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Abstract

Efficient, voluntary bilateral trades are generally not implementable in

an interdependent values environment where agents’ information is ex ante

symmetric (i.e., both parties have private information and each party’s val-

uation depends on the other’s information in the same way). Thus, we seek

more positive results by employing two-stage mechanisms in which (i) the

outcome (e.g., allocation of the goods) is determined first; (ii) the agents

partially learn the state via their own outcome-decision payoffs; and (iii)

transfers are finally made. We propose the generalized shoot-the-liar mecha-

nism as a two-stage mechanism and a mild condition under which there is no

loss of generality in focusing on the generalized shoot-the-liar mechanism to

implement efficient voluntary trades. We then identify a necessary and suf-

ficient condition for the generalized shoot-the-liar mechanism to implement

efficient, voluntary trades. We argue by example that the identified condi-

tion implies that the degree of interdependence of the buyer’s preferences

is not too high relative to the seller’s counterpart. The identified condi-

tion becomes a vacuous constraint if we settle for virtual (or, approximate)

implementation.
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1 Introduction

This paper investigates when efficient, voluntary bilateral trades are possible in an

interdependent values environment with two-sided asymmetric information, where

both parties have private information and each party’s valuation depends on the

other’s information in the same way. By “bilateral trade” we mean a simple trading

problem in which two individuals, one of whom (a seller) has a single indivisible

object to sell to the other (a buyer), attempt to agree to exchange the object for

money. Thus, in this setup, the seller has the full property rights over the object

to be sold, while she is not fully informed about the quality of the good at the

outset. For example, it is quite natural to imagine that the owner of an apartment

does not necessarily know the full value of the apartment while thinking about

selling it to a potential buyer. If we instead assume that the seller is fully informed

about the quality of the good from the beginning, we refer the reader to Kunimoto

and Zhang (2022) for the analysis in such a case. Efficiency adopted in this paper

requires, conditional on the realization of both agents types, that (i) the good be

traded if and only if the buyer’s expected valuation of the good is strictly higher as

the seller’s counterpart (decision efficiency) and (ii) the expected payment made

by the buyer be always exactly the expected payment received by the seller (budget

balance). It is worth noting that our formulation allows an additional uncertainty

about both agents’ valuation for the good, even conditional on their type profile.

This additional generality plays an important role when we deal with two-stage

mechanisms later. Voluntary trade means that each agent of every type weakly

prefers to participate in the mechanism (interim individual rationality).

By the well-known revelation principle, we say that efficient, voluntary trades

are implementable if there exists a direct revelation mechanism in which each agent

is asked to report his own type and telling the true type profile constitutes a

Bayesian Nash equilibrium (i.e., Bayesian incentive compatibility (BIC)) such that

the mechanism also satisfies decision efficiency (EFF), interim individual rational-

ity (IIR), and budget balance (BB). In our bilateral trade environment, however,

Fieseler, Kittsteiner, and Moldovanu (henceforth, FKM, 2003) and Gresik (1991)

show that efficient, voluntary bilateral trade is generally not implementable.

The implicit assumption underlying FKM (2003), Gresik (1991), and many

other papers in the literature is that agents cannot observe their outcome-decision

payoffs until the mechanism has played out. We now drop this assumption, and
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seek more positive results by incorporating two-stage mechanisms (Mezzetti (2004))

in which (i) the outcome (e.g., the allocation of the goods) is determined first;

(ii) the agents then observe their own outcome-decision payoffs; and (iii) finally,

transfers are made. In his Proposition 1, Mezzetti (2003) establishes the generalized

revelation principle, which states that any perfect Bayesian equilibrium outcome of

any two-stage mechanism can be implemented as a perfect Bayesian equilibrium of

a two-stage generalized revelation mechanism in which reporting his true allocation

payoff in the second stage and reporting his true type in the first stage is an

equilibrium strategy for each player. By this generalized revelation principle, a

two-stage generalized revelation mechanism is simply called a two-stage mechanism

in this paper. Following the generalized revelation principle, we thus modify the

notion of Bayesian incentive compatibility: a two-stage mechanism satisfies BIC if

there exists a perfect Bayesian equilibrium of that two-stage mechanism in which

all agents tell the truth in both stages. The main question of our paper is thus

reformulated as: “when does there exist a two-stage mechanism satisfying BIC,

IIR, EFF, and BB?” We consider this as a primarily normative question, drawing

the line between the existence and non-existence of such two-stage mechanisms.

Thus, we closely follow Myerson and Satterthwaite (1983) in terms of the main

research question we address.

The use of two-stage mechanisms can be justified. Imagine that two parties in

a bilateral trade setup invite a trusted mediator (a third party) to their contractual

relationship: the mediator asks both agents to deposit a large amount of money

in the mediator’s account, and the mediator returns the remaining deposit to each

agent after the two-stage mechanism has played out. For example, in the context of

a labor market, an employer (the buyer) learns the quality of the worker (the seller)

after hiring him. If the worker was not hired by the employer, i.e., no trade takes

place, we assume that the worker will eventually be hired by another employer.

When this happens, the worker learns the value of himself through his signed

constract. The power of two-stage mechanisms relies crucially on the fact that the

extra information the agents learn via their experienced payoff can be used in its

second stage to detect the lies which might have occurred in its first stage. What

is not standard here is that the contract spans the stage where the worker who was

not hired by this employer, but was eventually hired by someone else, must report

his experienced payoff to the original two-stage mechanism. We admit that the

power of two-stage mechanism may well be compromised, since this contractual

apparatus requires a strong commitment on the part of agents over a long time

horizon. Therefore, we are primarily concerned with the theoretical possibility of

3



two-stage mechanisms. Nevertheless, we may be able to overcome this formidable

contractual condition through a smart contract based on the blockchain technology

as a commitment device that prevents agents from reneging on the contract terms

(see, for example, Matsushima and Noda (2023)). Even without a trusted mediator

or smart contracts, a two-stage mechanism can sometimes be realized through a

long-term relationship. See Mezzetti (2004) for such an argument.

We then describe the main analysis of the paper. In Section 3, we propose the

generalized shoot-the-liar mechanism (henceforth, GS mechanism) as a generaliza-

tion of Mezzetti’s (2007) shoot-the-liar mechanism used in an auction setting. We

show in Proposition 1 that the GS mechanism always satisfies EFF, BB, and the

buyer’s IIR.

In Section 4, we introduce Assumption 1, and show in our Proposition 2 that the

GS mechanism satisfies BIC if and only if Assumption 1 is satisfied. We next show

that when Assumption 1 holds, the GS mechanism is canonical in the sense that

if there exists a two-stage mechanism satisfying BIC, EFF, BB, and IIR, the GS

mechanism has the same desired properties. Finally, we discuss when Assumption

1 holds and when it does not.

In Section 5, we introduce Assumption 2 and show in Proposition 4 that when

Assumption 1 holds, the GS mechanism satisfies the seller’s IIR constraint if and

only if Assumption 2 is satisfied. Therefore, we conclude that, when Assumption

1 holds, Assumption 2 is a necessary and sufficient condition for the existence of

two-stage mechanisms satisfying BIC, EFF, BB, and IIR.

Section 6 scrutinizes the implications of Assumption 2. We apply our main

results from Section 5 to a stylized model in which each agent’s type is chosen

from the uniform distribution over [0, 1] and the state of the residual uncertainty

ω = (ω1, ω2) is a two-dimensional vector where, conditional on the type profile, ω1

and ω2 are independently drawn from the uniform distribution in [−0.1, 0.1]. The

valuation of each agent i for the object is determined by the type profile as well as

the state of the residual uncertainty, which is ũi(θi, θ−i;ω) = (1 + ωi)(θi + γiθ−i),

where γi denotes the degree of interdependence of preferences for agent i. In this

context, Assumption 2 is satisfied as long as the degree of interdependence of the

buyer’s preferences (γ2) is not too high relative to the seller’s counterpart (γ1).

By providing a set of simulation results in the example, we also conclude that

Assumption 2 certainly has a bite but is satisfied for many of the cases.

Section 7 consists of three subsections. In Section 7.1, we show that Assump-

tion 2 can be completely dispensed with if we settle for virtual (i.e., approximate)

implementation. We also show that Assumption 1 is replaced with Assumption
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3 if we settle for virtual implementation. Section 7.2 compares our results with

Theorem 4 of Galavotti, Muto, and Oyama (henceforth GMO, 2011), who consider

the problem of efficient partnership dissolution in an interdependent values envi-

ronment.1 GMO (2011, Theorem 4) show that when GMO’s Assumption 5.1 is

satisfied, Mezzetti’s (2007) shoot-the-liar mechanism satisfies BIC, IIR, EFF, and

BB for all ownership structures (including our bilateral trade case) in the deter-

ministic model.2 To make our comparison meaningful, we focus on bilateral trade

in the deterministic model, i.e., there are only two agents, the seller has the full

property rights over the good, and the state of the residual uncertainty is a deter-

ministic function of the type profile. We then argue that GMO’s Assumption 5.1 is

stronger than our Assumption 2 in the deterministic model. Section 7.3 discusses

the relation between our Theorem 2 and Theorem 3.1 of Makowski and Mezzetti

(1994), who consider the general mechanism design problem with private values.

The rest of the paper is organized as follows. In Section 2, we introduce the

general notation and basic concepts of the paper. In Section 3, we introduce the

GS mechanism. In Section 4, we show that the GS mechanism satisfies BIC if and

only if Assumption 1 holds. We also discuss when Assumption 1 is satisfied and

when it is violated. In Section 5, if Assumption 1 holds, we show that there exists a

two-stage mechanism satisfying BIC, EFF, BB, and IIR if and only if Assumption

2 is satisfied. Section 6 specializes in a highly stylized but well studied model

of bilateral trade with interdependent values and explores the implications of our

main results in Section 5. In Section 7, we clarify that if we settle for virtual

implementation, Assumption 2 can be dropped and Assumption 1 is replaced with

Assumption 3. We also compare our paper with GMO (2011) and Makowski and

Mezzetti (1994). Finally, Section 8 concludes the paper. The Appendix contains

all the proofs of the results omitted from the main text of the paper.

2 Preliminaries

2.1 The Basic Setup

We consider a bilateral trade environment in which a seller (agent 1) initially owns

an indivisible object which one potential buyer (agent 2) intends to obtain. Each

1Efficient dissolution of a partnership consists in allocating the partnership’s asset (e.g., the

developed product/technology or the company itself) to the partner with the highest valuation,

in exchange for monetary compensations.
2To be precise, their result is stronger than this because GMO (2011) strengthen IIR into ex

post individual rationality (EPIR).
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agent i ∈ {1, 2} has private information, which is summarized as his own type θi.

For each i ∈ {1, 2}, we let Θi = [θ, θ] be the common set of agent i’s types such that

θ < θ. Throughout the paper, we use the notation convention that Θ = [θ, θ]2; and

Θ−i = Θj where j ̸= i with a generic element θ−i. Types are independently drawn

from an identical distribution where f : [θ, θ] → R+ and F : [θ, θ] → [0, 1] denote

the probability density function and cumulative distribution function, respectively.

We further assume that f(θi) > 0 for all θi ∈ (θ, θ) and i ∈ {1, 2}.
We introduce what Mezzetti (2007) calls the “random model.” Let ω denote a

residual uncertainty and Ω be the set of residual uncertainties, which is assumed to

be a nonempty subset of a Euclidean space. Let q ∈ Q = [0, 1] be the probability

that the good is transferred from the seller (agent 1) to the buyer (agent 2), or

trading probability for short. The residual uncertainty ω is a random function of

the type profile θ drawn from a cumulative distribution function conditional on the

agents’ types, denoted by H : Ω×Θ → [0, 1]. Preferences of each agent i ∈ {1, 2}
are given by Ui : Q × Θ × Ω × R → R, which depends on the trading probability

q, the type profile θ, the residual uncertainty ω, and their monetary transfer pi:

U1(q, θ, ω, p1) = u1(q, θ, ω) + p1 = (1− q)ũ1(θ;ω) + p1;

U2(q, θ, ω, p2) = u2(q, θ, ω) + p2 = qũ2(θ;ω) + p2,

where ui(q, θ, ω) is agent i’s allocation payoff and ũi(θ;ω) is agent i’s valuation for

the object when the true type profile is θ and the residual uncertainty is ω ∈ Ω.

Hence, we assume expected, quasilinear utility. Agent i’s “expected” valuation for

the object, conditional on type profile θ, is

ũei (θ) ≡
∫
Ω

ũi(θ;ω)dH(ω|θ).

It is standard in the literature that one uses a reduced-form model in which

the residual uncertainty ω is suppressed and an agent’s outcome-decision payoff

depends directly on the types of all the agents. For instance, we can reconcile our

formulation with the reduced-form model by interpreting θ as a vector of type pro-

file θ and (ũei (θ))i∈{1,2} as the profile of agents’ expected valuations in type profile θ.

These two formulations turn out to be equivalent if an agent cannot observe his own

outcome-decision payoff. However, when an agent can observe his own outcome-

decision payoff before final transfers are made, this equivalence breaks down. It is

worth mentioning that the agent’s ability to observe his own outcome-decision pay-

off becomes irrelevant if we consider private values environments. Hence, we need

genuinely interdependent values environments for our discussion. Furthermore, our

formulation follows Mezzetti (2004, 2007) so that it allows residual uncertainties
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in the agent’s payoff even after observing his own outcome-decision payoff. The

example below illustrates our formulation.

Example 1. Suppose that each agent i’s type θi is drawn from the uniform dis-

tribution on the unit interval [0, 1]. Conditional on the type profile θ, ω1 and

ω2 are independently drawn from the uniform distribution on the closed interval

[−0.1, 0.1]. Then, we define Ω = {(ω1, ω2)| ω1, ω2 ∈ [−0.1, 0.1]} as the set of resid-

ual uncertainties. Each agent’s valuation for the object when the true type profile

is (θ1, θ2) and the residual uncertainty is ω = (ω1, ω2) ∈ Ω is given as follows:

ũ1(θ1, θ2;ω) = θ1 + γ1θ2 + ω1(θ1 + γ1θ2) = (1 + ω1)(θ1 + γ1θ2);

ũ2(θ1, θ2;ω) = θ2 + γ2θ1 + ω2(θ2 + γ2θ1) = (1 + ω2)(θ2 + γ2θ1),

where γi denotes the degree of interdependence of preferences for agent i. We

assume γi ∈ (0, 1) for all i ∈ {1, 2}. In this paper, we assume that the agents are

risk-neutral so that we could restrict attention to the agents’ expected utilities.

We thus set the support of ωi to be small relative to that of θi so that our result

holds if agents are slightly risk averse.

Throughout the paper, we revisit Example 1 multiple times to illustrate the

implications of our analysis. Recall ũei (θi, θ−i) =
∫
Ω
ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)).

We assume that ũei is bounded and that H(·|θ) is differentiable with respect to ω.

So, we write h(ω|θ) = dH(ω|θ)/dω. Using Leibniz’s formula, we obtain

∂

∂θi

∫
Ω

ũi(θi, θ−i;ω)h (ω|(θi, θ−i)) dω

=

∫
Ω

[
∂ũi(θi, θ−i;ω)

∂θi
h (ω|(θi, θ−i)) + ũi(θi, θ−i;ω)

∂h (ω|(θi, θ−i))
∂θi

]
dω.

We assume that ũi(θi, θ−i;ω) and h (ω|(θi, θ−i)) are also differentiable in both θi

and θ−i. As a result, ũei (·) is differentiable in both θi and θ−i. Moreover, we assume

each agent’s expected valuation function is strictly increasing in his own type, i.e.,

ũei,i ≡ ∂ũei (θi, θ−i)/∂θi > 0. We see this feature in Example 1: ∂ũi(θi, θ−i;ω)/∂θi =

1 + ωi > 0 and ∂h (ω|(θi, θ−i)) /∂θi = 0 because ω = (ωi, ω−i) and conditional on

the type profile, ωi and ω−i are independently drawn from the uniform distribution

in [−0.1, 0.1]. As a result, we obtain ∂
∂θi

∫
Ω
ũi(θi, θ−i;ω)h (ω|(θi, θ−i)) dω > 0 so that

ũei : (θi, θ−i) 7→ R is strictly increasing in θi.

2.2 One-Stage Mechanisms

We first introduce the notion of (one-stage) direct revelation mechanism. A one-

stage direct revelation mechanism is defined as a triple (Θ, x, t) in which each
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agent announces his type and thereafter, the allocation decision is determined by

the rule x : Θ → [0, 1] and the monetary transfer is determined by t : Θ →
R2 “simultaneously” based on all agents’ type announcements. By the standard

revelation principle, we lose nothing to focus on direct revelation mechanisms in

which truth-telling of each agent’s type constitutes a Bayesian Nash equilibrium,

which is known as Bayesian incentive compatibility (BIC). From now on, we simply

call a one-stage direct mechanism a one-stage mechanism.

