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Abstract

We consider a panel cointegration model with latent group structures that allows for heterogeneous

long-run relationships across groups. We extend Su, Shi, and Phillips’ (2016) classifier-Lasso (C-Lasso)

method to the nonstationary panels and allow for the presence of endogeneity in both the stationary and

nonstationary regressors in the model. In addition, we allow the dimension of the stationary regressors

to diverge with the sample size. We show that we can identify the individuals’ group membership and

estimate the group-specific long-run cointegrated relationships simultaneously. We demonstrate the

desirable property of uniform classification consistency and the oracle properties of both the C-Lasso

estimators and their post-Lasso versions. The special case of dynamic penalized least squares is also

studied. Simulations show superb finite sample performance in both classification and estimation.

In an empirical application, we study the potential heterogeneous behavior in testing the validity of

long-run purchasing power parity (PPP) hypothesis in the post-Bretton Woods period from 1975-2014

covering 99 countries. We identify two groups in the period 1975-1998 and three ones in the period

1999-2014. The results confirm that at least some countries favor the long-run PPP hypothesis in the

post-Bretton Woods period.
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1 Introduction

Recently there has been a growing literature on large dimensional panels with latent group structures; see

Lin and Ng (2012), Bonhomme and Manresa (2015, BM hereafter), Sarafidis and Weber (2015), Ando and

Bai (2016, 2017), Su, Shi, and Phillips (2016, SSP hereafter), Lu and Su (2017), Su and Ju (2018), Su,

Wang, and Jin (2017), Wang, Phillips and Su (2018), among others. In comparison with other approaches

to model unobserved heterogeneity in panel data models, an important advantage of the latent group

structures is that it offers a flexible way to modeling unobserved heterogeneity while maintaining certain

degree of parsimony. Two popular methods have been proposed to identify the unknown group structures.

One is based on the celebrated K-means clustering algorithm, and the other is based on the C-Lasso. For

example, Lin and Ng (2012) and Sarafidis and Weber (2015) consider a heterogeneous linear regression

panel data model where the slope coefficients exhibit an unknown group structure whereas BM consider

a homogeneous linear panel data model where the additive fixed effects exhibit group structure. Both

groups of authors propose to apply the K-means clustering algorithm to achieve classification. Ando and

Bai (2016, 2017) extend BM’s approach to allow for group structures among the interactive fixed effects.

Motivated by the sparse feature of the slope coefficients under latent group structures, SSP propose a novel

variant of the Lasso procedure, i.e., classifier Lasso (C-Lasso), to achieve classification and estimation for

both linear and nonlinear panel data models with or without endogeneity. Lu and Su (2017) propose

a sequential testing procedure to determine the unknown number of groups; Su and Ju (2018) extend

SSP’s C-Lasso to panel data models with interactive fixed effects; Su et al. (2018) consider C-Lasso-based

sieve estimation of time-varying panel data models with latent structures; Wang et al. (2018) extend the

CARDS algorithm of Ke et al. (2015) to the panel data framework to identify the group structures of

slope parameters.

In this paper, we consider identifying the latent group structures in nonstationary panels where some

regressors are generated from an integrated process. Despite the vast and diverse literature on nonsta-

tionary panels, most studies focus on panel unit root or cointegration tests with or without cross-sectional

dependence and the literature on formal cointegration analysis is relatively sparse. Depending on whether

the cointegrating relationship is allowed to be heterogeneous, one may consider either homogeneous or

heterogeneous cointegrating relations. For example, Phillips and Moon (1999) consider a general limit

theory for both cases in large dimensional nonstationary panels; Groen and Kleibergen (2003) consider the

likelihood-based cointegration analysis for heterogeneous and homogeneous panel vector error-correction

models; Kao and Chiang (2000) consider both dynamic OLS (DOLS) and fully-modified OLS (FMOLS) es-

timation and inference in homogeneous cointegrated panels; Mark and Sul (2003) consider a panel DOLS

in homogeneous nonstationary panels; Bai et al. (2009) study homogeneous panel cointegrations with

global stochastic trends; Pedroni (2001a) considers FMOLS for heterogeneous cointegrated panels. So the

long-run cointegrating relationships can be assumed to be either homogeneous or heterogeneous and we

face a trade-off between assuming heterogeneous long-run relationships, which is surely robust and perhaps

also close to the reality, and estimating a common or at least an average long-run relationship, which offers

efficiency in estimation and inference if the underlying homogeneous assumption is correct.

Despite the different treatments on the long-run relationships, the short-run dynamics, the individual
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intercepts, or the individual time trends, if exist, are commonly assumed to be heterogeneous across

individuals. In this paper, we shall maintain the individual heterogeneity assumption on the individual

effects and short-run dynamics and take an intermediate approach to model the long-run relationship.

We propose a panel cointegration model with latent group structures where the long-run relationships

are homogeneous within a group and heterogeneous across different groups, and the short-run dynamics

are allowed to be completely heterogeneous. The key issue is that the individual group membership is

unknown and has to be estimated from the data together with the other parameters in the model. We

extend SSP’s C-Lasso method to the nonstationary panel framework. We consider the SSP’s C-Lasso

method rather than the K-means clustering algorithm for two reasons. First, the C-Lasso method has

a computational advantage over the K-means clustering algorithm. As SSP argue, the C-Lasso problem

can be transformed into a sequence of convex problems to be solved easily, while the K-means procedure

is NP-hard and tends to be much more computationally involved than the C-Lasso method. Second,

the asymptotic theory for the C-Lasso method is well understood for stationary panels. It is natural to

extend the theory to nonstationary panels. We will propose a C-Lasso-based penalized least squares (PLS)

procedure to identify the unknown group structures and estimate the other parameters in the model jointly.

Nevertheless, the extension of the asymptotic theory from stationary panels to nonstationary panels is

technically challenging for two main reasons. First, there is a lack of certain uniform convergence results in

the nonstationary panel literature. It is well known that both the K-means clustering algorithm and the C-

Lasso method enjoy certain oracle properties, which means the resulting estimators are as asymptotically

efficient as if the latent group structures were known. But the establishment of such oracle properties

relies on the application of certain exponential inequalities that are available for weakly dependent data

as in stationary panels but not available for strongly dependent data as in nonstationary panels. To

achieve the extension, we first need to establish some uniform convergence results associated with the

nonstationary I(1) variables. Second, we allow for both stationary and nonstationary regressors in our

cointegration models. Even though the number of nonstationary regressors is assumed to be fixed, we

allow the dimension of stationary regressors to grow with the sample size at a controllable rate. The latter

is very important for us to explore the idea of DOLS and develop a panel dynamic PLS procedure. The

growing dimension of the stationary regressors does not affect the convergence rate of the estimators of

the long-run relationships, but it complicates the asymptotic analysis in several places.

We assume that the number of groups is known and study the asymptotic properties of the PLS

estimators. We first establish the preliminary rates of convergence for the coefficient estimators and show

that, as expected, the long-run parameters can be estimated consistently at a faster rate than the short-run

parameters. Given these preliminary consistency rates, we establish the uniform classification consistency

of the C-Lasso method, which essentially means that all parameters within a group can be classified into

the same group with probability approaching 1 (w.p.a.1), and all individuals that are classified into the

same group indeed belong to the same group w.p.a.1. Such a uniform classification consistency lays down

the foundation for the study of the asymptotic distributions of the PLS estimators. We show that both

the C-Lasso estimators of the long-run parameters and their post-Lasso versions enjoy the asymptotic

oracle properties and then derive their asymptotic distributions under the joint limit theory.1 We show

that such a presence of endogeneity in both nonstationary and stationary regressors does not cause the
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inconsistency of the long-run parameter estimators but does yield an asymptotic bias in the estimators of

both the short-run and long-run parameters. To remove the asymptotic bias in the estimation of the long-

run parameters, we explore the idea of DOLS in the time series framework and propose a C-Lasso-based

dynamic PLS procedure. When the number of groups is unknown, we propose an information criterion to

determine the number of groups. Simulations show superb finite sample performance of the information

criterion and C-Lasso-based PLS procedure.

In an empirical application, we apply our method to re-examine the validity of long-run PPP in the

post-Bretton Woods period from 1975-2014 for a panel of 99 countries. Due to the establishment of

the European Union in 1999, we consider two subperiods, namely, 1975-1998 and 1999-2014. Then we

estimate the long-run group-specific relationships by the dynamic PLS method. In general, we observe

heterogeneous behavior on the long-run relation between the nominal exchange rate and aggregate price

ratio. We find two groups in the 1975-1998 subsample, with one group of countries in favor of the validity

of the PPP hypothesis and the other group against the PPP hypothesis. In the 1999-2014 subsample, we

identify three groups and find significant evidence in favor of the long-run PPP hypothesis in one group.

There are more countries in this group in favor of the validity of the long-run PPP hypothesis in this

period. We explain these results by the “Revived Bretton Woods system” (also called Bretton Woods II

in the literature) from 2000, see Dooley et al. (2004). These results confirm the belief that at least some

selected group of countries obey the long-run PPP rule in the post-Bretton Woods period.

The rest of this paper is organized as follows. We introduce the cointegrated panel data model with

latent group structures and propose a C-Lasso-based PLS estimation procedure in Section 2. Section 3

introduces the main assumptions for our asymptotic analysis. We study the asymptotic properties of the

PLS estimators. Section 5 reports Monte Carlo simulation results. Section 6 applies the dynamic PLS

method to testing the long-run PPP hypothesis. Section 7 concludes. We relegate the proofs of the main

results to Appendix A. The online supplement contains of the proofs of technical lemmas, the section on

the determination of the number of groups, the section on the practical implementation of the C-Lasso

procedure, and some additional simulation and application results.

NOTATION. For any real matrix  we write the transpose 0 the Frobenius norm ||||, the spectral
norm ||||sp , and the Moore-Penrose inverse as + When  is symmetric, we use max() and min()

to denote its largest and smallest eigenvalues, respectively.  and 0× denote the ×  identity matrix

and ×  matrix of zeros, and 1{·} is the usual indicator function. The operator → denotes convergence

in probability, ⇒ weak convergence, a.s. almost surely, and plim probability limit. We use ( ) → ∞
to signify that  and  pass jointly to infinity.

2 Model and Estimation

In this section we introduce the panel cointegration model with latent group structures and then propose

a C-Lasso-based penalized least squares method to estimate the model.
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2.1 Panel cointegration model with latent group structures

The dependent variable  is measured for individuals  = 1 2  over time  = 1 2   . We suppose

that the nonstationary I(1) variables  and 1 are generated according to the following heterogeneous

panel cointegration model ⎧⎨⎩ =  + 011 + 022 + 

1 = 1−1 + 1
 (2.1)

where  is the unobserved individual fixed effects (FE), 1 is a 1× 1 vector of nonstationary regressors
of order one (I(1) process) for all , 2 is a 2 × 1 vector of stationary regressors (I(0) process) for all ,
 is the idiosyncratic error term with mean zero and finite long-run variance, 1 also has zero mean and

finite long-run variance, and 1 and 2 are 1 × 1 and 2 × 1 vectors of slope coefficients, respectively.
We assume that 1 is fixed but allow 2 to diverge to infinity at certain rate. The latter is very important

because we will extend our theory to the panel DOLS framework. In this case, the first equation in (2.1)

becomes

 =  + 011 +
̄2X

=−̄2
0∆1+ + 

†
 (2.2)

where∆1 = 1−1−1 2 only contains the lags and leads of∆1 : 2 = (∆01−̄2  ∆01+̄2)0
2 = (

0
−̄2   

0
̄2
)0 2 = (2̄2+1)1 ̄2 is divergent with  and 

†
 is the new error term that typically

contains some approximation errors.

In the literature on nonstationary panels, 1 which stands for the long-run cointegrating relationship,

can be either homogeneous or heterogeneous, whereas 2 which represents the short-run dynamics, is

allowed to be heterogeneous across all individuals in almost all studies. In fact, there is a large literature

that imposes a common long-run relationship and allows for individual-specific short-run parameters.

For example, in a cross-country study it is possible for different countries or regions to have different

dynamics of adjustments towards an equilibrium due to their historical and cultural differences, but they

could all converge to the same economic equilibrium in the very long run due to forces of arbitrage and

interconnections through international trade and cultural exchanges. See also the concluding remark in

Pesaran, Shin and Smith (1999). In this paper we maintain the heterogeneity assumption on 2’s but

follow the lead of SSP and assume that 1’s are heterogeneous across groups and homogeneous within a

group.

Specifically, we allow the true values of 1 denoted as 
0
1 to follow a grouped pattern of the general

form

01 =

⎧⎪⎪⎨⎪⎪⎩
01 if  ∈ 01
...

...

0 if  ∈ 0

 (2.3)

where 0 6= 0 for any  6= , ∪=10 = {1 2    }, and 0∩0 = ∅ for any  6= . For now, we assume

that the number of groups,  is known and fixed. But we will study the determination of  in Section

C of the online supplement. Let α ≡ (1     ) β1 ≡ (11     1 ) and β2 ≡ (21     2 )

We denote their true values as α0 β01 and β
0
2, respectively. We also use 

0
2 and 0 to denote the true
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coefficients of 2 and We use  ≡ #0 to denote the cardinality of the set 0We are interested in
identifying each individual’s group membership and estimating the long-run cointegrating group-specific

coefficients,   = 1 .

By allowing for the latent group structures for the long-run parameters, we can achieve a right balance

between parameter parsimony and model misspecification. Note that the key parameters of interest in

nonstationary panels are the coefficients of the nonstationary regressors as they characterize the long-run

equilibrium relationship between the dependent variables and the nonstationary regressors. If we allow

these parameters to be individual-specific, we can run individual time-series regressions to estimate them

but their estimators will have non-standard limiting distributions and can converge to the true values only

at the rate  On the other hand, if we assume these coefficients are common across all individuals, we

will have a convenient yet restrictive assumption that facilitates estimation and inference and meanwhile

a very large chance of model misspecification. The latent group structure adopted in this paper is an

intermediate approach. It allows for certain degree of heterogeneity in the long-run parameters and helps

to overcome some problems associated with nonstationary time series analysis too. In particular, under

some conditions we can identify the group structure and estimate the group-specific long-run parameters

at the rate
√
 Moreover, these long-run parameter estimators are asymptotically normal.

Even though we focus only on the linear cointegrating model in this paper, the theory that we are

developing is quite different from that in SSP for three main reasons. First, the presence of nonstationary

regressors substantially complicates the asymptotic analysis. In particular, we need to establish some

uniform convergence rates that are not available in the nonstationary panel literature. Second, the in-

creasing dimension of the stationary regressors in the model also complicates the issue. Third, we allow

for endogeneity in both 1 and 2 In the time series framework, it is well known that the endogeneity

of either the I(1) or I(0) regressors does not cause the inconsistency of the OLS estimator of the long-run

relationship. In particular, the estimators of the coefficients of I(1) regressors are still consistent at the

rate  despite the fact that it exhibits an endogeneity bias of order (1 ) (see, e.g., Proposition 19.2 in

Hamilton (1994)). We will show that a similar phenomenon occurs in the panel setup.

2.2 Penalized least squares estimation

Without imposing the latent group structures in (2.3), we can estimate 1 and 2 in (2.1) by using the

fixed effects estimator. In this case, we consider the within-group transformation

̃ = 01̃1 + 02̃2 + ̃ (2.4)

or in vector form

̃ = ̃11 + ̃22 + ̃ (2.5)

where ̃ = (̃1  ̃ )
0
 ̃ = − ̄ ̄ =

1


P
=1  and ̃1 ̃2 ̃ ̄1 ̄2 ̄ ̃1 ̃2 and ̃

are analogously defined. The FE estimators ̃1 and ̃2 are obtained as the minimizers of the following
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least squares criterion function

 (β1β2) =
1

 2

X
=1

°°̃ − ̃11 − ̃22
°°2 = 1

 2

X
=1

k̃ − ̃k2  (2.6)

where  = (
0
1 

0
2)

0 and ̃ = (̃1 ̃2) has a typical row ̃0 = (̃
0
1 ̃

0
2). Let ̃ = (̃

0
1 ̃

0
2)

0 Then

̃ = (̃0̃)
−1̃0̃ for each . As mentioned above, the estimators ̃1 of the long-run parameters 1

are consistent despite the possible presence of endogeneity bias, but they converge to the true values only

at the rate  with nonstandard limiting distributions. When 01’s exhibit the latent group structure in

(2.3), it is possible to pull over the observations from both the time series and cross-sectional dimensions

to obtain more efficient estimators of the group-specific long-run parameters. We will show that these

new estimators, possibly after bias correction, converge to the true values at the rate
√
 and are

asymptotically normally distributed.

To explore the latent group structure of 1’s in (2.3), we propose to estimate β1, β2, and α by

minimizing the following C-Lasso-based penalized least squares (PLS) criterion function


(β1β2α) =  (β1β2) +





X
=1

(̃)
2−

Y
=1

°°°̂1(1 − )
°°°  (2.7)

where  = ( ) is a tuning parameter, ̃2 =
1


P
=1(̃− ̃

0
̃)

2 and ̂1 =
1
2

P
=1 ̃1̃

0
1 When

̃ and ̂1 are replaced by 1 and 1  respectively, the penalty term in (2.7) reduces to that in SSP.

Here, we introduce these two terms into the penalty to ensure the scale-invariant property of the penalized

estimators.

As SSP remark, the second term on the right hand side of (2.7) is a penalty term that takes a novel

mixed additive-multiplicative form. It has  additive terms, each of which takes a multiplicative form as

the product of  separate penalties. The multiplicative component is needed because for each  we do not

know a priori to which point 1 should shrink and must allow 1 to shrink to any one of the  unknown

values 1    Each of the  penalty terms in the multiplicative expression permits 1 to shrink to a

particular unknown group-specific parameter vector  The summation component is needed because we

need to pull information from all  cross-sectional units in order to identify the group-specific parameters

and the individual-specific parameters jointly. Note that the tuning parameter  is used to control the size

of the penalty. A too small value of  means that the penalty term won’t play an important role so that

many of 1’s would not shrink toward one of the group-specific values in {1  } ; a too large value
of  will force all 1’s to shrink toward one of the group-specific values in {1  }  which may result
in misclassification. In theory, we require that  tend to zero at an appropriate rate as ( )→∞ The

exact conditions on  are stated in Assumption A.3(iv) below.

Minimizing the objective function in (2.7) yields the C-Lasso-based PLS estimates β̂1 β̂2 and α̂.

Let ̂1 and ̂ denote the 
 and  columns of β̂1 and α̂, respectively, i.e., β̂1 ≡ (̂11  ̂1 ) and

α̂ ≡ (̂1  ̂). We will study the asymptotic properties of the C-Lasso estimators below.
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3 Notations and Assumptions

In this section, we spell out the main notations and assumptions that are needed for the study of the

asymptotic properties of our estimators.

