Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Economics School of Economics

6-2020

Identifying latent grouped patterns in cointegrated panels

Wenxin HUANG

Sainan JIN
Singapore Management University, snjin@smu.edu.sg

Liangjun SU
Singapore Management University, lisu@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research

b Part of the Econometrics Commons

Citation

HUANG, Wenxin; JIN, Sainan; and SU, Liangjun. Identifying latent grouped patterns in cointegrated panels.
(2020). Econometric Theory. 36, (3), 410-456.

Available at: https://ink.library.smu.edu.sg/soe_research/2381

This Journal Article is brought to you for free and open access by the School of Economics at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School
Of Economics by an authorized administrator of Institutional Knowledge at Singapore Management University. For
more information, please email cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/soe_research
https://ink.library.smu.edu.sg/soe
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2381&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Published in Econometric Theory, Volume 36, Issue 3, June 2020 , pp. 410-456
https://doi.org/10.1017/S0266466619000197

Identifying Latent Grouped Patterns in Cointegrated Panels*

Wenxin Huang®, Sainan Jin’, and Liangjun Su’
@ Antai College of Economics and Management, Shanghai Jiao Tong University

b School of Economics, Singapore Management University

November 20, 2018

Abstract

We consider a panel cointegration model with latent group structures that allows for heterogeneous
long-run relationships across groups. We extend Su, Shi, and Phillips’ (2016) classifier-Lasso (C-Lasso)
method to the nonstationary panels and allow for the presence of endogeneity in both the stationary and
nonstationary regressors in the model. In addition, we allow the dimension of the stationary regressors
to diverge with the sample size. We show that we can identify the individuals’ group membership and
estimate the group-specific long-run cointegrated relationships simultaneously. We demonstrate the
desirable property of uniform classification consistency and the oracle properties of both the C-Lasso
estimators and their post-Lasso versions. The special case of dynamic penalized least squares is also
studied. Simulations show superb finite sample performance in both classification and estimation.
In an empirical application, we study the potential heterogeneous behavior in testing the validity of
long-run purchasing power parity (PPP) hypothesis in the post-Bretton Woods period from 1975-2014
covering 99 countries. We identify two groups in the period 1975-1998 and three ones in the period
1999-2014. The results confirm that at least some countries favor the long-run PPP hypothesis in the
post-Bretton Woods period.
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1 Introduction

Recently there has been a growing literature on large dimensional panels with latent group structures; see
Lin and Ng (2012), Bonhomme and Manresa (2015, BM hereafter), Sarafidis and Weber (2015), Ando and
Bai (2016, 2017), Su, Shi, and Phillips (2016, SSP hereafter), Lu and Su (2017), Su and Ju (2018), Su,
Wang, and Jin (2017), Wang, Phillips and Su (2018), among others. In comparison with other approaches
to model unobserved heterogeneity in panel data models, an important advantage of the latent group
structures is that it offers a flexible way to modeling unobserved heterogeneity while maintaining certain
degree of parsimony. Two popular methods have been proposed to identify the unknown group structures.
One is based on the celebrated K-means clustering algorithm, and the other is based on the C-Lasso. For
example, Lin and Ng (2012) and Sarafidis and Weber (2015) consider a heterogeneous linear regression
panel data model where the slope coefficients exhibit an unknown group structure whereas BM consider
a homogeneous linear panel data model where the additive fixed effects exhibit group structure. Both
groups of authors propose to apply the K-means clustering algorithm to achieve classification. Ando and
Bai (2016, 2017) extend BM’s approach to allow for group structures among the interactive fixed effects.
Motivated by the sparse feature of the slope coefficients under latent group structures, SSP propose a novel
variant of the Lasso procedure, i.e., classifier Lasso (C-Lasso), to achieve classification and estimation for
both linear and nonlinear panel data models with or without endogeneity. Lu and Su (2017) propose
a sequential testing procedure to determine the unknown number of groups; Su and Ju (2018) extend
SSP’s C-Lasso to panel data models with interactive fixed effects; Su et al. (2018) consider C-Lasso-based
sieve estimation of time-varying panel data models with latent structures; Wang et al. (2018) extend the
CARDS algorithm of Ke et al. (2015) to the panel data framework to identify the group structures of
slope parameters.

In this paper, we consider identifying the latent group structures in nonstationary panels where some
regressors are generated from an integrated process. Despite the vast and diverse literature on nonsta-
tionary panels, most studies focus on panel unit root or cointegration tests with or without cross-sectional
dependence and the literature on formal cointegration analysis is relatively sparse. Depending on whether
the cointegrating relationship is allowed to be heterogeneous, one may consider either homogeneous or
heterogeneous cointegrating relations. For example, Phillips and Moon (1999) consider a general limit
theory for both cases in large dimensional nonstationary panels; Groen and Kleibergen (2003) consider the
likelihood-based cointegration analysis for heterogeneous and homogeneous panel vector error-correction
models; Kao and Chiang (2000) consider both dynamic OLS (DOLS) and fully-modified OLS (FMOLS) es-
timation and inference in homogeneous cointegrated panels; Mark and Sul (2003) consider a panel DOLS
in homogeneous nonstationary panels; Bai et al. (2009) study homogeneous panel cointegrations with
global stochastic trends; Pedroni (2001a) considers FMOLS for heterogeneous cointegrated panels. So the
long-run cointegrating relationships can be assumed to be either homogeneous or heterogeneous and we
face a trade-off between assuming heterogeneous long-run relationships, which is surely robust and perhaps
also close to the reality, and estimating a common or at least an average long-run relationship, which offers
efficiency in estimation and inference if the underlying homogeneous assumption is correct.

Despite the different treatments on the long-run relationships, the short-run dynamics, the individual



intercepts, or the individual time trends, if exist, are commonly assumed to be heterogeneous across
individuals. In this paper, we shall maintain the individual heterogeneity assumption on the individual
effects and short-run dynamics and take an intermediate approach to model the long-run relationship.
We propose a panel cointegration model with latent group structures where the long-run relationships
are homogeneous within a group and heterogeneous across different groups, and the short-run dynamics
are allowed to be completely heterogeneous. The key issue is that the individual group membership is
unknown and has to be estimated from the data together with the other parameters in the model. We
extend SSP’s C-Lasso method to the nonstationary panel framework. We consider the SSP’s C-Lasso
method rather than the K-means clustering algorithm for two reasons. First, the C-Lasso method has
a computational advantage over the K-means clustering algorithm. As SSP argue, the C-Lasso problem
can be transformed into a sequence of convex problems to be solved easily, while the K-means procedure
is NP-hard and tends to be much more computationally involved than the C-Lasso method. Second,
the asymptotic theory for the C-Lasso method is well understood for stationary panels. It is natural to
extend the theory to nonstationary panels. We will propose a C-Lasso-based penalized least squares (PLS)
procedure to identify the unknown group structures and estimate the other parameters in the model jointly.

Nevertheless, the extension of the asymptotic theory from stationary panels to nonstationary panels is
technically challenging for two main reasons. First, there is a lack of certain uniform convergence results in
the nonstationary panel literature. It is well known that both the K-means clustering algorithm and the C-
Lasso method enjoy certain oracle properties, which means the resulting estimators are as asymptotically
efficient as if the latent group structures were known. But the establishment of such oracle properties
relies on the application of certain exponential inequalities that are available for weakly dependent data
as in stationary panels but not available for strongly dependent data as in nonstationary panels. To
achieve the extension, we first need to establish some uniform convergence results associated with the
nonstationary I(1) variables. Second, we allow for both stationary and nonstationary regressors in our
cointegration models. Even though the number of nonstationary regressors is assumed to be fixed, we
allow the dimension of stationary regressors to grow with the sample size at a controllable rate. The latter
is very important for us to explore the idea of DOLS and develop a panel dynamic PLS procedure. The
growing dimension of the stationary regressors does not affect the convergence rate of the estimators of
the long-run relationships, but it complicates the asymptotic analysis in several places.

We assume that the number of groups is known and study the asymptotic properties of the PLS
estimators. We first establish the preliminary rates of convergence for the coefficient estimators and show
that, as expected, the long-run parameters can be estimated consistently at a faster rate than the short-run
parameters. Given these preliminary consistency rates, we establish the uniform classification consistency
of the C-Lasso method, which essentially means that all parameters within a group can be classified into
the same group with probability approaching 1 (w.p.a.1), and all individuals that are classified into the
same group indeed belong to the same group w.p.a.1l. Such a uniform classification consistency lays down
the foundation for the study of the asymptotic distributions of the PLS estimators. We show that both
the C-Lasso estimators of the long-run parameters and their post-Lasso versions enjoy the asymptotic
oracle properties and then derive their asymptotic distributions under the joint limit theory.! We show

that such a presence of endogeneity in both nonstationary and stationary regressors does not cause the



inconsistency of the long-run parameter estimators but does yield an asymptotic bias in the estimators of
both the short-run and long-run parameters. To remove the asymptotic bias in the estimation of the long-
run parameters, we explore the idea of DOLS in the time series framework and propose a C-Lasso-based
dynamic PLS procedure. When the number of groups is unknown, we propose an information criterion to
determine the number of groups. Simulations show superb finite sample performance of the information
criterion and C-Lasso-based PLS procedure.

In an empirical application, we apply our method to re-examine the validity of long-run PPP in the
post-Bretton Woods period from 1975-2014 for a panel of 99 countries. Due to the establishment of
the European Union in 1999, we consider two subperiods, namely, 1975-1998 and 1999-2014. Then we
estimate the long-run group-specific relationships by the dynamic PLS method. In general, we observe
heterogeneous behavior on the long-run relation between the nominal exchange rate and aggregate price
ratio. We find two groups in the 1975-1998 subsample, with one group of countries in favor of the validity
of the PPP hypothesis and the other group against the PPP hypothesis. In the 1999-2014 subsample, we
identify three groups and find significant evidence in favor of the long-run PPP hypothesis in one group.
There are more countries in this group in favor of the validity of the long-run PPP hypothesis in this
period. We explain these results by the “Revived Bretton Woods system” (also called Bretton Woods II
in the literature) from 2000, see Dooley et al. (2004). These results confirm the belief that at least some
selected group of countries obey the long-run PPP rule in the post-Bretton Woods period.

The rest of this paper is organized as follows. We introduce the cointegrated panel data model with
latent group structures and propose a C-Lasso-based PLS estimation procedure in Section 2. Section 3
introduces the main assumptions for our asymptotic analysis. We study the asymptotic properties of the
PLS estimators. Section 5 reports Monte Carlo simulation results. Section 6 applies the dynamic PLS
method to testing the long-run PPP hypothesis. Section 7 concludes. We relegate the proofs of the main
results to Appendix A. The online supplement contains of the proofs of technical lemmas, the section on
the determination of the number of groups, the section on the practical implementation of the C-Lasso
procedure, and some additional simulation and application results.

NOTATION. For any real matrix A, we write the transpose A’, the Frobenius norm ||A||, the spectral
norm ||A||sp, and the Moore-Penrose inverse as A™. When A is symmetric, we use Apax(A4) and Apin (A)
to denote its largest and smallest eigenvalues, respectively. I, and 0, denote the a x a identity matrix
and a x b matrix of zeros, and 1{-} is the usual indicator function. The operator L denotes convergence
in probability, = weak convergence, a.s. almost surely, and plim probability limit. We use (N,T) — oo

to signify that N and T pass jointly to infinity.

2 Model and Estimation

In this section we introduce the panel cointegration model with latent group structures and then propose

a C-Lasso-based penalized least squares method to estimate the model.



2.1 Panel cointegration model with latent group structures

The dependent variable y;; is measured for individuals ¢ = 1,2, ..., N over time t = 1,2, ...,T. We suppose
that the nonstationary I(1) variables y;; and x1 4 are generated according to the following heterogeneous

panel cointegration model

Yit = i + B1 @1t + By w2 + wie 7 (2.1)

T14t = T14—1 + €14t
where p; is the unobserved individual fixed effects (FE), 1 4 is a p1 x 1 vector of nonstationary regressors
of order one (I(1) process) for all 4, z2;; is a pa X 1 vector of stationary regressors (I(0) process) for all i,
u;¢ is the idiosyncratic error term with mean zero and finite long-run variance, €1 ;+ also has zero mean and
finite long-run variance, and 3, ; and 3, ; are p; x 1 and p2 x 1 vectors of slope coefficients, respectively.

We assume that p; is fixed but allow ps to diverge to infinity at certain rate. The latter is very important
because we will extend our theory to the panel DOLS framework. In this case, the first equation in (2.1)
becomes B

D2
Yit = pu; + BT + Z Vi ;AT e + 0l (2.2)
j=—p2
where Az ¢+ = %1 ,4—%1,5,t—1, T2,;+ only contains the lags and leads of Azq ;1 : T2 = (Am§7i7t_ﬁz, - Ax’17i7t+ﬁ2)’,
Boi = (Vi—pas - Vips)s P2 = (2D2+1)p1, P2 is divergent with 7', and U;rt is the new error term that typically
contains some approximation errors.

In the literature on nonstationary panels, 3, ;, which stands for the long-run cointegrating relationship,
can be either homogeneous or heterogeneous, whereas 3, ;, which represents the short-run dynamics, is
allowed to be heterogeneous across all individuals in almost all studies. In fact, there is a large literature
that imposes a common long-run relationship and allows for individual-specific short-run parameters.
For example, in a cross-country study it is possible for different countries or regions to have different
dynamics of adjustments towards an equilibrium due to their historical and cultural differences, but they
could all converge to the same economic equilibrium in the very long run due to forces of arbitrage and
interconnections through international trade and cultural exchanges. See also the concluding remark in
Pesaran, Shin and Smith (1999). In this paper we maintain the heterogeneity assumption on Ba;’s but
follow the lead of SSP and assume that /3, ;’s are heterogeneous across groups and homogeneous within a
group.

Specifically, we allow the true values of 3, ;, denoted as 5[1)71-, to follow a grouped pattern of the general
form

o) ifie@
=9 S (2.3)

% ifieGY
where a? # af for any j # k, UK GY = {1,2,... N}, and GgﬂG? = ¢ for any j # k. For now, we assume
that the number of groups, K, is known and fixed. But we will study the determination of K in Section
C of the online supplement. Let a = (ay,...,ax), By = (B11,---,B1n), and By = (Ba1,---,Ba n)-
We denote their true values as a®, 39, and 39, respectively. We also use 53,1. and of to denote the true



coefficients of 3, ; and ay. We use Ny, = #GY to denote the cardinality of the set G}. We are interested in
identifying each individual’s group membership and estimating the long-run cointegrating group-specific
coefficients, ag, k=1, ..., K.

By allowing for the latent group structures for the long-run parameters, we can achieve a right balance
between parameter parsimony and model misspecification. Note that the key parameters of interest in
nonstationary panels are the coefficients of the nonstationary regressors as they characterize the long-run
equilibrium relationship between the dependent variables and the nonstationary regressors. If we allow
these parameters to be individual-specific, we can run individual time-series regressions to estimate them
but their estimators will have non-standard limiting distributions and can converge to the true values only
at the rate T. On the other hand, if we assume these coefficients are common across all individuals, we
will have a convenient yet restrictive assumption that facilitates estimation and inference and meanwhile
a very large chance of model misspecification. The latent group structure adopted in this paper is an
intermediate approach. It allows for certain degree of heterogeneity in the long-run parameters and helps
to overcome some problems associated with nonstationary time series analysis too. In particular, under
some conditions we can identify the group structure and estimate the group-specific long-run parameters
at the rate v/ NT. Moreover, these long-run parameter estimators are asymptotically normal.

Even though we focus only on the linear cointegrating model in this paper, the theory that we are
developing is quite different from that in SSP for three main reasons. First, the presence of nonstationary
regressors substantially complicates the asymptotic analysis. In particular, we need to establish some
uniform convergence rates that are not available in the nonstationary panel literature. Second, the in-
creasing dimension of the stationary regressors in the model also complicates the issue. Third, we allow
for endogeneity in both x1 ;; and x2 ;. In the time series framework, it is well known that the endogeneity
of either the I(1) or I(0) regressors does not cause the inconsistency of the OLS estimator of the long-run
relationship. In particular, the estimators of the coefficients of I(1) regressors are still consistent at the
rate T despite the fact that it exhibits an endogeneity bias of order O(1/T) (see, e.g., Proposition 19.2 in

Hamilton (1994)). We will show that a similar phenomenon occurs in the panel setup.

2.2 Penalized least squares estimation

Without imposing the latent group structures in (2.3), we can estimate 3 ; and 35 ; in (2.1) by using the

fixed effects estimator. In this case, we consider the within-group transformation
it = B1iT1it + Bo T2 + Ui, (2.4)

or in vector form

Ui = T1,i81,; + T2,iBa; + Ui, (2.5)

here 4; = (g Gir) G = Ui U = & S d T1.4¢, Toits Wity T1.4, Ti, Uiy T1.4, T du
where y; = (%‘17 ~-~7yiT) y Yit =Yit —Yi, Yi = T thl Yit, and T it, T2,45t, Wity 1,45 L2455 Uiy T1,4, 2,4, ANA U;

are analogously defined. The FE estimators Bl,i and BQ,i are obtained as the minimizers of the following



least squares criterion function
1 X
PO 2
QNT(B1,B82) = T2 ZHyz Ty 1/61@ ) zBQzH NTZ ZHyl —z;8;", (2.6)
i=1

where 8; = (8} ;,85,,) and &; = (%1, &2,;) has a typical row &}, = () ;,, & ;). Let B; = (3/1173121)/ Then
B, = (#&;)"'&,7; for each i. As mentioned above, the estimators Bl,i of the long-run parameters 3, ;
are consistent despite the possible presence of endogeneity bias, but they converge to the true values only
at the rate T" with nonstandard limiting distributions. When B?J’s exhibit the latent group structure in
(2.3), it is possible to pull over the observations from both the time series and cross-sectional dimensions
to obtain more efficient estimators of the group-specific long-run parameters. We will show that these
new estimators, possibly after bias correction, converge to the true values at the rate v/ NT and are
asymptotically normally distributed.

To explore the latent group structure of §;;’s in (2.3), we propose to estimate B3;, B, and a by

minimizing the following C-Lasso-based penalized least squares (PLS) criterion function

N
QR (B1: B2 @) = Qur (B By) + %Z ”H\)wu—aw) (2.7)

where A = A(N, T) is a tuning parameter, &; = + Zt 1 (@i — B;:ﬁit)Q, and Q1; = e Zthl T1,7) ;- When
o; and QM are replaced by 1 and I, respectively, the penalty term in (2.7) reduces to that in SSP.
Here, we introduce these two terms into the penalty to ensure the scale-invariant property of the penalized
estimators.

As SSP remark, the second term on the right hand side of (2.7) is a penalty term that takes a novel
mixed additive-multiplicative form. It has N additive terms, each of which takes a multiplicative form as
the product of K separate penalties. The multiplicative component is needed because for each i we do not
know a priori to which point ; ; should shrink and must allow 3, ; to shrink to any one of the K" unknown
values o, ..., ax. Each of the K penalty terms in the multiplicative expression permits /3, ; to shrink to a
particular unknown group-specific parameter vector ay. The summation component is needed because we
need to pull information from all N cross-sectional units in order to identify the group-specific parameters
and the individual-specific parameters jointly. Note that the tuning parameter A is used to control the size
of the penalty. A too small value of A means that the penalty term won’t play an important role so that
many of (3, ;’s would not shrink toward one of the group-specific values in {ai,...,ax }; a too large value
of A will force all f; ;’s to shrink toward one of the group-specific values in {a1, ..., ax } , which may result
in misclassification. In theory, we require that A tend to zero at an appropriate rate as (IV,7') — oco. The
exact conditions on A are stated in Assumption A.3(iv) below.

Minimizing the objective function in (2.7) yields the C-Lasso-based PLS estimates Bl, BQ, and &.

et 3, ,; and &y denote the it" and k" columns of ﬁl and @, respectively, i.e., ,31 = (ﬁl,l, -~-731,N) and

Q)

= (&1, ..., 0k ). We will study the asymptotic properties of the C-Lasso estimators below.



3 Notations and Assumptions

In this section, we spell out the main notations and assumptions that are needed for the study of the
asymptotic properties of our estimators.
Since we include the fixed effects u,; in (2.1) and assume covariance-stationarity of 3 ;;, we assume

2

. . /
without loss of generality that xs;; has zero mean.® Let ¢;; = (uit,a’l)it,eé,it) where €25t = x2:. The

long-run covariance matrix of {g;:} is given by
Q= Z E(eijeio) = | Qo Qi Qi | (3.1)

where, e.g., Qoo = 272 Eluiuig), Qori = 272 Eluijel ), and Qo2 = 372 E(uijeh )
Following the literature on nonstationary panels, we will make the following decomposition

Qi =i+ A+ A,

where ¥; = E (g;4¢},) denotes the short-run variance of {e;;} and A; = 250:1 E(eijely). We partition ¥;

and A; conformably with £;; and €; :

200,i 201,002, Aooi Mot Aoz
Y= Ziy Zi1s X124 and Ay = [ Ajo; A1 A2 |- (3.2)
Yoo, o214 222 Ao A1 Aaay

Let A; = X; + A; denote the one-sided long-run covariance of {g;;}. Let p = 1+ p; + p2 denote the
dimension of ;. Let Sy, S1, and S5 denote respectively the 1 X p, p1 X p, and py X p selection matrices
such that Spe; = i and Speyy = €444 for £ = 1,2. In the dynamic DOLS example in (2.2), €2 ;; contains
€1,it. For this reason, we do not require that €2; be of full rank. But we will assume that €211 ; and o9 ;
are of full rank. As in the time series literature, the full rank of €11 ; rules out potential cointegration
among the variables in 2 ;; when p; > 1 and that of X5 ; rules out collinearity among the variables in
Z9,;+ when py > 1. For more precise conditions, see Assumption A.2 below.

Let max; = maxj<j<y and max; = maxj<;<r unless otherwise stated. Define min; and min; analo-

gously. We make the following assumptions.

Assumption A.1 (i) For each 4, {e;+,t > 0} is a linear process such that
o0
e =0; (L)ew = Y bijesrs,
=0

where {e;; } is an independent process with zero mean and variance-covariance matrix I,,. Each element of
e;t has finite 2 (¢ + €) moments that are bounded uniformly in (é,t), where ¢ > 4 and € is an arbitrarily
small positive number.

(ii) max; Z;io 52 ||Swl-j || < oo for any selection matrix S that selects any finite (non-divergent) number



of rows in ;.
(iii) For each 4, {£;¢,t > 0} is a strong mixing process with mixing coefficients «; (t) satisfying max; a; (7) <
cop” for some ¢, < 0o and p € (0,1).

(iv) {€it,t > 0} are independent across i.

Assumption A.2 (i) There exists a constant ¢;; such that liminfr_, o Amin (% Zthl :EL“:%’L“) >c¢ >0
almost surely (a.s.), where by = loglogT.

(ii) There exist constants cq , and ¢q,, such that 0 < co , < ming Amin (Q11,:) < Max; Amax (Q11,5) <

Ca,, < 00.

(iii) There exist constants cyy and o such that 0 < ¢y < min; Apin (Z22,;) < max; Amax (X22,) <
Coo < 00.

(iv) Let Y620 = Y00, — 202’7;22721,2-220,1;. There exist constants ¢y, and Too such that 0 < ¢5p <

min, E(*]_Q’Z- < max; Ygo,; < Cop < 00.

Assumption A.3 (i) For each k =1,..., K, N/N — 74, € (0,1) as N — oo.

(il) miny<gpzj<i Hag - a?H > ¢, for some fixed ¢, > 0.

(iii) As (N,T) — 0o, N/T? — ¢; € [0,00), T/N? — ¢5 € [0,00), and p3T~* (log T)® — ¢3 € [0, 00).

(iv) As (N, T) — 00, Ab2. — 0, \TN b "t /1og T — oo, bETINV/4T 1 1og T — 0, by N2/9T-1/2 /log T
— 0, and pré/QNl/qT*U2 logT =0(1).

