ̂
)(

θ̄ − θ̂
)′

l(2)τ
(
θ̂
)′

k
(
t − τ

γn

)

+
1
n

n∑
t=1

n∑
τ=1

st
(
θ̂
)(

θ̄ − θ̂
)′

l(3)τ
(
θ̃τ

)′ (
Ip ⊗

(
θ̄ − θ̂

))
k
(
t − τ

γn

)

+
1
n

n∑
t=1

n∑
τ=1

l(2)t

(
θ̂
)(

θ̄ − θ̂
)(

θ̄ − θ̂
)′

l(3)τ
(
θ̃τ

)′ (
Ip ⊗

(
θ̄ − θ̂

))
k
(
t − τ

γn

)

+
1
n

n∑
t=1

n∑
τ=1

(
Ip ⊗

(
θ̄ − θ̂

)′
)
l(3)t

(
θ̃t

)(
θ̄ − θ̂

)
sτ
(
θ̂
)′

k
(
t − τ

γn

)

+
1
n

n∑
t=1

n∑
τ=1

(
Ip ⊗

(
θ̄ − θ̂

)′
)
l(3)t

(
θ̃t

)(
θ̄ − θ̂

)(
θ̄ − θ̂

)′

l(2)τ
(
θ̂
)′

k
(
t − τ

γn

)

+
1
n

n∑
t=1

n∑
τ=1

(
Ip ⊗

(
θ̄ − θ̂

)′
)
l(3)t

(
θ̃t

)(
θ̄ − θ̂

)(
θ̄ − θ̂

)′

l(3)τ
(
θ̃τ
)′ (

Ip ⊗

(
θ̄ − θ̂

))
k
(
t − τ

γn

)
,
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where both θ̃t and θ̃τ lie between θ̄ and θ̂ for all t and τ . We consider the stochastic order of each term. For simplicity,
we first consider the terms with order greater than or equal to Op

(
γn/n2

)
which are the fourth to ninth terms. Without

loss of generality, we will analyze the fifth and sixth terms only.
For the fifth term, we can rewrite it as

1
n

n∑
t=1

n∑
τ=1

st
(
θ̂
)(

θ̄ − θ̂
)′

l(3)τ
(
θ̃τ

)′ (
Ip ⊗

(
θ̄ − θ̂

))
k
(
t − τ

γn

)
(93)

=

[
1
n2

n∑
t=1

1
n

n∑
τ=1

st
(
θ̂
)
n
(
θ̄ − θ̂

)′

l(3)τ
(
θ̃τ

)′

k
(
t − τ

γn

)](
Ip ⊗ n

(
θ̄ − θ̂

))

=

⎡⎣ 1
n2
∑n−1

j=0 k
(

j
γn

)
1
n

∑n
t=j+1 st

(
θ̂
)
n
(
θ̄ − θ̂

)′

l(3)t−j

(
θ̃t−j

)′

+
1
n2
∑

−1
j=−n+1 k

(
j
γn

)
1
n

∑n
t=−j+1 st+j

(
θ̂
)
n
(
θ̄ − θ̂

)′

l(3)t

(
θ̃t

)′

⎤⎦×

(
Ip ⊗ n

(
θ̄ − θ̂

))
.

We have Ip ⊗ n
(
θ̄ − θ̂

)
= Op (1) by Lemma 3.2 , then we need to consider the order of the first term in (93), that is

vec

[
1
n2

n∑
t=1

1
n

n∑
τ=1

st
(
θ̂
)
n
(
θ̄ − θ̂

)′

l(3)τ
(
θ̃τ

)′

k
(
t − τ

γn

)]
(94)

=

⎡⎣ 1
n2
∑n−1

j=0 k
(

j
γn

)
1
n

∑n
t=j+1

[
l(3)t−j

(
θ̃t−j

)
⊗ st

(
θ̂
)]

+
1
n2
∑

−1
j=−n+1 k

(
j
γn

)
1
n

∑n
t=−j+1

[
l(3)t

(
θ̃t

)
⊗ st+j

(
θ̂
)] ⎤⎦× vec

(
n
(
θ̄ − θ̂

))
.

