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Forecast combinations in machine learning∗

Yue Qiu†, Tian Xie‡, Jun Yu§

May 11, 2020

Abstract

This paper introduces novel methods to combine forecasts made by machine learning
techniques. Machine learning methods have found many successful applications in
predicting the response variable. However, they ignore model uncertainty when the
relationship between the response variable and the predictors is nonlinear. To further
improve the forecasting performance, we propose a general framework to combine
multiple forecasts from machine learning techniques. Simulation studies show that
the proposed machine-learning-based forecast combinations work well. In empiri-
cal applications to forecast key macroeconomic and financial variables, we find that
the proposed methods can produce more accurate forecasts than individual machine
learning techniques and the simple average method, later of which is known as hard
to beat in the literature.

JEL classification: C52, C53
Keywords: Model uncertainty, Machine learning, Nonlinearity, Forecast combina-
tions

1 Introduction

Making reliable forecasts based on data is important in policy-making, business decisions
and many other activities. Machine learning is an automated way of identifying patterns
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in data and using them to make predictions. The success of machine learning in making
predictions relies on its ability to detect a complex structure that may not be realizable
analytically and also on its ability to reduce dimensionality when sparsity exists. It is
essential to note that machine learning does not try to locate the true data generating
process (DGP). Instead, it tries to find functions that can work well out-of-sample. Recent
application of machine learning techniques in economics and finance can be found in
Gu, Kelly, and Xiu (2020), Feng and He (2019) and Coulombe, Leroux, Stevanovic, and
Surprenant (2020). Recent surveys on forecasting using machine learning techniques can
be found in Mullainathan and Spiess (2017) and Xie, Yu, and Zeng (2020).

On the other hand, forecasting based on statistical modeling has a long history; see
Elliott and Timmermann (2016) and Diebold (2017) for the textbook treatments of the
subject. Typically, a statistical model is assumed to be the underlying DGP. Competing
model specifications are used to approximate the DGP and to generate forecasts. By giv-
ing up the assumption that one can successfully specify the DGP and hence acknowledge
model uncertainty, many researchers, pioneered by Barnard (1963), Reid (1968), and Bates
and Granger (1969), have found evidence of great value in combining multiple forecasts
from a set of competing models. That is, averaging forecasts from multiple models leads
to higher accuracy than employing the forecasts from individual models. To a certain de-
gree, the preeminence in forecast combinations suggests “all models are wrong, but some
are useful”, as Box (1976) famously claimed.

Since then, considerable efforts have been made in the literature to investigate various
issues concerning forecast combinations, including the choice of competing models, the
choice of weights, how to estimate weights, whether the simple equal weights should be
used. Methods and applications have appeared both in the Bayesian paradigm and in the
frequentist paradigm. Excellent reviews of forecast combination techniques can be found
in Clemen (1989), Hoeting, Madigan, Raftery, and Volinsky (1999), Timmermann (2006),
Elliott and Timmermann (2016). Many successful applications of forecast combinations to
economics and finance have been found in the literature; see for instance, Rapach, Strauss,
and Zhou (2009), Elliott, Gargano, and Timmermann (2013), and Genre, Kenny, Meyler,
and Timmermann (2013). In the literature, forecast combinations are almost always based
on a set of conventional statistical models. For example, in Rapach et al. (2009) all possi-
ble univariate linear regression models were used. Elliott et al. (2013) employ complete
subset regressions that contain all possible linear regression models with a fixed number
of predictors.

In this paper, we synthesize the forecast combination literature with the machine
learning literature. In particular, we use machine learning techniques to form a set of
competing strategies so as to generate individual forecasts. We then build a weighted
average of the machine learning forecasts to predict the response variable. Our methods
can be regarded as a new ensemble learning approach. It is general as it can be imple-
mented on many machine learning techniques. When the predicted response variable
can be expressed as a weighted average of the historical response variable, a condition
met by many popular machine learning techniques, we propose to choose weights that
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minimize the Mallows-type criteria. We demonstrate the superiority of our proposed
machine-learning-based combinations in Monte Carlo simulations.

In the empirical exercise, we first contrast a list of 31 forecasting strategies including
our proposed methods in forecasting the inflation rates, the GDP growth rates, and the
unemployment rates in the euro area. The recent literature on macroeconomic forecasts
pays increasing attention to the significance of model uncertainty as well as to machine
learning, separately but not jointly. Wieland, Cwik, Müller, Schmidt, and Wolters (2012)
discovered considerable model uncertainty in macroeconomic modeling after the global
financial crisis. They demonstrated the merits of adopting multiple modeling approaches
as opposed to relying on one single model. Coulombe et al. (2020) studied the bene-
fits of adopting machine learning methods over standard macroeconometric methods in
macroeconomic forecasting. Our simulation and empirical results uncover that many ma-
chine learning methods can beat linear econometric methods in out-of-sample analyses
but individual machine learning methods may not outperform the combined forecasts
based on linear econometric methods. More importantly, we find that combining fore-
casts based on machine learning methods significantly improves on many rival strategies,
including linear econometric methods, combining forecast based on linear econometric
methods, and individual machine learning methods. We also apply our methods to fore-
cast the 3-month Treasury bill rate as an additional financial application. The results
keep demonstrating the advantage of the proposed forecast combination machine learn-
ing methods. In general, our empirical results provide an answer to the question posed
in the title of Genre et al. (2013) – can anything beat the simple average? We answer that
our proposed methods beat the simple average and do so by a wide margin.

The rest of the paper is organized as follows. Section 2 reviews existing methods,
including conventional forecasting methods based on statistical models, forecast combi-
nations applied to conventional models, and some well-known machine learning meth-
ods. Section 3 introduces our new combination machine learning methods, including the
simple averaging machine learning method and the Mallows-type averaging machine
learning method. We check the performance of the proposed methods using simulated
data in Section 4. Section 5 presents two empirical applications to forecast three major
macroeconomic variables in the euro zone and a key financial variable in the US. Sec-
tion 6 concludes. The appendix provides additional details on derivation of a projection
matrix for the least squares (LS) support vector regression (LSSVR), the data polishing
procedure for the empirical study and the construction of the candidate model set. It also
reports the empirical results under a tainted candidate model set and under alternative
values of tuning parameters. An online appendix contains a review of penalized regres-
sion methods, more details on tree-type machine learning methods, a detailed description
of the estimation procedure of LSSVR. It also presents a complete set of outcomes for ver-
ifying nonlinearity between the response variable and the 30 predictors. Supplementary
results in the empirical study are also reported in the online appendix.
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2 A review of existing methods

Let xit be a set of p predictors (or explanatory variables) for i = 1, ..., p and t = 1, ..., T.
Let yt be a univariate response variable. Consider a data sample of {yt, X t}T

t=1, where
X t = [1, x1t, ..., xpt]>. In the literature on predictive regressions, the response variable
can be the return rate rt+1 at time t + 1. In this case, the predictors {xit}T

t=1, such as the
dividend-price ratio and the earning-price ratio, may be used to obtain one-step-ahead
forecast of yT+1. In the survey-based forecast, {xit} is the forecast of the ith forecaster sur-
veyed. Before we introduce the new methods, we briefly review some existing forecasting
methods.

2.1 Least squares and penalized regressions

When the relationship between yt and X t is linear, that is

yt = X>t β + εt, (1)

assuming XT+h is known at time t. The h-period-ahead forecast of yT+h, denoted by ŷT+h,
can be written as

ŷT+h = β̂0 +
p

∑
i=1

β̂ixi,T+h = X>T+h β̂, (2)

where β̂ = [β̂0, β̂1, ..., β̂p]> is an estimate of β. If β is estimated by LS from the data, then

β̂
LS

= (X>X)−1X>y, where X = [X1, ..., XT]
> and y = [y1, ..., yT]

>.

When the number of predictors p is large and a significant subset of predictors is not
that useful in predicting the response variable, the LS method does not perform well out-
of-sample. In this case, a penalized LS regression may be employed to select predictors so
as to improve predictive performance. The penalized LS regression belongs to a family of
methods, including the ridge regression, the least absolute shrinkage selective operator
(LASSO), and the elastic net. A detailed description of the above three methods can be
found in Section 1.1 of the online appendix.

2.2 Forecast combinations

Forecast combinations can be cast as a model averaging problem where the quantity of
interest is the out-of-sample value of a response variable. Model averaging techniques
are designed to combat model uncertainty by obtaining a weighted average of estimates
of interest from a set of candidate models. Many studies have investigated issues such as
the choice of candidate models and weights.
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Regarding the choice of weights, many schemes have been proposed. For example,
Bates and Granger (1969) suggested to select the weights to be inversely related to es-
timated forecast error variances. Buckland, Burnham, and Augustin (1997) advocated
choosing the weights using the Akaike Information Criteria (AIC) of all competing mod-
els. Somewhat surprisingly, an empirically highly successful strategy is the simple av-
eraging method, which assigns each candidate model an equal weight; see Rapach et al.
(2009) and Elliott et al. (2013).1

In recent years, several model averaging methods, all based on LS estimates of com-
peting linear models, have been proposed. For example, Hansen (2007) proposed the
Mallows model averaging (MMA) method and Hansen (2008) showed that the MMA
weights are asymptotically mean-squared-forecast-error optimal in the i.i.d. framework.
Xie (2015) put forward the prediction model averaging (PMA) method and showed that
the PMA weights are asymptotically mean-squared optimal in the i.i.d. framework. Zhao,
Zhang, and Gao (2016) further extended the PMA method to allow for heteroskedastic er-
ror terms (HPMA).

The model averaging problem can be formulated as follows. Consider a sequence of
candidate models for m = 1, ..., M such that y = X(m)β(m) + ε(m) = µ(m) + ε(m). The
predictors in candidate model m form the T × p(m) matrix X(m), which is a subset of X
with p(m) ≤ (p + 1). Let the vector of weights be in the following unit simplex:

H ≡
{

w ∈ [0, 1]M :
M

∑
m=1

w(m) = 1

}
. (3)

The PMA method estimates w by

ŵ = arg min
w∈H

‖y− P(w)y‖2 + 2σ̂2(w)p(w),

where P(w) ≡ ∑M
m=1 w(m)P(m) with P(m) being the projection matrix of X(m), p(w) ≡

∑M
m=1 w(m)p(m) is the effective number of parameters, and σ̂2(w) = ‖y− P(w)y‖2 /(n−

p(w)) is the averaged variance. The prediction of yT+h by PMA is X>T+h β̂(ŵ), where

β̂(ŵ) =
M

∑
m=1

ŵ(m)Γ(m)β̂(m),

with Γ(m) = (X>X)−1X>X(m) being a (p + 1) × p(m) binary matrix. Γ(m) stretches the
p(m) × 1 dimensional LS estimates β̂(m) to a dimension of k× 1 by adding zeros.