Consider a special case of Example 1 in which ωi = 0 for each agent i ∈ {1, 2}.
Then, the residual uncertainty ω = (ω1, ω2) is reduced to (0, 0), which further

implies that ũi(θi, θ−i;ω) = (1+ωi)(θi+γiθ−i) is reduced to θi+γiθ−i. Making use

of Theorem 5 of FKM (2003), Kunimoto and Zhang (2022) show that there are no

one-stage mechanisms satisfying BIC, IIR, EFF, and BB in this example. This is

the main reason why we introduce two-stage mechanisms below.

2.3 Two-Stage Mechanisms

To justify the use of two-stage mechanisms, which will be introduced below, we

assume that once agent i receives the object, he observes his realized allocation

payoff ũi(θi, θ−i;ω). We follow Mezzetti (2004) to define a two-stage mechanism as

a quadruple (M1,M2, δ, τ) such that

• M1
i is agent i’s message space in the first stage and M2

i is agent i’s message

space in the second stage, respectively;

• δ :M1 → [0, 1] is the decision rule specifying the trading probability; and

• τ : M1 ×M2 → R2 is the transfer rule specifying the monetary transfer for

both agents.

In words, in the first stage, after observing his own type, agent i sends a message

from M1
i simultaneously and then the good is allocated according to the decision

rule δ; in the second stage, after the decision is implemented and agent i observes

his realized allocation payoff, he is asked to send a message from M2
i ; and finally,

the monetary transfers are finalized based on the reports of both stages. We denote

by Q̂ = {0, 1} the final decision outcome after randomization and Πi = {ûi ∈ R :

there exist q ∈ Q̂, θ ∈ Θ, and ω ∈ Ω such that ui(q, θ, ω) = ûi} the range of agent

i’s allocation payoffs. Note that whoever does not receive the good receives zero

allocation payoff. We further denote by ri = (r1i , r
2
i ) agent i’s strategy such that

r1i : Θi → M1
i is his strategy in the first stage and r2i : Q̂ × Θi × Πi → M2

i is his
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strategy in the second stage. The reader is referred to the fourth paragraph of the

introduction for the justification of two-stage mechanisms.

In particular, if we set M1
i = Θi and M2

i = Πi, i.e., the agents are asked to

report their types in the first stage and realized allocation payoffs in the second

stage, then we can construct the corresponding generalized revelation mechanism

(Θ,Π, x, t) as follows: the decision rule x : Θ → [0, 1] is given by the composite

function x(θ) = δ(r1(θ)) and the transfer rule t : Θ×Π → R2 is given by the com-

posite function ti(θ, π) = τi(r
1(θ), r2(δ(r1(θ)), θ, π)). Since each agent i’s allocation

payoff ui(x(θi, θ−i), θi, θ−i, ω) depends on the true type profile and the residual un-

certainty, then the second-stage reports in the generalized revelation mechanism

indeed provide extra information about the true type profile and the residual un-

certainty, while there is a loss of generality in assuming that the designer only uses

one-stage mechanisms.

There are some scenarios where the agent experiencing the good learns its

value before the transfers are finalized. Imagine that two parties in a bilateral

trade setup invite a trusted mediator (a third party) to their contractual rela-

tionship: the mediator asks both agents to deposit a large amount of money in

the mediator’s account, and the mediator returns the remaining deposit to each

agent after the two-stage mechanism has played out. For example, we consider an

apartment owner (the seller) who partially knows the value of her property and is

interested in selling it to a potential buyer (the buyer). When the buyer acquires

this property, he receives noisy but additional information about its quality. If

the seller could not sell her apartment to the original buyer, we assume that both

the seller and the original buyer, who did not get the property, are still bound

by the original two-stage mechanism until the seller eventually sells her property

to another buyer, receives noisy but additional information about the value of

her property, and reports her experienced value to the mechanism. We recognize

that this is not a standard assumption, since this contractual apparatus requires

a strong commitment on the part of agents over a long time horizon. Thus, we

are primarily concerned with the theoretical possibility of two-stage mechanisms so

that we postpone our discussion of how to implement such a theoretical possibility.

Nevertheless, we may be able to implement this formidable contractual apparatus

through a smart contract based on the blockchain technology as a commitment

device that prevents agents from reneging on the contract terms (see, for example,

Matsushima and Noda (2023)).

Following Mezzetti (2003), we adopt perfect Bayesian equilibrium as a solution

concept in extensive games with incomplete information and appeal to the following
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generalized revelation principle, i.e., the counterpart of revelation principle in one-

stage mechanisms.3

Lemma 1 (The Generalized Revelation Principle in Mezzetti (2003)). Any perfect

Bayesian equilibrium outcome of any two-stage mechanism can be implemented as

a perfect Bayesian equilibrium of a generalized revelation mechanism in which

reporting their true allocation payoff in the second stage and reporting their true

type in the first stage is an equilibrium strategy for each player.

From now on, by the generalized revelation principle, we call a generalized

revelation mechanism simply a two-stage mechanism. We denote by (θr1, θ
r
2) the

first-stage report and by (ur1, u
r
2) the second-stage report in a two-stage mecha-

nism, respectively. We next introduce the main properties we want our two-stage

mechanisms to satisfy. We adopt the BIC constraint proposed by Mezzetti (2004).

Definition 1. A two-stage mechanism (Θ,Π, x, t) satisfies Bayesian incentive com-

patibility (BIC) if truth-telling in both stages constitutes an equilibrium strategy

of each agent in a perfect Bayesian equilibrium; that is, for each agent i ∈ {1, 2},
each pair of type profiles (θi, θ−i), (θ

r
i , θ

r
−i) ∈ Θ, and each realized state of the

world ω, the equilibrium second-stage report is uri = ui(x(θ
r
i , θ

r
−i), θi, θ−i, ω) and

the equilibrium first-stage report is θri = θi.

BIC implies that, given the first-stage report, each agent reports their realized

allocation payoff truthfully in the second stage. BIC further implies that, on the

equilibrium path, each agent reports their type truthfully in the first stage and

for any type profile (θi, θ−i) ∈ Θ, ui(x(θi, θ−i), θi, θ−i, ω) is agent i’s true allocation

payoff.

We assume that each agent has the option of not participating in the two-stage

mechanism (Θ,Π, x, t) and let UO
i (θi) be the expected utility of agent i with type

θi from non-participation. To be specific,

UO
1 (θ1) =

∫
Θ2

∫
Ω

ũ1(θ1, θ2;ω)dH (ω|(θ1, θ2)) dF (θ2) for all θ1 ∈ Θ1

and

UO
2 (θ2) = 0 for all θ2 ∈ Θ2.

Note that when contemplating over whether to participate in the mechanism, each

agent is uninformed of the other agent’s type or the residual uncertainty. So, when

3For perfect Bayesian equilibrium, for example, the reader is referred to Osborne and Rubin-

stein (1994, pp.232-233).
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we compute an agent’s expected utility, we should take expectations with respect

to both the other agent’s type and the residual uncertainty. We introduce the

following individual rationality constraint:

Definition 2. A two-stage mechanism (Θ,Π, x, t) satisfies interim individual ra-

tionality (IIR) if, for each agent i ∈ {1, 2} and each θi ∈ Θi,∫
Θ−i

∫
Ω

[ui(x(θi, θ−i), θi, θ−i, ω) + ti(θi, θ−i;ui, u−i)] dH (ω|(θi, θ−i)) dF (θ−i) ≥ UO
i (θi),

where ui = ui(x(θi, θ−i), θi, θ−i, ω) and u−i = u−i(x(θi, θ−i), θi, θ−i, ω).

We further impose the decision efficiency constraint. In two-stage mechanisms,

the efficient decision rule must be based on the “expected” valuations conditional

on the realized type profile.4

Definition 3. A two-stage mechanism (Θ,Π, x, t) satisfies decision efficiency (EFF)

if, for all (θ1, θ2) ∈ Θ,

x(θ1, θ2) =

{
1 if ũe2(θ1, θ2) ≥ ũe1(θ1, θ2);

0 otherwise,

where ũei (θi, θ−i) =
∫
Ω
ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)) is the expected valuation of

agent i conditional on the type profile being (θi, θ−i).

In what follows, we denote by x∗ the efficient decision rule. In the definition

of budget balance below, we require that the total “expected” transfer conditional

on the realized type profile equal zero.5

Definition 4. A two-stage mechanism (Θ,Π, x, t) satisfies budget balance (BB) if,

for all (θ1, θ2) ∈ Θ,
2∑
i=1

tei (θ1, θ2;u1, u2) = 0,

where, for each agent i ∈ {1, 2},

tei (θ1, θ2;u1, u2) =

∫
Ω

ti (θ1, θ2;u1(x(θ1, θ2), θ1, θ2, ω), u2(x(θ1, θ2), θ1, θ2, ω)) dH (ω|(θ1, θ2))

is the expected monetary transfer of agent i conditional on the type profile (θ1, θ2)

when both agents report their type truthfully in both stages.6

4Mezzetti (2004) also introduces the same decision efficiency constraint.
5Mezzetti (2004) uses the same budget balance constraint and says “When the state variable

ω is a random function of the state profile, the budget will not be balanced for all realizations of

ω, but it will be balanced (on average) for all type profiles.”
6In fact, this budget balance can be strengthened to be achieved for all realizations of the

residual uncertainty ω.
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Wemaintain the following assumption imposed on two-stage mechanisms through-

out the paper:

Assumption 0. Each agent’s transfer is determined independently of their own

payoff report in the second stage.7

As a result, the agents are indifferent between reporting their payoffs truth-

fully and lying in the second stage so that they have no incentive to deviate from

the truth-telling in their payoff report in the second stage. Although Assump-

tion 0 sounds a substantial restriction, it is necessary for our BIC constraint to

make sense.8 To see this, we suppose, on the contrary, that agent i’s transfer

depends on his own payoff report in the second stage. Fix the first-stage report

(θri , θ
r
−i) ∈ Θ and the other agent’s second-stage report ur−i ∈ Π−i(θ

r
i , θ

r
−i), and

let ui and u′i be two distinct payoff reports of agent i in the second stage. As-

sume ti(θ
r
i , θ

r
−i;ui, u

r
−i) > ti(θ

r
i , θ

r
−i;u

′
i, u

r
−i) without loss of generality. Then, when

agent i’s true allocation payoff is u′i, he can increase his monetary transfer, thereby

increase his utility, by deviating to ui in the second stage, violating BIC.9

3 The Generalized Shoot-the-Liar Mechanism

In this paper, we explore the existence of two-stage mechanisms satisfying BIC,

IIR, EFF and BB in bilateral trade environments. Even though Mezzetti (2004)

establishes that the generalized two-stage Groves mechanism always satisfies BIC,

EFF and BB in the general mechanism design models, Kunimoto and Zhang (2022)

show by a stylized model of bilateral trade that the generalized two-stage Groves

mechanism violates IIR. We thus seek more positive results by considering the

generalized shoot-the-liar (henceforth, GS) mechanism.

We generalize the shoot-the-liar mechanism proposed in Mezzetti (2007) and

apply it to our bilateral trade model. As the GS mechanism builds on the effi-

7The reader is referred to Jehiel and Moldovanu (2006), who critically examine this assumption

and cast doubt on the real-world applicability of two-stage mechanisms.
8One may conjecture that Assumption 0 can be relaxed if we weakened our notion of BIC.

This is indeed true in Nath and Zoeter (2013), who propose a two-stage mechanism in which

(i) truth-telling in both stages is an ex post Nash equilibrium of the entire game, leading to a

weaker BIC constraint; (ii) reporting the true payoff in the second stage is a strict best-response

for each agent, implying that our Assumption 0 is not satisfied. However, since Assumption 0 is

necessary for our BIC constraint, then truth-telling in both stages in their mechanism does not

constitute part of a perfect Bayesian equilibrium, implying that our BIC constraint is violated.

The reader is referred to Nath and Zoeter (2013) for the discussion of their mechanism.
9See the same argument in Mezzetti (2003, p18).
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cient decision rule, we recall that the efficient decision rule dictates that, for each

(θ1, θ2) ∈ Θ,

x∗(θ1, θ2) =

1 if ũe2(θ1, θ2) ≥ ũe1(θ1, θ2);

0 otherwise,

where ũei (θi, θ−i) =
∫
Ω
ũi(ω)dH (ω|(θi, θ−i)) is the expected valuation of agent i

conditional on the type profile being (θi, θ−i).

Furthermore, for each agent i ∈ {1, 2} and each type profile θ ∈ Θ, we denote

by Π̃i(θ) the set of feasible allocation payoffs of agent i given the type profile θ,

that is,

Π̃i(θ) = {ûi ∈ R : ∃ω ∈ Ω such that h(ω|θ) > 0 and ũi(θ;ω) = ûi}.

To define the generalized shoot-the-liar mechanism below, we introduce the

following notation: Θ∗∗
2 ≡ {θ2 ∈ Θ2 : x

∗(θ1, θ2) = 1 for all θ1 ∈ Θ1} and

θ∗2 =

inf Θ∗∗
2 if Θ∗∗

2 ̸= ∅;

θ if Θ∗∗
2 = ∅.

Definition 5. A two-stage mechanism (Θ,Π, x∗, tGS, ψ) is called the generalized

shoot-the-liar mechanism if, for each type report (θr1, θ
r
2) ∈ Θ and each payoff report

(ur1, u
r
2) ∈ Π1 × Π2,

tGS1 (θr1, θ
r
2;u

r
1, u

r
2) =


ũe2(θ

r
1, θ

r
2) if θr2 /∈ Θ∗∗

2 , x
∗(θr1, θ

r
2) = 1, and ur2 ∈ Π̃2(θ

r
1, θ

r
2);

g(θr1) if θr2 ∈ Θ∗∗
2 , x

∗(θr1, θ
r
2) = 1, and ur2 ∈ Π̃2(θ

r
1, θ

r
2);

−ψ if x∗(θr1, θ
r
2) = 1 and ur2 /∈ Π̃2(θ

r
1, θ

r
2);

0 if x∗(θr1, θ
r
2) = 0,

and

tGS2 (θr1, θ
r
2;u

r
1, u

r
2) =


−ũe2(θr1, θr2) if θr2 /∈ Θ∗∗

2 and x∗(θr1, θ
r
2) = 1;

−g(θr1) if θr2 ∈ Θ∗∗
2 and x∗(θr1, θ

r
2) = 1;

0 if x∗(θr1, θ
r
2) = 0 and ur1 ∈ Π̃1(θ

r
1, θ

r
2);

−ψ if x∗(θr1, θ
r
2) = 0 and ur1 /∈ Π̃1(θ

r
1, θ

r
2),

where ψ is a nonnegative constant (which is determined later), and

g(θr1) =

ũe2(θr1, θ∗2) if
∫
Θ∗∗

2
dF (θ2) = 0;

G(θr1)/
∫
Θ∗∗

2
dF (θ2) if

∫
Θ∗∗

2
dF (θ2) > 0,
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with

G(θr1) = −
∫
Θ∗

2(θ
r
1)\Θ∗∗

2

ũe2(θ
r
1, θ2)dF (θ2) +

∫
Θ∗

2(θ
r
1)

ũe1(θ
r
1, θ2)dF (θ2)

+

∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1), (1)

where for each θr1 ∈ Θ1, Θ
∗
2(θ

r
1) = {θ2 ∈ Θ2 : x

∗(θr1, θ2) = 1}.

In the GS mechanism (Θ,Π, x∗, tGS, ψ), if each agent i reports their true type θi

and true allocation payoff ui = ui(x
∗(θi, θ−i), ω), then the following three properties

are satisfied.

1. x∗(θ1, θ2) = 0 implies tGS1 (θ1, θ2;u1, u2) = tGS2 (θ1, θ2;u1, u2) = 0, i.e., when no

trade occurs, there are no monetary transfers;

2. x∗(θ1, θ2) = 1 and θ2 /∈ Θ∗∗
2 implies tGS1 (θ1, θ2;u1, u2) = −tGS2 (θ1, θ2;u1, u2) =

ũe2(θ1, θ2), i.e., the seller extracts the full surplus; and

3. x∗(θ1, θ2) = 1 and θ2 ∈ Θ∗∗
2 implies tGS1 (θ1, θ2;u1, u2) = −tGS2 (θ1, θ2;u1, u2) =

g(θ1) which is independent of the buyer’s type. Since trade occurs with

probability one whenever the buyer’s reported type is in Θ∗∗
2 , the buyer of

type θ2 ∈ Θ∗∗
2 has no incentive to deviate to type θr2 ∈ Θ∗∗

2 with θr2 ̸= θ2.