Since we include the fixed effects  in (2.1) and assume covariance-stationarity of 2 we assume

without loss of generality that 2 has zero mean.
2 Let  =

¡
 

0
1 

0
2

¢0
where 2 = 2 The

long-run covariance matrix of {} is given by

Ω =
∞X

=−∞
(

0
0) =

⎛⎜⎜⎝
Ω00 Ω01 Ω02

Ω10 Ω11 Ω12

Ω20 Ω21 Ω22

⎞⎟⎟⎠  (3.1)

where, e.g., Ω00 =
P∞

=−∞(
0
0) Ω01 =

P∞
=−∞(

0
10), and Ω02 =

P∞
=−∞(

0
20)

Following the literature on nonstationary panels, we will make the following decomposition

Ω = Σ + Λ + Λ
0


where Σ =  (
0
) denotes the short-run variance of {} and Λ =

P∞
=1(

0
0). We partition Σ

and Λ conformably with  and Ω :

Σ =

⎛⎜⎜⎝
Σ00 Σ01 Σ02

Σ10 Σ11 Σ12

Σ20 Σ21 Σ22

⎞⎟⎟⎠ and Λ =

⎛⎜⎜⎝
Λ00 Λ01 Λ02

Λ10 Λ11 Λ12

Λ20 Λ21 Λ22

⎞⎟⎟⎠  (3.2)

Let ∆ = Σ + Λ denote the one-sided long-run covariance of {}  Let  = 1 + 1 + 2 denote the

dimension of  Let 0 1 and 2 denote respectively the 1 ×  1 ×  and 2 ×  selection matrices

such that 0 =  and  =  for  = 1 2 In the dynamic DOLS example in (2.2), 2 contains

1 For this reason, we do not require that Ω be of full rank. But we will assume that Ω11 and Σ22

are of full rank. As in the time series literature, the full rank of Ω11 rules out potential cointegration

among the variables in 1 when 1  1 and that of Σ22 rules out collinearity among the variables in

2 when 2  1. For more precise conditions, see Assumption A.2 below.

Let max = max1≤≤ and max = max1≤≤ unless otherwise stated. Define min and min analo-

gously. We make the following assumptions.

Assumption A.1 (i) For each  {  ≥ 0} is a linear process such that

 =  ()  =
∞X
=0

− 

where {} is an independent process with zero mean and variance-covariance matrix  Each element of
 has finite 2 ( + ) moments that are bounded uniformly in ( )  where   4 and  is an arbitrarily

small positive number.

(ii) max
P∞

=0 
2
°°°° ∞ for any selection matrix  that selects any finite (non-divergent) number
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of rows in  

(iii) For each  {  ≥ 0} is a strong mixing process with mixing coefficients  () satisfyingmax  () ≤


 for some  ∞ and  ∈ (0 1) 
(iv) {  ≥ 0} are independent across 

Assumption A.2 (i) There exists a constant 11 such that lim inf→∞ min

³

2

P
=1 ̃1̃

0
1

´
≥ 11  0

almost surely (a.s.), where  = log log  .

(ii) There exist constants Ω11 and ̄Ω11 such that 0  Ω11 ≤ min min (Ω11) ≤ max max (Ω11) ≤
̄Ω11 ∞

(iii) There exist constants 22 and 22 such that 0  22 ≤ min min (Σ22) ≤ max max (Σ22) ≤
22 ∞.
(iv) Let Σ∗02 = Σ00 − Σ02Σ−122Σ20 There exist constants 00 and 00 such that 0  00 ≤

minΣ
∗
02 ≤ maxΣ00 ≤ 00 ∞

Assumption A.3 (i) For each  = 1   →  ∈ (0 1) as  →∞.
(ii) min1≤ 6=≤

°°0 − 0
°° ≥  for some fixed   0

(iii) As ( )→∞  2 → 1 ∈ [0∞) 2 → 2 ∈ [0∞) and 32
−1 (log  )6 → 3 ∈ [0∞)

(iv) As ( )→∞ 2 → 0 −
1
 
−(+1)
  log  →∞ +1 1−1 log  → 0 

2−12 log 

→ 0 and 
12
2 1−12 log  =  (1) 

Assumption A.1(i)-(ii) imposes that the innovation process {} is a linear process that exhibits cer-
tain moment and summability conditions. The linearity assumption is weak because of the celebrated

Wold decomposition theorem which says that any mean zero covariance stationary process with absolutely

summable auto-covariances can be represented as an MA(∞) linear process. See, e.g., Proposition 4.1 in
Hamilton (1994). The summability conditions are used to ensure the validity of certain functional central

limit theorem. When 2 is fixed, the selection matrix  is not needed. In our asymptotic analysis, we will

frequently call upon the Beveridge and Nelson (1981, BN) decomposition:

 =  (1)  + ̆−1 − ̆ (3.3)

where  (1) =
P∞

=0   ̆ =
P∞

=0 ̆−  and ̆ =
P∞

=+1  Following Phillips and Solo (1992,

p.989), Assumption A.1(i)-(ii) ensures that

max

max


 k̆k2 ∞

for any selection matrix  such that ̆ selects only a fixed number of elements in ̆ For example,  =

(00 01)
0
selects the first 1 + 1 elements ̆ that corresponds to

¡
 

0
1

¢0
 Assumption A.1(iii) assumes

that {  ≥ 0} is a strong mixing process for the convenience of using a Bernstein-type exponential
inequality that is available for strong mixing processes. It is satisfied by many well-known processes

such as linear stationary autoregressive moving average (ARMA) processes with continuously distributed

errors and a large class of processes implied by numerous nonlinear models, including bilinear, nonlinear

autoregressive (NLAR), and autoregressive conditional heteroskedastic (ARCH) type models. See Davidson

(1994, Ch. 14), Doukhan (1994) and Fan and Yao (2008, Ch. 2.6) for more examples of strong mixing

9



processes. In particular, Davidson (1994, Ch. 14.4) provides some sufficient conditions to verify that a

linear process of the type in Assumption A.1(i) is strong mixing, and Andrews (1984) provides an example

of autoregressive process that is not strong mixing. The geometric mixing rate can be relaxed to being

algebraic with a little bit more involved notation in the proofs. Here we follow SSP and assume the

geometric mixing rate condition for simplicity. By White (2001, Theorem 7.18), Assumption A.1(i)-(iii)

is far more sufficient to ensure the functional central limit theorem (FCLT) holds for {  ≥ 0} for
each  provided its long-run variance-covariance matrix is positive definite. Assumption A.1(iv) imposes

cross-sectional independence, as was done in the early literature on panel cointegration analyses (see, e.g.,

Phillips and Moon, 1999; Kao and Chiang, 2000; Mark and Sul, 2003). We do not relax such an assumption

in this paper because even under this restrictive assumption, the rigorous asymptotic analysis is already

extremely involved.

Assumption A.2(i) requires that ̂1 ≡ 1
2

P
=1 ̃1̃

0
1 is well behaved uniformly in  For each  we

can readily apply the results in Park and Phillips (1988, 1989) and show that

̂1 ⇒
Z 1

0

̃1 () ̃1 ()
0
 (3.4)

where ̃1 = 1 −
R 1
0
1 ()  and 1 is a 1-dimensional Brownian motion with covariance Ω11 In

this case, as long as Ω11 is positive definite, we can ensure that ̂1 is asymptotically nonsingular for

each  For our asymptotic analysis, we require that both the maximum and minimum eigenvalues of ̂1

be well behaved uniformly in  For the maximum eigenvalue, we can call upon the usual law of iterated

logarithm (LIL) and show that

limsup
→∞

max(̂1(2 log log  )) 

µ
1

2
+ 

¶
̄Ω11a.s., (3.5)

where  is an arbitrarily small positive number and ̄Ω11 is a constant defined in Assumption A.2(ii). For

the minimum eigenvalue, a sufficient condition for the Assumption A.2(i) to hold is that there exist some

positive constants  ∈ (0 1) with min1≤≤  ≥ 0  0 such that

01 1 ≥ 
0
11 ≥ 0

0
11 for all  = 1   (3.6)

where  =  −  (
0
  )

−10 =  − 1

 

0
 and  is a  × 1 vector of ones. To see the meaning of

the above condition, we observe that for any nonrandom vector  ∈ R1 such that kk = 1 and 1 is

nonzero,

0
X
=1

̃1̃
0
1 = 001 1 = 0011 − (1)0 (0  )−101

= 0011
∙
1− (1)

0 (0  )
−101

(1)01

¸


So the condition in (3.6) requires the existence of a 0 ∈ (0 1) such that
(1)

0 (0  )
−101

(1)01
≤

1 − 0 which essentially requires that 1 is not  a.s. uniformly in  Then by the “other” or

10



Chung-type LIL (see, e.g., Donsker and Varadhan (1977), Lai and Wei (1982a, p.163), Lai and Wei

(1982b, p.364), Phillips (1996, p.799), and Bai (2004, pp.140-141)) and the Cramér-Wold device, we have

lim inf→∞ min
¡

 2

01
0
1

¢ ≥ 1 for some 1  0. This, in conjunction with (3.6), implies that Assump-

tion A.2(i) would be satisfied with 11 = 10

Assumption A.2(ii)-(iii) imposes some conditions on the eigenvalues of nonstochastic square matrices.

They imply that Ω11 and Σ22 have full rank uniformly in . Assumption A.2(iv) is imposed to ensure

nondegenerate limiting distributions. Given Assumption A.2(iii), it implicitly implies that Σ020Σ20 is

bounded away from the infinity and thus restricts the degree of endogeneity in the stationary regressors.

Assumption A.3(i)-(ii) is commonly assumed in the panel literature with latent group structures; see,

e.g., Bonhomme and Manresa (2015), Ando and Bai (2016), SSP, Lu and Su (2017), and Su and Ju (2018).

In particular, Assumption A.3(ii) requires the separability of the group-specific parameters. Assumption

A.3(iii) imposes conditions on   and 2 It requires that  should not diverge to infinity at a rate faster

than  2 or slower than  12 Note that we do not require  = ( ) as in most studies on nonstationary

panels under the joint limit theory (see, e.g., Phillips and Moon, 1999; Bai and Ng, 2010). The last

condition in Assumption A.3(iii) is analogous to the condition 32
−1 =  (1) in the time series framework

(e.g., Saikkonen, 1991). Assumption A.3(iv) looks quite complicated but can be simplified to a great deal

in the special case where  and  pass to infinity at the same rate as in many macro applications. In this

case, noting that   4 as stated in Assumption A.1(i) and 32
−1 =  (1) implied by Assumption A.3(iii),

we can replace Assumption A.3(iv) by the following assumption:

Assumption A.3(iv*) As ( )→∞ 2 → 0 and  1−
1
 
−(+1)
  log  →∞.

Then we can find a large range of values for  satisfying Assumption A.3(iv*). It is sufficient to have

 ∝ − for  ∈
µ
0

 − 1


¶


When  is sufficiently large (e.g., the tails of the error terms decay exponentially fast), the upper bound

for  is arbitrarily close to 1. If we only require   4 then it is fine to choose  ∝ −34

4 Asymptotic Properties

In this section, we first find the preliminary rates of convergence for the coefficient estimators and prove

classification consistency. Then we study the oracle properties of C-Lasso estimators and their post-Lasso

versions. The special case of panel dynamic PLS is also considered, and an extension to models with

incidental time trends is also considered.

4.1 Preliminary rates of convergence

Let ∗ = (001 
∗0
2)

0, where ∗2 = 02 + Σ
−1
22Σ20 The following theorem establishes the preliminary

rates of consistency for both ̂ and ̂

Theorem 4.1 Suppose that Assumptions A.1-A.3 hold. Then

(i) ||̂1 − 01|| =  (
−1 + ) and ||̂2 − ∗2|| =  (

12
2 (−12 + )) for  = 1  

11



(ii) 1


P
=1 ||̂1 − 01||2 =  (

2

−2) and 1



P
=1 ||̂2 − ∗2||2 =  (2

−1)

(iii) (̂(1)  ̂()) − (01  0) =  (
−1) where (̂(1)  ̂()) is a suitable permutation of

(̂1  ̂).

Theorems 4.1(i) and (ii) establish the pointwise and mean square convergence of ̂ = (̂
0
1 ̂

0
2)

0,

respectively; Theorem 4.1(iii) indicates that ̂1  ̂ consistently estimate the true group-specific coef-

ficients, 01  
0
  subject to a suitable permutation. We summarize some interesting findings. First,

despite the presence of endogeneity in both the nonstationary and stationary regressors, we can estimate

the true coefficients (01) of the nonstationary regressors consistently. Second, when Σ20 is nonzero,

we cannot estimate the true coefficients (02) of the stationary regressors consistently. Instead, ̂2 is

consistent with the pseudo true value ∗2 = 02 + Σ
−1
22Σ20 where Σ

−1
22Σ20 signifies the endogeneity

bias. Third, the effect of increasing dimension (2) appears in the rates of convergence for ̂2 but not in

those for ̂1. Apparently, ̂1’s converge to their true values faster than ̂2’s to their pseudo-true values.

Fourth, as in SSP, the pointwise convergence of ̂ depends on  while the mean square convergence of

{̂1 ̂2} and the convergence of ̂’s do not. As we have shown in the proof of the above theorem, the
convergence of ̂ only depends on the mean square convergence of {̂1}
For notational simplicity, hereafter we will write ̂() as ̂. We define the estimated groups

̂ = { ∈ {1 2  } : ̂1 = ̂} for  = 1  (4.1)

To study the classification consistency, we need to establish the uniform consistency of ̂1 and ̂2. This

is reported in the next theorem.

Theorem 4.2 Suppose that Assumptions A.1-A.3 hold. Then for any fixed   0

(i)  (max1≤≤ ||̂1 − 01|| ≥ 1 ) = 
¡
−1

¢


(ii)  (max1≤≤ ||̂2 − ∗2|| ≥ 
12
2 2 ) = 

¡
−1

¢


where 1 = −11 (log  )(1+)2 for some arbitrarily small   0 and 2 = −12 (log  )3 

The uniform convergence rate of ̂1 is not affected by 2 but is slower than the time series convergence

rate −1 The higher  is (which means the higher order moments for the error terms), the closer 1 is

to −1 When the error terms have exponentially decaying tails as assumed in Bonhomme and Manresa

(2015), we can make 1 arbitrarily close to 
−1 subject to a logarithm factor.

4.2 Classification consistency

To study the classification consistency, we follow SSP and define the following two sequences of events

̂ = { 6∈ ̂| ∈ 0} and ̂ = { 6∈ 0| ∈ ̂}

where  = 1   and  = 1  Let ̂ = ∪∈̂
̂ and ̂ = ∪∈̂

̂. ̂ denotes

the error event of not classifying an element of 0 into the estimated group ̂; and ̂ denotes the

error event of classifying an element that does not belong to 0 into the estimated group ̂. Following

SSP, we say that a classification method is individually consistent if  (̂) → 0 and  (̂) → 0

12



as ( )→∞ for each  ∈ 0 and  = 1  and it is uniformly consistent if  (∪=1̂ )→ 0 and

 (∪=1̂ )→ 0 as ( )→∞.
The following theorem establishes the uniform classification consistency.

Theorem 4.3 Suppose that Assumptions A.1-A.3 hold. Then as ( )→∞
(i)  (∪=1̂ ) ≤

P
=1  (̂ )→ 0

(ii)  (∪=1̂ ) ≤
P

=1  (̂ )→ 0.

Theorem 4.3 implies that all individuals within certain group, say 0, can be simultaneously correctly

classified into the same group (denoted as ̂) w.p.a.1. Conversely, all individuals that are classified into

the same group, say ̂, simultaneously correctly belong to the same group (
0
) w.p.a.1. The result

implies that in large samples, we can virtually take the estimated group as the true group. In particular,

let ̂ = #̂ One can easily show that  (̂ = 0)→ 1 so that  (̂ = )→ 1.

Note that Theorem 4.3 is an asymptotic result and it does not ensure that all individuals can be

classified into one of the estimated groups in finite samples. Indeed, when  is not large, some units

might not be classified if  is not sufficiently big and we stick to the classification rule in (4.1). In

practice, we classify  ∈ ̂ if ̂ = ̂ for some  = 1  and  ∈ ̂ for some  = 1  if

||̂ − ̂|| = min{||̂ − ̂1||  ||̂ − ̂ ||} and
P

=1 1{̂ = ̂} = 0 Since Theorem 4.3 ensuresP
=1  (̂ = ̂)→ 1 as ( )→∞ uniformly in  we can ignore such a modification in large samples

in subsequent theoretical analyses and restrict our attention to the classification rule in (4.1) to avoid

confusion.

4.3 Oracle properties and post-Lasso estimators

To study the oracle property of the C-Lasso-based PLS estimators, we add some notations:

Q() ≡ lim
→∞

1

6

X
∈0



1 (1) (1)
0
01 = lim

→∞
1

6

X
∈0



Ω11

B ≡ B1 + B2 

B1 =
1√


X
∈0



1

∞X
=0

∞X
=0

+
0


B2 =
−1√


 + 1

2

X
∈0



1 (1) (1)
0


V() ≡ lim
→∞

1



X
∈0



µ
1

6
0Ω1Ω

0
1 −

1

12
(0Ω

0
1 ⊗ 1Ω)11

¶


V22 =
¡
Σ−1221 ⊗ 2

¢
 0


¡
 01Σ

−1
22 ⊗  02

¢


where  = 00−02Σ−122Σ20 1 = (02×102×1  2)  2 =
¡
101×1 −Σ020Σ−122

¢
 11 is the 1×1

commutation matrix,3 and  0
 = lim→∞Var(−12

P
=1vec(

0
 −Σ))

The following theorem reports the asymptotic properties of ̂ and ̂2
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Theorem 4.4 Suppose that Assumptions A.1-A.3 hold. Let S2 denote an ×2 selection matrix such that

S22 selects only  elements in 2 where  is a fixed integer that does not grow with ( )  Then

(i)
√
 (̂ − 0)−Q−1()B ⇒ (0Q−1()V()Q

−1
()) as ( )→∞ for  = 1 ,

(ii)
√
S2

³
̂2 − ∗2

´
⇒  (0S2V22S02) as  →∞ for each  = 1  

To understand the above results, we consider the case where the group membership is known. In this

case, the oracle estimators of  and 2 are respectively given by

̂oracle =

⎛⎝X
∈0



̃012̃1

⎞⎠−1 X
∈0



̃012̃ for  = 1 

̂
oracle

2 =
¡
̃02̃2

¢−1
̃02(̃ − ̃1̂

oracle
 ) for  ∈ 0

where 2 =  − ̃2
¡
̃02̃2

¢−1
̃02 One can readily show that ̂ shares the same asymptotic bias

and variance as ̂oracle  and similarly, ̂2 shares the same asymptotic bias and variance as ̂
oracle

2  In this

case, we say that our C-Lasso estimators ̂ and ̂2 are asymptotically oracle efficient. As expected, ̂

may have an asymptotic bias of order 
¡
−1

¢
in the presence of endogeneity, but it converges to its true

value at the usual
√
 -rate after bias correction.

A close examination of the asymptotic bias of ̂ indicates that B can be rewritten as the sum-

mation of two terms, B1 and B2  B1 appears even without the within-group transformation

as in Phillips and Moon (1999); B2 is simply due to the time-demeaning operator. As mentioned

above, we allow for both sources of endogeneity. When Σ20 6= 0 we have a contemporaneous correlation
between the stationary regressor 2 and the error term  in the cointegrating regression model. When

1
P∞

=0

P∞
=0 +

0


0
0 6= 0 or 1 (1) (1)0 00 6= 0, we allow the correlation of  with some leads or

current values of 1 When both types of correlations vanish, B = 0 so that there is no endogeneity

bias in this special case.