The PMA method assumes homoskedastic errors. When the error terms exhibit het-
1In the Bayesian paradigm, the weights are the posterior distributions of the competing models, a by-

product of the Bayesian model averaging.
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eroskedasticity, we can adopt the heteroskedastic PMA (HPMA) by Zhao et al. (2016). In
this case, the weight vector can be estimated by

ŵ = arg min
w∈H

‖y− P(w)y‖2 + 2
T

∑
t=1

ε̂t(w)2Ptt(w),

where ε̂t(w) is the tth element of ε̂(w) = y−P(w)y and Ptt(w) is the tth diagonal element
of P(w).

Regarding the choice of candidate models, Elliott et al. (2013) proposed the complete
subset regression (CSR) that combines forecasts from all possible linear regression models
with a fixed number of predictors (say q). The weights assigned to all subset regression
models are identical. If the total number of predictors is p, the total number of candidate
models is Cp

q and the weight for each model is 1/Cp
q . If Cp

q is too large to handle, it is
recommended by Genre et al. (2013) to randomly pick an acceptable number of candidate
models instead.

When surveys of professional forecasters are available, forecast combination becomes
a standard procedure to aggregate private information available to individual forecast-
ers. In this case, a common practice is to take a simple average to combine survey-based
forecasts and there is no need to estimate coefficients. Such a forecast is hard to beat as
shown by Genre et al. (2013). As our empirical example is also based on survey-based
forecasts, it is natural to use the simple averaging method as the benchmark.

2.3 Nonlinear machine learning methods

Methods discussed above rely on the linear formulation as in Equation (1). If the linear
restriction is relaxed, we have

yt = f (X t) + εt, (4)

where the function f (·) can be nonlinear or even nonparametric. Machine learning tech-
niques do not try to find a consistent estimator of f (·) from data. Instead they try to
search a function, which may or may not be analytically available, to approximate f (·) so
that it generates sound predictions for yt.

In this section, we first review the tree-type machine learning methods. The building
block is regression tree (RT) proposed by Breiman, Friedman, and Stone (1984). Starting
from the original data (the root node), all possible binary splits of the values for each pre-
dictor are considered and a “best split” is determined by certain criterion, for example,
the reduction in the sum of squared residuals (SSR). Such a partitioning process can be
implemented iteratively until it reaches a pre-determined boundary. Many modeling pa-
rameters need to be decided or calculated ex ante.2 Data in the terminal nodes (also called

2These so-called tuning parameters, or hyperparameter, include but are not limited to a splitting crite-
rion function, stopping rules, etc.

6



tree leaves) are considered to be homogeneous, hence a simple average of all the data yl
within the tree leaf l is used as the fitted value. To make predictions based on XT+h, we
simply drop XT+h down the tree and end up in a specific tree leaf l. The corresponding
prediction, ŷT+h, is measured by the sample average of yl for yl ∈ y.

We can apply the bootstrap aggregation (bagging) technique developed in Breiman
(1996) to RT. Using the original sample {yt, X t}T

t=1, the bagging RT (BAG) method first

generates B bootstrap samples {y(b)t , X(b)
t }T

t=1 for b = 1, ..., B, where the value of B must
be predetermined. Next we apply RT to each bootstrap sample and obtain the prediction
ŷ(b)T+h based on XT+h. The final forecast by the BAG method is the simple average of all the

B forecasts ŷT+h = 1
B ∑B

b=1 ŷ(b)T+h. The variance of BAG forecasts can be large owing to the
high correlation among trees. Such an issue can be circumvented by random forest (RF)
of Breiman (2001). RF also constructs B new trees by bootstrapping, in which a random
sample (without replacement) of q (q < p) predictors is taken for each splitting procedure
within each tree. In this way, the trees for RF are less correlated and the final RF forecast
is still the simple average of forecasts from all the constructed trees. There are many other
tree-type methods worth mentioning. Section 1.2 of the online appendix reviews some
other popular tree-type methods.

The tree-type methods search for heterogeneity within data set and categorize their
features by the tree leaves. Another popular machine learning method that responds to
local features of data is the support vector regression (SVR) proposed by Drucker, Burges,
Kaufman, Smola, and Vapnik (1996). The SVR framework approximates f (X t) in terms
of a set of basis functions {hs(·)}S

s=1:

yt = f (X t) + εt =
S

∑
s=1

βshs(X t) + εt, (5)

where hs(·) is implicit and can be infinite-dimensional. Following Hastie, Tibshirani, and
Friedman (2009, Chapter 12), the intercept is ignored for simplicity. The coefficients β =
[β1, · · · , βS]

> are estimated through the minimization of

H(β) =
T

∑
t=1

Ve (yt − f (X t)) + λ
S

∑
s=1

β2
s , (6)

where the loss function

Ve(r) =
{

0 if |r| < e
|r| − e otherwise

is called an e-insensitive error measure that ignores errors of size less than e. As part of
the loss function Ve, the parameter e is usually decided beforehand. On the other hand, λ
is a more traditional regularization parameter that can be estimated by cross-validation.

Suykens and Vandewalle (1999) made a modification to SVR which leads to solving a
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set of linear equations under a squared loss function. The above method, known as the
LSSVR, considers minimizing

H(β) =
T

∑
t=1

(yt − f (X t))
2 + λ

S

∑
s=1

β2
s , (7)

where a squared loss function replaces Ve(·) for the LSSVR.

We form up Lagrangian equations for (6) and (7) and solve for optimal solutions. The
estimation functions for SVR and LSSVR take the following forms

SVR : f̂ (x) =
T

∑
t=1

(α̂∗t − α̂′t)K(x, X t), (8)

LSSVR : f̂ (x) =
T

∑
t=1

α̂tK(x, X t), (9)

for any given input variable x. {α̂∗t }T
t=1 and {α̂′t}T

t=1 are the estimated Lagrangian multi-
pliers for SVR,3 {α̂t}T

t=1 are the estimated Lagrangian multipliers for LSSVR, and K(·, ·)
is the predetermined kernel function. See Section 1.3 of the online appendix for a more
comprehensive description of the estimation procedure.

As Equations (8) and (9) indicate, no explicit forms of the basis functions are de-
manded in the estimation procedure. It is the kernel function that plays a crucial role
in the estimation process. In this paper, we consider the following kernel functions

Linear : K(x, X t) = x>X t,

Gaussian : K(x, X t) = exp
(
−‖x− X t‖2

2σ2
x

)
,

Polynomial : K(x, X t) = (γ + x>X t)
d,

where σ2
x , γ, and d are hyperparameters. We denote the SVR, LSSVR with linear, Gaus-

sian, polynomial kernels as SVRL, SVRG, SVRP, LSSVRL, LSSVRG, and LSSVRP, respec-
tively. Note that SVRL follows the linear formulation as in (1), and the corresponding
basis function is explicit. This also occurs to LSSVRL. In fact, the LSSVR with a linear
kernel is identical to the ridge regression discussed in the online appendix.

3 Note that additional Lagrangian multipliers are required for SVR estimation, since the absolute values
in Ve(·) can be reformulated into two linear expressions.

8



3 Combing forecasts by machine learning methods

Most of the machine learning methods covered in Section 2 do not account for model
specification uncertainty, which can be dangerously arrogant in practice. In an unsta-
ble forecasting environment, it is hard to believe that a single machine learning strategy4

always generates the best forecast. In this paper, we apply the concept of forecast com-
bination to outcomes from machine learning strategies. The proposed combinations of
machine learning can be regarded as an ensemble learning algorithm.

3.1 Simple averaging machine learning

The simple averaging machine learning method assigns an equal weight to selected ma-
chine learning strategies. We denote this approach as simple averaging machine learning
(SAML), which is general and applicable to any machine learning strategy. Suppose we
have a set of M forecasts, each of which is generated by a candidate strategy. Denote
ŷT+h(m) the h-step-ahead forecast of yT+h based on the mth strategy. Then the simple
averaging combination forecast of yT+h is

ŷSA
T+h =

1
M

M

∑
m=1

ŷT+h(m), (10)

where the superscript “SA” is short for simple averaging. For example, if we focus on
LSSVR with the Gaussian kernel, a representative candidate strategy with all the included
predictors can be implemented to produce one of the forecasts. Then the simple average
of all the forecasts from a full combination of predictors can be used as the combined
forecast of the response variable in this case. Clearly, this method requires all candidate
strategies can generate reasonable forecasts. However, if a subset of candidate strategies
generates poor forecasts, simple averaging may fail to deliver satisfactory out-of-sample
performance. This idea is demonstrated in the simulation and in the empirical applica-
tion. See Section 4 and Appendix D for further details.

3.2 Mallows-type averaging machine learning

In practice, more dynamic model weights sometimes generate more robust forecasting
results than simple averaging. If we focus on machine learning techniques that meet
the following condition, the weights can be obtained by minimizing the Mallows-type
criteria. This type of ensemble learning is denoted as Mallows-type averaging machine
learning (MAML).

4In this paper, machine learning strategies can represent various model specifications under one or many
machine learning methods.
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Condition 1 Given the formulation as in (4), the prediction based on predictors x must
obey the following formulation

f̂ (x) = P(x, X)y, (11)

where y and X are the matrices of response variables and predictors, respectively, and the
form of P(x, X) is explicit.

Condition 1 requires that predictions based on x are a weighted average of y with
the weights depending on x and X in a possibly nonlinear manner. It can be shown that
many machine learning methods satisfy this condition. A more thorough discussion is
provided in Section 3.3.