Moreover, if
∫
Θ∗∗

2
dF (θ2) = 0, then g(θ1) = ũe2(θ1, θ

∗
2). By the transfer rule

under Θ2\Θ∗∗
2 , this implies that the seller extracts the full surplus. As we

will show in the proof of Claim 1, if
∫
Θ∗∗

2
dF (θ2) > 0, the g(·) function is

designed in such a way that the buyer of type θ2 ∈ Θ∗∗
2 is left with positive

expected surplus.10

The GS mechanism satisfies EFF and BB by its construction. Indeed, since

each agent’s monetary transfer is independent of the residual uncertainty ω, then

budget balance is achieved for each ω ∈ Ω, or equivalently, budget balance is

achieved at the ex post stage. On the other hand, the GS mechanism allows us to

10In contrast, the seller always extracts the full surplus in the shoot-the-liar mechanism pro-

posed by Mezzetti (2007). Moreover, Mezzetti (2007) considers the auction setup and in the

shoot-the-liar mechanism he proposes, the seller plays the role of an outsider whose valuation

is normalized to zero and the seller makes no monetary transfer other than collecting payments

from the buyers. In the GS mechanism we propose, however, the seller has private information

which should be elicited within the mechanism and she is asked to make monetary transfers based

on the reports.
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break the budget off the equilibrium path in the following manner: if trade does

not occur and the seller’s payoff report is not consistent with the first-stage type

reports, then the buyer is punished with the penalty ψ. Similarly, if trade occurs

and the buyer’s payoff report is not consistent with the first-stage type reports,

then the seller is punished with the penalty ψ.

We know from the definition of the GS mechanism that there are two cases:∫
Θ∗∗

2
dF (θ2) = 0 and

∫
Θ∗∗

2
dF (θ2) > 0. We illustrate the working of the g(·) function

in the GS mechanism in the following claim.

Claim 1. When
∫
Θ∗∗

2
dF (θ2) > 0, the g(·) function works as follows:

1. The seller’s IIR constraint is satisfied if, for each θ1 ∈ Θ1, there exist a

nonnegative constant C such that∫
Θ∗∗

2

g(θ1)dF (θ2) = −
∫
Θ∗

2(θ1)\Θ∗∗
2

ũe2(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2) + C,

(2)

where ũei (θi, θ−i) =
∫
Ω
ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)); Θ∗

2(θ1) = {θ2 ∈ Θ2 :

x∗(θ1, θ2) = 1}; and Θ∗∗
2 = {θ2 ∈ Θ2 : x

∗(θ1, θ2) = 1 for all θ1 ∈ Θ1}.

2. The IIR constraint for the buyer of type θ2 ∈ Θ∗∗
2 is satisfied if the constant

C equals the following:

C =

∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1), (3)

where θ∗2 = inf Θ∗∗
2 in this case. Finally, combining (2) and (3), we obtain

the expression of g(·) in the GS mechanism (Θ,Π, x∗, tGS, ψ). Assumption 2,

which will be introduced in Section 5.1, is equivalent to C ≥ 0.

Proof. The proof is in the Appendix.

We further show that the GS mechanism satisfies the following properties.

Proposition 1. We obtain the following result:
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1. When
∫
Θ∗∗

2
dF (θ2) = 0, the GS mechanism (Θ,Π, x∗, tGS, ψ) always satisfies

EFF, BB, and IIR.11

2. When
∫
Θ∗∗

2
dF (θ2) > 0, the GS mechanism (Θ,Π, x∗, tGS, ψ) always satisfies

EFF, BB, and IIR only for the buyer.

Proof. Given that both EFF and BB are already built in the GS mechanism, it

remains to verify that IIR is satisfied when
∫
Θ∗∗

2
dF (θ2) = 0 and that buyer’s

IIR constraint is satisfied when
∫
Θ∗∗

2
dF (θ2) > 0. The rest of the proof is in the

Appendix.

4 When the GS Mechanism satisfies BIC

Whether BIC is satisfied in the GS mechanism depends on whether all the possible

lies in the first stage can be detected and appropriately detered. This exhibits

a contrast with the generalized two-stage Groves mechanism, which satisfies BIC

automatically. In the GS mechanism, the designer detects a lie if, whenever agent

i deviates in the first stage, the good is allocated to agent j ̸= i and agent j’s

reported allocation payoff is not consistent with the first-stage type reports. To

guarantee this detectability, we introduce Assumption 1, which turns out to be

necessary and sufficient for the GS mechanism to satisfy BIC.

4.1 Assumption 1

Consider the GS mechanism with ψ = 0 where the designer imposes zero penalty

off the equilibrium path. We consider such a mechanism with the following reasons:

(i) within the class of the GS mechanisms with ψ ≥ 0, the one with ψ = 0 is most

fragile in the sense that it has the maximum number of profitable deviations; (ii)

if the GS mechanism with ψ > 0 is able to detect all the profitable deviations in

the mechanism with ψ = 0, then it satisfies BIC; and (iii) if the GS mechanism

with ψ > 0 satisfies BIC, it is able to detect all the profitable deviations in the

mechanism with ψ = 0.

To formally define Assumption 1, we develop some useful notation. Since each

agent’s transfer is independent of their own second-stage report, each agent has

11Suppose that in the deterministic model, each agent’s ex post valuation, which is a deter-

ministic function of the type profile, varies as the type profile varies. Then, the GS mechanism

satisfies BIC. Together with Proposition 1, we conclude that the GS mechanism satisfies BIC,

IIR, EFF and BB when
∫
Θ∗∗

2
dF (θ2) = 0 of the deterministic model. Kunimoto and Zhang (2022)

established the same result in a stylized example.
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no incentive to deviate in the second stage. For each agent i ∈ {1, 2} and each

θi, θ
r
i ∈ Θi, we denote by U

ψ0

i (θi; θ
r
i ) the expected utility of agent i of type θi when

agent i reports θri and agent j ̸= i reports their type truthfully in the first stage in

the GS mechanism with ψ = 0. Recall that Π̃j(θ
r
i , θj) denotes the set of feasible

allocation payoffs of agent j ̸= i given the reported type profile (θri , θj), that is,

Π̃j(θ
r
i , θj) = {ûj ∈ R : there exists ω ∈ Ω s.t. h (ω|(θri , θj)) > 0 and ũj(θ

r
i , θj;ω) = ûj}.

We also denote by Ωψ(θi, θj; θ
r
i ) the set of residual uncertainties in which agent j’s

allocation payoff is consistent with the true type profile (θi, θj), but it is inconsistent

with the reported type profile (θri , θj):

Ωψ(θi, θj; θ
r
i ) =

{
ω ∈ Ω : ũj(θi, θj;ω) ∈ Π̃j(θi, θj) but ũj(θi, θj;ω) /∈ Π̃j(θ

r
i , θj)

}
.

We denote by x∗i (θ) the probability that the good is allocated to agent i when

θ is the reported type profile.

Assumption 1. For each agent i ∈ {1, 2} and each pair of types θi, θ
r
i ∈ Θi,

if Uψ0

i (θi; θ
r
i ) > Uψ0

i (θi; θi), then there exists a positive-measure set Θ+
j ⊆ Θj

where j ̸= i such that (i)
∫
Ωψ(θi,θj ;θri )

dH (ω|(θi, θj)) > 0 for all θj ∈ Θ+
j , and (ii)∫

Θ+
j
x∗j(θ

r
i , θj)dF (θj) > 0.

Our Assumption 1 adapts Mezzetti’s (2007) Assumption 1 from the model of

auctions to that of bilateral trade and further extends it from the deterministic

model to the random model.12

Condition (i) in our Assumption 1 implies that Π̃j(θi, θj) ̸= Π̃j(θ
r
i , θj). In

particular, if Π̃j(θi, θj) ∩ Π̃j(θ
r
i , θj) = ∅, then we have Ωψ(θi, θj; θ

r
i ) = Ω. This

further implies
∫
Ωψ(θi,θj ;θri )

dH (ω|(θi, θj)) = 1. Hence, Condition (i) is automatically

satisfied. On the other hand, if Π̃j(θi, θj) ∩ Π̃j(θ
r
i , θj) ̸= ∅, then Condition (i)

requires that the set of residual uncertainties leading to Π̃j(θi, θj)\Π̃j(θ
r
i , θj) must

have nonzero measure in Ω.

To show the lemma below, we introduce the following categories. By the trivial

case, we mean that it is always efficient to trade. We call any other case a nontrivial

case.

12Mezzetti’s Assumption 1 requires that if an agent i of type θi has an incentive to deviate

to θri in the shoot-the-liar mechanism with zero penalty, then there exists a positive-measure set

Θ+
−i ⊆ Θ−i and an agent j ̸= i such that (i) ũe

j(θi, θ−i) ̸= ũe
j(θ

r
i , θ−i) for all θ−i ∈ Θ+

−i, and (ii)∫
Θ+

−i
x∗
j (θ

r
i , θ−i)dF−i(θ−i) > 0.
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Lemma 2. In all nontrivial cases, if Assumption 1 is satisfied and Θ∗∗
2 ̸= ∅, then

θ∗2 = inf Θ∗∗
2 is the unique cutoff point such that∫

Θ1

x∗(θ1, θ2)dF (θ1)

{
< 1 if θ2 < θ∗2;

= 1 if θ2 ≥ θ∗2.

Proof. Consider the buyer of type θ2 /∈ Θ∗∗
2 . The buyer’s expected utility under

truth-telling is ∫
Θ∗

1(θ2)

(ũe2(θ1, θ2)− ũe2(θ1, θ2)) dF (θ1) = 0,

where Θ∗
1(θ2) = {θ1 ∈ Θ1 : x∗(θ1, θ2) = 1}. Note that the expected utility of the

buyer under truth-telling is identical to that in the GS mechanism with ψ = 0,

which is Uψ0

2 (θ2; θ2). On the other hand, if he deviates to θr2 ∈ Θ∗∗
2 , his expected

utility becomes∫
Θ1

(ũe2(θ1, θ2)− g(θ1)) dF (θ1) =

∫
Θ1

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ1),

where the equality follows from the proof of Claim 1 that
∫
Θ1
g(θ1)dF (θ1) =∫

Θ1
ũe2(θ1, θ

∗
2)dF (θ1). Note that the expected utility of the buyer after deviation is

identical to that in the GS mechanism with ψ = 0, which is Uψ0

2 (θ2; θ
r
2). More-

over, note that after the buyer deviates to θr2 ∈ Θ∗∗
2 , the seller is never allocated

the good. Then, according to Assumption 1, Uψ0

2 (θ2; θ2) ≥ Uψ0

2 (θ2; θ
r
2) must hold,

which is equivalent to

0 ≥
∫
Θ1

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ1).

Since the buyer’s expected valuation ũe2(·) is strictly increasing in his own type,

θ2 ≤ θ∗2 must be satisfied. Moreover, since θ2 is an arbitrary type within the

set Θ2\Θ∗∗
2 and θ∗2 = inf Θ∗∗

2 , we obtain that θ∗2 is the unique cutoff such that∫
Θ1
x∗(θ1, θ2)dF (θ1) = 1 whenever θ2 > θ∗2 and

∫
Θ1
x∗(θ1, θ2)dF (θ1) < 1 when

θ2 < θ∗2.

It remains to verify that Θ∗∗
2 is a closed set, which implies θ∗2 ∈ Θ∗∗

2 . If Θ∗∗
2 ̸= ∅

but
∫
Θ∗∗

2
dF (θ2) = 0, then Θ∗∗

2 is a singleton so that it is trivially closed. So, we

assume
∫
Θ∗∗

2
dF (θ2) > 0. Choose a sequence (θn2 )n∈N ⊆ Θ2 such that θn2 ∈ Θ∗∗

2 , i.e.,

θn2 ≥ θ∗2 for each n ∈ N and θn2 → θ∗2 as n→ ∞. Choose θ1 ∈ Θ1 arbitrarily. Since

θn2 ∈ Θ∗∗
2 for each n ∈ N, we have

ũe2(θ1, θ
n
2 ) ≥ ũe1(θ1, θ

n
2 ), ∀n.
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Since we assume that each ũei (·) is differentiable in both θi and θ−i, which implies

that they are also continuous in both θi and θ−i, we have

ũe2(θ1, θ
∗
2) ≥ ũe1(θ1, θ

∗
2).

Since θ1 is chosen arbitrarily, this implies that x∗(θ1, θ
∗
2) = 1 for all θ1 ∈ Θ1. Thus,

θ∗2 ∈ Θ∗∗
2 . This completes the proof.

4.2 The Role of Assumption 1 in the GS Mechanism

We shall show that Assumption 1 is a necessary and sufficient condition for the

GS mechanism to satisfy BIC.

Proposition 2. There exists a threshold ψ∗ > 0 such that the GS mechanism

(Θ,Π, x∗, tGS, ψ) with ψ ≥ ψ∗ satisfies BIC if and only if Assumption 1 is satisfied.

Proof. We first prove the necessity. Suppose on the contrary that Assumption

1 is violated. Then, there exists an agent i and types θi and θri such that (i)

Uψ0

i (θi; θ
r
i ) > Uψ0

i (θi; θi), and (ii) for all subsets Θ+
j ⊆ Θj with positive measure

where j ̸= i, either
∫
Ωψ(θi,θj ;θri )

dH (ω|(θi, θj)) = 0 for all θj ∈ Θ+
j , or

∫
Θ+
j
x∗j(θ

r
i , θj)dF (θj) =

0. If
∫
Ωψ(θi,θj ;θri )

dH (ω|(θi, θj)) = 0 for all θj ∈ Θ+
j , then all allocation payoffs which

are feasible given the true type profile (θi, θj) are also feasible given the deviation

(θri , θj). According to the transfer rule in the GS mechanism, agent i is not pun-

ished. Moreover, if
∫
Θ+
j
x∗j(θ

r
i , θj)dF (θj) = 0, then the good is not allocated to

agent j ̸= i and agent i is not punished, either. As a result, agent i’s expected

utility after deviating to θri is the same as Uψ0

i (θi; θ
r
i ), which is higher than that

under truth-telling. We conclude that if Assumption 1 is violated, the GS mecha-

nism (Θ,Π, x∗, tGS, ψ) violates BIC for any ψ ≥ 0. This completes the proof of the

necessity part.

We next prove the sufficiency of Assumption 1. If Assumption 1 is satisfied,

according to Lemma 2, θ∗2 is the unique cutoff type of the buyer where the expected

trading probabilities differ for types above and below it. Recall that we set θ∗2 = θ

if
∫
Θ1
x∗(θ1, θ2)dF (θ1) < 1 for all θ2 ∈ (θ, θ). Therefore, if Assumption 1 is satisfied,

we can divide the analysis into two cases: Case 1: θ∗2 = θ and Case 2: θ∗2 ∈ (θ, θ). To

have a better understanding of the two cases, we also provide two figures illustrating

the allocation decision at different type profiles. The shaded region represents

Θ∗ = {(θ1, θ2) ∈ Θ : x∗(θ1, θ2) = 1}, which describes the set of possible type profiles

for which it is efficient to trade. In Figure 1, we have
∫
Θ1
x∗(θ1, θ2)dF (θ1) < 1 for

all θ2 < θ. In Figure 2, it is always efficient to trade when θ2 is greater than
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the cutoff type θ∗2. It remains to show that every possible deviation at the first

stage can be detected and punished. We show this by considering Cases 1 and 2,

respectively. The rest of the sufficiency proof is in the Appendix.

Figure 1 Figure 2

4.3 The Canonicality of the GS Mechanism

We first show that if the GS mechanism satisfies BIC, it maximizes the seller’s

ex ante expected utility within the class of all two-stage mechanisms satisfying

BIC, EFF, BB as well as buyer’s IIR. Recall that tei (θi, θ−i;ui, u−i) is the expected

monetary transfer of agent i conditional on the type profile being (θi, θ−i) when

both agents report truthfully in both stages, which is given by∫
Ω

ti (θi, θ−i;ui(x
∗(θi, θ−i), θi, θ−i, ω), u−i(x

∗(θi, θ−i), θi, θ−i, ω)) dH (ω|(θi, θ−i)) .

Proposition 3. Suppose that there exists a threshold ψ∗ > 0 such that the GS

mechanism (Θ,Π, x∗, tGS, ψ) with ψ ≥ ψ∗ satisfies BIC. Then, it maximizes the

seller’s ex ante expected utility among all two-stage mechanisms satisfying BIC,

EFF, BB as well as the buyer’s IIR constraint.