Note that we specify a selection matrix S2 in Theorem 4.4 that is not needed if 2 is fixed. When

2 diverges to infinity, we cannot derive the asymptotic normality of ̂2 directly. Instead, we follow

the literature on inferences with a diverging number of parameters (e.g., Fan and Peng, 2004; Lam and

Fan, 2008; Lu and Su, 2015; Qian and Su, 2016a and 2016b) and prove the asymptotic normality for any

arbitrary finite linear combinations of elements of ̂2

Given the estimated groups, {̂  = 1 }, we can obtain the post-Lasso estimators of  and 2
as

̂
post
 =

⎛⎝X
∈̂

̃012̃1

⎞⎠−1 X
∈̂

̃012̃ for  = 1 

̂
post

2 =
¡
̃02̃2

¢−1
̃02(̃ − ̃1̂

post
 ) for  ∈ ̂

We show in the proof of Theorem 4.4 that the C-Lasso estimators ̂ and ̂2 are asymptotically equivalent

to their post-Lasso versions ̂
post
 and ̂

post

2  respectively. The following theorem reports the limiting

distributions of ̂
post
 and ̂

post

2 
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Theorem 4.5 Suppose that Assumptions A.1-A.3 hold. Then

(i)
√
 (̂

post
 − 0)−Q−1()B ⇒ (0Q−1()V()Q

−1
()) for  = 1 

(ii)
√
S2(̂

post

2 − ∗2)⇒  (0S2V22S02) for  = 1  

where Q() B  V() and V22 are as defined before Theorem 4.4 and S2 is as defined in Theorem 4.4.

Given the asymptotic results in Theorems 4.4 and 4.5, one can make inference as if the true group

membership is known. Despite the asymptotic equivalence of the C-Lasso estimators and their post-Lasso

versions, it is well known that the post-Lasso estimators tend to have a smaller finite sample bias in

simulations and are thus recommended for practical uses. Despite this, in order to make inference on the

long-run cointegrating relationship, we have to remove the bias. There are two standard ways to correct the

endogeneity bias in the time series literature, namely, fully-modified least squares (FMOLS) and dynamic

OLS (DOLS). In principle, one can consider either the panel DOLS or panel FMOLS method as in Kao

and Chiang (2000) and Mark and Sul (2003) based on the estimated groups. The procedure is standard

and thus omitted. Alternatively, we can consider the use of the DOLS idea in the C-Lasso procedure,

which yields the C-Lasso-based dynamic PLS (DPLS) estimation procedure. See the next subsection for

details.

4.4 The case of dynamic PLS

In this subsection, we focus on the dynamic PLS (DPLS) estimation of the panel cointegration model with

latent group structures. We show that the results in Theorems 4.4 and 4.5 continue to be valid with little

modification.

For notational clarity, we now assume that {1} are generated by⎧⎨⎩ =  + 011 + 

1 = 1−1 + 1

 (4.2)

where   and 1 are defined as before, and 1’s exhibit the latent structures in (2.3).

To consider the panel DPLS estimation method, we follow Saikkonen (1991) and Stock and Watson

(1993) and make the following assumption.

Assumption A.4. (i) The process {} can be projected on to {1} as follows:  =
P∞

=−∞ 1++

 where
P∞

=−∞ kk  ∞,  is an error term with mean zero and finite 2th moment where   4,

and  and 1 are uncorrelated for all lags and leads.

(ii) As ( ) → ∞ there exists   12 such that  
P
||̄2 || || → 0 12 12− → 0 and

12̄2
− → 0.

Assumption A.4(i) ensures that (1+) = 0 for  = 0±1±2    and Assumption A.4(ii) ensures
that the values of 1 in the very remote past and future have only negligible impacts on . Therefore,

we can truncate the leads and lags and run the following DOLS regression model

 =  + 011 +
̄2X

=−̄2
0∆1+ + 

†
 (4.3)
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where 
†
 =  +  and  =

P
||̄2 

0
∆1+ signifies the approximation/truncation error. Let

2 denote a collection of the lags and leads of ∆1 : 2 = (∆01−̄2  ∆
0
1+̄2

)0 Let 2 =

(0−̄2   
0
̄2
)0 and 2 = (2̄2+1)1 After the within-group transformation, we have the following model

̃ = 01̃1 +
̄2X

=−̄2
0f∆1+ + ̃

†
 = 01̃1 + 02̃2 + ̃

†
 (4.4)

where ̃
†
 = 

†
 − ̄

†
  ̄

†
 =

1
−2̄2

P−̄2
=̄2+1


†
, and ̃ and ̃2 are analogously defined.

As before, we can continue to consider the C-Lasso-based PLS regression and obtain the Lasso estima-

tors of 1 2 and  We denote these estimators as ̂


1 ̂


2 and ̂  where  abbreviates DPLS.

Let ̂ denote the estimated group as before. The corresponding post-Lasso estimators of  and 2

take the form

̂
 post
 =

⎛⎝X
∈̂

̃012̃1

⎞⎠−1 X
∈̂

̃012̃ for  = 1 

̂
 post

2 =
¡
̃02̃2

¢−1
̃02

³
̃ − ̃1̂

 post


´
for  ∈ ̂

where ̃1 = (̃1̄2+1  ̃1−̄2)
0
 ̃ and ̃2 are analogously defined, and2 = −2̄2−̃2

¡
̃02̃2

¢−1
̃02

The following theorem shows the asymptotic properties of ̂
 post
 and ̂

 post

2 where expressions for

both V() and V22 are greatly simplified.

Theorem 4.6 Suppose that Assumptions A.1, A.2(i)-(iii) and A.3-A.4 hold. Suppose that there exists a

constant 00 such that min1≤≤ Σ00 ≥ 00  0. Then

(i)
√
 (̂

post
 − 0)⇒ (0 Q−1()V

†
()Q

−1
()) for  = 1 

(ii)
√
S2(̂

post

2 − 02)⇒  (0S2V22S02) for  = 1  

where Q() ≡ lim→∞
1

6

P
∈0


Ω11 V†() ≡ lim→∞

1


P
∈0



1
6Ω

†
00Ω11 Ω

†
00 = Ω00−Ω01Ω−111Ω10

and V22 = Σ−12222Σ
−1
22 with 22 = lim→∞Var(−12

P
=1 2)

Even though we have not stated in the above theorem, ̂ and ̂


2 are asymptotically equivalent to

̂
post
 and ̂

post

2  respectively. Thus both C-Lasso-based DPLS estimators and their post-Lasso versions

have asymptotic normal distributions and are asymptotically oracle efficient. One can readily construct the

usual t-statistics and F-statistics to make inference. For example, to make inference on the group-specific

long-run cointegrating relationship, we can estimate Q() and V†() respectively by
4

Q̂() =
1

̂ 2

X
∈̂

̃012̃1 and V̂†() ≡
1

̂

X
∈̂

1

6
Ω̂†00Ω̂11

where Ω̂†00 = Ω̂00 − Ω̂01Ω̂−111Ω̂10 and Ω̂00 Ω̂11 Ω̂01 and Ω̂10 denote the HAC estimator of the
long-run variance-covariance components Ω00 Ω11 Ω01 and Ω10 in Ω In practice, we recommend the

use of ̂
post
 and ̂

post

2 because the post-Lasso estimators typically outperform the C-Lasso ones.
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4.5 The case of incidental time trends

Our panel cointegration model can be extended to models with both individual fixed effects and incidental

time trends: ⎧⎨⎩ =  + + 011 + 022 + 

1 = 1 + 1−1 + 1
 (4.5)

where  = 1   and  = 1    denotes the incidental time trend, we allow for the presence of an

intercept term 1 in the I(1) process {1}  and the other variables are defined as before. The above
model reduces to model (2.1) when  = 0 and 1 = 0 for all  In that case, we have employed the within-

group demeaned transformation to eliminate the individual fixed effects. In the presence of both individual

effects and incidental time trends in the above model, we can similarly employ the within-group detrended

data to eliminate both individual fixed effects and incidental time trends. Specifically, we consider the

detrended model:

̇ = 01̇1 + 02̇2 + ̇ (4.6)

where ̇ =  −
P

=1 
0


³P
=1 

0


´−1
 with  = (1 )0 and ̇1 ̇2 and ̇ are analogously

defined. Then we can apply the same estimation procedure as used in Section 2.2 with the dotted variables

replacing the tilded variables. The asymptotic properties of the resulting C-Lasso estimators and their

post-Lasso versions will be modified by changing the demeaned Brownian motion to the detrended one in

the limiting distributions.

To see this point clearly, we observe that

1 = 10 + 1+
X

=1

1 = 10 + 1+ 01

where 01 =
P

=1 1 is a purely random walk process. Define  =diag(1 
−1) and () = (1 )0. Let

 = bc the integer part of  for  ∈ [0 1]. Then as  → ∞,   → () uniformly in  ∈ [0 1]. By
the functional central limit theorem and continuous mapping theorem, we have

1√

̇1bc =

1√


⎡⎣1bc − X
=1

1
0


Ã
X
=1


0


!−1


⎤⎦
=

1√


⎡⎣01bc − X
=1

01
0


Ã
X
=1


0


!−1


⎤⎦
=

01bc√

− 1



X
=1

01√

 

0


Ã
1



X
=1

 
0


!−1
 

⇒ 1()−
Z

1()()
0
µZ

()()0
¶−1

() ≡ 
1()

where 1(·) is as defined below (3.4), and 
1(·) is a detrended Brownian motion and independent across

. Following the analysis in Sections 4.1-4.4, we can show that Theorems 4.1-4.3 continue to hold with the
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demeaned data replaced by the detrended data, and that the limiting distributions in Theorems 4.4-4.6

can be modified accordingly to account for different asymptotic moments on Q and V with the demeaned
Brownian motion replaced by the detrended Brownian motion. For brevity, we do not report the details

here.

5 Monte Carlo Simulation

In this section, we evaluate the finite sample performance of both PLS-based and DPLS-based C-Lasso

estimates and their post-Lasso versions.

5.1 Data generating processes

We consider five data generating processes (DGPs). The observations in DGPs 1-3 are drawn from three

groups with 1 : 2 : 3 = 03 : 04 : 03. DGPs 4-5 try to mimic the estimates and estimated group

structures in the empirical application, where observations in DGP 4 are drawn from two groups with

1 : 2 = 09 : 01 and those in DGP 5 are drawn from three groups with 1 : 2 : 3 = 05 : 03 : 02.

There are four combinations of the sample sizes with  = 50 100 and  = 40 80.

DGP 1 (Strictly Exogenous Nonstationary Regressors) The observations ( 
0
) are generated from

the following cointegrated panel⎧⎨⎩ =  + 00  +  =  + 0011 + 

1 = 1−1 + 1

 (5.1)

where  ∼ IID (0 1),  = 1 is a 2 × 1 vector,  = ( 
0
1)

0 follows a multivariate standard

normal distribution, and 0 = 01 exhibits the group structures in (2.3) for  = 3 and

(01 
0
2 

0
3) =

ÃÃ
04

16

!


Ã
1

1

!


Ã
16

04

!!


DGP 2 (Weakly Dependent Nonstationary Regressors) The observations ( 
0
) are generated via

(5.1) but we now allow for correlations between the two nonstationary regressors in 1 the correlations

between 1 and  and the correlations between  and 1 Specifically, for each  we generate a 4-

dimensional time series
n

†
  ≥ 1

o
via a linear process 

†
 =

P∞
=1 −  where  are IID  (0 4) 

 = 05 · −35 · Ω121  and Ω
12
1 is the symmetric square root of Ω1 ≡

⎛⎜⎜⎜⎜⎝
1 03 02 0

03 1 02 02

02 03 1 02

0 02 02 1

⎞⎟⎟⎟⎟⎠  Then

we set  = 0
†
 1 = 1

†
 and  = 

†
1 where 0 = (1 0 0 0)  1 =

Ã
0 1 0 0

0 0 1 0

!
, and

 = (0 0 0 1).

DGP 3 (Weakly Dependent Nonstationary and Stationary Regressors) The observations ( 
0
) are
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generated from the following cointegrated panel⎧⎨⎩ =  + 00  +  =  + 0011 + 022 + 

1 = 1−1 + 1



where 1 is a 2 × 1 vector, 01 exhibits the group structures and preserves the setting in DGP 1,

and 2 = 2 contains a scalar stationary regressor. The coefficients of the stationary regressors are

heterogeneous across all  such that 2 ∼ IID (05 1). To allow correlation between  and  for

each  we first generate a 5-dimensional time series
n

†
  ≥ 1

o
via a linear process 

†
 =

P∞
=1 − 

where  are IID  (0 5)   = 05 · −35 · Ω122  and Ω
12
2 is the symmetric square root of Ω2 ≡⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 03 02 02 0

03 1 02 0 02

02 02 1 0 02

02 0 0 1 02

0 02 02 02 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
 Then we set  = 0

†
 1 = 1

†
 2 = 2

†
 and  = 

†
1 where

0 = (1 0 0 0 0)  1 =

Ã
0 1 0 0 0

0 0 1 0 0

!
, 2 = (0 0 0 1 0) and  = (0 0 0 0 1).

DGP 4 (Mimicking the first subsample in Table 5) The observations ( 
0
) are generated via (5.1),

where  = 1 contains one nonstationary regressor. For each , we first generate a 3-dimensional time

series
n

†
  ≥ 1

o
via a linear process 

†
 =

P∞
=1 −   are IID  (0 3)   = 05·−35 ·Ω121  and

Ω
12
1 is the symmetric square root of Ω1 ≡

⎛⎜⎜⎝
1 03 0

03 1 02

0 02 1

⎞⎟⎟⎠  Then we set  = 0
†
 1 = 1

†
 and

 = 
†
1 where 0 = (1 0 0)  1 = (0 1 0), and  = (0 0 1). 

0
 = 01 exhibits the group structures

in (2.3) for  = 2 with (01 
0
2) = (09−07)  which is the collection of the group-specific estimates for

the first subsample in Table 5. Note that we set 1 : 2 = 09 : 01 for this DGP.

DGP 5 (Mimicking the second subsample in Table 5) The observations ( 
0
) are generated via (5.1).

The innovation processes are generated via the same processes in DGP 4. Now, 0 = 01 exhibits the

group structures in (2.3) for  = 3 with (01 
0
2 

0
3) = (09 02−06)  the collection of the group-specific

estimates for the second subsample in Table 5. Note that for this DGP we set 1 : 2 : 3 = 05 : 03 : 02

which is close to 49 : 27 : 23 the ratios of estimated numbers of elements in the three estimated groups.

In all cases, the number of replications is 10,000.

5.2 Classification and estimation

For the moment, we assume that the number of groups is known and examine the performance of classifica-

tion and estimation. When the number of groups is unknown, we can apply the information criterion (IC)

introduced in Section C of the online supplement to determine the number of groups. We also examine

the finite sample performance of the IC in Section E of the online supplement.

For classification, we consider the PLS-based C-Lasso classification results for DGPs 1, 2, 4 and 5, and
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Table 1: Empirical classification errors in percentage

 0.1 0.2

N T ̄ (̂) ̄ (̂ ) ̄ (̂) ̄ (̂ )
DGP1 50 40 0.212 0.221 0.515 0.410

50 80 0.000 0.000 0.001 0.001

100 40 0.218 0.226 0.475 0.384

100 80 0.000 0.000 0.001 0.001

DGP2 50 40 0.483 0.506 0.875 0.728

50 80 0.000 0.000 0.003 0.002

100 40 0.500 0.518 0.796 0.667

100 80 0.000 0.000 0.004 0.003

DGP3 50 40 0.535 0.563 0.799 0.684

(PLS) 50 80 0.001 0.001 0.005 0.004

100 40 0.532 0.562 0.745 0.640

100 80 0.000 0.000 0.003 0.002

DGP3 50 40 6.337 5.630 12.255 9.700

(DPLS) 50 80 0.038 0.031 0.186 0.141

100 40 6.027 5.432 11.453 9.138

100 80 0.033 0.026 0.157 0.120

DGP4 50 40 1.234 0.834 0.821 0.543

50 80 0.014 0.008 0.004 0.002

100 40 1.225 0.823 0.801 0.527

100 80 0.011 0.007 0.004 0.003

DGP5 50 40 0.000 0.000 0.040 0.004

50 80 0.000 0.000 0.000 0.000

100 40 0.000 0.000 0.032 0.004

100 80 0.000 0.000 0.001 0.000

both the PLS- and DPLS-based C-Lasso classification results for DGP 3. For the DPLS-based classification

in DGP 3, we introduce the lags and leads of ∆1 in our penalized estimation by setting ̄2 = b 14cWe
follow Section 4.2 and define two types of average classification errors: ̄ (̂) = 1



P
=1 ̂ (∪=1̂)

and ̄ (̂ ) = 1


P
=1 ̂ (∪=1̂) where ̂ is the empirical mean over 10,000 replications. Table 1

reports the classification errors by setting  = 
−34 with  = 01 and 0.2.5 We summarize some

important findings from Table 1. First, both types of classification errors vary over  The smaller value

of  the smaller percentage of the classification errors. This means that a larger value of penalty term

tends to lead to a higher rate of misclassification. Second, as  increases, the percentage of classification

errors drops significantly. In fact, when  is 80, we have less than 1% of individuals misclassified in all

cases under investigation. Third, for DGP 3, the performance of the DPLS-based C-Lasso classification

is not as good as that of the PLS-based C-Lasso estimation. Despite this fact, the former performance

becomes acceptable when  = 80 for both choices of 

For the estimation, we consider both the C-Lasso estimates and their post-Lasso versions. Specifically,

for all DGPs we consider the PLS-based C-Lasso estimates, the OLS-based post-Lasso estimates, the

DOLS-based post-Lasso estimates, and the oracle estimates that are obtained by using the true group

structures. For DGP 3, we also consider the DPLS-based C-Lasso estimates, their post-Lasso versions,
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and the oracle estimates. For all DOLS-based estimates, we set ̄2 as above. We report the bias, root-

mean-square error (RMSE), and coverage probability of the two-sided nominal 95% confidence interval for

the estimate ̂1 (1) of the first parameter 1 (1) in 1 for each DGP in Tables 2-3, where all criteria

are averaged over different groups and across 10,000 replications. For example, we calculate the RMSE

of ̂1 (1)’s as
1


P0

=1RMSE(̂1) with ̂1 denoting the first element in ̂ for one replication and

then average them across all replications for each case.

Table 2 reports the estimation results for DGPs 1-2 and 4-5 based on the PLS method. Table 3 reports

the estimation results for DGP 3 based on both the PLS and DPLS methods.6 These tables reveal some

general patterns. First, the bias and RMSE of the C-Lasso estimates and their post-Lasso versions always

decrease as either  or  increases, and they decrease faster when  increases than when  increases.

