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Abstract

This paper examines methods of inference concerning quantile treatment effects (QTEs) in

randomized experiments with matched-pairs designs (MPDs). We derive the limit distribution

of the QTE estimator under MPDs, highlighting the difficulties that arise in analytical inference

due to parameter tuning. We show that the naive weighted bootstrap fails to approximate the

limit distribution of the QTE estimator under MPDs because it ignores the dependence struc-

ture within the matched pairs. To address this difficulty we propose two bootstrap methods that

can consistently approximate the limit distribution: the gradient bootstrap and the weighted

bootstrap of the inverse propensity score weighted (IPW) estimator. The gradient bootstrap is

free of tuning parameters but requires knowledge of the pair identities. The weighted bootstrap

of the IPW estimator does not require such knowledge but involves one tuning parameter. Both

methods are straightforward to implement and able to provide pointwise confidence intervals

and uniform confidence bands that achieve exact limiting coverage rates. We demonstrate their

finite sample performance using simulations and provide an empirical application to a well-

known dataset in microfinance.
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1 Introduction

Matched-pairs designs (MPDs) have recently seen widespread and increasing use in various random-

ized experiments conducted by economists. By MPD we mean a randomization scheme that first

pairs units based on the closeness of their baseline covariates and then randomly assigns one unit in

the pair to be treated. In development economics, researchers routinely pair villages, neighborhoods,

micro-enterprises, or townships in their experiments (Banerjee, Duflo, Glennerster, and Kinnan,

2015; Crepon, Devoto, Duflo, and Pariente, 2015; Glewwe, Park, and Zhao, 2016; Groh and Mckenzie,

2016). In labor economics, especially in the field of education, researchers pair schools or students to

evaluate the effects of various education interventions (Angrist and Lavy, 2009; Beuermann, Cristia, Cueto, Malamud, and Cruzaguayo,

2015; Fryer, 2017; Fryer, Devi, and Holden, 2017; Bold, Kimenyi, Mwabu, Nganga, and Sandefur,

2018; Fryer, 2018). Bruhn and McKenzie (2009) surveyed leading experts in development field

experiments and reported that 56% of them explicitly match pairs of observations on baseline

characteristics.

Researchers often use randomized experiments to estimate quantile treatment effects (QTEs) as

well as average treatment effects (ATEs). Quantile effects can capture heterogeneity in both the sign

and magnitude of treatment effects, which may vary according to position within the distribution

of outcomes. A common practice in conducting inference on QTEs is to use bootstrap rather

than analytical methods because the latter usually require tuning parameters in implementation.

However, the treatment assignment in MPDs introduces negative dependence because exactly half

of the units are treated. Standard bootstrap inference procedures that rely on cross-sectional

independence are therefore conservative and lack power. This difficulty raises the question of how

to conduct bootstrap inference for QTEs in MPDs in a manner that mitigates these shortcomings.

The present paper addresses this question by showing that both the gradient bootstrap and

the weighted bootstrap of the inverse propensity score weighted (IPW) estimator can consistently

approximate the limit distribution of the original QTE estimator under MPDs, thereby eliminating

asymptotic size distortion in inference. In particular, for testing null hypotheses that the QTEs

equal some pre-specified values involving single or multiple quantile indexes (or some pre-specified

function over a compact set of quantile indexes), the usual pointwise confidence interval or uni-

form confidence band constructed by using the corresponding bootstrap standard errors achieves a

limiting rejection probability under the null equal to the nominal level.

Our starting point is to derive the limit distribution of the two-sample-difference type QTE

estimator in MPDs uniformly over a compact set of quantile indexes. Analytic computation of the

variance of the QTE estimator using this limit theory requires estimation of two infinite dimensional

nuisance parameters. By implication two tuning parameters are needed for every quantile index of

interest. This procedure is inevitably cumbersome and provides the motivation to develop bootstrap

methods of inference that reduce the need for tuning parameters.

As noted above, observations under MPDs are generally dependent within the pairs, whereas
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the usual bootstrap counterparts are asymptotically independent conditional on the data. In accord

with this contrasting property of the bootstrap we show that the naive weighted bootstrap fails to

approximate the limit distribution of the QTE estimator. Consequently, usual bootstrap tests of

the null hypothesis that the QTE equals a pre-specified value are conservative and lack power.

To tackle this shortcoming we propose a gradient bootstrap method and show that it can

consistently approximate the limit distribution of the QTE estimator under MPDs uniformly over

a compact set of quantile indexes. Hagemann (2017) proposed using the gradient bootstrap for the

cluster-robust inference in linear quantile regression models. Like Hagemann (2017), we rely on the

gradient bootstrap to avoid estimating the Hessian matrix that involves the infinite-dimensional

nuisance parameters. The gradient bootstrap procedure is therefore free of tuning parameters. On

the other hand and differing from Hagemann (2017), we construct a specific perturbation of the

score based on pair and adjacent pairs of observations, which can capture the dependence structure

in the original data.

To implement our gradient bootstrap method, researchers need to know the identities of pairs.

Such information may not be available when they are using an experiment that was run by someone

else in the past and the randomization procedure may not have been fully described. To address

this issue, we propose a weighted bootstrap of the IPW QTE estimator, which can be implemented

without such knowledge. We show that such a bootstrap can consistently estimate the asymptotic

distribution of the QTE estimator under MPDs. There is a cost to not using information about

pair identities as the method requires one tuning parameter for the nonparametric estimation of

the propensity score. In spite of this additional cost, this weighted bootstrap method still has an

advantage over direct analytic inference because practical implementation of the latter requires

more than one tuning parameter.

The contributions in the present paper relate to other recent research. Bai, Shaikh, and Romano

(2019) first pointed out that in MPDs the two-sample t-test for the null hypothesis that the ATE

equals a pre-specified value is conservative. They then proposed adjusting the standard error of the

estimator and studied the validity of the permutation test. This paper complements those results

by considering the QTEs and by developing new methods of bootstrap inference. Unlike the permu-

tation test, our methods of bootstrap inference do not require studentization, which is cumbersome

in the QTE context. In addition, our weighted bootstrap method complements their results by

providing a way to perform inference relating to both ATEs and QTEs when pair identities are un-

known. In other work, Bai (2019) investigated the optimality of MPDs in randomized experiments.

Zhang and Zheng (2020) considered bootstrap inference under covariate-adaptive randomization.

A key difference in our contribution is that in MPDs the number of strata is proportional to the

sample size, whereas in covariate-adaptive randomization that number is fixed. In consequence,

the present work uses fundamentally different asymptotic arguments and bootstrap methods from

those employed by Zhang and Zheng (2020). The present paper also fits within a growing liter-
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ature that studies inference in randomized experiments (e.g., Hahn, Hirano, and Karlan (2011),

Athey and Imbens (2017), Abadie, Chingos, and West (2018), Bugni, Canay, and Shaikh (2018),

Tabord-Meehan (2018), and Bugni, Canay, and Shaikh (2019), among others).

The remainder of the paper is organized as follows. Section 2 describes the model setup and

notation. Section 3 develops the asymptotic properties of our QTE estimator. In Section 4 we

study the naive weighted bootstrap, the gradient bootstrap, and the weighted bootstrap of the

IPW estimator. Section 5 provides computational details and recommendations for practitioners.

Section 6 reports simulation results. Section 7 gives an empirical applicaiton of our methods of

bootstrap inference to the data in Banerjee et al. (2015), examining both the ATEs and QTEs of

microfinance on the take-up rates of microcredit. Section 8 concludes. Proofs of all results are in

the appendix.

2 Setup and Notation

Denote the potential outcomes for treated and control groups as Y (1) and Y (0), respectively. The

treatment status is written as A, where A = 1 means treated and A = 0 means untreated. The

researcher can only observe {Yi,Xi, Ai}2ni=1 where Yi = Yi(1)Ai + Yi(0)(1 − Ai), and Xi ∈ ℜdx is a

collection of baseline covariates, where dx is the dimension of X. The parameter of interest is the

τth QTE, denoted as

q(τ) = q1(τ)− q0(τ),

where q1(τ) and q0(τ) are the τth quantiles of Y (1) and Y (0), respectively. The testing problems

of interest involve single, multiple, or even a continuum of quantile indexes, as in the following null

hypotheses

H0 : q(τ) = q versus q(τ) 6= q,

H0 : q(τ1)− q(τ2) = q versus q(τ1)− q(τ2) 6= q, and

H0 : q(τ) = q(τ) ∀τ ∈ Υ versus q(τ) 6= q(τ) for some τ ∈ Υ,

for some pre-specified value q or function q(τ), where Υ is some compact subset of (0, 1).

The units are grouped into pairs based on the closeness of their baseline covariates, which will

be made clear next. We denote the pairs of units as

(π(2j − 1), π(2j)) for j ∈ [n],

where [n] = {1, · · · , n} and π is a permutation of 2n units based on {Xi}2ni=1 as specified in As-

sumption 1(iv) below. Within the pair, one unit is randomly assigned to treatment and the other
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to control. Specifically, we make the following assumption on the data generating process (DGP)

and the treatment assignment rule.

Assumption 1. (i) {Yi(1), Yi(0),Xi}2ni=1 is i.i.d.

(ii) {Yi(1), Yi(0)}2ni=1 ⊥⊥ {Ai}2ni=1|{Xi}2ni=1.

(iii) Conditionally on {Xi}2ni=1, (π(2j − 1), π(2j)) for j ∈ [n], are i.i.d. and each uniformly dis-

tributed over the values in {(1, 0), (0, 1)}.

(iv) 1
n

∑n
j=1

∥∥Xπ(2j) −Xπ(2j−1)

∥∥r
2

p−→ 0 for r = 1, 2.

Assumption 1 is used in Bai et al. (2019) to which we refer readers for more discussion. In

Assumption 1(iv), ||·||2 denotes Euclidean distance. However, all our results hold if ||·||2 is replaced
by any distance that is equivalent to it, such as L∞ distance, L1 distance, and the Mahalanobis

distance when all the eigenvalues of the covariance matrix are bounded and bounded away from

zero. Later in Section 4 and following Assumption 4 we provide two cases for which Assumption

1(iv) holds.

3 Estimation

Let q̂1(τ) and q̂0(τ) be the τth percentiles of outcomes in the treated and control groups, respec-

tively. Then, the τth QTE estimator we consider is just

q̂(τ) = q̂1(τ)− q̂0(τ).

To facilitate further analysis and motivate our bootstrap procedure, we note that q̂(τ) can be

equivalently computed by direct quantile regression. Let

(β̂0(τ), β̂1(τ)) = argmin
b

2n∑

i=1

ρτ (Yi − Ȧ′b),

where Ȧi = (1, Ai)
T and ρτ (u) = u(τ − 1{u ≤ 0}). Then, q̂(τ) = β̂1(τ) and q̂0(τ) = β̂0(τ).

Assumption 2. For a = 0, 1, denote Fa(·), Fa(·|x), fa(·), and fa(·|x) as the CDF of Yi(a), the

conditional CDF of Yi(a) given Xi = x, the PDF of Yi(a), and the conditional PDF of Yi(a) given

Xi = x, respectively.

(i) fa(qa(τ)) is bounded and bounded away from zero uniformly over τ ∈ Υ, and fa(qa(τ)|x) is

uniformly bounded for (x, τ) ∈ Supp(X) ×Υ.
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(ii) There exists a function C(x) such that

sup
τ∈Υ

|fa(qa(τ) + v|x)− fa(qa(τ)|x)| ≤ C(x)|v| and EC(Xi) < ∞.

(iii) Let N0 be a neighborhood of 0. Then, there exists a constant C such that for any x, x′ ∈
Supp(X)

sup
τ∈Υ,v∈N0

|fa(qa(τ) + v|x′)− fa(qa(τ) + v|x)| ≤ C||x′ − x||2

and

sup
τ∈Υ,v∈N0

|Fa(qa(τ) + v|x)− Fa(qa(τ) + v|x′)| ≤ C||x− x′||2.

Assumption 2(i) is the standard regularity condition widely assumed in quantile estimation.

The Lipschitz conditions in Assumptions 2(ii) and 2(iii) are similar in spirit to those assumed in

Bai et al. (2019, Assumption 2.1) and ensure that units that are “close” in terms of their baseline

covariates are suitably comparable. For a = 0, 1, let ma,τ (x, q) = E(τ − 1{Y (a) ≤ q}|X = x) and

ma,τ (x) = ma,τ (x, qa(τ)).

Theorem 3.1. Suppose Assumptions 1 and 2 hold. Then, uniformly over τ ∈ Υ,

√
n(q̂(τ)− q(τ)) B(τ),

where B(τ) is a Gaussian process with covariance kernel Σ(·, ·) such that

Σ(τ, τ ′) =
min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X)

f1(q1(τ))f1(q1(τ ′))
+

min(τ, τ ′)− ττ ′ − Em0,τ (X)m0,τ ′(X)

f0(q0(τ))f0(q0(τ ′))

+
1

2
E

(
m1,τ (X)

f1(q1(τ))
− m0,τ (X)

f0(q0(τ))

)(
m1,τ ′(X)

f1(q1(τ ′))
− m0,τ ′(X)

f0(q0(τ ′))

)
.

Several remarks are in order. First, the asymptotic variance of q̂(τ) under MPDs is

Σ(τ, τ) =
τ − τ2 − Em2

1,τ (X)

f2
1 (q1(τ))

+
τ − τ2 − Em2

0,τ (X)

f2
0 (q0(τ))

+
1

2
E

(
m1,τ (X)

f1(q1(τ))
− m0,τ (X)

f0(q0(τ))

)2

.

Further note that the asymptotic variance of q̂(τ) under simple random sampling is

Σ†(τ, τ) =
τ − τ2

f2
1 (q1(τ))

+
τ − τ2

f2
0 (q0(τ))

.
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It is clear that

Σ†(τ, τ) − Σ(τ, τ) =
1

2
E

(
m1,τ (X)

f1(q1(τ))
+

m0,τ (X)

f0(q0(τ))

)2

≥ 0. (3.1)

Equality in the last expression holds when both m1,τ (X) and m0,τ (X) are zero, which implies that

X is irrelevant to the τth quantiles of Y (0) and Y (1).

Second, the asymptotic variance Σ(τ, τ) coincides with the semiparametric efficiency bound

of the QTE estimator established in Firpo (2007) and Donald and Hsu (2014) for observational

data under unconfoundedness.1 Hahn (1998) points out that, even in the case of simple random

sampling, to achieve the semiparametric efficiency bound one needs to use the IPW estimator with

a nonparametrically estimated propensity score. We view the MPD as an alternative to achieving

such efficiency without nonparametric estimation.2

Third, to provide an analytic estimate of the asymptotic variance Σ(τ, τ) it is necessary at least

to estimate the infinite dimensional nuisance parameters f1(q1(τ)) and f0(q0(τ)), which requires two

tuning parameters. Hence, if a researcher is interested in testing a null hypothesis that involves

G quantile indexes, 2G tuning parameters are needed to estimate 2G densities, a cumbersome

task in practical work; and to construct a uniform confidence band for the QTE analytically,

two tuning parameters are needed at each grid point of the quantile indexes. Moreover, if pair

identities are unknown, analytic methods of inference potentially require nonparametric estimation

of the quantities ma,τ (·) for a = 0, 1 as well. There are other practical difficulties. Nonparametric

estimation is sometimes sensitive to the choice of tuning parameters and rule-of-thumb tuning

parameter selection may not be appropriate for every data generating process (DGP) or every

quantile. Use of cross-validation in selecting the tuning parameters is possible in principle but

in practice time-consuming. These practical difficulties of analytic methods of inference provide

a strong motivation to investigate bootstrap inference procedures are much less reliant on tuning

parameters.

4 Bootstrap Inference

This section examines three bootstrap inference procedures for the QTEs in MPDs. We first show

that a naive weighted bootstrap method fails to approximate the limit distribution of the QTE

estimator derived in Section 3. We then propose two bootstrap methods that can consistently

estimate the asymptotic distribution of the QTE estimator.

1The propensity score is just a constant of 1/2.
2Whether the efficiency bound remains the same under MPDs is still an open question and is an interesting topic

for future research.
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4.1 Naive Weighted Bootstrap Inference

We first consider the naive weighted bootstrap estimators of β̂0(τ) and β̂1(τ). Let

(β̂w
0 (τ), β̂

w
1 (τ)) = argmin

b

2n∑

i=1

ξiρτ (Yi − Ȧ′b),

where ξi is the bootstrap weight defined in the next assumption.

Assumption 3. Suppose {ξi}2ni=1 is a sequence of nonnegative i.i.d. random variables with unit

expectation and variance and a sub-exponential upper tail.

Denote q̂w(τ) = β̂w
1 (τ) and recall that q̂(τ) = β̂1(τ).

Theorem 4.1. If Assumptions 1–3 hold, then conditional on the data and uniformly over τ ∈ Υ,

√
n(q̂w(τ)− q̂(τ)) Bw(τ),

where Bw(τ) is a Gaussian process with covariance kernel Σ†(·, ·) such that

Σ†(τ, τ ′) =
min(τ, τ ′)− ττ ′

f1(q1(τ))f1(q1(τ ′))
+

min(τ, τ ′)− ττ ′

f0(q0(τ))f0(q0(τ ′))
.

Three remarks are in order. First, Σ†(τ, τ ′) is just the covariance kernel of the QTE estimator

when simple random sampling (instead of the MPD) is used as the treatment assignment rule. It

follows that the naive weighted bootstrap fails to approximate the limit distribution of q̂(τ) (β̂1(τ)).

The intuition is straightforward. Given the data, the bootstrap weights are i.i.d. and thus unable

to mimic the cross-sectional dependence in the original sample.

Second, it is possible to consider the conventional nonparametric bootstrap in which the boot-

strap sample is generated from the empirical distribution of the data. If the observations are

i.i.d., van der Vaart and Wellner (1996, Section 3.6) showed that the conventional bootstrap is

first-order equivalent to a weighted bootstrap with Poisson(1) weights. However, in the current

setting, {Ai}i∈[2n] are dependent. It is technically challenging to show rigorously that the above

equivalence still holds and this is left for future research.

Third, an alternative procedure is to bootstrap the pairs of observations, i.e., to use the same

bootstrap weights for observations indexed by π(2j − 1) and π(2j). But such a bootstrap alone is

unable to mimic the dependence structure in the original sample. In fact, the gradient bootstrap

procedure proposed below follows this idea and uses the same weight for the observations in the

same pair to construct the score S∗
n,1 defined in (4.5). But in order to construct a final score that

can mimic the dependence in the data we need an extra score S∗
n,2, which is defined in (4.6).
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4.2 Gradient Bootstrap Inference

We now approximate the asymptotic distribution of the QTE estimator via the gradient bootstrap.

Let u =
√
n(b−β(τ)) be a localizing estimation error parameter. From the derivations in Theorem

3.1, we see that

√
n(β̂(τ)− β(τ)) = argmin

u

2n∑

i=1

ρτ

(
Yi − ȦTβ(τ)− ȦTu√

n

)
,

where

2n∑

i=1

[
ρτ (Yi − ȦTβ(τ)− ȦTu√

n
)− ρτ (Yi − ȦTβ(τ))

]
≈ −u′

(
1 1

1 0

)
Sn(τ) +

uTQ(τ)u

2
, (4.1)

Sn(τ) =

( ∑2n
i=1

Ai√
n
(τ − 1{Yi(1) ≤ q1(τ)})∑2n

i=1
(1−Ai)√

n
(τ − 1{Yi(0) ≤ q0(τ)})

)
,

and

Q(τ) =

(
f1(q1(τ)) + f0(q0(τ)) f1(q1(τ))

f1(q1(τ)) f1(q1(τ))

)
.

Minimizing the right side of (4.1) gives

√
n(β̂(τ)− β(τ)) ≈ Q−1(τ)

(
1 1

1 0

)
Sn(τ). (4.2)

The gradient bootstrap proposes to perturb the objective function by some random error S∗
n(τ),

which will be specified later. This error in turn perturbs the score function Sn(τ). The correspond-

ing bootstrap estimator β̂∗(τ) solves the following optimization problem

β̂∗(τ) = argmin
b

2n∑

i=1

ρτ (Yi − Ȧ′b)−√
nbT

(
1 1

1 0

)
S∗
n(τ). (4.3)

By a change of variable and (4.1) we have

√
n(β̂∗(τ)− β(τ)) ≈ argmin

u
−u′

(
1 1

1 0

)
[Sn(τ) + S∗

n(τ)] +
uTQ(τ)u

2
,

9



which implies

√
n(β̂∗(τ)− β(τ)) ≈ Q−1(τ)

(
1 1

1 0

)
[Sn(τ) + S∗

n(τ)]. (4.4)

Taking the difference between (4.2) and (4.4), we have

√
n(β̂∗(τ)− β̂(τ)) ≈ Q−1(τ)

(
1 1

1 0

)
S∗
n(τ).

The second element of β̂∗(τ) in (4.3) is the bootstrap version of the QTE estimator, which is

denoted q̂∗(τ). By solving (4.3) we avoid estimating the Hessian Q(τ), which involves the infinite-

dimensional nuisance parameters. Then, for the gradient bootstrap to consistently approximate

the limit distribution of the original estimator β̂(τ), we need only construct S∗
n(τ) in such a way

that its weak limit given the data coincides with that of the original score Sn(τ).