Proof. If Θ∗∗
2 ̸= ∅, then it follows from Proposition 2 and Lemma 2 that θ∗2 = inf Θ∗∗

2

is the unique cutoff point such that∫
Θ1

x∗(θ1, θ2)dF (θ1)

{
< 1 if θ2 < θ∗2;

= 1 if θ2 ≥ θ∗2.

When we compute the seller’s ex ante expected utility, we divide the buyer’s types

into two categories: θ2 < θ∗2 and θ2 ≥ θ∗2. The proof is completed by the following

four steps.
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Step I: In any two-stage mechanism (Θ,Π, x∗, t, ψ) satisfying buyer’s IIR, EFF and

BB, the following inequality holds for the buyer of type θ2 < θ∗2: for all θ2 < θ∗2,∫
Θ1

te1(θ1, θ2;u1, u2)dF (θ1) ≤
∫
Θ∗

1(θ2)

ũe2(θ1, θ2)dF (θ1),

where ũe2(θ1, θ2) =
∫
Ω
ũ2(θ1, θ2;ω)dH (ω|(θ1, θ2)) and Θ∗

1(θ2) = {θ1 ∈ Θ1 : x
∗(θ1, θ2) =

1}.

Proof. Consider the buyer with type θ2 < θ∗2 in a two-stage mechanism (Θ,Π, x∗, t, ψ).

Suppose that both agents report truthfully in both stages. Then, the buyer re-

ceives the following expected utility after participating in the two-stage mechanism

(Θ,Π, x∗, t, ψ): ∫
Θ∗

1(θ2)

ũe2(θ1, θ2)dF (θ1) +

∫
Θ1

te2(θ1, θ2;u1, u2)dF (θ1).

Recall that the buyer’s outside option utility is always zero. Then, the buyer’s IIR

constraint is as follows:∫
Θ∗

1(θ2)

ũe2(θ1, θ2)dF (θ1) +

∫
Θ1

te2(θ1, θ2;u1, u2)dF (θ1) ≥ 0

⇒
∫
Θ1

te2(θ1, θ2;u1, u2)dF (θ1) ≥ −
∫
Θ∗

1(θ2)

ũe2(θ1, θ2)dF (θ1).

Since the two-stage mechanism (Θ,Π, x∗, t, ψ) satisfies BB, for each (θ1, θ2) ∈ Θ,

we have

te2(θ1, θ2;u1, u2) = −te1(θ1, θ2;u1, u2).

Therefore, the buyer’s IIR constraint can be further rewritten as follows:∫
Θ1

te1(θ1, θ2;u1, u2)dF (θ1) ≤
∫
Θ∗

1(θ2)

ũe2(θ1, θ2)dF (θ1).

This completes the proof of Step I.

Step II: In any two-stage mechanism (Θ,Π, x∗, t, ψ) satisfying BIC, EFF, BB and

the buyer’s IIR, there exists ĝ : Θ1 → R such that for all θ1 ∈ Θ1 and all θ2 ≥ θ∗2,

te1(θ1, θ2;u1, u2) = −te2(θ1, θ2;u1, u2) = ĝ(θ1),

and ∫
Θ1

ĝ(θ1)dF (θ1) ≤
∫
Θ1

ũe2(θ1, θ
∗
2)dF (θ1).
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Proof. The proof is in the Appendix.

Step III: In any two-stage mechanism satisfying BIC, EFF, BB as well as the

buyer’s IIR, the seller’s ex ante expected utility is at most as high as the following:∫
Θ1

∫
Θ2

ũe1(θ1, θ2)dF (θ2)dF (θ1) +

∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1), (4)

where ũei (θi, θ−i) =
∫
Ω
ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)) for each agent i ∈ {1, 2}, Θ∗

2(θ1) =

{θ2 ∈ Θ2 : x
∗(θ1, θ2) = 1} for each θ1 ∈ Θ1, and Θ∗∗

2 = [θ∗2, θ].

Proof. The proof is in the Appendix.

Step IV: The seller’s ex ante expected utility in the GS mechanism (Θ,Π, x∗, tGS, ψ)

is identical to the upper bound in (4).

Proof. The proof is in the Appendix.

Therefore, we conclude that the GS mechanism (Θ,Π, x∗, tGS, ψ) maximizes

the seller’s ex ante expected utility among all two-stage mechanisms satisfying

BIC, EFF, BB as well as the buyer’s IIR constraint. This completes the proof of

Proposition 3.

The result below shows that, under Assumption 1, there is no loss of generality

in focusing on the GS mechanism for finding two-stage mechanisms satisfying BIC,

IIR, EFF, and BB.

Theorem 1. Suppose that Assumption 1 holds. If there exists a two-stage mech-

anism that satisfies BIC, EFF, BB, and IIR, then the GS mechanism satisfies the

same properties.

Proof. We know from Proposition 1 that the GS mechanism always satisfies EFF,

BB as well as the buyer’s IIR. It then suffices to verify that the GS mechanism

satisfies BIC and seller’s IIR constraints. Since Assumption 1 holds, it follows from

Proposition 2 that there exists a threshold ψ∗ > 0 such that the GS mechanism

(Θ,Π, x∗, tGS, ψ) with ψ ≥ ψ∗ satisfies BIC. Moreover, by our hypothesis that there

exists a two-stage mechanism satisfies IIR, that mechanism must satisfy the ex ante

individual rationality as well. This together with Proposition 3 further implies that

the GS mechanism must also satisfy the seller’s ex ante individual rationality.
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If both agents report truthfully in both stages, the proof of Step IV of Proposi-

tion 3 allows us to obtain the following ex ante expected utility for the seller after

participating in the GS mechanism (Θ,Π, x∗, tGS, ψ):∫
Θ1

∫
Θ2

UO
1 (θ1)dF (θ2)dF (θ1) +

∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1),

where UO
1 (θ1) denotes the interim outside option utility for the seller of type θ1. Ex

ante individual rationality requires that the following expression be nonnegative:∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1). (5)

Finally, recall in the proof of Claim 1 that the interim expected utility of the seller

of type θ1 after participating in the GS mechanism is

UGS
1 (θ1) = UO

1 (θ1) +

∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1).

Since expression (5) is nonnegative, we conclude that the seller’s interim expected

utility after participating in the GS mechanism is at least as high as that from

her outside option, implying that the seller’s IIR constraint is satisfied in the GS

mechanism. This completes the proof of the theorem.

4.4 Assumption 1 is Satisfied in Example 1

Recall in Example 1 that the residual uncertainty ω is expressed as (ω1, ω2) where

conditional on the type profile, ω1 and ω2 are independently drawn from a uniform

distribution in [−0.1, 0.1], and that each agent i’s valuation function is ũi(θi, θ−i;ω) =

(1 + ωi)(θi + γiθ−i). Then, each agent i’s expected valuation conditional on the

type profile being (θi, θ−i) is given as follows:

ũei (θi, θ−i) =

∫
Ω

ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)) =
∫ 0.1

−0.1

(1+ωi)(θi+γiθ−i)dHi (ωi|(θi, θ−i)) = θi+γiθ−i,

where Hi (ωi|(θi, θ−i)) denotes the conditional cumulative distribution function of

ωi, which is the uniform distribution. Hence, for each type profile (θ1, θ2) ∈ Θ, we

have

ũe2(θ1, θ2)− ũe1(θ1, θ2) = (θ2 + γ2θ1)− (θ1 + γ1θ2) = (1− γ1)θ2 − (1− γ2)θ1,
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implying that the efficient decision rule depends on the values of γ1 and γ2. Since

γ1 < 1 and γ2 < 1, we are left with two cases to consider: (i) 0 < γ2 ≤ γ1 < 1 and

(ii) 0 < γ1 < γ2 < 1. The following two figures (Figures 3 and 4) illustrate the

decision at different type profile in the two cases, respectively; in particular, the

shaded region in each figure represents Θ∗ = {(θ1, θ2) ∈ [0, 1]2 : x∗(θ1, θ2) = 1} in

each case.

Figure 3: when 0 < γ2 ≤ γ1 < 1 Figure 4: when 0 < γ1 < γ2 < 1

It can easily be seen from Figures 3 that
∫
Θ1
x∗(θ1, θ2)dF (θ1) < 1 for all θ2 < θ.

In this case, we define θ∗2 = θ. In Figure 4, we have
∫
Θ1
x∗(θ1, θ2)dF (θ1) < 1

for all θ2 < (1 − γ2)/(1 − γ1) and
∫
Θ1
x∗(θ1, θ2)dF (θ1) = 1 otherwise. Hence,

θ∗2 = inf Θ∗∗
2 = (1− γ2)/(1− γ1) ∈ (θ, θ) in Figure 4. We confirm the following.

Claim 2. Assumption 1 is satisfied in Example 1.

Proof. The proof is in the Appendix.

4.5 When Assumption 1 is Violated

There are some scenarios in which Assumption 1 may well be violated. We pro-

vide two examples. In the first example, there is a large degree of additional

uncertainty in which (i) agent i ∈ {1, 2} of type θi deviates to θri in the first

stage, resulting in a profitable deviation in the GS mechanism with ψ = 0 (i.e.,

Uψ0

i (θi; θ
r
i ) > Uψ0

i (θi; θi)), and (ii) every feasible allocation payoff of the other agent

j ̸= i given the true type profile (θi, θj) is also feasible given the deviation (θri , θj)

(i.e., Π̃j(θi, θj) = Π̃j(θ
r
i , θj)). In other words, Condition (i) in Assumption 1 is

violated. We proceed to the details.

Example 2. Suppose that each agents’ type θi is drawn from the uniform distri-

bution on the unit interval [0, 1]. The residual uncertainty ω is also drawn from the
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unit interval [0, 1]. Let h(·|θ) be the probability density function defined over [0, 1]

conditional on the type profile θ: for each θ ∈ Θ, (i) if θ2 < 0.5, then h(ω|θ) = 1

for all ω ∈ [0, 1]; (ii) if θ2 ≥ 0.5, for any ω ∈ [0, 1],

h (ω|θ) =

{
0.9 if ω < 0.5,

1.1 if ω ≥ 0.5.

Then, we define Ω = [0, 1] as the set of residual uncertainties. Each agent’s

valuation for the object in the type profile θ and residual uncertainty ω is given as

follows:

ũ1(θ;ω) = ω;

ũ2(θ;ω) = θ2 − θ1.

The buyer’s expected valuation is the same across different realizations of ω, while

the seller’s expected valuation varies: for any θ ∈ Θ,

ũe1(θ) =


∫ 1

0
ωdω = 0.5 if θ2 < 0.5;

0.9
∫ 0.5

0
ωdω + 1.1

∫ 1

0.5
ωdω = 0.525 if θ2 ≥ 0.5,

where we consider

0.9

∫ 0.5

0

ωdω + 1.1

∫ 1

0.5

ωdω =

∫ 1

0

ωdω + 0.1

(∫ 1

0.5

ωdω −
∫ 0.5

0

ωdω

)
= 0.525.

It is efficient to trade if and only if ũe2(θ1, θ2) ≥ ũe1(θ1, θ2), which is equivalent to

θ2 ≥ θ1 + 0.525 in this example. Hence, we have that θ∗2 = θ in this example so

that it is always efficient not to trade if θ2 ≤ 0.525.

Claim 3. Condition (i) of Assumption 1 is violated in Example 2.

Proof. We will show that the buyer of type θ2 > 0.525 has an incentive to deviate

to θr2 ∈ (0.525, θ2), but condition (i) of Assumption 1 is violated.

We take two types of the buyer θ
′
2, θ

′′
2 ∈ Θ2 such that θ′′2 > θ′2 > 0.525. Observe

that for each θ1 ∈ Θ1, ũ
e
2(θ1, θ

′′
2)− ũe2(θ1, θ

′
2) = (θ′′2 − θ1)− (θ′2 − θ1) = θ′′2 − θ′2 > 0,

implying that the buyer’s expected valuation is strictly increasing in θ2. Moreover,

if the buyer’s true type is θ′′2 and both agents report truthfully in both stages, the

buyer receives the following expected utility in the GS mechanism with ψ = 0:∫
Θ∗

1(θ
′′
2 )

(ũe2(θ1, θ
′′
2)− ũe2(θ1, θ

′′
2)) dF (θ1) = 0,
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where Θ∗
1(θ

′′
2) = {θ1 ∈ Θ1 : x

∗(θ1, θ
′′
2) = 1}. Note that the buyer’s expected utility

under truth-telling is identical to that in the GS mechanism with ψ = 0, which

is Uψ0

2 (θ′′2 ; θ
′′
2). However, if the buyer of type θ

′′
2 deviates to report θ′2 in the first

stage, his expected utility in the GS mechanism with ψ = 0 becomes∫
Θ∗

1(θ
′
2)

(ũe2(θ1, θ
′′
2)− ũe2(θ1, θ

′
2)) dF (θ1) > 0.

The above inequality follows because ũe2(θ1, θ
′′
2) > ũe2(θ1, θ

′
2) for all θ1 ∈ Θ1 and

Θ∗
1(θ

′
2) ̸= ∅. Note that the expected utility of the buyer after deviation is also

identical to that in the GS mechanism with ψ = 0, which is Uψ0

2 (θ′′2 ; θ
′
2). Then, we

have Uψ0

2 (θ′′2 ; θ
′
2) > Uψ0

2 (θ′′2 ; θ
′′
2), implying that the buyer of type θ′′2 has an incentive

to deviate to θ′2 in the GS mechanism with ψ = 0.

However, in this example, ω can take any value in [0, 1] regardless of the agents’

types, implying that all possible allocation payoffs of the seller are feasible regard-

less of the agents’ types. This exhibits a large degree of payoff uncertainty beyond

the level determined by the type profile. Hence, Condition (i) of Assumption 1 is

violated. This completes the proof.

We next provide another example where Condition (ii) of Assumption 1 is

rather violated.

Example 3. Suppose that each agent i’s type θi is drawn from the uniform dis-

tribution on the unit interval [0, 1]. Conditional on the type profile θ, ω1 and

ω2 are independently drawn from the uniform distribution on the closed interval

[−0.1, 0.1]. Then, we define Ω = {(ω1, ω2)| ω1, ω2 ∈ [−0.1, 0.1]} as the set of resid-

ual uncertainties. Each agent’s valuation for the object when the true type profile

is (θ1, θ2) and the residual uncertainty is ω = (ω1, ω2) ∈ Ω is given as follows:

ũ1(θ1, θ2;ω) = θ1 + 2θ2 + ω1;

ũ2(θ1, θ2;ω) = 0.5 + 2θ1 + θ2 + ω2.

For each type profile (θ1, θ2), we have

ũe2(θ1, θ2)− ũe1(θ1, θ2) = 0.5 + 2θ1 + θ2 − (θ1 + 2θ2) = 0.5 + θ1 − θ2,

implying that it is efficient to trade if and only if θ2 < 0.5 + θ1. In particular, if

θ2 ≤ 0.5, then ũe2(θ1, θ2) − ũe1(θ1, θ2) = 0.5 + θ1 − θ2 ≥ 0 regardless of the seller’s

type, implying that it is always efficient to trade. In the example, Θ∗∗
2 = [0, 0.5]

and θ∗2 = inf Θ∗∗
2 = 0.

Claim 4. Condition (ii) of Assumption 1 is violated in Example 3.
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Proof. We will show that the buyer of type θ2 > 0.5 has an incentive to deviate to

θr2 ≤ 0.5 in the GS mechanism with ψ = 0, but condition (ii) of Assumption 1 is

violated.

Suppose that the buyer’s true type is θ2 > 0.5. If everyone reports truthfully in

both stages, according to the transfer rule in the GS mechanism, the buyer is left

with zero expected utility. Note that the expected utility of the buyer under truth-

telling is identical to that in the GS mechanism with ψ = 0, which is Uψ0

2 (θ2; θ2).

If the buyer deviates to θr2 ≤ 0.5, however, his expected utility becomes∫
Θ1

[ũe2(θ1, θ2)− g(θ1)] dF (θ1) =

∫
Θ1

[ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)] dF (θ1) > 0.

The equality follows because by the proof of Claim 1, we have
∫
Θ1
g(θ1)dF (θ1) =∫

Θ1
ũe2(θ1, θ

∗
2)dF (θ1). The inequality follows because the buyer’s expected valuation

is strictly increasing in his own type and θ2 > θ∗2 = 0. Note that the expected utility

of the buyer after deviation is also identical to that in the GS mechanism with

ψ = 0, which is Uψ0

2 (θ2; θ
r
2). Then, we have U

ψ0

2 (θ2; θ
r
2) > Uψ0

2 (θ2; θ2), implying that

the buyer of type θ2 has an incentive to deviate to θr2 ≤ 0.5 in the GS mechanism

with ψ = 0. However, the good is never allocated to the seller after the buyer

deviates, implying that condition (ii) of Assumption 1 is violated. This completes

the proof.