This is as expected due to faster convergence rate of the estimates along the time dimension than along

the cross-sectional dimension. Second, when there is no endogeneity issue in DGP1, the finite sample

performance of the post-Lasso OLS estimates is close to that of the oracle ones and dominates that of the

DOLS-based post-Lasso estimates. This indicates that the DOLS may hurt in finite samples when there

is no endogeneity issue in the model. Third, when endogeneity is present in DGPs 2-5, the post-Lasso

DOLS estimators are distinctly superior to the C-Lasso and post-Lasso OLS ones for all cases and their

performance is very close to that of the oracle ones. Since the endogeneity issue is not well accounted

for the C-Lasso and post-Lasso OLS estimates, their coverage probabilities may deteriorate when  or

 increases. Fourth, for DGP 3 the DPLS-based C-Lasso estimates outperform the PLS-based C-Lasso

estimates to a great margin, but the post-Lasso estimates are not quite distinct from each other in terms

of bias and RMSE. Fifth, the coverage probabilities of the DOLS-based post-Lasso estimates are generally

quite close to the nominal level (95%) in all cases (except for DGP 1 in the absence of endogeneity).

For DGP3, the coverage probabilities of DPLS-based C-Lasso estimates are closer to the nominal level

compared to those of the PLS-based C-Lasso estimates. These two facts suggest that the DOLS bias

correction yields good coverage probability when endogeneity is present. Lastly, in general the post-Lasso

DOLS estimates outperform the C-Lasso estimates (except for DGP 1 in the absence of endogeneity) and

thus are recommended for practical uses.

6 Application: Testing the PPP hypothesis

In this section we apply our method to reinvestigate the purchasing power parity (PPP) hypothesis in

international economics.

6.1 PPP hypothesis

The PPP hypothesis assumes that in the absence of transaction costs and trade barriers, a basket of identi-

cal goods will have the same price in different markets when the prices are expressed in the same currency.

Unlike the law of one price for one particular good, the PPP is built on a “basket of goods”, indicating

that the nominal exchange rate is adjusted by the relative general price index for international comparison.

The long-run PPP hypothesis was broadly accepted in the post-war period before the breakdown of the

Bretton Woods system in the early 1970s. In the post-Bretton Woods period, most applied work fails to
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Table 2: RMSEs, Biases and Coverage probabilities for various estimates

N T  = 02 RMSE Bias Coverage % RMSE Bias Coverage %

DGP1-PLS DGP2-PLS

50 40 C-Lasso 0.0174 0.0001 93.05 0.0287 0.0223 85.67

Post-Lasso 0.0173 0.0001 93.24 0.0276 0.0211 87.47

Post-Lasso 0.0226 0.0000 84.58 0.0215 0.0001 94.72

Oracle 0.0172 0.0001 93.30 0.0215 0.0000 94.73

50 80 C-Lasso 0.0082 0.0001 93.51 0.0138 0.0107 75.74

Post-Lasso 0.0082 0.0001 93.55 0.0135 0.0105 76.98

Post-Lass 0.0091 0.0001 90.27 0.0088 0.0000 94.15

Oracle 0.0082 0.0001 93.55 0.0088 0.0000 94.15

100 40 C-Lasso 0.0122 0.0001 93.75 0.0252 0.0218 73.51

Post-Lasso 0.0121 0.0001 94.01 0.0240 0.0205 77.62

Post-Lasso 0.0155 0.0001 85.75 0.0148 0.0001 95.82

Oracle 0.0120 0.0001 94.08 0.0148 0.0001 95.85

100 80 C-Lasso 0.0056 0.0000 94.42 0.0120 0.0105 59.63

Post-Lasso 0.0056 0.0000 94.42 0.0117 0.0101 62.00

Post-Lasso 0.0063 0.0001 91.57 0.0060 0.0001 95.26

Oracle 0.0056 0.0000 94.42 0.0060 0.0001 95.27

DGP4-PLS DGP5-PLS

50 40 C-Lasso 0.0290 0.0233 73.88 0.0263 0.0226 52.22

Post-Lasso 0.0285 0.0226 76.03 0.0263 0.0226 52.21

Post-Lasso 0.0188 -0.0001 93.57 0.0139 0.0001 94.18

Oracle 0.0188 0.0001 93.70 0.0139 0.0001 94.18

50 80 C-Lasso 0.0140 0.0114 68.02 0.0128 0.0110 44.90

Post-Lasso 0.0139 0.0112 68.76 0.0128 0.0110 44.89

Post-Lasso 0.0081 0.0000 94.06 0.0061 -0.0001 94.31

Oracle 0.0081 0.0000 94.06 0.0061 -0.0001 94.31

100 40 C-Lasso 0.0259 0.0229 53.83 0.0242 0.0223 24.31

Post-Lasso 0.0252 0.0221 58.16 0.0243 0.0223 24.27

Post-Lasso 0.0130 -0.0002 94.22 0.0097 0.0000 94.31

Oracle 0.0130 0.0000 94.32 0.0097 0.0000 94.31

100 80 C-Lasso 0.0126 0.0113 46.00 0.0119 0.0109 18.40

Post-Lasso 0.0124 0.0110 47.67 0.0119 0.0109 18.40

Post-Lasso 0.0057 0.0000 94.49 0.0043 0.0000 94.45

Oracle 0.0057 0.0000 94.49 0.0043 0.0000 94.45
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Table 3: RMSEs, Biases and Coverage probabilities for various estimates

N T RMSE Bias Coverage % RMSE Bias Coverage %

DGP3-PLS DGP3-DPLS

50 40 C-Lasso 0.0275 0.0206 88.14 C-Lasso 0.0232 0.0000 93.31

Post-Lasso 0.0318 0.0193 81.74

Post-Lasso 0.0215 0.0000 94.90 Post-Lasso 0.0227 0.0000 93.91

Oracle 0.0214 0.0000 95.02 Oracle 0.0214 0.0000 95.02

50 80 C-Lasso 0.0126 0.0094 80.41 C-Lasso 0.0087 0.0000 94.24

Post-Lasso 0.0156 0.0091 71.00

Post-Lasso 0.0086 0.0000 94.29 Post-Lasso 0.0086 0.0000 94.28

Oracle 0.0086 0.0000 94.29 Oracle 0.0086 0.0000 94.29

100 40 C-Lasso 0.0237 0.0200 78.75 C-Lasso 0.0162 0.0000 94.67

Post-Lasso 0.0254 0.0184 75.25

Post-Lasso 0.0148 -0.0001 96.02 Post-Lasso 0.0157 -0.0001 95.24

Oracle 0.0147 -0.0001 96.11 Oracle 0.0150 -0.0005 96.11

100 80 C-Lasso 0.0108 0.0091 67.20 C-Lasso 0.0060 0.0000 95.11

Post-Lasso 0.0121 0.0088 63.49

Post-Lasso 0.0060 0.0000 95.01 Post-Lasso 0.0060 0.0000 95.11

Oracle 0.0060 0.0000 95.01 Oracle 0.0059 0.0000 95.16

support the validity of the long-run PPP; see, e.g., Frenkel (1981) and Adler and Lehmann (1983). Some

researchers attribute this to the low power of time series unit root tests when  is short and advocate the

use of panel unit root tests. Indeed, some panel unit root testing results favor the PPP hypothesis in the

post-Bretton Woods period; see, e.g., Oh (1996) and Papell (1997). Even so, the empirical findings are still

mixed. There remain two main issues in testing the validity of the PPP hypothesis by using panel data.

One is the sample selection issue and the other is the unobserved heterogeneity issue. Our cointegrated

panel model with latent group structures can provide a data-driven method to address these two issues

simultaneously and is expected to offer some new insights into the PPP hypothesis.

6.2 Model and data

The PPP hypothesis has two versions: strong and weak. We first consider the strong PPP hypothesis.

Denote the domestic price index as , the corresponding foreign price index as , and  as the nominal

exchange rate. If the strong PPP hypothesis holds, we have the equation  =



where we suppress

the dependence of  on  which is typically fixed in panel studies. In the logarithmic form, we have

 =  −  where  = log(),  = log(), and  = log(). Previous panel unit root tests are

built on the equation

 = ( − ) +  (6.1)

where  stands for the real exchange rate. The rejection of the null hypothesis that the processes

{  ≥ 1} are all nonstationary is regarded as evidence in favor of the validity of the long-run PPP or
mean-reversion in real exchange rates. The most important assumption in the strong PPP hypothesis

is that there exists a one-to-one relationship between the nominal exchange rates and aggregate price

ratios. In practice, the movements may not be directly proportional, leading to the cointegrating slopes
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deviating away from the unity. Pedroni (2004) modifies (6.1) by allowing for heterogeneous coefficients

across individuals and estimating the following long-run PPP hypothesis in weak version

 =  + ( − ) +  =  + ∆ +  (6.2)

where  is allowed to vary across countries and is expected to be positive, ∆ = − , and  is the

unobserved fixed effect for country .

In our weak PPP model, we assume that  exhibits the latent group structures studied in this paper.

By pooling the slope coefficients within a group altogether, we can obtain more efficient estimates than

those obtained from a fully heterogeneous cointegrated panel model. In addition, since our C-Lasso method

is a data-driven method, we do not manually assign different countries to different groups, which alleviates

the sample selection problem.

We obtain monthly and quarterly data of the nominal exchange rate and consumer price index (CPI)

from January 1975 to July 2014 covering 99 countries from International Financial Statistics. Here, we use

the CPI to represent the general price index. We choose the time span from 1975 to 2014 to cover the post-

Bretton Woods period. Given the fact that Euro dollar was introduced to the global financial markets as

an accounting currency on 1 January 1999, we consider two subsamples. We obtain a balanced panel with

67 countries in the period 1975-1998 and another balanced panel with 99 countries in the period 1999-2014.

For the quarterly data, we have 91 time series periods in 1975Q.1-1998.Q4 and 55 times series periods in

1999.Q1-2014.Q2. For the monthly data, we have 283 time series periods in period 1975.M1-1998.M12 and

172 times series periods in 1999.M1-2014.M7.

6.3 Group and estimation results

In this section, we present the classification and estimation results for the quarterly data. The results

for the monthly data are relegated to Section F in the online supplement. We determine the number of

groups by using the information criterion (IC) proposed in Section C of the online supplement. Table

A.2 in the online supplement reports the information criterion with different tuning parameter values:

 =  × −34 where  = 0025 005 01 and 02. Obviously, the IC is robust to the choice of tuning

parameters. Following the majority rule, we decide to select  = 2 groups for the period 1975.Q1-1998.Q4

and  = 3 groups for the period 1999.Q1-2014.Q2. Note that the IC is minimized at  = 01 and 0.05 for

the first and second, subsamples respectively. We will choose  = 01 and 0.05 for these two subsamples,

respectively and report the estimation results.

Table 4 reports the DPLS estimation results for the subsamples 1975.Q1-1998.Q4 and 1999.Q1-2014.Q2

by using  = 01 and 0.05, respectively. We summarize some important findings from Table 4. First,

the group-specific estimates vary a lot across groups, which indicates strong unobserved heterogeneities in

both subsamples. Second, both C-Lasso estimate and its post-Lasso one for Group 1 are reasonably close

to the unity in both the first and second subsamples, which lends some positive supports to the weak-form

long-run PPP hypothesis. But the estimates in Group 2 in either subsample suggest a negative long-run

relationship between the price index difference and the exchange rate, which contradicts the long-run PPP

hypothesis. The estimate for Group 3 in the second subsample is positive and quite small in comparison
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Table 4: Estimation results for the quarterly data

Panel A: From 1975.Q1-1998.Q4

Pool Group 1 Group 2

DOLS C-Lasso post-Lasso C-Lasso post-Lasso

 0.7465 0.8609 0.8608 -0.7007 -0.6992

(0.0207) (0.0190) (0.0190) (0.0857) (0.0857)

Panel B: From 1999.Q1-2014.Q2

Pool Group 1 Group 2 Group 3

DOLS C-Lasso post-Lasso C-Lasso post-Lasso C-Lasso post-Lasso

 0.3623 0.8667 0.8681 -0.5732 -0.5775 0.1986 0.1960

(0.0184) (0.0189) (0.0189) (0.0227) (0.0228) (0.0296) (0.0296)

with the unity, which suggests a quite weak proportional relation between the change in the price index

difference and that in the exchange rate. Third, similar results are also observed for the monthly data,

and the long-run relationship between the nominal exchange rate and general price index presents similar

patterns in either subsample period. This indicates the robustness of our findings.

Table 5 summarizes the group classification results for the two subsamples; see also Figure 1 for the

classification results for the second subsample. Interestingly, we find that the majority of the countries in

the first subsample are classified into Group 1, which indicates the long-run PPP holds for most countries

in the period 1975.Q1-1998.Q4. During this time span, we have only 68 countries in the dataset, and some

developing countries like Argentina, Brazil, and Russia are excluded from our subsample due to the fact

that they have experienced hyperinflation. For the second subsample, we find even more interesting results.

Figure 1 suggests that those countries that support the long-run PPP equilibrium are mainly located in

Europe, Africa, Middle East, and North American. The members of Group 1 suggest a polarization of

economic development. Further, we observe that most countries in Groups 2 and 3 are either fast-growing

or middle-income countries (e.g., South Korea, Singapore, and Brazil) in the last decades in East Asia and

South America. It confirms the Balassa-Samuelson effect, where the productivity differentials are one of

the most important factors behind the PPP deviation, see Balassa (1964) and Samuelson (1964). In this

case, countries with rapidly expanding economies should tend to have more rapidly appreciating exchange

rates. In general, our results suggest heterogeneous behavior in the long-run PPP hypothesis.

7 Conclusion

In this paper, we propose a C-Lasso-based PLS procedure to estimate a cointegrated panel with latent

group structures on the long-run cointegrating relationships. We allow for completely heterogeneous short-

run dynamics but assume that long-run relationships are homogeneous within a group and heterogeneous

across different groups. Our method can determine the individual’s group membership consistently and

estimate the parameters efficiently. To remove the asymptotic bias in the estimators of the long-run

parameters, we also consider the dynamic PLS procedure. Simulation results confirm the asymptotic

studies. An application to testing the validity of the long-run PPP hypothesis suggests strong evidence of
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Table 5: Classification results for the quarterly data

Panel A: From 1975.Q1-1998.Q4

Group 1 (1 = 62)
Algeria Australia Austria Bahrain Belgium

Bolivia Botswana Canada Colombia Costa Rica

Cyprus Denmark Dominican Egypt El Salvador

Finland France Ghana Greece Guatemala

Honduras Hungary Iceland India Indonesia

Iran Ireland Israel Italy Ivory Coast

Jamaica Japan Jordan Kenya South Korea

Luxembourg Malta Mauritius Mexico Morocco

Nepal Netherlands New Zealand Nigeria Norway

Pakistan Paraguay Philippines Portugal Singapore

South Africa Spain Sri Lanka Sudan Sweden

Switzerland Tanzania Thailand Trinidad and Tobago Turkey

Uruguay Venezuela

Group 2 (2 = 5)
Ecuador Kuwait Malaysia Myanmar Saudi Arabia

Panel B: From 1999.Q1-2014.Q2

Group 1 (1 = 49)
Angola Argentina Austria Bangladesh Belgium

Botswana Brunei Canada Costa Rica Denmark

Dominican Europe Finland France Germany

Ghana Honduras Iceland Iran Italy

Jamaica Japan Jordan Luxembourg Malawi

Mexico Mongolia Morocco Mozambique Netherlands

Nigeria Norway Pakistan Romania Saudi Arbia

Sri Lanka Sudan Sweden Switzerland Tanzania

Trinidad and Tobago Tunisia Turkey Uganda United Kingdom

Ukraine Venezuela Viet Nam Zambia

Group 2 (2 = 23)
Albania Armenia Australia Bolivia Brazil

Bulgaria Colombia Congo Croatia El Salvador

Georgia Hungary Ireland Ivory Coast Kuwait

Latvia Macau Moldova New Zealand Peru

Philippines Spain Thailand

Group 3 (3 = 27)
Algeria Cambodia Czech Republic Egypt Guatemala

Hong Kong India Indonesia Israel Kazakhstan

Kenya South Korea Kyrgyzstan Laos Lithuania

Macedonia Malaysia Mauritius Myanmar Nepal

Paraguay Poland Portugal Russia Singapore

South Africa Uruguay

Note: Countries in bold denote coincidences of the classification results based on the monthly and quarterly

datasets.
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PPP

Group 1
Group 2
Group 3

Figure 1: The geographic features of countries in the three groups in subsample 2 (1999-2014)

latent group structures.

There are several interesting topics for future research. First, we do not allow for cross-sectional

dependence in our model. In macro-econometrics, cross-sectional dependence is frequently modelled via

the multi-factor error structure (Pesaran, 2006) or interactive fixed effects (Bai, 2009). Depending on

whether we allow for unit-root behavior in the factors, different methods can be called upon (see, e.g., Bai

and Ng, 2004; Bai and Kao, 2006; Bai et al., 2009; Bai and Ng, 2010). But this certainly complicates the

asymptotic analysis and deserves a separate treatment. Second, when the dimension of the nonstationary

variables is higher than 2, multiple cointegrating relationships may exist. It is worthwhile to consider the

panel vector error-correction model or likelihood-based panel cointegration analysis in this case. Third,

as an anonymous referee insightfully points out, in practice it is worthwhile to allow for the presence of

a single group, e.g., the th group, that contains individuals with heterogeneous slope coefficients. As

one can imagine, both the C-Lasso and K-means algorithms fail in this case and one has to design a new

algorithm to pin down the elements in the first − 1 groups. One possible way is to consider a sequential
testing procedure based on some preliminary consistent estimates of the slope coefficients as in Wang and

Su (2018). We leave these topics for future research.

Notes

1Most asymptotic theories in the panel cointegration analysis have been established under the sequential

limit theory. A few exceptions include Phillips and Moon (1999), Sun (2004), and Bai and Ng (2010).

2If (2) = 2 6= 0 we can rewrite the first equation in (2.1) as  = ∗ + 011 +
0
2
∗
2 + 
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where ∗2 = 2 − 2 has zero mean and ∗ =  + 022
3The commutation matrix is used for transforming the vectorized form of a matrix into the vectorized

form of its transpose. For any × matrix   is the × matrix which transforms vec() into

vec(0) :  vec() =vec(
0)

4Noting that by Lemma A.4(i)

 =
1

 2

X
∈0



̃01̃1 −
1

 2

X
∈0



¡
̃01̃2

¢ ¡
̃02̃2

¢−1 ¡
̃02̃1

¢
≡ 1

 2

X
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̃01̃1 +

¡
−1
¢
=

1

 2

X
∈0



̃01̃1 +  (1) 

we can also consistently estimate Q() by Q̃() = 1
̂ 2

P
∈̂

̃01̃1
5See Section D in the online supplement for more details on the determination of  in practice.

6The estimation results for  = 01 are available upon request.
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Appendix

A Proofs of the Main Results in Section 4

In this appendix, we first state some technical lemmas that are used in the proofs of Theorems 4.1-4.6 and
then prove these main results. The proofs of the technical lemmas are relegated to the online supplementary
Appendix B.
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≥
⎡⎣1
2
11

1



X
=1

k 1k2 − 2
Ã
1



X
=1

k 1k2
!12Ã

 2



X
=1

k̆̃1̃k2
!12⎤⎦

≡ 1 −2  say

By Lemma A.6(v), 
2



P
=1 k̆̃1̃k2 =  (1). So 1 dominates 2 for sufficiently large . That

is,  2[
(β

0
1+ 

−1ν1 α̂)−

(β

0
1α

0)]  0 for sufficiently large . Consequently, we must have

−1
P

=1 k̂1k2 =  (
2

−2).