Accordingly, we now show how to specify S∗
n(τ). Let {ηj}nj=1 and {η̂k}⌊n/2⌋k=1 be two mutually

independent i.i.d. sequences of standard normal random variables. Use the indexes (j, 1), (j, 0)

to denote the indexes in (π(2j − 1), π(2j)) with A = 1 and A = 0, respectively. For example, if

Aπ(2j) = 1 and Aπ(2j−1) = 0, then (j, 1) = π(2j) and (j, 0) = π(2j − 1). Similarly, use indexes

(k, 1), · · · , (k, 4) to denote the first index in (π(4k− 3), · · · , π(4k)) with A = 1, the first index with

A = 0, the second index with A = 1, and the second index with A = 0, respectively. Now let

S∗
n(τ) =

S∗
n,1(τ) + S∗

n,2(τ)√
2

,

where

S∗
n,1(τ) =

1√
n

(∑n
j=1 ηj

(
τ − 1{Y(j,1) ≤ q̂1(τ)}

)
∑n

j=1 ηj
(
τ − 1{Y(j,0) ≤ q̂0(τ)}

)
)

(4.5)

and

S∗
n,2(τ) =

1√
n

(∑⌊n/2⌋
k=1 η̂k

[(
τ − 1{Y(k,1) ≤ q̂1(τ)}

)
−
(
τ − 1{Y(k,3) ≤ q̂1(τ)}

)]
∑⌊n/2⌋

k=1 η̂k
[(
τ − 1{Y(k,2) ≤ q̂0(τ)}

)
−
(
τ − 1{Y(k,4) ≤ q̂0(τ)}

)]
)
. (4.6)

In Section 5 we show how to compute the bootstrap estimator β̂∗(τ) directly from the sub-

gradient condition of (4.3). This method avoids the optimization inherent in (4.3) and computation

is fast. The following assumption imposes the condition that baseline covariates in adjacent pairs

are also ‘close’.

Assumption 4. Suppose that 1
n

∑⌊n/2⌋
k=1

∥∥X(k,l) −X(k,l′)

∥∥r
2

p−→ 0 for r = 1, 2 and l, l′ ∈ [4].
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Assumption 4 and Assumption 1(iv) are jointly equivalent to Bai et al. (2019, Assumption

2.4). We refer readers to Bai et al. (2019) for further discussion of this assumption. In particular,

Bai et al. (2019, Theorems 4.1 and 4.2) established two cases under which both Assumption 4 and

Assumption 1(iv) hold. We repeat their results below for completeness.

Case (1). Suppose X is a scalar and EX2 < ∞. Let π be any permutation of 2n elements

such that Xπ(1) ≤ · · · ≤ Xπ(2n). Then, both Assumption 4 and Assumption 1(iv) hold.

Case (2). Suppose Supp(X) ⊂ [0, 1]dx . Let π̆ be any permutation of 2n elements minimizing
1
n

∑n
j=1 ||Xπ̆(2j−1) −Xπ̆(2j)||2, let Xj = 1

2

(
Xπ̆(2j−1) +Xπ̆(2j)

)
, and let π be any permutation of n

elements minimizing 1
n

∑n
j=1 ||Xπ(j) −Xπ(j−1)||2. Then, the permutation π with π(2j) = π̆(2π(j))

and π(2j − 1) = π̆(2π(j) − 1) satisfies Assumption 4 and Assumption 1(iv).

Denote q̂∗(τ) = β̂∗
1(τ) and recall that q̂(τ) = β̂1(τ). We now have the following result.

Theorem 4.2. Suppose Assumptions 1, 2, and 4 hold. Then, conditional on the data and uniformly

over τ ∈ Υ,
√
n(q̂∗(τ)− q̂(τ)) B(τ), where B(τ) is the same Gaussian process defined in Theorem

3.1.

Three remarks on Theorem 4.2 are in order. First, the bootstrap estimator q̂∗(τ) has the

following objectives: (i) to avoid estimating densities; and (ii) to mimick the distribution of the

original estimator β̂(τ) under MPDs. Objective (i) relates to the Hessian (Q) and (ii) to the score

(Sn) of the quantile regression. The gradient bootstrap provide a flexible approach to achieve both

goals.

Second, Bai et al. (2019) showed that adjacent pairs can be used to construct a valid standard

error for the ATE estimator under MPDs. Our approach follows their lead and bootstraps pairs and

adjacent pairs of units. Theorem 4.2 shows that the limit distribution of the resulting bootstrapped

perturbation S∗
n(τ) given that the data can consistently approximate that of the original score Sn(τ)

uniformly over τ ∈ Υ. For inference concerning the ATE, it is not necessary to use the gradient

bootstrap as the Hessian does not contain any infinite-dimensional nuisance parameters. In fact,

the way we compute the perturbation S∗
n(τ) leads directly to a variance estimator ν̂2n for the ATE

estimator ∆̂ = 1
n

∑n
j=1(Y(j,1) − Y(j,0)), where

ν̂2n =
1

2n

n∑

j=1

(Y(j,1) − Y(j,0) − ∆̂)2 +
1

2n

⌊n/2⌋∑

k=1

[
(Y(k,1) − Y(k,3))− (Y(k,2) − Y(k,4))

]2
.

By some manipulation, one can show that ν̂2n is numerically the same as the estimate used in the

adjusted t-test of Bai et al. (2019, Section 3.3).

Third, to implement the gradient bootstrap, researchers need to know pair identities. That

information may not be available when the base experiment was run by others and the randomiza-

tion procedure not fully detailed. In such cases, we propose bootstrapping the IPW estimator of
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the QTE, whose validity is established in the next section.

4.3 Weighted Bootstrap of Inverse Propensity Score Weighted Estimator

As indicated in Section 3, the QTE estimator under MPDs achieves the semiparametric efficiency

bound established for independent observational data. If we use independent bootstrap weights and

seek to maintain efficiency, we need to bootstrap an estimator that can achieve the semiparametric

efficiency bound under independent data. As pointed out by Hahn (1998) and Firpo (2007), the

IPW estimator with a nonparametrically estimated propensity score satisfies this requirement.

Accordingly, we now propose a weighted bootstrap version of the IPW estimator to approximate

the limit distribution of the QTE estimator in MPDs.

The sieve method is used to estimate the propensity score. Let b(X) be the K-dimensional

sieve basis on X and and Âi the estimated propensity score for the ith individual. Then,

Âi = b(Xi)
′θ̂, (4.7)

where ξi is the bootstrap weight defined in Assumption 3 and θ̂ = argminθ
∑2n

i=1 ξi(Ai − b(Xi)
′θ)2.

Because the true propensity score is 1/2, by setting the first component of b(X) to unity, we

have 1/2 = b′(X)θ0 where θ0 = (0.5, 0, · · · , 0)T . The linear probability model for the propensity

score is correctly specified. It is possible to use sieve logistic regression to compute the propensity

score, as done by Hirano, Imbens, and Ridder (2003), Firpo (2007), and Donald and Hsu (2014).

The main benefit of using logistic regression is to guarantee that the estimated propensity score

lies between zero and one. For simplicity, we use a linear sieve regression here.

The weighted bootstrap IPW estimator can be computed as

q̂wipw(τ) = q̂wipw,1(τ)− q̂wipw,0(τ),

where

q̂wipw,1(τ) = argmin
q

2n∑

i=1

ξiAi

Âi

ρτ (Yi − q) and q̂wipw,0(τ) = argmin
q

2n∑

i=1

ξi(1−Ai)

1− Âi

ρτ (Yi − q). (4.8)

Assumption 5. (i) The support of X is compact. The first component of b(X) is 1.

(ii) maxk∈[K] Eb
2
k(Xi) ≤ C < ∞ for some constant C > 0. supx∈Supp(X) ||b(x)||2 = ζ(K).

(iii) K2ζ(k)2 log(n) = o(n).

(iv) With probability approaching one, there exist constants C and C such that

0 < C ≤ λmin

(
1

n

2n∑

i=1

ξib(Xi)b(Xi)
′
)

≤ λmax

(
1

n

2n∑

i=1

ξib(Xi)b(Xi)
′
)

≤ C < ∞,
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where λmin(M) and λmax(M) denote the minimum and maximum eigenvalues of matrix M.

(v) There exist γ1(τ) ∈ ℜK and γ0(τ) ∈ ℜK such that

Ba,τ (x) = ma,τ (x)− b′(x)γa(τ), a = 0, 1,

and supa=0,1,τ∈Υ,x∈Supp(X) |Ba,τ (x)| = o(1/
√
n).

Two remarks are in order. First, requiring X to have a compact support is common in non-

parametric sieve estimation. Second, the quantity ζ(K) depends on the choice of basis functions.

For example, ζ(K) = O(K1/2) for B-splines and ζ(K) = O(K) for power series3. Taking B-splines

as an example, Assumption 5(iii) requires K = o(n1/3). Assumption 5(iv) is standard because

K ≪ n. Assumption 5(v) requires that the approximation error of ma,τ (x) via a linear sieve func-

tion is sufficiently small. For instance, suppose ma,τ (x) is s-times continuously differentiable in x

with all derivatives uniformly bounded by some constant C, then supa=0,1,τ∈Υ,x∈Supp(X) |Ba,τ (x)| =
O(K−s/dx). Assumptions 5(iii) and 5(v) imply that K = nh for some h ∈ (dx/(2s), 1/3), which

implicitly requires s > 3dx/2. The choice of K reflects the usual bias-variance trade-off and is the

only tuning parameter that researchers need to specify when implementing this bootstrap method.

Theorem 4.3. Suppose Assumptions 1–3 and 5 hold, then conditionally on the data and uniformly

over γ ∈ Υ,
√
n(q̂wipw(τ) − q̂(τ))  B(τ), where B(τ) is the same Gaussian process as defined in

Theorem 3.1.

The benefit of the weighted bootstrap of the IPW estimator is that it does not require knowl-

edge of the pair identities. The cost is that we have to nonparametrically estimate the propensity

score, which requires one tuning parameter and is subject to the usual curse of dimensionality.

Nonetheless, we still prefer this bootstrap method of inference to the analytic approach. Analytic

estimation of the standard error of the QTE estimator without the knowledge of pair identities

requires nonparametric estimation of {ma,τ (X), fa(qa(τ))}a=0,1, which involves four tuning param-

eters. The number of tuning parameters further increases with the number of quantile indexes

involved in the null hypothesis and uniform confidence bands for QTE over τ requires 4G tuning

parameters for grid size G. By contrast, implementation of the weighted bootstrap for the IPW

estimator requires estimation of the propensity score only once, requiring use of a single tuning

parameter.

Inference concerning the ATE in MPDs can also be accomplished via the weighted bootstrap

of the IPW ATE estimator. A similar argument shows that such a bootstrap can consistently

approximate the asymptotic distribution of the ATE estimator under MPDs. This result comple-

ments that established by Bai et al. (2019) because it provides a way to make inferences about the

ATE in MPDs when information on pair identities is unavailable. That pair identity information

is required by Bai et al. (2019) in computing standard errors for their adjusted t-test.

3See Chen (2007) for a full discussion of the sieve method.
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5 Computation and Guidance for Practitioners

5.1 Computation of the Gradient Bootstrap

In practice, the order of pairs in the dataset is usually arbitrary and does not satisfy Assumption 4.

To apply the gradient bootstrap, researchers first need to re-order the pairs. For the jth pair with

units indexed by (j, 1) and (j, 0) in the treatment and control groups, let Xj =
1
2{X(j,1) +X(j,0)}.

Then, let π be any permutation of n elements that minimizes

1

n

n∑

j=1

||Xπ(j) −Xπ(j−1)||2.

The pairs are re-ordered by indexes π(1), · · · , π(n). With an abuse of notation, we still index the

pairs after re-ordering by 1, · · · , n. Note that the original QTE estimator q̂(τ) = q̂1(τ) − q̂0(τ) is

invariant to the re-ordering.

For the bootstrap sample, we directly compute β̂∗(τ) from the sub-gradient condition of (4.3).

Specifically, we compute β̂∗
0(τ) as Y

0
(h0)

and q̂∗(τ) ≡ β̂∗
1(τ) as Y

1
(h1)

−Y 0
(h0)

, where Y 0
(h0)

and Y 1
(h1)

are

the h0th and h1th order statistics of outcomes in the treatment and control groups, respectively,4

and h0 and h1 are two integers satisfying

nτ + T ∗
n,a(τ) + 1 ≥ ha ≥ nτ + T ∗

n,a(τ), a = 0, 1, (5.1)

with

(
T ∗
n,1(τ)

T ∗
n,0(τ)

)
=

√
nS∗

n(τ) =
1√
2

[(∑n
j=1 ηj

(
τ − 1{Y(j,1) ≤ q̂1(τ)}

)
∑n

j=1 ηj
(
τ − 1{Y(j,0) ≤ q̂0(τ)}

)
)

+

(∑⌊n/2⌋
k=1 η̂k

[(
τ − 1{Y(k,1) ≤ q̂1(τ)}

)
−
(
τ − 1{Y(k,3) ≤ q̂1(τ)}

)]
∑⌊n/2⌋

k=1 η̂k
[(
τ − 1{Y(k,2) ≤ q̂0(τ)}

)
−
(
τ − 1{Y(k,4) ≤ q̂0(τ)}

)]
)]

.

As the probability of nτ + T ∗
n,a(τ) being an integer is zero, ha is uniquely defined with probability

one.

We summarize the steps in the bootstrap procedure as follows.

1. Re-order the pairs.

2. Compute the original estimator q̂(τ) = q̂1(τ)− q̂0(τ).

3. Let B be the number of bootstrap replications. Let G be a grid of quantile indexes. For

b ∈ [B], generate {ηj}j∈[n] and {η̂k}k∈⌊n/2⌋. Compute q̂∗b(τ) = Y 1
(h1)

− Y 0
(h0)

for τ ∈ G, where
h0 and h1 are computed in (5.1). Obtain {q̂∗b(τ)}τ∈G .

4We assume Y a
(1) ≤ · · · ≤ Y a

(n) for a = 0, 1.
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4. Repeat the above step for b ∈ [B] and obtain B bootstrap estimators of the QTE, denoted

as {q̂∗b(τ)}b∈[B],τ∈G .

5.2 Computation of the Weighted Bootstrap of the IPW estimator

We first provide more details on the sieve basis. Let b(x) ≡ (b1(x), · · · , bK(x))′, where {bk(·)}Kk=1

are K basis functions of a linear sieve space B. Given that all dx elements of X are continuously

distributed, the sieve space B can be constructed as follows.

1. For each element X(l) of X, l = 1, · · · , dx, let Bl be the univariate sieve space of dimension

Jn. One example of Bl is the linear span of the Jn dimensional polynomials given by

Bl =

{ Jn∑

k=0

αkx
k, x ∈ Supp(X(l)), αk ∈ ℜ

}
;

Another is the linear span of r-order splines with Jn nodes given by

Bl =

{r−1∑

k=0

αkx
k +

Jn∑

j=1

bj [max(x− tj, 0)]
r−1, x ∈ Supp(X(l)), αk, bj ∈ ℜ

}
,

where the grid −∞ = t0 ≤ t1 ≤ · · · ≤ tJn ≤ tJn+1 = ∞ partitions Supp(X(l)) into Jn + 1

subsets Ij = [tj, tj+1) ∩ Supp(X(l)), j = 1, · · · , Jn − 1, I0 = (t0, t1) ∩ Supp(X(l)), and IJn =

(tJn , tJn+1) ∩ Supp(X(l)).

2. Let B be the tensor product of {Bl}dxl=1, which is defined as a linear space spanned by the

functions
∏dx

l=1 gl, where gl ∈ Bl. The dimension of B is then K ≡ dxJn.

Given the sieve basis, we can estimate the propensity score following (4.7). We then obtain

q̂wipw,1(τ) and q̂wipw,0(τ) by solving the sub-gradient conditions for the two optimizations in (4.8).

Specifically, we have q̂wipw,1(τ) = Yh′
1
and q̂wipw,0(τ) = Yh′

0
, where the indexes h′0 and h′1 satisfy

Ah′
a
= a, a = 0, 1,

τ

(
2n∑

i=1

ξiAi

Âi

)
−

ξh′
1

Âh′
1

≤
2n∑

i=1

ξiAi

Âi

1{Yi < Yh′
1
} ≤ τ

(
2n∑

i=1

ξiAi

Âi

)
, (5.2)

and

τ

(
2n∑

i=1

ξi(1−Ai)

1− Âi

)
−

ξh′
0

1− Âh′
0

≤
2n∑

i=1

ξi(1−Ai)

1− Âi

1{Yi < Yh′
0
} ≤ τ

(
2n∑

i=1

ξi(1−Ai)

1− Âi

)
. (5.3)

In the implementation, we set {ξi}i∈[2n] as i.i.d. standard exponential random variables. In this

case, all the equalities in (5.2) and (5.3) hold with probability zero. Thus, h′1 and h′0 are uniquely
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defined with probability one.

We summarize the bootstrap procedure as follows.

1. Compute the original estimator q̂(τ) = q̂1(τ)− q̂0(τ).

2. Let B be the number of bootstrap replications. Let G be a grid of quantile indexes. For

b ∈ [B], generate {ξi}i∈[2n] as a sequence of i.i.d. exponential random variables. Estimate the

propensity score following (4.7). Compute q̂w,b
ipw(τ) = Yh′

1
− Yh′

0
for τ ∈ G, where h′0 and h′1

are computed in (5.2) and (5.3), respectively. Obtain {q̂w,b
ipw(τ)}τ∈G .

3. Repeat the above step for b ∈ [B] and obtain B bootstrap estimators of the QTE, denoted

as {q̂w,b
ipw(τ)}b∈[B],τ∈G .

For comparison, we also consider the naive weighted bootstrap in our simulations. Its computa-

tion follows a procedure similar to the above with only one difference: the nonparametric estimate

Âi of the propensity score is replaced by the truth, that is, 1/2.

5.3 Bootstrap Confidence Intervals

Given the bootstrap estimates, we discuss how to conduct bootstrap inference for the null hypothe-

ses with single, multiple, and a continuum of quantile indexes. We take the gradient bootstrap as an

example. If the IPW bootstrap is used, one can just replace {q̂∗b(τ)}b∈[B],τ∈G by {q̂w,b
ipw(τ)}b∈[B],τ∈G

in the following cases.

Case (1). We aim to test the single null hypothesis that H0 : q(τ) = q vs. q(τ) 6= q. Let

G = {τ} in the procedures described above. Further denote Q(ν) as the νth empirical quantile

of the sequence {q̂∗b(τ)}b∈[B]. Let α ∈ (0, 1) be the significance level. We suggest using the

bootstrap estimator to construct the standard error of q̂(τ) as σ̂ = Q(0.975)−Q(0.025)
C0.975−C0.025

, where Cµ is

the µth standard normal critical value. Then the valid confidence interval and Wald test using this

standard error are

CI1(α) = (q̂(τ)−C1−α/2σ̂, q̂(τ) + Cα/2σ̂),

and 1{
∣∣∣ q̂(τ)−q

σ̂

∣∣∣ ≥ C1−α/2}, respectively.
Further denote the standard and percentile bootstrap confidence intervals as CI2 and CI3,

respectively, where

CI2(α) = (2q̂(τ)−Q(1− α/2), 2q̂(τ)−Q(α/2))

and

CI3(α) = (Q(α/2),Q(1 − α/2)).
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Theoretically, CI1, CI2, and CI3 are all valid. When α = 0.05, CI1, CI2, and CI3 are centered

at q̂(τ), 2q̂(τ)− 1
2{Q(0.975) +Q(0.025)}, and 1

2{Q(0.975) +Q(0.025)}, respectively, but share the

same length Q(0.975) − Q(0.025). In (unreported) simulations, we found that in small samples,

CI1 usually has the best size control while CI2 over-rejects and CI3 under-rejects.

Case (2). We aim to test the null hypothesis that H0 : q(τ1)− q(τ2) = q vs. q(τ1)− q(τ2) 6= q.

In this case, let G = {τ1, τ2}. Further, let Q(ν) denote the νth empirical quantile of the sequence

{q̂∗b(τ1) − q̂∗b(τ2)}b∈[B], and let α ∈ (0, 1) be the significance level. For the same reason discussed

in case (1), we suggest using the bootstrap standard error to construct the valid confidence interval

and Wald test as

CI1(α) = (q̂(τ1)− q̂(τ2)−C1−α/2σ̂, q̂(τ1)− q̂(τ2) + Cα/2σ̂),

and 1{
∣∣∣ q̂(τ1)−q̂(τ2)−q

σ̂

∣∣∣ ≥ C1−α/2}, respectively, where σ̂ = Q(0.975)−Q(0.025)
C0.975−C0.025

.

Case (3). We aim to test the null hypothesis that

H0 : q(τ) = q(τ) ∀τ ∈ Υ vs. q(τ) 6= q(τ) ∃τ ∈ Υ.

In theory, we should let G = Υ. In practice, we let G = {τ1, · · · , τG} be a fine grid of Υ where

G should be as large as computationally possible. Further, let Qτ (ν) denote the νth empirical

quantile of the sequence {q̂∗b(τ)}b∈[B] for τ ∈ G. Compute the standard error of q̂(τ) as

σ̂τ =
Qτ (0.975) −Qτ (0.025)

C0.975 − C0.025
.

The uniform confidence band with an α significance level is constructed as

CB(α) = {q̂(τ)− Cασ̂τ , q̂(τ) + Cασ̂τ : τ ∈ G},

where the critical value Cα is computed as

Cα = inf

{
z :

1

B

B∑

b=1

1

{
sup
τ∈G

∣∣∣∣
q̂∗b(τ)− q̃(τ)

σ̂τ

∣∣∣∣ ≤ z

}
≥ 1− α

}

and q̃(τ) is first-order equivalent to q̂(τ) in the sense that supτ∈Υ |q̃(τ) − q̂(τ)| = op(1/
√
n). We

suggest choosing q̃(τ) = 1
2{Qτ (0.975) +Qτ (0.025)} over other choices such as q̃(τ) = Qτ (0.5) and

q̃(τ) = q̂(τ) due to its better finite-sample performance. We reject H0 at an α significance level if

q(·) /∈ CB(α).
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5.4 Practical Recommendations

Our practical recommendations are straightforward. If pair identities are known, we suggest using

the gradient bootstrap for inference. If pair identities are unknown, we suggest using the weighted

bootstrap of the IPW estimator with a nonparametrically estimated propensity score for inference.