Let us assume that the mth candidate strategy implies the following relationship be-
tween yt and X(m)

t

yt = f (X(m)
t ) + ε

(m)
t ,

where the p(m)× 1 vector X(m)
t is a subset of X t that includes the corresponding variables,

and the superscript (m) indicates variables associated with the mth strategy. Let X(m) be

the matrix of X(m)
t for all t. We define f̂ (X(m)) = f̂ (m) = P(m)y as the prediction of y by

the mth candidate strategy, where P(m) = P(X(m), X(m)) is explicit for all m = 1, ..., M.
Let the weight vector w ∈ H, where the set H is defined in (3). The weighted average
prediction is given by

f̂ (w) =
M

∑
m=1

w(m) f̂ (m) = P(w)y,

where P(w) = ∑M
m=1 w(m)P(m).

Inspired by the works of Hansen (2007), Hansen (2008), Xie (2015), Zhao et al. (2016)
and Ullah and Wang (2013), we propose to estimate the weight vector w by minimizing
either of the following Mallows-type criteria, with the restriction of w ∈ H and various
assumptions on the error term:

C1(w) = ‖y− P(w)y‖2 + 2σ̂2(w)
T

∑
t=1

Ptt(w), (12)

C2(w) = ‖y− P(w)y‖2 + 2
T

∑
t=1

ε̂t(w)2Ptt(w), (13)

where Ptt(w) is the tth diagonal term in P(w). Note that C1 assumes homoskedasticity
and C2 considers heteroskedasticity. Define the averaged residual by

ε̂(w) =
M

∑
m=1

w(m)ε̂
(m) = (I − P(w))y.

10



Criterion C1 incorporates the variance of the averaged error term

σ̂2(w) = ‖y− P(w)y‖2/T,

whereas C2 acknowledges heteroskedasticity by considering the square of each element
in the averaged residual vector, similar to HPMA. Estimating w by C1 or C2 is a convex
optimization process. Once ŵ is obtained, the combination forecast of yT+h is

ŷMA
T+h =

M

∑
m=1

ŵ(m)ŷT+h(m), (14)

where the superscript “MA” is the abbreviation for Mallows-type averaging.

3.3 Condition 1 for machine learning methods

In this section, we discuss how several machine learning methods satisfy Condition 1
and demonstrate their representations of P(x, X). The discussion starts with RT. To make
predictions based on x, we simply drop x down the constructed tree and end up with a
specific tree leaf yl with Tl observations. The related prediction is then measured by the
simple average of all observations within yl. Since yl is a subset of y, it is obvious that the
prediction based on x obeys

f̂ (x) = PRT(x, X)y,

where PRT(x, X) is a 1× T sparse vector with elements of 1/Tl and zero otherwise, cor-
responding to their counterparts in yl. To conduct Mallows-type averaging on RT, we
first construct the T × T matrix PRT

(m) for each candidate strategy m, where the tth row of

PRT
(m) is PRT(X(m)

t , X). We then apply the collection of {PRT
(m)}

M
m=1 to C1 or C2 respectively,

and compute for w through the convex optimization. The combined forecast with the
estimated w is denoted as RTMA. Similarly, RTSA indicates the simple averaging RT.

Since RT satisfies Condition 1, it is straightforward to demonstrate that all the other
tree-type methods in the online appendix satisfy Condition 1, which include BAG and RF
algorithms. Note that P(x, X) may not be sparse for ensemble tree methods since they
incorporate trees based on multiple generated samples. In this paper, we also consider
the combined forecasts based on Mallows-type averaged BAG and RF as representatives
of tree-type ensemble methods, which are termed BAGMA and RFMA, respectively.

It is conventional for forecasts from regression trees to follow a local constant model
that assumes homogeneity in outcomes within each terminal leave. Lehrer and Xie (2018)
proposed strategies undertaking model averaging within tree leaves to generate forecasts.
By permitting model uncertainty within each leaf subgroup, richer forms of heteroge-
neous relationships between input and output variables are allowed. Their methods focus
on model uncertainty at the level of local leaves, while our Mallows-type averaging tree
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methods consider specification uncertainty globally across all the candidate strategies.
To avoid notational confusion, we denote their model averaging BAG and RF methods as
MAB and MARF, respectively.

The last considered method that satisfies Condition 1 is LSSVR. Suppose H be the T× r
implicit basis matrix where r > T.5 The coefficient β can be estimated by minimizing the
following penalized LS criterion

H(β) = ‖y− Hβ‖2 + λ‖β‖2.

The solution, β̂, should satisfy −H>(y− H β̂) + λβ̂ = 0 and the in-sample prediction is
given by

f̂ (X) = H β̂ =
(

HH> + λIT

)−1
HH>y ≡ PLSSVR(X)y, (15)

where IT is a T × T identity matrix and

PLSSVR(X) ≡
(

HH> + λIT

)−1
HH> (16)

is a T × T matrix. Note that the T × T matrix HH> is the kernel matrix with elements
being K(X t, X t′) ≡ ∑S

s=1 hs(X t)hs(X t′) for different t and t′. Equation (15) implies that
although the basis matrix is implicit, we can still make predictions since the kernel ma-
trix is explicit. Note that the above derivation is based on the no-intercept assumption
following Hastie et al. (2009, Chapter 12). If an intercept must be included in the model,
Equation (15) still holds but with a more complicated form of PLSSVR(X). See Appendix
A for a detailed discussion.

The Mallows-type averaging LSSVR is conducted in a similar fashion as RTMA. We
first construct the T × T matrix PLSSVR

(m) for each candidate strategy m, and then apply the

collection of {PLSSVR
(m) }M

m=1 to C1 or C2 and compute for w through the convex optimiza-
tion separately. The combined forecast based on Mallows-type averaging LSSVR with
Gaussian and polynomial kernels are denoted as LSSVRMA

G and LSSVRMA
P , respectively.

4 Monte Carlo simulations

To evaluate how the proposed machine learning-based combination methods work, we
first conduct a Monte Carlo simulation experiment. We design the experiment to study

5 In this paper, we consider Gaussian and polynomial kernels for LSSVR. With a linear kernel, the LSSVR
method also follows the linear formulation, which is equivalent to the ridge regression discussed in the
online appendix 1.1. In the linear case, the basis matrix is explicit and identical to X, where we cannot
impose r > T.
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the forecasting performance of the proposed methods and compare them with conven-
tional methods with and without combination, as well as with machine learning methods
without considering combination.

Inspired by Lehrer and Xie (2018), the response variable is generated from the true
DGP:

yt = sin(x1t) + cos(x2t) + εt for t = 1, ..., T + 1.

We assume that we have access to a set of p predictors X t = [x1t, x2t, ..., xpt]> and hence
p − 2 of them are redundant. The exact identification of p − 2 redundant variables is
unknown to us. Suppose all the {xit}

p
i=1 follow xit ∼ i.i.d.N(0, 4) for i = 1, ..., p and the

error term εt follows

εt ∼
{

N(0, 1) under homoskedasticity,
N(0, 0.05x2

1t + 0.01) under heteroskedasticity.

We generate the data for t = 1, ..., T + 1 and use T periods of the sample as the training
set. Finally, the forecasts of yT+1 are made based on the test set of XT+1.

We consider the following methods for forecasting yT+1: (1) simple averaging forecast
by using {xi,T+1}

p
i=1 to predict yT+1; (2) LS; (3) LASSO; (4) CSR; (5) RT; (6) BAG; (7) RF;

(8) SVRL; (9) SVRG; (10) LSSVRG; (11) RTSA; (12) BAGSA; (13) RFSA; (14) LSSVRSA
G ; (15)

RTMA; (16) BAGMA; (17) RFMA; (18) LSSVRMA
G .

In this experiment, we set p = 4. Other values of p have been tried and the results
remain the same qualitatively. The situations of homoskedastic and heteroskedastic error
terms are also verified, and the hyperparameters are set to their default values.6 These
include and are not limited to:

1. We include all the subset regressions with two non-constant predictors for CSR;

2. The penalty coefficient is set to one for LASSO, SVRL, SVRG, LSSVRG, and LSSVRMA
G ;

3. All the tree-type methods follow the settings (i) the minimum leaf size is one and
(ii) the maximum number for splits is T − 1;

4. The learning cycles are assumed to be 100 for all ensemble methods;

5. The number of selected predictors is set at bp/3c for all RF-type methods;

6. σx = 1 for the Gaussian kernel;

7. Candidate model sets are constructed by a full combination of all the included pre-
dictors.

6When setting the hyperparameters to some extreme values, the machine learning techniques can some-
times be surpassed by LS. However, the SAML and MAML methods always outperform their machine
learning counterpart under the same values of hyperparameters.
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For each method, the number of replications is set to B = 1000 and a list of forecasts
ŷ(b)T+1 are compared with the actual y(b)T+1 for b = 1, ..., B. The forecasting performance is
assessed by the following two criteria:

MSFE =
1
B

B

∑
b=1

e2
(b),

MAFE =
1
B

B

∑
b=1
|e(b)|,

where e(b) = y(b)T+1 − ŷ(b)T+1 is the forecast error in the bth simulation.

Table 1 reports simulation results for T = 50 with the best result under each criterion
in boldface. The first column reports alternative forecasting strategies, whereas Columns
2-3 and 4-5 correspond to the results under homoskedasticity and heteroskedasticity, re-
spectively. We distinguish each MAML method with C1(w) from that with C2(w) using
subscripts 1 and 2.