Note that
°°( 1


̃02̃2)

−1°°
sp
= [min(

1

̃02̃2)]

−1 and

min


min(
1


̃02̃2) ≥ min


min(Σ22)−max



°°°° 1 ̃02̃2 −Σ22
°°°° ≥ 22

2
with probability 1− 

¡
−1

¢
(A.11)

by Lemma A.2(iv) and Assumption A.2(iii). Then we have by (A.7), Lemmas A.2(iii)-(iv) and A.6(ii),

35



and Assumptions A.2(iii) and A.3(iv) that

1



X
=1

°°°̂2°°°2 ≤ 2max


°°°°°
µ
1


̃02̃2

¶−1°°°°°
2

sp

1

 2

X
=1

½°°̃02̃∗ °°2 + °°̃02̃1°°2 °°°̂1°°°2¾

≤  (1)

(
1

 2

X
=1

°°̃02̃∗ °°2 +max


1

 2

°°̃02̃1°°2 1
X
=1

°°°̂1°°°2)
= 

¡
2

−1¢+ (2
2
1 ) (

2

−2) = 

¡
2

−1¢ 
(iii) Let  (β1α) =

1


P
=1

Q
=1 k1 − k. By (A.3) and (A.8), as ( )→∞,

| (β̂1α)−  (β
0
1α)| ≤  (α)

1



X
=1

k̂1k+ 2 (α)
1



X
=1

k̂1k2

≤  (α)

Ã
1



X
=1

k̂1k2
!12

+ (
2

−2) =  (

−1) (A.12)

By (A.12), and the fact that  (β
0
1α

0) = 0 and that  (β̂1 α̂)−  (β̂1α
0) ≤ 0 we have

0 ≥  (β̂1 α̂)−  (β̂1α
0) =  (β

0
1 α̂)−  (β

0
1α

0) + (
−1)

=
1



X
=1

Y
=1

k01 − ̂k+ (
−1)

=
1



Y
=1

k̂ − 01k+
2



Y
=1

k̂ − 02k+ +




Y
=1

k̂ − 0k+ (
−1) (A.13)

By Assumption A.3(i),  →  ∈ (0 1) for each  = 1 . So (A.13) implies that
Q

=1 k̂−0k =
 (

−1) for  = 1 . It follows that (̂(1)  ̂())− (01  0) =  (
−1). ¥

Proof of Theorem 4.2. (i) By Lemma A.3(i), lim sup→∞
°°°̂1°°°

sp
≤ 2̄Ω11 log log  a.s. By Lemma

A.3(iii),  (min1≤≤  ̃1̃1 ≥ 112) = 1 − 
¡
−1

¢
 By Lemma A.5(iii) and Assumption A.2(iv),


¡
min1≤≤ ̃2 ≥ 002

¢
= 1− 

¡
−1

¢
 Noting that°°°̆̃1̃

°°°2 ≤ 2°°°̂̃1̃∗

°°°2 + 2°°°̂̃1̃2

°°°2 °°°̂̃2̃∗

°°°2 °°°(̂̃2̃2)
−1
°°°2
sp


we can readily apply Lemma A.2(iii)-(v) and Assumptions A.2(iii) and A.3(iii)-(iv) and show that  (max

°°°̆̃1̃

°°°
≥ 1 ) = (−1) Then by (A.4) and (A.8) we can show that  (max1≤≤ ||̂1|| ≥ 1 ) =
(−1)
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(ii) By (A.7) and (A.11), Lemma A.2(vi), the result in part (i), and Assumption A.3(iii)-(iv)


³
max


°°°̂2°°° ≥ 
12
2 2

´
≤ 

⎛⎝max


°°°°°
µ
1


̃02̃2

¶−1°°°°°
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1



n°°̃02̃∗ °°+ °°̃02̃1°°°°°̂1°°°o ≥ 
12
2 2

⎞⎠
≤ 

µ
max


1



³°°̃02̃∗ °°+ °°̃02̃1°°°°°̂1°°°´ ≥ 
12
2 2 222

¶
+

µ
min




µ
1


̃02̃2

¶
≤ 222

¶
≤ 

µ
max


1



°°̃02̃∗ °° ≥ 
12
2 2 224

¶
+

µ
max


1



°°̃02̃1°°°°°̂1°°° ≥ 
12
2 2 224

¶
+ 

¡
−1

¢
= 

¡
−1

¢


where we also use the fact max
1


°°̃02̃1°° ||̂1|| =  (1 )  (1 ) = (
12
2 2 ) with probability

1− 
¡
−1

¢
 ¥

Proof of Theorem 4.3. We fix  ∈ {1 }. By the consistency of ̂ and ̂1, we have ̂1 − ̂ →
0−0 6= 0 for all  ∈ 0 and  6= . It follows that w.p.a.1

°°°̂1 − ̂

°°° 6= 0 for all  ∈ 0 and  6= . Note

that ̃ − ̃01̂1 − ̃02̂2 = ̃∗ − ̃01̂1 − ̃02̂2

Now, suppose that
°°°̂1 − ̂

°°° 6= 0 for some  ∈ 0. Then the first order condition (with respect to

1) for the minimization problem in (2.7) implies that

0 = 


(β̂1 β̂2 α̂)

1

= −2 1


X
=1

̃1(̃ − ̃01̂1 − ̃02̂2) + (̃)
2−

X
=1

̂1̂

Y
=16=

°°°̂1(̂1 − ̂)
°°°

= − 2


X
=1

̃1̃
∗
 +

⎛⎝2 + (̃)
2− ̂1°°°̂1(̂1 − ̂)

°°°̂1
⎞⎠̂1(̂1 − ̂)

+ 2̂12 ̂2 + 2̂1(̂ − 0) + (̃)
2−

X
=1 6=

̂1̂

Y
=1 6=

°°°̂1(̂1 − ̂)
°°°

≡ −̂1 + ̂2 + ̂3 + ̂4 + ̂5 (A.14)

where ̂ = ̂1(̂1 − ̂)
°°°̂1(̂1 − ̂)

°°° if °°°̂1(̂1 − ̂)
°°° 6= 0 and

°°̂°° ≤ 1 otherwise, ̂1 =Q
=1 6=

°°°̂1(̂1 − ̂)
°°° ³ 01 ≡

Q
=1 6=

°°°̂1(0 − 0 )
°°° for  ∈ 0 by Theorem 4.1, where  ³ 

signifies that  and  are of the same probability order.
By Theorem 4.2(ii), we can readily show that 

¡°°̂ − 0
°° ≥ 1

¢
= 

¡
−1

¢
for any fixed   0

This, in conjunction with Lemma A.3(i) and Theorem 4.2(i)-(ii), implies that°°°̂1°°°
sp
≤ 2Ω11 log log  and 0 (11 )

−1 ≤ ̂1 ≤ 0 (2Ω11 log log  )
−1

a.s., (A.15)
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where 0 ≡
Q

=1 6=
°°0 − 0

°°  0 by Assumption A.3(ii). Then


µ
max
∈0



°°°̂5

°°° ≥  (log log  ) 1

¶
= 

¡
−1

¢
(A.16)

for some large constant   0 By Lemma A.3(i) and Theorem 4.2(iii),



µ
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∈0



°°°̂4

°°° ≥ 1 log log 

¶
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µ
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∈0
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≤ 2Ω11 log log 

¶
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µ
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≥ 2Ω11 log log 

¶
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µ
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∈0



°°̂ − 0
°° ≥ 1(4Ω11)

¶
+ 0 = 

¡
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¢
(A.17)

for any constant   0. By Lemma A.2(iii) and Theorem 4.2(ii)



µ
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∈0



°°°̂3

°°° ≥  212

¶
= 

µ
max
∈0



°°°2̂12 ̂2

°°° ≥ 212

¶
= 

¡
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¢


(A.18)

By Lemma A.5(iii), Assumptions A.2(i) and A.2(iv), we have with probability 1− 
¡
−1

¢
³
̂1(̂1 − ̂)

´0
̂2 = (̂1 − ̂)

0̂1

⎛⎝2 + (̃)
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≥ (̂1 − ̂)
0̂1
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2− ̂1°°°̂1(̂1 − ̂)
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Γ ≡
½
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0
 ≤ min

∈0
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Then  (Γ ) = 1− 
¡
−1

¢
by (A.15)-(A.18). Let Γ denote the complement of Γ  Conditional
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on Γ  we have, uniformly in  ∈ 0¯̄̄̄³
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0
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where the last equality follows because  212 + 1 log log  +  (log log  )

1 =


¡
−

¢
by Assumption A.3(iv). It follows that for all  ∈ 0
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´
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´
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³°°°̂1(̂1 − ̂)̂1

°°° ≥ °°°̂1(̂1 − ̂)
³
̂2 + ̂3 + ̂4 + ̂5

´°°°´
≤ 

³°°°̂1(̂1 − ̂)̂1

°°° ≥ °°°̂1(̂1 − ̂)
³
̂2 + ̂3 + ̂4 + ̂5

´°°° Γ

´
+ (Γ )

≤ 

µ°°°̂1

°°° ≥ 1
2
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0
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¶
+ 

¡
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¢
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where the last line follows by the fact that ||̂1|| =  (1) by Lemma A.1(ii) and that 
−
 →∞ under

Assumption A.3(iv).

In addition, by Lemma A.2(v) and the fact that 1 = 
¡
−

¢
under Assumption A.3(iv),
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X
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X
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¶
+ (1) =  (1)  (A.20)

We have completed the proof of Theorem 4.3(i).
Given (i), the proof of (ii) is similar to Theorem 4.2(ii) in SSP and thus omitted. ¥

Proof of Theorem 4.4. We first write our mixed panel model in vector form: ̃ = ̃11+ ̃22+ ̃

where ̃ = (̃1  ̃ )
0
for  = 1 2 and ̃ and ̃ are similarly defined. Recall that 2 =  −

̃2(̃
0
2̃2)

−1̃02. Then we rewrite the objective function 
(β1β2α) as follows


(β1β2α) =  (β1β2) +





X
=1

(̃)
2−

Y
=1

k̂1(1 − )k (A.21)
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where

 (β1β2) =
1

 2

X
=1

(̃ − ̃11 − ̃22)
0(̃ − ̃11 − ̃22) (A.22)

The first order conditions are

01×1 =
−2
 2

̃01(̃ − ̃1̂1 − ̃2̂2) + (̃)
2−

X
=1

̂1̂

Y
=1 6=

k̂1(̂1 − ̂)k ∀  = 1  

(A.23)

02×1 =
−2
 2

̃02(̃ − ̃1̂1 − ̃2̂2) ∀  = 1   and (A.24)

01×1 =




X
=1

(̃)
2−̂1̂

Y
=16=

k̂1(̂1 − ̂)k ∀  = 1  (A.25)

where ̂ is defined after (A.14). Let  ∈ {1 } be fixed. We observe that (a) k̂1 − ̂k = 0 for any
 ∈ ̂ by the definition of ̂, and (b) ̂1 − ̂

→ 0 − 0 6= 0 for any  ∈ ̂ and  6= . It follows that

k̂k ≤ k1k for any  ∈ ̂ and ̂ = ̂1(̂ − ̂)k̂1(̂ − ̂)k for any  ∈ ̂ and  6= . Let ̂0

denote the set of unclassified individuals. Given Theorem 4.3, it is easy to show that  (#̂0  0) =  (1) 

Noting that
Q
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It follows that by (A.25) and (A.26)
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Averaging both sides of (A.23) over  ∈ ̂ and using (A.26) and (A.27), we have

01×1 =
2
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X
∈̂

̃01(̃ − ̃1̂ − ̃2̂2) +




X
∈̂0

(̃)
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Y
=16=

k̂1(̂1 − ̂)k (A.28)
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Solving ̂2 from (A.24) as a function of ̂1 and replacing ̂1 by ̂ for  ∈ ̂ yields

̂2 =
¡
̃02̃2

¢−1
̃02(̃ − ̃1̂) (A.29)

Plugging (A.29) into (A.28) yields
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 + ̂ say.

Noting that ̂1̂
Q

=1 6= k̂1(̂1 − ̂)k 6= 0 only if  ∈ ̂0 and by (A.20), we have that for any   0
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That is,
√
 ||̂|| =  (1) and ̂ is asymptotically equivalent to its post-Lasso estimator ̂̂

 Similarly,

given the fast convergence rate of ̂̂
 ̂2 in (A.29) is also asymptotically equivalent to its post-Lasso

version ̂
post

2  where ̂
post

2 =
¡
̃02̃2

¢−1
̃02(̃ − ̃1̂

post
 ) for each  ∈ ̂ We formally study the

asymptotic properties of ̂
post
 and ̂

post

2 in the proof of Theorem 4.5 below. ¥

Proof of Theorem 4.5. (i) Noting that ̃ = ̃1
0
1 + ̃2

0
2 + ̃, we havep

 (̂
post
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It follows that
√
 (̂
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 −0) = −1 + (1)  Then the conclusion in (i) follows from Lemmas

A.7(i)-(vi).

(ii) Noting that ̂
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¡
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̃02(̃ − ̃1̂
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 ) and ̃ = ̃1

0
 + ̃2

∗
2 + ̃∗ for  ∈ 0 we
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have for  ∈ 0 and  × 2 selection matrix S2,
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. ¥

Proof of Theorem 4.6. (i) In vector form, we have the regression model:

̃ = ̃11 + ̃22 + ̃
†
  (A.30)

where ̃2 = (̃2̄2+1  ̃2−̄2)
0
 ̃2 = 2 − 1
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0
∆1− signifies the approximation

error.
Assumption A4 ensures the approximation error term  is asymptotically negligible in our asymptotic

analysis. Following the proofs of Theorems 4.1-4.4, we can prove that the C-Lasso estimator ̂ of  is

asymptotically equivalent to its post-Lasso version ̂
post
  where

̂
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 =
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Lemma A.7(ii)-(vi) continues to apply to  (1) with little modification. Now,  plays the role of 
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in the lemma. But since  is uncorrelated to all lags and leads of ∆1 = 1  defined in Theorem
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(ii) This follows from Theorem 4.5(ii) and the fact that Σ20 = 0 so that 
∗
2 = 02 ¥
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the above paper. Section C studies the determination of the number of groups. Section D provides some
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B Proofs of the Technical Lemmas

Proof of Lemma A.1. (i) By Park and Phillips (1988, 1989), we can readily show that
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(ii) and (iii). By Park and Phillips (1988, 1989),
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where we allow that Σ20 =  (2) to be nonzero and 
0
20 denotes the long-run covariance of 2−
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 Combining the above results yields

the results in (ii)-(iii).
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Proof of Lemma A.2. (i) Noting that 1
 2

̃01̃ =
1
2

01− 1

̄1̄ it suffices to prove (i) by showing

that (i1)  (max1≤≤ 1
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We prove (i1) by showing that  ·  (max1≤≤ || ≥ 1 ) =  (1) for any fixed constant   0 and

 = 1 2 3 For notational simplicity, we assume that 1 = 1

We first study 1 Let  = 1
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=1 
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0
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0
0 and F =  ( −1 )  the sigma-field generated

by the series {}  Then 1 =
1
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P
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to apply the exponential inequality for martingales (see, e.g., Freedman (1975, Proposition 2.1)). Let
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Similarly, we can show that  ·  (max1≤≤ |13| ≥ 1 ) =  (1)  Consequently, we have  ·
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It is easy to show that max1≤≤ |31| ≤  For 3 with  = 2 3 4 by tedious calculations we

can show that  (3)
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 − 02Σ

−1
22Σ20

¢
= 0 we can use Lemma S1.2 in SSPb and show that  (max1≤≤ || 1 02(−

02Σ
−1
22Σ20)|| ≥ 

12
2 22) = 

¡
−1

¢
for any fixed   0 In addition,  (max1≤≤ ||̄2|| ≥


12
2 2 ) = 

¡
−1

¢
and  (max1≤≤ ||̄|| ≥ 2 ) = 

¡
−1

¢
 from which we can readily show

that  (max1≤≤ || 1 ̄02 (̄ − ̄02Σ
−1
22Σ20)|| ≥ 

12
2 2 2) = 

¡
−1

¢
 Then (vi) follows. ¥

Proof of Lemma A.3. (i) Let  ∈ R1 be an arbitrary vector such that kk = 1 Let  =√
2 log log   By arguments used in the proof of Lemma 2.1 of Corradi (1999), we can verify the conditions

in Theorem 2 of Eberlein (1986) and obtain

1

[]
Ω
−12
11 ̃1[] =

1

[]
Ω
−12
11

£
1[] − ̄1

¤
=

1

[]
Ω
−12
11

⎡⎣[]X
=1

1 − 1



X
=1

X
=1

1

⎤⎦
=

1

[]
̃ () +  (1)

8



for each  ∈ [0 1]  This result can be strengthened to be hold uniform in  ∈ [0 1] with [] replaced by

  Let  = [] and Ω
−12
11

P[]
=1 1 = [] =  ()  Define

 () = ([] + 1− ) () + ( − [])+1 () 

Then sup∈[01]
1

k ()− ()k =  (1)  sup∈[01]

1

|| () − () || =  (1) as  →∞

and the set of norm limit points of
©
−1 

ª
and

©
−1 

ª
coincides with the set of norm limit points of©

−1 

ª
with probability one. By Theorem 1 in Strassen (1964), the latter is relatively norm compact

with the set of limit points coinciding a.s. with K where

K =
½
 : [0 1]→ R1   (0) = 0  is absolutely continuous,

Z 1

0

°°°̇ ()°°°2  ≤ 1¾ 

Here ̇ () =  () ∇ First, observe that



Ã
lim sup
→∞

max
kk=1

0Ω−1211

1

2

X
=1

̃1̃
0
1Ω

−12
11  = lim sup

→∞
max
kk=1

1

2
0
Z 1

0

̃ () ̃ ()
0


!
= 1

where ̃ () =  ()−
R 1
0
 () 

Now, let  denote the continuous map from the space of 1-dimensional continuous functions on

[0 1], closed with respect to the sup norm, to the Euclidean space such that  () = 0
R 1
0
̃ () ̃ ()

0


where ̃ () =  ()− R 1
0
 ()  By the Corollary of Theorem 3 in Strassen (1964), with probability one©


¡
−1 

¢ª
is relatively norm compact with the set of norm limit points coinciding almost surely with

 (K)  This implies that



Ã
lim sup
→∞

max
kk=1

1

2
0
Z 1

0

̃ () ̃ ()
0
 = sup

∈K
max
kk=1

 ()

!