Assumption A.1(i)-(ii) imposes that the innovation process {e;;} is a linear process that exhibits cer-
tain moment and summability conditions. The linearity assumption is weak because of the celebrated
Wold decomposition theorem which says that any mean zero covariance stationary process with absolutely
summable auto-covariances can be represented as an MA(oco) linear process. See, e.g., Proposition 4.1 in
Hamilton (1994). The summability conditions are used to ensure the validity of certain functional central
limit theorem. When ps is fixed, the selection matrix .S is not needed. In our asymptotic analysis, we will

frequently call upon the Beveridge and Nelson (1981, BN) decomposition:
git = (1) e + €41 — Eir, (3.3)

where ¢, (1) = 2272 %5, € = D52 @ijei7t,j~, and @Zij = i1 ¥k Following Phillips and Solo (1992,
p.989), Assumption A.1(i)-(ii) ensures that

maxmtaxE 1S€:]°7 < o0
K3

for any selection matrix S such that Sé;; selects only a fixed number of elements in é€;;. For example, S =
(Sh, S1)" selects the first 1+ p; elements é;; that corresponds to (us, 5’17“)/. Assumption A.1(iii) assumes
that {e;,t > 0} is a strong mixing process for the convenience of using a Bernstein-type exponential
inequality that is available for strong mixing processes. It is satisfied by many well-known processes
such as linear stationary autoregressive moving average (ARMA) processes with continuously distributed
errors and a large class of processes implied by numerous nonlinear models, including bilinear, nonlinear
autoregressive (NLAR), and autoregressive conditional heteroskedastic (ARCH) type models. See Davidson
(1994, Ch. 14), Doukhan (1994) and Fan and Yao (2008, Ch. 2.6) for more examples of strong mixing



processes. In particular, Davidson (1994, Ch. 14.4) provides some sufficient conditions to verify that a
linear process of the type in Assumption A.1(i) is strong mixing, and Andrews (1984) provides an example
of autoregressive process that is not strong mixing. The geometric mixing rate can be relaxed to being
algebraic with a little bit more involved notation in the proofs. Here we follow SSP and assume the
geometric mixing rate condition for simplicity. By White (2001, Theorem 7.18), Assumption A.1(i)-(iii)
is far more sufficient to ensure the functional central limit theorem (FCLT) holds for {Se;, ¢ > 0} for
each i provided its long-run variance-covariance matrix is positive definite. Assumption A.1(iv) imposes
cross-sectional independence, as was done in the early literature on panel cointegration analyses (see, e.g.,
Phillips and Moon, 1999; Kao and Chiang, 2000; Mark and Sul, 2003). We do not relax such an assumption
in this paper because even under this restrictive assumption, the rigorous asymptotic analysis is already
extremely involved.

Assumption A.2(i) requires that Q1; = 2 Zle 71,447 ;4 is well behaved uniformly in 4. For each 4, we
can readily apply the results in Park and Phillips (1988, 1989) and show that

1
Qli:/o B,i (r) By (r) dr, (3.4)

where Bl,i =B, - fol By, (r)dr and By ; is a p;-dimensional Brownian motion with covariance Q41 ;. In
this case, as long as €211; is positive definite, we can ensure that Qli is asymptotically nonsingular for
each 7. For our asymptotic analysis, we require that both the maximum and minimum eigenvalues of Qu
be well behaved uniformly in 7. For the maximum eigenvalue, we can call upon the usual law of iterated
logarithm (LIL) and show that

R 1

limsup Amax(Q1:/(2loglogT)) < (5 + e) €0y, a.8., (3.5)
T—o0

where € is an arbitrarily small positive number and &q,, is a constant defined in Assumption A.2(ii). For

the minimum eigenvalue, a sufficient condition for the Assumption A.2(i) to hold is that there exist some

positive constants ¢; € (0,1) with miny<;<n ¢; > ¢o > 0 such that

/ / / -
@y M1 > ey ;@1 > coxy yo; for alli =1, N, (3.6)

1 1

where M, = It — vp(vper) ™"y = It — ety and op is a T x 1 vector of ones. To see the meaning of

the above condition, we observe that for any nonrandom vector w € RP* such that |w| = 1 and z; ;w is
nonzero,
T
/ ~ ~/ 1.0 /.. !/ !/ -1,/
w E Tyl pw = W Myriw =Wy jrw — (x1,w) v (bper) ™ Uprw
t=1

(w1 W) v (per) My w
(ZELZ'(.U)/ZEUUJ

= w'zh w1 -

IRV ’ -1,/ )
So the condition in (3.6) requires the existence of a ¢y € (0,1) such that (xl’lw)(;T(_LT",T)_ UL <
1,iw) T1iw

1 — ¢y, which essentially requires that xj;w is not ¢y a.s. uniformly in ¢. Then by the “other” or

10



Chung-type LIL (see, e.g., Donsker and Varadhan (1977), Lai and Wei (1982a, p.163), Lai and Wei
(1982b, p.364), Phillips (1996, p.799), and Bai (2004, pp.140-141)) and the Cramér-Wold device, we have
liminf7_ o0 Amin (%953195/11) > ¢, for some ¢; > 0. This, in conjunction with (3.6), implies that Assump-
tion A.2(i) would be satisfied with ¢;; = ¢y ¢o.

Assumption A.2(ii)-(iii) imposes some conditions on the eigenvalues of nonstochastic square matrices.
They imply that Q11 ,; and YXgo; have full rank uniformly in ¢. Assumption A.2(iv) is imposed to ensure
nondegenerate limiting distributions. Given Assumption A.2(iii), it implicitly implies that 212071‘220,2’ is
bounded away from the infinity and thus restricts the degree of endogeneity in the stationary regressors.

Assumption A.3(i)-(ii) is commonly assumed in the panel literature with latent group structures; see,
e.g., Bonhomme and Manresa (2015), Ando and Bai (2016), SSP, Lu and Su (2017), and Su and Ju (2018).
In particular, Assumption A.3(ii) requires the separability of the group-specific parameters. Assumption
A .3(iii) imposes conditions on N, T, and ps. It requires that N should not diverge to infinity at a rate faster
than T2 or slower than T'/2. Note that we do not require N = o(T) as in most studies on nonstationary
panels under the joint limit theory (see, e.g., Phillips and Moon, 1999; Bai and Ng, 2010). The last
condition in Assumption A.3(iii) is analogous to the condition p37~! = 0(1) in the time series framework
(e.g., Saikkonen, 1991). Assumption A.3(iv) looks quite complicated but can be simplified to a great deal
in the special case where N and T pass to infinity at the same rate as in many macro applications. In this
case, noting that ¢ > 4 as stated in Assumption A.1(i) and p37~! = 0(1) implied by Assumption A.3(iii),

we can replace Assumption A.3(iv) by the following assumption:

Assumption A.3(iv*) As (N,T) — oo, Ab% — 0, and ATl_%b;(KH)/logT — 00.

Then we can find a large range of values for \ satisfying Assumption A.3(iv*). It is sufficient to have

—1
Ax T % for a € (0, q_)
q

When ¢ is sufficiently large (e.g., the tails of the error terms decay exponentially fast), the upper bound

for « is arbitrarily close to 1. If we only require ¢ > 4, then it is fine to choose A oc T—3/4,

4 Asymptotic Properties

In this section, we first find the preliminary rates of convergence for the coefficient estimators and prove
classification consistency. Then we study the oracle properties of C-Lasso estimators and their post-Lasso
versions. The special case of panel dynamic PLS is also considered, and an extension to models with

incidental time trends is also considered.

4.1 Preliminary rates of convergence

Let 37 = ( (1]’2, 31, where B3, = 5, + 22721,2-22071-. The following theorem establishes the preliminary

rates of consistency for both Bl and &y.

Theorem 4.1 Suppose that Assumptions A.1-A.8 hold. Then
(i) [|Brs = BYill = Op(T~1 + X) and ||By; — B3]l = Op(py (T2 + \)) fori=1,..., N,

11



y N i3 _ N 3 « -
(i) % 21:1 ||511 - 6?,2’”2 = OP(b?FT 2) and % Zi:1 ||521 - ﬂQ,iHQ = Op(p2T 1),
(i) (Gy, .- Gry) — (), .,0%%) = Op(brT™1) where (&), ..., &(x)) is a suitable permutation of

(61, ... ).

Theorems 4.1(i) and (ii) establish the pointwise and mean square convergence of 3; = (B/M,B;Z)/ ,
respectively; Theorem 4.1(iii) indicates that &1, ..., &k consistently estimate the true group-specific coef-
ficients, oY, ...,a%, subject to a suitable permutation. We summarize some interesting findings. First,
despite the presence of endogeneity in both the nonstationary and stationary regressors, we can estimate
the true coefficients ( ?2) of the nonstationary regressors consistently. Second, when X ; is nonzero,
we cannot estimate the true coeflicients (531) of the stationary regressors consistently. Instead, Bg,i is
consistent with the pseudo true value ﬂ;,i = ,Bg,i + 22_21)1-220714, where 22_21,2.220,1- signifies the endogeneity
bias. Third, the effect of increasing dimension (p3) appears in the rates of convergence for 3271- but not in
those for B“ Apparently, B 1,i's converge to their true values faster than BM’S to their pseudo-true values.
Fourth, as in SSP, the pointwise convergence of B@ depends on A while the mean square convergence of
{Bl,i’ 321} and the convergence of &;’s do not. As we have shown in the proof of the above theorem, the
convergence of éj only depends on the mean square convergence of {Blz}

For notational simplicity, hereafter we will write &) as ax. We define the estimated groups
ék = {Z < {172, ,N} : Bl,i = dk:} for k = 1, 7‘[{ (41)

To study the classification consistency, we need to establish the uniform consistency of 3 1,; and 3271-. This

is reported in the next theorem.

Theorem 4.2 Suppose that Assumptions A.1-A.8 hold. Then for any fixed ¢ > 0,
(i) P(maxi<i<n ||By,; — BY ]| = cbrainr) = o (N7),
(ii) Pmaxi<icy 1B — B3 4ll > epy*asnr) = 0 (N7,
where a;nr = T~ N4 (log T)(HE)/2 for some arbitrarily small € > 0, and aoyr = T~/ (log T)3 )

The uniform convergence rate of B 1,; is not affected by pa but is slower than the time series convergence
rate 1. The higher ¢ is (which means the higher order moments for the error terms), the closer a7 is
to T~'. When the error terms have exponentially decaying tails as assumed in Bonhomme and Manresa

(2015), we can make ajnr arbitrarily close to T—! subject to a logarithm factor.

4.2 Classification consistency

To study the classification consistency, we follow SSP and define the following two sequences of events
Eunri={i ¢ Grli € G} and FkNT,i ={i & GYi € Gy},

where ¢t = 1,...,N and k = 1,..., K. Let EkNT = UieékEkNTi and FkNT = UieékaNTi' EkNT denotes
the error event of not classifying an element of GY into the estimated group Gy; and Fynr denotes the
error event of classifying an element that does not belong to GY into the estimated group Gy. Following

SSP, we say that a classification method is individually consistent if P(E‘k ~NT,i) — 0 and P(Fk NT.i) — 0

12



as (N,T) — oo for each i € GY and k = 1,..., K, and it is uniformly consistent if P(UszlEkNT) — 0 and
P(UE Eynt) — 0 as (N, T) — oo.

The following theorem establishes the uniform classification consistency.

Theorem 4.3 Suppose that Assumptions A.1-A.3 hold. Then as (N,T) — oo
(i) P(UR, Exnr) < 35y P(Egnr) = 0,
(i) (UL Finr) < 325y P(Fivr) = 0.

Theorem 4.3 implies that all individuals within certain group, say G% can be simultaneously correctly
classified into the same group (denoted as G}) w.p.a.1. Conversely, all individuals that are classified into
the same group, say G, simultaneously correctly belong to the same group (GY) w.p.a.l. The result
implies that in large samples, we can virtually take the estimated group as the true group. In particular,
let N, = #Gk. One can easily show that P(Gk =@GY) — 1 so that P(Nk =Ng) — 1.

Note that Theorem 4.3 is an asymptotic result and it does not ensure that all individuals can be
classified into one of the estimated groups in finite samples. Indeed, when T is not large, some units
might not be classified if A is not sufficiently big and we stick to the classification rule in (4.1). In
practice, we classify ¢ € Gy, if ﬁz = @ for some k = 1,....,K, and i € G, for some | = 1,...,K if
18; — au|| = min{||3; — @, ..., [|B; — dxl]} and Sk, 1{B; = @} = 0. Since Theorem 4.3 ensures
Zszl P(3; = &) — 1 as (N, T) — oo uniformly in 4, we can ignore such a modification in large samples
in subsequent theoretical analyses and restrict our attention to the classification rule in (4.1) to avoid

confusion.

4.3 Oracle properties and post-Lasso estimators

To study the oracle property of the C-Lasso-based PLS estimators, we add some notations:

— : 1 I aqr . 1 )
Qw = Nilinoo oV, Z Sy (1) ; (1) 51 = N}cllnoo o, Z Q11
ZEGg ZEGg
Bi,nt = Bik,nT + Bok N,

o) o0
Bix,nt = \/LN_;C Z Slzz%,sﬂwg,ssu

ieGg r=0 s=0
-1 T+1

BoxNnT = —— Si; (1), (1) 84,
N 2T i€GY
A\ = li L 1/9 5195 L "8 ® S0 K.
® = NklinooFk‘Z 5 SiSkisiS100S) — 35 (51051 © S18%isi) Kopya )
zEG%
Voo,i = (22_21,1‘*]171' ® Jai) vy (‘]{,z’EZ_;,i ® Jéz) )

where s; = 56_5522721@220,1‘7 J1i = (0pyx15 Opyxpys I ) 5 J2i = (1’ 01xp,, _E/zo,izgzl,i) , Kp, 1 1s the py x py
commutation matrix,? and V;? = limp_, . Var(T~1/2 Zlevec(sitsgt -%)).

The following theorem reports the asymptotic properties of & and 321
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Theorem 4.4 Suppose that Assumptions A.1-A.3 hold. LetSs denote an l X ps selection matriz such that
Safy,; selects only I elements in 34 ;, where | is a fived integer that does not grow with (N,T). Then

(i) VNRT (&, — o) = Qs Brvr = N(0,Qu Vi Qi) as (N, T) — o0 for k=1,... K,
(ii) VTS, (32Z - ﬂ;z) = N (0,S2Va2,;S5) as T — oo for each i =1,...,N.

To understand the above results, we consider the case where the group membership is known. In this

case, the oracle estimators of ay and 3, ; are respectively given by

-1

~oracle 2 : ~/ ~ 2 : ~/ ~
ap = $171‘M2,im1,i xl,iMQ,iyi for k = 1, ...,K,
i€GY ieGY,
~oracle —1 ;
~/ o~ ~/ ~ ~  ~oracle . 0
2.4 = ((,5277;(,62’1‘) Ty (i — T1,:63,°°) for i € Gy,

where My ; = It — Zg; (5'271-52,1')71 i’h One can readily show that &j shares the same asymptotic bias
and variance as @', and similarly, BM shares the same asymptotic bias and variance as B;lj “° Tn this
case, we say that our C-Lasso estimators & and Bli are asymptotically oracle efficient. As expected, &y
may have an asymptotic bias of order O (T’l) in the presence of endogeneity, but it converges to its true
value at the usual /N, T-rate after bias correction.

A close examination of the asymptotic bias of &y, indicates that By y7 can be rewritten as the sum-
mation of two terms, By ny7 and Bor ny7. Big, n7 appears even without the within-group transformation
as in Phillips and Moon (1999); Box nr is simply due to the time-demeaning operator. As mentioned
above, we allow for both sources of endogeneity. When Y5 ; # 0, we have a contemporaneous correlation
between the stationary regressor z2 ;+ and the error term w;; in the cointegrating regression model. When
51y 0 et Yiaqr i 450 # 0 0r S1ap; (1) 9, (1)" S5 # 0, we allow the correlation of u;; with some leads or
current values of €1 ;+. When both types of correlations vanish, By ny7 = 0, so that there is no endogeneity
bias in this special case.

Note that we specify a selection matrix So in Theorem 4.4 that is not needed if ps is fixed. When
po diverges to infinity, we cannot derive the asymptotic normality of BM directly. Instead, we follow
the literature on inferences with a diverging number of parameters (e.g., Fan and Peng, 2004; Lam and
Fan, 2008; Lu and Su, 2015; Qian and Su, 2016a and 2016b) and prove the asymptotic normality for any
arbitrary finite linear combinations of elements of 322

Given the estimated groups, {ék, k=1,..., K}, we can obtain the post-Lasso estimators of ay and Ba.;

as
—1

~post _ ~/ ~ ~/ ~ o
Oék = E ml,iM27i$1,i E 1’1)@‘M2,iyi for k = ]., cony K,
iEGk iGék

~post -1

Bai = (hd2.)  h(fi — £1,:65°") for i € Gy.

We show in the proof of Theorem 4.4 that the C-Lasso estimators & and B 9,; are asymptotically equivalent

. Apost
to their post-Lasso versions a5 and Bg;b , respectively. The following theorem reports the limiting

. . . ~DOSt ~post
distributions of &;°*" and 5 ; .
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Theorem 4.5 Suppose that Assumptions A.1-A.8 hold. Then
(VN (65" = af) — Qo Brnt = N(0,Qy Viry Q) for k=1,..., K,

~post

(it) VTS2(By; — B3;) = N(0,S2Vao;Sh) fori=1,..,N,
where Qry, Br, N1, V(1), and Vaz ; are as defined before Theorem 4.4 and Sz is as defined in Theorem /.4.

Given the asymptotic results in Theorems 4.4 and 4.5, one can make inference as if the true group
membership is known. Despite the asymptotic equivalence of the C-Lasso estimators and their post-Lasso
versions, it is well known that the post-Lasso estimators tend to have a smaller finite sample bias in
simulations and are thus recommended for practical uses. Despite this, in order to make inference on the
long-run cointegrating relationship, we have to remove the bias. There are two standard ways to correct the
endogeneity bias in the time series literature, namely, fully-modified least squares (FMOLS) and dynamic
OLS (DOLS). In principle, one can consider either the panel DOLS or panel FMOLS method as in Kao
and Chiang (2000) and Mark and Sul (2003) based on the estimated groups. The procedure is standard
and thus omitted. Alternatively, we can consider the use of the DOLS idea in the C-Lasso procedure,
which yields the C-Lasso-based dynamic PLS (DPLS) estimation procedure. See the next subsection for
details.

4.4 The case of dynamic PLS

In this subsection, we focus on the dynamic PLS (DPLS) estimation of the panel cointegration model with
latent group structures. We show that the results in Theorems 4.4 and 4.5 continue to be valid with little
modification.

For notational clarity, we now assume that {y;; 1,1} are generated by

/
Yit = p; + 581 ;1 + Wi

T14t = T145t—1 + €14t

where p1;, ui¢, and €1 ;¢ are defined as before, and 3, ;’s exhibit the latent structures in (2.3).
To consider the panel DPLS estimation method, we follow Saikkonen (1991) and Stock and Watson
(1993) and make the following assumption.

Assumption A.4. (i) The process {u;; } can be projected on to {e1 ;1 } as follows: u; = Z;’;_Oo Yij€l,it+it

th

vit, where Y77 ||yl < 00, i is an error term with mean zero and finite 2¢"™ moment where ¢ > 4,

Jj=—00
and v;; and €7 ;; are uncorrelated for all lags and leads.
(ii) As (N,T) — oo, there exists @ > 1/2 such that 7%, |7l — 0, NY271/2=a _, (), and

N1/25,T— — 0.

Assumption A.4(i) ensures that E(e1 4viu4r,) = 0 for k= 0,41,£2,... and Assumption A.4(ii) ensures
that the values of €1 ;+ in the very remote past and future have only negligible impacts on u;;. Therefore,

we can truncate the leads and lags and run the following DOLS regression model

P2
Yir = pi; + B w10 + Z Vi ATy + ”Zta (4.3)
Jj=—p2
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o . , . . . .
where v}, = vf} + vy, and vy = 37 ;o5 7i;AT1i44; signifies the approximation/truncation error. Let
x2,;+ denote a collection of the lags and leads of Axzy i : xo = (A, b e AT t+1_)2)l' Let 85; =

(Vi—pps =+ Vip,) and p2 = (22 +1)p1. After the within-group transformation, we have the following model

P2
Jit = Bl + D VipAwiiiey 0 = BliE1u + By o + T, (4.4)
Jj=—p2
T =T =T 1 T—p2

i = Tapy dut=patl v;rt, and @;+ and Z5; are analogously defined.

As before, we can continue to consider the C-Lasso-based PLS regression and obtain the Lasso estima-
tors of B, ;, 85, and ax. We denote these estimators as Bfi, Bim and ész, where D abbreviates DPLS.
Let G denote the estimated group as before. The corresponding post-Lasso estimators of oy and 5,

take the form

5t —
where v, = v, — U], ¥

-1

~ D, post } : ~/ ~ } : ~/ ~
(675 = xl,iMZimLi -Tl,iMZiyi for k = 1, ...,K,
i€Gy, ieGy
~ D, post , -1 D t A
i — (s s = ~ _ ~ D, pos ;
Ba.i = (:r27i:r27i) Ty, (yi — 21,6y, ) for i € Gy,
~ ~ ~ /o~ ~ ~ ~) o~ -1,
where Z1 ; = (Z1,5,5,41, - :E17i7T,p2) , Ui and Zo ; are analogously defined, and M ; = I1_op, — T2 ; (mQ,ixgﬂ-) T ;.
. . . ~ D, post ~D, post .
The following theorem shows the asymptotic properties of &, "**" and £, ; where expressions for

both V() and Vay ; are greatly simplified.

Theorem 4.6 Suppose that Assumptions A.1, A.2(i)-(iii) and A.3-A.J hold. Suppose that there exists a

constant ¢y, such that minj<;<x Xoo,i > Coo > 0. Then
(VNRT (67 = af) = N(0, QS V{, Q) for k=1, K,

~D,pos .
(ii) VTS2(Byy """ = B5.) = N (0,82V2,8) fori=1,...,N,
where Q(x) = limy, o0 ﬁ Ziegg D11, VZk) = limy, oo ﬁk Ziegg %ng,iQn,i, ngﬂ- = 900,1*901,191_11@910,@'

_y—1 -1 ; _ 1 —1/2 T
and V227i = 222714‘/2271'222,1- with ‘/22,2' = hmT*,OO VCLT’(T / Zt:l mgvituit).

Even though we have not stated in the above theorem, &kD and BQD , are asymptotically equivalent to
&kD’pUSt and BZ;pOSt7 respectively. Thus both C-Lasso-based DPLS estimators and their post-Lasso versions
have asymptotic normal distributions and are asymptotically oracle efficient. One can readily construct the
usual t-statistics and F-statistics to make inference. For example, to make inference on the group-specific

long-run cointegrating relationship, we can estimate Q) and V}Lk), respectively by*

A 1 ~ ~ ot 1 Lot @
@(k) = W Z 1'177;M27ix17i and V(k}) = N_k Z EQOO,igll,ia
1€Gy 1€Gy

where ngl = QOO,i - QOl,iﬂl_1linO,i7 and QOO,ia Qll,i7 QOl,i and QlO,i denote the HAC estimator of the
long-run variance-covariance components oo 5, 11,4, o1, and Q10 ; in ;. In practice, we recommend the

‘ . D,post . .
use of d,?’p%t and BMPOS because the post-Lasso estimators typically outperform the C-Lasso ones.
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4.5 The case of incidental time trends

Our panel cointegration model can be extended to models with both individual fixed effects and incidental
time trends:
Yit = Wy + pit + B i1 + B2 + it
' k , (4.5)
T1,it = M4 T T1it—1 + €1t
where ¢ =1,..., N and t = 1,...,T, p,t denotes the incidental time trend, we allow for the presence of an
intercept term f, ; in the I(1) process {x1,}, and the other variables are defined as before. The above
model reduces to model (2.1) when p; = 0 and p;; = 0 for all i. In that case, we have employed the within-
group demeaned transformation to eliminate the individual fixed effects. In the presence of both individual
effects and incidental time trends in the above model, we can similarly employ the within-group detrended
data to eliminate both individual fixed effects and incidental time trends. Specifically, we consider the
detrended model:

it = B1i% 1t + B it + Ui, (4.6)

where ¥ = yir — 23:1 Yit gy (Zzﬂ gsg;)fl gt with g, = (1,t)', and @1 4, ©2,4, and @;; are analogously
defined. Then we can apply the same estimation procedure as used in Section 2.2 with the dotted variables
replacing the tilded variables. The asymptotic properties of the resulting C-Lasso estimators and their
post-Lasso versions will be modified by changing the demeaned Brownian motion to the detrended one in
the limiting distributions.