Table 1: Simulation results for T = 50
Method Homoskedasticity Heteroskedasticity

MSFE MAFE MSFE MAFE
Benchmark 2.6843 1.3093 2.1737 1.1590
LS 2.1197 1.1677 1.5706 0.9793
LASSO 2.0018 1.1412 1.4905 0.9749
CSR 1.9919 1.1372 1.4730 0.9616
RT 2.2895 1.2023 1.4109 0.8924
BAG 1.5912 1.0063 1.0061 0.7568
RF 1.5954 1.0088 1.0259 0.7702
SVRL 2.2128 1.1908 1.6641 0.9966
SVRG 1.9019 1.1099 1.3680 0.9241
LSSVRG 1.6232 1.0228 1.0652 0.7887
RTSA 1.6223 1.0169 1.0272 0.7772
BAGSA 1.5420 0.9946 0.9871 0.7631
RFSA 1.6076 1.0176 1.0777 0.8069
LSSVRSA

G 1.5673 1.0065 1.0411 0.7911
RTMA

1 1.7403 1.0517 1.0875 0.7942
RTMA

2 1.7649 1.0588 1.1014 0.7988
BAGMA

1 1.5201 0.9828 0.9119 0.7147
BAGMA

2 1.5249 0.9816 0.9110 0.7165
RFMA

1 1.5200 0.9834 0.9148 0.7225
RFMA

2 1.5215 0.9834 0.9164 0.7218
LSSVRMA

G1 1.5161 0.9832 0.8499 0.6803
LSSVRMA

G2 1.5203 0.9844 0.8705 0.6909

Several remarkable findings are worth stressing. The benchmark simple averaging
method yields the lowest forecasting accuracy regardless of the formulation of error terms.
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Overall, LASSO and SVRs also have poor performance. CSR performs better than LS in all
cases, although the improvement is quite marginal. The performance of RT is disappoint-
ing under homoskedasticity. In contrast, its performance is improved dramatically under
heteroskedasticity. Other machine learning methods have in general higher forecast ac-
curacy than conventional strategies. Most importantly, we find out that the Mallows-type
averaging methods (RTMA, BAGMA, RFMA, and LSSVRMA

G ) always improve on their base
methods (RT, BAG, RF, and LSSVRG) in terms of yielding lower MSFE and MAFE. Under
both homoskedasticity and heteroskedasticity, LSSVRMA

G1 gains the best forecast accuracy
according to MSFE, although its heteroskedasticity-robust version, LSSVRMA

G2 , manifests
a fairly close performance.

On the other hand, all the SAML methods have less impressive performance. This
finding is not surprising since the set of candidate strategies is constructed from the full
combination of all the included predictors without any screening. Obviously, strategies
that incorporate only the irrelevant predictors, tend to generate unsatisfactory forecasts.
As a result, the impact of poor forecasts does not diminish due to the use of equal weights
in SAML.

We extend the above exercise by considering a more dynamic setting with expand-
ing training sample sizes of T = 50, 100, ..., 500. The outcomes are plotted in Figure 1, in
which subplots (a) to (d) imply the MSFE under homoskedasticity, the MAFE under ho-
moskedasticity, the MSFE under heteroskedasticity, and the MAFE under heteroskedas-
ticity, respectively. To avoid the figure being cluttered, we only present the results by LS,
LSSVRG, LSSVRSA

G1, and LSSVRMA
G1 , which are captured by dotted, dash-dotted, dashed,

and solid lines, respectively. For presentation convenience, we standardize all results by
the risk of LS. The horizontal axis represents the sample size and the vertical axis stands
for the estimated relative risk.

The pattern in Figure 1 is consistent. The results by LS are surely fixed at one for
all T since it is the benchmark. The results by LSSVRG, LSSVRSA

G1, and LSSVRMA
G1 are

downward sloping indicating that their gains relative to LS strengthen as T increases.
LSSVRSA

G1 has mixed performance relative to LSSVRG. In contrast, the line of LSSVRMA
G1

is always below LSSVRG in each subplot, which implies the advantage of LSSVRMA
G1 as

opposed to LSSVRG. We also notice that the relative risks by LSSVRMA
G1 are lower under

heteroskedasticity than those under homoskedasticity.

It is also interesting to further investigate the improvement of MAML over its base
method. The comparison between LSSVRMA

G1 and LSSVRG is taken as an example, with
the computed improvement ratio (IR) via

IR =
rLSSVRG − rLSSVRMA

G1

rLSSVRMA
G1

× 100%,

where rLSSVRG and rLSSVRMA
G1

define the respective risks by LSSVRG and LSSVRMA
G1 . Results

for T = 50, ..., 500 are depicted in Figure 2. Subplots (a) to (d) correspond to the same cases
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Figure 1: Simulation results by various sample sizes
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(b) MAFE under Homoskedasticity
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(c) MSFE under Heteroskedasticity

100 200 300 400 500

Training Sample Size

0.6

0.7

0.8

0.9

1

1.1

R
is

k

(d) MAFE under Heteroskedasticity

demonstrated in Figure 1. The horizontal axis represents the training sample size and the
vertical axis stands for the estimated improvement ratio. The results also confirm that the
improvement is more significant under heteroskedasticity for both prediction criteria.

5 Empirical applications

To illustrate the usefulness of the proposed methods, we now compare their performance
with that of many existing methods using real data. Empirical applications to both macroe-
conomic variables and financial variables are considered. In particular, we consider fore-
casting three macroeconomic variables, inflation rates, real GDP growth rates, unemploy-
ment rates, and a financial variable, 3-month Treasury bill rate, based on surveys of pro-
fessional forecasters. All four rates are essential to policy-makers and economic agents.

16



Figure 2: Improvement ratio by Mallows-type averaging
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(b) MAFE under Homoskedasticity
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(c) MSFE under Heteroskedasticity
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(d) MAFE under Heteroskedasticity

5.1 Data

When the Euro was launched in January 1999, the European Central Bank (ECB) started
a Survey of Professional Forecasters (SPF) and collected the forecasters’ views on future
inflation rates, real GDP growth rates, and unemployment rates in the euro area. Genre
et al. (2013) showed that a simple equally weighted pooling of forecasts performs well in
practice relative to many alternative approaches, including those with estimated weights
and the penalized LS.

In the following exercises, we first consider utilizing the forward-looking information
from SPF, denoted as

{
x1t, ..., xpt

}
, to forecast the following three macroeconomic vari-

ables for the eurozone: (1) the inflation rate measured by the harmonized index of con-
sumer prices (HICP); (2) the real GDP growth rate; (3) the unemployment rate. The raw
data source from the official website.7 From 1999Q1 to 2018Q4, the SPF collects one-year-
ahead (h = 4) and two-year-ahead (h = 8) quarterly predictions of the above indicators
from 119 different forecasters. However, an initial data cleaning is necessary since a spe-
cific forecaster may or may not submit a survey response each time throughout the whole

7http://www.ecb.europa.eu/stats/prices/indic/forecast/html/index.en.html
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period. In the end, it boils down to 30 qualified forecasters for each indicator. There-
fore, p = 30 and we use these 30 predictors to forecast each of the three macroeconomic
variables. The detailed data polishing procedure is described in Appendix B. Note that
our sample period extends that in Genre et al. (2013). Each forecaster may have his own
private information to assist him in forecasting the three macroeconomic indicators.

As a financial application, we conduct a similar forecasting exercise on the 3-month
Treasury bill nominal rate using the U.S. SPF data from the Federal Reserve Bank of
Philadelphia.8 The data span from 1992Q1 to 2019Q4 for one-year-ahead forecasts (h = 4)
only. The same data polishing procedure leads to 21 qualified forecasters for predicting
the Treasury bill rate. See Appendix B for complete details of data polishing.

We collect actual values of the considered indicators published by the officials.9 The
out-of-sample accuracy of each strategy is determined by comparing the actual values of
the response variable with the forecasted values.

5.2 Nonlinearity

To motivate the implementation of machine learning methods and our proposed meth-
ods, it is helpful to first show that the assumption of a linear and additive relationship
between yt and X t = [x1t, ..., xpt]> is too strong. The demonstration of a nonlinear rela-
tionship can explain the ineffectiveness of linear models. To do so, it would be ideal to
consider a fully nonparametric function that relates yt to X t. However, if the hypothet-
ical relationship was imposed, one would face the curse of dimensionality for any non-
parametric method because of the overwhelming 30 predictors. Therefore, we instead
consider a partially linear model as

yt = Z>1tβ + g(Z2t) + εt, (17)

where Z1t is a k× 1 vector, β is the associated k× 1 coefficient vector, Z2t is a q× 1 vector
(i.e., q = p− k), g(·) is an infeasible, possibly nonlinear function, and εt is the error term.

To contain the curse of dimensionality, a small q must be used. Following Li and
Racine (2007), an infeasible estimator of β by the LS method is described by

β̃ =

(
T

∑
t=1

Z̃1tZ̃
T
1t

)−1 T

∑
t=1

Z̃1tỹt, (18)

where Z̃1t = Z1t −E(Z1t|Z2t) and ỹt = yt −E(yt|Z2t).

8https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-
forecasters

9 The European data can be downloaded from https://sdw.ecb.europa.eu/, while the U.S. data source
from https://fred.stlouisfed.org/.
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In practice, the conditional expectations in (18) can be consistently estimated using the
kernel method:

ŷt ≡ Ê(yt|Z2t) = T−1
T

∑
j=1

ytKh(Z2t, Z2j)
/

f̂ (Z2t),

Ẑ1t ≡ Ê(Z1t|Z2t) = T−1
T

∑
j=1

Z1jKh(Z2t, Z2j)
/

f̂ (Z2t),

where f̂ (Z2t) = T−1 ∑T
j=1 Kh(Z2t, Z2j), Kh(Z2t, Z2j) = ∏

q
s=1 h−1

s k
(

Z2ts−Z2js
hs

)
with k(·) be-

ing the kernel function and hs being the bandwidth for the sth element in Z2t.

The presence of the random denominator f̂ (Z2t) can cause some technical difficulties
when deriving the asymptotic distribution of the feasible estimator β. We consider a
simple approach that trims out observations for which the denominator is small and such
a feasible estimator of β is defined by

β̂ =

(
T

∑
t=1

(Z1t − Ẑ1t)(Z1t − Ẑ1t)
>
)−1 T

∑
t=1

(Z1t − Ẑ1t)(yt − ŷt)It

(
f̂ (Z2t) ≥ b

)
, (19)

where It(·) is an indicator function that equals one if the input argument is true and zero
otherwise. The trimming parameter b = bn > 0 and satisfies bn → 0 asymptotically. Once
β̂ is obtained and the condition Z2t = z holds, the nonparametric components can be
estimated consistently through

ĝ(z) =
∑T

j=1(yt − Z>1t β̂)Kh(z, Z2t)

∑T
j=1 Kh(z, Z2t)

. (20)

In the following exercise, we concentrate on predicting the one-year-ahead HICP in-
flation (h = 4) as an example. We first obtain the top 3 forecasters (denoted as forecasts
1 to 3, respectively) based on RF, and then estimate the nonparametric components of
various partially linear models. We use the Gaussian kernel with the optimal bandwidth
ĥz = 1.06σ̂zT−1/(q+4) for each component of Z2t. Two possible scenarios are examined:
(i) we choose one of the top 3 forecasters (i.e. q = 1) as the input variable for the non-
parametric function; and (ii) we consider a full combination from any two of the top 3
forecasters (i.e. q = 2) as the predictors for the nonparametric function to generate a
surface plot for each model. The complete results that verify nonlinearity and interactive
effects for all the 30 predictors are presented in Section 2 of the online appendix.