By the definition of  and ,

sup
∈K

max
kk=1

 () = sup
∈K

max
kk=1

0
Z 1

0

̃ () ̃ ()0 

≤ sup
∈K

max
kk=1

0
µZ 1

0

 ()  ()0  −
Z 1

0

 () 

Z 1

0

 ()0 
¶


≤ sup
∈K

max
kk=1

Z 1

0

µZ 

0

0̇ () 
¶2

 ≤ sup
∈K

max
kk=1

Z 1

0

µZ 

0

12

¶Z 

0

³
0̇ ()

´2


= sup
∈K

max
kk=1

Z 1

0



µ
0
Z 

0

̇ () ̇ ()0 
¶
 ≤

Z 1

0

 =
1

2


where the second inequality follows from the Hölder’s inequality, and the third follows from the fact that

max
kk=1

0
Z 

0

̇ () ̇ ()0  ≤ max

µZ 

0

̇ () ̇ ()0 
¶
≤ tr

µZ 

0

̇ () ̇ ()0 
¶
≤
Z 1

0

°°°̇ ()°°°2  = 1

9



for any  ∈ [0 1] and  ∈ K It follows that

lim sup
→∞

max

Ã
Ω
−12
11

1

2

X
=1

̃1̃
0
1Ω

−12
11

!
≤ 1
2
+  a.s. for any   0

and

lim sup
→∞

max

Ã
1

2

X
=1

̃1̃
0
1

!
= lim sup

→∞
max

Ã
Ω
−12
11

1

2

X
=1

̃1̃
0
1Ω

−12
11 Ω11

!

≤ lim sup
→∞

max

Ã
Ω
−12
11

1

2

X
=1

̃1̃
0
1Ω

−12
11

!
max
1≤≤

max (Ω11)

≤
µ
1

2
+ 

¶
̄Ω11 a.s.,

where recall that ̄Ω11 denotes the upper bound for max (Ω11) 

(ii) Let  be a 2 × 1 vector such that kk = 1 By Lemma A.2(iv), with probability 1 − 
¡
−1

¢
we

have

min
1≤≤

inf
kk=1

0̂̃2̃2 = min
1≤≤

inf
kk=1

³
0Σ22 + 0

³
̂̃2̃2 −Σ22

´

´

≥ min
1≤≤

inf
kk=1

0Σ221 − max
1≤≤

°°°̂̃2̃2 −Σ22
°°°

≥ min
1≤≤

min(Σ22)−  (1) ≥ 222

(iii) Note that ̂̃̃ =

Ã
1
2

P
=1 ̃1̃

0
1

1
32

P
=1 ̃1̃

0
2

1
32

P
=1 ̃2̃

0
1

1


P
=1 ̃2̃

0
2

!
=

Ã
̂11

√
̂12√

̂012 ̂22

!


Let  = (01 02)
0
be a (1 + 2)×1 vector such that kk = 1 Then by Lemmas A.2(iii)-(iv) and Assumptions

A.2(i), A.2(iii), and A.3(iv), with probability 1− 
¡
−1

¢
min
1≤≤

inf
kk=1

0 ̂̃̃  = min
1≤≤

inf
kk=1

³
01̂̃1̃11 + 02̂̃2̃22 + 2

0
1̂̃1̃22

´
≥ min

1≤≤
inf
kk=1

³
01̂̃1̃11 + 02̂̃2̃22

´
− 2 max

1≤≤

°°°√̂̃1̃2

°°°
≥ min

1≤≤

h
minmin(̂̃1̃1) min(̂̃2̃2)

i
− 2 max

1≤≤

°°°√̂̃1̃2

°°°
≥ 11(2 )

Then (iii) follows. ¥

Proof of Lemma A.4. (i) Noting that 1
 2

̃012̃1 − 1
2

̃01̃1 = − ( 12 ̃01̃2)( 1 ̃02̃2)−1
×( 1

2
̃02̃1) it suffices to show that

max
1≤≤

°°°° ( 1 2 ̃01̃2)( 1 ̃02̃2)
−1(

1

 2
̃02̃1)

°°°°
is (1) with probability 1− ¡−1¢  This follows because by Lemma A.2(iii)-(iv) and Assumptions A.2(iii)

10



and A.3(iv), with probability 1− 
¡
−1

¢
we have

max
1≤≤

°°°° ( 1 2 ̃01̃2)( 1 ̃02̃2)
−1(

1

 2
̃02̃1)

°°°° ≤  max
1≤≤

°°°° 1 2 ̃01̃2
°°°°2 ∙ min1≤≤

min

µ
1


̃02̃2

¶¸−1
= 

¡
2

2
1

¢
 (1) = 

¡
−1
¢


(ii) Noting that 1

̃021̃2 =

1

̃02̃2− ( 1 2 ̃02̃1)( 2 ̃01̃1)−1( 12 ̃01̃2) the result follows

from Lemmas A.2(iii)-(iv) and Assumption A.2(i) and the fact that  (
√
21 )

2 = (22 ). The

detailed arguments are analogous to those used in the proof of (iii) below.

(iii) Note that 1

̃012̃

∗
 =

1

̃01̃

∗
− 1


̃01̃2(

1

̃02̃2)

−1 1

̃02̃

∗
  By Lemma A.2(v),  (max1≤≤

|| 1
2

̃01̃
∗||  1 2) = 

¡
−1

¢
 Define the following two events:

1 =

½
min
1≤≤

min

µ
1


̃02̃2

¶
≥ 222

¾
and 2 =

(
max
1≤≤

°°°° 1 2 ̃01̃2
°°°°
sp

≤ 
12
2 1

)


By Lemma A.2(iii)-(iv),  ( ) = 1 − 
¡
−1

¢
for  = 1 2 Denote the complement of  as 




for  = 1 2 Then, in view of the fact that kk ≤ kksp kk and kksp ≤ kk for any two conformable
matrices  and  we have



Ã
max
1≤≤

°°°°° 1 2 ̃01̃2
µ
1


̃02̃2

¶−1µ
1


̃02̃

∗


¶°°°°°  12

!

≤ 

Ã
max
1≤≤

°°°° 1 2 ̃01̃2
°°°°
sp

°°°° 1 ̃02̃
∗


°°°° ∙ min1≤≤
min

µ
1


̃02̃2

¶¸−1
 1 2 1 ∩2

!
+ (

1 ∪
2 )

≤ 

µ
max
1≤≤

°°°° 1 ̃02̃
∗


°°°°   · 22−122 4

¶
+ 

¡
−1

¢
= 

¡
−1

¢
+ 

¡
−1

¢
= 

¡
−1

¢


where the first equality follows by Lemma A.2(vi) and the fact that 
12
2 2 = (

−12
2 ). Consequently,

the result in (iii) follows.

(iv) Note that 1

̃021̃

∗
 =

1

̃02̃

∗
 −  ( 1

2
̃02̃1)(

1
2

̃01̃1)
−1( 1

 2
̃01̃

∗
 ) ≡ 1 − 2 say. By

Lemma A.2(vi),  (max1≤≤ k1k ≥ 
12
2 22) = 

¡
−1

¢
 Noting that

k2k ≤ 

°°°° 1 2 ̃02̃1
°°°°
sp

∙
min

µ


 2
̃01̃1

¶¸−1 °°°° 1 ̃01̃
∗


°°°°
and 1 =  (1)  we can readily apply Lemmas A.2(iii), A.2(v), and A.3(i) to show that  (max1≤≤
k2k ≥ 

12
2 22) = 

¡
−1

¢
 ¥

Proof of Lemma A.5. (i) Noting that ̃1 − 01 =
¡

2

̃012̃1
¢−1 

2
̃012̃

∗
  the result

follows from Lemmas A.4(i) and (iii), and Assumption A.2(i).
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(ii) Noting that

̃2 − ∗2 =

µ
1


̃021̃2

¶−1
1


̃021̃

∗


=

"µ
1


̃021̃2

¶−1
− Σ−122

#
1


̃021̃

∗
 +Σ

−1
22

1


̃021̃

∗
 

the result follows from Lemma A.4(ii) and (iv) and Assumption A.2(iii).

(iii) Let ∗ = (
00
1 

∗0
2)

0 which is 0 = (
00
1 

00
2)

0 if Σ20 = 0 Noting that ̃ = ̃01
0
1+ ̃02

0
2+

̃ = ̃0
∗
 + ̃∗ with ̃∗ = ̃ − ̃02Σ

−1
22Σ20 we have

̃2 =
1



X
=1

[̃ − ̃
0
̃]

2 =
1



X
=1

[̃∗ + ̃0(
∗
 − ̃)]

2

=
1



X
=1

(̃∗)
2
+ (∗ − ̃)

0 1


X
=1

̃̃
0
(

∗
 − ̃) + 2(

∗
 − ̃)

0 1


X
=1

̃̃
∗


≡ 1 +2 + 23 say.

We prove (i) by showing that (i1) 
¡
max1≤≤

¯̄
1 −Σ∗02

¯̄
 
¢
= 

¡
−1

¢
 (i2)  (max1≤≤ |2|  ) =


¡
−1

¢
, and (i3)  (max1≤≤ |3|  ) = 

¡
−1

¢
for any   0 Noting that

1 −Σ∗02 =
1



X
=1

¡
̃ − ̃02Σ

−1
22Σ20

¢2 − ¡Σ00 −Σ02Σ−122Σ20¢
=

1



X
=1

£
2 −

¡
2
¢¤− 2 +Σ02Σ

−1
22

Ã
1



X
=1

̃2̃
0
2 −Σ22

!
Σ−122Σ20

−2
Ã
1



X
=1

̃̃
0
2 −Σ02

!
Σ−122Σ20

≡ 11 +12 +13 +14

By a simple application of Lemma S1.2 in SSPb, we can show that  (max1≤≤ |1|  4) = 
¡
−1

¢
for  = 1 2 By Lemma A.2(iv) and Assumption A.2(iv),  (max1≤≤ |13|  4) = 

¡
−1

¢
 By

Lemma A.2(ii) and Assumption A.2(iv),  (max1≤≤ |14|  4) = 
¡
−1

¢
 It follows that



µ
max
1≤≤

¯̄
1 −Σ∗02

¯̄
 

¶
= (−1)

For 2 we have by the Cauchy-Schwarz inequality

2 ≤ 2(01 − ̃1)
0 1


X
=1

̃1̃
0
1(

0
1 − ̃1) + 2(

∗
2 − ̃2)

0 1


X
=1

̃2̃
0
2(

∗
2 − ̃2)

≡ 221 + 222

12



With probability 1− 
¡
−1

¢
 21 is bounded above by

2 log log  max
1≤≤

°°°01 − ̃1

°°°2 max
1≤≤

°°°°° 1

2 2 log log 

X
=1

̃1̃
0
1

°°°°°
sp

= 
¡
 log log 2

2
1

¢
=  (1) 

by Lemma A.3(i) and part (i) and Assumption A.3(iii). And 22 bounded above by

max
1≤≤

°°°∗2 − ̃2

°°°2 max
1≤≤

°°°°° 1
X
=1

̃2̃
0
2

°°°°°
sp

= (2
2
2 ) =  (1) 

by Lemma A.2(iv), Assumption A.2(iii), and part (ii). It follows that  (max1≤≤ |2|  ) = 
¡
−1

¢


Similarly, with probability 1− 
¡
−1

¢


|3| ≤
¯̄̄̄
¯(01 − ̃1)

0 1


X
=1

̃1̃
∗


¯̄̄̄
¯+

¯̄̄̄
¯(∗2 − ̃2)

0 1


X
=1

̃2̃
∗


¯̄̄̄
¯

≤ 
°°°01 − ̃1

°°°°°°°° 1 2
X
=1

̃1̃
∗


°°°°°+ °°°∗2 − ̃2

°°°°°°°° 1
X
=1

̃2̃
∗


°°°°°
=  (1 )  (1 ) + (

12
2 2 )(

12
2 2 ) =  (1) 

by Lemma A.2(v)-(iv), parts (i)-(ii), and Assumption A.3(iii). It follows that  (max1≤≤ |2|  ) =


¡
−1

¢
 ¥

Proof of Lemma A.6. (i) Noting that 1
2

̃01̃
∗
 =

1
2

̃01̃− 1
2

̃01̃2Σ
−1
22Σ20 it suffices to show

1


P
=1

°° 1
2

̃01̃
°°2 = 

¡
−2

¢
and 1



P
=1

°° 1
 2

̃01̃2Σ
−1
22Σ20

°°2 = 

¡
−2

¢
 We only show the

former one as the proof of the latter claim is similar under the side condition
°°Σ−122Σ20°° ≤  ∞ which

is ensured by Assumption A.2(ii)-(iii). By equation (B.1) and the Cauchy-Schwarz inequality

1



X
=1

°°°° 1 2 ̃01̃
°°°°2 ≤ 2



X
=1

°°°° 1 201
°°°°2 + 2

 2

X
=1

k̄1̄k2

≤ 6



X
=1

³
k1k2 + k2k2 + k3k2

´
+

2

 2

X
=1

k̄1̄k2

≡ 61 + 62 + 63 + 24 say.

For 1 we have

(1) =
1



X
=1



⎛⎝°°°°°1 1 2
X
=1

−1X
=1


0


0
0

0
0

°°°°°
2
⎞⎠

=
1

 4

X
=1



⎛⎝°°°°°
X
=1



°°°°°
2
⎞⎠ =

1

 4

X
=1

X
=1


¡
2
¢

≤ 

 4

X
=1

X
=1

 = 
¡
−2

¢
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where  = 1
P−1

=1 
0


0
0

0
0 satisfies  (|F−1) = 0 and the first inequality follows because we can

show that 
¡
2
¢ ≤  For 2 we can follow the analysis of 2 in the proof of Lemma A.2 and show

that (2) ≤ 4


P
=1[k21k2 + k22k2 + k23k2 + k24k2] = (−2) In addition,

(3) =
1



X
=1



°°°°°1 1 2
X
=1


0


0
0

°°°°°
2

≤ 

 2

X
=1



(
1



X
=1

kk2
)2

≤ 

 2

X
=1

1



X
=1

 kk4 = 
¡
−2

¢
 and

(4) =
1

 2

X
=1

 k̄1̄k2 ≤ 1

 2

X
=1

n
(k̄1k4)

¡
̄4
¢o12

= 
¡
−2

¢


where the last equality follows from the fact that (̄4 ) ≤ −2 and (k̄1k4) ≤  2 Consequently,
1


P
=1

°° 1
 2

̃01̃
°°2 = 

¡
−2

¢
and 1



P
=1

°° 1
2

̃01̃
°°2 = 

¡
−2

¢
by the Markov inequality.

(ii) Noting that

1

 32
̃02̃

∗
 =

1

 32
̃02̃ −

1

 32
̃02̃2Σ

−1
22Σ20

=
1

 32

¡
̃02̃ −Σ20

¢− 1

 32

¡
̃02̃2 −Σ22

¢
Σ−122Σ20

=
1

 32

¡
02 −Σ20

¢− 1

 32

¡
022 −Σ22

¢
Σ−122Σ20 −

1

 12
̄02̄

+
1

 12
̄02̄2Σ

−1
22Σ20 ≡ 1 + 2 + 3 + 4 say,

it suffices to show 1


P
=1 kk2 = 

¡
2

−2¢ for  = 1 2 3 4 We can prove these by the Markov

inequality. Then (ii) follows.

(iii) By the BN decomposition 1 = 1[ (1)
P

=1 +̆0−̆] and the Cauchy-Schwarz inequality,

1



X
=1


°°°̂1°°°2 ≤ 1



X
=1



°°°°° 1 2
X
=1

1
0
1

°°°°°
2

≤ 1



X
=1



°°°°° 1 2
X
=1

1 (1)
X

=1



X
=1

0 (1)
0
01

°°°°°
2

+
1



X
=1



°°°°° 1 2
X
=1

1[(̆0 − ̆) (̆0 − ̆)
0
01

°°°°°
2



By straightforward moment calculation, we can bound the first term in the last expression by  (1) and

the second term by 
¡
−2

¢
 Then 1



P
=1

°°°̂1°°°2 =  (1) by the Markov inequality.

(iv) The proof is analogous to that of (i) and thus omitted.

(v) Noting that ̃012̃
∗
 = ̃01̃

∗
 − ̃01̃2(̃

0
2̃2)

−1̃02̃
∗
  we have by Lemmas A.2(ii), A.2(iv),
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part (iv), and Assumption A.3(iii)

1



X
=1

°°°° 1 2 ̃012̃
∗


°°°°2 ≤ 2



X
=1

°°°° 1 2 ̃01̃∗
°°°°2 + 2

 2

X
=1

°°°°° 1 2 ̃01̃2
µ
1


̃02̃2

¶−1
1


̃02̃

∗


°°°°°
2

≤ 

¡
−2

¢
+max



°°°°°
µ
1


̃02̃2

¶−1°°°°°
sp

max


°°°° 1 ̃02̃
∗


°°°°2 2
X
=1

°°°° 1 2 ̃01̃2
°°°°2

≤ 

¡
−2

¢
+ (1)  (

12
2 2 )

¡
2

−2¢ = 

¡
−2

¢
 ¥

Proof of Lemma A.7. (i) Note that =
1

2

P
∈0


̃01̃1− 1

2

P
∈0



¡
̃01̃2

¢ ¡
̃02̃2

¢−1
× ¡̃02̃1¢ ≡ 1−2  By Lemmas A.2(ii)-(iii), k2 k ≤  max∈0



°° 1
2

̃01̃2
°°2 °°( 1


̃02̃2)

−1°°
sp

= 
¡
2

2
1

¢
=  (1)  By the arguments used in Phillips and Moon (1999, Section 4), we can show

that

1 =
1



X
∈0





µZ 1

0

̃1̃
0
1

¶
+  (1) =

1



X
∈0



1 (1)

µZ 1

0

̃1̃
0
1

¶
 (1)

0
01 +  (1)

=
1

6

X
∈0



1 (1) (1)
0
01 +  (1) 

where we use the fact that (
R 1
0
̃1̃

0
1) = (

R 1
0
1

0
1) − (

R 1
0
1

R 1
0
 0
1) =

1
21 − 1

31 =
1
61 Thus (i) follows.

(ii) Let  ≡
P

=1  
∗
 ≡ − 1



P
=  and  = 1+1+2Note that ̃ = −̄ = ∗− 1


−1

We apply the arguments as used in the proof of Theorem 16 in Phillips and Moon (1999, PM hereafter)

and derive the limiting distribution of 1 below.
7

First, we apply the BN decompositions. Noting that  =  (1)  + ̆−1 − ̆ we have 1 =

1 [ (1) + ̆0 − ̆] and

 − 02Σ
−1
22Σ20 = [ (1)  + ̆−1 − ̆]

0 £
00 − 02Σ

−1
22Σ20

¤
=
£
0 (1)

0
+ ̆0−1 − ̆0

¤


where  = 00 − 02Σ
−1
22Σ20 is a × 1 vector. It follows that we can write the demeaned versions of 1

and  − 02Σ
−1
22Σ20 as

̃1 = 1

h
 (1) ̃ + ĕ0 − ĕi and ̃ − ̃02Σ

−1
22Σ20 =

h
̃0 (1)

0 + ĕ0−1 − ĕ0i 
where ̃ = − 1



P
=1 and ĕ = ̆− 1



P
=1

ĕ Let  =P
=1  and ̃


 = − 1



P
=1 
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As in PM (p.1105), we can obtaining the following decomposition,

̄ − B =
1√


X
∈0



1



X
=1

̃1
¡
̃ − ̃02Σ

−1
22Σ20

¢− B

=
1√


X
∈0



(
1



X
=1

1 (1)

∙
̃̃

0
 −

µ
1−  + 1

2

¶
+1

¸
 (1)

0


+
1



−1X
=1

1

Ã
̃+1ĕ0 + ∞X

=0

+1̆
0


!
 − 1



∞X
=0

1+1̆
0


− 1



X
=1

1 (1)
hĕ̃0 (1)0 − ̆0 (1)

0i
 +

1



X
=1

1ĕ0̃0 (1)0 
− 1

1̃



ĕ0  + 1


1̃


1
ĕ00¾

=
1√


X
∈0



{ +1 +2 +3 +4 +5 +6 }  say.