6 Simulation

In this section, we assess the finite-sample performance of the methods discussed in Section 4 with

a Monte Carlo simulation study. In all cases, potential outcomes for a ∈ {0, 1} and 1 ≤ i ≤ 2n are

generated as

Yi(a) = µa +ma (Xi) + σa (Xi) εa,i, a = 0, 1, (6.1)

where µa,ma (Xi) , σa (Xi), and εa,i are specified as follows. In each of the specifications below,

n ∈ {50, 100} and (Xi, ε0,i, ε1,i) are i.i.d. The number of replications is 10,000. For bootstrap

replications we set B = 5, 000.

Model 1 Xi ∼ Unif[0, 1]; m0 (Xi) = 0; m1 (Xi) = 10
(
X2

i − 1
3

)
; εa,i ∼ N(0, 1) for a = 0, 1;

σ0 (Xi) = σ0 = 1 and σ1 (Xi) = σ1.

Model 2 As in Model 1, but σ0 (Xi) =
(
1 +X2

i

)
and σ1 (Xi) =

(
1 +X2

i

)
σ1.

Model 3 Xi = (Φ (Vi1) ,Φ (Vi2))
′, where Φ(·) is the standard normal cumulative distribution func-

tion and

Vi ∼ N

((
0

0

)
,

(
1 ρ

ρ 1

))
,

m0 (Xi) = γ′Xi − 1; m1 (Xi) = m0 (Xi) + 10
(
Φ−1 (Xi1)Φ

−1 (Xi2)− ρ
)
; εa,i ∼ N(0, 1) for

a = 0, 1; σ0 (Xi) = σ0 = 1 and σ1 (Xi) = σ1. We set γ = (1, 1)′, σ1 = 1, ρ = 0.2.

Model 4 As in Model 3, but with γ = (1, 4)′, σ1 = 2, ρ = 0.7.

Pairs are determined similarly to those in Bai et al. (2019). Specifically, if Xi is a scalar, then

pairs are determined by sorting {Xi}i∈[2n] as described in Case (1) in Section 4.2. If Xi is multi-

dimensional, then the pairs are determined by the permutation π described in Case (2) in Section

4.2, which can be obtained by using the R package nbpMatching. After forming the pairs, we

assign treatment status within each pair through a random draw from the uniform distribution

over {(0, 1), (1, 0)}.
We examine the performance of various tests for ATEs and QTEs at the nominal level α = 5%.

For the ATE, we consider the hypothesis that

E(Y (1)− Y (0)) = truth + ∆ vs. E(Y (1)− Y (0)) 6= truth + ∆.
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For the QTE, we consider the hypotheses that

q(τ) = truth + ∆ vs. q(τ) 6= truth + ∆,

for τ = 0.25, 0.5, and 0.75,

q(0.25) − q(0.75) = truth + ∆ vs. q(0.25) − q(0.75) 6= truth + ∆, (6.2)

and

q(τ) = truth +∆ ∀τ ∈ [0.25, 0.75] vs. q(τ) 6= truth + ∆ ∃τ ∈ [0.25, 0.75]. (6.3)

To illustrate size and power of the tests, we set H0 : ∆ = 0 and H1 : ∆ = 1/2. The true value

for the ATE is 0, whereas the true values for the QTEs are simulated with a 10, 000 sample size

and replications. The computational procedures described in Section 5 are followed to perform

the bootstrap and calculate the test statistics. To test the single null hypothesis involving one or

two quantile indexes, we use the Wald tests specified in Section 5.3. To test the null hypothesis

involving a continuum of quantile indexes, we use the uniform confidence band CB(α) defined in

Case (3) in the same section.

The results for the ATEs appear in Table 1. Each row presents a different model and each

column reports the rejection probabilities for the various methods. The column ‘Naive’ refers to

the two-sample t-test and ‘Adj’ refers to the adjusted t-test in Bai et al. (2019); the column ‘IPW’

corresponds to the t-test with standard errors generated by the weighted bootstrap of the IPW

ATE estimator. In all cases, we find that (i) the two-sample t-test has rejection probability under

H0 far below the nominal level and is the least powerful test among the three, and (ii) the adjusted

t-test has rejection probability under H0 close to the nominal level and is not conservative. These

results are consistent with those in Bai et al. (2019). The IPW t-test proposed in this paper has

performance similar to the adjusted t-test.5 Under H0, the test has rejection probability close to

5%; under H1, it is more powerful than the naive method and has power similar to the adjusted

t-test. These findings indicate that the IPW t-test provides an alternative to the adjusted t-test

when pair identities are unknown.

The results for QTEs are summarized in Tables 2 and 3. Each table has four panels (Models

1-4). Each row in the panel displays the rejection probabilities for the tests using the standard

errors estimated by various bootstrap methods. Specifically, the rows ‘Naive weight’, ‘Gradient’,

5Throughout this section, we use B-splines to nonparametrically estimate the propensity score in the weighted
bootstrap of the IPW estimator. If dim(Xi)=1, we choose the bases {1, X, [max(X − qx0, X − qx0.5)]

2} where qx0

and qx0.5 are quantiles of X at 0 and 50%, respectively; if dim(Xi)=2, we choose the bases {1,max(X1 − qx1,0, X1 −
x1,0.5),max(X2 − qx2,0, X2 − qx2,0.5), X1X2}. The choices of the sieve basis functions and K are adhoc. It is possible
to use data-driven methods to select them but a rigorous analysis of the validity of various data-driven methods is
beyond the scope of this paper.
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Table 1: The Empirical Size and Power of Tests for ATEs

Model
H0: ∆ = 0 H1: ∆ = 1/2

n = 50 n = 100 n = 50 n = 100

Naive Adj IPW Naive Adj IPW Naive Adj IPW Naive Adj IPW

1 1.32 5.47 5.44 1.22 5.75 6.00 11.80 29.10 29.44 27.67 49.79 50.46
2 1.85 5.35 5.59 1.64 5.63 5.89 10.43 23.26 24.24 23.72 40.42 41.68
3 1.20 4.76 4.92 0.77 4.68 5.16 1.31 5.66 5.91 1.92 8.13 8.74
4 2.32 6.47 6.01 1.25 5.33 4.74 1.08 5.16 4.35 0.93 5.65 4.89

Notes: The table presents the rejection probabilities for tests of ATEs. The columns ‘Naive’ and
‘Adj’ correspond to the two-sample t-test and the adjusted t-test in Bai et al. (2019), respectively;
the column ‘IPW’ corresponds to the t-test using the standard errors estimated by the weighted
bootstrap of the IPW ATE estimator.

and ‘IPW’ respectively correspond to the results of the naive weighted bootstrap, the gradient

bootstrap, and the weighted bootstrap of the IPW QTE estimator.

Table 2 reports empirical size and power of the tests with a single null hypothesis involving one

or two quantile indexes. Columns ‘0.25’, ‘0.50’, and ‘0.75’ correspond to tests with quantiles at

25%, 50%, and 75%. Column ‘Dif’ corresponds to the test with null hypothesis (6.2). As expected

given Theorem 4.1, the test with standard errors estimated by the naive method performs poorly

in all cases. It is conservative under H0 and lacks power under H1. In contrast, the test using

the standard errors estimated by either the gradient bootstrap or the IPW method has a rejection

probability under H0 that is close to the nominal level in almost all specifications. When the

number of pairs is 50, the tests in the ‘Dif’ column constructed based on either the gradient or the

IPW method are slightly conservative. Sizes approach the nominal level when n increases to 100.

Table 3 reports empirical size and power of the uniform confidence bands for the hypothesis

specified in (6.3) with a grid G = {0.25, 0.27, · · · , 0.47, 0.49, 0.5, 0.51, 0.53, · · · , 0.73, 0.75}. The test

using standard errors estimated by the naive method has rejection probabilities under H0 far below

the nominal level in all specifications. In Models 1-2, the test using standard errors estimated by

either the gradient bootstrap or the IPW bootstrap yields a rejection probability under H0 that

is very close to the nominal level even when the number of pairs is as small as 50. Nonetheless,

in Models 3-4, the tests constructed based on both methods are conservative when the number of

pairs equals 50. When the number of pairs increases to 100, both tests perform much better and

have a rejection probability under H0 that is close to the nominal level. Under H1, the tests based

on both the gradient and IPW methods are more powerful than those based on the naive method.

In summary, the simulation results in Tables 2 and 3 are consistent with the results in Theorems

4.2 and 4.3: both the gradient bootstrap and the IPW bootstrap provide valid pointwise and

uniform inference for QTEs under MPDs. The findings also show that when the information on

pair identities is unavailable the IPW method continues to provide a sound basis for inference.

20



Table 2: The Empirical Size and Power of Tests for QTEs

H0: ∆ = 0 H1: ∆ = 1/2
n = 50 n = 100 n = 50 n = 100

0.25 0.50 0.75 Dif 0.25 0.50 0.75 Dif 0.25 0.50 0.75 Dif 0.25 0.50 0.75 Dif

Model 1
Naive weight 3.00 2.00 2.22 1.98 3.12 2.06 1.93 1.73 16.67 6.05 5.56 3.96 34.93 11.56 8.11 7.35
Gradient 5.13 4.82 4.92 3.66 5.07 5.62 5.30 4.04 23.76 13.03 11.27 8.18 42.92 22.91 17.30 14.57
IPW 5.47 5.31 6.17 4.24 5.26 5.83 5.65 3.95 24.81 13.48 12.12 8.40 43.93 23.33 17.21 13.91

Model 2
Naive weight 3.08 2.32 2.55 1.96 3.64 2.53 2.08 1.87 14.82 6.54 4.71 3.68 30.29 11.50 7.46 6.88
Gradient 4.57 4.63 4.39 3.44 5.00 5.42 5.28 3.68 19.51 12.25 8.76 6.57 35.38 20.86 14.79 12.25
IPW 4.93 5.12 5.78 4.45 5.17 5.73 5.88 4.00 20.29 12.90 10.40 7.35 36.38 21.53 15.14 12.53

Model 3
Naive weight 2.11 1.03 2.10 0.92 1.56 1.37 1.58 0.86 4.98 2.85 1.92 0.98 6.57 7.14 1.73 1.43
Gradient 5.24 3.06 3.14 1.76 4.83 4.20 4.27 3.01 9.71 7.43 3.22 2.39 13.80 16.72 5.67 4.40
IPW 4.76 3.19 5.61 2.60 4.77 3.71 4.95 3.02 8.75 7.81 5.35 3.09 13.04 15.42 6.06 4.21

Model 4
Naive weight 2.59 1.71 1.98 1.65 2.65 1.66 1.55 1.23 6.09 1.94 1.76 1.28 9.85 2.98 1.19 1.18
Gradient 4.75 4.00 3.33 2.82 4.70 4.74 5.06 3.88 9.37 5.76 3.35 2.87 14.67 8.88 5.27 4.25
IPW 3.97 3.97 4.91 3.68 4.23 4.51 5.01 3.48 8.08 5.37 4.79 3.26 13.50 8.33 5.17 3.51

Note: The table presents the rejection probabilities for tests of QTEs involving a continuum of quantile indexes. The columns
‘0.25’, ‘0.50’, and ‘0.75’ correspond to tests with quantiles at 25%, 50%, and 75%, respectively; the column ‘Dif’ corresponds to
the test with the null hypothesis specified in (6.2). The rows ‘Naive weight’, ‘Gradient’, and ‘IPW’ correspond to the results of
the naive weighted bootstrap, the gradient bootstrap, and the weighted bootstrap of the IPW QTE estimator, respectively.
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Table 3: The Empirical Size and Power of Uniform Inferences for QTEs

H0: ∆ = 0 H1: ∆ = 1/2

n = 50 n = 100 n = 50 n = 100

Model 1
Naive weight 1.07 1.52 7.50 18.12
Gradient 4.08 4.64 17.88 33.30
IPW 4.49 4.94 16.30 32.40

Model 2
Naive weight 1.37 1.85 6.73 16.50
Gradient 3.66 4.57 14.30 27.64
IPW 4.25 4.91 14.27 27.47

Model 3
Naive weight 0.63 0.63 1.43 3.50
Gradient 1.90 3.07 5.19 13.33
IPW 2.19 2.99 4.25 11.34

Model 4
Naive weight 0.99 1.00 1.40 3.05
Gradient 2.87 3.72 4.47 8.57
IPW 2.78 3.36 3.18 6.98

Notes: The table presents the rejection probabilities for tests of QTEs. The rows ‘Naive weight’,
‘Gradient’ and ‘IPW’ correspond respectively to the results of the naive weighted bootstrap, the
gradient bootstrap, and the weighted bootstrap of the IPW QTE estimator.

7 Empirical Application

Questions surrounding the effectiveness of microfinance as a development tool has sparked a great

deal of interest from both policymakers and economists. To answer such questions a growing number

of studies have implemented randomized experiments in different settings (see Banerjee, Karlan, and Zinman,

2015, and the references therein). In particular, Banerjee et al. (2015) adopted MPD in their ran-

domization. In this section, we apply the bootstrap methods of inference developed in this paper

to their data to examine both the ATEs and QTEs on the take-up rates of microcredit to assess

the effectiveness of microfinance.6

The sample consists of 104 areas in the city of Hyderabad in India. Based on average per

capita consumption and per-household outstanding debt, the areas were grouped into pairs of

similar neighborhoods. This segmentation gives 52 pairs in the sample; one area in each pair was

6The public-use data provided by the authors does not contain information on pair assignment. We thank Esther
Duflo and Cynthia Kinnan for providing us with this information.
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Table 4: Summary Statistics

Total Treatment group Control group

Loan take-up rate
Spandana 0.128(0.140) 0.193(0.131) 0.062(0.117)
Any MFI 0.224(0.152) 0.265(0.151) 0.182(0.143)

Matching variable
Consumption 1026.4(184.4) 1047.8(195.7) 1005.0(171.5)
Debt 36184.7(36036.5) 32694.1(17755.5) 39675.3(47776.8)

Observations 104 52 52

Notes: Unit of observation: area. The table presents the means and standard deviations (in
parentheses) of two outcome variables: the take-up rate of loans from Spandana and the take-up
rate of loans from any MFI, and two pair-matching variables: average per capita consumption and
per-household debt.

Table 5: ATEs of Micofinance on Take-up Rates of Microcredit

Naive Adj IPW

Spandana 0.131(0.024) 0.131(0.022) 0.131(0.022)
Any MFI 0.083(0.029) 0.083(0.024) 0.083(0.027)

Notes: The table presents the ATE estimates of the effect of microfinance on the takeup rates of
microcredit. Standard errors are in parentheses. The columns “Naive” and “Adj” correspond to
the two-sample t-test and the adjusted t-test in Bai et al. (2019), respectively. The column “IPW”
corresponds to the t-test using the standard errors estimated by the weighted bootstrap of the IPW
ATE estimator.

randomly assigned to the treatment group and the other to the control group. In the treatment

areas, a group-lending microcredit program was implemented. Banerjee et al. (2015) then examined

the impacts of expanding access to microfinance on various outcome variables at two endlines.

Here we focus on the impacts of microfinance on two area-level outcome variables at the first

endline. One is the area’s take-up rate of loans from Spandana, a microfinance organization that

implemented the group-lending microcredit program. The other is the area’s take-up rate of loans

from any microfinance institutions (MFIs). Table 4 gives descriptive statistics (means and standard

deviations) for these two outcome variables as well as the matching variables used by Banerjee et al.

(2015) to form the pairs in their experiments.

Table 5 reports the results on the ATE estimates of the effect of microfinance on the take-

up rates of microcredit with the standard errors (in parentheses) calculated by three methods.

Specifically, the columns ‘Naive’ and ‘Adj’ correspond to the two-sample t-test and the adjusted

t-test in Bai et al. (2019), respectively; the column ‘IPW’ corresponds to the t-test using standard
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Table 6: QTEs of Micofinance on Take-up Rates of Microcredit

Naive weight Gradient IPW

Panel A. Spandana
25% 0.082(0.021) 0.082(0.026) 0.082(0.020)
50% 0.182(0.024) 0.182(0.021) 0.182(0.023)
75% 0.229(0.047) 0.229(0.046) 0.229(0.047)

Panel B. Any MFI
25% 0.056(0.045) 0.056(0.043) 0.056(0.042)
50% 0.082(0.040) 0.082(0.034) 0.082(0.040)
75% 0.141(0.054) 0.141(0.054) 0.141(0.049)

Notes: The table presents the QTE estimates of the effect of microfinance on the take-up rates of
microcredit at quantiles 25%, 50%, and 75%. Standard errors are in parentheses. The columns
“Naive weight,” “Gradient,” and “IPW” correspond to the results of the naive weighted bootstrap,
the gradient bootstrap, and the weighted bootstrap of the IPW QTE estimator, respectively.

errors estimated by the weighted bootstrap of the IPW ATE estimator.7 The results lead to

the following observations. First, consistent with the findings in Banerjee et al. (2015), the ATE

estimates show that expanding access to microfinance has highly significant average effects on the

take-up rates of microcredit from both Spandana and any MFIs. Second, the standard errors in

the adjusted t-test are lower than those in the naive t-test. This result is consistent with the

finding in Bai et al. (2019). More importantly, the standard errors estimated by the IPW weighted

bootstrap are also lower than those in the naive t-test and similar to those for the adjusted t-test.

For example, in the test of the ATE on the take-up rate of microcredit from Spandana, the IPW

method reduces the standard error by 8% compared with the naive one. The magnitude of the

reduction is the same as that in the adjusted t-test. These results corroborate our earlier finding

that the IPW method is an alternative to the approach adopted in Bai et al. (2019), especially

when the information on pair identities is unavailable.

Next, we estimate the QTEs of microfinance on the take-up rates of microcredit and estimate

their standard errors by the three methods discussed in Section 4. Table 6 presents the results on

the QTE estimates at quantile indexes 0.25, 0.5, and 0.75 with the standard errors (in parentheses)

estimated by three different methods. Specifically, the columns ‘Naive weight’, ‘Gradient’, and

‘IPW’ correspond to the results of the naive weighted bootstrap, the gradient bootstrap,8 and the

weighted bootstrap of the IPW QTE estimator, respectively. These results lead to the following

7Throughout this section, to nonparametrically estimate the propensity score in the IPW weighted bootstrap,
we first standardize the data to have mean zero and variance one and then fit the standardized data via the sieve
estimation based on the B-splines with the same basis as used in Section 6.

8Using the original pair identities and matching variables in Banerjee et al. (2015), we can re-order the pairs
according to the procedure described in Section 5.1. We follow Banerjee et al. (2015) in using Euclidean distance to
measure the distance between the covariates in distinctive pairs.
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two observations.

First, consistent with the theory in Section 4, the standard errors estimated by the gradient

bootstrap or the IPW weighted bootstrap are mostly lower than those estimated by the naive

weighted bootstrap. For example in Panel A, at the median, compared with the naive weighted

bootstrap, the gradient bootstrap reduces the standard errors by 12.5% and the IPW weighted

bootstrap reduces the standard errors by over 4%. In Panel B, all the standard errors computed

using methods Gradient and IPW are smaller than those computed using the naive method.

Second, there seem to be considerable heterogeneity in the effects of microfinance. Specifically,

the treatment effects of microfinance on the take-up rates of microcredit increase as the quantile

indexes increase and the increases are economically substantial. For example, in Panel A, the

treatment effect increases by about 122% from the 25th percentile to the median and by about 26%

from the median to the 75th percentile. In Panel B, the treatment effect at the 25th percentile

is positive but not statistically significantly different from zero. The treatment effect increases

by over 46% from the 25th percentile to the median and by about 72% from the median to the

75th percentile. These findings may imply that expanding access to microfinance has small, if not

negligible, effects on the take-up rates of microcredit for areas in the lower tail of the distribution

but that these effects become stronger for upper-ranked areas, thereby exhibiting the so-called

Matthew effect.

The second observation in Table 6 indicates that the heterogeneous effects of microfinance on

the take-up rates of microcredit are economically substantial. Are they statistically significant too?

In Table 7, we provide statistical tests for the heterogeneity of the QTEs. Specifically, we test

the null hypotheses that q(0.50) − q(0.25) = 0 and q(0.75) − q(0.50) = 0. We find that only the

difference between the 25th and median QTEs in Panel A is statistically significant. This finding

implies that the statistical evidence of heterogeneous treatment effects of microfinance is strong

only for the areas in the lower tail of the distribution and when the loans are from Spandana.

8 Conclusion

This paper has studied estimation and inference of QTEs under MPDs and developed new boot-

strap methods to improve statistical performance. Derivation of the limit distribution of QTE

estimators under MPDs reveals that analytic methods of inference based on asymptotic theory

requires estimation of two infinite-dimensional nuisance parameters for every quantile index of in-

terest. A further limitation is that the naive weighted bootstrap fails to approximate the limit

distribution of the QTE estimator as it does not preserve the dependence structure in the original

sample. Instead, we propose a gradient bootstrap approach that can consistently approximate the

limit distribution of the original estimator and is free of tuning parameters. Implementation of the

gradient bootstrap requires knowledge of pair identities. So when such information is unavailable

we propose a weighted bootstrap procedure based on the IPW estimator of the QTE and show that
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Table 7: Tests for the Difference between Two QTEs of Micofinance

Naive weight Gradient IPW

Panel A. Spandana
q(0.50) − q(0.25) 0.099(0.023) 0.099(0.024) 0.099(0.022)
q(0.75) − q(0.50) 0.047(0.046) 0.047(0.046) 0.047(0.045)

Panel B. Any MFI
q(0.50) − q(0.25) 0.026(0.043) 0.026(0.044) 0.026(0.044)
q(0.75) − q(0.50) 0.059(0.049) 0.059(0.046) 0.059(0.046)

Notes: The table presents tests for the difference between two QTEs of microfinance on the take-up
rates of microcredit. Standard errors are in parentheses. The columns ‘Naive weight’, ‘Gradient’,
and ‘IPW’ correspond to the results of the naive weighted bootstrap, the gradient bootstrap, and
the weighted bootstrap of the IPW QTE estimator, respectively.

it can consistently approximate the limit distribution of the original QTE estimator. Simulations

provide finite-sample evidence of these procedures that support the asymptotic findings. In our

empirical application of these bootstrap methods to the real dataset in Banerjee et al. (2015) we

find considerable evidence of heterogeneity in the effects of microfinance on the take-up rates of mi-

crocredit. In both the simulations and the empirical application, the two recommended bootstrap

methods of inference perform well in the sense that they usually provide smaller standard errors

and greater inferential accuracy than those obtained by naive bootstrap methods.
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A Proof of Theorem 3.1

Let u = (u0, u1)
′ ∈ ℜ2 and

Ln(u, τ) =

2n∑

i=1

[
ρτ (Yi − Ȧ′

iβ(τ)− Ȧ′
iu/

√
n)− ρτ (Yi − Ȧ′

iβ(τ))
]
.