The estimated g(Z2t) is plotted in Figure 3. The first and second columns of the sub-
plots demonstrate the results in scenario (i) and (ii), respectively. Each subplot in the first
column suggests that the relationship between the output and the single predictor is ob-
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viously nonlinear, while the subplots in the second column further sustain the finding
of nonlinearity with some additional interactive effects uncovered between the two pre-
dictors. The above exercise points out clearly that it is inadequate to use a linear model,
at least for our sample. This finding calls for the use of nonlinear methods such as the
machine learning algorithms or our proposed methods. Nevertheless, we still include
several conventional econometric methods assuming a linear relationship, as our refer-
ence methods for comparison.

Figure 3: Estimated nonparametric components by top 3 forecasters
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5.3 Empirical results: macroeconomic indicators

In this section, we conduct one-year-ahead (h = 4) and two-year-ahead (h = 8) forecast-
ing exercises for the three macroeconomic indicators using the data described in Section
5.1. We compare 31 forecasting methods fully described in Table 2. Principal tuning pa-
rameters and model settings for the machine learning techniques are10:

1. λ = 0.5 for LASSO, RIDGE, EN, SVRs, LSSVRs;

2. α = 0.5 for EN;

3. Candidate model sets for the PMA and HPMA estimators are constructed by HEMS
and HRMS, respectively;

4. We randomly pick 1000 models for CSR methods;

5. All the tree-type methods, with the exception of M5P-type, follow the settings (i)
the minimum leaf size is one and (ii) the maximum number of splits is T − 1;

6. The minimum leaf size for the M5P-type algorithms is set at 5;

7. The number of learning cycles is set to B = 100 for all the ensemble methods;

8. The number of selected predictors is set to bp/3c for all the RF-type methods;

9. σ2
x = 10 for the Gaussian kernel;

10. d = 10, p = 3 for the polynomial kernel;

11. Candidate model sets are constructed following the generalized model screening
(GMS) methodology for forecast combination machine learning algorithms.

One popular approach to constructing the candidate model set is to use a full combi-
nation of all p predictors, which leads to 1,073,741,824 candidate models in our exercise.
Inspired by Xie (2017), we construct the candidate model set by the GMS method, which is
a forward iterative procedure adding one predictor at a time according to pre-determined
criteria. The generated post-screened model set is nested in sequence. See Appendix C
for more details about the GMS method. Other hyperparameters not mentioned above
follow conventional settings by defaults.

The window length is set to 40. The 31 companion methods are evaluated by MSFE,
MAFE, SDFE, and Pseudo-R2. The comparison results for the one-year-ahead (h = 4) and
two-year-ahead (h = 8) HICP inflation rates are reported in Tables 3 and 4, respectively.
Table 5 and 6 demonstrate the results for the real GDP growth, while the findings about

10We also consider alternative settings of tuning parameters. The results are qualitatively intact. See
Appendix E for details.
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Table 2: List of strategies
Method Detailed description
Panel A: Benchmark and LS
Benchmark The equal weight pooling method recommended in Genre et al. (2013).
LS Unrestricted ordinary least squares estimator.

Panel B: Penalized regression
LASSO The least absolute shrinkage selective operator by Tibshirani (1996).
RIDGE The ridge regression.
EN The elastic net method by Zou and Hastie (2005).

Panel C: Model averaging
PMA The prediction model averaging method by Xie (2015).
HPMA The heteroskedasticity PMA method by Zhao et al. (2016).
CSR15 The complete subset regression method by Elliott et al. (2013) with 15 selected predictors.
CSR20 The complete subset regression method by Elliott et al. (2013) with 20 selected predictors.

Panel D: Classic machine learning
RT The regression tree method by Breiman et al. (1984).
BAG The baggging tree method by Breiman (1996).
RF The random forest method by Breiman (2001).
LSB The LS RT boosting in Hastie et al. (2009, Chapter 10).
SVRL The support vector regression by Drucker et al. (1996) with linear kernel.
SVRG The support vector regression by Drucker et al. (1996) with Gaussian kernel.
SVRP The support vector regression by Drucker et al. (1996) with polynomial kernel.

Panel E: Advanced machine learning
RTM5P The M5’ algorithm of Wang and Witten (1997) applied to RT.
BAGM5P The M5’ algorithm of Wang and Witten (1997) applied to BAG.
RFM5P The M5’ algorithm of Wang and Witten (1997) applied to RF.
LSSVRG The LS SVR method by Suykens and Vandewalle (1999) with Gaussian kernel.
LSSVRP The LS SVR method by Suykens and Vandewalle (1999) with polynomial kernel.

Panel F: Localized model averaging
MAB The model averaging tree leaf method applied to BAG by Lehrer and Xie (2018).
MARF The model averaging tree leaf method applied to RF by Lehrer and Xie (2018).

Panel G: Simple averaging machine learning (SAML)∗

BAGSA The simple averaging BAG method discussed in Section 3.
RFSA The simple averaging RF method discussed in Section 3.
LSSVRSA

G The simple averaging LSSVR method with Gaussian kernel discussed in Section 3.

Panel H: Mallows-type averaging machine learning (MAML)∗
RTMA The Mallows-type averaging RT method discussed in Section 3.
BAGMA The Mallows-type averaging BAG method discussed in Section 3.
RFMA The Mallows-type averaging RF method discussed in Section 3.
LSSVRMA

G The Mallows-type averaging LSSVR method with Gaussian kernel discussed in Section 3.
LSSVRMA

P The Mallows-type averaging LSSVR method with polynomial kernel discussed in Section 3.

* Note that each method in this panel are estimated under homoskedastic and heteroskedastic error terms, which are denoted by
subscripts 1 and 2, respectively. The candidate model sets are also constructed using the GMS method under homoskedastic and
heteroskedastic error terms, respectively.
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the unemployment rate are contained in Tables 7 and 8.11 In all cases, the best results are
presented in boldface. Some poor-performing methods are omitted to conserve space. A
more complete comparison of all the methods in Table 2 is reported in Section 3 of the
online appendix.

To examine if the improvement in forecast accuracy is significant, we perform the
Giacomini-White (GW) test of the null hypothesis that the column method performs
equally well as the row method in terms of absolute forecast errors. For simplicity, we
only present the comparison outcomes between selective methods that yield the lowest
MSFE in their separate panels of Table 2. The corresponding p-values are presented in
Tables 9 to 14, respectively.

Some findings are worth mentioning. First, although some penalized regression and
model averaging methods yield lower MSFEs than the benchmark, the improvement is
not statistically significant, which coincides with the findings in Genre et al. (2013).

Second, some classic machine learning methods yield better results than the bench-
mark. This spells the importance of nonlinear and interactive effects. Moreover, advanced
machine learning methods have an overall improved performance over the classic ma-
chine learning methods under the same hyperparameters parameters. It is also interest-
ing to see that LSSVRG dominates the benchmark significantly at the 5% level in certain
cases.

It is also noticeable that all the averaging methods beat their non-averaging counter-
parts. This signifies the importance of acknowledging model uncertainty in practice even
with machine learning estimators. It is worth performing averaging estimation instead of
relying on a single model.

Finally and most importantly, almost all the forecast combination machine learning
methods (both SAML and MAML) outperform the benchmark, and many of these meth-
ods surpass the benchmark at the 5% level. The best method for predicting the HICP
and the GDP growth is LSSVRSA

G2, while the best method for forecasting the unemploy-
ment rate is BAGMA

1 . The above results sustain the superiority of the proposed machine-
learning-based combination.

It is also informative to contrast the performance of SAML with that of MAML. Since
the candidate model sets are screened and selected by GMS, it is reasonable to assume
that each candidate model generates acceptable forecasts. Therefore, it is not a surprise
that many SAML methods yield fair forecast accuracy. To examine their sensitivity to
various candidate model sets, we construct a “tainted” candidate model set which incor-
porates many poorly performing candidate models. The related outcomes in Appendix
D reveal that the SAML methods are sensitive to the choice of the candidate model set,

11It is apparent from our exercise that the real GDP growth is the most difficult to forecast especially
for h = 4. Lahiri and Sheng (2010) provide explanations on why the real GDP growth is more difficult to
predict than the inflation rate.
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while the MAML methods are less affected. Therefore, to apply the computationally effi-
cient SAML methods in practice, it is necessary to first employ a reliable model screening
technique. To examine the sensitivity to tuning parameters, we use alternative values of
tuning parameters and present the results for forecasting one-year ahead HICP (h = 4) as
an example in Appendix E. It is shown that the results are not sensitive to the choice of
tuning parameters.

To further illustrate the forecast accuracy improvement by combining machine learn-
ing methods, we plot the forecasts of the benchmark and the best performing forecast
combination machine learning method against the actual data in Figure 4. Subplots (a) to
(f) depict one-year-ahead (h = 4) and two-year-ahead (h = 8) results of the HICP inflation
rate, the real GDP growth rate, and the unemployment rate, respectively. It is clear that
combining machine learning methods has better performance relative to the benchmark.
For each subplot, the forecasts by the benchmark are fairly smooth and fail to capture
the large fluctuations around 2012. This problem is more severe for the two-year-ahead
forecasts. On the other hand, the combined machine learning forecasts are capable of
capturing most of the movements.

5.4 Empirical results: the 3-month Treasury bill rate

In this section, we replicate our analysis to forecast the 3-month Treasury bill rate using
the U.S. SPF data described in Section 5.1. Strategies are identical to those listed in Table
2 with the exception of CSR20. CSR20 is replaced with CSR10, since we only have 21 valid
predictors (qualified forecasters) for this application. The window length is set to 40.
Principal tuning parameters and model settings are identical to those listed in Section 5.3.

Results from the forecasting analysis are presented in Table 15 and selected results of
the GW test are shown in Table 16. A more detailed comparison of all methods is re-
ported in Section 3 of the online appendix. The results keep demonstrating the significant
gains by using the proposed forecast combination machine learning methods. Figure 5
shows a closer trace between the actual data and the line of the best performing forecast
combination machine learning method.

6 Conclusion

Forecast combinations based on linear models have found a wide range of applications
in economics and finance with the presence of model uncertainty. More recently, machine
learning techniques start enjoying remarkable out-of-sample gains due to their ability at
capturing a nonlinear relationship between the response variable and the predictor.