Note that our terms  and  ( = 1 2  6) parallel to the corresponding term in PM. There are

three main differences: (1) all variables involved here are time-demeaned versions of those in PM; (2) we

need to center ̃̃
0
 around its expectation (1− +1

2 )+1 while PM center the non-demeaned version of

̃̃
0
 around its expectation +1 and the difference between the two centering terms, namely, −+1

2 +1

enters the bias term B2 and reflects the contribution of time-demeaning of random variables in the

regression; (3) the sign 2 is negative rather positive. One can verify that
P∞

=0

P∞
=0 +

0
 =

 (1) (1)
0
+
P∞

=0 +1̆
0
 − ̆0 (1)

0


Second, we study the asymptotic distribution of 
−12


P
∈0


  Noting that

1


P
=1 ̃̃

0
 =

1


P
=1̃

0
 and ̃ =  − 1


  we have

1√


X
∈0



 =
1√


X
∈0



1



X
=1

1 (1)

∙
̃̃

0
 −

µ
1−  + 1

2

¶


¸
 (1)

0


=
1√


X
∈0



1



X
=1

1 (1)−10 (1)
0
 − 1√



X
∈0



1

 2

X
=1

1 (1) (
0
 − ) (1)

0


+
1√


X
∈0



1



X
=1

1 (1) [
0
 − ] (1)

0


=
1√


X
∈0



{1 −2 +3}  say.

By direct moment calculations, we can readily show that°°°°°°
⎛⎝ 1√



X
∈0



3

⎞⎠°°°°°° ≤ 1



1√


X
∈0



°°1(1) (1)0 °° = 
³p

2
´
=  (1)
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and
°°°Var³ 1√



P
∈0


3

´°°° = °°° 1


P
∈0


Var (3 )

°°° ≤ 1


P
∈0


 k3k2 = 

¡
2

−2¢ =  (1) 

Then 1√


P
∈0


3 =  (1) by the Chebyshev inequality. It follows that

Var

⎛⎝ 1√


X
∈0





⎞⎠ =
1



X
∈0



©
Var (1 ) +Var (2 )−Cov (1  2 )−Cov (1 2 )0

ª
Then we study the asymptotic variance by terms. For 1 

Var (1 ) =
1

 2

X
=1

X
=1


£
1 (1)−10 (1)

0
 

0
 (1) 

0
−1 (1)

0
01
¤

=
1

 2

X
=1


©
1 (1)−10 (1)

0
 

0
 (1) 

0
−1 (1)

0
01
ª

=
1

 2

X
=1

(0 (1)⊗ 1 (1))
n
vec (−10) [vec (−10)]

0 o
(0 (1)⊗ 1 (1))

0

=
1

 2

X
=1

(0 (1)⊗ 1 (1))
¡


0
 ⊗−10−1

¢
(0 (1)⊗ 1 (1))

0

=
1

 2

X
=1

(− 1) (0 (1)⊗ 1 (1)) (
0
 (1)⊗ 1 (1))

0

=
1

2
0 (1) (1)

0
 ⊗ 1 (1) (1)

0
01 +

¡
−1

¢
=
1

2
0Ω1Ω

0
1 +

¡
−1

¢


where the second equality follows from the fact that {−10F} is an martingale difference sequence
(m.d.s.), the third equality holds because vec(123) = (03 ⊗1)vec(2) with 1 = 1 (1)  2 =

−10, and 3 =  (1)
0
 the fourth equality follows from the fact that vec(1

0
2) = 2 ⊗ 1 and

(2 ⊗ 1) (2 ⊗ 1)
0
= 2

0
2 ⊗ 1

0
1 the fifth equality holds because 

¡


0
 ⊗−10−1

¢
=  (

0
)⊗


¡
−10−1

¢
= (− 1) (1+)2  Similarly, we have for 2 

Var (2 )

=
1

 2

X
=1

X
=1


£
1 (1)

¡


0
 − 

¢
 (1)

0
 

0
 (1)

¡


0
 − 

¢
 (1)

0
01
¤

= (0 (1)⊗ 1 (1))
1

 4

X
=1

X
=1

[vec
¡


0


¢
vec

¡


0


¢0 − vec (1+) vec
¡


0


¢0
−vec ¡

0


¢
vec (1+)

0 + vec (1+) vec (1+)
0](0 (1)⊗ 1 (1))

0

= [0 (1)⊗ 1 (1)]
1

 4

X
=1

X
=1

[vec
¡


0


¢
vec

¡


0


¢0 − vec (1+) vec (1+)
0
][0 (1)⊗ 1 (1)]

0

= [0 (1)⊗ 1 (1)]
1

 4

X
=1

X
=1

[
¡


0
 ⊗

0


¢− vec (1+) vec (1+)
0][0 (1)⊗ 1 (1)]

0
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and

1

 4

X
=1

X
=1


¡


0
 ⊗

0


¢
=

1

 4

X
=1

X
=1

h
 ( ∧ ) (+1)2 +  (1+ + vec(+1)vec(+1)

0)
i

=

½
1

3
(1+)2 +

1

4
(+1 + vec(+1)vec(+1)

0)
¾
+

¡
−1

¢


where 1+ is the ( + 1)
2 × ( + 1)2 commutation matrix such that 1+vec() =vec(

0) for any
(+ 1)× (+ 1) matrix . It follows that

Var (2 ) = (
0
 (1)⊗ 1 (1))

µ
1

3
(1+)2 +

1

4
1+

¶
(0 (1)⊗ 1 (1))

0 +
¡
−1

¢


For Cov(1  2 ) 

Cov (1 2 ) =
1

 3

X
=1

X
=1


£
1 (1)−10 (1)

0
 

0
 (1)

0
 (1)

0
01
¤

= [0 (1)⊗ 1 (1)]
1

 3

X
=1

X
=1


n
vec (−10) vec

¡


0


¢0o
[0 (1)⊗ 1 (1)]

0

= [0 (1)⊗ 1 (1)]
1

 3

X
=1

X
=1


¡


0
 ⊗−10

¢
[0 (1)⊗ 1 (1)]

0

= [0 (1)⊗ 1 (1)]

½
1

3
(1+)2 +

1

6
1+

¾
[0 (1)⊗ 1 (1)]

0 +
¡
−1

¢


where we use the fact that

1

 3

X
=1

X
=1


¡


0
 ⊗−10



¢
=

1

 3

X
=1

−1X
=1


¡


0
 ⊗−10



¢
+
1

 3

X
=1

X
=


¡


0
 ⊗−10

¢
=

1

 3

X
=1

−1X
=1


¡


0
 ⊗−10



¢
+
1

 3

X
=1

X
=

©

¡


0
 ⊗−10

−1
¢
+[

0
 ⊗−1 ( −−1)

0]
ª

=
1

 3

X
=1

−1X
=1

(1+)2 +
1

 3

X
=1

X
=

(− 1) ¡(1+)2 +1+

¢
=

1

3
(1+)2 +

1

6
1+ +

¡
−1

¢
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Thus we have

Var

⎛⎝ 1√


X
∈0





⎞⎠ =
1



X
∈0



{Var (1 ) +Var (2 )− 2Cov (1  2 )}

=
1



X
∈0



½
1

6
0Ω1Ω

0
1 −

1

12
[0 (1)⊗ 1 (1)]1+[

0
 (1)⊗ 1 (1)]

0
¾

+
¡
−1

¢
=
1



X
∈0



½
1

6
0Ω1Ω

0
1 −

1

12
(0Ω

0
1 ⊗ 1Ω)11

¾
+

¡
−1

¢


where11 is the 1×1 commutation matrix. It follows that Var(−12

P
∈0


 )→ lim→∞

1


P
∈0



[16
0
Ω1Ω

0
1 − 1

12 (
0
Ω

0
1 ⊗ 1Ω)11] ≡ () This limit contributes to the asymptotic variance of

our estimator. In addition, we can verify that
P

=1
°°°−12 

°°°4 = 
¡
−1

¢
 which verifies the Lya-

punov condition for the central limit theorem for independent but non-identically distributed (i.n.i.d.)

observations. Consequently, we have shown that  ⇒ 
¡
0V()

¢
 Third, we study 1 :

1√


X
∈0



1 =
1√


X
∈0



1



−1X
=1

1

Ã
̃+1ĕ0 − ∞X

=0

+1̆
0


!


=
1√


X
∈0



(
1



−1X
=1

1

Ã
+1̆

0
 −

∞X
=0

+1̆
0


!
 − 1



−1X
=1

1
1



X
=1

̆
0


− 1


−1X
=1

1+1
1



X
=1

̆0 +
 − 1


1

Ã
1



X
=1


1



X
=1

̆0

!


)

≡ 1√


X
∈0



{11 −12 −13 +14} 

Following PM, we can show that 
°°°−12

P
∈0


11

°°°2 = 
¡
2

−1¢  For12 we apply the Cauchy-
Schwarz and Markov inequalities°°°°°° 1√



X
∈0



12

°°°°°° ≤
p


⎧⎨⎩ 1



X
∈0



°°°°°1 1
X
=1



°°°°°
2
⎫⎬⎭
12⎧⎨⎩ 1



X
∈0



°°°°° 1
−1X
=1

̆0

°°°°°
2
⎫⎬⎭
12

=
p
 (

−12) (
12
2 −12) =  (1) 

where we use the fact 1


P
∈0



°°°1 1 P

=1 

°°°2 ≤ −1 1


P
∈0


tr(1Ω

0
1) ≤ −1tr(101) =


¡
−1

¢
 Similarly, we can show that 1√



P
∈0


1  =  (1) for  = 3 4 Thus we have

1√


P
∈0


1

=  (1) 
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Fourth,

1√


X
∈0



3 =
1√


X
∈0



(
1



X
=1

1 (1)
h
̆

0
 (1)

0 − ̆0 (1)
0i
 − 1

 2

X
=1

X
=1

1 (1) ̆
0
 (1)

0
)

≡ 1√


X
∈0



{31 −32} 

It is easy to show that 
°°°−12

P
∈0


31

°°°2 = 
¡
2

−1¢, implying that −12

P
∈0


31 =

 (1)  As in the analysis of 12 we can show that 
−12


P
∈0


32 =  (

√
2 ) =  (1) 

Thus 
−12


P
∈0


3 =  (1) 

Fifth,

1√


X
∈0



4 =
1√


X
∈0



(
1



X
=1

1̆0
0
 (1)

0
 − 1

 2

X
=1

X
=1

1̆
0
 (1)

0


)

≡ 1√


X
∈0



{41 −42} 

Noting that 42 = 32 
−12


P
∈0


42 =  (1)  For 41 in view of the fact ̆0 =P∞

=0 ̃− and {  ≥ 1} are mutually independent, we can readily show that  (41) = 0 and



°°°°°° 1√


X
∈0



41

°°°°°°
2

=
1



X
∈0





°°°°° 1
X
=1

1̆0
0
 (1)

0


°°°°°
2

=
1

 2

X
∈0



X
=1

X
=1


¡
0 (1) ̆

0
0

0
11̆0

0
 (1)

0

¢

=
1

 2

X
∈0



X
=1

tr
£

¡
̆00

0
11̆0

¢

¡
0 (1)

0


0
 (1) 

¢¤
=

1



X
∈0




¡
̆00

0
11̆0

¢
0 (1) (1)

0
 = 

¡
22

−1¢ 
where we use the fact that

0 (1) (1)
0
 = 0Ω ≤ max (Ω) 

0
 ≤ 2max (Ω)

¡
0

0
0 +Σ

0
20Σ

−1
222

0
2Σ
−1
22Σ20

¢
≤ 2max (Ω)

h
1 + max (2

0
2) [min (Σ22)]

−2
Σ020Σ20

i
≤ 2

and
¡
̆00011̆0

¢ ≤ 
¡
̆00̆0

¢ ≤ 2 Then
−12


P
∈0


41 = 

¡
2

−12¢ and−12

P
∈0


4

=  (1) 
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Sixth, we can show that


−12


X
∈0



5 = 
−12


X
∈0



1


1

(
 ̆

0
 −

1



X
=1

̆
0
 −

1




X
=1

̆0 +
1

 2

X
=1



X
=1

̆0

)


= 
−12


X
∈0



1


1


 ̆

0
  +  (1) = 

−12


X
∈0



̄5 +  (1)  say.

Note that°°°°°°
⎛⎝

−12


X
∈0



̄5

⎞⎠°°°°°° =

°°°°°°−12

X
∈0



1


1 (1)

X
=1

∞X
=1


¡


0
−

¢
̆
0


°°°°°°
=

°°°°°°−12

X
∈0



1


1 (1)

X
=1

̆
0
−

°°°°°°
≤ 

−12


X
∈0



1


k1 (1)ksp

∞X
=1

°°°̆0°°°
sp
= 

³p
2

´
=  (1) 

Similarly, we can verify that
°°°Var³−12

P
∈0


̄5

´°°° ≤ −1

P
∈0



°°Var ¡̄5 ¢°° = 
¡
22

¢
=

 (1)  It follows that 
−12


P
∈0


5 =  (1) 

Last, it is trivial to show
°°°−12

P
∈0


2

°°° = 
¡√

2
¢
=  (1) and

°°°−12

P
∈0


6

°°° =


¡√
2

¢
=  (1) 

In sum, we have shown 1 − B1 ⇒ 
¡
0V()

¢
 This completes the proof of (ii).

(iii) For 2  we have

2 =
1√


X
∈0



̃01̃2Σ
−1
22

µ
Σ20 − 1


̃02̃

¶

=
1√


X
∈0



012Σ
−1
22

µ
Σ20 − 1


02

¶
+

1√


X
∈0



012Σ
−1
22̄2̄

+
1√


X
∈0



̄1̄
0
2Σ

−1
22

µ
1


02 −Σ20

¶
− 1√



X
∈0



̄1̄
0
2Σ

−1
22̄2̄

≡ 2 + 2 + 2 + 2 say.

Noting that 1


P
∈0


k̄1k2 =  (1) 

1


P
∈0


k̄2k2 = 

¡
2

−1¢  and 1
 2

P
∈0



°°012°°2 =
 (2) by direct moment calculation and Markov inequality and max1≤≤ k̄2k =  (

12
2 2 ) and

max1≤≤ |̄| =  (2 ) by a simple application of Lemma S.1.2 in Su, Shi and Phillips (2016b, SSPb
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hereafter), we have

k2k ≤
p


⎧⎨⎩ 1

 2

X
∈0



°°012°°2
⎫⎬⎭
12

max
∈0



k̄2kmax
∈0



k̄k
°°Σ−122°°sp

=
p
 (

12
2 ) (

12
2 2 ) (2 ) =  (1) 

k2k ≤
p


⎧⎨⎩ 1



X
∈0



k̄1k2
⎫⎬⎭
12⎧⎨⎩ 1



X
∈0



k̄2k2
⎫⎬⎭
12

max
∈0



°°°° 1 02 −Σ20
°°°°°°Σ−122°°sp

=
p
 (1) (

12
2 −12) (

12
2 2 ) =  (1) 

and

k2k ≤
p


⎧⎨⎩ 1



X
∈0



k̄1k2
⎫⎬⎭
12

max
∈0



k̄2k2max
∈0



k̄k
°°Σ−122°°sp

=
p
 (2

2
2 ) (2 ) =  (1) 

For 2 it is easy to see that

k2k ≤
p


⎧⎨⎩ 1

 2

X
∈0



°°012°°2
⎫⎬⎭
12⎧⎨⎩ 1



X
∈0



°°°°Σ20 − 1


02

°°°°2
⎫⎬⎭
12

max
1≤≤

°°Σ−122°°sp
=

p


³

12
2

´


³
−12122

´
 (1) = 

³
2
p


´
which is  (1) if we assume that 

2
2 =  (1)  But this is a very strong assumption that we try to

avoid. To do this, we can employ the BN decomposition and write 1 = 1

h
 (1)

P
=1  + ̆0 − ̆

i
and 2 = 2 [ (1)  + ̆−1 − ̆]  Let  = Σ

−1
22

¡
Σ20 − 1


02

¢
 As in the analysis of 1 

we can show that

2 =
1√


X
∈0



012

=
1√


X
∈0



1



X
=1

1 (1)
0
 (1)

0
02 +  (1)

=
1√


X
∈0



(
1 (1) (1)

0
02 +

1



X
=1

1 (1) (
0
 − ) (1)

0
02

1



X
=1

1 (1)−10 (1)
0
02

)
+  (1)

≡ 1√


X
∈0



{21 +22 +23}+  (1) 

22



Noting that (21) = 0 and°°°°°°Var
⎛⎝ 1√



X
∈0



21

⎞⎠°°°°°° ≤ 1



X
∈0



kVar (21)k = 1



X
∈0



k1Ω02 (
0
 )2Ω

0
1k

≤ 1



X
∈0



k (
0
 )ksp k1Ω022Ω01k

≤ 



X
∈0



k (
0
 )k = 

¡
2

−1¢ =  (1) 

we have 1√


P
∈0


21 =  (1)  Next,

°°°°°° 1√


X
∈0



22

°°°°°° ≤
p


⎧⎨⎩ 1



X
∈0



°°°°° 1
X
=1

1 (1) (
0
 − ) (1)

0
02

°°°°°
2
⎫⎬⎭
12⎧⎨⎩ 1



X
∈0



kk2
⎫⎬⎭
12

=
p
 (

12
2 −12) (

12
2 −12) =  (1) 

Let  = 1 (1)−10 (1)
0
02 Then

1√


P
∈0


23 =

1√


P
∈0



1


P
=1   Noting that

(|F−1) = 0 by the Burkholder’s and Hölder’s inequalities, for any  ≥ 2



°°°°°
X
=1



°°°°°


≤ 

(
X
=1

kk2
)2

≤ 1

(
X
=1

 (kk)
)2

≤ 2
2
2

X
=1

2 ≤ 2
2
2  2+1

where 1 and 2 are constants that depend on  Then by the Hölder’s inequality



°°°°°° 1√


X
∈0



23

°°°°°° ≤ 1√


X
∈0



1




°°°°°
X
=1



°°°°°
≤ 1√



X
∈0



1



(


°°°°°
X
=1



°°°°°
)1

{ kk}1

≤ √


X
∈0



1



n

2
2  2+1

o1

12
2 −12

≤ 
p
2

−1+1 =  (1) 

where 1

+ 1


= 1

Consequently, we have shown that 2 =  (1) 

(iv) Following the analysis of 4 below, we can readily show that

3 =
1√


X
∈0



̃01̃2Σ
−1
22

µ
1


̃02̃2 −Σ22

¶µ
1


̃02̃2

¶−1
Σ20

=
1√


X
∈0



012Σ
−1
22

µ
1


022 −Σ22

¶
Σ−122Σ20 +  (1)

≡ 3 +  (1) 

23



Following the analysis of 2  we can show that k3k =  (1) by resorting to the BN decompo-

sition, moment calculations, and Chebyshev inequality.