5 When the GS Mechanism Satisfies IIR

This section is organized as follows. In Section 5.1, we introduce Assumption 2. In

Section 5.2, we show in Theorem 2 that when Assumption 1 holds, there exists a

two-stage mechanism satisfying BIC, IIR, EFF, and BB if and only if Assumption

2 is satisfied.

5.1 A Key Assumption

To have an intuitive account for Assumption 2, we introduce the following termi-

nologies. The ex ante gains from trade over the entire type space Θ equals∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1),

where Θ∗
2(θ1) = {θ2 ∈ Θ2 : x

∗(θ1, θ2) = 1} for each θ1 ∈ Θ1. Recall in the proof of

Proposition 2 that if agents’ reports in both stages are truthful and the buyer has
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type θ2 < θ∗2, then the buyer’s expected utility in the GS mechanism is∫
Θ∗

1(θ2)

(ũe2(θ1, θ2)− ũe2(θ1, θ2)) dF (θ1) = 0,

where Θ∗
1(θ2) = {θ1 ∈ Θ1 : x∗(θ1, θ2) = 1}; on the other hand, if the buyer has

type θ2 ≥ θ∗2, his expected utility becomes∫
Θ1

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ1),

where θ∗2 ∈ (θ, θ] is the cutoff point identified in Lemma 2. As a result, the buyer’s

ex ante expected utility in the GS mechanism equals∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1),

where Θ∗∗
2 = [θ∗2, θ]. We are ready to introduce Assumption 2.

Assumption 2. ∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1) ≥ 0. (6)

Remark: (1) Since the ex ante gains from trade is always nonnegative and the

buyer receives zero expected utility in the GS mechanism if θ∗2 = θ, Assumption 2

is automatically satisfied in Case 1: θ∗2 = θ.

(2) Assumption 2 guarantees that the ex ante gains from trade are split between

the buyer and seller; otherwise, the buyer receives too much gains from trade such

that the seller is worse off after participating in the mechanism, implying that the

seller’s IIR constraint is violated.

5.2 Existence of Desired Two-Stage Mechanisms

First, we show that the GS mechanism satisfies the seller’s IIR constraints if and

only if Assumption 2 is satisfied.

Proposition 4. Suppose that Assumption 1 holds. The GS mechanism (Θ,Π, x∗, tGS, ψ)

satisfies the seller’s IIR constraints if and only if Assumption 2 is satisfied.

Proof. The proof is in the Appendix.

The following is the main result of this section.
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Theorem 2. Suppose that Assumption 1 holds. Then, there exists a two-stage

mechanism satisfying BIC, IIR, EFF and BB if and only if Assumption 2 is satisfied.

Proof. It follows from Proposition 2 that there exists a threshold ψ∗ > 0 such

that the GS mechanism (Θ,Π, x∗, tGS, ψ) with ψ ≥ ψ∗ satisfies BIC if and only if

Assumption 1 is satisfied. The sufficiency part is straightforward, as we know from

Proposition 4 that the GS mechanism (Θ,Π, x∗, tGS, ψ) satisfies IIR if Assumption

2 is satisfied.

To prove the necessity part, we suppose, on the contrary, that Assumption 2

is violated. We have shown in the proof of Proposition 4 that if Assumption 2 is

violated, the GS mechanism (Θ,Π, x∗, tGS, ψ) violates the seller’s ex ante individual

rationality constraint, which is weaker than the seller’s IIR constraint. We know

from Proposition 3 that the GS mechanism maximizes the seller’s ex ante expected

utility among all two-stage mechanisms satisfying BIC, EFF, BB, and the buyer’s

IIR. We thus conclude that there exist no two-stage mechanisms satisfying BIC,

IIR, EFF and BB. This completes the proof of the necessity part.

6 Implications of Assumption 2

To assess the permissiveness of Assumption 2, we provide a set of simulation results

based on Example 1. Recall that we can divide the analysis of Example 1 into two

cases: (i) 0 < γ2 ≤ γ1 < 1 and (ii) 0 < γ1 < γ2 < 1. It follows from Figures 3

and 4 that we have θ∗2 = θ in Case (i) and θ∗2 ∈ (θ, θ) in Case (ii), respectively.

Recall that Assumption 1 is satisfied in Example 1. Then, there always exists a

ψ∗ > 0 such that the GS mechanism (Θ,Π, x∗, tGS, ψ) with ψ ≥ ψ∗ satisfies BIC in

Example 1. Moreover, since Assumption 2 is always satisfied in Case (i): θ∗2 = θ,

we obtain by Proposition 4 that the GS mechanism (Θ,Π, x∗, tGS, ψ) with ψ ≥ ψ∗

satisfies BIC, IIR, EFF and BB in Case (i). Thus, what remains to investigate is

the extent to which there exists a two-stage mechanism satisfying all the desired

properties in Case (ii) 0 < γ1 < γ2 < 1, or equivalently, the extent to which

Assumption 2 is satisfied. In the simulation, we select finitely many values of

γ1 and γ2 satisfying 0 < γ1 < γ2 < 1, that is, γ1 ∈ {0.01, 0.02, · · · , 0.98} and

γ2 ∈ {γ1 + 0.01, γ1 + 0.02, · · · , 0.99} for each γ1. To check whether Assumption 2

is satisfied in Case (ii), we use the following result.

Lemma 3. In Case (ii): θ∗2 ∈ (θ, θ) of Example 1, our Assumption 2 is equivalent

to
1

6

(1− γ2)
2

1− γ1
+

1− γ2
1− γ1

− 1

2

(
1− γ2
1− γ1

)2

+
1

2
(γ2 − γ1 − 1) ≥ 0. (7)
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Proof. The proof is in the Appendix.

This lemma shows that Assumption 2 is reduced to an inequality in terms of

γ1 and γ2. In Figure 5, we track all possible pairs of (γ1, γ2) ∈ (0, 1)2 satisfying

Assumption 2. In particular, the upper triangle in [0, 1]2, i.e., the region where

γ2 > γ1, corresponds to Case (ii). The lightly shaded region describes all pairs of

(γ1, γ2) within this upper triangle for which our Assumption 2 is satisfied. Note

that Assumption 2 is always satisfied for all (γ1, γ2) satisfying 0 < γ1 < γ2 ≤ 0.77.

On the other hand, the lower triangle in the unit square, i.e., the region where

γ2 < γ1 corresponds to Case (i). Since Assumption 2 is always satisfied within this

region, the heavily shaded region describes all pairs of (γ1, γ2) within the lower

triangle for which our Assumption 2 is satisfied.

Therefore, the lightly and heavily shaded regions together characterize the set of

(γ1, γ2) for which our Assumption 2 is satisfied. Since the whole shaded (regardless

of whether lightly or heavily) region spans quite a large part of the unit square, we

conclude that our Assumption 2 can be satisfied in many cases in the example.

Figure 5: Summary of Simulation

7 Discussion

In Subsection 7.1, we discuss how our Assumption 2 can be dropped if we settle

for virtual implementation rather than exact implementation which we pursue in

this paper. In contrast, we show that Assumption 1 is replaced with Assumption

3 if we move from exact to virtual implementation. Subsection 7.2 discusses the

relation with Galavotti, Muto, and Oyama (2011) who consider the problem of

partnership dissolution in a deterministic model with interdependent values. In
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Subsection 7.3, we discuss the relation with Makowski and Mezzetti (1994) who

study the existence of BIC, IIR, EFF and BB “one-stage” mechanisms in general

mechanism design problems with private values.

7.1 Virtual Implementation

We introduce the following metric over allocation rules: for any allocation rules

x, x
′
: Θ → [0, 1], define

d(x, x
′
) = max

θ∈Θ
|x(θ)− x

′
(θ)|.

Let ε ∈ (0, 1). We say that the GS mechanism (Θ,Π, x∗, tGS, ψ) that satisfies

BIC, IIR, EFF, and BB is ε-implementable if there exists an allocation rule xε with

d(xε, x∗) = ε such that the modified GS mechanism (Θ,Π, xε, tGS, ψ) satisfies BIC,

IIR and BB. We further say that the GS mechanism (Θ,Π, x∗, tGS, ψ) is virtually

implementable if, for any ε ∈ (0, 1), it is ε-implementable.

For each θ ∈ Θ, we define xε(θ) = (1 − ε)x∗(θ). By construction, we have

d(xε, x∗) = ε. Throughout the discussion in this section, we use this xε as the

allocation rule which approximates x∗. Given xε, we define Θ∗∗
2,ε = {θ2 ∈ Θ2 :

xε(θ1, θ2) = 1 for all θ1 ∈ Θ1}. Obviously, Θ∗∗
2,ε = ∅ and thus, by the definition

of θ∗2, we set θ∗2 = θ. Taking into account that θ∗2 = θ, we define a two-stage

mechanism (Θ,Π, xε, tε,GS, ψ) as the approximate GS mechanism: for each type

report (θr1, θ
r
2) ∈ Θ and each payoff report (ur1, u

r
2) ∈ Π1 × Π2,

tε,GS1 (θr1, θ
r
2;u

r
1, u

r
2) =



ũe2(θ
r
1, θ

r
2) if xε(θr1, θ

r
2) dictates that the buyer receives the good

after randomization and ur2 ∈ Π̃2(θ
r
1, θ

r
2);

−ψ if xε(θr1, θ
r
2) dictates that the buyer receives the good

after randomization and ur2 /∈ Π̃2(θ
r
1, θ

r
2);

0 if xε(θr1, θ
r
2) dictates that the seller keeps the good

after randomization,

and

tε,GS2 (θr1, θ
r
2;u

r
1, u

r
2) =



−ũe2(θr1, θr2) if xε(θr1, θ
r
2) dictates that the buyer receives the good

after randomization;

0 if xε(θr1, θ
r
2) dictates that the seller keeps the good

after randomization and ur1 ∈ Π̃1(θ
r
1, θ

r
2);

−ψ if xε(θr1, θ
r
2) dictates that the seller keeps the good

after randomization and ur1 /∈ Π̃1(θ
r
1, θ

r
2).
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We introduce the zero-trade mechanism (Θ,Π, x0, t0) as follows:

x0(θr1, θ
r
2) = 0 for all (θr1, θ

r
2) ∈ Θ

and for all (θr1, θ
r
2) ∈ Θ and (ur1, u

r
2) ∈ Π1 × Π2,

t01(θ
r
1, θ

r
2;u

r
1, u

r
2) = 0,

and

t02(θ
r
1, θ

r
2;u

r
1, u

r
2) =

0 if ur1 ∈ Π̃1(θ
r
1, θ

r
2);

−ψ otherwise.

As we argue below, this mechanism will be used to illustrate the relation be-

tween the GS mechanism (Θ,Π, x∗, tGS, ψ) and the approximate GS mechanism

(Θ,Π, xε, tε,GS, ψ).

Claim 5. The approximate GS mechanism (Θ,Π, xε, tε,GS, ψ) is equivalent to the

following random mechanism: the GS mechanism (Θ,Π, x∗, tGS, ψ) is played with

probability 1− ε and the zero-trade mechanism (Θ,Π, x0, t0) is played with prob-

ability ε.

Proof. The proof is in the Appendix.

For each i ∈ {1, 2} and θi, θri ∈ Θi, we denote by U
ε,ψ0

i (θi; θ
r
i ) the expected utility

of agent i of type θi when agent i reports θri and agent j ̸= i reports their type

truthfully in the first stage in the approximate GS mechanism (Θ,Π, xε, tε,GS, ψ0),

where ψ0 = 0. We also denote by xεi (θ) the probability that the good is allocated

to agent i when θ is the reported type profile. Assumption 3 below is stated as

Assumption 1 in verbatim, except that the efficient decision rule x∗ is replaced by

the allocation rule xε.

Assumption 3. For each agent i ∈ {1, 2} and each pair of types θi, θ
r
i ∈ Θi,

if U ε,ψ0

i (θi; θ
r
i ) > U ε,ψ0

i (θi; θi), then there exists a positive-measure set Θ+
j ⊆ Θj

where j ̸= i such that (i)
∫
Ωψ(θi,θj ;θri )

dH (ω|(θi, θj)) > 0 for all θj ∈ Θ+
j , and (ii)∫

Θ+
j
xεj(θ

r
i , θj)dF (θj) > 0.

We establish below that Assumption 3 is a necessary and sufficient condition

for the approximate GS mechanism (Θ,Π, xε, tε,GS, ψ) to satisfy BIC. The proof of

Proposition 5 is completed verbatim in the proof of Proposition 2, except that the

efficient decision rule x∗ is replaced by the allocation rule xε and θ∗2 = θ̄ always

hold under xε. Hence, we omit the proof.
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Proposition 5. There exists a threshold ψ∗
ε > 0 such that the approximate GS

mechanism (Θ,Π, xε, tε,GS, ψ) with ψ ≥ ψ∗
ε satisfies BIC if and only if Assumption

3 is satisfied.

It is easy to show that the approximate GS mechanism (Θ,Π, xε, tε,GS, ψ) always

satisfies IIR.

Claim 6. The approximate GS mechanism (Θ,Π, xε, tε,GS, ψ) always satisfies IIR.

Proof. Consider the seller of type θ1. If both agents report truthfully in both stages,

the seller’s expected utility in the approximate GS mechanism (Θ,Π, xε, tε,GS, ψ)

is computed below:∫
Θ2

[xε(θ1, θ2)ũ
e
2(θ1, θ2) + (1− xε(θ1, θ2)) ũ

e
1(θ1, θ2)] dF (θ2)

=

∫
Θ2

[(1− ε)x∗(θ1, θ2)ũ
e
2(θ1, θ2) + (1− (1− ε)x∗(θ1, θ2)) ũ

e
1(θ1, θ2)] dF (θ2)

=

∫
Θ2

(1− ε)x∗(θ1, θ2) [ũ
e
2(θ1, θ2)− ũe1(θ1, θ2)] dF (θ2) +

∫
Θ2

ũe1(θ1, θ2)dF (θ2)

≥
∫
Θ2

ũe1(θ1, θ2)dF (θ2),

where the inequality follows because x∗(θ1, θ2) = 1 implies ũe2(θ1, θ2) ≥ ũe1(θ1, θ2).

Recall that the seller’s expected utility from the outside option equals
∫
Θ2
ũe1(θ1, θ2)dF (θ2).

Hence, the seller receives a higher expected utility from participation.

Consider the buyer of type θ2. If both agents report truthfully in both stages,

the buyer’s expected utility in the approximate GS mechanism (Θ,Π, xε, tε,GS, ψ)

is computed below:∫
Θ1

xε(θ1, θ2) (ũ
e
2(θ1, θ2)− ũe2(θ1, θ2)) dF (θ1) = 0.

Recall that the buyer receives zero expected utility from his outside option. Hence,

the buyer is indifferent between participating in the mechanism or his outside

option. We conclude that IIR is satisfied. This completes the proof.

Combining Proposition 5 and Claim 6, we obtain the following result.

Proposition 6. The GS mechanism is virtually implementable if and only if As-

sumption 3 holds.

Finally, we establish the following relationship between Assumptions 1 and 3.

Claim 7. The following relationships are established:
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1. Assume
∫
Θ∗∗

2
dF (θ2) = 0. If Assumption 1 holds for x∗, then Assumption 3

holds for xε. However, the converse does not necessarily hold.

2. Assume
∫
Θ∗∗

2
dF (θ2) > 0. Then, Assumption 1 for x∗ neither implies nor is

implied by Assumption 3 for xε.

Proof. The proof is in the Appendix.

We nonetheless stress that Assumption 3 is not a trivial assumption. Recall in

Subsection 4.5 that Assumption 1 is violated in Example 2 because the buyer has

an incentive to deviate in the first stage and all possible allocation payoffs of the

seller are feasible regardless of the agents’ types. Indeed, the same argument can

be extended to virtual implementation to show that Assumption 3 is violated in

Example 2 as well, except that x∗ is replaced by xε.

7.2 The Relation with Galavotti, Muto, and Oyama (2011)

Galavotti, Muto, and Oyama (2011) (hereafter, GMO) consider the problem of ef-

ficient partnership dissolution in a deterministic model with interdependent values.

Their model includes our bilateral trade model as a special case of it. In their The-

orem 4, GMO (2011) provide their Assumption 5.1 under which the shoot-the-liar

mechanism of Mezzetti (2007) satisfies BIC, EFF, BB as well as ex post individual

rationality (EPIR), which is stronger than our IIR, for any ownership structure in

the deterministic model.