To see this point clearly, we observe that

t

0
T1it = X140 + M it + E €1is = T1,i0 + f1 it + T35 45
s=1

where 2 ;; = S| €1.is is a purely random walk process. Define sy =diag(1,7-!) and g(r) = (1,7)". Let
= |T'r|, the integer part of Tr for € [0,1]. Then as T' — oo, krg: — ¢(r) uniformly in r € [0,1]. By

the functional central limit theorem and continuous mapping theorem, we have

-1

T T
1 ™ 1 / /
——=T1,i|Tr| == |L1,i|Tr| — T1,i s0s
/T 1,i[Tr] /T 1,i[Tr] ;:1 1,it9t (sg_lg g ) gt

-1
= \/1— fCu[TrJ 2331 9t (Z%%) gt

zlz’ T d (1) o
= \’/L%J - %t_zl HTQt( ZHTgtgtﬁT> KTgr
-1
= Bui(r) — [ Buir)g(rydr ( /s <r>g<r>’) o(r) = BLL(r),

where By ;(-) is as defined below (3.4), and B ,(-) is a detrended Brownian motion and independent across

1. Following the analysis in Sections 4.1-4.4, we can show that Theorems 4.1-4.3 continue to hold with the



demeaned data replaced by the detrended data, and that the limiting distributions in Theorems 4.4-4.6
can be modified accordingly to account for different asymptotic moments on Q; and V; with the demeaned
Brownian motion replaced by the detrended Brownian motion. For brevity, we do not report the details

here.

5 Monte Carlo Simulation

In this section, we evaluate the finite sample performance of both PLS-based and DPLS-based C-Lasso

estimates and their post-Lasso versions.

5.1 Data generating processes

We consider five data generating processes (DGPs). The observations in DGPs 1-3 are drawn from three
groups with N1 : Ny : N3 = 0.3 : 04 : 0.3. DGPs 4-5 try to mimic the estimates and estimated group
structures in the empirical application, where observations in DGP 4 are drawn from two groups with
Ni: Ny =0.9:0.1, and those in DGP 5 are drawn from three groups with Ny : Ny : N3 = 0.5: 0.3 : 0.2.
There are four combinations of the sample sizes with N = 50, 100 and T = 40, 80.

DGP 1 (Strictly Exogenous Nonstationary Regressors) The observations (y;;, ¢};) are generated from

the following cointegrated panel

Yit = My + 6?/$it + U =y + 5(1):¢$1,it + ugt (5.1)

T1it = T14¢—1 + €14t

where p; ~ IID N(0,1), x;y = 1 is a 2 X 1 vector, ez = (us, € ;)" follows a multivariate standard

normal distribution, and 39 = B?J exhibits the group structures in (2.3) for K = 3 and

o o oy [[04) (1) (16
(041,0527043) - ((1.6) 5 <1> 5 <0.4>> .

DGP 2 (Weakly Dependent Nonstationary Regressors) The observations (y;t, };) are generated via
(5.1) but we now allow for correlations between the two nonstationary regressors in 1 ;+, the correlations
between z; ;+ and p,, and the correlations between w;; and €5 ;. Specifically, for each i we generate a 4-
dimensional time series {6L,t > 1} via a linear process e/, = > oy Yyjei—j, Where e are IID N (0, 14),
1 03 02 0

Yy =055, Q}/Q, and 91/2 is the symmetric square root of Q; = 03 1 02 02 . Then
02 03 1 0.2
0 02 02 1

01 00
we set u; = Sosjt, €1t = Slsjt, and p, = ME;, where Sy = (1,0,0,0), S; = < 00 1 0 ), and

S, = (0,0,0,1).
DGP 3 (Weakly Dependent Nonstationary and Stationary Regressors) The observations (y;t, z},) are
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generated from the following cointegrated panel

o o 0
Yit = p; + B Tit + wit = p; + B1 ;010 + BoiT2,i + Uit

T15t = T14t—1 + €14t

where x5 is a 2 X 1 vector, 5(1)71- exhibits the group structures and preserves the setting in DGP 1,
and x2 ;¢ = €24+ contains a scalar stationary regressor. The coefficients of the stationary regressors are
heterogeneous across all i such that 8,; ~ IID N(0.5,1). To allow correlation between u,; and x;, for
each ¢ we first generate a 5-dimensional time series {ezt, t> 1} via a linear process sjt = Z;}il V;i€it—js
where e are IID N (0,15), o

1 03 02 02 0

03 1 02 0 02

02 02 1 0 0.2 |[.Then wesetuy = Sos;rt, €10t = S1€L, €24t = SQ&‘L, and p; = MEL, where

02 0 0 1 02

0 02 02 02 1

01000

0010 0)
DGP 4 (Mimicking the first subsample in Table 5) The observations (y;, z},) are generated via (5.1),

where z;; = x4+ contains one nonstationary regressor. For each ¢, we first generate a 3-dimensional time
series {EL, t> 1} via a linear process EL = 2;11 Yi€ii—j» €ir are IID N (0, I3) , ¢ = 0.5-5737 -Q}/z, and
1 03 0
91/2 is the symmetric square root of Q1 = | 0.3 1 0.2 |.Then we set u;; = Soe;rt, €10t = Sla;rt, and
0 02 1
W = Sﬂsjl, where Sy = (1,0,0), S1 = (0,1,0), and S, = (0,0, 1). ﬁ? = ?72- exhibits the group structures
n (2.3) for K = 2 with (af,a9) = (0.9,—0.7), which is the collection of the group-specific estimates for
the first subsample in Table 5. Note that we set Ny : No = 0.9 : 0.1 for this DGP.
DGP 5 (Mimicking the second subsample in Table 5) The observations (y;:, };) are generated via (5.1).

ij = 0.5 35 Qé/Q, and Qé/Q is the symmetric square root of Qs =

So = (1,0,0,0,0), S; = Sy = (0,0,0,1,0) and S, = (0,0,0,0,1).

The innovation processes are generated via the same processes in DGP 4. Now, B? = ?,Z— exhibits the
group structures in (2.3) for K = 3 with (af, a3, a9) = (0.9,0.2, —0.6) , the collection of the group-specific
estimates for the second subsample in Table 5. Note that for this DGP we set N : Ny : N3 =0.5:0.3:0.2,
which is close to 49 : 27 : 23, the ratios of estimated numbers of elements in the three estimated groups.

In all cases, the number of replications is 10,000.

5.2 Classification and estimation

For the moment, we assume that the number of groups is known and examine the performance of classifica-
tion and estimation. When the number of groups is unknown, we can apply the information criterion (IC)
introduced in Section C of the online supplement to determine the number of groups. We also examine
the finite sample performance of the IC in Section E of the online supplement.

For classification, we consider the PLS-based C-Lasso classification results for DGPs 1, 2, 4 and 5, and
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Table 1: Empirical classification errors in percentage

C\ 0.1 0.2
N T P(E) P(F) P(E) P(F)
DGP1 50 40 0.212 0.221 0.515 0.410
50 80 0.000 0.000 0.001 0.001
100 40 0.218 0.226 0.475 0.384
100 80 0.000 0.000 0.001 0.001
DGP2 50 40 0.483 0.506 0.875  0.728
50 8 0.000 0.000 0.003  0.002
100 40 0.500 0.518 0.796 0.667
100 80 0.000 0.000 0.004 0.003
DGP3 50 40 0.535 0.563 0.799  0.684
(PLS) 50 80 0.001 0.001 0.005 0.004
100 40 0.532 0.562 0.745 0.640
100 80 0.000 0.000 0.003 0.002
DGP3 50 40 6.337 5.630 12.255 9.700
(DPLS) 50 80 0.038 0.031 0.186 0.141
100 40 6.027 5.432 11.453 9.138
100 80 0.033 0.026 0.157  0.120
DGP4 50 40 1.234 0.834 0.821 0.543
50 80 0.014 0.008 0.004 0.002
100 40 1.225 0.823 0.801 0.527
100 80 0.011 0.007 0.004 0.003
DGP5 50 40 0.000 0.000 0.040 0.004
50 80 0.000 0.000 0.000  0.000
100 40 0.000 0.000 0.032 0.004
100 80 0.000 0.000 0.001 0.000

both the PLS- and DPLS-based C-Lasso classification results for DGP 3. For the DPLS-based classification
in DGP 3, we introduce the lags and leads of Az ;+ in our penalized estimation by setting ps = LT1/4J. We
follow Section 4.2 and define two types of average classification errors: P(E) = + Zfil P(UE_ Exnri)
and P(F) = % Zf;l P(UlepkNT,i), where P is the empirical mean over 10,000 replications. Table 1
reports the classification errors by setting A = ¢,T7~%/% with ¢y = 0.1 and 0.2. We summarize some
important findings from Table 1. First, both types of classification errors vary over cy. The smaller value
of ¢y, the smaller percentage of the classification errors. This means that a larger value of penalty term
tends to lead to a higher rate of misclassification. Second, as T' increases, the percentage of classification
errors drops significantly. In fact, when T is 80, we have less than 1% of individuals misclassified in all
cases under investigation. Third, for DGP 3, the performance of the DPLS-based C-Lasso classification
is not as good as that of the PLS-based C-Lasso estimation. Despite this fact, the former performance
becomes acceptable when T' = 80 for both choices of cy.

For the estimation, we consider both the C-Lasso estimates and their post-Lasso versions. Specifically,
for all DGPs we consider the PLS-based C-Lasso estimates, the OLS-based post-Lasso estimates, the
DOLS-based post-Lasso estimates, and the oracle estimates that are obtained by using the true group

structures. For DGP 3, we also consider the DPLS-based C-Lasso estimates, their post-Lasso versions,

20



and the oracle estimates. For all DOLS-based estimates, we set py as above. We report the bias, root-
mean-square error (RMSE), and coverage probability of the two-sided nominal 95% confidence interval for
the estimate Bl,i (1) of the first parameter 3, ; (1) in 3, ; for each DGP in Tables 2-3, where all criteria
are averaged over different groups and across 10,000 replications. For example, we calculate the RMSE
of Bl,i (1)s as + ZkK:01 NRMSE(éy,1) with &1 denoting the first element in ¢ for one replication and
then average them across all replications for each case.

Table 2 reports the estimation results for DGPs 1-2 and 4-5 based on the PLS method. Table 3 reports
the estimation results for DGP 3 based on both the PLS and DPLS methods.’ These tables reveal some
general patterns. First, the bias and RMSE of the C-Lasso estimates and their post-Lasso versions always
decrease as either N or T increases, and they decrease faster when 7' increases than when N increases.
This is as expected due to faster convergence rate of the estimates along the time dimension than along
the cross-sectional dimension. Second, when there is no endogeneity issue in DGP1, the finite sample
performance of the post-Lasso OLS estimates is close to that of the oracle ones and dominates that of the
DOLS-based post-Lasso estimates. This indicates that the DOLS may hurt in finite samples when there
is no endogeneity issue in the model. Third, when endogeneity is present in DGPs 2-5, the post-Lasso
DOLS estimators are distinctly superior to the C-Lasso and post-Lasso OLS ones for all cases and their
performance is very close to that of the oracle ones. Since the endogeneity issue is not well accounted
for the C-Lasso and post-Lasso OLS estimates, their coverage probabilities may deteriorate when N or
T increases. Fourth, for DGP 3 the DPLS-based C-Lasso estimates outperform the PLS-based C-Lasso
estimates to a great margin, but the post-Lasso estimates are not quite distinct from each other in terms
of bias and RMSE. Fifth, the coverage probabilities of the DOLS-based post-Lasso estimates are generally
quite close to the nominal level (95%) in all cases (except for DGP 1 in the absence of endogeneity).
For DGP3, the coverage probabilities of DPLS-based C-Lasso estimates are closer to the nominal level
compared to those of the PLS-based C-Lasso estimates. These two facts suggest that the DOLS bias
correction yields good coverage probability when endogeneity is present. Lastly, in general the post-Lasso
DOLS estimates outperform the C-Lasso estimates (except for DGP 1 in the absence of endogeneity) and

thus are recommended for practical uses.

6 Application: Testing the PPP hypothesis

In this section we apply our method to reinvestigate the purchasing power parity (PPP) hypothesis in

international economics.

6.1 PPP hypothesis

The PPP hypothesis assumes that in the absence of transaction costs and trade barriers, a basket of identi-
cal goods will have the same price in different markets when the prices are expressed in the same currency.
Unlike the law of one price for one particular good, the PPP is built on a “basket of goods”, indicating
that the nominal exchange rate is adjusted by the relative general price index for international comparison.
The long-run PPP hypothesis was broadly accepted in the post-war period before the breakdown of the
Bretton Woods system in the early 1970s. In the post-Bretton Woods period, most applied work fails to
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Table 2: RMSEs, Biases and Coverage probabilities for various estimates

N T ¢,=02 RMSE Bias Coverage % RMSE Bias Coverage %
DGP1-PLS DGP2-PLS

50 40 C-Lasso 0.0174  0.0001 93.05 0.0287  0.0223 85.67
Post-Lasso©LS 0.0173  0.0001 93.24 0.0276  0.0211 87.47
Post-Lasso?9LS  0.0226  0.0000 84.58 0.0215  0.0001 94.72
Oracle 0.0172  0.0001 93.30 0.0215  0.0000 94.73

50 80 C-Lasso 0.0082  0.0001 93.51 0.0138  0.0107 75.74
Post-Lasso®%S  0.0082  0.0001 93.55 0.0135 0.0105 76.98
Post-Lasso”9LS  0.0091  0.0001 90.27 0.0088  0.0000 94.15
Oracle 0.0082  0.0001 93.55 0.0088  0.0000 94.15

100 40 C-Lasso 0.0122  0.0001 93.75 0.0252  0.0218 73.51
Post-Lasso© LS 0.0121  0.0001 94.01 0.0240  0.0205 77.62
Post-Lasso??LS  0.0155  0.0001 85.75 0.0148  0.0001 95.82
Oracle 0.0120  0.0001 94.08 0.0148  0.0001 95.85

100 80 C-Lasso 0.0056  0.0000 94.42 0.0120  0.0105 59.63
Post-Lasso®%®  0.0056  0.0000 94.42 0.0117  0.0101 62.00
Post-Lasso?9L5  0.0063  0.0001 91.57 0.0060  0.0001 95.26
Oracle 0.0056  0.0000 94.42 0.0060  0.0001 95.27

DGP4-PLS DGP5-PLS

50 40 C-Lasso 0.0290  0.0233 73.88 0.0263  0.0226 52.22
Post-Lasso©LS 0.0285  0.0226 76.03 0.0263  0.0226 52.21
Post-LassoP9LS  0.0188  -0.0001 93.57 0.0139  0.0001 94.18
Oracle 0.0188  0.0001 93.70 0.0139  0.0001 94.18

50 80 C-Lasso 0.0140  0.0114 68.02 0.0128 0.0110 44.90
Post-Lasso®%S  0.0139  0.0112 68.76 0.0128  0.0110 44.89
Post-Lasso?9%%  0.0081  0.0000 94.06 0.0061  -0.0001 94.31
Oracle 0.0081  0.0000 94.06 0.0061 -0.0001 94.31

100 40 C-Lasso 0.0259  0.0229 53.83 0.0242  0.0223 24.31
Post-Lasso©LS 0.0252  0.0221 58.16 0.0243  0.0223 24.27
Post-Lasso”9LS  0.0130  -0.0002 94.22 0.0097  0.0000 94.31
Oracle 0.0130  0.0000 94.32 0.0097  0.0000 94.31

100 80 C-Lasso 0.0126  0.0113 46.00 0.0119  0.0109 18.40
Post-Lasso©LS 0.0124 0.0110 47.67 0.0119  0.0109 18.40
Post-Lasso?9L5  0.0057  0.0000 94.49 0.0043  0.0000 94.45
Oracle 0.0057  0.0000 94.49 0.0043  0.0000 94.45
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Table 3: RMSEs, Biases and Coverage probabilities for various estimates

N T RMSE Bias Coverage % RMSE Bias Coverage %
DGP3-PLS DGP3-DPLS
50 40 C-Lasso 0.0275  0.0206 88.14 C-Lasso 0.0232  0.0000 93.31
Post-Lasso®%S  0.0318  0.0193 81.74
Post-LassoP9LS  0.0215  0.0000 94.90 Post-Lasso  0.0227  0.0000 93.91
Oracle 0.0214  0.0000 95.02 Oracle 0.0214  0.0000 95.02
50 80 C-Lasso 0.0126  0.0094 80.41 C-Lasso 0.0087  0.0000 94.24
Post-Lasso?LS 0.0156  0.0091 71.00
Post-LassoPPL5  0.0086  0.0000 94.29 Post-Lasso  0.0086  0.0000 94.28
Oracle 0.0086  0.0000 94.29 Oracle 0.0086  0.0000 94.29
100 40 C-Lasso 0.0237  0.0200 78.75 C-Lasso 0.0162  0.0000 94.67
Post-Lasso?LS 0.0254 0.0184 75.25
Post-LassoP9LS  0.0148  -0.0001 96.02 Post-Lasso  0.0157 -0.0001 95.24
Oracle 0.0147 -0.0001 96.11 Oracle 0.0150  -0.0005 96.11
100 80 C-Lasso 0.0108  0.0091 67.20 C-Lasso 0.0060  0.0000 95.11
Post-Lasso®%S  0.0121  0.0088 63.49
Post-LassoP9LS  0.0060  0.0000 95.01 Post-Lasso  0.0060  0.0000 95.11
Oracle 0.0060  0.0000 95.01 Oracle 0.0059  0.0000 95.16

support the validity of the long-run PPP; see, e.g., Frenkel (1981) and Adler and Lehmann (1983). Some
researchers attribute this to the low power of time series unit root tests when 7T is short and advocate the
use of panel unit root tests. Indeed, some panel unit root testing results favor the PPP hypothesis in the
post-Bretton Woods period; see, e.g., Oh (1996) and Papell (1997). Even so, the empirical findings are still
mixed. There remain two main issues in testing the validity of the PPP hypothesis by using panel data.
One is the sample selection issue and the other is the unobserved heterogeneity issue. Our cointegrated
panel model with latent group structures can provide a data-driven method to address these two issues

simultaneously and is expected to offer some new insights into the PPP hypothesis.

6.2 Model and data

The PPP hypothesis has two versions: strong and weak. We first consider the strong PPP hypothesis.

Denote the domestic price index as Pj;, the corresponding foreign price index as P}, and Ey as the nominal
b;
Py
the dependence of E;; on j, which is typically fixed in panel studies. In the logarithmic form, we have

exchange rate. If the strong PPP hypothesis holds, we have the equation E;; = where we suppress
eit = Pit — Pjt, where e = log(Ejt), pit = log(Pit), and pj; = log(Pj¢). Previous panel unit root tests are
built on the equation

eit = (Dit — DPjt) + Wit, (6.1)

where u;; stands for the real exchange rate. The rejection of the null hypothesis that the processes
{ui,t > 1} are all nonstationary is regarded as evidence in favor of the validity of the long-run PPP or
mean-reversion in real exchange rates. The most important assumption in the strong PPP hypothesis
is that there exists a one-to-one relationship between the nominal exchange rates and aggregate price

ratios. In practice, the movements may not be directly proportional, leading to the cointegrating slopes
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deviating away from the unity. Pedroni (2004) modifies (6.1) by allowing for heterogeneous coefficients

across individuals and estimating the following long-run PPP hypothesis in weak version
eit =t + B;(Dit — Dje) + wir = p; + BiApije + Wit, (6.2)

where 3, is allowed to vary across countries and is expected to be positive, Ap;;: = pit — pji, and p; is the
unobserved fixed effect for country 1.

In our weak PPP model, we assume that 3, exhibits the latent group structures studied in this paper.
By pooling the slope coefficients within a group altogether, we can obtain more efficient estimates than
those obtained from a fully heterogeneous cointegrated panel model. In addition, since our C-Lasso method
is a data-driven method, we do not manually assign different countries to different groups, which alleviates
the sample selection problem.

We obtain monthly and quarterly data of the nominal exchange rate and consumer price index (CPI)
from January 1975 to July 2014 covering 99 countries from International Financial Statistics. Here, we use
the CPI to represent the general price index. We choose the time span from 1975 to 2014 to cover the post-
Bretton Woods period. Given the fact that Euro dollar was introduced to the global financial markets as
an accounting currency on 1 January 1999, we consider two subsamples. We obtain a balanced panel with
67 countries in the period 1975-1998 and another balanced panel with 99 countries in the period 1999-2014.
For the quarterly data, we have 91 time series periods in 1975Q.1-1998.Q4 and 55 times series periods in
1999.Q1-2014.Q2. For the monthly data, we have 283 time series periods in period 1975.M1-1998.M12 and
172 times series periods in 1999.M1-2014.M7.

6.3 Group and estimation results

In this section, we present the classification and estimation results for the quarterly data. The results
for the monthly data are relegated to Section F in the online supplement. We determine the number of
groups by using the information criterion (IC) proposed in Section C of the online supplement. Table
A.2 in the online supplement reports the information criterion with different tuning parameter values:
X = ¢y x T73/* where ¢\ = 0.025, 0.05, 0.1, and 0.2. Obviously, the IC is robust to the choice of tuning
parameters. Following the majority rule, we decide to select K = 2 groups for the period 1975.Q1-1998.Q4
and K = 3 groups for the period 1999.Q1-2014.Q2. Note that the IC is minimized at ¢y = 0.1 and 0.05 for
the first and second, subsamples respectively. We will choose ¢y = 0.1 and 0.05 for these two subsamples,
respectively and report the estimation results.

Table 4 reports the DPLS estimation results for the subsamples 1975.Q1-1998.Q4 and 1999.QQ1-2014.Q2
by using ¢y = 0.1 and 0.05, respectively. We summarize some important findings from Table 4. First,
the group-specific estimates vary a lot across groups, which indicates strong unobserved heterogeneities in
both subsamples. Second, both C-Lasso estimate and its post-Lasso one for Group 1 are reasonably close
to the unity in both the first and second subsamples, which lends some positive supports to the weak-form
long-run PPP hypothesis. But the estimates in Group 2 in either subsample suggest a negative long-run
relationship between the price index difference and the exchange rate, which contradicts the long-run PPP

hypothesis. The estimate for Group 3 in the second subsample is positive and quite small in comparison
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Table 4: Estimation results for the quarterly data

Panel A: From 1975.Q1-1998.Q4

Pool Group 1 Group 2

DOLS C-Lasso  post-Lasso C-Lasso post-Lasso
B; 0.7465 0.8609 0.8608 -0.7007 -0.6992

(0.0207)  (0.0190) (0.0190) (0.0857) (0.0857)

Panel B: From 1999.Q1-2014.Q2

Pool Group 1 Group 2 Group 3

DOLS C-Lasso post-Lasso C-Lasso post-Lasso C-Lasso post-Lasso
B; 0.3623 0.8667 0.8681 -0.5732  -0.5775 0.1986 0.1960

(0.0184) (0.0189) (0.0189)  (0.0227) (0.0228)  (0.0296)  (0.0296)

with the unity, which suggests a quite weak proportional relation between the change in the price index
difference and that in the exchange rate. Third, similar results are also observed for the monthly data,
and the long-run relationship between the nominal exchange rate and general price index presents similar
patterns in either subsample period. This indicates the robustness of our findings.