Then, by change of variables we have

√
n(β̂(τ)− β(τ)) = argmin

u
Ln(u, τ).

Note that Ln(u, τ) is convex in u for each τ and bounded in τ for each u. We divide the proof into

three steps. In Step (1), we show that there exists

gn(u, τ) = −u′Wn(τ) +
u′Q(τ)u

2

such that for each u,

sup
τ∈Υ

|Ln(u, τ)− gn(u, τ)| p−→ 0;

and the maximum eigenvalue of Q(τ) is bounded from above and the minimum eigenvalue of Q(τ)

is bounded away from 0, uniformly over τ ∈ Υ. In Step (2), we show Wn(τ) as a stochastic process

over τ ∈ Υ is tight. Then by Kato (2009, Theorem 2), we have

√
n(β̂(τ)− β(τ)) = [Q(τ)]−1Wn(τ) + rn(τ),

where supτ∈Υ ||rn(τ)|| = op(1). Last, in Step (3), we establish weak convergence of [Q(τ)]−1Wn(τ)

uniformly over τ ∈ Υ. The second element of the limiting process is B(τ) stated in Theorem 3.1.

Step (1). By Knight’s identity (Knight, 1998), we have

Ln(u, τ)

=−
2n∑

i=1

u′√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′

iβ(τ)}
)
+

2n∑

i=1

∫ Ȧ′
iu√
n

0

(
1{Yi − Ȧ′

iβ(τ) ≤ v} − 1{Yi − Ȧ′
iβ(τ) ≤ 0}

)
dv

≡− u′Wn(τ) +Qn(u, τ),

where

Wn(τ) =

2n∑

i=1

1√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′

iβ(τ)}
)
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and

Qn(u, τ) =
2n∑

i=1

∫ Ȧ′
iu√
n

0

(
1{Yi − Ȧ′

iβ(τ) ≤ v} − 1{Yi − Ȧ′
iβ(τ) ≤ 0}

)
dv

=
2n∑

i=1

Ai

∫ u0+u1√
n

0
(1{Yi(1) − q1(τ) ≤ v} − 1{Yi(1) − q1(τ) ≤ 0}) dv

+

2n∑

i=1

(1−Ai)

∫ u0√
n

0
(1{Yi(0) − q0(τ) ≤ v} − 1{Yi(0) − q0(τ) ≤ 0}) dv

≡Qn,1(u, τ) +Qn,0(u, τ). (A.1)

We first consider Qn,1(u, τ). Let

Hn(Xi, τ) = E

(∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv|Xi

)
. (A.2)

Then,

Qn,1(u, τ) =

2n∑

i=1

Hn(Xi, τ)

2
+

2n∑

i=1

(
Ai −

1

2

)
Hn(Xi, τ)

+

2n∑

i=1

Ai

[∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]
.

(A.3)

For the first term on the RHS of (A.3), we have, uniformly over τ ∈ Υ,

2n∑

i=1

Hn(Xi, τ)

2
=

1

4n

2n∑

i=1

f1(q1(τ) + ṽ|Xi)(u0 + u1)
2 p−→ f1(q1(τ))(u0 + u1)

2

2
, (A.4)

where ṽ is between 0 and |u0 + u1|/
√
n and we use the fact that, due to Assumption 2,

sup
τ∈Υ

1

2n

2n∑

i=1

|f1(q1(τ) + ṽ|Xi)− f1(q1(τ)|Xi)| ≤
(

1

2n

2n∑

i=1

C(Xi)

)
|u0 + u1|√

n

p−→ 0.

Lemma E.2 shows

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

(
Ai −

1

2

)
Hn(Xi, τ)

∣∣∣∣∣ = op(1) (A.5)
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and

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

Ai

[∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]∣∣∣∣∣ = op(1).

(A.6)

Combining (A.3)–(A.6), we have

sup
τ∈Υ

∣∣∣∣Qn,1(u, τ)−
f1(q1(τ))(u0 + u1)

2

2

∣∣∣∣ = op(1). (A.7)

By a similar argument, we can show that

sup
τ∈Υ

∣∣∣∣Qn,0(u, τ) −
f0(q0(τ))u

2
0

2

∣∣∣∣ = op(1). (A.8)

Combining (A.7) and (A.8), we have

Qn(u, τ)
p−→ u′Q(τ)u

2
,

where

Q(τ) =

(
f1(q1(τ)) + f0(q0(τ)) f1(q1(τ))

f1(q1(τ)) f1(q1(τ))

)
. (A.9)

Then,

sup
τ∈Υ

|Ln(u, τ)− gn(u, τ)| = sup
τ∈Υ

∣∣∣∣Qn(u, τ) −
u′Q(τ)u

2

∣∣∣∣ = op(1).

Last, because fa(qa(τ)) for a = 0, 1 is bounded and bounded away from zero uniformly over τ ∈ Υ,

so are the eigenvalues of Q(τ) uniformly over τ ∈ Υ.

Step (2). Let e1 = (1, 1)T , e0 = (1, 0)T . Then,

Wn(τ) =
2n∑

i=1

e1√
n
Ai (τ − 1{Yi(1) ≤ q1(τ)}) +

2n∑

i=1

e0√
n
(1−Ai) (τ − 1{Yi(0) ≤ q0(τ)})

≡e1Wn,1(τ) + e0Wn,0(τ).

(A.10)

Recall m1,τ (Xi) = E(τ − 1{Yi(1) ≤ q1(τ)}|Xi). Denote

ηi,1(τ) = τ − 1{Yi(1) ≤ q1(τ)} −m1,τ (Xi).
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For Wn,1(τ), we have

Wn,1(τ) =
2n∑

i=1

Ai√
n
ηi,1(τ) +

2n∑

i=1

1

2
√
n
m1,τ (Xi) +R1(τ) (A.11)

where

R1(τ) =
2n∑

i=1

(Ai − 1/2)√
n

m1,τ (Xi).

By Lemma E.3, we have

sup
τ∈Υ

|R1(τ)| = op(1).

Next, we focus on the first two terms on the RHS of (A.11). Note {Yi(1)}2ni=1 given {Xi}2ni=1 is an

independent sequence that is also independent of {Ai}2ni=1. Let Ỹj(1)|X̃j be distributed according

to Yij (1)|Xij where ij is the j-th smallest index in the set {i ∈ [2n] : Ai = 1} and X̃j = Xij . Then,

by noticing that
∑2n

i=1Ai = n, we have

2n∑

i=1

Ai√
n
ηi,1(τ)|{Ai,Xi}2ni=1

d
=

n∑

j=1

η̃j,1(τ)√
n

∣∣∣∣{X̃j}nj=1, (A.12)

where η̃j,1(τ) = τ − 1{Ỹj(1) ≤ q1(τ)} − m1,τ (X̃j), and given {X̃j}nj=1, {η̃j,1(τ)}nj=1 is a sequence

of independent random variables. Further denote the conditional distribution of Ỹj(1) given X̃j as

P
(j) and Λτ (x) = F1(q1(τ)|x)(1 − F1(q1(τ)|x)). Then,

1

n

n∑

j=1

P
(j)(η̃j,1(τ))

2 =
1

n

n∑

j=1

Λτ (X̃j)

=
1

n

2n∑

i=1

AiΛτ (Xi)

=
1

2n

2n∑

i=1

Λτ (Xi) +
1

2n

n∑

j=1

(Aπ(2j−1) −Aπ(2j))
[
Λτ (Xπ(2j−1))− Λτ (Xπ(2j))

]

p−→ EΛτ (Xi),

where the last convergence holds because

1

2n

2n∑

i=1

Λτ (Xi)
p−→ EΛτ (Xi),
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and

∣∣∣∣∣∣
1

2n

n∑

j=1

(Aπ(2j−1) −Aπ(2j))
[
Λτ (Xπ(2j−1))− Λτ (Xπ(2j))

]
∣∣∣∣∣∣
.

1

2n

n∑

j=1

||Xπ(2j−1) −Xπ(2j)||2
p−→ 0.

In addition, because η̃j,1(τ) is bounded, the Lyapounov condition holds, i.e.,

1

n3/2

n∑

i=1

P
(j)|η̃j,1(τ)|3 p−→ 0.

Therefore, by the triangular array CLT, for fixed τ , we have

2n∑

i=1

Ai√
n
ηi,1(τ)|{Ai,Xi}2ni=1

d
=

n∑

j=1

η̃j,1(τ)√
n

∣∣∣∣{X̃j}nj=1  N (0,EΛτ (Xi)).

It is straightforward to extend the results to finite-dimensional convergence by the Cramér-Wold

device. In particular, the covariance between
∑2n

i=1
Ai√
n
ηi,1(τ) and

∑2n
i=1

Ai√
n
ηi,1(τ

′) conditionally on

{Xi}2ni=1 converges to

min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X).

Next, we show that the process {∑2n
i=1

Ai√
n
ηi,1(τ) : τ ∈ Υ} is stochastically equicontinuous.

Denote Pf = 1
n

∑n
j=1 P

(j)f for a generic function f . Let

F1 = {[τ − 1{Y ≤ q1(τ)}] −
[
τ ′ − 1{Y ≤ q1(τ

′)}
]
: τ, τ ′ ∈ Υ, |τ − τ ′| ≤ ε}

which is a VC-class with a fixed VC-index and has an envelope Fi = 2. In addition,

σ2
n = sup

f∈F1

Pf2 . sup
τ̃∈Υ

1

n

n∑

i=1

[
ε2 +

f1(q1(τ̃ )|X̃j)ε

f1(q1(τ̃ ))

]
. ε a.s.

Then, by Lemma E.1,

E


 sup
τ,τ ′∈Υ,|τ−τ ′|≤ε

∣∣∣∣∣∣

n∑

j=1

η̃j,1(τ)− η̃j,1(τ
′)√

n

∣∣∣∣∣∣

∣∣∣∣{X̃j}nj=1


 =E

[
‖Pn − P‖F1

∣∣∣∣{X̃j}nj=1

]

.
√

ε log(1/ε) +
log(1/ε)√

n
a.s.
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For any δ, η > 0, we can find an ε > 0 such that

lim sup
n

P

(
sup

τ,τ ′∈Υ,|τ−τ ′|≤ε

∣∣∣∣∣
2n∑

i=1

Ai√
n

(
ηi,1(τ)− ηi,1(τ

′)
)
∣∣∣∣∣ ≥ δ

)

= lim sup
n

EP

(
sup

τ,τ ′∈Υ,|τ−τ ′|≤ε

∣∣∣∣∣
2n∑

i=1

Ai√
n

(
ηi,1(τ)− ηi,1(τ

′)
)
∣∣∣∣∣ ≥ δ

∣∣∣∣{Ai,Xi}2ni=1

)

≤ lim sup
n

E

E

[
supτ,τ ′∈Υ,|τ−τ ′|≤ε

∣∣∣
∑n

j=1
η̃j,1(τ)−η̃j,1(τ

′)√
n

∣∣∣
∣∣∣∣{X̃j}nj=1

]

δ

. lim sup
n

√
ε log(1/ε) + log(1/ε)√

n

δ
≤ η,

where the last inequality holds because ε log(1/ε) → 0 as ε → 0. This implies {∑2n
i=1

Ai√
n
ηi,1(τ) :

τ ∈ Υ} is stochastically equicontinuous, and hence tight.

In addition, note {Xi}2ni=1 are i.i.d. and {m1,τ (x) : τ ∈ Υ} is Donsker, then {∑2n
i=1

1
2
√
n
m1,τ (Xi) :

τ ∈ Υ} is tight. This leads to the desired result that {Wn,1(τ) : τ ∈ Υ} is tight. In the same manner,

we can show that {Wn,0(τ) : τ ∈ Υ} is tight, which leads to tightness of {Wn(τ) : τ ∈ Υ}.

Step (3). Recall m0,τ (Xi) = E(τ − 1{Yi(0) ≤ q0(τ)}|Xi) and let ηi,0(τ) = τ − 1{Yi(0) ≤ q0(τ)} −
m0,τ (Xi). Then, based on the previous two steps, we have

√
n(β̂(τ)− β(τ)) = Q−1

(
1 1

1 0

)( ∑2n
i=1

Ai√
n
ηi,1(τ) +

∑2n
i=1

1
2
√
n
m1,τ (Xi)∑2n

i=1
1−Ai√

n
ηi,0(τ) +

∑2n
i=1

1
2
√
n
m0,τ (Xi)

)
+R(τ) (A.13)

where supτ∈Υ |R(τ)| = op(1). In addition, we have already established the stochastic equicontinuity

and finite-dimensional convergence of

( ∑2n
i=1

Ai√
n
ηi,1(τ) +

∑2n
i=1

1
2
√
n
m1,τ (Xi)∑2n

i=1
1−Ai√

n
ηi,0(τ) +

∑2n
i=1

1
2
√
n
m0,τ (Xi)

)
.

Thus, in order to derive the weak limit of
√
n(β̂(τ)−β(τ)) uniformly over τ ∈ Υ, it suffices to con-

sider its covariance kernel. First, note that, by construction,
∑2n

i=1
Ai√
n
ηi,1(τ) ⊥⊥

∑2n
i=1

1−Ai√
n
ηi,0(τ

′)

for any (τ, τ ′) ∈ Υ. Second, note that
∑2n

i=1
Ai√
n
ηi,1(τ) is asymptotically independent of

∑2n
i=1

1
2
√
n
m1,τ ′(Xi).

To see this, let (s, t) ∈ ℜ2, then

P

(
2n∑

i=1

Ai√
n
ηi,1(τ) ≤ t,

2n∑

i=1

1

2
√
n
m1,τ ′(Xi) ≤ s

)

=E

{
P

(
2n∑

i=1

Ai√
n
ηi,1(τ) ≤ t

∣∣∣∣{Ai,Xi}2ni=1

)
1

{
2n∑

i=1

1

2
√
n
m1,τ ′(Xi) ≤ s

}}
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=Φ(t/
√

EΛτ (Xi))P

(
2n∑

i=1

1

2
√
n
m1,τ ′(Xi) ≤ s

)

+ E

{[
P

(
2n∑

i=1

Ai√
n
ηi,1(τ) ≤ t

∣∣∣∣{Ai,Xi}2ni=1

)
− Φ(t/

√
EΛτ (Xi))

]
1

{
2n∑

i=1

1

2
√
n
m1,τ ′(Xi) ≤ s

}}

→Φ(t/
√

EΛτ (Xi))Φ(s/
√

Em2
1,τ (Xi)/2),

where the last convergence holds due to the fact that

P

(
2n∑

i=1

Ai√
n
ηi,1(τ) ≤ t

∣∣∣∣{Ai,Xi}2ni=1

)
−Φ(t/

√
EΛτ (Xi))

p−→ 0.

We can extend the independence result to multiple τ and τ ′, implying that the two stochastic

processes

{
2n∑

i=1

Ai√
n
ηi,1(τ) : τ ∈ Υ

}
and

{
2n∑

i=1

1

2
√
n
m1,τ (Xi) : τ ∈ Υ

}

are asymptotically independent. For the same reason, we can show

{(
2n∑

i=1

Ai√
n
ηi,1(τ),

2n∑

i=1

1−Ai√
n

ηi,0(τ)

)
: τ ∈ Υ

}
and

{(
2n∑

i=1

1

2
√
n
m1,τ (Xi),

2n∑

i=1

1

2
√
n
m0,τ (Xi)

)
: τ ∈ Υ

}

are asymptotically independent. Last, it is tedious but straightforward to show that, uniformly

over τ ∈ Υ,

(
2n∑

i=1

Ai√
n
ηi,1(τ),

2n∑

i=1

1−Ai√
n

ηi,0(τ)

)
 B̃1(τ),

and

(
2n∑

i=1

1

2
√
n
m1,τ (Xi),

2n∑

i=1

1

2
√
n
m0,τ (Xi)

)
 B̃2(τ),

where B̃1(τ) and B̃2(τ) are two Gaussian processes with covariance kernels

Σ̃1(τ, τ
′) =

(
E
[
min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X)

]
0

0 E
[
min(τ, τ ′)− ττ ′ − Em0,τ (X)m0,τ ′(X)

]
)

(A.14)
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and

Σ̃2(τ, τ
′) =

1

2

(
Em1,τ (X)m1,τ ′(X) Em1,τ (X)m0,τ ′(X)

Em1,τ ′(X)m0,τ (X) Em0,τ (X)m0,τ ′(X)

)
, respectively. (A.15)

This implies
√
n(β̂(τ)− β(τ)) B̃(τ), where B̃(τ) is a Gaussian process with covariance kernel

Σ̃(τ, τ ′) = Q−1(τ)

(
1 1

1 0

)(
Σ̃1(τ, τ

′) + Σ̃2(τ, τ
′)
)[(1 1

1 0

)
Q−1(τ ′)

]T
.

Focusing on the second element of β̂(τ), we have

√
n(q̂(τ)− q(τ)) B(τ),

where B(τ) is a Gaussian process with covariance kernel

Σ(τ, τ ′) =
min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X)

f1(q1(τ))f1(q1(τ ′))
+

min(τ, τ ′)− ττ ′ − Em0,τ (X)m0,τ ′(X)

f0(q0(τ))f0(q0(τ ′))

+
1

2
E

(
m1,τ (X)

f1(q1(τ))
− m0,τ (X)

f0(q0(τ))

)(
m1,τ ′(X)

f1(q1(τ ′))
− m0,τ ′(X)

f0(q0(τ ′))

)
.

B Proof of Theorem 4.1

Let u = (u0, u1)
′ ∈ ℜ2 and

Lw
n (u, τ) =

2n∑

i=1

ξi

[
ρτ (Yi − Ȧ′

iβ(τ) − Ȧ′
iu/

√
n)− ρτ (Yi − Ȧ′

iβ(τ))
]
.

Then, by change of variables we have

√
n(β̂w(τ)− β(τ)) = argmin

u
Lw
n (u, τ).

Notice that Lw
n (u, τ) is convex in u for each τ and bounded in τ for each u. In the following, we

divide the proof into three steps. In Step (1), we show that there exists

gwn (u, τ) = −u′Ww
n (τ) +

u′Q(τ)u

2

such that for each u,

sup
τ∈Υ

|Lw
n (u, τ)− gwn (u, τ)|

p−→ 0
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and Q(τ) is defined in the proof of Theorem 3.1. In Step (2), we show Ww
n (τ) as a stochastic

process over τ ∈ Υ is tight. Then by Kato (2009, Theorem 2), we have

√
n(β̂w(τ)− β(τ)) = [Q(τ)]−1Ww

n (τ) + rn(τ),

where supτ∈Υ ||rn(τ)||2 = op(1). Last, in Step (3), we establish the weak convergence of

√
n(β̂w(τ)− β̂(τ))

conditionally on data.

Step (1). Similar to Step (1) in the previous section, we have

Lw
n (u, τ) = −u′Ww

n (τ) +Qw
n (u, τ),

where

Ww
n (τ) =

2n∑

i=1

ξi√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′

iβ(τ)}
)

and

Qw
n (u, τ) =

2n∑

i=1

ξi

∫ Ȧ′
iu√
n

0

(
1{Yi − Ȧ′

iβ(τ) ≤ v} − 1{Yi − Ȧ′
iβ(τ) ≤ 0}

)
dv

=

2n∑

i=1

ξiAi

∫ u0+u1√
n

0
(1{Yi(1) − q1(τ) ≤ v} − 1{Yi(1) − q1(τ) ≤ 0}) dv

+

2n∑

i=1

ξi(1−Ai)

∫ u0√
n

0
(1{Yi(0)− q0(τ) ≤ v} − 1{Yi(0)− q0(τ) ≤ 0}) dv

≡Qw
n,1(u, τ) +Qw

n,0(u, τ). (B.1)

We first consider Qw
n,1(u, τ). Note

Hn(Xi, τ) =Eξi

(∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv|Xi

)

=E

(∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv|Xi

)
. (B.2)
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Then,

Qw
n,1(u, τ) =

2n∑

i=1

Hn(Xi, τ)

2
+

2n∑

i=1

(
Ai −

1

2

)
Hn(Xi, τ)

+
2n∑

i=1

Ai

[
ξi

∫ u0+u1√
n

0
(1{Yi(1) − q1(τ) ≤ v} − 1{Yi(1) − q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]
.

(B.3)

By (A.4), we have, uniformly over τ ∈ Υ,

2n∑

i=1

Hn(Xi, τ)

2

p−→ f1(q1(τ))(u0 + u1)
2

2
.

In addition, (A.5) implies

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

(
Ai −

1

2

)
Hn(Xi, τ)

∣∣∣∣∣ = op(1).

Last, Lemma E.2 implies

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

Ai

[
ξi

∫ u0+u1√
n

0
(1{Yi(1) − q1(τ) ≤ v} − 1{Yi(1) − q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]∣∣∣∣∣ = op(1).

Combining the above results, we have

sup
τ∈Υ

∣∣∣∣Qw
n,1(u, τ)−

f1(q1(τ))(u0 + u1)
2

2

∣∣∣∣ = op(1). (B.4)

By a similar argument, we can show that

sup
τ∈Υ

∣∣∣∣Qw
n,0(u, τ) −

f0(q0(τ))u
2
0

2

∣∣∣∣ = op(1). (B.5)

Combining (B.4) and (B.5), we have

Qw
n (u, τ)

p−→ u′Q(τ)u

2
,

where Q(τ) is defined in (A.9). Then,

sup
τ∈Υ

|Lw
n (u, τ) − gwn (u, τ)| = sup

τ∈Υ

∣∣∣∣Qw
n (u, τ) −

u′Q(τ)u

2

∣∣∣∣ = op(1).
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Step (2). We have

Ww
n (τ) =

2n∑

i=1

e1√
n
ξiAi (τ − 1{Yi(1) ≤ q1(τ)}) +

2n∑

i=1

e0√
n
(1−Ai)ξi (τ − 1{Yi(0) ≤ q0(τ)})

≡e1W
w
n,1(τ) + e0W

w
n,0(τ).