Here we restrict our attention to the deterministic version of our Example 1 to

assess the permissiveness of GMO’s (2011) Assumption 5.1. Lemma 6 of Kunimoto

and Zhang (2022) shows that GMO’s (2011) Assumption 5.1 holds if and only if

γ1 = γ2. Therefore, our Assumption 2 is more permissive than GMO’s Assumption

5.1 because, as shown in Figure 5, there are many pairs of (γ1, γ2) in (0, 1)2 for

which the GS mechanism satisfies BIC, IIR, EFF, and BB.

7.3 The Relation with Makowski and Mezzetti (1994)

Makowski and Mezzetti (1994) consider general mechanism design problems in a

deterministic model with private values. In their Theorem 3.1, they show that the

Groves mechanism is canonical in the sense that there exists a mechanism that

satisfies BIC, IIR, EFF, and BB if and only if the ex ante budget deficit generated

by the Groves mechanism be less than or equal to the sum of the maximum charges

one can impose without violating anyone’s IIR constraint.13

13See also Krishna and Perry (2000) and Williams (1999) for the similar results.
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In this paper, we restrict attention to bilateral trade, while we allow for a ran-

dom model with interdependent values and two-stage mechanisms. Kunimoto and

Zhang (2022) show by a stylized model of bilateral trade with interdependent val-

ues that the generalized two-stage Groves mechanism, arguably a natural analogue

of the Groves mechanism, always violates IIR, while the shoot-the-liar mechanism

sometimes satisfies it. Therefore, we cannot extend the canonicality of the Groves

mechanism to our setup. However, we establish in our Theorem 1 that the GS

mechanism, not the two-stage Groves mechanism, is rather canonical in the sense

that, under Assumption 1, if there exists a two-stage mechanism satisfying BIC,

IIR, EFF and BB, the GS mechanism satisfies the same properties. We show in

our Theorem 2 that, when Assumption 1 holds, there exists a BIC, IIR, EFF, BB

mechanism if and only if Assumption 2 is satisfied. Our Assumption 2 requires

that the ex ante gains from trade in the GS mechanism be at least as high as the

buyer’s ex ante expected utility.

8 Conclusion

This paper characterizes the conditions under which efficient, voluntary bilateral

trades are implementable in an interdependent values environment in which agents’

information is ex ante symmetric. Acknowledging some existing impossibility re-

sults by Gresik (1991) and FKM (2003), we obtain more positive results by looking

at two-stage mechanisms proposed by Mezzetti (2004). The main results of this

paper are summarized under Assumption 1: (i) there exists a two-stage mecha-

nism satisfying BIC, EFF, BB, and IIR if and only if the GS mechanism satisfies

BIC, EFF, BB, and IIR; and (ii) the GS mechanism satisfies BIC, EFF, BB, and

IIR if and only if Assumption 2 is satisfied. Therefore, as long as Assumption 1

holds, the GS mechanism is proposed as a canonical two-stage mechanism with

the desired property. We argue by means of examples that there are some sce-

narios in which Assumption 1 holds, whereas there are other scenarios in which

Assumption 1 fails. In the context of Example 1, Assumption 2 is satisfied as long

as the buyer’s degree of interdependence of preferences is not too high relative to

the seller’s counterpart. We also argue by the same example that Assumption 2

is restrictive but can still be satisfied for a large number of cases. By expanding

our scope into two-stage mechanisms, we further push the boundary between when

efficient, voluntary bilateral trades are implementable and when they are not. We

argue that two-stage mechanisms can be justified in situations where two parties in

a bilateral trade setup invite a trusted mediator (a third party) to their contractual
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relationship: the mediator asks both agents to put a large sum of money as a de-

posit in the mediator’s account and the mediator pays back the remaining deposit

to each agent after the two-stage mechanism has played out. Although positive

results of our paper ultimately rely on the plausibility for the use of two-stage

mechanisms, we argue that two-stage mechanisms can sometimes be implemented

through a long-term relationship and/or a smart contract based on the blockchain

technology.

9 Appendix

In the Appendix, we provide the proofs omitted from the main text of the paper.

9.1 Proof of Claim 1

Proof. In this claim, we establish two results, which we call Results 1 and 2, re-

spectively.

Result 1: Suppose
∫
Θ∗∗

2
dF (θ2) > 0. Suppose that for each θ1 ∈ Θ1, there exists

C ≥ 0 such that∫
Θ∗∗

2

g(θ1)dF (θ2) = −
∫
Θ∗

2(θ1)\Θ∗∗
2

ũe2(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2) + C,

where ũei (θi, θ−i) =
∫
Ω
ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)) for each agent i, Θ∗

2(θ1) = {θ2 ∈
Θ2 : x∗(θ1, θ2) = 1} and Θ∗∗

2 = {θ2 ∈ Θ2 : x∗(θ1, θ2) = 1 for all θ1 ∈ Θ1}. Con-

sider the seller of type θ1. Suppose that both agents report truthfully in both

stages. The seller’s interim expected utility after participating in the GS mecha-

nism (Θ,Π, x∗, tGS, ψ), denoted by UGS
1 (θ1), is computed as follows:

UGS
1 (θ1) =

∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ1)\Θ∗∗
2

ũe2(θ1, θ2)dF (θ2) +

∫
Θ∗∗

2

g(θ1)dF (θ2).

Substituting the expression of
∫
Θ∗∗

2
g(θ1)dF (θ2) into U

GS
1 (θ1), we obtain

UGS
1 (θ1) =

∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ1)\Θ∗∗
2

ũe2(θ1, θ2)dF (θ2)

−
∫
Θ∗

2(θ1)\Θ∗∗
2

ũe2(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2) + C.

After rearrangement, we have

UGS
1 (θ1) =

∫
Θ2

ũe1(θ1, θ2)dF (θ2) + C

= UO
1 (θ1) + C

(
∵ UO

1 (θ1) =

∫
Θ2

ũe1(θ1, θ2)dF (θ2)

)
,
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where UO
1 (θ1) denotes the outside option utility of seller of type θ1. Since C ≥ 0,

we conclude that UGS
1 (θ1) ≥ UO

1 (θ1), implying that the seller’s IIR constraint is

satisfied.

Result 2: Suppose
∫
Θ∗∗

2
dF (θ2) > 0. We set

C =

∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1).

Consider the buyer of type θ2 ∈ Θ∗∗
2 . Suppose that both agents report truthfully

in both stages. The buyer’s interim expected utility after participating in the GS

mechanism, denoted by UGS
2 (θ2), is computed as follows:

UGS
2 (θ2) =

∫
Θ1

(ũe2(θ1, θ2)− g(θ1)) dF (θ1).

Substituting the expression of C into the expression of
∫
Θ∗∗

2
g(θ1)dF (θ2), we obtain∫

Θ1

∫
Θ∗∗

2

g(θ1)dF (θ2)dF (θ1)

= −
∫
Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

ũe2(θ1, θ2)dF (θ2)dF (θ1) +

∫
Θ1

∫
Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2)dF (θ1) + C

= −
∫
Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

ũe2(θ1, θ2)dF (θ2)dF (θ1) +

∫
Θ1

∫
Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2)dF (θ1)

+

∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1).

After rearranging terms, we have∫
Θ1

∫
Θ∗∗

2

g(θ1)dF (θ2)dF (θ1)

= −
∫
Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

ũe2(θ1, θ2)dF (θ2)dF (θ1) +

∫
Θ1

∫
Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2)dF (θ1)

+

∫
Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

ũe2(θ1, θ2)dF (θ2)dF (θ1)−
∫
Θ1

∫
Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2)dF (θ1)

+

∫
Θ1

∫
Θ∗∗

2

ũe2(θ1, θ
∗
2)dF (θ2)dF (θ1).
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Noticing that the first four terms are cancelled out, we obtain∫
Θ1

∫
Θ∗∗

2

g(θ1)dF (θ2)dF (θ1) =

∫
Θ1

∫
Θ∗∗

2

ũe2(θ1, θ
∗
2)dF (θ2)dF (θ1)

⇒

(∫
Θ∗∗

2

dF (θ2)

)∫
Θ1

g(θ1)dF (θ1) =

(∫
Θ∗∗

2

dF (θ2)

)∫
Θ1

ũe2(θ1, θ
∗
2)dF (θ1).

Therefore, we obtain∫
Θ1

g(θ1)dF (θ1) =

∫
Θ1

ũe2(θ1, θ
∗
2)dF (θ1).

Substituting this back into UGS
2 (θ2), we obtain

UGS
2 (θ2) =

∫
Θ1

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ1),

which is nonnegative because θ2 ∈ Θ∗∗
2 implies θ2 ≥ θ∗2 = inf Θ∗∗

2 and thus

ũe2(θ1, θ2) − ũe2(θ1, θ
∗
2) ≥ 0 for each θ1 ∈ Θ1. Since the buyer’s outside option

utility is always zero, we conclude that the IIR constraint for the buyer of type

θ2 ∈ Θ∗∗
2 is satisfied. This completes the proof of Claim 1.

9.2 Proof of Proposition 1

Step 1: When
∫
Θ∗∗

2
dF (θ2) = 0, the GS mechanism (Θ,Π, x∗, tGS, ψ) satisfies IIR.

Proof. We first show that IIR is satisfied for the seller. Consider the seller of

type θ1. Recall that if both agents report truthfully and trade occurs, the seller’s

monetary transfer is ũe2(θ1, θ2). Then, the expected utility of the seller under truth-

telling is ∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ1)

ũe2(θ1, θ2)dF (θ2),

where ũei (θi, θ−i) =
∫
Ω
ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)) for each agent i ∈ {1, 2} and

Θ∗
2(θ1) = {θ2 ∈ Θ2 : x

∗(θ1, θ2) = 1}. we claim that this expected utility is at least

as high as the outside option utility. To see this, we compute the difference between
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the seller’s expected utility under truth-telling and her outside option utility:∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ1)

ũe2(θ1, θ2)dF (θ2)−
∫
Θ2

ũe1(θ1, θ2)dF (θ2)

=

∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ1)

ũe2(θ1, θ2)dF (θ2)

−

[∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2)

]
=

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)

≥ 0,

where the weak inequality follows because whenever θ2 ∈ Θ∗
2(θ1), it is efficient

to trade, implying that ũe2(θ1, θ2) − ũe1(θ1, θ2) ≥ 0. We conclude that the seller’s

expected utility by participating in the mechanism is at least as high as that from

the outside option. This implies that IIR is satisfied for the seller.

Consider the buyer of type θ2. Recall that if both agents report truthfully and

trade occurs, the buyer’s monetary transfer is −ũe2(θ1, θ2). Then, the expected

utility of the buyer under truth-telling is∫
Θ∗

1(θ2)

(ũe2(θ1, θ2)− ũe2(θ1, θ2)) dF (θ1) = 0 = UO
2 (θ2),

where Θ∗
1(θ2) = {θ1 ∈ Θ1 : x∗(θ1, θ2) = 1} and UO

2 (θ2) denotes the outside option

utility of the buyer of type θ2. Hence, by participating in the mechanism, the buyer

receives exactly the same expected utility as his outside option utility. We thus

conclude that IIR is satisfied for the buyer. This completes the proof of Step 1.

Step 2: When
∫
Θ∗∗

2
dF (θ2) > 0, the GS mechanism (Θ,Π, x∗, tGS, ψ) satisfies the

buyer’s IIR constraint.

Proof. We show that IIR is satisfied for the buyer. Consider the buyer of type

θ2. If θ2 /∈ Θ∗∗
2 and both agents’ reports are truthful in both stages, the expected

utility of the buyer of type θ2 after participating in the mechanism is∫
Θ∗

1(θ2)

(ũe2(θ1, θ2)− ũe2(θ1, θ2)) dF (θ1) = 0 = UO
2 (θ2),

where UO
2 (θ2) denotes the outside option utility of the buyer of type θ2. Hence, if

θ2 /∈ Θ∗∗
2 , by participating in the mechanism, the buyer receives exactly the same

expected utility as his outside option utility.
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Moreover, it follows from the proof of Claim 1 that the buyer of type θ2 ∈ Θ∗∗
2

receives the following expected utility if both agents’ reports are truthful in both

stages: ∫
Θ1

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ1) ≥ 0 = UO

2 (θ2),

where the inequality follows because θ2 ∈ Θ∗∗
2 implies θ2 ≥ θ∗2 = inf Θ∗∗

2 . We thus

conclude that IIR is satisfied for the buyer. This completes the proof of Step 2.

9.3 Proof of Sufficiency Part of Proposition 2

We divide the proof into two cases: Case 1: θ∗2 = θ and Case 2: θ∗2 ∈ (θ, θ). In

each case, the proof is completed by two steps.

Case 1: θ∗2 = θ, i.e.,
∫
Θ1
x∗(θ1, θ2)dF (θ1) < 1 for all θ2 < θ. In Case 1, we set

ψ∗
1 = max{A1, A2},

where

A1 = sup
θ1∈[θ,θ]

θr1∈{θ̃1:θ̃1∈Θ1 and U
ψ0
1 (θ1;θ̃1)>U

ψ0
1 (θ1;θ1)}

Uψ0

1 (θ1; θ
r
1)− Uψ0

1 (θ1; θ1)∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2)

and

A2 = sup
θ2∈[θ,θ]

θr2∈{θ̃2:θ̃2∈Θ2 and U
ψ0
2 (θ2;θ̃2)>U

ψ0
2 (θ2;θ2)}

Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2)∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1)
,

where Θ∗
2(θ

r
1) = {θ2 ∈ Θ2 : x∗(θr1, θ2) = 1}, Θ∗

1(θ
r
2) = {θ1 ∈ Θ1 : x∗(θ1, θ

r
2) = 1},

and Uψ0

i (θi; θ
r
i ) is the expected utility of agent i when agent i has type θi and

reports θri in the GS mechanism with ψ = 0 (which will be clarified in the proof

later).

There are two steps to be checked in this case.

Step 1-1: If the buyer always reports the truth in the first stage, the seller has no

incentive to tell a lie in the first stage in the GS mechanism with ψ ≥ ψ∗
1.

Proof. Consider the seller of type θ1. Recall that if both agents report truthfully

in both stages, the expected utility of the seller of type θ1 after participating in

the mechanism is∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ1)

ũe2(θ1, θ2)dF (θ2),
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where ũei (θi, θ−i) =
∫
Ω
ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)) for each agent i ∈ {1, 2} and

each type profile (θi, θ−i) ∈ Θ, and Θ∗
2(θ1) = {θ2 ∈ Θ2 : x

∗(θ1, θ2) = 1}. Note that

the expected utility of the seller under truth-telling is identical to that in the GS

mechanism with ψ = 0, which is Uψ0

1 (θ1; θ1). On the other hand, if trade occurs

after the seller deviates to θr1 ̸= θ1 and the buyer’s allocation payoff report cannot

occur given the type profile (θr1, θ2), then the seller must pay a penalty ψ according

to the transfer rule tGS1 . Therefore, the expected utility of the seller of type θ1

becomes∫
Θ2\Θ∗

2(θ
r
1)

ũe1(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ
r
1)

ũe2(θ
r
1, θ2)

[
1−

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2))

]
dF (θ2)

−ψ
∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2),

where Ωψ(θ1, θ2; θ
r
1) =

{
ω ∈ Ω : ũ2(θ1, θ2;ω) ∈ Π̃2(θ1, θ2) but ũ2(θ1, θ2;ω) /∈ Π̃2(θ

r
1, θ2)

}
,

Π̃2(θ
r
1, θ2) = {û2 ∈ R : there exists a ω ∈ Ω such that h (ω|(θr1, θ2)) > 0 and ũ2(θ

r
1, θ2;ω) =

û2}, and h (ω|(θr1, θ2)) is the probability density function of the residual uncertainty

ω conditional on the type profile being (θr1, θ2). Note that the expected utility of

the seller after deviation can be rewritten as follows:

Uψ0

1 (θ1; θ
r
1)− ψ

∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2), (8)

where

Uψ0

1 (θ1; θ
r
1) =

∫
Θ2\Θ∗

2(θ
r
1)

ũe1(θ1, θ2)dF (θ2)+

∫
Θ∗

2(θ
r
1)

ũe2(θ
r
1, θ2)

[
1−

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2))

]
dF (θ2)

is the expected utility of the seller after deviating to θr1 in the GS mechanism with

ψ = 0.