When model uncertainty and nonlinearity occurs at the same time, it is expected that
forecast combinations based on machine learning techniques shall be able to improve on
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the performance of individual machine learning techniques. The same conclusion also
applies to combined forecasts of linear models. In this paper, we provide novel methods
to combine machine learning forecasts. A straightforward way is to take a simple aver-
age of machine learning forecasts, where an equal weight is assigned to forecasts from
a set of candidate machine learning strategies. In this case, there is no need to estimate
the weights and therefore it is easy to implement. Moreover, it applies to any machine
learning method. When all candidate machine learning strategies are reasonable in terms
of generating a fair forecast, the method is expected to work well.

It is shown that the predictions with specific predictors can be expressed as a weighted
average of historical response variables. The above condition is satisfied by many popular
machine learning methods, including RT, Bagging, RF, and LSSVR. We also propose to use
a weighted average machine learning forecasts with the weights estimated by minimizing
Mallows-type criteria.

The advantage of the proposed methods is demonstrated using both simulated and
real data. We consider a forecasting analysis of three major macroeconomic variables and
a key financial variable, that is, the inflation rate, the real GDP growth, the unemployment
rate for the euro area and the 3-month Treasury bill rate in the US. Not only do we find
evidence of the outstanding performance of the proposed methods, but we also answer
the question posed in the title of Genre et al. (2013) – can anything beat the simple average
(the benchmark in our exercise)? Our answer is that our proposed methods not only beat
the simple average but also do so by a wide margin.
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Figure 4: A comparison of forecasts for three macroeconomic indicators
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(b) HICP Inflation (h=8)
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Figure 5: A comparison of forecasts for the 3-month Treasury bill rate
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Table 3: Out-of-sample comparison of methods for forecasting the HICP inflation (h = 4)
Method MSFE MAFE SDFE Pseudo R2

Benchmark 0.6533 0.7076 0.8083 0.1393
EN 0.7869 0.7486 0.8871 -0.0366
CSR15 0.6716 0.6859 0.8195 0.1152
BAG 0.6000 0.6642 0.7746 0.2096
RF 0.5621 0.6497 0.7497 0.2596
LSSVRG 0.4840 0.6004 0.6957 0.3625
BAGSA

1 0.4655 0.5510 0.6823 0.3867
BAGSA

2 0.4607 0.5743 0.6788 0.3931
RFSA

1 0.4677 0.5624 0.6839 0.3839
RFSA

2 0.4656 0.5633 0.6823 0.3867
LSSVRSA

G1 0.3767 0.5316 0.6138 0.5037
LSSVRSA

G2 0.3816 0.5301 0.6177 0.4974
BAGMA

1 0.4386 0.5247 0.6623 0.4222
BAGMA

2 0.4751 0.5803 0.6893 0.3741
RFMA

1 0.4529 0.5447 0.6730 0.4033
RFMA

2 0.4748 0.5568 0.6891 0.3745
LSSVRMA

G1 0.4505 0.5840 0.6712 0.4065
LSSVRMA

G2 0.4451 0.5804 0.6672 0.4136

This table reports the out-of-sample results for predicting the one-year-ahead
HICP inflation rate using various methods. The best result under each crite-
rion is highlighted in boldface.

Table 4: Out-of-sample comparison of methods for forecasting the HICP inflation (h = 8)
Method MSFE MAFE SDFE Pseudo R2

Benchmark 0.9991 0.8408 0.9996 -0.2134
EN 0.8559 0.7294 0.9251 -0.0394
CSR15 0.9730 0.7737 0.9864 -0.1817
BAG 0.7900 0.6969 0.8888 0.0405
RF 0.7620 0.7005 0.8729 0.0746
LSSVRG 0.7122 0.6940 0.8439 0.1350
BAGSA

1 0.6234 0.6189 0.7895 0.2429
BAGSA

2 0.5821 0.5806 0.7630 0.2930
RFSA

1 0.5749 0.6033 0.7582 0.3018
RFSA

2 0.6967 0.6514 0.8347 0.1539
LSSVRSA

G1 0.5915 0.6389 0.7691 0.2817
LSSVRSA

G2 0.5321 0.6005 0.7294 0.3538
BAGMA

1 0.6573 0.6253 0.8107 0.2018
BAGMA

2 0.6462 0.6194 0.8039 0.2152
RFMA

1 0.5647 0.5983 0.7514 0.3142
RFMA

2 0.7069 0.6593 0.8408 0.1415
LSSVRMA

G1 0.6989 0.6888 0.8360 0.1511
LSSVRMA

G2 0.6687 0.6755 0.8177 0.1879

This table reports the out-of-sample results for predicting the two-year-ahead
HICP inflation rate using various methods. The best result under each crite-
rion is highlighted in boldface.
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Table 5: Out-of-sample comparison for forecasting the real GDP growth rate (h = 4)
Method MSFE MAFE SDFE Pseudo R2

Benchmark 2.0836 1.1793 1.4435 -0.6455
EN 3.0558 1.3987 1.7481 -1.4132
CSR15 14.5770 2.2942 3.8180 -10.5118
BAG 2.5869 1.3132 1.6084 -1.0430
RF 2.1886 1.2589 1.4794 -0.7284
LSSVRG 1.3094 0.9447 1.1443 -0.0340
BAGSA

1 2.6007 1.2955 1.6127 -1.0538
BAGSA

2 2.8628 1.3730 1.6920 -1.2608
RFSA

1 2.3190 1.2817 1.5228 -0.8314
RFSA

2 2.6005 1.3299 1.6126 -1.0537
LSSVRSA

G1 1.2622 0.9119 1.1235 0.0032
LSSVRSA

G2 1.1624 0.8693 1.0781 0.0821
BAGMA

1 2.4408 1.3007 1.5623 -0.9276
BAGMA

2 2.4648 1.3356 1.5700 -0.9465
RFMA

1 2.0742 1.2536 1.4402 -0.6380
RFMA

2 2.3252 1.3397 1.5249 -0.8363
LSSVRMA

G1 1.2687 0.9191 1.1264 -0.0019
LSSVRMA

G2 1.2496 0.8891 1.1179 0.0132

This table reports the out-of-sample results for predicting the one-year-ahead
real GDP growth rate using various methods. The best result under each crite-
rion is highlighted in boldface.

Table 6: Out-of-sample comparison for forecasting the real GDP growth rate (h = 8)
Method MSFE MAFE SDFE Pseudo R2

Benchmark 1.6051 0.9789 1.2669 -0.2110
EN 1.3928 0.9298 1.1802 -0.0508
CSR15 3.7323 1.4609 1.9319 -1.8159
BAG 1.2910 0.8247 1.1362 0.0260
RF 1.0883 0.7888 1.0432 0.1789
LSSVRG 0.7691 0.6819 0.8770 0.4197
BAGSA

1 1.6854 0.8376 1.2982 -0.2716
BAGSA

2 1.7388 0.8376 1.3186 -0.3119
RFSA

1 1.5294 0.8306 1.2367 -0.1539
RFSA

2 1.3813 0.8316 1.1753 -0.0422
LSSVRSA

G1 0.7288 0.6303 0.8537 0.4502
LSSVRSA

G2 0.6949 0.6278 0.8336 0.4757
BAGMA

1 1.7272 0.8404 1.3142 -0.3031
BAGMA

2 1.6301 0.7807 1.2768 -0.2299
RFMA

1 1.4139 0.7672 1.1891 -0.0668
RFMA

2 1.2482 0.7712 1.1172 0.0582
LSSVRMA

G1 0.7459 0.6660 0.8636 0.4373
LSSVRMA

G2 0.7673 0.6525 0.8760 0.4211

This table reports the out-of-sample results for predicting the two-year ahead
real GDP growth rate using different methods. The best result under each
criterion is highlighted in boldface.
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Table 7: Out-of-sample comparison for forecasting the unemployment rate (h = 4)
Method MSFE MAFE SDFE Pseudo R2

Benchmark 0.8257 0.6928 0.9087 0.5835
EN 1.3143 0.9854 1.1464 0.3369
CSR15 1.9975 1.0162 1.4133 -0.0077
BAG 0.6248 0.6886 0.7904 0.6848
RF 0.7661 0.7738 0.8753 0.6135
LSSVRG 0.7787 0.7727 0.8824 0.6072
BAGSA

1 0.4821 0.6123 0.6943 0.7568
BAGSA

2 0.5082 0.6325 0.7129 0.7436
RFSA

1 0.5579 0.6550 0.7469 0.7185
RFSA

2 0.5508 0.6450 0.7421 0.7222
LSSVRSA

G1 0.6692 0.7171 0.8181 0.6624
LSSVRSA

G2 0.6551 0.7028 0.8094 0.6695
BAGMA

1 0.4100 0.5487 0.6403 0.7932
BAGMA

2 0.5065 0.6007 0.7117 0.7445
RFMA

1 0.4818 0.5908 0.6941 0.7569
RFMA

2 0.4793 0.5942 0.6923 0.7582
LSSVRMA

G1 0.7301 0.7404 0.8545 0.6317
LSSVRMA

G2 0.7382 0.7497 0.8592 0.6276

This table reports the out-of-sample results for predicting the one-year ahead
unemployment rate using different methods. The best result under each cri-
terion is highlighted in boldface.