(B.6)

Recall m1,τ (Xi) = E(τ − 1{Yi(1) ≤ q1(τ)}|Xi), e1 = (1, 1)T , and e0 = (1, 0)T , and denote

ηwi,1(τ) = ξi(τ − 1{Yi(1) ≤ q1(τ)}) −m1,τ (Xi).

Then, for Ww
n,1(τ), we have

Ww
n,1(τ) =

2n∑

i=1

Ai√
n
ηwi,1(τ) +

2n∑

i=1

1

2
√
n
m1,τ (Xi) +R1(τ), (B.7)

where by Lemma E.3,

sup
τ∈Υ

|R1(τ)| = sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

(Ai − 1/2)√
n

m1,τ (Xi)

∣∣∣∣∣ = op(1).

The second term on the RHS of (B.7) is stochastically equicontinuous and tight. Next, we focus

on the first term. Similar to the argument in Step (2) in the previous section, we have

2n∑

i=1

Ai√
n
ηwi,1(τ)|{Ai,Xi}2ni=1

d
=

n∑

j=1

η̃wj,1(τ)√
n

∣∣∣∣{X̃j}nj=1, (B.8)

where η̃wj,1(τ) = ξ̃j(τ−1{Ỹj(1) ≤ q1(τ)})−m1,τ (X̃j), (Ỹj(1), X̃j) are as defined before, ξ̃j = ξij , ij is

the j-th smallest index in the set {i ∈ [2n] : Ai = 1}, and given {X̃j}nj=1, {η̃wj,1(τ)}nj=1 is a sequence

of independent random variables. Further, denote the conditional distribution of (ξ̃j , Ỹj(1)) given

X̃j as P(j). Then,

1

n

n∑

j=1

P
(j)(η̃wj,1(τ))

2 =
1

n

n∑

j=1

{
E

[
(ξ̃wj )

2(τ − 1{Ỹj(1) ≤ q1(τ)})2|X̃j

]
−m2

1,τ (X̃j)
}
≤ C < ∞,

for some constant C > 0. This implies that pointwise in τ ∈ Υ,

2n∑

i=1

Ai√
n
ηwi,1(τ)|{Ai,Xi}2ni=1

d
=

n∑

j=1

η̃wj,1(τ)√
n

∣∣∣∣{X̃j}nj=1 = Op(1).
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In addition, let

F2 = {ξ [τ − 1{Y ≤ q1(τ)}] − ξ
[
τ ′ − 1{Y ≤ q1(τ

′)}
]
: τ, τ ′ ∈ Υ, |τ − τ ′| ≤ ε}

which is a VC-class with a fixed VC-index and has an envelope Fi = 2ξi. In addition, ||maxi∈[n] Fi||P,2 ≤
C log(n) and

σ2
n = sup

f∈F2

Pf2 . sup
τ̃∈Υ

1

n

n∑

i=1

[
ε2 +

f1(q1(τ̃ )|X̃j)ε

f1(q1(τ̃ ))

]
. ε a.s.

Then, by Lemma E.1,

E


 sup
τ,τ ′∈Υ,|τ−τ ′|≤ε

∣∣∣∣∣∣

n∑

j=1

η̃wj,1(τ)− η̃wj,1(τ
′)

√
n

∣∣∣∣∣∣

∣∣∣∣{X̃j}nj=1


 =E

[
‖Pn − P‖F2

∣∣∣∣{X̃j}nj=1

]

.
√

ε log(1/ε) +
log(1/ε) log(n)√

n
a.s.

The RHS of the above display vanishes as n → ∞ followed by ε → 0, which implies

2n∑

i=1

Ai√
n
ηwi,1(τ)|{Ai,Xi}2ni=1

d
=

n∑

j=1

η̃wj,1(τ)√
n

∣∣∣∣{X̃j}nj=1 (B.9)

is stochastically equicontinuous. Therefore,
∑2n

i=1
Ai√
n
ηwi,1(τ)|{Ai,Xi}2ni=1, and hence Ww

n,1(τ) is tight.

Similarly, we can show Ww
n,0(τ) is tight.

Step (3). Based on the previous two steps, we have

√
n(β̂w(τ)− β(τ)) = Q−1

(
1 1

1 0

)( ∑2n
i=1

Ai√
n
ηwi,1(τ) +

∑2n
i=1

1
2
√
n
m1,τ (Xi)∑2n

i=1
1−Ai√

n
ηwi,0(τ) +

∑2n
i=1

1
2
√
n
m0,τ (Xi)

)
+Rw(τ) (B.10)

where supτ∈Υ ||Rw(τ)||2 = op(1) and
√
n(β̂w(τ) − β(τ)) is stochastically equicontinuous. Taking

the difference between (A.13) and (B.10), we have

√
n(β̂w(τ)− β̂(τ)) = Q−1

(
1 1

1 0

)( ∑2n
i=1

Ai√
n
(ξi − 1)(τ − 1{Yi(1) ≤ q1(τ)})∑2n

i=1
1−Ai√

n
(ξi − 1)(τ − 1{Yi(0) ≤ q0(τ)})

)
+R∗(τ), (B.11)

where supτ∈Υ |R∗(τ)| = op(1). In addition, because both
√
n(β̂w(τ) − β(τ)) and

√
n(β̂(τ) − β(τ))

are stochastically equicontinuous, so be
√
n(β̂w(τ)−β̂(τ)). Then by Markov inequality,

√
n(β̂w(τ)−

β̂(τ)) is stochastically equicontinuous conditionally on data as well. In order to derive the limiting

distribution of
√
n(β̂w(τ) − β̂(τ)) conditionally on data, we only need to compute the covariance
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kernel. Note that

E



( ∑2n

i=1
Ai√
n
(ξi − 1)(τ − 1{Yi(1) ≤ q1(τ)})∑2n

i=1
1−Ai√

n
(ξi − 1)(τ − 1{Yi(0) ≤ q0(τ)})

)( ∑2n
i=1

Ai√
n
(ξi − 1)(τ ′ − 1{Yi(1) ≤ q1(τ

′)})
∑2n

i=1
1−Ai√

n
(ξi − 1)(τ ′ − 1{Yi(0) ≤ q0(τ

′)})

)T ∣∣∣∣Data




=
1

n

2n∑

i=1

(
Ai(τ − 1{Yi(1) ≤ q1(τ)})(τ ′ − 1{Yi(1) ≤ q1(τ

′)}) 0

0 (1−Ai)(τ − 1{Yi(0) ≤ q0(τ)})(τ ′ − 1{Yi(0) ≤ q0(τ
′)})

)
.

For the (1, 1) entry, we have

1

n

2n∑

i=1

Ai(τ − 1{Yi(1) ≤ q1(τ)})(τ ′ − 1{Yi(1) ≤ q1(τ
′)})

=
1

n

2n∑

i=1

Aiη1,i(τ)η1,i(τ
′) +

1

n

2n∑

i=1

Aiη1,i(τ)m1,τ ′(Xi) +
1

n

2n∑

i=1

Aiη1,i(τ
′)m1,τ (Xi) +

1

n

2n∑

i=1

Aim1,τ (Xi)m1,τ ′(Xi).

Note that

1

n

2n∑

i=1

Aiη1,i(τ)η1,i(τ
′)

d
=
1

n

n∑

j=1

η̃1,j(τ)η̃1,j(τ
′)

p−→ lim
n

1

n

n∑

j=1

(F1(q1(min(τ, τ ′))|X̃j)− F1(q1(τ)|X̃j)F1(q1(τ
′)|X̃j))

= min(τ, τ ′)− EF1(q1(τ)|Xi)F1(q1(τ
′)|Xi). (B.12)

Lemma E.4 shows

1

n

2n∑

i=1

Aiη1,i(τ)m1,τ ′(Xi)
p−→ 0

and

1

n

2n∑

i=1

Aiη1,i(τ
′)m1,τ (Xi)

p−→ 0.

Lemma E.6 implies

1

n

2n∑

i=1

Aim1,τ (Xi)m1,τ ′(Xi)
p−→ Em1,τ (Xi)m1,τ ′(Xi).

This means

1

n

2n∑

i=1

Ai(τ − 1{Yi(1) ≤ q1(τ)})(τ ′ − 1{Yi(1) ≤ q1(τ
′)}) p−→ min(τ, τ ′)− ττ ′.
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For the same reason,

1

n

2n∑

i=1

(1−Ai)(τ − 1{Yi(0) ≤ q0(τ)})(τ ′ − 1{Yi(0) ≤ q0(τ
′)} p−→ min(τ, τ ′)− ττ ′.

Then, for the second element β̂w
1 (τ) of β̂

w(τ), conditional on the data, we have

√
n(β̂w

1 (τ)− β̂1(τ)) Bw(τ),

where Bw(τ) is a Gaussian process with covariance kernel

Σ†(τ, τ ′) =
min(τ, τ ′)− ττ ′

f1(q1(τ))f1(q1(τ ′))
+

min(τ, τ ′)− ττ ′

f0(q0(τ))f0(q0(τ ′))
.

C Proof of Theorem 4.2

Let u ∈ ℜ2 and

L∗
n(u, τ) =

2n∑

i=1

[
ρτ (Yi − Ȧ′

iβ(τ)− Ȧ′
iu/

√
n)− ρτ (Yi − Ȧ′

iβ(τ))
]
− uT

(
1 1

1 0

)
S∗
n(τ).

Then,

√
n
(
β̂∗(τ)− β(τ)

)
= argmin

u
L∗
n(u, τ).

By the same argument as in the proof of Theorem 3.1, we have

L∗
n(u, τ) = −uTWn(τ) +Qn(u, τ)− uT

(
1 1

1 0

)
S∗
n(τ) = −uT

(
1 1

1 0

)
(Sn(τ) + S∗

n(τ)) +Qn(u, τ).

Further note that S∗
n(τ) =

1√
2

(
S∗
n,1(τ) + S∗

n,2(τ)
)
. In the following, we divide the proof into three

steps. In Step (1), we derive the weak limit of S∗
n,1(τ) given data. In Step (2), we derive the weak

limit of S∗
n,2(τ). In Step (3), we derive the desired result of this theorem.

Step (1). Given the data, S∗
n,1(τ) is a Gaussian process with covariance kernel

Σ̃∗
1(τ, τ

′) =

(
Σ̃∗
1,1,1(τ, τ

′) Σ̃∗
1,1,2(τ, τ

′)

Σ̃∗
1,2,1(τ, τ

′) Σ̃∗
1,2,2(τ, τ

′)

)
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where

Σ̃∗
1,1,1(τ, τ

′) =
1

n

n∑

j=1

(
τ − 1{Y(j,1) ≤ q̂1(τ)}

) (
τ ′ − 1{Y(j,1) ≤ q̂1(τ

′)}
)
,

Σ̃∗
1,1,2(τ, τ

′) =
1

n

n∑

j=1

(
τ − 1{Y(j,1) ≤ q̂1(τ)}

) (
τ ′ − 1{Y(j,0) ≤ q̂0(τ

′)}
)
,

Σ̃∗
1,2,1(τ, τ

′) =
1

n

n∑

j=1

(
τ − 1{Y(j,0) ≤ q̂0(τ)}

) (
τ ′ − 1{Y(j,1) ≤ q̂1(τ

′)}
)
,

and

Σ̃∗
1,2,2(τ, τ

′) =
1

n

n∑

j=1

(
τ − 1{Y(j,0) ≤ q̂0(τ)}

) (
τ ′ − 1{Y(j,0) ≤ q̂0(τ

′)}
)
.

Next, we derive the limit of Σ̃∗
1(τ, τ

′) uniformly over τ, τ ′ ∈ Υ. Recallm1,τ (Xi, q) = E (τ − 1{Yi(1) ≤ q}|Xi)

and define η1,i(q, τ) = (τ − 1{Yi(1) ≤ q})−m1,τ (Xi, q). Then

Σ̃1,1,1(τ, τ
′) =

1

n

n∑

j=1

η1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ
′), τ ′) +

1

n

n∑

j=1

η1,(j,1)(q̂1(τ), τ)m1,τ ′(X(j,1), q̂1(τ
′))

+
1

n

n∑

j=1

η1,(j,1)(q̂1(τ
′), τ ′)m1,τ (X(j,1), q̂1(τ)) +

1

n

n∑

j=1

m1,τ (X(j,1), q̂1(τ))m1,τ ′(X(j,1), q̂1(τ
′))

=I(τ, τ ′) + II(τ, τ ′) + III(τ, τ ′) + IV (τ, τ ′), (C.1)

where we use the fact that Y(j,1) = Y(j,1)(1) and Y(j,0) = Y(j,0)(0). Given {Ai,Xi}2ni=1, {Y(j,1)(1)}nj=1

is a sequence of independent random variables with probability measure Πn
j=1P

(j), where P(j) is the

conditional probability of Y (1) given X evaluated at X = X(j,1). Therefore,

I(τ, τ ′) = Pη1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ
′), τ ′) +

(
Pn − P

)
η1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ

′), τ ′), (C.2)

where Pη1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ
′), τ ′) is interpreted as Pη1,(j,1)(q, τ)η1,(j,1)(q

′, τ ′)|q=q̂1(τ),q′=q̂(τ ′).

In addition, by Theorem 3.1, for any ε > 0, it is possible to find a sufficiently large constant L such

that

P(sup
τ∈Υ

|q̂(τ)− q(τ)| ≤ L/
√
n) ≥ 1− ε. (C.3)
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Therefore, we have,

Pη1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ
′), τ ′)

=
1

n

n∑

j=1

[
F1(min(q̂1(τ), q̂1(τ

′))|X(j,1))− F1(q̂1(τ)|X(j,1))F1(q̂1(τ
′)|X(j,1))

]

=
1

n

n∑

j=1

[
F1(min(q1(τ), q1(τ

′))|X(j,1))− F1(q1(τ)|X(j,1))F1(q1(τ
′)|X(j,1))

]
+RI(τ, τ

′)

=
1

n

2n∑

i=1

Ai

[
F1(min(q1(τ), q1(τ

′))|Xi)− F1(q1(τ)|Xi)F1(q1(τ
′)|Xi)

]
+RI(τ, τ

′)

=
1

2n

2n∑

i=1

[
F1(min(q1(τ), q1(τ

′))|Xi)− F1(q1(τ)|Xi)F1(q1(τ
′)|Xi)

]

+
1

n

2n∑

i=1

(
Ai −

1

2

)[
F1(min(q1(τ), q1(τ

′))|Xi)− F1(q1(τ)|Xi)F1(q1(τ
′)|Xi)

]
+RI(τ, τ

′), (C.4)

where supτ,τ ′∈Υ |RI(τ, τ
′)| p−→ 0 due to (C.3) and Lipschitz continuity of F1(·|X).

By the standard uniform convergence theorem (van der Vaart and Wellner (1996, Theorem

2.4.1)), uniformly over τ, τ ′ ∈ Υ,

1

2n

2n∑

i=1

[
F1(min(q1(τ), q1(τ

′))|Xi)− F1(q1(τ)|Xi)F1(q1(τ
′)|Xi)

] p−→ min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X).

By the same argument in Lemma E.3,

sup
τ,τ ′∈Υ

∣∣∣∣∣
1

n

2n∑

i=1

(
Ai −

1

2

)[
F1(min(q1(τ), q1(τ

′))|Xi)− F1(q1(τ)|Xi)F1(q1(τ
′)|Xi)

]
∣∣∣∣∣

p−→ 0

Therefore, uniformly over τ, τ ′ ∈ Υ,

Pη1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ
′), τ ′)

p−→ min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X).

To deal with the second term in (C.2), first denote

F3 = {(τ − 1{Y ≤ q1(τ) + v})
(
τ ′ − 1{Y ≤ q1(τ

′) + v′}
)
: τ, τ ′ ∈ Υ, |v|, |v′| ≤ L/

√
n}.

Note F3 has an envelope F = 1 and is nested by a VC-class of functions with a fixed VC-index.

Then, by Lemma E.1,

E‖Pn − P‖F3 . 1/
√
n.
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This implies, with probability greater than 1− ε,

sup
τ,τ ′∈Υ

|
(
Pn − P

)
η1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ

′), τ ′)| p−→ 0. (C.5)

Since ε in (C.3) is arbitrary, we have, uniformly over τ, τ ′ ∈ Υ,

I(τ, τ ′)
p−→ min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X). (C.6)

By Lemma E.5, we have

sup
τ,τ ′∈Υ

|II(τ, τ ′)| = op(1) and sup
τ,τ ′∈Υ

|III(τ, τ ′)| = op(1).

For IV (τ, τ ′), we note that

IV (τ, τ ′) =
1

n

n∑

j=1

m1,τ (X(j,1))m1,τ ′(X(j,1)) +RIV (τ, τ
′)

=
1

n

2n∑

i=1

Aim1,τ (Xi)m1,τ ′(Xi) +RIV (τ, τ
′)

=
1

2n

2n∑

i=1

m1,τ (Xi)m1,τ ′(Xi) +
1

n

2n∑

i=1

(
Ai −

1

2

)
m1,τ (Xi)m1,τ ′(Xi) +RIV (τ, τ

′). (C.7)

By the standard uniform convergence theorem (van der Vaart and Wellner (1996, Theorem 2.4.1)),

uniformly over τ, τ ′ ∈ Υ,

1

2n

2n∑

i=1

m1,τ (Xi)m1,τ ′(Xi)
p−→ Em1,τ (X)m1,τ ′(X).

Lemma E.6 further shows

sup
τ,τ ′∈Υ

|RIV (τ, τ
′)| = op(1) and sup

τ,τ ′∈Υ

∣∣∣∣∣
1

n

2n∑

i=1

(
Ai −

1

2

)
m1,τ (Xi)m1,τ ′(Xi)

∣∣∣∣∣ = op(1).

Combining the above results, we have, uniformly over τ, τ ′ ∈ Υ,

Σ̃∗
1,1,1(τ, τ

′)
p−→ min(τ, τ ′)− ττ ′.

Now we turn to Σ̃∗
1,1,2(τ, τ

′). Recall m0,τ (Xi, q) = E (τ − 1{Yi(0) ≤ q}|Xi) and define η0,i(q, τ) =
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(τ − 1{Yi(0) ≤ q})−m0,τ (Xi, q). Then,

Σ̃∗
1,1,2(τ, τ

′) =
1

n

n∑

j=1

η1,(j,1)(q̂1(τ), τ)η0,(j,0)(q̂0(τ
′), τ ′) +

1

n

n∑

j=1

η1,(j,1)(q̂1(τ), τ)m0,τ ′(X(j,0), q̂0(τ
′))

+
1

n

n∑

j=1

η0,(j,0)(q̂0(τ
′), τ ′)m1,τ (X(j,1), q̂1(τ)) +

1

n

n∑

j=1

m1,τ (X(j,1), q̂1(τ))m0,τ ′(X(j,0), q̂0(τ
′))

=Ĩ(τ, τ ′) + ĨI(τ, τ ′) + ĨII(τ, τ ′) + ĨV (τ, τ ′).

We derive the uniform limit for each term on the RHS of the above display. First, note that

Ĩ(τ, τ ′) = Pη1,(j,1)(q̂1(τ), τ)η0,(j,0)(q̂0(τ
′), τ ′) + (Pn − P)η1,(j,1)(q̂1(τ), τ)η0,(j,0)(q̂0(τ

′), τ ′). (C.8)

Similar to (C.4), we have

sup
τ,τ ′∈Υ

∣∣Pη1,(j,1)(q̂1(τ), τ)η0,(j,0)(q̂0(τ ′), τ ′)− Pη1,(j,1)(q1(τ), τ)η0,(j,0)(q0(τ
′), τ ′)

∣∣ p−→ 0.

Furthermore, because (j, 1) 6= (j, 0), conditionally on {Ai,Xi}2ni=1, η1,(j,1)(q1(τ), τ) ⊥⊥ η1,(j,0)(q0(τ), τ),

Pη1,(j,1)(q1(τ), τ)η0,(j,0)(q0(τ
′), τ ′) = 0.

Similar to (C.5), we have

sup
τ,τ ′∈Υ

∣∣(Pn − P)η1,(j,1)(q̂1(τ), τ)η0,(j,0)(q̂0(τ
′), τ ′)

∣∣ p−→ 0.

This implies that, uniformly over τ, τ ′ ∈ Υ, Ĩ(τ, τ ′)
p−→ 0. By the same argument as in the proof

of Lemma E.5, we can show that

sup
τ,τ ′∈Υ

∣∣∣ĨI(τ, τ ′)
∣∣∣ p−→ 0 and sup

τ,τ ′∈Υ

∣∣∣ĨII(τ, τ ′)
∣∣∣ p−→ 0.

Last, by the same argument in the proof of Lemma E.6, we can show that, uniformly over

τ, τ ′ ∈ Υ,

ĨV (τ, τ ′) =
1

n

n∑

j=1

m1,τ (X(j,1))m0,τ ′(X(j,0)) + op(1)

=
1

n

n∑

j=1

m1,τ (X(j,1))m0,τ ′(X(j,1)) +
1

n

n∑

j=1

m1,τ (X(j,1))[m0,τ ′(X(j,0))−m0,τ ′(X(j,1))] + op(1)

p−→ Em1,τ (X)m0,τ ′(X),
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where the op(1) holds uniformly over τ, τ ′ ∈ Υ, and the last line holds because m1,τ (x) is bounded

and m0,τ (x) is Lipschitz.

Combining the above results, we have uniformly over τ, τ ′ ∈ Υ,

Σ̃∗
1,1,2(τ, τ

′)
p−→ Em1,τ (X)m0,τ ′(X).