By the Minkowski inequality
1
n2
∑n−1

j=0 k
(

j
γn

)
1
n

∑n
t=j+1

[
l(3)t−j

(
θ̃t−j

)
⊗ st

(
θ̂
)]

+
1
n2
∑

−1
j=−n+1 k

(
j
γn

)
1
n

∑n
t=−j+1

[
l(3)t

(
θ̃t

)
⊗ st+j

(
θ̂
)]  (95)

≤
1
n2

n−1∑
j=0

⏐⏐⏐⏐k( j
γn

)⏐⏐⏐⏐ 1n


n∑
t=j+1

l(3)t−j

(
θ̃t−j

)
⊗ st

(
θ̂
)+

1
n2

−1∑
j=−n+1

⏐⏐⏐⏐k( j
γn

)⏐⏐⏐⏐ 1n


n∑
t=−j+1

l(3)t

(
θ̃t

)
⊗ st+j

(
θ̂
) .

Following Gallant and White (1988), we consider each element of l(3)t−j

(
θ̃t−j

)
⊗ st

(
θ̂
)

which can be expressed as the

product of (uv)th element of l(3)t−j

(
θ̃t−j

)
and wth element of st

(
θ̂
)

for. It is denoted by l(3)t−j,uv

(
θ̃t−j

)
st,w

(
θ̂
)

for each
j ≥ 0. Then we have1n

n∑
t=j+1

l(3)t−j,uv

(
θ̃t

)
st,w

(
θ̂
) ≤

⎛⎝1
n

n∑
t=j+1

l(3)t−j,uv

(
θ̃t

)2
⎞⎠1/2⎛⎝1

n

n∑
t=j+1

st,w (θ̂)2
⎞⎠1/2

≤

⎛⎝1
n

n∑
t=j+1

M2
t

⎞⎠1/2⎛⎝1
n

n∑
t=j+1

M2
t

⎞⎠1/2

≤
1
n

n∑
t=1

M2
t ,

for each j and each element of 1
n

∑n
t=j+1 l

(3)
t−j

(
θ̃t

)
st
(
θ̂
)
. The first inequality follows the Cauchy–Schwarz inequality and

the second inequality is due to Assumption 5. Then1n
n∑

t=j+1

l(3)t−j

(
θ̃t−j

)
⊗ st

(
θ̂
)

2

≤ P3

(
1
n

n∑
t=1

M2
t

)2

,

for each j ≥ 0 since there are P3 elements in 1
n

∑n
t=j+1 l

(3)
t

(
θ̃t

)
st−j

(
θ̂
)
. And also by Assumption 5, supt E

(
M2

t

)
≤ M2 < ∞.

Similar to Andrews (1991), by Markov’s inequality, 1
n

∑n
t=1 M

2
t = Op (1), we have

 1
n

∑n
t=j+1 l

(3)
t

(
θ̃t

)
st−j

(
θ̂
) = Op (1)
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for each j ≥ 0. Hence, we have

sup
0≤j≤n−1

1n
n∑

t=j+1

l(3)t−j

(
θ̃t−j

)
⊗ st

(
θ̂
) = Op (1) , (96)

and

sup
−n+1≤j≤−1

1n
n∑

t=−j+1

l(3)t

(
θ̃t

)
⊗ st+j

(
θ̂
) = Op (1) . (97)

By (95)–(97), we have

n2

γn


1
n2
∑n−1

j=0 k
(

j
γn

)
1
n

∑n
t=j+1

[
l(3)t−j

(
θ̃t−j

)
⊗ st

(
θ̂
)]

+
1
n2
∑

−1
j=−n+1 k

(
j
γn

)
1
n

∑n
t=−j+1

[
l(3)t (θ)⊗ st+j (θ)

] 
≤

1
γn

n−1∑
j=−n+1

⏐⏐⏐⏐k( j
γn

)⏐⏐⏐⏐
× max

⎧⎨⎩ sup
0≤j≤n−1

1n
n∑

t=j+1

l(3)t (θ)⊗ st+j (θ)

 , sup
−n+1≤j≤−1

1n
n∑

t=−j+1

l(3)t (θ)⊗ st+j (θ)


⎫⎬⎭

= Op (1) , (98)

by the Minkowski inequality and Assumption 11. Then from (93), (94) and (98), we get

n2

γn

1
n

n∑
t=1

n∑
τ=1

st
(
θ̂
)(

θ̄ − θ̂
)′

l(3)τ
(
θ̃τ

)′ (
Ip ⊗

(
θ̄ − θ̂

))
k
(
t − τ

γn

)
= Op (1) . (99)