Table 5 summarizes the group classification results for the two subsamples; see also Figure 1 for the
classification results for the second subsample. Interestingly, we find that the majority of the countries in
the first subsample are classified into Group 1, which indicates the long-run PPP holds for most countries
in the period 1975.Q1-1998.Q4. During this time span, we have only 68 countries in the dataset, and some
developing countries like Argentina, Brazil, and Russia are excluded from our subsample due to the fact
that they have experienced hyperinflation. For the second subsample, we find even more interesting results.
Figure 1 suggests that those countries that support the long-run PPP equilibrium are mainly located in
Europe, Africa, Middle East, and North American. The members of Group 1 suggest a polarization of
economic development. Further, we observe that most countries in Groups 2 and 3 are either fast-growing
or middle-income countries (e.g., South Korea, Singapore, and Brazil) in the last decades in East Asia and
South America. It confirms the Balassa-Samuelson effect, where the productivity differentials are one of
the most important factors behind the PPP deviation, see Balassa (1964) and Samuelson (1964). In this
case, countries with rapidly expanding economies should tend to have more rapidly appreciating exchange

rates. In general, our results suggest heterogeneous behavior in the long-run PPP hypothesis.

7 Conclusion

In this paper, we propose a C-Lasso-based PLS procedure to estimate a cointegrated panel with latent
group structures on the long-run cointegrating relationships. We allow for completely heterogeneous short-
run dynamics but assume that long-run relationships are homogeneous within a group and heterogeneous
across different groups. Our method can determine the individual’s group membership consistently and
estimate the parameters efficiently. To remove the asymptotic bias in the estimators of the long-run
parameters, we also consider the dynamic PLS procedure. Simulation results confirm the asymptotic

studies. An application to testing the validity of the long-run PPP hypothesis suggests strong evidence of
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Table 5: Classification results for the quarterly data

Panel A: From 1975.Q1-1998.Q4

Group 1 (N; = 62)

Algeria Australia Austria Bahrain Belgium
Bolivia Botswana Canada Colombia Costa Rica
Cyprus Denmark Dominican Egypt El Salvador
Finland France Ghana Greece Guatemala
Honduras Hungary Iceland India Indonesia
Iran Ireland Israel Italy Ivory Coast
Jamaica Japan Jordan Kenya South Korea
Luxembourg Malta Mauritius Mexico Morocco
Nepal Netherlands New Zealand Nigeria Norway
Pakistan Paraguay Philippines Portugal Singapore
South Africa Spain Sri Lanka Sudan Sweden
Switzerland Tanzania Thailand Trinidad and Tobago  Turkey
Uruguay Venezuela

Group 2 (N3 =5)
Ecuador Kuwait Malaysia Myanmar Saudi Arabia

Panel B: From 1999.Q1-2014.Q2

Group 1 (N; = 49)
Angola Argentina Austria Bangladesh Belgium
Botswana Brunei Canada Costa Rica Denmark
Dominican Europe Finland France Germany
Ghana Honduras Iceland Iran Italy
Jamaica Japan Jordan Luxembourg Malawi
Mexico Mongolia Morocco Mozambique Netherlands
Nigeria Norway Pakistan Romania Saudi Arbia
Sri Lanka Sudan Sweden Switzerland Tanzania
Trinidad and Tobago Tunisia Turkey Uganda United Kingdom
Ukraine Venezuela Viet Nam Zambia

Group 2 (N, = 23)
Albania Armenia Australia Bolivia Brazil
Bulgaria Colombia Congo Croatia El Salvador
Georgia Hungary Ireland Ivory Coast Kuwait
Latvia Macau Moldova New Zealand Peru
Philippines Spain Thailand

Group 3 (N3 = 27)
Algeria Cambodia Czech Republic Egypt Guatemala
Hong Kong India Indonesia Israel Kazakhstan
Kenya South Korea Kyrgyzstan Laos Lithuania
Macedonia Malaysia Mauritius Myanmar Nepal
Paraguay Poland Portugal Russia Singapore
South Africa Uruguay

Note: Countries in bold denote coincidences of the classification results based on the monthly and quarterly

datasets.
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@ Group 1
O Group 2
O Group 3

Figure 1: The geographic features of countries in the three groups in subsample 2 (1999-2014)

latent group structures.

There are several interesting topics for future research. First, we do not allow for cross-sectional
dependence in our model. In macro-econometrics, cross-sectional dependence is frequently modelled via
the multi-factor error structure (Pesaran, 2006) or interactive fixed effects (Bai, 2009). Depending on
whether we allow for unit-root behavior in the factors, different methods can be called upon (see, e.g., Bai
and Ng, 2004; Bai and Kao, 2006; Bai et al., 2009; Bai and Ng, 2010). But this certainly complicates the
asymptotic analysis and deserves a separate treatment. Second, when the dimension of the nonstationary
variables is higher than 2, multiple cointegrating relationships may exist. It is worthwhile to consider the
panel vector error-correction model or likelihood-based panel cointegration analysis in this case. Third,
as an anonymous referee insightfully points out, in practice it is worthwhile to allow for the presence of
a single group, e.g., the Kth group, that contains individuals with heterogeneous slope coefficients. As
one can imagine, both the C-Lasso and K-means algorithms fail in this case and one has to design a new
algorithm to pin down the elements in the first K — 1 groups. One possible way is to consider a sequential
testing procedure based on some preliminary consistent estimates of the slope coefficients as in Wang and

Su (2018). We leave these topics for future research.

Notes

I Most asymptotic theories in the panel cointegration analysis have been established under the sequential
limit theory. A few exceptions include Phillips and Moon (1999), Sun (2004), and Bai and Ng (2010).

2If E(xo,it) = va; # 0, we can rewrite the first equation in (2.1) as y;; = uf + Bi,iml,it +6/2’ix§7it + Uy,
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where 13 ;, = @2t — v2; has zero mean and pf = p; + 55 ;2.

3The commutation matrix is used for transforming the vectorized form of a matrix into the vectorized
form of its transpose. For any m x n matrix A, K, , is the mn x mn matrix which transforms vec(A) into
vec(A') : Ky, vec(A) =vec(4).

*Noting that by Lemma A.4(i)

1 1 -
Qr,NT = W Z 53/115311 - W Z (53/115321) (jéz@%) ' (53/22@“)
i€GY i€Gy
1 . _ 1 -
= N2 Z 1%+ Op (bp') = N.T? Z 7181 +op (1),
R eqy R ey

we can also consistently estimate Q) by @(k) = ﬁ Zieék T &1
& e
See Section D in the online supplement for more details on the determination of A in practice.

6The estimation results for ¢y = 0.1 are available upon request.
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Appendix

A Proofs of the Main Results in Section 4

In this appendix, we first state some technical lemmas that are used in the proofs of Theorems 4.1-4.6 and
then prove these main results. The proofs of the technical lemmas are relegated to the online supplementary

Appendix B.

Let x(l),it = Zi:l 61’“. Noting that xl,it = 261’7;0 =+ Zi:l El,it and jli,t = xl,it — %25:1 xl,is =
x?’it -+ 23:1 x‘iis, the initial value 1 ;0 does not play a role in our analysis. Without loss of generality,
we assume that z; ;0 = 0 and write z1 ;; for 22:1 €1,i¢ hereafter. Recall that

1 T ~/ 1 T A ~/ A A
A <ﬁ Dot T1itd ﬁZt_lﬂcl,it%,it) _ (Qi,i’ﬁn i,i’ﬂ?z)
- bay b

1 T -~ ~ 1 T ~ ~
T2 Zt:l 372,it$/1,it T thl 3?2,1‘1536'27# Qi@il Qi@iz
T ~ ~ N
3 (i drata [ Qi
Qiza = =T . = v ,
FT D peq 2,0t it Qi zs
T ~ ~ N
Q. o % Zt:l T1,ie Uy . Qi 30~
1, Tu* - T N B = . ,
% D1 Lo,y Qi 3y~

where @}, = U — i’QitE;Q{iEgo,i. Let Z1,; = (%1,a, ---,fuN)l- Define Zg;, 4;, and @} analogously. Let
My, = Iy — jﬂi(@’iig’i)_li}’i for £ = 1,2, where Iy is a T x T identity matrix. Recall that Dy =

81
IS

0 VTI,,

L 0 A .
( by ) . We shall abbreviate Q; #,z, as Q1; frequently for notational simplicity.
To prove the main results in the paper, we need the following lemmas.

Lemma A.1 Let S=(S;,S3) be a selection matriz, where S1 and Sg are I X p; and I X ps matrices,

respectively, and l is a fived integer. Suppose that Assumptions A.1-A.8 hold. Then for eachi=1,...,N,

1 =~ ~
. BB . 0

(i) SD7Q; 33 DrS'=S Jo BuiBi;
0 Yoo

(ZZ) TQi,ila*:> J‘Ol Blﬂ‘dB(l))i + AIO,i _ (fol Bl,idBé)Z— + A127i) 22_2]:i220’i,
(m) T3/282Qi’52g* =Ss (Jl,z’ & Jg,i) N (0, Vlo) ,
~ ~ ~ -1 ~ ~
() T (’BM - (1)’) - (fol BMB{”) [fol B.idBy,i + Ao = (fo1 BiidBy,; + Al?ﬁi) 22721,1'220,2‘] ;
(U) \/TS2 (BQ’Z' - ﬁ;ﬂ) =S, (22_21,i‘]17i & J27i) N (O, ‘/ZO) ,
where By ; = By~ [, Bri(r)dr, Atgi = S10.i+A10,4, J1i = (Opy 1, Opyseprs Ipy) 5 J2i = (1, 01p —Sh0,:%22,5) »
and V? = limp_ o, Var(T~1/? Zthlvec(eita’it — %))

S/

Lemma A.2 Suppose that Assumptions A.1-A.3 hold. Then for any fized constant ¢ > 0,
(i) P (maxi<i<n 7z Hi’“ﬂzH > cainr) =0 (N71),
(ii) P (maX1g¢§N H%j/glﬂz = CP%/Q(MNT) =o(N71),
(iii) P (maxlSiSN % Hj/u@zH > cpé/zalNT) =0 (N_l) ,
(i) P (maxlgiSN H% S Toitlh ;4 — Yoo > szazNT) =o(N7Y),
(v) P (maxlgigN HQi@la* > CalNT) =o(N71),
(vi) P (maX1gi§N HTQz‘,fcza* > CP;/2CL2NT> =o(N71).
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Lemma A.3 Suppose that Assumptions A.1-A.3 hold. Then

(1) lim supAmax (mfl,iﬂ,i) < (% + c) €y, a.S. for any fized small constant ¢ > 0,
T—o0

(ii) P (mimgigzv Amin (TQi 527,) > 922/2> =1-0o(N7"),
(iit) P (mimgiSN Amin (D1 Qi,25 Dr) > 211/(25T)) =1-0o(N7").

Lemma A.4 Suppose that Assumptions A.1-A.83 hold. Then for any constant ¢ > 0,
(i) P (maxi<icn || g2 ;Mo idir i — 2 14| > cbp') = o (N7,
(i) P (max;<i<n ||%551M11i21 — $92,4|| > ¢ praont) =0 (N7,
(iii) P (maxlSiSN H%i/le%ﬂ:H > calNT) =0 (N*I) ,
() P (maxlSiSN |38, ; My 7| > Cp;/2a2NT) =o(N71).
Lemma A.5 Suppose that Assumptions A.1-A.3 hold. Then for any € > 0,
(i) P (maxlgigN HBM — 5(1],z‘ ) >c bTalNT> =o0 (N_l) ,
(it) P (maXISiSN HB21 - @ZH > CP§/2a2NT> =o(N71),
(iii) P (maxi<i<n ||67 — 5504l >€) =0 (N71),
where recall that 35 5 ; = Soo,i — S02,i555 4 520,i-

Lemma A.6 Suppose that Assumptions A.1-A.3 hold. Then
(i) % XL, | 3 | = 0r (172),
(ii) % Zf\; Hﬁ%zaz ‘= Op (p2T_2) )
(iii) % Zfil ||%:%/113§“H2 =0p(1),
(i) % il | et dzall” = Op (2T2)
(0) % Sl = Mot || = Op (T72).

To study the asymptotic distributions of the post-Lasso estimators &2°™", we let Qi n1 = ﬁ Zieag T,

XMy ;%1,; and Vi n7 = ﬁ Zz’eG,ﬁ T My sa; for k= 1,..., K. We make the following decomposition for
_ 1 ~/ S~
ViNT = o7 2iey T1,iMz,iti ;
1

(e~ 1
VNt = N.T E & (s *$27i222,i2207i) +
ke €GO

~! = -1 1 ~!
L i%2, [ZQQ,i - (T%,z‘x?,i)

1 o _ 1., .
T RT > @ Ea [zzzl,i - <71"2,i932,z‘

ieGY

1
~! =~ —1 ~!
5751,@'1”2,1'222,;'(22071' - T$21UZ)

1
N 2

pp—
i€GY,

= Vignt + Vo nTt + Var, Nt + Vag, N7
The following lemma studies the asymptotic properties of Qi n1, Ver,nr for £ =1,2,3,4, and Vi, n7.

Lemma A.7 Suppose that Assumptions A.1-A.3 hold. Then
(i) Qunr Q>
(it) Vie,nt — Byt = N (0, Vi),
(iii) Vo, N7 = op (1),
() Var,nT = op (1)
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(v) Vag,n7 = op (1),
(vi) Vient —Bent = N (0,V(y) ,
where Q(ry, Bk, nT, and V() are as defined before Theorem 4.4.

. . - - . ro T
To consider the DOLS estimator. Let & = (0f 5,41 0fp_p,) s 0f = 05y — 7557 >0y piirl 4, where
% = ZIJ’IZﬁz 7vi jAT1,i+—; signifies the approximation error. Adjust the definitions of #;,; and Ms;
to use the time series observations z;; = (Z¢; 5,415 Te,i7—5,) , £ = 1,2, where recall that z5,; =

! ! !
(AT 4 pyrrs s AT o4 5,)

v,

Lemma A.8 Let the conditions in Theorem 4.6 hold. Then \/—T Ziecg Ty ;M ;0f = op (1).

Proof of Theorem 4.1 (i) First, noting that 3, ;’s do not enter the penalty term in the PLS objective
function in (2.7), we can concentrate them out to obtain the following objective function

P
NT)\(/617 =N ZQNTz Blz NZ 2 K H [ le /611 —a) || - (A1)

where Q?VT,i(ﬁl,i) = % HM2 i ~z 21,15 i || - Let QNTz ,\(ﬁua )= Q?VTJ(Bl,i)Jr)‘(&i)QiK Hszl ||Q11’(51,¢
—ay)||. Then Qg’:ﬁ,,\(ﬁh a) =y Zz 1 QNTz ,\(51 i» ). Let bl,i = Bl,i - 5?,1’ and by ; = 52,1‘ - 531 Noting
that My (i — £1.i81,;) = Mo [l — #1,4(81,; — B8Y,,)] , we have

A 1 N I 2 1 -
QNT,i(Bl,z) QNTz( 1) EHMQ,Z'(UZ'_$1,ibl,i) —ﬁHMzzUzHQ

= b Qizy 5, b1.i — 260 Qi34 (A.2)

where Qi,ilil = %ﬂ?/l,iMzif?l,i and leﬂ = %:E’“Mgzﬂl By the triangle and reverse triangle inequalities,
the fact that ||Ab|| < ||A||spll6]] for conformable matrix A and vector b, we have

(B — )l = H 1Qi (87 — k)l‘

k=1

Qui(Bri — an)[{1Qui(Bri — ar) | = 1Qui(BY; — OzK)II}‘

K—

+ H 1(Bri = a)llQui(BY — ) I{IIQui (B s — ar—1)| = 1Qui(BY; — ar—1)I}

+ ...

K
+ T 1Qu(BY: — ) {1 Qui(Bs — )| = 1Qui(57; — al)ll}‘
k=2

<éi,nr(@)]|Qui(Bry — BY I < & nr () [Quillsp 16l (A.3)
where & nyr(0r) = [Tiey 1Qui(By i —an) | +1 T ||Q11(ﬁlz_ak)“”Qll( —ak) G

ar)|l = Op(1) as Hle”sp = Op (1). Since ﬂl,z minimize QNTi,A’ we have QII\?ICW,A(Blm Q) — NTz ,\(51 ZA)
< 0. Combining with (A.2)-(A.3), we have

1iQia, 010 < 200, Qi 5,0 + NG540 6 v ()| Quillsp 1Byl
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Then R 5
Gz 100l < 12Qiz all +A6)* vz (@) Quilsp, (A.4)

where Ci gy — Amin(Qi,ilil) = )\min(QAi,ilil - Tl/QQi,iliQ (TQi,i2i2)_1T1/2QAi,fzf71) 2 )‘min(Qi,ilil) -
op (1) is bounded away from zero in probability by Lemma A.1(i). In fact, we can apply Lemmas A.2(iii)-
(iv) and Assumptions A.2(i), A.2(iii), and A.3(iii)-(iv) and show that

P (mlancl 5F > g11/2) =1-0o(N"). (A.5)

Then, by Lemmas A.1(i), A.2(iv), A.5(iii), and Assumption A.2(iii),

b1l < 6z, (21 @izl + MG e nr(@)[Quilly ) = Op(T 1+ ), (A.6)
because
« 1
1Qizwall = 5 [[8iMoti|| = TQ 17,0 37|
= HQi,ilﬁ* — Qi,3152 (Qi323,) "' Qi v
< Hleu + T TQi 715, HTQi,igﬂ* H(TQi,igiz)_lH =0p (T7).

~ ~ ~ -1 _
. . - o - <~
Now, noting that g; — 1,0, ; = 4] + T2:f5,; — T1,:b1,; and By ; = (3”2,1'95271‘)

$2 z(g xl 161 1) /6;71_’_
o oN—=1 ., - o
(x/hx?l) Ty (@ — T14b1,4), we have

1 - :
<G| )

= 0p () {0r®y* T3 + 0p(EY*)OR(T™" + 0) } = Op(y* (T2 4 1)), (AT)

b2i

s

|B2s — 83,

{F sl + 5 5.,

as we can readily show that ||(525 ;Z2:) 'llsp = Op (1) given Lemma A.2(iv) and Assumption A.2(iii),

and that # |5 ;a7 || = Op(p 1/2T 1/2) and L + 125,21 = Op(pQ/ ) as in the proof of Lemma A.1(i)-(iii).
(ii) By the Minkowski’s inequality, as (N T) — oo we have

1Qui(Bri — BN + 1Qui(BY.s — w1}

K
HQIZ(Blz - 5(1)1)” + ||Q11(/8(1)1 - ak)”} ||le(5(1)z —ag)|+ ...+ H ||Qll(/8(1)7, — o)l

_|_
k=1 k=2
K-—1 R ) s )
= Hle(ﬁlz - (1)1)”8 H aks”Qli(ﬂ?,i - Oék)HKilis
s=0 k=1
K_ A~ ~ ~ ~
< Cronr(@) Y [1Qui(Br; — BY)II° < Cre (@) (1 + 2(|Quillsp 1br.4), (A.8)
s=0

where ays’s are finite integers and Cx yr(@) = max; maxi<s<i<x—1]][5_; aks||Q1i(,8(1)7i — ay)||fts

= MaxXi<i< kg MaxX1<s<k<K-1 Hk 1 aks||Qh(al — Oék)HK_l_S = O(].) as K is finite. Let OK = CKNT(@)-

By Lemmas A.3(i) and (iii) and Assumption A.3(iv) , ZAC'K(éi)2_Kg;%1il ||C:212||b2p = Op (MbrloglogT) =
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op (1) uniformly in 4. Combining (A.6) and (A.8) yields

-1

S L1063, all + ACK (32K Qul
1_ 1,10 K 1i||sp
CNT

I1b1:]| <

where ey = 20\Cx max;(5;)% ¢, 2 F1F1 Hlequ = op(1). Then by Lemmas A.5(iii) and A.6(v),

Q>

N
N Z loral® < (722 Z 12Qs 210l + ACk (5> FNQuilll* = Op(BH(T 2+ A7), (A9)

) -1
where ¢; ;. = [mlni lejl] = Op (br) by (A.5).

To refine the result in (A.9), we shall prove that - ZZ 1 Hbl ill> = Op(b3T72). Let B = ( ?:1’ o (l)fN)/
and B, = 5(1) +brT~ vy, where vy = (V] 15 s ULN) and vy ; is a p;-vector. We want to show that for any

given €* > 0, there exists a large constant L = L(e*) such that, for sufficiently large N and T we have

P inf N B+ brT w1 ,6) > Qi (8),a0) ¢ > 1 — €. A.10
{N_lzfvllll’l,ilz_[/ N (B 1,&) N B a”) ( )

This implies that w.p.a.1 there is a local minimum {3,, &} such that + Zf\’:1 ||by.4]|2 = O, (b2T~2) regard-
less of the property of &. By (A.2), Lemma A.3(iii), and the Cauchy-Schwarz inequality, with probability
1—0(N~"') we have

T2[ NT,\(ﬁ1+bTT V1, &) — NT)\(ﬁlv )}

A2 )2 K -1 N
ZbTV1 iQi gz Vi — ZbTV1 iQigra + S ~ H Qi (BY; + brT~ v — )|

i:l

1 1 N 1 N 1/2 T N 1/2
2 2
Sy ;:1 [orvyill® — 2 (N ;:1 lorva 4| ) <_N E: i dval )

= Dint — DanT, say.

By Lemma A6(v), - ZN Qi al2 = Op(1). So Dinr dominates Doy for sufficiently large L. That
is, T2[Q% NT. c(BY+ bTT vy, &) — ﬁiﬁ L, (BY,a%)] > 0 for sufficiently large L. Consequently, we must have
N, HbuH2 Op(b7T~2).

Note that H TTY T2i)” 1H5p = [)\min(%jjé’ii:g,i)]*l and

1
o
TP2%2,i — Y294

min Amin (=25 ;%2,) > min Apin(Sa2,;) — max > % with probability 1 — o (Nfl)
i : i i

(A.11)
by Lemma A.2(iv) and Assumption A.2(iii). Then we have by (A.7), Lemmas A.2(iii)-(iv) and A.6(ii),

T
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and Assumptions A.2(iii) and A.3(iv) that
N _
1 . 1., .
7 2 b (i“”)
i=1
{ T2 Z HmQ z :

= Op(pT) + OP(p2a’1NT)OP(b%T72) =Op (poT~ ) .