(v) For 4  by the Cauchy-Schwarz inequality and Lemmas A.2(iii)-(iv) and A.6(iv),

k4 k ≤
p


⎧⎨⎩ 1

 2

X
∈0



°°̃01̃2°°2
⎫⎬⎭
12

max
∈0



°°°°°
µ
1


̃02̃2

¶−1
−Σ−122

°°°°°
sp

max
∈0



°°°° 1 ̃02̃ −Σ20
°°°°

=
p
 (

12
2 ) (22 ) (

12
2 2 ) =  (1) 

(vi) This follows from (i)-(v). ¥

Proof of Lemma A.8. Let V =
1√


P
∈0


̃012̃
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where we use the fact that max1≤≤  k1k2 ≤  Then  
1 =  (1) by the Markov inequality.
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Next, noting that
°° 1
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max



°°02̃ °°2 ≤ max



X
=1

X
=1


¡
022̃


̃

2


¢
≤ max



X
=1

X
=1

n
 k2k4

o12 n
 (̃)

4
o12

≤ 

X
=1

X
=1

2
−2 = 2

−2+2

we have

°°V

°° ≤ 1 +  (1)√
 2

X
∈0



°°̃01̃2°°°°Σ−122°°sp °°̃02̃ °°
≤ −122

1 +  (1)√
 2

X
∈0



°°̃01̃2°°°°02̃ °°
≤ −122 (1 +  (1))

p


⎧⎨⎩ 1

 2

X
∈0



°°̃01̃2°°2
⎫⎬⎭
12⎧⎨⎩ 1

 2

X
∈0



°°02̃ °°2
⎫⎬⎭
12

=
p


³

12
2

´


³

12
2 −

´
= 

³
2

12
 −

´
=  (1) 

In sum, we have shown that V =  (1)  ¥

C Determination of the Number of Groups

In this section, we now propose a BIC-type information criterion to choose  the number of groups. We

now use 0 to denote the true number of groups and  a generic number of groups. We assume that the

true number of groups is bounded from above by a finite integer max and 1 ≤ 0 ≤ max. By mini-

mizing the objective function in (2.7), we obtain the C-Lasso estimators {̂() ̂1() ̂2()}
of { 1 2 } where we make the dependence of these estimators on () explicit. We classify

individual  into group ̂() if and only if ̂1() = ̂(), i.e.,

̂() = { = {1 2  } : ̂1() = ̂()} for  = 1  (C.1)

Let ̂() = {̂1() · · ·  ̂()}. We can define the post-Lasso estimators of  as

̂
post

̂()
=

⎛⎝ X
∈̂()

̃012̃1

⎞⎠+ X
∈̂()

̃012̃

̂
post

2 (̂()) is defined as before but now we also make its dependence on ̂ () explicit. Let

̂2
̂()

= 1


P
=1

P
∈̂()

P
=1[̂()]

2 where ̂() = ̃ − ̃01̂
post

̂()
− ̃02̂

post

2 (̂())
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for  ∈ ̂(). We choose ̂ = ̂ () to minimize the following information criterion:

() = ln[̂2
̂()

] + 1 (C.2)

where  is a tuning parameter.

Let () = (1  ) be any K-partition of the set of {1 2  } and G is a collection of

such partitions. Let ̂2() = 1


P
=1

P
∈

P
=1[̃ − ̃01̂

− ̃02̂2()]
2, where ̂
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(
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+
P

∈
̃012̃ and ̂2() =

¡
̃02̃2

¢−1
̃02

¡
̃ − ̃1̂

¢
for any  ∈

 Define

 =

⎧⎪⎪⎨⎪⎪⎩
12 12 in Case 1 where 2 is absent in (2.1) and there is no endogeneity in 1

 12 in Case 2 where 2 is absent in (2.1) and there is endogeneity in 1


−12
2  12 in Case 3 where 2 is present in ( 2.1)

(C.3)

Let 20 =
1


P
=1

P
=1 ̃

2
 in Cases 1-2 and =

1


P
=1

P
=1 (̃

∗
)
2
in the Case 3. We can show that

̂2
̂(0)

− 20 = 

¡
−1−1

¢
 

¡
−1

¢
 and 

¡
2

−1¢ corresponding to the above three cases,
respectively.

We add the following assumption.

Assumption A.5 (i) As ( )→∞min1≤0 inf()∈G ̂2() → 2  20, where 
2
0 = plim( )→∞

20 

(ii) As ( )→∞,  → 0 and  
2
 →∞ where  is as defined in (C.3).

Assumption A.5(i) guarantees that all under-grouped models yield asymptotic mean square errors that

are larger than 20, which can be obtained from the true model. Assumption A.5(ii) imposes the usual

type of conditions for the consistency of model selection: the penalty coefficient  cannot shrink to zero

either too fast or too slowly.

The following theorem suggests that in large samples we can determine the correct number of groups

by minimizing the information criterion defined in (C.2).

Theorem C.1 Suppose that Assumptions A.1, A.3 and A.5 hold. Suppose that there exists a constant 00

such that min1≤≤ Σ00 ≥ 00  0. Then  (̂ = 0)→ 1 as ( )→∞

Theorem C.1 indicates that w.p.a.1 the use of IC() in (C.2) determines the correct number of

groups. A natural question is how to choose the tuning parameter  empirically.

In simulations and applications, we recommend the use of DPLS estimation so that Case 3 applies. We

will choose 2 = [
14] and set  =

1
3( )−13 Note that this rate converges to zero much slower than

the usual ( )−1 ln ( )-rate that works in Case 1. One can verify that the conditions in A.5(ii) are

satisfied in this case when  and  diverge to infinity at roughly the same rate. Our simulations suggest

that the choice of  has little effect on the results.

Proof of Theorem C.1. Let K = {1 2 max} where max ≥ 0. We divide  into three subsets

0 − and + : K0 = {0} K− = { ∈ K :   0} and K+ = { ∈ K :   0}. First, using
arguments as used in the proof of Lemma A.5(iii) we can show that

̂2
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=
1
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h
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´i2
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It follows that (0 ) = ln[̂
2
̂(0)

] + 10 = ln[̂
2
̂(0)

] + (1)
→ ln(20) We consider the cases

of under- and over-fitted models separately.

Case 1: Under-fitted model ( ∈ K−). Noting that
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By Assumption 4.2, we demonstrate
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It follows that  (min∈K− ()  (0 ))→ 1.

Case 2: Over-fitted model ( ∈ K+).
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2
̂()
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) = (1) by Lemma C.2 below and 
2
 →∞ by Assumption

A.5.¥

Lemma C.2 Let ̄20 =
1


P
=1

P
=1 ̃

2
. Let the conditions in Theorem C.1 hold. Thenmax0≤max

|̂2
̂()

− ̄20 | = (
−2
 )

Proof of Lemma C.2. When   0, following the proof of Theorem 4.1, we can show that

k̂1 − 01k =  (
−1 + ), k̂2 − ∗2k =  (

12
2 (−12 + )), and 1



P
=1

Q
=1 k01 − ̂k =

 (
−1). Noting that 01,  = 1   , only take 0 distinct values, the latter implies that the

collection C ≡ {̂1  ̂} contains at least 0 distinct vectors, say, ̂1  ̂0 , such that ̂ − 0 =

 (
−1) for  = 1 0. For notational simplicity, we rename the other vectors in the above collection

as ̂0+1  ̂ . By the pointwise convergence of ̂


1 ̂0+1  ̂ must converge in probability to one

of the true values in {01  00
}

We classify  ∈ ̂() if ||̂1 − ̂|| = 0 for  = 1 , and  ∈ ̂0() otherwise. Using

arguments like those used in the proof of Theorem 4.3 and that of Lemma S1.14 in SSPb, we can show

that X
∈0



 (̂) = (1) and
X

∈̂()

 (̂) = (1) for  = 1 0 (C.4)
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This implies that
X
=1

 ( ∈ ̂0() ∪ ̂0+1() ∪  ∪ ̂()) = (1) (C.5)

That is, the ‘redundant’ last  − 0 groups containing empty elements asymptotically. Using the fact

that 1{ ∈ ̂} = 1{ ∈ 0}+ 1{ ∈ ̂\0}− 1{ ∈ 0\̂}, we have
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for  = 2 3 4 For1  we discuss several cases: (1) When

2 is absent in the cointegrating regression and there is no endogeneity in 1, we can apply the fact ̂
post
 

 = 1 0 converge to their true values at 
−12−1 and show that 1−̄20 = 

¡
−1−1

¢
; (2)

When 2 is absent in the cointegrating regression and there is endogeneity in 1, we can apply the fact

̂
post
   = 1 0 converge to their true values at rate 

−1 and show that 1 − ̄20 = 

¡
−1

¢
;

(3) When both 1 and 2 are present, we observe that ̂2 converge to their (pseudo) true values at

rate 
12
2 −12 and show that 1 − 20 = 

¡
−1

¢
 As a result, we have ̂2

̂()
= 20 +  (

−2
 )

where  = 12 12  12 and 
−12
2  12 in the above three cases, respectively. This completes the

proof of the lemma. ¥

D Practical Implementation of the C-Lasso Procedure

In this section, we provide more details on the practical implementation of the C-Lasso procedure in the

followings steps.

1. Initial estimates based on the heterogenous nonstationary panels. Obtain the initial es-

timates ̃1 and ̃2 from the LS time-series regression of ̃ on
¡
̃01 ̃

0
2

¢
 Let  (β1β2) =

1
2

P
=1

°°̃ − ̃11 − ̃22
°°2  ̃2 = 1



P
=1(̃ − ̃

0
̃)

2 and ̂1 =
1
2

P
=1 ̃1̃

0
1

2. Determining the number () of groups along with the tuning parameter  Let

Λ ≡
n
 = 

−34  = 0
 for  = 0  

o
for some 0  0 and   1

Given any  ∈ {1 2 max} and  ∈ Λ compute IC() and IC(̂() ) where ̂() =

argmin1≤≤maxIC()  Choose ̂ ∈ Λ such that IC(̂ ()  ) is minimized. The estimated

number of groups is then given by

̂ = min
∈Λ

̂()

Note that the above procedure fine-tunes the tuning parameter  for the determination of the number

of groups and is recommended by Su, Shi, and Phillips (2016a, SSPa hereafter). We find in simulations

0 = 0025  = 2 and  = 3 work fairly well for all DGPs under our investigation. If ̂ = 1 stop

here and estimate a homogenous nonstationary panel as usual. Otherwise, move to the next step.
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3. C-Lasso estimation. Given ̂ and ̂  1 solve the PLS problem


(β1β2α) =  (β1β2) +

̂



X
=1

(̃)
2−̂

̂Y
=1

°°°̂1(1 − )
°°° 

Obtain the C-Lasso estimates {̂} for the group-specific parameters and {̂  = 1  ̂} for the
estimated group membership.

4. Post-Lasso estimator with bias correction: Given the estimated groups, {̂  = 1  ̂}, we
can obtain the post-Lasso estimators of  and 2 as

̂
post
 =

⎛⎝X
∈̂

̃012̃1

⎞⎠−1 X
∈̂
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post
 ) for  ∈ ̂

where to remove the bias we apply the dynamic OLS method in the post-Lasso estimation by including

the lags and leads of ∆1 into 2 as in Section 4.4. If 2 only contains the lags and leads of

∆1 but no other stationary regressors, we compute the standard errors for the elements of ̂
post


as the square roots of the diagonal elements of 1
̂2

Q̂−1()V̂
†
()Q̂

−1
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X
∈̂
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6
Ω̂†00Ω̂11 for  = 1  ̂

and Ω̂†00 and Ω̂11 are as defined in Section 4.4. If 2 also contains other stationary covariates,
then we can compute the standard errors for the elements of ̂

post
 as the square roots of the diagonal

elements of 1
̂2

Q̂−1()V̂()Q̂
−1
() where
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1
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³
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´
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¸


̂ = 00−02Σ̂
−1
22Σ̂20, Ω̂ denotes the HAC estimator of the long-run variance-covariance in Ω, and

Σ̂22 and Σ̂20 denote the plug-in estimators of the short-run variance covariance submatrices Σ22
and Σ20 of Σ

E Additional Simulation Results

In this appendix, we assess the performance of the information criterion (IC) proposed in Section C. We

set  =
1
3( )−13 and  = 

−34 where  = 0025 005 01 or 02. We find that the results are
not sensitive to the choice of  and will only report the simulation results for the case where  = 01

to save space. Table A.1 displays the empirical probability with which a particular group number from

1 to 6 is selected according to IC based on 500 replications for each DGP. Note that the true number of

groups is 3 for DGPs 1, 2, 3, and 5 and 2 for DGP 4. When  = 40 the probabilities of correct choices

are higher than 95 % in all cases and they reach the unity when  = 80. The simulation results show that

our information criterion works fairly well.
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Table A.1: Frequency for selecting K=1, 2,..., 6 groups

N T 1 2 3 4 5 6

DGP1 50 40 0 0 0.992 0.008 0 0

50 80 0 0 1 0 0 0

100 40 0 0 1 0 0 0

100 80 0 0 1 0 0 0

DGP2 50 40 0 0 0.966 0.034 0 0

50 80 0 0 0.998 0.002 0 0

100 40 0 0 0.982 0.018 0 0

100 80 0 0 1 0 0 0

DGP3 50 40 0 0 0.988 0.012 0 0

50 80 0 0 1 0 0 0

100 40 0 0 1 0 0 0

100 80 0 0 1 0 0 0

DGP4 50 40 0 0.976 0.024 0 0 0

50 80 0 1 0 0 0 0

100 40 0 0.956 0.044 0 0 0

100 80 0 1 0 0 0 0

DGP5 50 40 0 0 0.990 0.010 0 0

50 80 0 0 1 0 0 0

100 40 0 0 0.986 0.014 0 0

100 80 0 0 1 0 0 0

F Additional application results

In this section, we report some additional results for the empirical application

F.1 Information criterion for the quarterly data

Table A.2 reports the information criterion (IC) for the quarterly data with different tuning parameter

values:  =  × −34 where  = 0025 005 01 and 02. Following the majority rule, we decide to

select  = 2 groups for the period 1975.Q1-1998.Q4 and  = 3 groups for the period 1999.Q1-2014.Q2.

Note that the IC is minimized at  = 01 and 0.05 for the first and second subsamples, respectively. For

this reason, we choose  = 01 and 0.05 for these two subsamples, in the paper.

F.2 Results for the monthly data

In this section we provide the application results for the monthly data.

Table A.3 reports the information criterion (IC) for the monthly data with different tuning parameter

values:  = ×−34 where  = 0025 005 01 and 02. As is evident from Table A.3, for the monthly
data our information criterion tends to choose 2 groups for the first subsample and 3 groups for the second

subsample, too. We set  = 005 to report the estimation results in Table A.4 and classification results

in Table A.5.

Comparing the estimation results in Table 4 for the quarterly data with those in Table A.4 for the

monthly data, we find that the estimates for either group in either subsample period of the monthly
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Table A.2: The information criterion for different numbers of groups (quarterly data)

From 1975.Q1-1998.Q4 From 1999.Q1-2014.Q2

 0.025 0.05 0.10 0.20 0.025 0.05 0.10 0.20

1 -0.7503 -0.7503 -0.7503 -0.7503 -0.2074 -0.2074 -0.2074 -0.2074

2 -1.1262 -1.1262 -1.1262 -1.0716 -0.4719 -0.4730 -0.4902 -0.4836

3 -1.1622 -0.7961 -1.0956 -0.7135 -0.5230 -0.5319 -0.5268 -0.4418

4 -0.7719 -0.7507 -0.7507 -1.0596 -0.5037 -0.4994 -0.4958 -0.3815

5 -0.7233 -0.7203 -0.6750 -0.6750 -0.4789 -0.4749 -0.3499 -0.2093

6 -0.6946 -0.6405 -0.6005 -0.6844 -0.4454 -0.4358 -0.3566 -0.1720

Table A.3: The information criterion for different numbers of groups (monthly data)

From 1975-1998 From 1999-2014

\ 0.025 0.05 0.10 0.20 0.025 0.05 0.10 0.20

1 -0.8042 -0.8042 -0.8042 -0.8042 -0.1953 -0.1953 -0.1953 -0.1953

2 -1.0907 -1.0907 -1.0907 -1.0140 -0.4686 -0.4753 -0.4837 -0.4748

3 -1.1460 -0.8480 -0.8404 -0.8365 -0.5312 -0.5311 -0.5230 -0.3940

4 -1.0966 -1.0897 -0.8292 -0.9159 -0.5161 -0.5132 -0.5086 -0.3139

5 -0.9044 -1.0646 -0.9047 -0.7949 -0.5032 -0.4987 -0.3630 -0.2711

6 -0.8782 -1.0379 -0.7875 -0.7678 -0.4768 -0.4753 -0.3016 -0.2466

data are reasonably close to the corresponding estimates based on the quarterly data. This suggests the

robustness of our results. The countries in bold in Table A.5 suggest good coincidences of the classification

results based on the monthly and quarterly datasets.
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Table A.5: Classification results for the monthly data

Panel A: From 1975.M1-1998.M12

Group 1 (1 = 53)
Algeria Austria Bahrain Belgium Bolivia
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Denmark Egypt Finland France Ghana

Greece Honduras Hungary India Indonesia

Israel Italy Ivory Coast Jamaica Japan

Jordan Kenya South Korea Luxembourg Malta

Mauritius Mexico Morocco Nepal Netherlands

Nigeria Norway Pakistan Paraguay Philippines

Portugal Singapore South Africa Spain Sri Lanka

Sudan Sweden Switzerland Thailand Trinidad and Tobago

Turkey Uruguay Venezuela

Group 2 (2 = 3)
Ecuador Kuwait Myanmar

Panel B: From 1999.M1-2014.M7

Group 1 (1 = 53)
Angola Argentina Austria Bangladesh Belgium

Botswana Cambodia Canada Costa Rica Denmark

Dominican Egypt Europe Finland France

Germany Ghana Honduras Iceland India

Iran Italy Jamaica Japan Jordan

Luxembourg Malawi Mauritius Mexico Mongolia

Morocco Mozambique Nepal Netherlands Nigeria

Norway Pakistan Romania Saudi Arabia Sri Lanka

Sudan Sweden Switzerland Tanzania Trinidad and Tobago

Tunisia Turkey Uganda United Kingdom Ukraine

Uruguay Venezuela Viet Nam
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Albania Armenia Brazil Bulgaria Colombia

Congo Croatia Georgia Hungary Ireland

Ivory Coast Kuwait Latvia Lithuania Macau
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Algeria Bolivia Czech Republic Guatemala Hong Kong

Indonesia Israel Kazakhstan Kenya South Korea

Kyrgyzstan Laos Macedonia Malaysia Myanmar

Paraguay Poland Portugal Russia Singapore

South Africa

Note: Countries in bold denote coincidences of the classification results based on the monthly and quarterly

datasets.
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