The limits of Σ̃∗
1,2,1 and Σ̃∗

1,2,2 can be derived similarly. To sum up, we have established that,

uniformly over τ, τ ′ ∈ Υ,

Σ̃∗
1(τ, τ

′)
p−→
(

min(τ, τ ′)− ττ ′ Em1,τ (Xi)m0,τ ′(Xi)

Em0,τ (Xi)m1,τ ′(Xi) min(τ, τ ′)− ττ ′

)
.

Lemma E.7 shows S∗
n,1(τ) is stochastically equicontinuous and tight. This concludes the proof of

this step.

Step (2). Given the data, S∗
n,2(τ) is a Gaussian process with covariance kernel

Σ̃∗
2(τ, τ

′) =

(
Σ̃∗
2,1,1(τ, τ

′) Σ̃∗
2,1,2(τ, τ

′)

Σ̃∗
2,2,1(τ, τ

′) Σ̃∗
2,2,2(τ, τ

′)

)

where

Σ̃∗
2,1,1(τ, τ

′) =
1

n

⌊n/2⌋∑

k=1

[(
τ − 1{Y(k,1) ≤ q̂1(τ)}

)
−
(
τ − 1{Y(k,3) ≤ q̂1(τ)}

)]

×
[(
τ ′ − 1{Y(k,1) ≤ q̂1(τ

′)}
)
−
(
τ ′ − 1{Y(k,3) ≤ q̂1(τ

′)}
)]

,

Σ̃∗
2,1,2(τ, τ

′) =
1

n

⌊n/2⌋∑

k=1

[(
τ − 1{Y(k,1) ≤ q̂1(τ)}

)
−
(
τ − 1{Y(k,3) ≤ q̂1(τ)}

)]

×
[(
τ ′ − 1{Y(k,2) ≤ q̂0(τ

′)}
)
−
(
τ ′ − 1{Y(k,4) ≤ q̂0(τ

′)}
)]

,

Σ̃∗
2,2,1(τ, τ

′) =
1

n

⌊n/2⌋∑

k=1

[(
τ − 1{Y(k,2) ≤ q̂0(τ)}

)
−
(
τ − 1{Y(k,4) ≤ q̂0(τ)}

)]

×
[(
τ ′ − 1{Y(k,1) ≤ q̂1(τ

′)}
)
−
(
τ ′ − 1{Y(k,3) ≤ q̂1(τ

′)}
)]

,

and

Σ̃∗
2,2,2(τ, τ

′) =
1

n

⌊n/2⌋∑

k=1

[(
τ − 1{Y(k,2) ≤ q̂0(τ)}

)
−
(
τ − 1{Y(k,4) ≤ q̂0(τ)}

)]
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×
[(
τ ′ − 1{Y(k,2) ≤ q̂0(τ

′)}
)
−
(
τ ′ − 1{Y(k,4) ≤ q̂0(τ

′)}
)]

.

In the following, we derive the limit of Σ̃∗
2(τ, τ

′). For Σ̃∗
2,1,1(τ, τ

′), we have

Σ̃∗
2,1,1(τ, τ

′)

=
1

n

⌊n/2⌋∑

k=1

[
η1,(k,1)(q̂1(τ), τ) − η1,(k,3)(q̂1(τ), τ)

] [
η1,(k,1)(q̂1(τ

′), τ ′)− η1,(k,3)(q̂1(τ
′), τ ′)

]

+
1

n

⌊n/2⌋∑

k=1

[
η1,(k,1)(q̂1(τ), τ) − η1,(k,3)(q̂1(τ), τ)

] [
m1,τ ′(X(k,1), q̂1(τ

′))−m1,τ ′(X(k,3), q̂1(τ
′))
]

+
1

n

⌊n/2⌋∑

k=1

[
m1,τ (X(k,1), q̂1(τ))−m1,τ (X(k,3), q̂1(τ))

] [
η1,(k,1)(q̂1(τ

′), τ ′)− η1,(k,3)(q̂1(τ
′), τ ′)

]

+
1

n

⌊n/2⌋∑

k=1

[
m1,τ (X(k,1), q̂1(τ))−m1,τ (X(k,3), q̂1(τ))

] [
m1,τ ′(X(k,1), q̂1(τ

′))−m1,τ ′(X(k,3), q̂1(τ
′))
]

≡ Î(τ, τ ′) + ÎI(τ, τ ′) + ÎII(τ, τ ′) + ÎV (τ, τ ′).

Also note that

Î(τ, τ ′)

=
1

n

⌊n/2⌋∑

k=1

[
η1,(k,1)(q̂1(τ), τ)η1,(k,1)(q̂1(τ

′), τ ′) + η1,(k,3)(q̂1(τ), τ)η1,(k,3)(q̂1(τ
′), τ ′)

]

− 1

n

⌊n/2⌋∑

k=1

η1,(k,1)(q̂1(τ), τ)η1,(k,3)(q̂1(τ
′), τ ′)− 1

n

⌊n/2⌋∑

k=1

η1,(k,1)(q̂1(τ
′), τ ′)η1,(k,3)(q̂1(τ), τ)

=
1

n

n∑

j=1

η1,(j,1)(q̂1(τ), τ)η1,(j,1)(q̂1(τ
′), τ ′)

− 1

n

⌊n/2⌋∑

k=1

η1,(k,1)(q̂1(τ), τ)η1,(k,3)(q̂1(τ
′), τ ′)− 1

n

⌊n/2⌋∑

k=1

η1,(k,1)(q̂1(τ
′), τ ′)η1,(k,3)(q̂1(τ), τ).

The first term on the RHS of the above display is just I(τ, τ ′) defined in Step (1), whose limit is es-

tablished in (C.6). For the second and third terms, we note that (k, 1) 6= (k, 3), which implies, given

{Xi, Ai}2ni=1, (η1,(k,1)(q̂1(τ), τ), η1,(k,1)(q̂1(τ
′), τ ′)) ⊥⊥ (η1,(k,3)(q̂1(τ), τ), η1,(k,3)(q̂1(τ

′), τ ′)). Then, by

the same argument in (C.8) and the discussion below, we have

sup
τ,τ ′∈Υ

∣∣∣∣∣∣
1

n

⌊n/2⌋∑

k=1

η1,(k,1)(q̂1(τ), τ)η1,(k,3)(q̂1(τ
′), τ ′)

∣∣∣∣∣∣
p−→ 0
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and

sup
τ,τ ′∈Υ

∣∣∣∣∣∣
1

n

⌊n/2⌋∑

k=1

η1,(k,1)(q̂1(τ
′), τ ′)η1,(k,3)(q̂1(τ), τ)

∣∣∣∣∣∣
p−→ 0.

This implies that, uniformly over τ, τ ′ ∈ Υ,

Î(τ, τ ′)
p−→ min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X).

By the same argument in the proof of Lemma E.5, we have

sup
τ,τ ′∈Υ

∣∣∣ÎI(τ, τ ′)
∣∣∣ p−→ 0 and sup

τ,τ ′∈Υ

∣∣∣ÎII(τ, τ ′)
∣∣∣ p−→ 0.

For ÎV (τ, τ ′), we note m1,τ (x, q) is Lipschitz in x by Assumption 2. Therefore, by Assumption 4,

we have

sup
τ,τ ′∈Υ

∣∣∣ÎV (τ, τ ′)
∣∣∣ . 1

n

⌊n/2⌋∑

k=1

||X(k,1) −X(k,3)||22
p−→ 0.

Combining the above results, we show that, uniformly over τ, τ ′ ∈ Υ,

Σ̃∗
2,1,1(τ, τ

′)
p−→ min(τ, τ ′)− ττ ′ − Em1,τ (X)m1,τ ′(X).

For Σ̃∗
2,1,2(τ, τ

′), we have

Σ̃∗
2,1,1(τ, τ

′)

=
1

n

⌊n/2⌋∑

k=1

[
η1,(k,1)(q̂1(τ), τ) − η1,(k,3)(q̂1(τ), τ)

] [
η0,(k,2)(q̂0(τ

′), τ ′)− η0,(k,4)(q̂0(τ
′), τ ′)

]

+
1

n

⌊n/2⌋∑

k=1

[
η1,(k,1)(q̂1(τ), τ) − η1,(k,3)(q̂1(τ), τ)

] [
m0,τ ′(X(k,2), q̂0(τ

′))−m0,τ ′(X(k,4), q̂0(τ
′))
]

+
1

n

⌊n/2⌋∑

k=1

[
m1,τ (X(k,1), q̂1(τ))−m1,τ (X(k,3), q̂1(τ))

] [
η0,(k,2)(q̂0(τ

′), τ ′)− η0,(k,4)(q̂0(τ
′), τ ′)

]

+
1

n

⌊n/2⌋∑

k=1

[
m1,τ (X(k,1), q̂1(τ))−m1,τ (X(k,3), q̂1(τ))

] [
m0,τ ′(X(k,2), q̂0(τ

′))−m0,τ ′(X(k,4), q̂0(τ
′))
]

≡ I(τ, τ ′) + II(τ, τ ′) + III(τ, τ ′) + IV (τ, τ ′).
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Because (k, 1), · · · , (k, 4) are distinctive,

(
η1,(k,1)(q, τ), η1,(k,3)(q, τ), η0,(k,2)(q

′, τ), η0,(k,4)(q
′, τ)

)

are mutually independent conditionally on {Xi, Ai}2ni=1. Then, by the same arguments as in (C.4)

and (C.5), we have

sup
τ,τ ′∈Υ

|I(τ, τ ′)| p−→ 0.

By the same argument as in the proof of Lemma E.5, we also have

sup
τ,τ ′∈Υ

|II(τ, τ ′)| p−→ 0 and sup
τ,τ ′∈Υ

|III(τ, τ ′)| p−→ 0.

Last, by Assumption 4, we have

sup
τ,τ ′∈Υ

|IV (τ, τ ′)| . 1

n

⌊n/2⌋∑

k=1

||X(k,1) −X(k,3)||2||X(k,2) −X(k,4)||2

.
1

n

⌊n/2⌋∑

k=1

||X(k,1) −X(k,3)||22 +
1

n

⌊n/2⌋∑

k=1

||X(k,2) −X(k,4)||22
p−→ 0.

Combining the above results, we have

sup
τ,τ ′∈Υ

|Σ̃∗
2,1,2(τ, τ

′)| p−→ 0.

We can derive the limits of Σ̃∗
2,2,1(τ, τ

′) and Σ̃∗
2,2,2(τ, τ

′) in the same manner. To sum up,

uniformly over τ, τ ′ ∈ Υ, we have

Σ̃∗
2

p−→
(
min(τ, τ ′)− ττ ′ − Em1,τ (Xi)m1,τ ′(Xi) 0

0 min(τ, τ ′)− ττ ′ − Em0,τ (Xi)m0,τ ′(Xi)

)

The stochastic equicontinuity and tightness of S∗
n,2(τ) can be established similarly to S∗

n,1(τ).

Step (3). Because both Sn(τ) and S∗
n(τ) are stochastically equicontinuous and tight, we can apply

Kato (2009, Theorem 2) and have

√
n(β̂∗(τ)− β(τ)) = Q−1

(
1 1

1 0

)
(Sn(τ) + S∗

n(τ)) +R∗(τ), (C.9)

48



where supτ∈Υ ||R∗(τ)||2 = op(1). Taking the difference between (C.9) and (A.13), we have

√
n(β̂∗(τ)− β̂(τ)) = Q−1

(
1 1

1 0

)
S∗
n(τ) + R̃∗(τ),

where supτ∈Υ ||R̃∗(τ)||2 = op(1). In addition, given the data, S∗
n,1(τ) and S∗

n,2(τ) are independent.

Steps (1) and (2) show that uniformly over τ ∈ Υ and conditionally on data, S∗
n(τ) =

S∗
n,1(τ)+S∗

n,2(τ)√
2

converges to a Gaussian process with covariance kernel

1

2

[
Σ̃1(τ, τ

′) + Σ̃2(τ, τ
′)
]
,

where Σ̃1(τ, τ
′) and Σ̃2(τ, τ

′) are defined in (A.14) and (A.15), respectively. The weak limit of

S∗
n(τ) given data coincides with the weak limit of Sn(τ). This implies, given the data, that

√
n(q̂∗(τ)− q̂(τ)) B(τ),

where B(τ) is the Gaussian process defined in Theorem 3.1. This concludes the proof.

D Proof of Theorem 4.3

We first focus on q̂wipw,1(τ). Let u ∈ ℜ and

L̃w
n (u, τ) =

2n∑

i=1

ξiAi

2Âi

[
ρτ (Yi − q1(τ)− u/

√
n)− ρτ (Yi − q1(τ))

]
.

Then, by change of variables, we have

√
n(q̂wipw,1(τ)− q1(τ)) = argmin

u
L̃w
n (u, τ).

Notice that L̃w
n (u, τ) is convex in u for each τ and bounded in τ for each u. In the following, we

divide the proof into three steps. In Step (1), we show that there exists

g̃wn (u, τ) = −u′W̃w
n,1(τ) +

f1(q1(τ))u
2

2

such that for each u,

sup
τ∈Υ

|L̃w
n (u, τ)− g̃wn (u, τ)|

p−→ 0.
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In Step (2), we show W̃w
n,1(τ) as a stochastic process over τ ∈ Υ is tight. Then by Kato (2009,

Theorem 2), we have

√
n(q̂wipw,1(τ)− q1(τ)) = [f1(q1(τ))]

−1W̃w
n,1(τ) + r̃n,1(τ),

where supτ∈Υ |r̃n,1(τ)| = op(1). For the same reason, we can show

√
n(q̂wipw,0(τ)− q0(τ)) = [f0(q0(τ))]

−1W̃w
n,0(τ) + r̃n,0(τ),

for some W̃w
n,0(τ) to be specified later and supτ∈Υ |r̃n,0(τ)| = op(1). Last, in Step (3), we establish

the weak convergence of

√
n(q̂wipw(τ)− q̂(τ))

conditionally on data.

Step (1). Similar to Step (1) in the previous section, we have

L̃w
n (u, τ) = −W̃w

n,1(τ)u+ Q̃w
n (u, τ),

where

W̃w
n,1(τ) =

2n∑

i=1

ξiAi

2
√
nÂi

(τ − 1{Yi(1) ≤ q1(τ)}) ,

and

Q̃w
n (u, τ) =

2n∑

i=1

ξiAi

2Âi

∫ u√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv

=

2n∑

i=1

ξiAi

∫ u√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv

+

2n∑

i=1

ξiAi(1/2 − Âi)

Âi

∫ u√
n

0
(1{Yi(1) − q1(τ) ≤ v} − 1{Yi(1) − q1(τ) ≤ 0}) dv

≡Q̃w
n,1(u, τ) + Q̃w

n,2(u, τ). (D.1)

Exactly the same as Qw
n,1(u, τ) in Section B, we have

sup
τ∈Υ

∣∣∣∣Q̃w
n,1(u, τ) −

f1(q1(τ))u
2

2

∣∣∣∣ = op(1). (D.2)
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For Q̃w
n,2(u, τ), we have, with probability approaching one,

|Q̃w
n,2(u, τ)| ≤ max

i∈[2n]
|Âi − 1/2|

2n∑

i=1

ξi

1/2 −maxi∈[2n] |Âi − 1/2|
1{|Yi(1)− q1(τ)| ≤ u/

√
n} |u|√

n

≤ max
i∈[2n]

|Âi − 1/2|
2n∑

i=1

4ξi1{|Yi(1)− q1(τ)| ≤ u/
√
n} |u|√

n
, (D.3)

where the second inequality follows the fact that, w.p.a.1, |Âi − 1/2| ≤ 1/4 as proved in Lemma

E.8. Because {ξi, Yi(1)}i∈[2n] are i.i.d., by the usual maximal inequality, we can show that

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

4ξi1{|Yi(1) − q1(τ)| ≤ u/
√
n} |u|√

n
− E

2n∑

i=1

4ξi1{|Yi(1) − q1(τ)| ≤ u/
√
n} |u|√

n

∣∣∣∣∣ = op(1).

(D.4)

In addition,

E

2n∑

i=1

4ξi1{|Yi(1) − q1(τ)| ≤ u/
√
n} |u|√

n
.

√
nu

(
F1(q1(τ) +

|u|√
n
)− F1(q1(τ)−

|u|√
n
)

)
. u2. (D.5)

Combining (D.3)–(D.5) with the fact that maxi∈[2n] |Âi− 1/2| = op(1) as proved in Lemma E.8, we

have

sup
τ∈Υ

|Q̃w
n,2(u, τ)| = op(1).

This concludes the proof of Step (1).

Step (2). We have

W̃w
n,1(τ) =

2n∑

i=1

ξiAi√
n

(τ − 1{Yi(1) ≤ q1(τ)})−
2n∑

i=1

2ξiAi(Âi − 1/2)√
n

(τ − 1{Yi(1) ≤ q1(τ)})

+
2n∑

i=1

2ξiAi(1/2 − Âi)
2

√
nÂi

(τ − 1{Yi(1) ≤ q1(τ)})

≡W̃w
n,1,1(τ)− W̃w

n,1,2(τ) + W̃w
n,1,3(τ). (D.6)

First, W̃w
n,1,1(τ) is tight following the exact same argument as in Step (2) of Section B. Second, we

have

W̃w
n,1,2(τ) =

2n∑

i=1

ξim1,τ (Xi)(Âi − 1/2)√
n

+

2n∑

i=1

2ξi(Ai − 1/2)m1,τ (Xi)(Âi − 1/2)√
n

+

2n∑

i=1

2ξiAiη1,i(τ)(Âi − 1/2)√
n
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≡ I(τ) + II(τ) + III(τ).

Lemma E.9 shows

sup
τ∈Υ

∣∣∣∣∣I(τ)−
2n∑

i=1

ξim1,τ (Xi)(Ai − 1/2)√
n

∣∣∣∣∣ = op(1),

sup
τ∈Υ

|II(τ)| = op(1), and sup
τ∈Υ

|III(τ)| = op(1).

Combining the above results, we have

sup
τ∈Υ

∣∣∣∣∣W̃
w
n,1,2(τ)−

2n∑

i=1

ξim1,τ (Xi)(Ai − 1/2)√
n

∣∣∣∣∣ = op(1). (D.7)

Last, we have, w.p.a.1,

sup
τ∈Υ

|W̃w
n,1,3(τ)| ≤

2n∑

i=1

2ξi√
n(1/2 −maxi∈[2n] |1/2 − Âi|)

(1/2 − Âi)
2

.
4√
n

∑

i=1

ξi(1/2 − Âi)
2 = op(1), (D.8)

where the first inequality holds because supτ∈Υ |τ − 1{Yi(1) ≤ q1(τ)}| ≤ 1, the second inequality

holds because maxi |1/2− Âi| ≤ 1/4 w.p.a.1 as proved in Lemma E.8, and the last inequality holds

due to Lemma E.8.

Combining (D.6)–(D.8), we have

W̃w
n,1(τ) =

2n∑

i=1

ξiAiη1,i(τ)√
n

+

2n∑

i=1

ξim1,τ (Xi)

2
√
n

+ op(1),

where the op(1) term holds uniformly over τ ∈ Υ. By (B.9) and the argument above, we can

show
∑2n

i=1
ξiAiη1,i(τ)√

n
as a stochastic process over τ ∈ Υ is stochastically equicontinuous and tight.

Furthermore, {ξi,Xi}i∈[2n] is a sequence of i.i.d. random variables. Then, by the usual maxi-

mal inequality, we can show
∑2n

i=1
ξim1,τ (Xi)

2
√
n

as a stochastic process over τ ∈ Υ is stochastically

equicontinuous and tight. This implies, W̃w
n,1(τ) as a stochastic process over τ ∈ Υ is stochastically

equicontinuous and tight, and thus, is stochastically equicontinuous conditionally on data by the

Markov inequality. Therefore, we have

√
n(q̂wipw,1(τ)− q1(τ)) =

1

f1(q1(τ))

(
2n∑

i=1

ξiAiη1,i(τ)√
n

+

2n∑

i=1

ξim1,τ (Xi)

2
√
n

)
+ r̃n,1(τ),
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where supτ∈Υ |r̃n,1(τ)| = op(1). Similarly, we can show that

√
n(q̂wipw,0(τ)− q0(τ)) =

1

f0(q0(τ))

(
2n∑

i=1

ξi(1−Ai)η0,i(τ)√
n

+
2n∑

i=1

ξim0,τ (Xi)

2
√
n

)
+ r̃n,0(τ),

where supτ∈Υ |r̃n,1(τ)| = op(1).

Step (3). In the proof of Theorem 3.1, we established that

√
n(q̂(τ)− q(τ))

=
1

f1(q1(τ))

(
2n∑

i=1

ξiAiη1,i(τ)√
n

+

2n∑

i=1

ξim1,τ (Xi)

2
√
n

)

− 1

f0(q0(τ))

(
2n∑

i=1

ξi(1−Ai)η0,i(τ)√
n

+

2n∑

i=1

ξim0,τ (Xi)

2
√
n

)
+ rb(τ),

where supτ∈Υ |rb(τ)| = op(1). Then, we have

√
n(q̂wipw(τ)− q̂(τ)) =

1

f1(q1(τ))

(
2n∑

i=1

(ξi − 1)Aiη1,i(τ)√
n

)
− 1

f0(q0(τ))

(
2n∑

i=1

(ξi − 1)(1 −Ai)η0,i(τ)√
n

)

+

2n∑

i=1

(ξi − 1)

2
√
n

(
m1,τ (Xi)

f1(q1(τ))
− m0,τ (Xi)

f0(q0(τ))

)
+ r̃b(r),

where supτ∈Υ |r̃b(τ)| = op(1). The conditional stochastic equicontinuity of the first three terms on

the RHS of the above display has been established in Step (2). Here, we only need to determine

the covariance kernel of
√
n(q̂wipw(τ) − q̂(τ)) given data. Specifically, the covariance kernel is the

limit of the display below:

1

f1(q1(τ))f1(q1(τ ′))

2n∑

i=1

Aiη1,i(τ)η1,i(τ
′)

n
+

1

f0(q0(τ))f0(q0(τ ′))

2n∑

i=1

(1−Ai)η0,i(τ)η0,i(τ
′)

n

+
2n∑

i=1

1

4n

(
m1,τ (Xi)

f1(q1(τ))
− m0,τ (Xi)

f0(q0(τ))

)(
m1,τ ′(Xi)

f1(q1(τ ′))
− m0,τ ′(Xi)

f0(q0(τ ′))

)

+
1

2n

2n∑

i=1

(1−Ai)η0,i(τ)

f0(q0(τ))

(
m1,τ ′(Xi)

f1(q1(τ ′))
− m0,τ ′(Xi)

f0(q0(τ ′))

)
+

1

2n

2n∑

i=1

Aiη1,i(τ)

f1(q1(τ))

(
m1,τ ′(Xi)

f1(q1(τ ′))
− m0,τ ′(Xi)

f0(q0(τ ′))

)

+
1

2n

2n∑

i=1

(1−Ai)η0,i(τ
′)

f0(q0(τ ′))

(
m1,τ (Xi)

f1(q1(τ))
− m0,τ (Xi)

f0(q0(τ))

)
+

1

2n

2n∑

i=1

Aiη1,i(τ
′)

f1(q1(τ ′))

(
m1,τ (Xi)

f1(q1(τ))
− m0,τ (Xi)

f0(q0(τ))

)
.