IN

2 max
(2

? 2
e 2 (bt sl |}
sp

)

b1

e [l

(iii) Let Pnr(Br ) = + SN  TIr, 181 — x|l By (A.3) and (A.8), as (N,T) — oo
|Pne(By, @) — Pyr(8Y, @) < Cx vr(a ZHble + 20k N1 (a ZHbuH2

N 1/2
< Ck,nr(a ( Z|b17i||2> +0p(b3T72) = 0p(brT™Y).  (A12)

By (A.12), and the fact that Py7(8%,a°) = 0 and that Pyr(B,, &) — Pyr(B;,a®) < 0, we have

N1 (B1, &) — Pyr(By, @) = Pyr(8Y, &) — Pyr(B8Y,@°) + Op(brT1)

1 N K
= <> IT 181 = éull + 0p(brT )
i=1 k=1
N 1 N
Wnlak—al\H Hl\ak—ang + KHHak—aK||+OP(bTT b. (A.13)

By Assumption A.3(i), Ny/N — 74 € (0,1) for each k =1, ...K. So (A.13) implies that Hle [[é — I =
Op(bTTfl) fOI‘j =1,..., K. It follows that (@(1), ,&(K)) — (05[1), ...,Oé(}() = Op(bTTil). |

Proof of Theorem 4.2. (i) By Lemma A.3(i), limsup;_, ., HQM

< 2¢q,, loglogT a.s. By Lemma
P

A.3(iii), P(mini<i<n brg; 3,5, > ¢1/2) = 1 —o(N~'). By Lemma A.5(iii) and Assumption A.2(iv),
P (minlSiSN &% > QOO/Q) =1-o0 (N*I) . Noting that

2

’
sp

o 2 ~ 2 R 2 R 2 R
HQi,ilﬁ SQHQi,ilﬂ* “l‘QHQi,ilig HTQi,;i2ﬂ* H(TQi,a":ga":g)_l

we can readily apply Lemma A.2(iii)-(v) and Assumptions A.2(iii) and A.3(iii)-(iv) and show that P(max; ||Q; 5,4

> caynt) = o(N~1). Then by (A.4) and (A.8) we can show that P(maxlSiSNHlA)MH > chbrainT) =
o(N71).
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(ii) By (A.7) and (A.11), Lemma A.2(vi), the result in part (i), and Assumption A.3(iii)-(iv)

. 1 - 1 b
P (mlabeg’i > Cp;/Q(IQNT) < P max (Tjélel) T {Hjézﬂj + H%zleH Hbl,i } > Cpé/2a2NT
1 ~1 ~k o~ 7 1/2
< P mzaxf (HSBQmZ || ||b1 ) > cpy “aaNTCo/2
. 1., .
+P m_ln/\ fxgﬂ'xli < con/2
< P <max |25,a7]| > cpy’® aQNT622/4>
+P <mf\x T 25,214 Hi)l,i 2> Cpé/2a2NTQ22/4> +o(N7Y)
= o0 (Nfl) ,
where we also use the fact max; % Hi’glfu H HEUH =o(Tainr) o (braint) = O(pé/za“’T) with probability
1-o0 (N’l) .

Proof of Theorem 4.3. We fix k € {1,..., K}. By the consistency of &; and Bl ;» we have Bl i — G —
al —af £0forall i € GO and | # k. It follows that w.p.a.1 Hﬂ“ alH £ 0 for all i € GY and I # k. Note
that ylt .’131 ’Lt/Bl [ xQ ’Lt/32 [ = uj it xl,ztblﬂ x2,ztb271

B — akH # 0 for some i € GY. Then the first order condition (with respect to

Now, suppose that ‘

f31,;) for the minimization problem in (2.7) implies that

anNT A<ﬂ17/827 )

0=
aﬁl 7
T A K K A
Z vit(Jit — T1,0B1, — T4 ztBQ i) +TA@ Z 104 H Q1B — &Z)H
=1 j=1 1=1,1£]
T ~
2 ~ - AT 2-Ke i A PN .
=7 2 Tratlly + 2+ A( 2 1: b TQi(By; — )
t=1 Qu(ﬂu - ak)H
~ K K A
# 2 Qi + 20 Quld — o) + TN 3 Quiy ] |Qui(Br s =)
j=1, 1=1,1£]
= —Bj1 + Biy + Bis + Bia + Bis, (A.14)

where p;; = Qui(By,; — &)/ HQM(B“ _dj>H if Hle(B“ _dj)H # 0 and [|9;;| < 1 otherwise, &, =

H{iu#k HQM(BU — dl)H = C(iz'k = Hfiu;‘ék HQu(ag - a?)” for i € GY by Theorem 4.1, where a < b
signifies that a and b are of the same probability order.

By Theorem 4.2(ii), we can readily show that P ( o, — A H > chalNT) =0 (Nfl) for any fixed ¢ > 0.
This, in conjunction with Lemma A.3(i) and Theorem 4.2(i)-(ii), implies that

|

Quil| < 2eq,, loglogT and ¢ (¢;, /br)* ' < 1k < ¢} (2eq,, loglog 5! as., (A.15)

sp
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where ¢ = Hfilh&k o — af|| > 0 by Assumption A.3(ii). Then

P | max HBig,
i€GY

> CTX (log log T)K bTalNT> =0 (N_l) (A16)

for some large constant C' > 0. By Lemma A.3(i) and Theorem 4.2(iii),

P <max BM > CbrTainT log logT)
ie€GY,
< P (max 2@11-(64;C — ag)H > CbrajnytloglogT, max HQh < 2¢q,, loglog T)
iGG(,i iEGi sp
+P (max QU > 2¢q,, loglog T>
(el sp
< P <mg}0< |&r — || = CbTalNT/(45911)> +0=0(N"") (A.17)
1€Gy,

for any constant C' > 0. By Lemma A.2(iii) and Theorem 4.2(ii)

P (Ilélg%( Bis|| > CTpr2a1NT(I2NT> =P (Igg{]( 2TQ; wy 2y b2i|| > C'bTPQ(hNTaQNT) =o(N7").
1€GY i€GY
(A.18)
By Lemma A.5(iii), Assumptions A.2(i) and A.2(iv), we have with probability 1 —o (N71)
.~ R . o NG Kerin A A R
(Qu(ﬁu —Olk)) By = (51,1' —Oék)/Qu 2+ A< 2 lA k Qi TQli(ﬁl,i — (i)
Q1B — )|
2 ~ VA gi)> Keviw A A .
> TABy,; — ar) Qui A( )A I’Ak Q1iQ1i(By,; — ax)
Qui(By; — |
> TAb; Amin (bTQU) (62 Keérin ’QM(B“ - @k)H
> e (2000) TN QB — )| (A.19)
Define
Line = {gllcg/bzp < min é; i < maxép i, < 2600, 1oglogT}
ied ieGY
N {m%}oc Bis|| < CTA (loglog T)K bTalNT} N {m‘g}oi Biill < CbrTainT log log T}
i€GY ieGy
N {max Hst < CTprzawTazNT} .
ieqy

Then P (Tynr) =1—0(N~') by (A.15)-(A.18). Let I'{ \,» denote the complement of I';x. Conditional
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on I'ynr, we have, uniformly in i € GY,

‘ (QAu(Blz - 54k)>/ (BiQ + Biz + B + Bis)

> ‘(le(ﬂlz - @k)) i2| — ’(Qh(ﬁl i ))/ (Bis + B+ 31‘5)

> {gﬁci(?EOO)I*K/QTAbEK - C [TprgalNTagNT + brTainrloglog T + TA (loglog T)K bTalNT] }
X HQM(BM - 07k)H

> %gﬁcg(Qéoo)l_K/ZT)\b;K HQh(B“ - dk)" for sufficiently large (N,T),

where the last equality follows because TbrpaainrasnT + brTai Nt loglog T + T (log log T)K brainT =
o (TAbz™) by Assumption A.3(iv). It follows that for all i € GY,

P(Einr:) = P(i¢ Gili€ GY) =P (B = Bia+ Bis + Bia + Bis )
= P (HQH(BM — i) Bt || > | QuilBy,s — ) (Bi? + Bis + Bu + BiS) H>
< {[0ut5 -] = 00t~ (BB 5 50) )
+P (Tinr)
< P (HBM > %Qﬁcg(%oo)lm?T)\bTK) +o(NTY

= o(1),
where the last line follows by the fact that ||B;1|| = Op (1) by Lemma A.1(ii) and that TAbz — oo under

Assumption A.3(iv).
In addition, by Lemma A.2(v) and the fact that a;ny7 =0 ()\b;K) under Assumption A.3(iv),

K
P(UE_ Eynr) < Z (Epnt) < Z Z P(Epnr.i)

iz;(

< N max P <HB$1
1<i<N

1
2cnck(2coo)2 KT/\b_ >+0(1)

1
> §g{§c2(2c00)2—KTAb;K> +o(1)=o0(1). (A.20)

We have completed the proof of Theorem 4.3(i).
Given (i), the proof of (ii) is similar to Theorem 4.2(ii) in SSP and thus omitted. W

Proof of Theorem 4.4. We first write our mixed panel model in vector form: §; = %18, ; + 2,85 ; + U,
where Z;; = (%11, ...,il’iT)/ for I = 1,2, and ¢; and u; are similarly defined. Recall that My,; = Iy —

To,i(Th ;2,4) &5 ;. Then we rewrite the objective function QN (81,8, a) as follows

2 N
QN a(B1, Ba, @) = Qur(By, B2) + NZ ) KHHQh B — )l (A.21)
i=1 k=1
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where

QNT(ﬁLﬁQ T2 Z — I zﬁl K To 1/62 z) ( jl,iﬂl,z’ - jQ,iﬁQ,i)' (A-QQ)
The first order conditions are
2 K K )
0pyx1 = ngllz@ T zﬂlz 5521521 )+ A Z 1i0ij H 1Qui(Brs — )| Vi=1,..,N,
j=1 1=1,1#j5
(A.23)
-2 SO U .
0p,x1 = T2 =525 (i — T1:81; — T24P2,;) Vi=1,..,N, and (A.24)
K A
0p,x1 = Z QlZ@zk H ”Qli(ﬁl,i —a)|VEk=1,.,K, (A.25)
i=1 1=1,1#£k

where 9,; is defined after (A.14). Let k € {1,..., K'} be fixed. We observe that (a) Hﬁl,i — &yl = 0 for any
i € Gy, by the definition of Gy, and (b) Bl,i T a —af #0 for any i € G, and | # k. Tt follows that
lo;1I < [|11]| for any i € G}, and 0ij = Quild — &;)/||Qui(é — &) for any i € Gy, andAj # k. Let Go
denote the set of unclassified individuals. Given Theorem 4.3, it is easy to show that P(#Gy > 0) = o(1).

Noting that Hllil Qi (6 — é)|] = 0 for any I, we have

K
S S 60r  Quay T] 10uh - al
ieGy I=1J#k I=1,1#j
Qhlan —ay) T
= Z o I T Quilr — an)ll = Op
ieGy, =157k 1Qui(a — é)| 11
It follows that by (A.25) and (A.26)
N K
Oplxlzzwi)%KQli@ik H 1Qui(B1,; — )l
i=1 1=1,1£k
K R A K . .
=Y ) " Quon [[ 1Quar—a)l+ > 6" Quew [ I1Qui(B1; —av)ll
i€Gy I=1,I7#k i€Go I=1,1£k
Qhi(a; =)
+ Z > @t T 1Quildy — a)|
i=Li#k iec; 19185 = Gl 1y
K K .
=Y (6 X Quioy, [ NQuitar —a)l+ > (6:)* K Qubs [ 1Qu(Br; —a)ll.
ieGy 1=1,l#k ieGo 1=1,l#k

Averaging both sides of (A.23) over i € G, and using (A.26) and (A.27), we have

\ ) K

OP1><1 N T2 Z .’131 z y .’131 ik — T2 162 z) Fk Z (&i)27KQ1i@ik H ”Qli(Bl,i - OA”)H

ieGy ieGo I=1,1#k
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Solving BQ,i from (A.24) as a function of Bl,i and replacing Bl,i by dy, for i € Gy, yields

o~ -1
»32,¢:(33/2,i332,i) 372z(y 37120%) (A.29)

Plugging (A.29) into (A.28) yields
-1

1 ~ _
N2 Z zy ;M %1, NkTQ Z 4 Ma i

Qp =
ieék lGGk
-1
1 K
S T 5 2 K 4 A .
+ N T2 Z $/1,iM2,i£U1,i 2N Z Eik H ||Q1i(»31,¢—041)||
1E€Gy ieGo 1=1,l#k

— aDbost

=q +Rk, say.

Noting that Q1;0;, Hzlil,l;ék Hle(Bu —éy)|| # 0 only if i € Gy and by (A.20), we have that for any e > 0

K

K
p(\/ﬁT|\Rk|\ > e) <3S Y PlieGoliec)) <> Y Pli¢ Guli € GY) = o(1).

k=1ieGY k=1ieGY

That is, V'NT||Ry|| = op (1) and &, is asymptotically equivalent to its post-Lasso estimator g, - Similarly,
given the fast convergence rate of d@w BM in (A.29) is also asymptotically equivalent to its post-Lasso

~post

version 5% , where (5, = (i‘é’ijgvi)il T (G — T1,i6p" ") for each i € Gj. We formally study the

~post
asymptotic properties of 4" and ﬂg,o; in the proof of Theorem 4.5 below.

Proof of Theorem 4.5. (i) Noting that g; = ilﬂﬂ(l)’i + 3327i,63,i + u;, we have
V NkT( post — ak) Q(k) (k) T Q R(k)v

where Q(k) = N:TQ ZZEGk 53'1 1M2 ijl iy V(’“) = \/LT ZlEG’k jll 1M2 ifbi, and R = \/LT Zzeék xl zMQ i
X T (ﬂ(l),i o) . Noting that 1{i € Gry=1{i e G +1{i € G,\GY} — 1{i ¢ G 0\G1}, we have

1 . - 1 . -
Qury = NkT2 Z Ty Mo iT N ~N.72 Z Ty ;Mo iZy — N.T? Z Ty My T
i€GY i€GL\GY, i€GI\Gr

Qr,NT + Ql(k) + Q2(k)7 say.

By Theorem 4.3 P(||Qiw|| > eN~V2T-1) < P(Fynr) = o(1) and P(||Qapyl| > eN~V/2T-1) <
P(EkNT) = 0(1) for any € > 0. It follows that Q(k) = Qi,NT + 0P (N*1/2T*1) . Similarly, we can show
that V = Vi NT + 0P (N’l/QTfl) and R =op (N’l/QT’l) , where Vi, N7 = ﬁ Ziegg T Mo ;1.
It follows that N, T(&2*" —af) = Qy. NTVk N1 +op (1). Then the conclusion in (i) follows from Lemmas

AT(0)-(vi).

. . ~Dpost ~) o~ -1 . - ~ ~ - .
(ii) Noting that By, = (y,d2:) a5,;(Ji — F1,65"") and §; = 1,00 + F2,:85 ; + U} for i € G, we

41



have for ¢ € G} and [ X ps selection matrix S,
\/— post * 1 ~7 o~ -1 ~ ~x 1 1 ~ o~ -1 1 ~ o~ 0 ~post
TS, (ﬂz i 52,i> = S 2,02, Tw iU + ﬁSQ TL2,i02. T%,ﬂh,iT (ap —ap™)

1 —1
- Sz( xz,x21> ﬁig7iaj+op (T*W)
= (0, SQVQQ’Z‘SIQ)

by (i) and Lemmas A.1(i) and (iii). Here Vag; = (35;,J1, ® J2,i) Vi* (J1 ;555, ® J5 ;). W
Proof of Theorem 4.6. (i) In vector form, we have the regression model:
Ui = T1,:01,; + T2,if2,; + 17;[7 (A.30)

S (A - [~ _ / /
where T2 = ($27i752+1, -~~7$2,i,T—;52) y 24t = T2t — T 555 2p2 Zt p2+1 T2ty L2,5t = (A$1,i,t7;527 T Azl,it’ ceny

AT 4ip,) s and T and ﬁT are similarly defined. In particular, a typical element of v; is given by f)jt =

1— _ # T—p2 1— / ) ) . . .
Vit = T=ap5 Dat—pat1 vzt, where v;, = vj; + v;; and v, ZIJ’\ZPQ 'yi’ijl,Z,t,j signifies the approximation

€rTor.
Assumption A4 ensures the approximation error term vy, is asymptotically negligible in our asymptotic
analysis. Following the proofs of Theorems 4.1-4.4, we can prove that the C-Lasso estimator ész of ay, is

~ D,post

asymptotically equivalent to its post-Lasso version &, , where

~D,post __ ~/ ~ ~/ ~
Q. = E 1’1,1‘M2,i$1,i E 1’171'M2,iyi~
ieék iGGk

As in the proof Theorem 4.5, we can show that /N, T'(&}) post —ad) = Q. NTVk Nr+op (1), where Qp N7 =

W ZieG% 5E1,iM2,i551,i and Vi np = W ZieG% l'l’iMQ)Z‘Ui. Lemma A.7(i) continues to apply: QN7 =
Qx) + op (1) . Now
i€eGY

1 1
Vi,NT = —— T Mo 0 + —— Ty ;Mo ;0f = Vi NT + Vi N1y 88Y.
VN, T ZEZG}% L VN T Z L T

Lemma A.7(ii)-(vi) continues to apply to Vi nr (1) with little modification. Now, v plays the role of uf,
in the lemma. But since v;; is uncorrelated to all lags and leads of Az ;; = €14, s; defined in Theorem

4.4 becomes s; = S — S5¥55 Yoo = S) as Yoo ; is now zero. Then

Big, Nt = Z S1 Z Z Vs 505,650 = Z Z E (e1,itvi0) = 0,

eGU r=0 s=0 zGGOt 0
-1 T+1 / -1 T+1
B - N S (1), (1) Sp = i) = 0.
2k, NT NTE EEG:O 19 (1) ¢, (1) So VTS ZG:”Z (1,itvi0)
7 4 ——0c0

It follows that Vi nv = N(O, V(k)) where VJ([ = limp, oo Nik ZzeGO 690029111,311(1 QOOZ = Qoo —
Q01,124 Q10,i- In addition, Vi v = op (1) by Lemma A.8. Consequently, v/ Ny T (45" —af) = N(0 ,Q(kl)V(k)Q(,cl)).
(ii) This follows from Theorem 4.5(ii) and the fact that ¥o0; = 0 so that (5 ; = ﬁg’i. |
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This supplement is composed of four parts. Section B contains the proofs of the technical lemmas in
the above paper. Section C studies the determination of the number of groups. Section D provides some
details on the practical implementation of the C-Lasso procedure. Sections E and F contain some additional
simulation and application results, respectively.

B Proofs of the Technical Lemmas

Proof of Lemma A.1. (i) By Park and Phillips (1988, 1989), we can readily show that

T
1 . 1 , 1
T2$1 illi = T2 E L1,itL1 it — \/—xlz\/— lz

1
= / Bl zBl i / Bl z/ Bl i = / Bl,iBLia
0 0

1 - 1
=T 82,8y = Z T1,itTh 1S \/Tx“\/fx'hS'Q

1 1 1
= (/ Bl,idBé7i + Algﬂ') S/Q — / BLiBgﬂ' (1) SIQ = (/ Bl,idBéJ‘ + Algﬂ') /2,
0 0 0

T

1, ., . 1 o _

TSﬂ/z,ﬂziS/z = T ZSQZEz,itSU/Q,itS/Q - SQ$2,i$/2,iS/2: SQEQQ,iS/Q +Op (T 1/2> .
t=1

T . . 1~ =
It follows that SDTQi zDrS =8 % Zt? xl’itxll’it T3/2 Zt 10 lth t)s'=S fo Bl’iBi’i 0 S
/ ﬁ D1 jQ’it‘%ll,it T Zt 1 T2 ztxz it 0 222
(ii) and (iii). By Park and Phillips (1988, 1989),

1

T
~) o~ _
ST U = E T itit — —=T1,;V1'U;
T — \/T
1

T
1 1
= ( By ;dBy; + Al(),i) —/ BBy, (1) :/ Bl,idB(/M + Ao,
0 0

and

E

1
So (x2,ittit — X20,:) — ﬁﬁS}fZiﬁﬂi

o~
Il
_

Sa (22,ituit — X20,:) — Op (T*1/2)

“
Il
A

Il
25~ gyl
E

,S2V50.4Sh),



where we allow that Yoo ; = E (22 ;+u;) to be nonzero and VQ%Z denotes the long-run covariance of x j i —
320,;- It follows that

) 1, . 1., 1., _
TQizar = o Ty U = Txll,iui - Tﬂci,ﬁzizzzl,igm,i
1
= / B1,:dBo; + Ao, — (/ BBy ; + AlZ,i) 22_21,1-220,1‘7 and
0 0
3/2 o ]‘ ~1 0~k 1 ~/ ~
T SQQZ}MU* - WSQ‘%? iU ﬁSQ (mQ,zul $2 sz 1222 1220 Z)

T Ui — VTS50 z> VTS, ( Ty T E22,1') Eg_gl,i220,i +Op (Tﬁl/Q)

T
= SoJi, <T1/2 Z (witwgt — Zl)> Jéﬂ +op (1)

= Sz (Jl,i ® J2,i) N (0, VzO) ’

where J1; = (0pyx1,O0pyxpysIp,) and Jo; = (l,lepl, 2’20222_2 Z) Combining the above results yields
the results in (ii)-(iii).

(iv) and (v). Our conditions ensure that ’|%j127i'%27i — Egg,iH =0Op (pgT_l/Q) =op (1) and )\mm(TacQ i2.4)
> Amin (Ba2,i) — H%fél@z — 2227i“ > ¢499/2 with probability approaching 1 (w.p.a.1). [See the proof of
Lemma A.2(iv) which is related to the former claim.] By (i)-(iii),

—1 1
1 . - 1 - 1 /1., . 1., . 1., . S~
ﬁwﬁ,iMzﬂl,i = T & — T (fwﬁ,ﬂw) (Twé,ﬂw) (Wé,ﬂu) =>/O Bi,iBy
1. 5 1 /1. ., . 1., .\ '/1
Tngé,iMLixg’iSé = TS2$2 lxz le T (TSZxé,ixlai> <ﬁ$/17i$17i> <T.’E1 Z.’EQ 182)
= Se¥90:Sh+O0p (T7),
1. 1 1 1 /1
T T T\ e T

1 1
= </ BBy ; + AlO,i) - </ BBy ; + AlQ,i) 551520,
0 0

and

1 1
SQ ( .’L‘2 ZMI luz \/ngo’i> = SQ < jIQ i’ELi — \/TEQO,Z'>
1

VT
1., . 1, -\ /1., .
7_T <TSQ$/27i$17Z‘) <ﬁz/l,iz1,i> <T$/171U1>

Consequently, we have

1
- 1 _ 5 1. -
T (ﬁl,i - ﬁ?ﬂ‘) = (ﬁx'“meu) T:v’llezm



and

T VT

1. SN/t
= S <T96'22M11$21> <T M it — \/T220,i)

1. ~ _
*SQ (—$/2,iM17i$27i) \/_ < $2 le 1152 [ 222 z) 2221,1‘22071'

—1
7 * 1 ~ ~ 1 _
VTS, (52,1‘ - 52,i> = S <—$/2,iM1,iIE2,i) —=&h My il — v T2221,i220,i

T

1 _ 1 _
=S¥y, <ﬁx/21“1 - \/T220,i> —S$y%50 VT <T$12,i952,i - Ezz,i) $59%20.i + op (1)
T

=S¥ i <T1/2 > (wirwi, — Ei)) J3,i +op (1)

t=1
= S (22_21,i‘]17i ® J27i) N (0, V;O) =N (O,SQWS/Q) s

where 6;71, = Bg,i + 22_217i2207i’ Jl,i = (Ople,omxpl, 22 z) JQz = (1701><p17*2/20,i22_21,i)a and V; =
(J.i® J2)) VP (J1, @ J5,) . A

Proof of Lemma A.2. (i) Noting that 7} ;i; = 772} ju; — 51,1, it suffices to prove (i) by showing
that (il) P(maxlSiSN% Hx’“ulH > cainT) = O(Nfl) and (i2) P(maxi<;<ny = 7 1Z14%:| > caint) =
o (N~1) for any fixed constant ¢ > 0. Recall that e;; = (ui, €] ;1,5 ;)" Let So and Sy be 1x (14 p1 + pa)
and p1 x (14 p1 + p2) selection matrices such that Spe;r = u; and Sie;r = €144. Noting that zq, =

t—1 T T oo
D ec1Elis 1t and €5 = Ypeir + €41 Whereel, ;= ijl V;j€it—j, we have

T T /t-1

1, 1 1

ﬁaﬁ,iui = EE xl,ituit:ﬁg E €1,s T €13t | Uit
S=

T t—1
= Si1— T3 ZZEZSEMSO +S1=—= T2 Zg”anso
t=1 s=1
| It T t—1
= S = T3 ZsteztwwSo + S1— T3 226”62 150+ S17= T3 Zszteltso
t=1 s=1 t=1 s=1
= b1y + bo; + b3, say. (B.l)

We prove (i1) by showing that N - P (maxi<;<n |bii| > cainr) = 0(1) for any fixed constant ¢ > 0 and
I =1,2,3. For notational simplicity, we assume that p; = 1.