Similarly, for the sixth term, we have

1
n

n∑
t=1

n∑
τ=1

l(2)t

(
θ̂
)(

θ̄ − θ̂
)(

θ̄ − θ̂
)′

l(3)τ
(
θ̃τ

)′ (
Ip ⊗

(
θ̄ − θ̂

))
k
(
t − τ

γn

)
= CC1 × n

(
Ip ⊗

(
θ̄ − θ̂

))
, (100)

where

CC1 =
1
n

n∑
t=1

1
n

n∑
τ=1

l(2)t

(
θ̂
)(

θ̄ − θ̂
)(

θ̄ − θ̂
)′

l(3)τ
(
θ̃τ

)′

k
(
t − τ

γn

)

=
1
n

n−1∑
j=−0

k
(

j
γn

)
1
n

n∑
t=j+1

l(2)t

(
θ̂
)(

θ̄ − θ̂
)(

θ̄ − θ̂
)′

l(3)t−j

(
θ̃t−j

)′

+
1
n

−1∑
j=−n+1

k
(

j
γn

)
1
n

n∑
t=−j+1

l(2)t+j

(
θ̂
)(

θ̄ − θ̂
)(

θ̄ − θ̂
)′

l(3)t

(
θ̃t

)′

,

and n
(
Ip ⊗

(
θ̄ − θ̂

))
= Op (1). Taking vectorization of CC1, we have

vec(CC1) = CC2 × vec
[
n2
(
θ̄ − θ̂

)(
θ̄ − θ̂

)′
]
, (101)

where

CC2 =
1
n

n−1∑
j=−0

k
(

j
γn

)
1
n

n∑
t=j+1

[
l(3)t−j

(
θ̃t−j

)
⊗ l(2)t

(
θ̂
)]

(102)

+
1
n

−1∑
j=−n+1

k
(

j
γn

)
1
n

n∑
t=−j+1

[
l(3)t

(
θ̃t

)
⊗ l(2)t+j

(
θ̂
)]
,
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and vec
[
n2
(
θ̄ − θ̂

)(
θ̄ − θ̂

)′
]

= Op (1) by Lemma 3.2. Similar to the proof of (96) and (97), we have

sup
0≤j≤n−1

1n
n∑

t=j+1

l(3)t−j

(
θ̃t−j

)
⊗ l(2)t

(
θ̂
) = Op (1) , (103)

and

sup
−n+1≤j≤−1

1n
n∑

t=−j+1

l(3)t

(
θ̃t

)
⊗ l(2)t+j

(
θ̂
) = Op (1) , (104)

by Assumption 5. Hence, by (102)–(104), we have

n3

γn
∥CC2∥

≤
1
γn

n−1∑
j=−n+1

⏐⏐⏐⏐k( j
γn

)⏐⏐⏐⏐
× max

⎧⎨⎩ sup
0≤j≤n−1

1n
n∑

t=j+1

l(3)t−j

(
θ̃t−j

)
⊗ l(2)t

(
θ̂
) , sup

−n+1≤j≤−1

1n
n∑

t=−j+1

l(3)t

(
θ̃t

)
⊗ l(2)t+j

(
θ̂
)
⎫⎬⎭

= Op (1) . (105)

Hence by (100), (101) and (105), we can get

n3

γn

1
n

n∑
t=1

n∑
τ=1

l(2)t

(
θ̂
)(

θ̄ − θ̂
)(

θ̄ − θ̂
)′

l(3)τ
(
θ̃τ

)′ (
Ip ⊗

(
θ̄ − θ̂

))
k
(
t − τ

γn

)
= Op (1) . (106)

In the same way, we can obtain the order for the fourth, seventh to ninth terms as

n2

γn

1
n

n∑
t=1

n∑
τ=1

l(2)t

(
θ̂
)(

θ̄ − θ̂
)(

θ̄ − θ̂
)′

l(2)τ
(
θ̂
)′

k
(
t − τ

γn

)
= Op (1) , (107)

n2

γn

1
n

n∑
t=1

n∑
τ=1

(
Ip ⊗

(
θ̄ − θ̂

)′
)
l(3)t

(
θ̃t

)(
θ̄ − θ̂

)
sτ
(
θ̂
)′

k
(
t − τ

γn

)
= Op (1) , (108)

n3

γn

1
n

n∑
t=1

n∑
τ=1

(
Ip ⊗

(
θ̄ − θ̂

)′
)
l(3)t

(
θ̃t

)(
θ̄ − θ̂

)(
θ̄ − θ̂

)′

l(2)τ
(
θ̂
)′

k
(
t − τ

γn

)
= Op (1) , (109)

n4

γn

1
n

n∑
t=1

n∑
τ=1

(
Ip ⊗

(
θ̄ − θ̂

)′
)
l(3)t

(
θ̃t

)(
θ̄ − θ̂

)(
θ̄ − θ̂

)′

l(3)τ
(
θ̃τ

)′ (
Ip ⊗

(
θ̄ − θ̂

))
k
(
t − τ

γn

)
= Op (1) . (110)