(D.9)
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Note that (B.12) implies

1

f1(q1(τ))f1(q1(τ ′))

2n∑

i=1

Aiη1,i(τ)η1,i(τ
′)

n

p−→min(τ, τ ′)− EF1(q1(τ)|Xi)F1(q1(τ
′)|Xi)

f1(q1(τ))f1(q1(τ ′))

=
min(τ, τ ′)− ττ ′ − Em1,τ (Xi)m1,τ ′(Xi)

f1(q1(τ))f1(q1(τ ′))
.

Similarly,

1

f0(q0(τ))f0(q0(τ ′))

2n∑

i=1

(1−Ai)η0,i(τ)η0,i(τ
′)

n

p−→ min(τ, τ ′)− ττ ′ − Em0,τ (Xi)m0,τ ′(Xi)

f0(q0(τ))f0(q0(τ ′))
.

By the law of large numbers,

2n∑

i=1

1

4n

(
m1,τ (Xi)

f1(q1(τ))
− m0,τ (Xi)

f0(q0(τ))

)(
m1,τ ′(Xi)

f1(q1(τ ′))
− m0,τ ′(Xi)

f0(q0(τ ′))

)

p−→1

2
E

(
m1,τ (Xi)

f1(q1(τ))
− m0,τ (Xi)

f0(q0(τ))

)(
m1,τ ′(Xi)

f1(q1(τ ′))
− m0,τ ′(Xi)

f0(q0(τ ′))

)
.

Last, by Lemma E.4, the last four terms on the RHS of (D.9) will vanish. Hence,

(D.9)
p−→ Σ(τ, τ ′),

where Σ(τ, τ ′) is defined in Theorem 3.1. This concludes the proof.

E Technical Lemmas

E.1 A Maximal Inequality with i.n.i.d. Random Variables

Although Chernozhukov, Chetverikov, and Kato (2014) derived their Corollary 5.1 for i.i.d. data,

the result is still valid when the data are independent but not identically distributed (i.n.i.d.). In

this section, we restate their corollary for i.n.i.d. data and provide a brief justification. The proof

is due to Chernozhukov et al. (2014). We include this section purely for clarification purpose. Let

{Wi}ni=1 be a sequence of i.n.i.d. random variables taking values in a measurable space (S,S) with
distributions Πn

i=1P
(i). Let F be a generic class of measurable functions S 7→ ℜ with envelope

F . Further denote Pf = 1
n

∑n
i=1 P

(i)f , ||f ||
P,2 =

√
Pf2 and Pnf is the usual empirical process

Pnf = 1
n

∑n
i=1 f(Wi), σ

2 = supf∈F Pf2 ≤ PF 2, and M = maxi∈[n] F (Wi).

Lemma E.1. Suppose PF 2 < ∞ and there exist constants a ≥ e and v ≥ 1 such that

sup
Q

N(F , eQ, ε||F ||Q,2) ≤
(a
ε

)v
, ∀ε ∈ (0, 1], (E.1)
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where eQ(f, g) = ||f−g||Q,2 and the supremum is taken over all finitely discrete probability measures

on (S,S). Then,

E||√n(Pn − P)||F .

√√√√vσ2 log

(
a||F ||

P,2

σ

)
+

v||M ||2√
n

log

(
a||F ||

P,2

σ

)
.

The proof of Lemma E.1 is exactly the same as that for Chernozhukov et al. (2014, Corollary

5.1) with P replaced by P. For brevity, we just highlight some key steps below.

Proof. Let {εi}ni=1 be a sequence of Rademacher random variables that is independent of {Wi}ni=1,

σ2
n = supf∈F Pnf

2, and Z = E

[∥∥∥ 1√
n

∑n
i=1 εif(Wi)

∥∥∥
F

]
. Then, by van der Vaart and Wellner (1996,

Lemma 2.3.1) or Ledoux and Talagrand (2013, Lemma 6.3),

E||√n(Pn − P)||F ≤ 2Z.

Note Ledoux and Talagrand (2013, Lemma 6.3) only requires {Wi}ni=1 to be independent. In addi-

tion, let the uniform entropy integral be

J(δ) ≡ J(δ,F , F ) =

∫ δ

0
sup
Q

√
1 + logN(F , eQ, ε||F ||Q,2)dε (E.2)

where eQ(f, g) = ||f−g||Q,2 and the supremum is taken over all finitely discrete probability measures

on (S,S). Then, we have

Z =EE

[∣∣∣∣
∣∣∣∣
1√
n

n∑

i=1

εif(Wi)

∣∣∣∣
∣∣∣∣
F
|W1, · · · ,Wn

]

.E

[
||F ||Pn,2J(σn/||F ||Pn,2)

]

.||F ||
P,2J(

√
Eσ2

n/||F ||
P,2),

(E.3)

where the second inequality is due to the Jensen’s inequality and the fact that J(
√

x/y)
√
y is

concave in (x, y) as shown by Chernozhukov et al. (2014). To see the first inequality, note that by

the Hoeffding’s inequality,

P

(∣∣∣∣∣
1√
n

n∑

i=1

εif(Wi)

∣∣∣∣∣ ≥ t

∣∣∣∣{Wi}ni=1

)
. exp

(
− t2/2

1
n

∑n
i=1 f(Wi)2

)
,

which implies the stochastic process 1√
n

∑n
i=1 εif(Wi) indexed by f is sub-Gaussian conditionally

on {Wi}ni=1. Then, the first inequality in (E.3) follows van der Vaart and Wellner (1996, Corollary

2.2.8), where we let δ = σn/||F ||Pn,2 and σn can be viewed as the diameter of the class of functions

55



F . We also note that this is a conditional argument, which is still valid even when {Wi}ni=1 is

i.n.i.d.

Next, we aim to bound Eσ2
n. Recall σ

2 = supf∈F Pf2. We have, for i.n.i.d. {Wi}ni=1,

Eσ2
n ≤ σ2 + E(||(Pn − P)f2||F )

≤ σ2 + 2E

[∥∥∥∥∥
1

n

n∑

i=1

εif
2(Wi)

∥∥∥∥∥
F

]

≤ σ2 + 8E

[
M

∥∥∥∥∥
1

n

n∑

i=1

εif(Wi)

∥∥∥∥∥
F

]

≤ σ2 + 8||M ||P,2{E[||Pnεif(Wi)||2F ]}1/2

≤ σ2 + C||M ||P,2{E[||Pnεif(Wi)||F ] + n−1||M ||P,2}
= σ2 + Cn−1/2||M ||P,2Z + Cn−1||M ||2

P,2,

(E.4)

where the first inequality is due to the triangle inequality, the second inequality is due to Ledoux and Talagrand

(2013, Lemma 6.3), the third inequality is due to Ledoux and Talagrand (2013, Theorem 4.12),

the fourth inequality is due to the Cauchy-Schwarz inequality, and the fifth inequality is due to

Ledoux and Talagrand (2013, Lemma 6.8) with q = 2.

Given (E.4), Chernozhukov et al. (2014) then proved the results that, for δ = σ/||F ||
P,2,

E[
√
n||Pn − P||F ] . J(δ,F , F )||F ||

P,2 +
||M ||Ps,2J2(δ,F , F )

δ2
√
n

. (E.5)

In this step, they relied on the facts that J(δ) = J(δ,F , F ) is concave in δ and δ 7→ J(δ)/δ is

nonincreasing. The desired result is a quick corollary of (E.5) by noticing that, under (E.1),

J(δ) ≤
∫ δ

0

√
1 + ν log

(a
ε

)
dε ≤ 2

√
2νδ

√
log
(a
δ

)
. (E.6)

E.2 Technical Lemmas Used in the Proof of Theorem 3.1

Lemma E.2. Recall Hn(Xi, τ) defined in (A.2). Under the assumptions in Theorem 3.1,

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

(
Ai −

1

2

)
Hn(Xi, τ)

∣∣∣∣∣ = op(1),
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and

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

Ai

[
ξ∗i

∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]∣∣∣∣∣ = op(1),

where either ξ∗i = 1 or ξ∗i = ξi which satisfies Assumption 3.

Proof. For the first result, we have

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

(
Ai −

1

2

)
Hn(Xi, τ)

∣∣∣∣∣

≤ 1

2

n∑

j=1

sup
τ∈Υ

|Hn(Xπ(2j−1),τ )−Hn(Xπ(2j),τ )|

≤
n∑

j=1

1

2

∫ |u0+u1|√
n

0
sup
τ∈Υ

|f1(q1(τ) + ṽj |Xπ(2j−1))− f1(q1(τ) + ṽj|Xπ(2j))|vdv

.

n∑

j=1

∫ |u0+u1|√
n

0
||Xπ(2j−1) −Xπ(2j)||2vdv

.
(u0 + u1)

2

n

n∑

j=1

||Xπ(2j−1) −Xπ(2j)||2
p−→ 0,

where the first inequality is due to the fact that for the j-th pair, (Aπ(2j−1) − 1/2, Aπ(2j) − 1/2)

is either (1/2,−1/2) or (−1/2, 1/2), the second inequality is by standard Taylor expansion to the

first order where |ṽj| ≤ (|u0 + u1|)/
√
n, the third inequality is due to Assumption 2, and the last

convergence is due to Assumption 1.

Let (ξ̃∗j , Ỹj(1), X̃j) = (ξ∗ij , Yij (1),Xij ) where ij is the j-th smallest index in the set {i ∈ [2n] :

Ai = 1}. Then, similar to (B.8), we have

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

Ai

[
ξ∗i

∫ u0+u1√
n

0
(1{Yi(1) − q1(τ) ≤ v} − 1{Yi(1) − q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]∣∣∣∣∣

∣∣∣∣{Ai,Xi}2ni=1

d
= ||Pn − P||F4 |{X̃j}nj=1,

where F4 = {ξ̃∗
∫ (u0+u1)/

√
n

0

(
1{Ỹ (1) ≤ q1(τ) + v} − 1{Ỹ (1) ≤ q1(τ)}

)
dv : τ ∈ Υ}, Pnf is the

usual empirical process, Pf = 1
n

∑n
j=1 P

(j)f , and P
(j) denotes the probability measure of (ξ̃∗j , Ỹj(1))

given X̃j . Note F4 is a VC-class with a fixed VC index, has an envelope Fj = (|u0 + u1|ξ̃∗j )/
√
n,

M = maxj∈[n]Fj = (|u0 + u1| log(n))/
√
n, and

σ2 = sup
f∈F4

Pf2 ≤ sup
τ∈Υ

1

n

n∑

j=1

[
F1

(
q1(τ) +

|u0 + u1|√
n

∣∣∣∣X̃j

)
− F1

(
q1(τ)−

|u0 + u1|√
n

∣∣∣∣X̃j

)]
u2

n
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≤ 1

n

n∑

j=1

C(X̃j)
(u0 + u1)

2

n3/2

=
1

n

2n∑

i=1

AiC(Xi)
(u0 + u1)

2

n3/2

≤
(
1

n

2n∑

i=1

C(Xi)

)
(u0 + u1)

2

n3/2
.

As
(

1
n

∑2n
i=1 C(Xi)

)
a.s.→ E2C(Xi), we have

(
1
n

∑2n
i=1C(Xi)

)
≤ 3EC(Xi) a.s. Given such a sequence

{Xi}i≥1, Lemma E.1 implies

E

[
||Pn − P||F4 |{X̃j}ni=1

]
.

√
3EC(Xi) log(n)

n3/2
+

log2(n)

n
= oa.s.(1).

This implies

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

Ai

[
ξ∗i

∫ u0+u1√
n

0
(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv −Hn(Xi, τ)

]∣∣∣∣∣ = op(1).

Lemma E.3. Under the assumptions in Theorem 3.1,

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

(Ai − 1/2)√
n

m1,τ (Xi)

∣∣∣∣∣ = op(1).

Proof. We have

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

(Ai − 1/2)√
n

m1,τ (Xi)

∣∣∣∣∣ = sup
τ∈Υ

∣∣∣∣∣∣

n∑

j=1

1

2
√
n
(Aπ(2j−1) −Aπ(2j))(F1(q1(τ)|Xπ(2j−1))− F1(q1(τ)|Xπ(2j)))

∣∣∣∣∣∣
.

Note that

F5 = {F1(q1(τ)|X) − F1(q1(τ)|X ′) : τ ∈ Υ}

is a VC-class with a fixed VC-index and has an envelope F = 2. This implies (E.1) holds with some

constants a ≥ e and v ≥ 1. Then, as discussed in the (E.6), the uniform entropy integral J(δ) of

F5 satisfies

J(δ) ≤
∫ δ

0

√
1 + ν log

(a
ε

)
dε ≤ 2

√
2νδ

√
log
(a
δ

)
.
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In addition,

σ2
n = sup

τ∈Υ

1

n

n∑

j=1

(F1(q1(τ)|Xπ(2j−1))− F1(q1(τ)|Xπ(2j)))
2 .

1

n

n∑

j=1

∥∥Xπ(2j−1) −Xπ(2j)

∥∥2
2

p−→ 0.

We focus on the set An = {σ2
n ≤ ε} for some arbitrary ε > 0 so that P(An) ≥ 1 − ε for n

sufficiently large. Note that An belongs to the sigma field generated by {Xi}2ni=1. In addition, note

that conditional on {Xi}2ni=1, {Aπ(2j−1) − Aπ(2j)}nj=1 is a sequence of i.i.d. Rademacher random

variables. Then, following the same argument in (E.3)

E sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

(Ai − 1/2)√
n

m1,τ (Xi)

∣∣∣∣∣ 1{An}

= E



E



∥∥∥∥∥∥

1

2
√
n

n∑

j=1

(Aπ(2j−1) −Aπ(2j))f(Xπ(2j−1),Xπ(2j))

∥∥∥∥∥∥
F5

∣∣∣∣{Xi}2ni=1


 1{An}





. EJ(σn/2)1{An}

. J(ε/2) .
√
2νε

√
log

(
2a

ε

)
,

where the first inequality is due to van der Vaart and Wellner (1996, Corollary 2.2.8) and the fact

that, by the Hoeffding’s inequality, for any f ∈ F5,

P

(∣∣∣∣∣∣

n∑

j=1

(Aπ(2j−1) −Aπ(2j))f(Xπ(2j−1),Xπ(2j))

∣∣∣∣∣∣
≥ x

∣∣∣∣{Xi}2ni=1

)
≤ 2 exp

(
−1

2

x2∑n
j=1 f

2(Xπ(2j−1),Xπ(2j))

)
.

As
√
2νε
√

log
(
2a
ε

)
→ 0 as ε → 0, we derive the desired result by letting n → ∞ followed by ε → 0.

E.3 Technical Lemmas Used in the Proof of Theorem 4.1

Lemma E.4. Suppose the assumptions in Theorem 4.1 hold, then

1

n

2n∑

i=1

Aiη1,i(τ)mj,τ ′(Xi)
p−→ 0,

1

n

2n∑

i=1

Aiη1,i(τ)m0,τ ′(Xi)
p−→ 0,

59



1

n

2n∑

i=1

(1−Ai)η0,i(τ)m0,τ ′(Xi)
p−→ 0,

and

1

n

2n∑

i=1

(1−Ai)η0,i(τ)m1,τ ′(Xi)
p−→ 0.

Proof. We focus on the first statement. The rest can be proved in the same manner. Based on the

notation in Section 4.2, we have

1

n

2n∑

i=1

Aiη1,i(τ)m1,τ ′(Xi) =
1

n

n∑

j=1

η1,(j,1)(q1(τ), τ)m1,τ ′(X(j,1), q1(τ
′)).

where η1,i(q, τ) = (τ − 1{Yi(1) ≤ q})−m1,τ (Xi, q). Then, (E.7) implies the desired result.

E.4 Technical Lemmas Used in the Proof of Theorem 4.2

Lemma E.5. Recall II(τ, τ ′) and III(τ, τ ′) defined in (C.1). Suppose the assumptions in Theorem

3.1 hold, then

sup
τ,τ ′∈Υ

|II(τ, τ ′)| p−→ 0 and sup
τ,τ ′∈Υ

|III(τ, τ ′)| p−→ 0.

Proof. We focus on bounding II(τ, τ ′). The bound for III(τ, τ ′) can be established similarly. By

(C.3), we have, with probability greater than 1− ε,

|II(τ, τ ′)| ≤ sup
τ,τ ′∈Υ,|v|,|v′|≤L/

√
n

∣∣∣∣∣∣
1

n

n∑

j=1

η1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ
′) + v′)

∣∣∣∣∣∣
. (E.7)

We aim to bound the RHS. Let {εj}nj=1 denote a sequence of i.i.d. Rademacher random variables

that is independent of the data. Further denote the class of functions

F6 = {η1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ
′) + v′) : τ, τ ′ ∈ Υ, |v|, |v′| ≤ L/

√
n}.

Note F6 has an envelope F = 1 and is nested by a VC-class of functions with a fixed VC-index.

Then,

E


 sup
τ,τ ′∈Υ,|v|,|v′|≤L/

√
n

∣∣∣∣∣∣
1

n

n∑

j=1

η1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ
′) + v′)

∣∣∣∣∣∣
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= E



E


 sup
τ,τ ′∈Υ,|v|,|v′|≤L/

√
n

∣∣∣∣∣∣
1

n

n∑

j=1

η1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ
′) + v′)

∣∣∣∣∣∣
|{Xi, Ai}2ni=1







. E



E


 sup
τ,τ ′∈Υ,|v|,|v′|≤L/

√
n

∣∣∣∣∣∣
1

n

n∑

j=1

εjη1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ
′) + v′)

∣∣∣∣∣∣
|{Xi, Ai}2ni=1







= E



E


 sup
τ,τ ′∈Υ,|v|,|v′|≤L/

√
n

∣∣∣∣∣∣
1

n

n∑

j=1

εjη1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ
′) + v′)

∣∣∣∣∣∣
|{Xi, Ai, Yi(1)}2ni=1







≤
||F ||

P,2J(
√

Eσ2
n/||F ||

P,2)√
n

.
1√
n
, (E.8)

where the first equality is due to the law of iterated expectation, the first inequality is due to

Ledoux and Talagrand (2013, Lemma 6.3) and the fact that {η1,(j,1)(q1(τ)+ v, τ)}nj=1 is a sequence

of independent and centered random variables given {Xi, Ai}2ni=1, the second inequality follows the

same argument in (E.3) with F = 2,

σ2
n = sup

τ,τ ′∈Υ,|v|,|v′|≤L/
√
n

1

n

n∑

j=1

[
η1,(j,1)(q1(τ) + v, τ)m1,τ ′(X(j,1), q1(τ

′) + v′)
]2 ≤ 4,

and J(·) being the uniform entropy integral for the class of functions F6 defined in (E.2), and

the last inequality holds because when F6 is nested by a VC-class, εi is bounded, and thus, has a

sub-Gaussian tail, and δ =
√

Eσ2
n/||F ||

P,2 ≤ 1, we have

J(δ) . δmax(
√

log(1/δ), 1) . 1,

as shown in (E.6). This implies, uniformly over τ, τ ′ ∈ Υ,

II(τ, τ ′)
p−→ 0.

Lemma E.6. Recall RIV (τ, τ
′) defined in (C.7). Suppose assumptions in Theorem 3.1 hold, then

sup
τ,τ ′∈Υ

|RIV (τ, τ
′)| = op(1) and sup

τ,τ ′∈Υ

∣∣∣∣∣
1

n

2n∑

i=1

(
Ai −

1

2

)
m1,τ (Xi)m1,τ ′(Xi)

∣∣∣∣∣ = op(1).

Proof. Note

RIV (τ, τ
′) =

1

n

n∑

j=1

[
m1,τ (X(j,1))m1,τ ′(X(j,1))−m1,τ (X(j,1), q̂1(τ))m1,τ ′(X(j,1), q̂1(τ

′))
]
.
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By (C.3) and the fact that F1(·|X) is Lipschitz continuous, we have

sup
τ,τ ′∈Υ

|RIV (τ, τ
′)|

≤ sup
τ,τ ′∈Υ

1

n

n∑

j=1

∣∣m1,τ (X(j,1))m1,τ ′(X(j,1))−m1,τ (X(j,1), q̂1(τ))m1,τ ′(X(j,1), q̂1(τ
′))
∣∣ p−→ 0.

By the same argument as in the proof of Lemma E.3, we have

sup
τ,τ ′∈Υ

∣∣∣∣∣
1

n

2n∑

i=1

(
Ai −

1

2

)
m1,τ (Xi)m1,τ ′(Xi)

∣∣∣∣∣
p−→ 0.

Lemma E.7. Recall S∗
n,1(τ) defined in (4.5). Suppose assumptions in Theorem 3.1 hold. Then,

{S∗
n,1(τ) : τ ∈ Υ} is stochastically equicontinuous and tight.