We first study by;. Let z;; = S1 ZS ! €is€hyioSt and Fiy = o (€, €i.4—1,---) , the sigma-field generated
by the series {e;:}. Then by; = T2 thl zit- Noting that E (z;|F;i—1) = 0 by construction, we want
to apply the exponential inequality for martingales (see, e.g., Freedman (1975, Proposition 2.1)). Let
eyt = N?2/9T1/2 We make the following decomposition:

bi = 75 sz t 72 sz 2 ZE [20it|Fi,t—1] = b1i,1 + b1i2 — b3,

t=1

where 215 = zitLit — E [zt Lit| Fip—1] s 22t = zitLit, Lie = 1{|z| < einr}, and 1 = 1 — 1. Tt suffices to
show that N - P (maxi<;<n |b1i1] > cainr) =o0(1) for i =1,2,3.
Let Vir = Zle E [Z%M\]-}t_l] ,ont = N?2/972 and 1, = 1{|zit| < ean7}- Then by the Holder’s and



Jensen’s inequalities and the law of iterated expectations,

t=1

T a T
I SOEIETEN| I W (LEAEm Y
t=1

T T T
Tt ZE 21479 < 22977971 ZE |2i¢|* < CTI Zﬁq <CT*,
t=1 t=1 t=1

IN

where the fourth inequality follows because

t—1 2q t—1 2q
Elzl = E|51 ciscytinS| < CE|Y ew|| Ellex]™ < Cte.
s=1 s=1

t—1

2g
Here we use the independence between e;; and 22;11 gis and the fact that F HZS:l €is < Ct1. [Re-

call that we allow the constant C' to vary across places.] It follows that N 2 maxi<;<n P (Vir > unt) <
N?maxi<i<y vyp E (VEL{Vir > vnr}) = 0 (N?*T?%0%) = o (1) . By Proposition 2.1 in Freedman (1975),

we have
> CG1NT>

> OT?aynt, Vir < UNT)

1 T
ﬁzzlit

t=1

N-.P ( max |by; 1| > calNT> < N? max P(
1<i<N 1<i<N

T
E 214t
t=1

+N? max P (Vir > vnr)
1<i<N

— NZ. _
P ( 2unT + 4cT?ayNTCINT
= o(l)+o(l)=0(1)

IN

N? max P
1<i<N

24 2
c“T*af np

> +o0 (N2T2qv;,qT)

4 2
as T*a2 Ny /oNT = JTVZ}IJ%E =T?N~%1a2 . > (log N and T2a1n7 /cint > (log N)' for some € > 0

by Assumption A.3(iii).

N - P | max |by;2| > cainT < N-P| max max |z;]| > einr
1<i<N 0 1<i<N 1<t<T

N2T 2
< —— - max max F [|z2t\ 1{|z| > ClNT}}
Clljz\fT 1<i<N 1<t<T
_92 _
= o0 (N2Tq+1c1N?F) =o0 (N 2T) =o0(1).
Similarly, we can show that N - P (maxi<;<n |b1;3| > cainr) = o(1). Consequently, we have N -

P (maxlSiSN |b12| 2 calNT) =0 (1) .
To study bs;, we apply the Beveridge-Nelson (BN) decomposition (see, e.g., Lemma 2.1 in Phillips and
Solo (1992)) to obtain

gt =Y; (1) e + €41 — €
oo v i oo Y i e’} t—1
where 9, (1) = Zj:o Yijy €it = P, (L) e = Zj:o V€it—j, and ¢, = Zk:j_t,-l Y. Then D )& =
¥; (1) 02 e + Eio — €41 and Ej’t,l = it — Yo = ¥} (1) ex + & 4—1 — &ir, where ¥ (1) = S ey Wi



It follows that

by =

’ﬂ|»~

T

Z (Z 5%’) €it—1 So

(77/11 )Zeis + €0 — éi,t—l) (7/11 (1) et +€ie—1 — éz’t)/ So
¢

T

=1
Z .e“,.eltwT ) S+ S1 Z (1) Z eis (8it—1 — i) S}
s=1

'ﬂ|,~

|
H|H
HMH HMH)\I

T
1 y . 1 y . . .
+Slﬁ ; (€i0 — €i—1) eétwl (1) )+ Slﬁ ; (8io — Eit—1) (Ei—1 — &it)' S

bai1 + b2i 2 + b2i 3 + b2i 4.

Noting that bg;1 = %Zle 2l and by s = 7z Zt 1Zt where zl, = Sy, (1 ) 1615 el (1) S} and
2h = 81 (G0 — Eir1) bl (1) S satisfy E{zit|fi,t,1} =0and E {zit|fi,t,1} = 0, we can also follow
the analysis of by; and show that N - P (maxi<;<n |b2ii| > cainr) = 0(1) for I =1, 3. It remains to show
that N - P (maxi<i<n |b2i,i| > cainr) = 0 (1) for | = 2,4. For by; 2, we have

T

T—1
1 o o
baio = Slﬁ Z ¥; (1) eis Z (Cii1 — €)' Sh

t=s+1

= Sl T2 Z % 615 els - éiT)l 86

T—1
1 o
= Slﬁ 52:31 ¥; (1) €5€;,5) — S17= T2 Z V; (1) €505y = bai 2 — bai 2.

For bg;,25, we have

N.P <lr<nax |b2i 2] > CG1NT) < N? max P (|by2| > caint)

1<i<N

T—1 a
< N T2 (cainr)~ q1ma}§vE 5121/) ) €is€irSo

s=1

2 1/2
< CN?T72(ca;nr)~? max Yew|| E|Soéir|*
1<i<N

< CON2T2(caynr)"90(T9?) = 0(N2T—3q/2a;3T) =o0(1).



For by; 24, we can make futher decomposition

1 oy
baiga = S19;( Z Qz%oso + 51, (1 ) Z (eiseis — Qi) 105
s=1
| T2 } ,
+Sl1/]z ﬁ Z €is (ézs - "/}ioeis) S(l)
s=1
= bi2a (1) + b2i,2a (2) + b2i,24 (3) .
Apparently, maxi<i<n |b2i 24 (1) < % mMax;<i<N {||511/)- | HS(ﬂZJZOH} Max|<;<N HQH Q Noting
that E (e;s€}, — | Fis—1) = 0, we can apply the Markov and Burkholder’s inequalities to obtaln

N - P<maX |b2i,24 (2)] anlNT> < N? max P (|bgi 24 (2)| > caint)

1<i<N
T-1 , q
< 2m—2q —q ) 0. 9 Qo
> N°T (CalNT) 1I§n%>§VE Sl’(/}z (1) Z:l (elsezs Ql) ’(/}zOSO

< CN?*T~%(cayng) T2 = O(N?*T 3?10 {0) = o(1).

Similarly, noting that E [eis(éis — %ioeis)Lﬁ,S,l] = 0, we can apply the Markov and Burkholder’s in-
equalities (e.g., Hall and Heyde, 1980, p.23) to obtain N - P (maxi<;<n |b2i,24 (3)| > cainr) = o(1).
Consequently, we have N - P(maxi<;<n |b2i 2| > caint) =0(1).
For bg; 4, we make the following decomposition
1 1 &
baj 4 = Slﬁéio (8o — &)’ S — 51@ Z i1 (€i—1 — €it) Sy = baiga — b2iap.

t=1

By the Markov inequality

N-P < max, |b2i 40| > CalNT) < N? 1I<nzag§vP(\b2l 4a| > cainT)
< N?T % (carnr) “E ||S1éi0 (€:0 — &ir) Syl
= O(N?T *a ;) =o0(1).
As in the analysis of by; 2., we can show that N - P (maxi<;<n |b2iap| > cainr) = o(1). Then N -

P (maxi<;<n |b2i,a| > carnr) = 0(1). In sum, we have N - P (maxi<;<n |b2;| > cainr) = 0(1).
For b3;, we make the following decomposition

T oo oo

1

bsi = T—Zzz%ﬁzt i€ %S
1 T o_o B 1 o]
= 97z Z Z Vi ity So + S17 Z > iy len—jeioy — ] w5
t=1 j=1 t=1 j=1
[eS) T oo oo
1 1
+Slﬁ Z Z Z Vijei i€ 1ViSo + Slﬁ Z Z Z Vij€it—i€ 1%V So

t=1 j=11=j+1 t=1 I=1 j=I+1

= b3i1 + b3i2 + b33+ b3 4.



It is easy to show that maxi<;<n |bsi1| < C/T. For bs;; with | = 2,3,4, by tedious calculations we
can show that F (1)37;)4 < CT~5. With this, we can apply the Markov inequality to show that N -
P(maxi<i<n |bsii] > caint) < N*(carnr) * maxi<i<n F |b3i7l|4 =0 (NQT_%I_]?,T) =o(1)forl=2,3,4.
Then N - P(maxi<;<n |bsi| > caint) = 0 (1) for each fixed constant ¢ > 0.

Consequently, we have shown (il).

We now show (i2) P (maX1§z‘§N % |Z1,:3:] > calNT) =0 (N_l) for any fixed constant ¢ > 0. Noting
that by Lemma S1.2 in Su, Shi, and Phillips (2016b, hereafter SSPb),

1<i<

P ( max ;] > cT—1/? (logT)3> =0 (N_l) .

Using ;r = ; (1) €it + &it—1 — Eits

1 T t 1 1 T
= ﬁsﬂlh‘ (1) t:Zl ;62'5 + fslez‘o - ﬁsl tzzleit
C1,i + C2,5 + C3,4, SQY.

As in the analysis of by;, we can show that N - P (maxi<;<n|ci| > caint) = o(1). By the Markov

inequality, we can show that

) 1> 1/2 -3 < 2 ( 50> 3/2 —3>
N P(1r<niz%>§v02’z|ca1NTT (logT) ) < N 1r_<niz%>§vP [1S1€i0l| = arnTT?" (logT)

= N2 (03T (10g 7)) = 0(1).

2q
For c3 ;, we use the fact that £/ HZ;‘;I S1€it < CT? and the Markov inequality to obtain

T
_ 1 . _
N.-P <1r§n%>§v esi] > carntT? (logT) 3) < N? 121%}5\{13 (ﬁ ;Suﬁt > caynrT? (logT) 3)
NQT—4q
< O (T9)

_3\ 24
(calNTT1/2 (log T') )
= O(N%aRg T (log T)*) = o(1).
Consequently, P(maxlSiSN% Z1,:]] > carny7T? (logT)73) = O(N*I). Let 2z = 22:1 S19; (1) e;s.

Then ¢;; = % Zthl zit where E (24| F;—1) = 2 1—1. We can readily follow the analysis of by; and show
that P (max;<;<n |c1,i| > cainr) = o (N71) . It follows that N-P(maxi<;<n |Z1,:| > cainrT? (log )% =



o(1). Then

P L e >
&%M Tt = carve

2 > ol < 71/2 3 > 7-1/2
1r<nlzi>§v ||:E“ul|\ caiNT, max la;,| <T (logT) ) +P <1r<nlzi>§v|u | > T2 (logT)?

IN

IN
/—\ /—\
|/\5

— ||£L‘1Z|| > cayntTY? (logT)~ > Jro(Nfl)

ax
i<N
) o(NTH) =o(NTT).

(ii) Noting that &% ;@l; = 5% ;u;—T2,:1;, it suffices to prove (ii) by showing that (i1) P(max;<;<n |25 ;us
~Sa0,ll > ey *aanr) = 0 (N71) and (i2) P(maxi<i<n 3 |82 > opy’®
constant ¢ > 0, where agyy = T~ Y?(logT)?. (il) follows directly from a modification of the proof of

asNT) =0 (Nfl) for any fixed

Lemma S.1.2 in SSPb. Noting that both x5 ; and u; have zero mean, we can follow SSPb and show

that P (maxlgigN Z2,il| > Cpé/Q

a2NT> =0 (Nfl) and P (maxi<;<n || > caont) = 0 (N*I) , implying

that P (maX1gi§N | Z2,:0:] > ca%NT) =0 (N_l) . Consequently, we have P(max;<;<n H%i’“ﬂl — X204 >
1/2 -1

epy “asnT) =0 (N ) .

(iii) Noting that F (x2 ;) = 0, the proof is analogous to that of (i) and thus omitted.

(iv) Note that 4 T T2 — Yo = % Z;F:l (962,#3?'2,” — 222,2‘) — ig@él Using Lemma S1.2 in SSPb, we
can readily show that P(maxi<;<n ||% Zle (.’Eg,it.’L‘127it — 222’1‘) || > epaaanTt) =0 (N_l) and P(maxi<;<n
|Z2,4]| > cp%/QagNT) =0 (N~') for any ¢ > 0. Thus (iv) follows.

(v) Note that szlﬂ = %5:'11121 — %5:'1@5:2,1-2272172-220,1-. The condition in Assumption A.2(ii)-(iii)
ensures that 5:'2,#2272171-22012- behaves like 4;; despite the possible divergence of py. As a result, part (i) also

holds when 7z} ;@i; is replaced by 7z & ;#2355 ; 520, Then

)

IN

P<max ‘Qi,ilﬁ*

1<i<N

P <1<Z<N H—xz 14| > calNT/2>

+P ( max
1<i<N

o(N_l)—i—o(N_l) zo(N_l).

1,
e el
‘ ﬁxz‘,ﬂngg,izm,i > caint/2

(vi) Note that TQ; z,a+ = =% ; (il — & ;Yo 1 S00,i) = 2 ; (i — 0 D55 D20,:) —Th ; (s — Th ;Y 1 520, -
Since E (ui; — ac’%tE;Ql’iZgo,i) = 0, we can use Lemma S1.2 in SSPb and show that P(max; <i<n || F25 ; (ui—
x'27i22_21’i2207i)|| > cp;/QagNT/2) = o(N71) for any fixed ¢ > 0. In addition, P(max;<;<n ||Z2,|| >
Cpé/QagNT) =0 (Nfl) and P(maxi<;<n ||| > caanr) = O(N*I), from which we can readily show
that P(maxy<;<n || 525 ; (@ — 75,55 Tn0,0)|| = cpy/ *aanr/2) = 0 (N~1) . Then (vi) follows. W

Proof of Lemma A.3. (i) Let v € RP* be an arbitrary vector such that ||v|]| = 1. Let dp =
V2T loglog T. By arguments used in the proof of Lemma 2.1 of Corradi (1999), we can verify the conditions
in Theorem 2 of Eberlein (1986) and obtain

[Tr] T t
1 —1/2- I 172 _ ~1/2 1
—0 = Qs ; —T1,] = —Q is — is
d[T : 11, L1,4,[Tr] d[Tr] 11,5 [xl,%[TT] 21, ] d[T : 11,4 ;61) T t:Zl ;61,
1

= B; (Tr) 4+ 04.5. (1)
Ay



for each r € [0,1]. This result can be strengthened to be hold uniform in r € [0, 1] with djp,) replaced by

dr. Let t = [T'r] and 91112/2 ZLT:TE €1,is = Sirr] = Si,r (1) . Define

i (r) = ([Tr]+1=Tr) Sir (r) + (Tr = [T7r]) Sir41 (r) -

Then sup, o) 2 [Sir (1) = Bi (T0)]| = 0a.e. (1), 8P, cfo 2 l[Si (1) =i (1) | = 0. (1) a5 T — o0,
and the set of norm limit points of {d;lsi;p} and {d;lni,T} coincides with the set of norm limit points of
{d;lBi,T} with probability one. By Theorem 1 in Strassen (1964), the latter is relatively norm compact
with the set of limit points coinciding a.s. with I, where

1 . 2
K= {f :[0,1] = RP*, f(0) =0, f is absolutely continuous, / Hf (T)H dr < 1} .
0

Here f (r) = df () /Vr. First, observe that

1 1
P (hm sup m”ax v’ 111{2 T le a1y 221} = lim sup max d_2 I/o Niq (7)1 (r) drv> =1,

T—oo |lv T 41— T—oo |lv[=1

where 7~71‘,T( ) =T, T fo Uiy )dr.
Now, let ¢, denote the continuous map from the space of p;-dimensional continuous functions on

[0, 1], closed With respect to the sup norm, to the Euclidean space such that ¢, (f) = v’ fo drv
where f (r) fo r) dr. By the Corollary of Theorem 3 in Strassen (1964) with probablhty one
{(ﬁv ( T nl’T)} is relatlvely norm compact with the set of norm limit points coinciding almost surely with
¢, (K). This implies that

1
P (hm sup max diQ / i (r) ﬁi,T( ) drv = sup max ¢, (f)) .

T—oo llvll= ek llvli=1

By the definition of ¢, and K,

sup max ¢, (f) = sup maxv/ f(r Y drv
fex lvl=1 Feklvli=1
1
< supmaxv(/f drf/f r/ f(r)’dr)v
fek llvll=1 0
<

;ggmfﬁ/ </Uf() > 7"<51612”121)1|ax1/1(/0T12d5>/0r(1/f(8))2ds
= ;g%m?—xl/ r(v/ f dsv)drg/olrdr:%,

where the second inequality follows from the Holder’s inequality, and the third follows from the fact that

lrilla_ﬁv’/orf()f()dsv<>\max(/ s )<tr(/ s ds)</01Hf<s>Hst=



for any r € [0,1] and f € K. It follows that

1 1
. 1/2 ~1/2
lim supAmax 111/ T E T1,02 1401 5 -+ c a.s. for any ¢ > 0,
T—o00 T +—1

and
. . —1/2 —-1/2
h;nésip)\max (Td% ; Z1 ztxl,it> = h;nﬁsip)‘max ( 11 { TdQ Z Z1 ltxl thH i Qi z)

IN

. Q-2 -1/
lim supA E T1.43) max A Q114
T_)()Op max 11 i Td2 V1t %114 1<i<N max ( 72)

T =1
1 _
< 5 +c | cq,, as.,

where recall that ¢o,, denotes the upper bound for Amax (211,:) -
(ii) Let v be a py x 1 vector such that [|v]| = 1. By Lemma A.2(iv), with probability 1 —o (N~!) we
have

. . / 12 A
min inf v TQZ i0i,U = min inf (v Yo+ v (TQZ-@Q% - 22271-) v)
1<i<N |lv||=1 1<i<N |v]|=1

inf v'399 01 — [ax ‘T — Mg,
1<1<N||UH7 K3 Ql 122122 7

> — > .
= 1I<nl<IlN >\m1n(222 l) o (1) - 222/2

1 T A ~/ 1 T A ~/ A A
A 7z > g T1a®h 375 2 g T1,itTh ; VvVTQ;
(iii) Note that DrQ; zz D1 = ( TZ Zat=1"LitL1qt 372 Lag=1 Lt 2,7,t> _ ( Qi y 24 Qme) .

T . - T . A
o7 Dormt D2itBh T Doy T2itdh g VTQ, 4z, TQiaas
Let v = (v}, v})" bea (p; + p2)x1 vector such that ||v]| = 1. Then by Lemmas A.2(iii)-(iv) and Assumptions
A.2(i), A.2(iii), and A.3(iv), with probability 1 — o (N71)

min inf v'Drp Drv = min inf (U’A<~~v1+v'A~~~v2+2v'A'~~v2>
1<z<N HUH 1 Qz TT 1§iSNHUH:1 1Qz,zlzl QQl,Izajg 1Q1,1112
> inf (U1Qz #1801 T UQTQz 9@%2”2) -2 maX ’ \% Qz BT
1<’L<N [lv]|=1

> i (O ~ - . .- Y| — ..
z . min [mm Amin (@431 ) )\mln(TQz,waQ)} 212%5\, H\/TQMM
> c1y/(2br).
Then (iii) follows. W
Proof of Lemma A.4. (i) Noting that #z&) ;Ms T, — 7z ;1 = —T (@) ;%) (5T ;T0,)

X (@ ;%1,i), it suffices to show that

1 ., _ 1., . _ -
B i%2,) (8 i2,4) " (75 Th iE1.i)

T(T2 1,2 T

max
1<i<N

is o(1) with probability 1 —o (N ') . This follows because by Lemma A.2(iii)-(iv) and Assumptions A.2(iii)
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and A.3(iv), with probability 1 — o (N~') we have

1, . 1., . _ o~
Tgx/l 13721)(T$/27i$27i) N Thi%1,0)

IN

2 1 —1
T max min Amin | =25 ;%2
1<i<N 1<ien min |\ it

To (p2aiyy) O (1) = o (bz').

1., .
ﬁmmxli

(ii) Noting that a5 ;M1 ;@2 = %2 ;30— Tbr(Fa¥h 71,:) (558 ;#1,:) " (F2F) ;&2,1), the result follows
from Lemmas A.2(iii)-(iv) and Assumption A.2(i) and the fact that Tby(\/paainT)? = O(p2aanT). The
detailed arguments are analogous to those used in the proof of (iii) below.

(iii) Note that £ ;Mo iU} = &) jii; — &1 ;%2,i (3T ;E2,)  ih ;if . By Lemma A.2(v), P(maxi<i<n
IE%: &) ;u*|| > cainr/2) = 0o (N~') . Define the following two events:

1

T2 :El 1x2 i

1., .
Eint = { m1<N Amin <T36'21$2z> > 222/2} and Eont = {1< 2 < p;/QalNT} :

By Lemma A.2(iii)-(iv), P (E;nr) =1 — 0 (N™1) for [ = 1,2. Denote the complement of Eynr as Efyr
for £ =1,2. Then, in view of the fact that [[AB]| < [|A], [|B|| and |[[All,, < [|A] for any two conformable

matrices A and B, we have

-1
p Lo (L N (L
12%\7 T2$17i$27l sz,i@,z T$2,iui

1
. 1., .
[12}131\/ Amin <T$'2,i332,i>} > caint/2, ExnT N E2NT>

sp

>ca1NT/2,>

IN

1
P| max ||=7Z) %2,
1<i<n || T2

+P (Ein7 U ESNr)

sp

1.
< P < max ||—a-
1<i<N ’

> €+ CooPoy 1/2 /4> +o(N7Y)
= o(NT)+o(NT) =o(NT),
where the first equality follows by Lemma A.2(vi) and the fact that pé/ 2a9nT = o(py v %). Consequently,
the result in (iii) follows.
(iv) Note that L My} = L& i — (i 31.)(

Lemma A.2(vi), P(maxi<;<n | I1:]| > cpz/ asnNT/2) =0 (N

—1
|:/\min <%5€'115611>]
sp

and braint = o (1), we can readily apply Lemmas A.2(iii), A.2(v), and A.3(i) to show that P(maxi<;<n
| Lzill > epy*aznr/2) =0 (N-1). W

'%/1 i‘il i)_ (TQxlz z) = Ill I2ia Say. By

1 a*

HI21H < bT Tml [t}

1
T .’132 lez

Proof of Lemma A.5. (i) Noting that B“ Blz = (T—T T, Mgﬂ-iu)il e ;Ms;uy, the result
follows from Lemmas A.4(i) and (iii), and Assumption A.2(i).
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(ii) Noting that
. 1 1
52,@' - ﬂ;,z’ = <_5E/2,1M1,ii2,i> Tjélezﬂ:

Mlz

1, R 1. 1
fxz,iMl,ixZi _222,2 T M“ +2222T

the result follows from Lemma A.4(ii) and (iv) and Assumption A.2(iii).
(iii) Let 8] = ( vV s ! 2.¢)', which is BO ( (1);-, gfi)’ if Y99 ; = 0. Noting that g, = :z/l,itﬁ(l),i +:ﬁ2’itﬁgﬂ- +
Ui = T 087 + 4fy with @f, = Gy — $2,it222,i2207i, we have

(@5, + 25, (85 — B:))?