From (107), (99), (106), (108), (109) and (110), we have

Ω̄n
(
θ̄
)

= Ω̄n

(
θ̂
)

+
1
n

n∑
t=1

n∑
τ=1

st
(
θ̂
)(

θ̄ − θ̂
)′

l(2)τ
(
θ̂
)′

k
(
t − τ

γn

)

+
1
n

n∑
t=1

n∑
τ=1

l(2)t

(
θ̂
)(

θ̄ − θ̂
)
sτ
(
θ̂
)′

k
(
t − τ

γn

)
+ Op

(γn
n2

)
. (111)

In (111), the second term can be written as

1
n

n∑
t=1

n∑
τ=1

st
(
θ̂
)(

θ̄ − θ̂
)′

l(2)τ
(
θ̂
)′

k
(
t − τ

γn

)
=
γn

n
W1 (112)

where

W1 =
1
γn

n∑
t=1

n∑
τ=1

st
(
θ̂
)(

θ̄ − θ̂
)′

l(2)τ
(
θ̂
)′

k
(
t − τ

γn

)
. (113)
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We have

W1 =
1
γn

n−1∑
j=0

k
(

j
γn

)
1
n

n∑
t=j+1

st
(
θ̂
)
n
(
θ̄ − θ̂

)′

l(2)t−j

(
θ̂
)′

+
1
γn

−1∑
j=−n+1

k
(

j
γn

)
1
n

n∑
t=−j+1

st+j

(
θ̂
)
n
(
θ̄ − θ̂

)′

l(2)t

(
θ̂
)′

.

Vectorization of W1 is

vec (W1) = W11n
(
θ̄ − θ̂

)
,

where n
(
θ̄ − θ̂

)
= Op (1) by Lemma 3.2 and

W11 =
1
γn

n−1∑
j=0

k
(

j
γn

)
1
n

n∑
t=j+1

[
l(2)t−j

(
θ̂
)

⊗ st
(
θ̂
)]

+
1
γn

−1∑
j=−n+1

k
(

j
γn

)
1
n

n∑
t=−j+1

[
l(2)t

(
θ̂
)

⊗ st+j

(
θ̂
)]
.

Similar to (96) and (97), we can prove that

sup
0≤j≤n−1

1n
n∑

t=j+1

l(2)t−j

(
θ̂
)

⊗ st
(
θ̂
) = Op (1) , (114)

and

sup
−n+1≤j≤−1

1n
n∑

t=−j+1

l(2)t

(
θ̂
)

⊗ st+j

(
θ̂
) = Op (1) , (115)

by Assumption 5. Hence, by (114) and (115) and Assumption 11, we can get W11 = Op (1) and W1 = Op (1).
Similarly, the third term of (111) can be written as

1
n

n∑
t=1

n∑
τ=1

l(2)t

(
θ̂
)(

θ̄ − θ̂
)
sτ
(
θ̂
)′

k
(
t − τ

γn

)
=
γn

n
W2, (116)

where

W2 =
1
γn

n∑
t=1

n∑
τ=1

l(2)t

(
θ̂
)(

θ̄ − θ̂
)
sτ
(
θ̂
)′

k
(
t − τ

γn

)
, (117)

and W2 = Op (1). By (112) and (116), we can rewrite (111) as

Ω̄n
(
θ̄
)

= Ω̄n

(
θ̂
)

+
γn

n
(W1 + W2)+ Op

(γn
n2

)
, (118)

which proves (32) in Theorem 4.1.
For vec

(
Ω̄n

(
θ̄
))

we have

vec
(
Ω̄n

(
θ̄
))

= vec
(
Ω̄n

(
θ̂
))

+
γn

n
Ũ1n

(
θ̄ − θ̂

)
+ Op

(γn
n2

)
,

where

Ũ1 =
1

nγn

n∑
t=1

n∑
τ=1

[
l(2)τ
(
θ̂
)

⊗ st
(
θ̂
)

+ sτ
(
θ̂
)

⊗ l(2)t

(
θ̂
)]

k
(
t − τ

γn

)
.