Table 8: Out-of-sample comparison for forecasting the unemployment rate (h = 8)
Method MSFE MAFE SDFE Pseudo R2

Benchmark 1.6665 1.0528 1.2909 0.2429
EN 2.1605 1.3516 1.4699 0.0185
CSR15 3.0727 1.3871 1.7529 -0.3959
BAG 1.0079 0.8646 1.0040 0.5421
RF 1.3792 1.0635 1.1744 0.3734
LSSVRG 0.7887 0.8182 0.8881 0.6417
BAGSA

1 1.0154 0.9014 1.0077 0.5387
BAGSA

2 1.4777 1.0520 1.2156 0.3287
RFSA

1 1.0470 0.9175 1.0232 0.5244
RFSA

2 1.0486 0.9184 1.0240 0.5236
LSSVRSA

G1 0.8846 0.8498 0.9405 0.5982
LSSVRSA

G2 0.8819 0.8486 0.9391 0.5993
BAGMA

1 0.7140 0.7562 0.8450 0.6756
BAGMA

2 0.7812 0.7839 0.8839 0.6451
RFMA

1 0.7946 0.7957 0.8914 0.6390
RFMA

2 0.8113 0.7996 0.9007 0.6314
LSSVRMA

G1 0.7830 0.8148 0.8849 0.6443
LSSVRMA

G2 0.7825 0.8145 0.8846 0.6445

This table reports the out-of-sample results for predicting the two-year ahead
unemployment rate using different methods. The best result under each cri-
terion is highlighted in boldface.
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Table 9: Selected results of the GW test for the HICP Inflation (h = 4)
Benchmark EN CSR15 RF LSSVRG MARF LSSVRSA

G1 RTMA
2

Benchmark - - - - - - - -
EN 0.4651 - - - - - - -
CSR15 0.7785 0.5241 - - - - - -
RF 0.3444 0.0542 0.6888 - - - - -
LSSVRG 0.0260 0.0040 0.3405 0.1772 - - - -
MARF 0.0875 0.0048 0.3037 0.0118 0.8780 - - -
LSSVRSA

G1 0.0022 0.0006 0.0624 0.0006 0.0123 0.0451 - -
RTMA

2 0.0176 0.0014 0.0478 0.0025 0.1091 0.0444 0.6571 -

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test the null hypothesis that the
row method (in vertical headings) performs equally well as the column method (in horizontal headings) in terms of the
absolute forecast error.

Table 10: Selected results of the GW test for the HICP Inflation (h = 8)
Benchmark EN CSR15 SVRL RFM5P MARF LSSVRSA

G2 RFMA
1

Benchmark - - - - - - - -
EN 0.0776 - - - - - - -
CSR15 0.5906 0.7061 - - - - - -
SVRL 0.0135 0.1121 0.0244 - - - - -
RFM5P 0.0168 0.1827 0.2917 0.2011 - - - -
MARF 0.0142 0.2387 0.2690 0.1985 0.9344 - - -
LSSVRSA

G2 0.0027 0.0168 0.1033 0.7523 0.0669 0.0997 - -
RFMA

1 0.0079 0.0294 0.0949 0.7716 0.0883 0.0872 0.9542 -

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test the null hypothesis that
the row method (in vertical headings) performs equally well as the column method (in horizontal headings) in terms
of the absolute forecast error.

Table 11: Selected results of the GW test for real GDP growth rate (h = 4)
Benchmark LASSO CSR20 SVRG LSSVRG MARF LSSVRSA

G2 LSSVRMA
G2

Benchmark - - - - - - - -
LASSO 0.1006 - - - - - - -
CSR20 0.0188 0.1025 - - - - - -
SVRG 0.1605 0.0071 0.0261 - - - - -
LSSVRG 0.0839 0.0040 0.0117 0.7495 - - - -
MARF 0.2845 0.5371 0.0506 0.0865 0.0155 - - -
LSSVRSA

G2 0.0215 0.0007 0.0059 0.3856 0.0419 0.0024 - -
LSSVRMA

G2 0.0323 0.0016 0.0075 0.4568 0.0491 0.0060 0.5060 -

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test the null hypothesis that the row
method (in vertical headings) performs equally well as the column method (in horizontal headings) in terms of the absolute
forecast error.
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Table 12: Selected results of the GW test for real GDP growth rate (h = 8)
Benchmark EN CSR20 RF LSSVRG MARF LSSVRSA

G2 LSSVRMA
G1

Benchmark - - - - - - - -
EN 0.5883 - - - - - - -
CSR20 0.0682 0.0094 - - - - - -
RF 0.0300 0.0090 0.0027 - - - - -
LSSVRG 0.0050 0.0009 0.0012 0.0862 - - - -
MARF 0.1467 0.1579 0.0051 0.5434 0.1559 - - -
LSSVRSA

G2 0.0032 0.0002 0.0003 0.0162 0.1801 0.0534 - -
LSSVRMA

G1 0.0034 0.0007 0.0010 0.0520 0.0711 0.1166 0.3371 -

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test the null hypothesis that the row
method (in vertical headings) performs equally well as the column method (in horizontal headings) in terms of the absolute
forecast error.

Table 13: Selected results of the GW test for the unemployment rate (h = 4)
Benchmark EN CSR15 BAG BAGM5P MAB BAGSA

1 BAGMA
1

Benchmark - - - - - - - -
EN 0.0032 - - - - - - -
CSR15 0.0694 0.8528 - - - - - -
BAG 0.9542 0.0000 0.0415 - - - - -
BAGM5P 0.8402 0.0001 0.0397 0.7648 - - - -
MAB 0.6305 0.0001 0.0278 0.1200 0.5045 - - -
BAGSA

1 0.2779 0.0000 0.0158 0.0075 0.0631 0.1779 - -
BAGMA

1 0.0976 0.0000 0.0048 0.0002 0.0016 0.0027 0.0142 -

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test the null hypothesis that the
row method (in vertical headings) performs equally well as the column method (in horizontal headings) in terms of the
absolute forecast error.

Table 14: Selected results of the GW test for the unemployment rate (h = 8)
Benchmark RIDGE CSR20 LSB LSSVRG MAB LSSVRSA

G2 BAGMA
1

Benchmark - - - - - - - -
RIDGE 0.4332 - - - - - - -
CSR20 0.8565 0.2072 - - - - - -
LSB 0.0016 0.0002 0.0020 - - - - -
LSSVRG 0.0621 0.0076 0.1494 0.0018 - - - -
MAB 0.0246 0.0071 0.1232 0.0037 0.7646 - - -
LSSVRSA

G2 0.0879 0.0233 0.2261 0.0021 0.2652 0.4319 - -
BAGMA

1 0.0094 0.0070 0.0716 0.0072 0.3011 0.3482 0.1178 -

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test the null hypothesis that the row
method (in vertical headings) performs equally well as the column method (in horizontal headings) in terms of the absolute
forecast error.
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Table 15: Out-of-sample comparison for forecasting the 3-month Treasury bill rate (h = 4)
Method MSFE MAFE SDFE Pseudo R2

Benchmark 1.6922 0.9356 1.3009 0.2127
EN 1.9962 0.9851 1.4129 0.0712
CSR10 1.5222 0.8576 1.2338 0.2918
BAG 1.4343 0.7999 1.1976 0.3327
RF 1.4447 0.8177 1.2020 0.3278
LSSVRG 1.4737 0.8695 1.2140 0.3143
BAGSA

1 1.1096 0.7243 1.0534 0.4837
BAGSA

2 1.1267 0.7049 1.0614 0.4758
RFSA

1 1.1583 0.7438 1.0762 0.4611
RFSA

2 1.0999 0.7237 1.0488 0.4882
LSSVRSA

G1 1.3233 0.8048 1.1503 0.3843
LSSVRSA

G2 1.3557 0.8335 1.1643 0.3692
BAGMA

1 1.1541 0.7149 1.0743 0.4630
BAGMA

2 1.1712 0.7162 1.0822 0.4551
RFMA

1 1.0825 0.6981 1.0404 0.4963
RFMA

2 1.0605 0.7164 1.0298 0.5066
LSSVRMA

G1 1.4188 0.8418 1.1911 0.3399
LSSVRMA

G2 1.4302 0.8460 1.1959 0.3346

This table reports out-of-sample results for predicting the one-year ahead 3-
month Treasury bill rate using various strategies. The best result under each
criterion is highlighted in boldface.

Table 16: Selected results of the GW test for the 3-month Treasury bill rate (h = 4)
Benchmark EN CSR10 BAG RFM5P MAB RFSA

2 RFMA
2

Benchmark - - - - - - - -
EN 0.4944 - - - - - - -
CSR10 0.2380 0.1024 - - - - - -
BAG 0.0552 0.0005 0.4107 - - - - -
RFM5P 0.0403 0.0012 0.3953 0.8933 - - - -
MAB 0.0055 0.0001 0.0731 0.0003 0.0030 - - -
RFSA

2 0.0023 0.0000 0.0539 0.0052 0.0029 0.9886 - -
RFMA

2 0.0045 0.0004 0.0533 0.0207 0.0336 0.7830 0.7512 -

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test the null hypothesis
that the row method (in vertical headings) performs equally well as the column method (in horizontal headings)
in terms of the absolute forecast error.
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Appendix

A Derivation of PLSSVR(X) in the case with an intercept

In line with De Brabanter, De Brabanter, Suykens, and De Moor (2011), if the formulation
includes an intercept term β0 such that

yt = f (X t) + εt = β0 +
S

∑
s=1

βshs(X t) + εt for t = 1, ..., T, (A1)

the optimization problem in LSSVR considers

min
β

H(β) =
T

∑
t=1

(yt − f (X t))
2 + λ

S

∑
s=1

β2
s

subject to (A1), where β = [β0, ..., βS]
> = [β0, β>∗ ]

>. We can construct the Lagrangian
equation

L(β, α) = H(β)−
T

∑
t=1

αt

(
β0 +

S

∑
s=1

βshs(X t)− yt

)
,

where α = [α1, ..., αT]
> are Lagrange multipliers.

Taking the first-order conditions for optimization and substitute for β∗, we obtain the
following solution [

0 ι>

ι HH> + γIT

] [
β̂0
α̂

]
=

[
0
y

]
, (A2)

where ι = [1, ..., 1]>, H is the implicit basis matrix, and HH> is the T × T kernel matrix
with the {tt′th} element being the kernel function K(X t, X t′). For simplicity, we define

Ω ≡ (HH> + λIT)
−1

and solve for β̂0 and α̂ from (A2) such that

α̂ = Ω(y− β̂0ι)

β̂0 = ι>Ωy
/

ι>Ωι.

The resulting LSSVR model then becomes

f̂ (X) = HH>α̂ + β̂0ι

= HH>Ω(y− β̂0ι) + β̂0ι

= HH>Ωy + (ι− HH>Ωι)β̂0
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=

(
HH>Ω +

(ι− HH>Ωι)ι>Ω

ι>Ωι

)
y,

= PLSSVR(X)y,

where

PLSSVR(X) ≡ HH>Ω +
(ι− HH>Ωι)ι>Ω

ι>Ωι
. (A3)

The no-intercept version of PLSSVR(X) in (16) can be written as ΩHH>. Note that the
T × T matrix HH>Ω is symmetric, since

HH>(HH> + λIT)
−1 = HH>

(
(HH>)−1 − λ(HH>)−1(HH> + λIT)

−1
)

= IT − λ(HH> + λIT)
−1

following the Woodbury matrix identity. Therefore, the no-intercept PLSSVR(X) is a spe-
cial case of (A3) that does not include the second term on the right-hand-side of (A3).