If Uψ0

1 (θ1; θ1) ≥ Uψ0

1 (θ1; θ
r
1), the deviation is not profitable. If Uψ0

1 (θ1; θ1) <

Uψ0

1 (θ1; θ
r
1), then, by Assumption 1, there exists a positive-measure set Θ+

2 ⊆ Θ2

such that (i)
∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) > 0 for all θ2 ∈ Θ+
2 , and (ii)

∫
Θ+

2
x∗2(θ

r
1, θ2)dF (θ2) >

0 where x∗2(θ
r
1, θ2) denotes the probability that the good is allocated to the buyer

after the type report (θr1, θ2). As a result, the opposite of the coefficient of ψ in

(8),
∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2), is strictly positive.

Since ψ ≥ ψ∗
1 = max{A1, A2} where

A1 = sup
θ1∈[θ,θ]

θr1∈{θ̃1:θ̃1∈Θ1 and U
ψ0
1 (θ1;θ̃1)>U

ψ0
1 (θ1;θ1)}

Uψ0

1 (θ1; θ
r
1)− Uψ0

1 (θ1; θ1)∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2)
,

41



we obtain that, for each θ1, θ
r
1 ∈ Θ1 such that Uψ0

1 (θ1; θ
r
1) > Uψ0

1 (θ1; θ1),

ψ ≥ Uψ0

1 (θ1; θ
r
1)− Uψ0

1 (θ1; θ1)∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2)

⇒ ψ

∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2) ≥ Uψ0

1 (θ1; θ
r
1)− Uψ0

1 (θ1; θ1),

because the denominator is strictly positive. Then, we can compare the seller’s

expected utility under truth-telling and that after deviation:

Uψ0

1 (θ1; θ
r
1)− ψ

∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2)

≤ Uψ0

1 (θ1; θ
r
1)− Uψ0

1 (θ1; θ
r
1) + Uψ0

1 (θ1; θ1)

= Uψ0

1 (θ1; θ1),

implying that the expected utility of the seller after deviating to θr1 is at most as

high as that under truth-telling. Therefore, the seller has no incentive to deviate

to θr1 in the GS mechanism with ψ ≥ ψ∗
1. This completes the proof of Step 1-1.

Step 1-2: If the seller always reports the truth in the first stage, the buyer has no

incentive to tell a lie in the first stage in the GS mechanism with ψ ≥ ψ∗
1.

Proof. Consider the buyer of type θ2. Recall that if both agents report truthfully in

both stages, the expected utility of the buyer after participating in the mechanism

is ∫
Θ∗

1(θ2)

(ũe2(θ1, θ2)− ũe2(θ1, θ2)) dF (θ1) = 0,

where ũe2(θ1, θ2) =
∫
Ω
ũ2(θ1, θ2;ω)dH (ω|(θ1, θ2)) and Θ∗

1(θ2) = {θ1 ∈ Θ1 : x
∗(θ1, θ2) =

1}. Note that the expected utility of the buyer under truth-telling is identical to

that in the GS mechanism with ψ = 0, which is Uψ0

2 (θ2; θ2). On the other hand,

if no trade occurs after the buyer of type θ2 deviates to θr2 ̸= θ2 and the seller’s

allocation payoff report is not consistent with the type profile (θ1, θ
r
2), then the

buyer must pay a penalty ψ according to the transfer rule tGS2 . Therefore, the

expected utility of the buyer of type θ2 becomes∫
Θ∗

1(θ
r
2)

(ũe2(θ1, θ2)− ũe2(θ1, θ
r
2)) dF (θ1)− ψ

∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1),

where Ωψ(θ2, θ1; θ
r
2) =

{
ω ∈ Ω : ũ1(θ1, θ2;ω) ∈ Π̃1(θ1, θ2) but ũ1(θ1, θ2;ω) /∈ Π̃1(θ1, θ

r
2)
}
,

Π̃1(θ1, θ
r
2) = {û1 ∈ R : there exists a ω ∈ Ω such that h (ω|(θ1, θr2)) > 0 and ũ1(θ1, θ

r
2;ω) =
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û1}, and h (ω|(θ1, θr2)) is the probability density function of the residual uncertainty

ω conditional on the type profile being (θ1, θ
r
2). Note that the expected utility of

the buyer after deviation can be rewritten as follows:

Uψ0

2 (θ2; θ
r
2)− ψ

∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1), (9)

where Uψ0

2 (θ2; θ
r
2) =

∫
Θ∗

1(θ
r
2)
(ũe2(θ1, θ2)− ũe2(θ1, θ

r
2)) dF (θ1) is the expected utility of

the buyer after deviating to θr2 in the GS mechanism with ψ = 0.

If Uψ0

2 (θ2; θ2) ≥ Uψ0

2 (θ2; θ
r
2), the deviation is not profitable. If Uψ0

2 (θ2; θ2) <

Uψ0

2 (θ2; θ
r
2), then, by Assumption 1, there exists a positive-measure set Θ+

1 ⊆ Θ1

such that (i)
∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) > 0 for all θ1 ∈ Θ+
1 , and (ii)

∫
Θ+

1
x∗1(θ1, θ

r
2)dF (θ1) >

0, where x∗1(θ1, θ
r
2) denotes the probability that the seller keeps the good after the

type report (θ1, θ
r
2). In other words, the opposite of the coefficient of ψ in (9) is

strictly positive, i.e.,
∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1) > 0.

Since ψ ≥ ψ∗
1 = max{A1, A2} where

A2 = sup
θ2∈[θ,θ]

θr2∈{θ̃2:θ̃2∈Θ2 and U
ψ0
2 (θ2;θ̃2)>U

ψ0
2 (θ2;θ2)}

Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2)∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1)
,

we obtain that, for each θ2, θ
r
2 ∈ Θ2 such that Uψ0

2 (θ2; θ
r
2) > Uψ0

2 (θ2; θ2),

ψ ≥ Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2)∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1)

⇒ ψ

∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1) ≥ Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2),

because the denominator is strictly positive. Then, we can compare the buyer’s

expected utility under truth-telling and that after deviation:

Uψ0

2 (θ2; θ
r
2)− ψ

∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1)

≤ Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ
r
2) + Uψ0

2 (θ2; θ2)

= Uψ0

2 (θ2; θ2),

implying that the expected utility of the buyer after deviating to θr2 is at most as

high as that under truth-telling. Therefore, the buyer has no incentive to deviate

to θr2 in the GS mechanism with ψ ≥ ψ∗
1. This completes the proof of Step 1-2.

We complete the proof for Case 1 and next proceed to Case 2.
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Case 2: θ∗2 ∈ (θ, θ) such that for any θ2 ∈ Θ2,∫
Θ1

x∗(θ1, θ2)dF (θ1)

{
< 1 if θ2 < θ∗2
= 1 if θ2 ≥ θ∗2.

In Case 2, we set

ψ∗
2 = max{B1, B2},

where

B1 = sup
θ1∈[θ,θ]

θr1∈{θ̃1:θ̃1∈Θ1 and U
ψ0
1 (θ1;θ̃1)>U

ψ0
1 (θ1;θ1)}

Uψ0

1 (θ1; θ
r
1)− Uψ0

1 (θ1; θ1)∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2)

and

B2 = sup
θ2∈[θ,θ]

θr2∈{θ̃2:θ̃2∈Θ2 and U
ψ0
2 (θ2;θ̃2)>U

ψ0
2 (θ2;θ2)}

Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2)∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1)
.

Since the transfer rule varies across the cutoff θ∗2, the agents’ expected utility in

the GS mechanism with ψ = 0 in Case 2 is different from that in Case 1, implying

that B1 and B2 are different from A1 and A2, respectively. There are two steps to

be checked in this case as well.

Step 2-1: If the buyer always reports the truth in the first stage, the seller has no

incentive to tell a lie in the first stage in the GS mechanism with ψ ≥ ψ∗
2.

Proof. Consider the seller of type θ1. Recall in the proof of Claim 1 that the seller

receives the following expected utility under truth-telling in Case 2:∫
Θ2

ũe1(θ1, θ2)dF (θ2) +

∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1),

where ũei (θi, θ−i) =
∫
Ω
ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)) and Θ∗

2(θ1) = {θ2 ∈ Θ2 : x
∗(θ1, θ2) =

1}, Θ∗∗
2 = [θ∗2, θ]. Note that the expected utility of the seller under truth-telling

is identical to that in the GS mechanism with ψ = 0, which is Uψ0

1 (θ1; θ1). On

the other hand, if trade occurs after the seller deviates to θr1 ̸= θ1 and the buyer’s

allocation payoff report is not consistent with the first-stage type reports (θr1, θ2),

the seller must pay a penalty ψ according to the transfer rule tGS1 . Therefore, the

expected utility of the seller of type θ1 when announcing θr1 becomes∫
Θ2\Θ∗

2(θ
r
1)

ũe1(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ
r
1)\Θ∗∗

2

ũe2(θ
r
1, θ2)

[
1−

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2))

]
dF (θ2)

+

∫
Θ∗∗

2

g(θr1)

[
1−

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2))

]
dF (θ2)− ψ

∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2),
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where Ωψ(θ1, θ2; θ
r
1) =

{
ω ∈ Ω : ũ2(θ1, θ2;ω) ∈ Π̃2(θ1, θ2) but ũ2(θ1, θ2;ω) /∈ Π̃2(θ

r
1, θ2)

}
,

Π̃2(θ
r
1, θ2) = {û2 ∈ R : there exists a ω ∈ Ω such that h (ω|(θr1, θ2)) > 0 and ũ2(θ

r
1, θ2;ω) =

û2}, and h (ω|(θr1, θ2)) is the probability density function of the residual uncertainty

ω conditional on the type profile being (θr1, θ2). Note that the expected utility of

the seller after deviation can be rewritten as follows:

Uψ0

1 (θ1; θ
r
1)− ψ

∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2), (10)

where

Uψ0

1 (θ1; θ
r
1) =

∫
Θ2\Θ∗

2(θ
r
1)

ũe1(θ1, θ2)dF (θ2) +

∫
Θ∗

2(θ
r
1)\Θ∗∗

2

ũe2(θ
r
1, θ2)

[
1−

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2))

]
dF (θ2)

+

∫
Θ∗∗

2

g(θr1)

[
1−

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2))

]
dF (θ2)

is the expected utility of the seller after deviating to θr1 in the GS mechanism with

ψ = 0.

If Uψ0

1 (θ1; θ1) ≥ Uψ0

1 (θ1; θ
r
1), the deviation is not profitable. If Uψ0

1 (θ1; θ1) <

Uψ0

1 (θ1; θ
r
1), then, by Assumption 1, there exists a positive-measure set Θ+

2 ⊆ Θ2

such that (i)
∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) > 0 for all θ2 ∈ Θ+
2 , and (ii)

∫
Θ+

2
x∗2(θ

r
1, θ2)dF (θ2) >

0. In other words, the opposite of the coefficient of ψ in (10) is strictly positive,

i.e.,
∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2) > 0.

Since ψ ≥ ψ∗
2 = max{B1, B2} where

B1 = sup
θ1∈[θ,θ]

θr1∈{θ̃1:θ̃1∈Θ1 and U
ψ0
1 (θ1;θ̃1)>U

ψ0
1 (θ1;θ1)}

Uψ0

1 (θ1; θ
r
1)− Uψ0

1 (θ1; θ1)∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2)
,

we obtain that, for each θ1, θ
r
1 ∈ Θ1 such that Uψ0

1 (θ1; θ
r
1) > Uψ0

1 (θ1; θ1),

ψ ≥ Uψ0

1 (θ1; θ
r
1)− Uψ0

1 (θ1; θ1)∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2)

⇒ ψ

∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2) ≥ Uψ0

1 (θ1; θ
r
1)− Uψ0

1 (θ1; θ1),

because the denominator is strictly positive. Then, we can compare the seller’s

expected utility under truth-telling and that after deviation:

Uψ0

1 (θ1; θ
r
1)− ψ

∫
Θ∗

2(θ
r
1)

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) dF (θ2)

≤ Uψ0

1 (θ1; θ
r
1)− Uψ0

1 (θ1; θ
r
1) + Uψ0

1 (θ1; θ1)

= Uψ0

1 (θ1; θ1),
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implying that the expected utility of the seller after deviating to θr1 is at most as

high as that under truth-telling. Therefore, the seller has no incentive to deviate

to θr1 in the GS mechanism with ψ ≥ ψ∗
2. This completes the proof of Step 2-1.

Step 2-2: If the seller always reports the truth in the first stage, the buyer has no

incentive to tell a lie in the first stage in the GS mechanism with ψ ≥ ψ∗
2.

Proof. There are two subcases we shall consider.

1. Consider the buyer of type θ2 < θ∗2. Then, the buyer’s expected utility under

truth-telling is ∫
Θ∗

1(θ2)

(ũe2(θ1, θ2)− ũe2(θ1, θ2)) dF (θ1) = 0,

where ũe2(θ1, θ2) =
∫
Ω
ũ2(θ1, θ2;ω)dH (ω|(θ1, θ2)) and Θ∗

1(θ2) = {θ1 ∈ Θ1 :

x∗(θ1, θ2) = 1}. Note that the expected utility of the buyer under truth-

telling is identical to that in the GS mechanism with ψ = 0, which is

Uψ0

2 (θ2; θ2). On the other hand, if no trade occurs after the buyer of type

θ2 deviates to θr2 < θ∗2 and the seller’s allocation payoff report cannot occur

given the first-stage type reports (θ1, θ
r
2), then the buyer must pay a penalty

ψ according to the transfer rule tGS2 . Therefore, the expected utility of the

buyer of type θ2 when announcing θr2 becomes∫
Θ∗

1(θ
r
2)

(ũe2(θ1, θ2)− ũe2(θ1, θ
r
2)) dF (θ1)− ψ

∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1),

where Ωψ(θ2, θ1; θ
r
2) =

{
ω ∈ Ω : ũ1(θ1, θ2;ω) ∈ Π̃1(θ1, θ2) but ũ1(θ1, θ2;ω) /∈ Π̃1(θ1, θ

r
2)
}
,

Π̃1(θ1, θ
r
2) = {û1 ∈ R : there exists a ω ∈ Ω such that h (ω|(θ1, θr2)) >

0 and ũ1(θ1, θ
r
2;ω) = û1}, and h (ω|(θ1, θr2)) is the probability density function

of the residual uncertainty ω conditional on the type profile being (θ1, θ
r
2).

Note that the expected utility of the buyer after deviation can be rewritten

as follows:

Uψ0

2 (θ2; θ
r
2)− ψ

∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1), (11)

where Uψ0

2 (θ2; θ
r
2) =

∫
Θ∗

1(θ
r
2)
(ũe2(θ1, θ2)− ũe2(θ1, θ

r
2)) dF (θ1) is the expected

utility of the buyer after deviating to θr2 < θ∗2 in the GS mechanism with

ψ = 0.

If Uψ0

2 (θ2; θ2) ≥ Uψ0

2 (θ2; θ
r
2), the deviation is not profitable. If Uψ0

2 (θ2; θ2) <

Uψ0

2 (θ2; θ
r
2), then, by Assumption 1, there exists a positive-measure set Θ+

1 ⊆
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Θ1 such that (i)
∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) > 0 for all θ1 ∈ Θ+
1 , and (ii)∫

Θ+
1
x∗1(θ1, θ

r
2)dF (θ1) > 0. In other words, the opposite of the coefficient of ψ

in (11) is strictly positive, i.e.,∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1) > 0.

Since ψ ≥ ψ∗
2 = max{B1, B2} where

B2 = sup
θ2∈[θ,θ]

θr2∈{θ̃2:θ̃2∈Θ2 and U
ψ0
2 (θ2;θ̃2)>U

ψ0
2 (θ2;θ2)}

Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2)∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1)
,

we obtain that, for each θ2, θ
r
2 ∈ [θ, θ∗2) such that Uψ0

2 (θ2; θ
r
2) > Uψ0

2 (θ2; θ2),

ψ ≥ Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2)∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1)

⇒ ψ

∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1) ≥ Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2),

because the denominator is strictly positive. Then, we can compare the

buyer’s expected utility under truth-telling and that after deviation:

Uψ0

2 (θ2; θ
r
2)− ψ

∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1)

≤ Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ
r
2) + Uψ0

2 (θ2; θ2)

= Uψ0

2 (θ2; θ2),

implying that the expected utility of the buyer after deviating to θr2 is at most

as high as that under truth-telling. Therefore, the buyer has no incentive to

deviate to θr2 < θ∗2 in the GS mechanism with ψ ≥ ψ∗
2.

Moreover, if the buyer deviates to θr2 ≥ θ∗2, trade always occurs and the

expected utility of the buyer of type θ2 when announcing θr2 becomes∫
Θ1

(ũe2(θ1, θ2)− g(θ1)) dF (θ1) =

∫
Θ1

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ1) < 0.