Hence, we can get

PM = tr
[
nΩ̄n

(
θ̄
)
V
(
θ̄
)]

= nvec
(
Ω̄n

(
θ̄
))′
vec

(
V
(
θ̄
))

= nvec
(
Ω̄n

(
θ̂
))′

vec
(
V
(
θ̄
))

+

[γn
n
Ũ1n

(
θ̄ − θ̂

)]′

vec
(
nV
(
θ̄
))

+ Op

(γn
n2

)
. (119)
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We can write the second term of (119) as[γn
n
Ũ1n

(
θ̄ − θ̂

)]′

vec
(
nV
(
θ̄
))

=

[γn
n
Ũ1n

(
θ̄ − θ̂

)]′
[
vec

(
−H̄−1

n

(
θ̂
))

+ Op

(
1
n

)]
=

[
γn

n
Ũ1

(
−H̄−1

n

(
θ̂
) p̂(1)

p̂
+

1
2
H̄−1

n

(
θ̂
)
H̄(3)

n

(
θ̂
)′

vec
(
H̄−1

n

(
θ̂
))

+ Op

(
1
n

))]′

× vec
(
−H̄−1

n

(
θ̂
))

+ Op(
γn

n2 )

=
γn

n
vec

(
H̄−1

n

(
θ̂
))′

Ũ1H̄−1
n
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by (78). And the first term of (119) can be written as
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by (79). Furthermore, by substituting (80) and (81) into vec
(
Ω̄n

(
θ̂
))′

F1 and vec
(
Ω̄n

(
θ̂
))′

F2, we have

vec
(
Ω̄n

(
θ̂
))′

F1 (122)

= −
1
2
tr
[
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
)(

H̄−1
n

(
θ̂
)

⊗ vec
(
H̄n

(
θ̂
)−1

)′)
H̄(4)n

(
θ̂
)]

+
1
2
tr
[
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
)
H̄(3)n

(
θ̂
)′
[(
vec

(
H̄−1

n

(
θ̂
))′

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
))′

⊗ H̄−1
n

(
θ̂
)]]

+
1
2
tr
[
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
)
H̄(3)n

(
θ̂
)′ [

H̄−1
n

(
θ̂
)

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
)]
,

vec
(
Ω̄n

(
θ̂
))′

F2 (123)

= −tr

[[(
H̄−1

n

(
θ̂
) p̂(1)

p̂

)′

⊗ H̄−1
n

(
θ̂
)]

H̄ (3)
n

(
θ̂
)
H̄−1

n

(
θ̂
)
Ω̄n

(
θ̂
)]

+ tr
[
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
) p̂(2)

p̂
H̄−1

n

(
θ̂
)]

− tr

[
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
) p̂(1)

p̂
p̂(1)

p̂

′

H̄−1
n

(
θ̂
)]

From (121)–(123)

nvec
(
Ω̄n

(
θ̂
))′

vec
(
V
(
θ
))

= −tr
[
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
)]

−
1
2n

tr
[
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
)(

H̄−1
n

(
θ̂
)

⊗ vec
(
H̄n

(
θ̂
)−1

)′)
H̄(4)n

(
θ̂
)]

+
1
2n

tr
[
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
)
H̄(3)n

(
θ̂
)′
[(
vec

(
H̄−1

n

(
θ̂
))′

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
))′

⊗ H̄−1
n

(
θ̂
)]]

+
1
2n

tr
[
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
)
H̄(3)n

(
θ̂
)′ [

H̄−1
n

(
θ̂
)

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
)]



Y. Li, J. Yu and T. Zeng / Journal of Econometrics 216 (2020) 450–493 491

−
1
n
tr

[[(
H̄−1

n

(
θ̂
) p̂(1)

p̂

)′

⊗ H̄−1
n

(
θ̂
)]

H̄(3)n

(
θ̂
)
H̄−1

n

(
θ̂
)
Ω̄n

(
θ̂
)]

+
1
n
tr
[
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
) p̂(2)

p̂
H̄−1

n

(
θ̂
)]

−
1
n
tr

[
Ω̄n

(
θ̂
)
H̄−1

n

(
θ̂
) p̂(1)

p̂
p̂(1)

p̂

′

H̄−1
n

(
θ̂
)]

+Op

(
1
n2

)
. (124)
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Since in (125)−tr
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= PT , we have proved (33) in Theorem 4.1.
From Li et al. (2017),
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Then we have
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We have proved (34) in Theorem 4.1. The proof of Theorem 4.1 is completed.

Appendix B. Proof of remark 4.2

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2019.11.002.
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