B Data polishing procedure

The Survey of Professional Forecasters (SPF) conducted by the European Central Bank
(ECB) and the U.S. Federal Reserve Bank of Philadelphia collects the forecasters’ views
on macroeconomic and financial indicators in the respective region or country. However,
a specific forecaster may not consistently submit a survey response throughout the sam-
ple period. Figure A1 describes the entries and exits of individual forecasters across the
survey dates for the ECB and U.S. SPF data. A blue dot is marked for a specific forecaster
(labeled in the vertical axis) if he or she submitted a survey response and a blank space
indicates otherwise.

Both data clearly exhibit severe sparsity. To avoid the issues caused by missing obser-
vations, we follow Genre et al. (2013) to first remove irregular respondents if he or she
misses more than near 50% of the observations. We narrow down to 30 qualified fore-
casters for the ECB SPF data and 21 qualified forecasters for the U.S. SPF data. Then the
missing observations for each forecaster i are filled using the following approach pro-
posed in Genre et al. (2013)

ŷit − ȳt = βt(ŷi,t−1 − ȳt−1) + εit,

where ŷit is the prediction of forecaster i at time t and ȳt is the equally weighted prediction
over all forecasters at time t. For each forecaster i, we compute for β̂t with all available
observations and then fill in the gaps by a simple AR(1) process.
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Figure A1: An illustration of the entries and exits of individual forecasters

C Construction of the candidate model set by GMS

The candidate model set is crucial for any model averaging method in practice. A widely-
adopted approach to constructing the candidate model set is through a full combination
of all the p predictors, which leads to 2p candidate models. One obvious drawback of this
approach is that the total number of candidate models increases exponentially with p. In
the case of our forecasting exercise, the above approach leads to 1,073,741,824 models,
which are way too many to handle.

Inspired by Xie (2017),12 we propose constructing the candidate model set through
an forward iterative procedure which adds one predictor at a time according to certain
criterion. This approach is termed the generalized model screening (GMS) method. The
computational algorithm of GMS for a given method is summarized in the sequel.

1. We pick an initial model, denoted by M(0), which can be a null model that includes
no variables, or can be a model consisting of certain predictors of interest.

2. Each time we add one of the q(0) remaining regressors to M(0), which generates q(0)
candidate models. We then examine each candidate model by one of the following

12Xie (2017) proposed a homoskedasticity-efficient model screening (HEMS) method and a
heteroskedasticity-robust model screening method (HRMS) to construct candidate models for the LS model
averaging with a large number of predictors. Both HEMS and HRMS are forward iterative procedures
which add one predictor at a time according to certain criteria.
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criteria:

Homoskedasticity : ‖y− P(s)y‖2 + 2σ̂2
(s)

T

∑
t=1

P(s)
tt ,

Heteroskedasticity :
∥∥∥y− P(s)y

∥∥∥2
+ 2

T

∑
t=1

(ε̂
(s)
t )2P(s)

tt ,

for s = 1, ..., q(0), where P(s) stands for the projection matrix P(x, X) of the sth can-

didate model, ε̂
(s)
t is the tth element of the residual with σ̂2

(s) being the variance of

estimated error terms (for homoskedasticity), and P(s)
tt represents the tth diagonal

term in P(s).

3. We select the model denoted by M(1) that yields the lowest value of the criterion
under homoskedasticity or heteroskedasticity. Model M(1) is taken as the initial
model for the next round.

4. We repeat steps (2) to (3) iteratively until we draw the full model that consists of all
q variables. We construct our candidate model set by incorporating the initial model
M(0) (if not null), all candidate models from step (2) and the full model.

The GMS method adds one and only one variable to the model of the previous step
each time. Therefore, if there are q variables in total and our initial model M(0) includes
q0 variables, we end up with only (q− q0 + 1) models that are nested in sequence. This
number is much smaller than 2q, especially for a large value of q.

D Results under a tainted candidate model set

In this main text, we have showed that both SAML and MAML perform well under
screened candidate model sets by GMS. In this section, we examine the performance
sensitivity of SAML and MAML to the composition of candidate model sets. The one-
year-ahead HICP inflation forecast is illustrated as as an example. The original screened
model set by GMS is denoted as M0.

A “tainted” candidate model set M1 is created partially from M0. This is achieved by
having half of the models in M1 from M0 and replacing the other half with individual
models that incorporate only one predictor. In this way, not all the models in M1 produce
fair forecasts. We predict the one-year-ahead HICP inflation using SAML and MAML
under M0 and M1 and the results are shown in panels A and B of Table A1, respectively.
The results in panel A are identical to those in Table 3, which are reproduced here for
comparison convenience.
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Table A1: Forecast combination machine learning methods under different model sets
Method MSFE MAFE SDFE Pseudo R2

Benchmark 0.6533 0.7076 0.8083 0.1393

Panel A: Results under M0
BAGSA

1 0.4655 0.5510 0.6823 0.3867
BAGSA

2 0.4607 0.5743 0.6788 0.3931
RFSA

1 0.4677 0.5624 0.6839 0.3839
RFSA

2 0.4656 0.5633 0.6823 0.3867
LSSVRSA

G1 0.3767 0.5316 0.6138 0.5037
LSSVRSA

G2 0.3816 0.5301 0.6177 0.4974
BAGMA

1 0.4386 0.5247 0.6623 0.4222
BAGMA

2 0.4751 0.5803 0.6893 0.3741
RFMA

1 0.4529 0.5447 0.6730 0.4033
RFMA

2 0.4748 0.5568 0.6891 0.3745
LSSVRMA

G1 0.4505 0.5840 0.6712 0.4065
LSSVRMA

G2 0.4451 0.5804 0.6672 0.4136

Panel B: Results under M1
BAGSA

1 0.5792 0.6216 0.7611 0.2370
BAGSA

2 0.5815 0.6233 0.7626 0.2339
RFSA

1 0.5692 0.6206 0.7544 0.2502
RFSA

2 0.5718 0.6235 0.7562 0.2467
LSSVRSA

G1 0.5823 0.6372 0.7631 0.2329
LSSVRSA

G2 0.5823 0.6372 0.7631 0.2329
BAGMA

1 0.5332 0.6173 0.7302 0.2976
BAGMA

2 0.5295 0.6100 0.7277 0.3024
RFMA

1 0.5101 0.6105 0.7142 0.3280
RFMA

2 0.4790 0.5818 0.6877 0.3769
LSSVRMA

G1 0.4840 0.6004 0.6957 0.3625
LSSVRMA

G2 0.4840 0.6004 0.6957 0.3625

This table reports the out-of-sample results for predicting the one-year-ahead
HICP inflation using various methods shown in the first column. The results
are based on the HICP inflation data ranging from 2000Q1 to 2019Q4. Panel
A presents the outcomes for the original screened model set, while panel B
contains the results for the “tainted” candidate model set. We use a rolling
window of 40 observations to estimate the forecasts.

Both SAML and MAML outperform the benchmark under M0 and M1, although the
results by all methods deteriorate under M1. It can be seen that the SAML methods are
quite sensitive to the choice of candidate model sets. For example, the MSFE of the best
performing SAML method under M0, LSSVRSA

G1, increases by 54.58% under M1. This is
not a surprise since M1 incorporates many poor-performing candidate models and the
effect of bad models remains due to equal weighting.

In contrast, the estimated weights by MAML are determined by the performance of
individual candidate models evaluated by Mallows-type criteria. Thus the MAML meth-
ods automatically assign lower weights to bad-performing candidate models compared

42



to good-performing ones. This explains why the MAML methods are less sensitive to
the composition of model sets. For instance, the MSFE of the best performing MAML
method under M0, LSSVRMA

G2 , increases by 8.74% only under M1. The above results sig-
nify the necessity of first implementing reliable model screening techniques for forecast
combination, which is especially so for the SAML methods.

E Results under alternative values of tuning parameters

In this section, we present the empirical results under alternative values of tuning param-
eters using the HICP inflation forecasts (h = 4) as an example. We change the penalty
coefficient, the number of selected predictors for RF-type methods, and the hyperparam-
eters on kernels to the following values.

1. λ = 1 for LASSO, RIDGE, EN, SVRs, LSSVRs;

2. The number of selected predictors is set to bp/2c for all the RF-type methods;

3. σx = 5 for the Gaussian kernel;

4. d = 100, p = 5 for the polynomial kernel;

The results of forecast accuracy comparison are shown in Table A2. Our results are quali-
tatively unchanged.
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Table A2: Forecast Accuracy Comparison HICP Inflation (h = 4) under Different Tuning
Parameters

Method MSFE MAFE SDFE Pseudo R2

Benchmark 0.6533 0.7076 0.8083 0.1393
EN 0.8810 0.7569 0.9386 -0.1606
CSR15 0.6767 0.6884 0.8226 0.1085
BAG 0.5997 0.6524 0.7744 0.2101
RF 0.5778 0.6482 0.7601 0.2388
LSSVRG 0.4966 0.6086 0.7047 0.3458
BAGSA

1 0.4726 0.5544 0.6875 0.3774
BAGSA

2 0.4868 0.5667 0.6977 0.3587
RFSA

1 0.4825 0.5688 0.6947 0.3643
RFSA

2 0.4562 0.5618 0.6754 0.3991
LSSVRSA

G1 0.4558 0.5690 0.6751 0.3996
LSSVRSA

G2 0.4585 0.5717 0.6771 0.3960
BAGMA

1 0.4656 0.5258 0.6824 0.3866
BAGMA

2 0.4759 0.5482 0.6898 0.3731
RFMA

1 0.4792 0.5638 0.6923 0.3687
RFMA

2 0.4417 0.5320 0.6646 0.4182
LSSVRMA

G1 0.4870 0.6116 0.6978 0.3585
LSSVRMA

G2 0.4616 0.5936 0.6794 0.3919

This table reports the out-of-sample results for predicting the HICP one-year-
ahead using different methods. The best result under each criterion is high-
lighted in the bold face.
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