Nl=
uMﬂ
X

1 T
5—22 = T ;[yzt 6 l'zt} =

T T
1 - o
=T Z (@)* + (B; — B, T Z»’U T3 (87 — By) +2(8] — B anuu
= D1; + Do; + 2D3;, say.

We prove (i) by showing that (i1) P (max<i<n |D1; — 55 5] > €) =0 (N1, (i2) P (maxi<i<n |Das| > €) =
o(N71), and (i3) P (maxi<i<n |Dsi| > €) = o (N~!) for any € > 0. Noting that

.
D1 — X2,

’ﬂ |

~

T
Z Uiy — Ty, thgg 2220, z) — (00, — 202,1‘22_21’@‘220,1')
T

1
—2 -1 o -1
ui)] =T + Y025 (T E Loty 4 — Do2,i | XMoo 1220,

( Eu’bthZt Eoz,z‘) 252, 520,i

Dy + Dlz,Q + D133+ Dy g.

By a simple application of Lemma S1.2 in SSPb, we can show that P (maxi<;<n |D1ie| > €/4) =0 (Nfl)
for ¢ = 1,2. By Lemma A.2(iv) and Assumption A.2(iv), P (maxi<;<n |D1is|>¢€/4) = o(N™!). By
Lemma A.2(ii) and Assumption A.2(iv), P (maxi<;<n |D1i4]| > €/4) =0 (N’l) . It follows that

P (%zgv |D1i — 5§0,4| > e) =o(N71).

For Dy;, we have by the Cauchy-Schwarz inequality

S
S

Dy;

IN

2( (1J,i — By, i) Z 1itTh g 51,1‘ - Blz) +2(85, — Bai) i) Z 2,itZ% ;1 (B3. BQ,i)

= 2Dg;1 +2Dy; 5.

12



With probability 1 — o (N~!), Dy; ;1 is bounded above by

2
0
2T loglogT 121%}5\/ Hﬁl,i B

= o (Tloglog Tb7aiyr) =o(1),

Sp

1,8

max
1<i<N

1 o
272 loglog T ; Tt

by Lemma A.3(i) and part (i) and Assumption A.3(iii). And Da; 2 bounded above by

2

max
1<i<N

= O(p2a§NT) =o(1),
sp

max HBL - 52,i

T
1 S G
_ To itTh ;
1<i<N T pot S H24t

by Lemma A.2(iv), Assumption A.2(iii), and part (ii). It follows that P (maxi<;<n |Dai| >€) =0 (N_l) .
Similarly, with probability 1 — o (N_l) ,

T T
- ~ 1 L.
|Dsi| < i( (1),1' = B1i) Z T1,0tl5 | + | (B2, 52,i)lf leitu;
t=1 t=1

T
1 ok 1 Pk
_T2 g T1,itU;q T E 2,5t Uzt
t=1 t=1

To(braint)o(ainT) + 0(pé/2a2NT)0(pé/2a2NT) =o0(1),

IN

THB?,@‘ *Bl,i

20— P

by Lemma A.2(v)-(iv), parts (i)-(ii), and Assumption A.3(iii). It follows that P (maxi<;<n |Da;| > €) =
0 (N_l) .

Proof of Lemma A.6. (i) Noting that 7@} 4} = 7z} ;i — %5?'112-5?2,2»2272171-220@ it suffices to show
+ Ziil ||7325:'1 2u1|| = Op (T7?) and + Zi:l ||ﬁx1,ix27i227217i2207i”2 = Op (T7?). We only show the
former one as the proof of the latter claim is similar under the side condition ||E2_217i2207i}| < C < o0, which
is ensured by Assumption A.2(ii)-(iii). By equation (B.1) and the Cauchy-Schwarz inequality

1 1 2 N R ,
N Z ﬁ,’fillﬂ‘ﬂz = T2 1 iU + NT? Z ||571,iai||
i=1 = i=1
N 9 N
< ¥ ; (ol R+ 1) + 577 3 v
= 6d; + 6ds + 6ds + 2d4, say.
For d,, we have
| X T t-1
B(d) = + S E| (%= B Zzgwen%so
i=1 t=1 s=1
X T 2 , NI
— . — 2
= w7 ZE > oz| | = v ZZE (22)
=1 t=1 =1 t=1
o NI
< t=0 (T2
; NT4 i=1 tZ:; ( ) 7

13



where z;; = S 3207} el ) satisfies E (24| Fit—1) = 0 and the first inequality follows because we can
show that E( n) < Ct. For dg, we can follow the analysis of by ; in the proof of Lemma A.2 and show
that B(dy) < & SN | E] %l = O(T2). In addition,

1 & 1 & C o X 1 i
2
Bls) = 52 F|Sim Y cusf) < NTQEE{;;W}
C K1l s
< L7l =0(17), and

i=1 t=1

al M2 -2
B(di) = NTQZEnmuuzu NT2 { (ol DB ()} =0 (1),

Where the last equahty follows from the fact that E(u}) < CT~2 and E(\|:E12H4) < OT?. Consequently,
N Zizl E H 7 zl,iqu =0 (T7?) and + Zi:l H =T Zqu = Op (T2) by the Markov inequality.
(ii) Noting that
L 1, 1
T3/2 21 i mxé,iui - T3/2$2 1.732 1222 12201

1 1 P _
= Tz (&4 4 — Xo0,4) — P (T4 ;2 — L22,1) 222171-220,1‘

1 1 _
Fa7s (Tt = Da0.t) = g (20,5024 — $22.4) D5, %206 — T1/2 T, ;Ui
1

T1/2 =575 T2, 1222 :220,i = d1j + do; + da; + da;, say,

it suffices to show + Zfil ldeil® = Op (p2T—2) for £ = 1,2,3,4. We can prove these by the Markov
inequality. Then (ii) follows.
(iii) By the BN decomposition 1 ;s = S1[¢; (1) Zi:l eit+¢;.0—¢;¢] and the Cauchy-Schwarz inequality,

1 & 1 2
NZE)Ql < Nz TQZQUI”J:I”
i=1 =
1 N 1 T t t 2
< T B|m S ()Y en) e (1) S
i=1 t=1 s=1 r—1
1 N 1 T 2
3 B |75 D SillEio — i) (G0 — i) S
i=1 t=1

By straightforward moment calculation, we can bound the first term in the last expression by O (1) and

the second term by O (T~2) . Then + Z . Q1| = Op (1) by the Markov inequality.
(iv) The proof is analogous to that of (i) and thus omitted.

(v) Noting that ) ;M i} = & ;07 — &) ;To,i(Th ;T2,:) " ' & ;uf, we have by Lemmas A.2(ii), A.2(iv),

14



part (iv), and Assumption A.3(iii)

1 1 P 2 & o .
NZ TaiiMeiti| < NZ T30 NTQZ T2 113:21( x%x“) 70,61
i=1 =
1 —1 1 2 N 2
< Op (T*Q) -|-mZax <T5U’21£21> max || — j2l ; xl Zai
sp i=1
< Op (T72) +0p (1) 0p(py*asnT)Op (p2T~2) = Op (T72) . M

: - P L. -1
Proof of Lemma A.7. (i) Note that Qx vy = N:Tz ZZeGO T z-kasz ZzeGO (T i) (T4 iT2,)

X (iézill) Qui, N7 —Q2k,N7. By Lemmas A.2(ii)-(iii), |Q2k,n7[| < T'max;cqo HT2 i o, ZH H (L, 2) 1”Sp
= Top (p2a3yy) = op (1). By the arguments used in Phillips and Moon (1999, Section 4), we can show
that

1 1
Qe = 5 X (] Bl,iBi,i)wp 5 3 s B ([ W) v 'S or )
0 0

S Go 7/6 GO

= N Z S19; ( (1)" S 4+ op (1),

ieGY

where we use the fact that E( [y Wi, Wi{,) = E(f; Wi, W{,) — E(fy Wi fy Wi,) = 31, — I, =
11,, . Thus (i) follows.

(ii) Let E; = 22:1 €is, €1 = eit—% Zf:t €is, and p = 1+p1+ps. Note that &;; = e;;—e; = e;-“t—%Ei7t_1.
We apply the arguments as used in the proof of Theorem 16 in Phillips and Moon (1999, PM hereafter)
and derive the limiting distribution of Vij nr below.”

First, we apply the BN decompositions. Noting that e; = ¢, (1) e;t + €;1—1 — & ¢, we have x1,; =
S1[¥; (1) By + €0 — €;,4) and

Uit — i15/2,1’1;32721,@'220,2’ = [1; (1) it + €it—1 — éi,t]/ [S(l) - 55252{1220,i} = [e;t%‘ (1>/ + é;,tq - é;,t] Siy

where s; = S) — S 271-2201' is a p x 1 vector. It follows that we can write the demeaned versions of x7 ;
0 27224 ) 1,it
/ —1
and wu; — x5 ;495 320, as

- ~ it < - ~ -1 ~r ™
Trie =51 |¥; (1) B + €10 — ei,t} and Wiy — Ty 34 X5 ;2120,i = [eit¢i (1) + &4y — & t} Sis

o 1 T Y] 1 T < _ t Se 1 T
where By = Ejy—5 Y o Eisand &3 = €1 —= > 1 €5 Let Sy = Y e Eis and Siy=85—7 Dot S5 4

15



As in PM (p.1105), we can obtaining the following decomposition,

~ ~ ~/ -1
Vi nT — Be Nt = \/— E E T (Ui — $277jt22271‘220,i) — Bi, N7

i€eGY t:1
a _ T+1
\/N_k > { 251% [ Eiély — (1 - T) Ip+1} ¥ (1) si
ieGY t=1

Z S1 (51 t+1€zt + Z% =,»+17/% =,»> Si — % Z Sl¢i,s+1{b;,s5i

t=1
T
Z Suaty (1) (Bl (1) — Dot (] 1+ Zslezoenw)

~ Nl ’ﬂl

e 1 -~
SISZE,TéZTSl + Tslsalélosl}

:\/_N_k Z {Qir + Riix + Raiv + Rair + Raiv + Rsir + Reir}, say

i€GY
Note that our terms Q; 7 and Ry 1 (¢ = 1,2,...,6) parallel to the corresponding term in PM. There are
three main differences: (1) all variables involved here are time-demeaned versions of those in PM; (2) we
need to center &, around its expectation (1 — L) 1,11 while PM center the non-demeaned version of
E;;&,, around its expectation I,,, 1, and the difference between the two centering terms, namely, _%Ip_i'_l’
enters the bias term Byy yr and reflects the contribution of time-demeaning of random variables in the

regression; (3) the sign Ry, r is negative rather positive. One can verify that Y 07> 2% 4 (o0 =

2 . 7,8
Py (1) 0 (1) + 2020 Yy s p1tis — Pt (1)
Second, we study the asymptotic distribution of N, 1/2 Zier Qi 7. Noting that % Zthl Eqél, =

1 _ 1
7 thl €5, and € = ey — = Eyr, we have

AT wa [ (1%)4%(1)'&

Nk ieGY t 1

zeG°

T
= \/— Z ZSH// Bi—1ey; (1) si Z 12 > S (1) (BB — tI,) $; (1) s

ZGGO i€GY t=1
1 1 & /
t o 2 7 2 St (D leuely — Bl (1) s
ieGy  t=1
- \/— Z {Quir — Qair + Qzir},

i€GY

By direct moment calculations, we can readily show that

| /\

ZQM H 6 (1) 51 = 0 (VNep2/T) = 0 (1)

zGGO zGGO
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2
and HVaT (\/;N—k 2ieq? Q?n‘,T)H = HNL,C Dieqy Var (Q3i,T)H < 7 Dieay EllQaizll” = 0 (p2T72) = 0(1).
Then ﬁ Ziecg Qsi,r = op (1) by the Chebyshev inequality. It follows that

( Z Qi T) = — Z {Var (Q1i,1) + Var (Q2i,r) — Cov (Q1,1, Q2i, 1) — Cov (Qui,r, Q2i,T>I}

zeGO zeGO

Then we study the asymptotic variance by terms. For Qq; 7,

T
Var (Quir) =g D030 B[S0, (1) Bty (1) s sty (1) esnFZ oy, (1) 1]

:58292&519251 + O (T_l) R

where the second equality follows from the fact that {E; ;_1¢},, F;+} is an martingale difference sequence
(m.d.s.), the third equality holds because vec(A; A2 Asz) = (A5 ® Aj)vec(As) with Ay = S19, (1), Ag =
E;i_1€5, and Az = 1, (1)'51-, the fourth equality follows from the fact that vec(ajah) = a2 ® a; and
(a2 ® ay) (a2 ® al)/ = apa), ® a1a, the fifth equality holds because F (eite;-t ® Ei,thz{,t_l) = E (eq€}) ®
E (Ei,t,1E£7t_1) =(t-1) I(14p)2- Similarly, we have for Qq; 7,

Var (Q%,T)
T T
= % Z Z E [517/11' (1) (Ei,th{,T - t) b, (1)/ 54 5277/11' (1) (Ez',sEz/',T - 5) b, (1)/ Si]
t=1 s=1 1 oo
= (shy; (1) ® S1v, (D)7 S°N " Elvec (Bii B p) vee (s Bl g) — tvec (In4y) vee (Ei o)’
t=1 s=1
—svec (E; 1B} ) vec (I1yp)" + tsvec (I14p) vee (I11) |(sia; (1) ® Sy, (1))
T T
= [s;¢; (1) ® S19; (1)]Ti Z Z Elvec (E; +E] 1) vec (Ei,sELT)/ — tsvec (I14,) vec (I14y) ][sih; (1) @ Sy, (1))

o~
Il
_
w
Il
—

e
B
E

=[50, (1) ® Sy, (1)] E((EirE] s+ ® E; 1E; ) — tsvec (I14p) vec (I14p) |[sih; (1) @ Syap; (1))

o~
Il
_
w
Il
—
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and

T T T T

1 1

il >N E(EirEr® EiE],) = = 74 > { (EA8) I1yi1y + ts (Kipp + vee(Ipg1)vec(lpt)' )]
t=1 s=1 t=1 1

1 1
= {gl(lﬂi)z + 1 (Kp+1 + vec(Ipp1)vec(Ipt1) } + O

where K14, is the (p 4+ 1)? x (p + 1)? commutation matrix such that Kj.,vec(A) =vec(4’) for any
(p+1) x (p+ 1) matrix A. It follows that

Var (@air) = (10 (1) 8 Su6; (1) (G me + 7K1a ) (550 (1)@ 814 (1) + 0 (77

For Cov(Qui,1,Q2i,1),

T T
Cov (Qui,r,Q2i7) = % Z Z E [51% (1) Eip—1€i4; (1)/ si sy (1) Ei,sEz{,Tl/Ji (1)/ Sﬂ

t=1 s=1

§|"
] =
] =

= [ty (1) ® S1asy (D] g 337 B {vee (Biarel) vee (EioBly)'} [sie (1) @ S (1))

~
Il
—
w
Il
i

[sib; (1) @ S1e, (1)]

|»~
] =
[M]=

3 E (B r @ Eip 1 Ef ) [sit; (1) @ S1e; (1))

t

e + %Kl+p} [si; (1) @ Sy (D) +0(T71),

Il
_

1s

[sithi (1) @ S1vp; (1)]

— N

where we use the fact that

L LT
EZZE(eltElT@’Em 1B L)
t=1 s=1
| Lot .
e Z B (enlir ® i1 B, T8 Z ZE (eaBir ® Eiy1Ej )
t=1 s=1 t=1 s=t
| Tt
= FZ E(exE; 1 @ Eiy1E; )
t=1 s=1

1KHPJFO (T71).

= _I(1+p)2 + 6
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Thus we have

Var \/ka Z Qir | =7 Z {Var (Qui,r) + Var (Q2i,7) — 2Cov (Qui,7, Qa2i,7)}
ieGY zeGO
1 1
N, Z {6819 $i5192:91 — 5[82% (1) @ S19; (D] K14p[57%; (1) @ S19; (1)]/}
i€eGY
+0 (T

1 1 _

A Z {gngisi&Q Si — (s QS ® S19us) K, 1} +0(T7),
i€eGY

where K, 1 is the p1 X p1 commutation matrix. It follows that Vaur(NI;l/2 ZieGg Qi) — limpy, oo N%@ Ziegg

(3509551957 — 35 (55051 ® S19;5;) Kp, 1] = V(x). This limit contributes to the asymptotic variance of

4
our estimator. In addition, we can verify that Zil E HNI;1/2Q2}TH =0 (N,;l) , which verifies the Lya-
punov condition for the central limit theorem for independent but non-identically distributed (i.n.i.d.)
observations. Consequently, we have shown that Q; 7 = N (0, V() . Third, we study Ry; 1 :

\/_ Z Z 51 (51 tHEzt Z Vs, s+1i2}:, s) S

zeGO lego t=1

1 T-1 o0 , 1

{T Z 51 (Ei,tﬂé;t - Z¢i,s+1¢i,s> Si— T

t=1 s=0
T-1 T T T
T-1 1 1
v/ v/

- g S1&;, AT ;%TSZ' + TSI (T Zlfisf . €ir> Sz}

E {R1im1 — R1ir2 — Riirs + Ruirat -
ieq

>

i€eGY

\/T_k

2
Following PM, we can show that E HN_1/2 ZieG% Ruiim H =0 (pQT*I) . For Ry; 72, we apply the Cauchy-
Schwarz and Markov inequalities

1/2 9y 1/2

Z Ry 12 VNE{ — Z

Sl E Eis
GGO ZGGO

= VN:Op(T7V2)0 (p;/QT*1/2):0p(1),

IN

w X

ZGGD

P

2
where we use the fact -3, o B HSl Iy en|| € 0T Sieatr(51948]) < CT'u(518)) =
o(T ( (1)) . Similarly, we can show that \/—k ZZGG% Ry ¢ = op (1) for £ = 3, 4. Thus we have ﬁ Ziecg Riir
=op .
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Fourth,

m

zeG°

\/_

S

ieGY

T
Z S (1 {&'teét%() Wi oth; (1 }Si — T3 ZZSN% ) Eireis¥; (1)/}

t=1 t=1 s=1

Z {Rdz T1 — Rdz T2}

1€GY

2
It is easy to show that F H]V,;l/2 ZieG% R?’i’TlH =0 (pzT_l), implying that N,;UQ ZiEG% R3im1 =
op (1). As in the analysis of Ry; 72, we can show that Nk_l/2 Ziecg Rs; 12 = Op(v/Nip2/T) = op (1).

Thus N, /? ¥, o Rsir = op (1).

Fifth,

v

\/_

T 1 T T
z{ D 9 SN }

ZGGO t=1

Z {Rair1 — Rair2} -

i€GY

Noting that R4i,T2 = Rgi’Tg, N,;l/Q ZieG% R4i,T2 = Oop (1) For R4i,T1a in view of the fact 5‘1‘0 =

Yoo zzi’sei,,s and {e;;,t > 1} are mutually independent, we can readily show that E (Ry4; 1) = 0 and

Nk Z Ry

where we use the fact that

521/%’ (1), (1)/& =

<

2

!
SiQiSi

2

T

1 y

T > Sizioeiti (1) s
t=1

T2N1C Z ZZE (sih; (1) €isZinS1S1Zi0€,; (1) s4)

1€G0 t=1 s=1

Tsz > Ztr (85051 512i0) E (e, (1) sisiah; (1) eit) ]

ieG) t=1
1
T 2 F (ESiizo) sivy (), (1) 5= 0 (3T 7).
i€GY

S )\max (Qz) S;Sl S 2)\max (Ql) (S()S(l) + 220 1222 15252222 2220 z)

2 max () [1+ Amax (5258) P (Z220)] Sho 1 Za0.1] < Cpo

and E( 1051515,0) < E( 10510) < Cps. Then N,;l/Q ZieGg Ry =Op (pgT_l/Q) and N,;l/Q ZieG% Ryt

=op (1)
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Sixth, we can show that

T
NS Ror = 30T g Stathe - 3 STt - 1S Y4 g S
t=1

i€GY i€GY t=1

_ 1 5 B _
= NGPY SiSirEirsi+op (1) = Ny Y2 ST Rair +op (1), say.

el i€GY
Note that
_ 1 T > /
Nk—1/2 Z Rs; 1 = Nk—l/2 Z TSﬂ/JZ-( ZZE (eiteg,T_r) Y, S
i€GY ieGY t=1r=1
1 T
—1/2 -

= ||V, / Z Tsﬂ/’i( 27/’ T—t5i

ieGY t=1
< NS SIS ), =0 (VNip/T) = o

ieGO r=1

Similarly, we can verify that HVar (Nl;l/2 Zier RMT) H < Nt Ziecg ||Var (R5i,T)H = 0 (p3/T) =
o(1). Tt follows that Ny '/* ¥, o Rsir = op (1).

Last, it is trivial to show HN,;U2 Ziegg R2i,TH = O (V/Nip2/T) = o(1) and HN,;I/2 Ziegg RGi,TH =
Op (VNip2/T) = op (1).

In sum, we have shown Vig nv — Bignr = N (O,V(k)) . This completes the proof of (ii).
(iii) For Vo, N1, we have

1 . _ 1., .
Vo, NT = —\/FT Z 37/1,1‘-732,1'2221,2‘ (Z2O,i - T%ﬂh)
k

i€GY

1 1 - -
= \/_T Z 331 2, 22 i (220 i szz z) + m Z xll,ix2,i2221,ix27iui

i€GY i€GY

1
—1 -1
\/— E Z1 z$2 144224 <Tx27,ul — X20,i \/— E Z1 %372 2499 ;22,ili

zEG’O ZEGO

Vor,NTa + Var,NTo + Vor, NTc + Vor,NTd, say.

. -2 =2 - 2
Noting that 17 e o [Z1ill" = Op (1), 57 Sicay 172,41l = Op (p2T7") , and 5= Yo |2 224" =

1/2

Op (p2) by direct moment calculation and Markov inequality and maxi<,<n ||Z2,|| = op(py’ “aanT) and

maxi<;<n |%;| = op(aanTt) by a simple application of Lemma S.1.2 in Su, Shi and Phillips (2016b, SSPb
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hereafter), we have

1/2

[Vak, Nl < /Ny NkTQ > |k, w2 ?;%,’é”f%“i%’é“ui” 1522 -

i€GY k k

= /NiOp( pg Jop( pg/ asnt)op(asnt) = op (1),
1/2 1/2
1 _ 2 1 / —1

[Vornrell < V/Nie T > Izl 2 172 ma || 7 i = S0 [| Va2l

i€GY k ieGY ECR

= V/NOp(W)Op(pY*T2)op(py *aant) = 0p (1),

and

1/2

<
Var nTall < Nk: N T Z 1214
ZEGO

= /NiTop(psa3ny)op(asnt) = 0p (1).

maXmeH maXHuzll 1522,
i€G

For Vaor N7, it is easy to see that

1/2 1/2

1 2
\/_k NT2 Z Hxllx21H Fk Z

i€GY i€GY

= VNOr (3¥?) 0r (T7/22) 0.1) = Op (/N T)

which is op (1) if we assume that p3Ny/T = o(1). But this is a very strong assumption that we try to

IN

max

[V, N7all max 2ol

avoid. To do this, we can employ the BN decomposition and write z1 ;; = S1 [dJZ (1) 22:1 eis +€.0— éi,t}
and x2¢ = So [; (1) es + €11 — & 4] . Let Bip = 22721,1' (Zgo’i — %xélul) . As in the analysis of Vig N,
we can show that

Vok,NTa = E Ty @a, Bir
s /_NkT K

1€G)

- \/_ Z ZS”/} ) Eieiy; (1) S3Bir + op (1)

1€G) tl

T
= \/}Tk Z {51% (1) ¢ ( 52 T+ Z ezte;t _ Ip) % (1)/ SéBiT

T
1
T > Si (1) Eig el (1) SéBiT} +op (1)
t:1

Z {Rair,1 + RoiT2 + Rair3} +op (1).
i€eGY

\/_

22



Noting that E(Rgir,1) =0 and

1
Var Z Roir1 < = Z |Var (Rair1)|| = Z 1519485 E (Bir Bly) S22, |
vV Nk ZEGO H Nk iEGO N zeGO
1
< 5 2 |EBirBip)ll, [1519:858::51]
F (el
C —
< ¥ L IE@BrBp)|=0@T) =o(),
ieGY,

we have ﬁ Zier Roir1 = op (1) . Next,

9y 1/2 1/2

~ Z |Bir

ZGGO

ZR21T2 < Ny —Z

ieGY ZEGO

vV NkOP(pé/z 71/2)013(1’;/21171/2) =op(1).