Proof. It suffices to show the two marginals of S∗
n,1(τ) are stochastically equicontinuous and tight.

We focus on the first marginal





1√
n

n∑

j=1

ηj(τ − 1{Y(j,1) ≤ q̂1(τ)}) : τ ∈ Υ



 .

By (C.3), it suffices to establish the stochastic equicontinuity and tightness of





1√
n

n∑

j=1

ηj(τ − 1{Y(j,1) ≤ q1(τ) + v/
√
n}) : τ ∈ Υ, |v| ≤ L





for any fixed L. Let

F7 =

{
(τ − 1{Y(j,1) ≤ q1(τ) + v/

√
n})− (τ ′ − 1{Y(j,1) ≤ q1(τ

′) + v′/
√
n}) :

τ, τ ′ ∈ Υ, |v|, |v′| ≤ L, |τ − τ ′| ≤ ε, |v − v′| ≤ ε

}
,

which is nested by a VC-class with envelope 2. Then, by (E.2) and (E.6), the uniform entropy

integral J(δ) of F7 satisfies

J(δ) . δmax(1,
√

log(1/δ)).

By the calculation of Σ̃∗
1,1,1(τ, τ

′) (with q̂1(τ) replaced by q1(τ) +
v√
n
) in Section C, we have,
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uniformly over τ, τ ′ ∈ Υ, v, v′ ∈ [−L,L],

σ2
n(τ, τ

′, v, v′) =
1

n

n∑

j=1

[
(τ − 1{Y(j,1) ≤ q1(τ) + v/

√
n})− (τ ′ − 1{Y(j,1) ≤ q1(τ

′) + v′/
√
n})
]2

p−→τ(1− τ) + τ ′(1− τ ′)− 2(min(τ, τ ′)− ττ ′) = |τ − τ ′| − (τ − τ ′)2. (E.9)

Let An(ε) = 1{supτ,τ ′∈Υ,v,v′∈[−L,L] |σ2
n(τ, τ

′, v, v′) −
(
|τ − τ ′| − (τ − τ ′)2

)
| ≤ ε}, which will occur

with probability approaching one. Also by construction, conditionally on data, 1√
n

∑n
j=1 ηj(τ −

1{Y(j,1) ≤ q1(τ) + v/
√
n}) is a sub-Gaussian process. Then,

E


sup 1√

n

n∑

j=1

ηj(τ − 1{Y(j,1) ≤ q1(τ) + v/
√
n})− (τ ′ − 1{Y(j,1) ≤ q1(τ

′) + v′/
√
n})
∣∣∣∣Data


 1{An(ε)}

. J(
sup σn(τ, τ

′, v, v′)

2
)1{An(ε)}

. J(
√
ε) .

√
εmax(1,

√
log(1/ε)),

where the supremum is taken over τ, τ ′ ∈ Υ, |v|, |v′| ≤ L, |τ−τ ′| ≤ ε, |v−v′| ≤ ε, the first inequality

is due to (van der Vaart and Wellner, 1996, Corollary 2.2.8), and the second inequality is due to

(E.9) and the definition of An. Then, for any t > 0

P


sup

1√
n

n∑

j=1

ηj
[
(τ − 1{Y(j,1) ≤ q1(τ) + v/

√
n})− (τ ′ − 1{Y ≤ q1(τ

′) + v′/
√
n})
]
≥ t




≤ P(Ac
n(ε)) + P


sup

1√
n

n∑

j=1

ηj
[
(τ − 1{Y ≤ q1(τ) + v/

√
n})− (τ ′ − 1{Y ≤ q1(τ

′) + v′/
√
n})
]
≥ t,An(ε)




≤ E





E

[
sup 1√

n

∑n
j=1 ηj(τ − 1{Y(j,1) ≤ q1(τ) + v/

√
n})− (τ ′ − 1{Y(j,1) ≤ q1(τ

′) + v′/
√
n})
∣∣∣∣Data

]
1{An(ε)}

t





+ P(Ac
n(ε))

. P(Ac
n(ε)) +

√
εmax(1,

√
log(1/ε))

t
,

where the supremum is taken over τ, τ ′ ∈ Υ, |v|, |v′| ≤ L, |τ − τ ′| ≤ ε, |v − v′| ≤ ε. Let n → ∞
followed by ε → 0, we have

lim
ε→0

lim sup
n

P


sup

1√
n

n∑

j=1

ηj
[
(τ − 1{Y(j,1) ≤ q1(τ) + v/

√
n})− (τ ′ − 1{Y(j,1) ≤ q1(τ

′) + v′/
√
n})
]
≥ t


 = 0,

which implies
{

1√
n

∑n
j=1 ηj(τ − 1{Y(j,1) ≤ q̂1(τ)}) : τ ∈ Υ

}
is stochastically equicontinuous. In ad-
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dition, for any fixed τ ,

1√
n

n∑

j=1

ηj(τ − 1{Y(j,1) ≤ q̂1(τ)}) = Op(1).

This implies it is also tight over τ ∈ Υ.

E.5 Technical Lemmas Used in the Proof of Theorem 4.3

Lemma E.8. Suppose the assumptions in Theorem 4.3 hold, then

max
i∈[2n]

|Âi − 1/2| = op(1)

and

1

n

2n∑

i=1

ξi(Âi − 1/2)2 = op(n
−1/2).

Proof. Let θ0 = (0.5, 0, · · · , 0)T be a K × 1 vector. Then,

||θ̂ − θ0||2 =

∥∥∥∥∥∥

[
1

n

2n∑

i=1

ξib(Xi)b(Xi)
T

]−1 [
1

n

2n∑

i=1

ξib(Xi)(Ai −
1

2
)

]∥∥∥∥∥∥
2

.

∥∥∥∥∥
1

n

2n∑

i=1

ξib(Xi)(Ai −
1

2
)

∥∥∥∥∥
2

.
√
K

∥∥∥∥∥
1

n

2n∑

i=1

ξib(Xi)(Ai −
1

2
)

∥∥∥∥∥
∞
.

Next, we aim to bound
∥∥∥ 1
n

∑2n
i=1 ξib(Xi)(Ai − 1

2)
∥∥∥
∞
. Let bk(X) be the kth component of b(X).

Then,

max
k∈[K]

1

n

n∑

j=1

(ξπ(2j−1)bk(Xπ(2j−1))− ξπ(2j)bk(Xπ(2j)))
2

. max
k∈[K]

1

n

2n∑

i=1

ξ2i b
2
k(Xi)

. max
k∈[K]

Eξ2i b
2
k(Xi) + max

k∈[K]

∣∣∣∣∣
1

n

2n∑

i=1

[
ξ2i b

2
k(Xi)− Eξ2i b

2
k(Xi)

]
∣∣∣∣∣ .

The first term on the RHS of the above display is bounded by C based on Assumption 5. Let
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{εi}i∈[2n] be a sequence of i.i.d. Rademacher random variables. Then,

E max
k∈[K]

∣∣∣∣∣
1

n

2n∑

i=1

[
ξ2i b

2
k(Xi)− Eξ2i b

2
k(Xi)

]
∣∣∣∣∣ ≤ 2E max

k∈[K]

∣∣∣∣∣
1

n

2n∑

i=1

εi
[
ξ2i b

2
k(Xi)− Eξ2i b

2
k(Xi)

]
∣∣∣∣∣ .

By Hoeffding’s inequality,

P

(∣∣∣∣∣
1√
2n

2n∑

i=1

εi
[
ξ2i b

2
k(Xi)− Eξ2i b

2
k(Xi)

]
∣∣∣∣∣ ≥ t

∣∣∣∣{ξi,Xi}i∈[2n]
)

≤ 2 exp(− t2

2σ2
k

),

where σ2
k = 1

2n

∑2n
i=1

[
ξ2i b

2
k(Xi)− Eξ2i b

2
k(Xi)

]2
. Then, by van der Vaart and Wellner (1996, Lemmas

2.2.1 and 2.2.2),

E

[
max
k∈[K]

∣∣∣∣∣
1

n

2n∑

i=1

εiξ
2
i b

2
k(Xi)

∣∣∣∣∣

∣∣∣∣{ξi,Xi}i∈[2n]
]
.

√
log(K)

n

√
max
k∈[K]

σ2
k.

Applying expectation on both sides and noticing that the square root function is concave, we have

E max
k∈[K]

∣∣∣∣∣
1

n

2n∑

i=1

εiξ
2
i b

2
k(Xi)

∣∣∣∣∣ .
√

log(K)

n

√
E max

k∈[K]
σ2
k

.

√
log(K)

n

√∑

k∈[K]

Eσ2
k

.

√
log(K)

n
ζ(K)

√
K = o(1).

Therefore,

max
k∈[K]

∣∣∣∣∣
1

n

2n∑

i=1

[
ξ2i b

2
k(Xi)− Eξ2i b

2
k(Xi)

]
∣∣∣∣∣ = op(1)

and with probability approaching one,

max
k∈[K]

1

n

n∑

j=1

(ξπ(2j−1)bk(Xπ(2j−1))− ξπ(2j)bk(Xπ(2j)))
2 ≤ 2C.

Let I ′n = {maxk∈[K]
1
n

∑n
j=1(ξπ(2j−1)bk(Xπ(2j−1))−ξπ(2j)bk(Xπ(2j)))

2 ≤ 2C}. For t =
√

log(n)C,

we have

P

(∥∥∥∥∥
1

n

2n∑

i=1

ξib(Xi)(Ai −
1

2
)

∥∥∥∥∥
∞

≥ t/
√
n, I ′n

)
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=EP

(∥∥∥∥∥
1

n

2n∑

i=1

ξib(Xi)(Ai −
1

2
)

∥∥∥∥∥
∞

≥ t/
√
n

∣∣∣∣{Xi, ξi}i∈[2n]
)
1{I ′n}

=EP



∥∥∥∥∥∥

n∑

j=1

(Aπ(2j−1) −Aπ(2j))(ξπ(2j−1)b(Xπ(2j−1))− ξπ(2j)b(Xπ(2j)))

∥∥∥∥∥∥
∞

≥ 2t
√
n

∣∣∣∣{Xi, ξi}i∈[2n]


 1{I ′n}

≤
K∑

k=1

EP



∣∣∣∣∣∣

n∑

j=1

(Aπ(2j−1) −Aπ(2j))(ξπ(2j−1)bk(Xπ(2j−1))− ξπ(2j)bk(Xπ(2j)))

∣∣∣∣∣∣
≥ 2t

√
n

∣∣∣∣{Xi, ξi}i∈[2n]


 1{I ′n}

≤
K∑

k=1

2E exp

(
−2t2n∑n

j=1(ξπ(2j−1)bk(Xπ(2j−1))− ξπ(2j)bk(Xπ(2j)))2

)
1{I ′n}

≤2 exp

(
log(K)− t2

C

)
→ 0,

where the second last inequality is due to the Hoeffding’s inequality and the fact that given

{Xi, ξi}i∈[2n], {Aπ(2j−1) −Aπ(2j)}j∈[n] is i.i.d. sequence of Rademacher random variables.

This implies,

||θ̂ − θ0||2 = Op(

√
K log(n)

n
),

and thus

max
i∈[2n]

|Âi − 1/2| = max
i

|b(Xi)
′(θ̂ − θ0)| = Op

(
ζ(K)

√
K log(n)

n

)
= op(1).

For the second result, we have

1

n

2n∑

i=1

ξi(Âi − 1/2)2 ≤ λmax

(
1

n

2n∑

i=1

ξib(Xi)b(Xi)
′
)
||θ̂ − θ0||22 = Op

(
K log(n)

n

)
= op(n

−1/2),

as K2 log2(n) = o(n).

Lemma E.9. Suppose assumptions in Theorem 4.3 hold, then

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

ξim1,τ (Xi)(Âi − 1/2)√
n

−
2n∑

i=1

ξim1,τ (Xi)(Ai − 1/2)√
n

∣∣∣∣∣ = op(1),

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

2ξi(Ai − 1/2)m1,τ (Xi)(Âi − 1/2)√
n

∣∣∣∣∣ = op(1),
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and

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

2ξiAiη1,i(τ)(Âi − 1/2)√
n

∣∣∣∣∣ = op(1).

Proof. For the first result, notem1,τ (Xi) = b(Xi)
′γ1(τ)+Bτ (Xi) such that supx∈Supp(X),τ∈Υ |Bτ (x)| =

o(1/
√
n). Then,

2n∑

i=1

ξim1,τ (Xi)(Âi − 1/2)√
n

=
2n∑

i=1

ξim1,τ (Xi)b(Xi)
′(θ̂ − θ0)√

n

= γ′1(τ)

[
2n∑

i=1

ξib(Xi)b(Xi)
′

√
n

]
(θ̂ − θ0) +

2n∑

i=1

ξiBτ (Xi)b(Xi)
′(θ̂ − θ0)√

n

=

2n∑

i=1

ξiγ1(τ)
′b(Xi)(Ai − 1/2)√

n
+

2n∑

i=1

ξiBτ (Xi)b(Xi)
′(θ̂ − θ0)√

n

=

2n∑

i=1

ξim1,τ (Xi)(Ai − 1/2)√
n

−
2n∑

i=1

ξiBτ (Xi)(Ai − 1/2)√
n

+

2n∑

i=1

ξiBτ (Xi)b(Xi)
′(θ̂ − θ0)√

n
,

where the third equality holds because

θ̂ − θ0 =

[
2n∑

i=1

ξib(Xi)b(Xi)
′

n

]−1 [ 2n∑

i=1

ξib(Xi)(Ai − 1/2)

n

]
.

Furthermore,

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

ξiBτ (Xi)(Ai − 1/2)√
n

∣∣∣∣∣ ≤ op(1)

(
1

2n

2n∑

i=1

ξi

)
= op(1)

and

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

ξiBτ (Xi)b(Xi)
′(θ̂ − θ0)√

n

∣∣∣∣∣ ≤
2n∑

i=1

ξiζ(K)||θ̂ − θ0||2√
n

op(1/
√
n)

=

(
2n∑

i=1

ξi
n

)
op

(√
Kζ2(K) log(n)

n

)
= op(1).

This leads to the first result.
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For the second result, we have

∣∣∣∣∣
2n∑

i=1

2ξi(Ai − 1/2)m1,τ (Xi)(Âi − 1/2)√
n

∣∣∣∣∣ ≤
∥∥∥∥∥

2n∑

i=1

2ξi(Ai − 1/2)m1,τ (Xi)b(Xi)√
n

∥∥∥∥∥
2

||θ̂ − θ0||2.

In addition,

sup
τ∈Υ

∥∥∥∥∥
2n∑

i=1

2ξi(Ai − 1/2)m1,τ (Xi)b(Xi)√
n

∥∥∥∥∥
2

= sup
τ∈Υ,ρ∈ℜK ,||ρ||2=1

2n∑

i=1

2ξi(Ai − 1/2)m1,τ (Xi)b
′(Xi)ρ√

n

= sup
τ∈Υ,ρ∈ℜK ,||ρ||2=1

n∑

j=1

(Aπ(2j−1) −Aπ(2j))(ξπ(2j−1)m1,τ (Xπ(2j−1))b
′(Xπ(2j−1))− ξπ(2j)m1,τ (Xπ(2j))b

′(Xπ(2j)))ρ√
n

.

Conditional on {Xi, ξi}i∈[2n], {(Aπ(2j−1) − Aπ(2j))}nj=1 is a sequence of i.i.d. Rademacher random

variables. In addition, let

F8 = {(ξπ(2j−1)m1,τ (Xπ(2j−1))b
′(Xπ(2j−1))− ξπ(2j)m1,τ (Xπ(2j))b

′(Xπ(2j)))ρ : τ ∈ Υ, ρ ∈ RK , ||ρ||2 = 1}

with envelope Fj = (ξπ(2j−1)ζ(K) + ξπ(2j)ζ(K)). Then, w.p.a.1,

E
1

n

n∑

j=1

F 2
j ≤ 1

n

2n∑

i=1

Eξ2i ζ
2(K) ≤ Cζ2(K).

In addition, for some constant c > 0,

sup
Q

N(F8, eQ, ε||F ||Q,2) ≤
(a
ε

)cK
, ∀ε ∈ (0, 1].

Let σ2
n = supf∈F8

Pnf
2 and δ2 = σ2

n
1
n

∑n
j=1 F

2
j

≤ 1. Then, by van der Vaart and Wellner (1996,

Corollary 2.2.8), (E.2) and (E.6), we have, w.p.a.1,

EE

[
sup
τ∈Υ

∥∥∥∥∥
2n∑

i=1

2ξi(Ai − 1/2)m1,τ (Xi)b(Xi)√
n

∥∥∥∥∥
2

∣∣∣∣{Xi, ξi}i∈[2n]
]

. E

∫ σn

0

√
1 + log(N(F8, ePn , ε))dε

. E

√√√√ 1

n

n∑

j=1

F 2
j

∫ δ

0

√
1 + log sup

Q
N(F8, eQ, ε||F ||Q,2)dε
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≤


E

√√√√ 1

n

n∑

j=1

F 2
j


√

KJ(1)

≤



√√√√E

1

n

n∑

j=1

F 2
j


√

KJ(1)

.
√
Kζ(K).

This implies

sup
τ∈Υ

∥∥∥∥∥
2n∑

i=1

2ξi(Ai − 1/2)m1,τ (Xi)b(Xi)√
n

∥∥∥∥∥
2

= Op(
√
Kζ(K))

and

sup
τ∈Υ

∣∣∣∣∣

∣∣∣∣∣
2n∑

i=1

2ξi(Ai − 1/2)m1,τ (Xi)(Âi − 1/2)√
n

∣∣∣∣∣

∣∣∣∣∣
2

= Op

(√
K2ζ2(K) log(n)

n

)
= op(1).

Last, for the third result, we have

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

2ξiAiη1,i(τ)(Âi − 1/2)√
n

∣∣∣∣∣ ≤ sup
τ∈Υ

∥∥∥∥∥
2n∑

i=1

2ξiAiη1,i(τ)b(Xi)√
n

∥∥∥∥∥
2

||θ̂ − θ0||2

≤ sup
τ∈Υ,ρ∈ℜK ,||ρ||2=1

[
2n∑

i=1

2ξiAiη1,i(τ)b
′(Xi)ρ√

n

]
||θ̂ − θ0||2. (E.10)

Let {ε̃j}j∈[n] and {εi}i∈[2n] be two sequences of i.i.d. Rademacher random variables that are inde-

pendent of the data. By (A.12), we have

2n∑

i=1

2ξiAiη1,i(τ)b
′(Xi)ρ√

n

∣∣∣∣{Ai,Xi}i∈[2n] d
=

n∑

j=1

2ξ̃j η̃1,j(τ)b
′(X̃j)ρ√

n

∣∣∣∣{X̃j}j∈[n],

and

2n∑

i=1

2εiξiAiη1,i(τ)b
′(Xi)ρ√

n

∣∣∣∣{Ai,Xi}i∈[2n] d
=

n∑

j=1

2ε̃j ξ̃j η̃1,j(τ)b
′(X̃j)ρ√

n

∣∣∣∣{X̃j}j∈[n],

where conditionally on {X̃j}j∈[n], {ξ̃j η̃1,j(τ)}j∈[n] is a sequence of independent random variables.

Then, by the same argument as in (E.8), we have

E sup
τ∈Υ,ρ∈ℜK ,||ρ||2=1

[
2n∑

i=1

2ξiAiη1,i(τ)b
′(Xi)ρ√

n

]
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= E

{
E sup

τ∈Υ,ρ∈ℜK ,||ρ||2=1

[
2n∑

i=1

2ξiAiη1,i(τ)b
′(Xi)ρ√

n

∣∣∣∣{Xi, Ai}i∈[2n]
]}

= E



E sup

τ∈Υ,ρ∈ℜK ,||ρ||2=1




n∑

j=1

2ξ̃j η̃1,j(τ)b
′(X̃j)ρ√

n

∣∣∣∣{X̃j}j∈[n]







. E



E sup

τ∈Υ,ρ∈ℜK ,||ρ||2=1




n∑

j=1

2ε̃j ξ̃j η̃1,j(τ)b
′(X̃j)ρ√

n

∣∣∣∣{X̃j}j∈[n]







= E

{
E sup

τ∈Υ,ρ∈ℜK ,||ρ||2=1

[
2n∑

i=1

2εiξiAiη1,i(τ)b
′(Xi)ρ√

n

∣∣∣∣{Xi, Ai}i∈[2n]
]}

= E

{
E sup

τ∈Υ,ρ∈ℜK ,||ρ||2=1

[
2n∑

i=1

2εiξiAiη1,i(τ)b
′(Xi)ρ√

n

∣∣∣∣{Xi, Ai, Yi(1)}i∈[2n]
]}

.

Let

F9 = {2ξiAiη1,i(τ)b
′(Xi)ρ : τ ∈ Υ, ρ ∈ ℜK , ||ρ||2 = 1},

with envelope Fi = 2ξiζ(K). In addition, for some constant c > 0,

sup
Q

N(F9, eQ, ε||F ||Q,2) ≤
(a
ε

)cK
, ∀ε ∈ (0, 1].

Then, following (E.3) and (E.6), we have

E

{
E sup

τ∈Υ,ρ∈ℜK ,||ρ||2=1

[
2n∑

i=1

2εiξiAiη1,i(τ)b
′(Xi)ρ√

n

∣∣∣∣{Xi, Ai, Yi(1)}i∈[2n]
]}
. ||F ||

P,2

√
KJ(1) .

√
Kζ(K).

This implies

sup
τ∈Υ,ρ∈ℜK ,||ρ||2=1

2n∑

i=1

2ξiAiη1,i(τ)b
′(Xi)ρ√

n
= Op(

√
Kζ(K)).

Then, by (E.10) and Lemma E.8, we have

sup
τ∈Υ

∣∣∣∣∣
2n∑

i=1

2ξiAiη1,i(τ)(Âi − 1/2)√
n

∣∣∣∣∣ = Op

(√
K2ζ2(K) log(n)

n

)
= op(1).
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