ZSW e’btezt p) wi(l)/sé

1

Let Zit = Sﬂ/}l (1) Eii—le;twi (1)/ Sé Then ﬁ ZiEGg R21T73 = \/LN_;Q ZiEG% % Zf:l ZitBiT~ NOtlIlg that
E(zi|F;+—1) = 0, by the Burkholder’s and Holder’s inequalities, for any r > 2,

r T r/2 T r/2
S CE {Z |th||2} S Cl {ZE(lZZt”T)} < C2p7’/22t7‘/2 S Cng/QTr/Q-'rl.
t=1

t=1 t=1

T
FE E Zit
t=1

where C7 and Cy are constants that depend on r. Then by the Holder’s inequality

1 1 1 ||
E miEXG:ngm < mezc;z T ;zzthT
ry 1/r
< ﬁvg%{E } (BB}
ieG)

- ¢ l{ r/2Tr/2+1}1/” 1/20-1/2
= \/MZEZG’%T y2) Y2
< CVNppeT Y7 =0(1).

where % + % =1.
Consequently, we have shown that Vor nv = op (1).
(iv) Following the analysis of Vi, nr below, we can readily show that

e (1, 1, .\ '
V3k,NT = \/FT Z 1'/1)1'1'2,1'222177; (fwlgﬂzz - 222,2') (T$I22$2z> E20,1‘
k

1€GY

1 _
= \/WT D @ wai T <T$'z,¢$2,i - E22,z’> S50 %20,i +0p (1)
ieGY

Vsk.nTa +0p (1).
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Following the analysis of Var n7, we can show that ||V, n7e|| = op (1) by resorting to the BN decompo-
sition, moment calculations, and Chebyshev inequality.

(v) For Vi nr, by the Cauchy-Schwarz inequality and Lemmas A.2(iii)-(iv) and A.6(iv),
Vaenrl < VN T2 Z |2 ﬁzl max

—1
1
~! = —1
mnax (f“’z,ixli _222,1‘
o 1€G)
i€GY sp

VNOp (Y *)Op (prasnt) OP(pg/ asnt) = op (1).

1/2

max

~] ~
Max || 75 i — X20,i
1

k

T

(vi) This follows from (i)-(v). W

Proof of Lemma A.8. Let Vi v, = ﬁ > ieqo ¥1,iM2,i0;. We make the following decomposition

1 -1 .

a _ "/ ~a a

Vk,NT = —\/N_T E Ty 3V — E 551 T 332 T2, z) 3?2 iUs Vlk: NT V2k,NT-
k ieGY i€GY

Noting that vf, = 37 ;55, Vi j€1,6+j, We have

n%athE [( } = m7ax Z Z ’y” 817t+j6/1’t+j) Vig < C’mzax Z H*y”H < CT %,

[71>P2 |1|>P2 [71>Dp2

and

1 T—p2 1 T—p2
—a\2| __ a —211
mlaxE {(vl) } = II%%XE (T_ g vit> < — E mfxxE( vh)? < CT

P2 t=py+1 P2 t=pa+1

Then max; ; £ [(ﬁ;‘t)ﬂ <2max; F [( @) ] +2max; E {(ij)ﬂ < 40T—22. Analogously, we can show that

mpeB(a)"] = Cma | 3 sl ) < 0r
Jjl=p2

It follows that

T—p2 T—p2

a _ 1 L a ; D2
EH‘/1k37NTH - E||\/N_]€Tp2 Z Z T1,itVit S \/N_kTﬁz Z Z EHxlﬂt’U’LtH

i€G) t=p2+1 ieG) t=p2+1
T—p2

< mr L 3 {Blear}  {emry

ieGY t=p2+1

T—p2
< CYNT YD :O(N;/QT*‘”%) = 0(1),
t=pa+1

where we use the fact that max;<;<ny E ||:r17it|\2 < Ct. Then Vi}, yo = op (1) by the Markov inequality.
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Next, noting that H%iézigl - EQQJHSP = op (1) by Lemma A.2(iv) and

2
! ~a / ~a ~a2
IH?XE szﬂ-vi H < mzax E E FE (15271‘3552,%”#“1'5 )

t=1 s=1
T T
< Cmiaxzz {E ||-T2,it||4}1/2 {E (17;115)4}1/2
t=1 s=1
T T
< CY Y peT % = CpT 2,
t=1 s=1
we have
a 1+ 7 !l 5a
Vinell < OP Z 121 2] [ 22,4l 115,69
ZEGO
1+ - —a
S —221 \/EDTQ EZGVO Hxl sz l” HxIQ,iUi H
1/2 1/2
< ¢ (1+0p (1) VN, T2 > &1 2] T2 > a7
lGGO lGGD

— /N:O»p (p§/2) Op (pé/QT—“) - Op (pgN;/QT—a) = op (1).

In sum, we have shown that Vi y, =op (1). R

C Determination of the Number of Groups

In this section, we now propose a BIC-type information criterion to choose K, the number of groups. We
now use K to denote the true number of groups and K a generic number of groups. We assume that the
true number of groups is bounded from above by a finite integer K. and 1 < Ky < Kpyax. By mini-
mizing the objective function in (2.7), we obtain the C-Lasso estimators {é&x (K, A), B1,¢(K7 A), BM(K, A}
of {ak,B;, B2, } where we make the dependence of these estimators on (K, \) explicit. We classify
individual ¢ into group G (K, A) if and only if 3, ;(K,\) = a4 (K, N), i.e

Gu(K N = {i={1,2,..,N}: By ;(K,\) = a(K,\)} for k=1,..K. (C.1)

Let G(K,\) = {G1(K,\),--,Gg(K,\)}. We can define the post-Lasso estimators of oy, as

+
~ post _ ~/ A ~/ .
O (k) = g Y ;Ms T E x4, Ms,ii.
1€G L (K,N) 1€GK(K,N)

~post

B2 . (Gr(K, )\)) is defined as before but now we also make its dependence on Gy (K, \) explicit. Let

~ L~ post - ~post

K ~ ~ -
ék(K,)\) = W Zk:l Zieék(K,)\) Z?:l[uit(k)]27 where U’lt(k) =Yit —T1 ztaG (K,\) .’132 itM2,0 (Gk(K )‘))
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for i € G(K, \). We choose K = K () to minimize the following information criterion:
IO(K, ) =n[6g, )]+ pyrpiK, (C2)

where pyr is a tuning parameter.
Let G%) = (Gg1,...,Gk k) be any K-partition of the set of {1,2,..., N} and Gk is a collection of
- . K T 1~ o~ A P .
such partitions. Let 02G<K) = ﬁ D ket ZiEGK,k Y i Uit — xll,itO‘GK,k — xé,it627i(GK,k)]2, where g, =

~ ~ ~ ~ ~ ~ ~ —1
(e T1,iM2,iT1,) T Yicay , T1iMoii and By (Grp) = (25,72,
GK,k- Define

T ; (Ui — 1,16y, ) for any i €

NY271Y2  in Case 1 where x4t is absent in (2.1) and there is no endogeneity in x1 4,
UNT = T1/2 in Case 2 where x2 ;; is absent in (2.1) and there is endogeneity in 1 ;,
])271/27’1/2 in Case 3 where x2 ;; is present in ( 2.1).
(C.3)
2 _ 1 N T ~2 . _ 1 N T mx\2
Let 05 yr = 57 2_im1 2oi=1 U in Cases 1-2 and = 57 > 2,0, > 75 (@;)” in the Case 3. We can show that
&ék(KW\) — 0'(2),NT =0Op (N_lT_l) , Op (T_l) , and Op (pQT_l) corresponding to the above three cases,
respectively.
We add the following assumption.

Assumption A.5 (i) As (N, T) — oo, mini<g <k, inf g, Gaw) — a° > g, where o = plim(n 7)— oo
Ug,NT'

(ii) As (N,T) — o0, pyr — 0 and pypvip — 0o where vyt is as defined in (C.3).

Assumption A.5(i) guarantees that all under-grouped models yield asymptotic mean square errors that
are larger than o2, which can be obtained from the true model. Assumption A.5(ii) imposes the usual
type of conditions for the consistency of model selection: the penalty coefficient py cannot shrink to zero
either too fast or too slowly.

The following theorem suggests that in large samples we can determine the correct number of groups
by minimizing the information criterion defined in (C.2).

Theorem C.1 Suppose that Assumptions A.1, A.3 and A.5 hold. Suppose that there exists a constant cq
such that mini<j<n X005 > cog > 0. Then P(K’ =Kp) — 1 as (N, T) — oo.

Theorem C.1 indicates that w.p.a.l the use of IC(K,\) in (C.2) determines the correct number of
groups. A natural question is how to choose the tuning parameter py, empirically.

In simulations and applications, we recommend the use of DPLS estimation so that Case 3 applies. We
will choose po = [T'1/4] and set py = $(NT)~1/3. Note that this rate converges to zero much slower than
the usual (NT) 'In (NT)-rate that works in Case 1. One can verify that the conditions in A.5(ii) are
satisfied in this case when N and T diverge to infinity at roughly the same rate. Our simulations suggest
that the choice of pyp has little effect on the results.

Proof of Theorem C.1. Let K = {1,2,..., Kpax} where Kpax > Ko. We divide K into three subsets

Ko, K_ and K} : Ky = {Ko}, Ko ={K e K: K < Ko}, and Ky = {K € £ : K > Ky}. First, using
arguments as used in the proof of Lemma A.5(iii) we can show that

Ko T

. 1 ~ ~ ~ D.pos ~ ~ D, post ~ 2

B = nr s X O [ Fa )~ 2 (Gutro )] = 8 o 1),
k=1 ieék(Ko,A) t=1
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It follows that IC(Ko, \) = In[6% . )]+ pyrp1Ko = Inf6 o(1) £ In(02). We consider the cases

G(K()’A)]

of under- and over-fitted models separately.
Case 1: Under-fitted model (K € K_). Noting that
1 K ) ~ D, post 2
~ ~ ~D,pos os A
TN D D DD I TR U VEE i (V)|
k=1lic G (K,\) t=1
~D A 2
> . ~/ ) ) :| — . . ~2 )
=1 <R, G(fglefg NT Z Z Z [y” & ”a — Fo,it2i(Grck) 1<K 2K, G’(Igleng 76

k= 1’LEGKkt 1

By Assumption 4.2, we demonstrate

. . . P
1<I§1<HK0 IC(K, ) > i, G(};)nefc In(6500) + pyrpK = In(g?) > In(o?).
= K

It follows that P(mingex_ IC(K,\) > IC(Kp,A)) — 1.
Case 2: Over-fitted model (K € ;).

P (Kne%l+ IC(K,\) > IC(K,, A))

_P<Hel%1 VNTln( K,\)/Jg(KO ))+V?VTPNT(K_KO) >0)

=P <KH€1%1+ V?VT( é(}g)\) &2G(KD,A))/UG(K0 A) + V?VT:ONT(K — Ko) +op(1) > O>

—las (N,T) — 0

where min ¢ g+ V%VT(&%(K,A) —62@,(1(07)\)) = 0,(1) by Lemma C.2 below and v%7.pn7 — o0 by Assumption
As. 1l
Lemma C.2 Let 6%7NT = ZZ 1 Zt % Let the conditions in Theorem C.1 hold. Then max, <K<K

2 _
|UG(K,A) — G nrl = Op(vip)-

Proof of Lemma C.2. When K > K, following the proof of Theorem 4.1, we can show that
1Bri = 8Ll = Op(T=1 4+ X), [1Boy = Bl = Op(py/* (T2 + 1)), and £ S, [T, 18Y, — éwll =
Op(brT~1). Noting that B(ii, 1 = 1,..., N, only take K distinct values, the latter implies that the
collection C = {é1,..., &k} contains at least K distinct vectors, say, &1, ..., &k,, such that &, —af =
Op(brT~1) for k =1, ..., Ky. For notational simplicity, we rename the other vectors in the above collection
as &x,+1, .-, k. By the pointwise convergence of Bfi, OKo+1, .-, 0 Must converge in probability to one
of the true values in {af,...,a% }.

We classify i € Gip(K,A) if ||[8y,; — éxl|| = 0 for £ = 1,..., K, and i € Go(K,\) otherwise. Using
arguments like those used in the proof of Theorem 4.3 and that of Lemma S1.14 in SSPb, we can show
that

> P(Egnri) =o(1)and > P(Finr,) =o(1) for k=1,..., Ko. (C.4)
i€GY i€Gr(K,N)
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This implies that
N

D P(i € Go(K,\) UGk, 1(K,\) U ... UGk (K, \) = o(1). (C.5)
i=1
That is, the ‘redundant’ last K — K groups containing empty elements asymptotically. Using the fact
that 1{i € Gy} = 1{i € GO} + 1{i € Gx\GY} — 1{i € G\G}}, we have

K T

. 1 N

UQG(KN ~NT Z Z E [ii¢(K)]* = Dint + Dant — Dsnt + Dan,
k=1ieGy(K,N) t=1

K, T ~ K T ~
where Dint = 77 25l Lieqy 21 [@it(K)]?, Dant = 57 021 Xiecr(wanay 2ot—1 it (K)]?, Dsnr =

NT L Licain G (i) ot it (k)2 and Dant = §7 i sy 11 Sied, Soren it (R)]% By (C-4)-(C.5),
we can readily show that Doyt = op ((NT)fl) for ¢ = 2,3, 4. For D nT, we discuss several cases: (1) When
Z9,i¢ is absent in the cointegrating regression and there is no endogeneity in x; ;;, we can apply the fact &ZOSt,
k=1,..., Ko, converge to their true values at N~-127-1 and show that DlNT_a'%NT =Op (N_lT_l) i (2)
When z, ;; is absent in the cointegrating regression and there is endogeneity in x; ;;, we can apply the fact
dZOSt, k =1,..., Ko, converge to their true values at rate T-' and show that Dinr — 6357 = Op (T‘l) ;
(3) When both x; ;+ and z3; are present, we observe that 3271- converge to their (pseudo) true values at
rate ps/ *T~1/2 and show that Diyr — 02 = Op (pT~) . As a result, we have 6%(1{,)\) =02+ O0p(vyy)

where vy = NY2TY/2 T2 and _7)271/2T1/2 in the above three cases, respectively. This completes the
proof of the lemma. W

D Practical Implementation of the C-Lasso Procedure

In this section, we provide more details on the practical implementation of the C-Lasso procedure in the
followings steps.

1. Initial estimates based on the heterogenous nonstationary panels. Obtain the initial es-
timates BLZ- and BQ,@' from the LS time-series regression of §;; on (‘%Il,ita‘%é,it) . Let Qnr(Bq,8,) =

U - 2 . = A L.
ﬁ Zf\il ||yz - 361,1'51,1' - $2,i52,¢“ ) U? = % Zthl(yit - 52-361‘02, and Q; = % Zthl SCl,z‘tiL’/Mt-
2. Determining the number (K) of groups along with the tuning parameter \. Let
A= {/\ = ch_3/4, cj = cory?! for j =0, ..., J} for some ¢y > 0 and v > 1.
Given any K € {1,2,..., Knax} and A € A, compute IC(K,)) and IC(K(X),\) where K()\) =
()

arg min < g <x,,, JC(K, A) . Choose A € A such that IC(
number of groups is then given by

,A) is minimized. The estimated
K = min K(\).
AEA

Note that the above procedure fine-tunes the tuning parameter A for the determination of the number
of groups and is recommended by Su, Shi, and Phillips (2016a, SSPa hereafter). We find in simulations
cop = 0.025, v = 2, and J = 3 work fairly well for all DGPs under our investigation. If K= 1, stop
here and estimate a homogenous nonstationary panel as usual. Otherwise, move to the next step.
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3. C-Lasso estimation. Given \ and K > 1, solve the PLS problem

QﬁT,A(Bl;BQ’ a) = Qnr(By,82) + %i 2-K H HQh B1i— )H )

Obtain the C-Lasso estimates {dy,} for the group-specific parameters and {Gj,k = 1,..., K} for the
estimated group membership.

4. Post-Lasso estimator with bias correction: Given the estimated groups, {ék, k=1,... K}, we

can obtain the post-Lasso estimators of ay and 3, ; as

—1
Apoqt _ j : ~/ - . A
= ZEl lMQ 1$11 E :ELZ‘MQ,iyi fOI' k = 1,...,K,
i€Gy ieGp

~post ~ - —1 . ~
2; = (gg’wxw) 7 (0 — o aRe ) for i e Gk,

where to remove the bias we apply the dynamic OLS method in the post-Lasso estimation by including
the lags and leads of Az ; into x4+ as in Section 4.4. If x5 ;; only contains the lags and leads of
Az1 4 but no other stationary regressors, we compute the standard errors for the elements of &} ost

as the square roots of the diagonal elements of Nk 3 Q( k)V( k)(@( 5 where

gO,iA g for k= 1,...,f(,

Q) = w5 D #1Mod, and V) = =
k

NiT? .
k ZEGk i€Gy,

and Q:SO ;, and Qllz’ are as defined in Section 4.4. If x5 ;; also contains other stationary covariates,

post

then we can compute the standard errors for the elements of &, as the square roots of the diagonal

elements of Nsz Q(k)V(k)Q(k) where

#0,8:50:8] — — ( 5] @ 519 sz) - 1} 7

$;=S)— Séi;Q{iflgo,i, Ql denotes the HAC estimator of the long-run variance-covariance in §2;, and
222@ and igo,i denote the plug-in estimators of the short-run variance covariance submatrices a3 ;
and Ego,i of Ez

E Additional Simulation Results

In this appendix, we assess the performance of the information criterion (IC) proposed in Section C. We
set pyp = 3(NT)7Y/3 and A = e, T~%/* where ¢\ = 0.025, 0.05, 0.1, or 0.2. We find that the results are
not sensitive to the choice of ¢y and will only report the simulation results for the case where ¢y = 0.1
to save space. Table A.1 displays the empirical probability with which a particular group number from
1 to 6 is selected according to IC based on 500 replications for each DGP. Note that the true number of
groups is 3 for DGPs 1, 2, 3, and 5 and 2 for DGP 4. When T = 40, the probabilities of correct choices
are higher than 95 % in all cases and they reach the unity when 7' = 80. The simulation results show that
our information criterion works fairly well.
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Table A.1: Frequency for selecting K=1, 2,..., 6 groups

N T 1 2 3 4 5 6
DGP1 50 40 0 0 0.992 0.008 0 O
50 80 O 0 1 0 0 0
100 40 O 0 1 0 0 0
100 80 O 0 1 0 0 0
DGP2 50 40 0 0 0966 0.034 0 O
50 80 O 0 0.998 0.002 0 O
100 40 O 0 0982 0018 0 O
100 80 O 0 1 0 0 0
DGP3 50 40 0 0 0988 0.012 0 O
50 80 O 0 1 0 0 0
100 40 O 0 1 0 0 0
100 80 O 0 1 0 0 0
DGP4 50 40 0 0976 0.024 0 0 0
50 80 O 1 0 0 0 0
100 40 0 0.956 0.044 0 0 0
100 80 O 1 0 0 0 0
DGP5 50 40 0 0 0.990 0.010 0 O
50 80 O 0 1 0 0 0
100 40 O 0 098 0014 0 O
100 80 O 0 1 0 0 0

F Additional application results

In this section, we report some additional results for the empirical application

F.1 Information criterion for the quarterly data

Table A.2 reports the information criterion (IC) for the quarterly data with different tuning parameter
values: \ = ¢y x T—3/% where ¢y = 0.025, 0.05, 0.1, and 0.2. Following the majority rule, we decide to
select K = 2 groups for the period 1975.Q1-1998.Q4 and K = 3 groups for the period 1999.Q1-2014.Q2.
Note that the IC is minimized at ¢y = 0.1 and 0.05 for the first and second subsamples, respectively. For
this reason, we choose ¢y = 0.1 and 0.05 for these two subsamples, in the paper.

F.2 Results for the monthly data

In this section we provide the application results for the monthly data.

Table A.3 reports the information criterion (IC) for the monthly data with different tuning parameter
values: X = ¢y x T~3/4 where ¢, = 0.025, 0.05, 0.1, and 0.2. As is evident from Table A.3, for the monthly
data our information criterion tends to choose 2 groups for the first subsample and 3 groups for the second
subsample, too. We set ¢y = 0.05 to report the estimation results in Table A.4 and classification results
in Table A.5.

Comparing the estimation results in Table 4 for the quarterly data with those in Table A.4 for the
monthly data, we find that the estimates for either group in either subsample period of the monthly
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Table A.2: The information criterion for different numbers of groups (quarterly data)

From 1975.Q1-1998.Q4 From 1999.Q1-2014.Q2

K/ex 0.025 0.05 0.10 0.20 0.025 0.05 0.10 0.20

-0.7503 -0.7503  -0.7503  -0.7503 -0.2074  -0.2074  -0.2074  -0.2074
-1.1262 -1.1262 -1.1262 -1.0716 -0.4719  -0.4730  -0.4902  -0.4836
-1.1622  -0.7961 -1.0956  -0.7135 -0.5230 -0.5319 -0.5268 -0.4418
-0.7719 -0.7507  -0.7507  -1.0596 -0.5037  -0.4994  -0.4958  -0.3815
-0.7233 -0.7203  -0.6750  -0.6750 -0.4789  -0.4749  -0.3499  -0.2093
-0.6946 -0.6405 -0.6005  -0.6844  -0.4454  -0.4358  -0.3566  -0.1720

S U W N

Table A.3: The information criterion for different numbers of groups (monthly data)

From 1975-1998 From 1999-2014
K\ca 0.025 0.05 0.10 0.20 0.025 0.05 0.10 0.20
1 -0.8042 -0.8042 -0.8042 -0.8042 -0.1953 -0.1953 -0.1953 -0.1953

-1.0907  -1.0907 -1.0907 -1.0140 -0.4686 -0.4753 -0.4837  -0.4748
-1.1460  -0.8480 -0.8404 -0.8365 -0.5312 -0.5311 -0.5230 -0.3940
-1.0966 -1.0897  -0.8292 -0.9159 -0.5161 -0.5132 -0.5086 -0.3139
-0.9044 -1.0646 -0.9047  -0.7949 -0.5032 -0.4987 -0.3630 -0.2711
-0.8782 -1.0379 -0.7875 -0.7678 -0.4768 -0.4753 -0.3016 -0.2466

D U= W N

data are reasonably close to the corresponding estimates based on the quarterly data. This suggests the
robustness of our results. The countries in bold in Table A.5 suggest good coincidences of the classification
results based on the monthly and quarterly datasets.
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Panel A: From 1975.M1-1998.M12
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Group 2 (N3 = 3)
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Panel B: From 1999.M1-2014.M7

Group 1 (N; = 53)
Angola Argentina Austria Bangladesh Belgium
Botswana Cambodia Canada Costa Rica Denmark
Dominican Egypt Europe Finland France
Germany Ghana Honduras Iceland India
Iran Italy Jamaica Japan Jordan
Luxembourg Malawi Mauritius Mexico Mongolia
Morocco Mozambique  Nepal Netherlands Nigeria
Norway Pakistan Romania Saudi Arabia Sri Lanka
Sudan Sweden Switzerland Tanzania Trinidad and Tobago
Tunisia Turkey Uganda United Kingdom  Ukraine
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Paraguay Poland Portugal Russia Singapore

South Africa
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