The equality follows because by the proof of Claim 1, we have
∫
Θ1
g(θ1)dF (θ1) =∫

Θ1
ũe2(θ1, θ

∗
2)dF (θ1). The inequality follows because θ2 < θ∗2 implies ũe2(θ1, θ2) <

ũe2(θ1, θ
∗
2) for all θ1 ∈ Θ1. Recall that the buyer of type θ2 < θ∗2 always re-

ceives zero expected utility under truth-telling. Therefore, the buyer is never

better off after a deviation to θr2 ≥ θ∗2 so that he has no incentive to deviate

from truth-telling to θr2 ≥ θ∗2.

47



2. Consider the buyer of type θ2 ≥ θ∗2. In this case, it is always efficient to trade

the good regardless of the seller’s type. Therefore, the expected utility of the

buyer of type θ2 under truth-telling is∫
Θ1

(ũe2(θ1, θ2)− g(θ1)) dF (θ1) =

∫
Θ1

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ1).

The equality follows because by the proof of Claim 1, we have
∫
Θ1
g(θ1)dF (θ1) =∫

Θ1
ũe2(θ1, θ

∗
2)dF (θ1). On the other hand, if the buyer deviates to θr2 ̸= θ2 such

that θr2 ≥ θ∗2, then trade still occurs with probability one regardless of the

seller’s type. Thus, the expected utility of the buyer of type θ2 after deviating

to θr2 is ∫
Θ1

(ũe2(θ1, θ2)− g(θ1)) dF (θ1),

which is the same as the expected utility under truth-telling. Therefore, the

buyer of type θ2 ≥ θ∗2 has no incentive to deviate to θr2 ≥ θ∗2.

Moreover, if trade does not occur after the buyer of type θ2 deviates to θ
r
2 < θ∗2

and the seller’s allocation payoff report cannot occur given the first-stage type

reports (θ1, θ
r
2), the buyer must pay a penalty ψ according to the transfer rule

tGS2 . Therefore, the expected utility of the buyer of type θ2 when announcing

θr2 becomes∫
Θ∗

1(θ
r
2)

(ũe2(θ1, θ2)− ũe2(θ1, θ
r
2)) dF (θ1)− ψ

∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1).

Note that the expected utility of the buyer after deviation can be rewritten

as follows:

Uψ0

2 (θ2; θ
r
2)− ψ

∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1), (12)

where Uψ0

2 (θ2; θ
r
2) =

∫
Θ∗

1(θ
r
2)
(ũe2(θ1, θ2)− ũe2(θ1, θ

r
2)) dF (θ1) is the expected

utility of the buyer after deviating to θr2 < θ∗2 in the GS mechanism with

ψ = 0.

If Uψ0

2 (θ2; θ2) ≥ Uψ0

2 (θ2; θ
r
2), the deviation is not profitable. If Uψ0

2 (θ2; θ2) <

Uψ0

2 (θ2; θ
r
2), then, by Assumption 1, there exists a positive-measure set Θ+

1 ⊆
Θ1 such that (i)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) > 0 for all θ1 ∈ Θ+
1 , and (ii)∫

Θ+
1
x∗1(θ1, θ

r
2)dF (θ1) > 0. In other words, the opposite of the coefficient of ψ

in (12), ∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1),
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is strictly positive.

Since ψ ≥ ψ∗
2 = max{B1, B2} where

B2 = sup
θ2∈[θ,θ]

θr2∈{θ̃2:θ̃2∈Θ2 and U
ψ0
2 (θ2;θ̃2)>U

ψ0
2 (θ2;θ2)}

Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2)∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1)
,

we obtain that, for each θ2 ≥ θ∗2 and each θr2 < θ∗2 such that Uψ0

2 (θ2; θ
r
2) >

Uψ0

2 (θ2; θ2),

ψ ≥ Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2)∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1)

⇒ ψ

∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1) ≥ Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2),

because the denominator is strictly positive. Then, we can compare the

buyer’s expected utility under truth-telling and that after deviation:

Uψ0

2 (θ2; θ
r
2)− ψ

∫
Θ1\Θ∗

1(θ
r
2)

∫
Ωψ(θ2,θ1;θr2)

dH (ω|(θ1, θ2)) dF (θ1)

≤ Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ
r
2) + Uψ0

2 (θ2; θ2)

= Uψ0

2 (θ2; θ2),

implying that the expected utility of the buyer after deviating to θr2 is at most

as high as that under truth-telling. Therefore, the buyer has no incentive to

deviate to θr2 < θ∗2 in the GS mechanism with ψ ≥ ψ∗
2. This completes the

proof of Step 2-2.

Set ψ∗ = max{ψ∗
1, ψ

∗
2}. Then, the GS mechanism with ψ ≥ ψ∗ satisfies BIC.

This completes the proof of the sufficiency part.

9.4 Proof of Proposition 3

9.4.1 Proof of Step II

Proof. We establish two results here. We first show that in any two-stage mech-

anism (Θ,Π, x∗, t, ψ) satisfying BIC, EFF, and BB, there exists ĝ : Θ1 → R such

that for all θ1 ∈ Θ1 and all θ2 ≥ θ∗2,

te1(θ1, θ2;u1, u2) = −te2(θ1, θ2;u1, u2) = ĝ(θ1),
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where, for each agent i ∈ {1, 2}, tei (θi, θ−i;ui, u−i) is the expected monetary transfer

of agent i conditional on the type profile being (θi, θ−i) when both agents report

truthfully in both stages. It is given by∫
Ω

ti (θi, θ−i;ui(x
∗(θi, θ−i), θi, θ−i, ω), u−i(x

∗(θi, θ−i), θi, θ−i, ω)) dH (ω|(θi, θ−i)) .

Consider θ2, θ
′
2 ∈ Θ2 such that θ2 > θ′2 ≥ θ∗2. By Assumption 0, we know that each

agent has no incentive to deviate from the truth-telling in their payoff report in the

second stage. Suppose that the seller always reports her true type in the first stage.

If the buyer of type θ2 reports his type truthfully in the first stage, then it is always

efficient to trade and his allocation payoff is u2(x
∗(θ1, θ2), θ1, θ2, ω) = ũ2(θ1, θ2;ω).

On the other hand, if he deviates to θ′2 in the first stage, then trade still occurs

with probability one and the buyer’s allocation payoff is u2(x
∗(θ1, θ

′
2), θ1, θ2, ω) =

ũ2(θ1, θ2;ω). Since trade always occurs in both cases, the seller’s allocation payoff

is zero. Thus, to stop the buyer of type θ2 from deviating to θ′2 in the first stage,

the following BIC constraint must be satisfied:∫
Θ1

ũe2(θ1, θ2)dF (θ1) +

∫
Θ1

te2 (θ1, θ2; 0, ũ2(θ1, θ2;ω)) dF (θ1)

≥
∫
Θ1

ũe2(θ1, θ2)dF (θ1) +

∫
Θ1

∫
Ω

t2 (θ1, θ
′
2; 0, ũ2(θ1, θ2;ω)) dH (ω|(θ1, θ2)) dF (θ1)

⇒
∫
Θ1

te2 (θ1, θ2; 0, ũ2(θ1, θ2;ω)) dF (θ1) ≥
∫
Θ1

∫
Ω

t2 (θ1, θ
′
2; 0, ũ2(θ1, θ2;ω)) dH (ω|(θ1, θ2)) dF (θ1),

where ũe2(θ1, θ2) =
∫
Ω
ũ2(θ1, θ2;ω)dH (ω|(θ1, θ2)) and

te2 (θ1, θ2; 0, ũ2(θ1, θ2;ω)) =

∫
Ω

t2 (θ1, θ2; 0, ũ2(θ1, θ2;ω)) dH (ω|(θ1, θ2)) .

Analogously, to stop the buyer of type θ′2 from deviating to θ2, the following

BIC constraint must be satisfied:∫
Θ1

ũe2(θ1, θ
′
2)dF (θ1) +

∫
Θ1

te2 (θ1, θ
′
2; 0, ũ2(θ1, θ

′
2;ω)) dF (θ1)

≥
∫
Θ1

ũe2(θ1, θ
′
2)dF (θ1) +

∫
Θ1

∫
Ω

t2 (θ1, θ2; 0, ũ2(θ1, θ
′
2;ω)) dH (ω|(θ1, θ′2)) dF (θ1)

⇒
∫
Θ1

te2 (θ1, θ
′
2; 0, ũ2(θ1, θ

′
2;ω)) dF (θ1) ≥

∫
Θ1

∫
Ω

t2 (θ1, θ2; 0, ũ2(θ1, θ
′
2;ω)) dH (ω|(θ1, θ′2)) dF (θ1),

where ũe2(θ1, θ
′
2) =

∫
Ω
ũ2(θ1, θ

′
2;ω)dH (ω|(θ1, θ′2)) and

te2 (θ1, θ
′
2; 0, ũ2(θ1, θ

′
2;ω)) =

∫
Ω

t2 (θ1, θ
′
2; 0, ũ2(θ1, θ

′
2;ω)) dH (ω|(θ1, θ′2)) .
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Since, conditional on the type profile, the residual uncertainty affects the buyer’s

transfer above the cutoff only through his own second-stage report and, by As-

sumption 0, the buyer’s transfer is independent of his own second-stage report, we

obtain that the buyer’s transfer is independent of the residual uncertainty and we

write ∫
Θ1

∫
Ω

t2 (θ1, θ2; 0, ũ2(θ1, θ
′
2;ω)) dH (ω|(θ1, θ′2)) dF (θ1)

=

∫
Θ1

t2 (θ1, θ2; 0, ũ2(θ1, θ
′
2;ω)) dF (θ1)

=

∫
Θ1

t2 (θ1, θ2; 0, ũ2(θ1, θ2;ω)) dF (θ1)

=

∫
Θ1

∫
Ω

t2 (θ1, θ2; 0, ũ2(θ1, θ2;ω)) dH (ω|(θ1, θ2)) dF (θ1) =
∫
Θ1

te2 (θ1, θ2; 0, ũ2(θ1, θ2;ω)) dF (θ1),

where the second equality follows because the buyer’s transfer is independent of

his own second-stage report. As a result, the BIC constraint which stops the buyer

of type θ
′
2 from deviating to θ2 can be rewritten as follows:∫

Θ1

te2 (θ1, θ
′
2; 0, ũ2(θ1, θ

′
2;ω)) dF (θ1) ≥

∫
Θ1

te2 (θ1, θ2; 0, ũ2(θ1, θ2;ω)) dF (θ1). (13)

Analogously, the BIC constraint which stops the buyer of type θ2 from deviating

to θ′2 can be rewritten as follows:∫
Θ1

te2 (θ1, θ2; 0, ũ2(θ1, θ2;ω)) dF (θ1) ≥
∫
Θ1

te2 (θ1, θ
′
2; 0, ũ2(θ1, θ

′
2;ω)) dF (θ1). (14)

Combining (13) and (14), we obtain∫
Θ1

te2 (θ1, θ2; 0, ũ2(θ1, θ2;ω)) dF (θ1) =

∫
Θ1

te2 (θ1, θ
′
2; 0, ũ2(θ1, θ

′
2;ω)) dF (θ1)

for all θ2, θ
′
2 ∈ [θ∗2, θ], implying that the buyer’s transfer above the cutoff θ∗2 is

independent of his first-stage report. Once again, we know from Assumption 0 that

the buyer’s transfer is independent of his own second-stage report. In addition, for

the buyer of type θ2 ≥ θ∗2, it is always efficient to trade and the seller’s allocation

payoff is always zero. So, the transfer for the buyer of type θ2 ≥ θ∗2 depends only

on the seller’s first-stage report. Hence, we can define ĝ : Θ1 → R such that for all

θ1 ∈ Θ1 and all θ2 ≥ θ∗2, we have

te2(θ1, θ2; 0, ũ2(θ1, θ2;ω)) = −ĝ(θ1).

Since the two-stage mechanism (Θ,Π, x∗, t, ψ) satisfies BB, the total expected

transfer equals zero on the equilibrium path. So,

te1(θ1, θ2; 0, ũ2(θ1, θ2;ω)) = −te2(θ1, θ2; 0, ũ2(θ1, θ2;ω)) = ĝ(θ1).
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We next show that in any two-stage mechanism (Θ,Π, x∗, t, ψ) satisfying EFF,

BB as well as the buyer’s IIR, the following inequality hold:∫
Θ1

ĝ(θ1)dF (θ1) ≤
∫
Θ1

ũe2(θ1, θ
∗
2)dF (θ1).

Consider the buyer of type θ2 ≥ θ∗2. Then his IIR constraint is the following:∫
Θ1

(ũe2(θ1, θ2)− ĝ(θ1)) dF (θ1) ≥ 0 ⇒
∫
Θ1

ĝ(θ1)dF (θ1) ≤
∫
Θ1

ũe2(θ1, θ2)dF (θ1),

where ũe2(θ1, θ2) =
∫
Ω
ũ2(θ1, θ2;ω)dH (ω|(θ1, θ2)). Since the above inequality is true

for any θ2 ≥ θ∗2, we can set θ2 = θ∗2 so that∫
Θ1

ĝ(θ1)dF (θ1) ≤
∫
Θ1

ũe2(θ1, θ
∗
2)dF (θ1).

This completes the proof of Step II.

9.4.2 Proof of Step III

Proof. In any two-stage mechanism (Θ,Π, x∗, t, ψ), the seller’s ex ante expected

utility on the equilibrium path is computed as follows:∫
Θ1

∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2)dF (θ1) +

∫
Θ1

∫
Θ2

te1(θ1, θ2;u1, u2)dF (θ2)dF (θ1),

where te1(θ1, θ2;u1, u2) is the expected monetary transfer of the seller conditional

on the type profile being (θ1, θ2) when both agents report truthfully in both stages,

that is,

te1(θ1, θ2;u1, u2) =

∫
Ω

t1 (θ1, θ2;u1(x
∗(θ1, θ2), θ1, θ2, ω), u2(x

∗(θ1, θ2), θ1, θ2, ω)) dH (ω|(θ1, θ2)) ,

and for each θ1 ∈ Θ1,

Θ∗
2(θ1) =

{
{θ} if {θ2 ∈ Θ2 : x

∗(θ1, θ2) = 1} = ∅;
{θ2 ∈ Θ2 : x

∗(θ1, θ2) = 1} otherwise,

It follows from Step II that the seller’s equilibrium transfer when θ2 ≥ θ∗2
depends only on the seller’s type. Then, the seller’s ex ante expected utility on the

equilibrium path is rewritten as follows:∫
Θ1

∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2)dF (θ1) +

∫
Θ1

∫
Θ2\Θ∗∗

2

te1(θ1, θ2;u1, u2)dF (θ2)dF (θ1)

+

∫
Θ1

∫
Θ∗∗

2

ĝ(θ1)dF (θ2)dF (θ1).
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Changing the order of integration, we rewrite the seller’s ex ante expected utility

as follows:∫
Θ1

∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2)dF (θ1) +

∫
Θ2\Θ∗∗

2

∫
Θ1

te1(θ1, θ2;u1, u2)dF (θ1)dF (θ2)

+

∫
Θ1

∫
Θ∗∗

2

ĝ(θ1)dF (θ2)dF (θ1)

≤
∫
Θ1

∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2)dF (θ1) +

∫
Θ2\Θ∗∗

2

∫
Θ∗

1(θ2)

ũe2(θ1, θ2)dF (θ1)dF (θ2)

+

∫
Θ1

∫
Θ∗∗

2

ũe2(θ1, θ
∗
2)dF (θ2)dF (θ1),

where the inequality follows because Step I requires that for any θ2 < θ∗2,∫
Θ1

te1(θ1, θ2;u1, u2)dF (θ1) ≤
∫
Θ∗

1(θ2)

ũe2(θ1, θ2)dF (θ1),

and Step II requires
∫
Θ1
ĝ(θ1)dF (θ1) ≤

∫
Θ1
ũe2(θ1, θ

∗
2)dF (θ1).

Changing the order of integration, we rewrite the upper bound of the seller’s

maximum ex ante expected utility as follows:∫
Θ1

∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2)dF (θ1) +

∫
Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

ũe2(θ1, θ2)dF (θ2)dF (θ1)

+

∫
Θ1

∫
Θ∗∗

2

ũe2(θ1, θ
∗
2)dF (θ2)dF (θ1).

After rearrangement, we further rewrite the upper bound of the seller’s maximum

ex ante expected utility as follows:∫
Θ1

∫
Θ2

ũe1(θ1, θ2)dF (θ2)dF (θ1) +

∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1),

which is identical to (4). This completes the proof of Step III.

9.4.3 Proof of Step IV

Proof. If both agents report their type and allocation payoff truthfully, the proof

of Claim 1 allows us to obtain the following interim expected utility for the seller

of type θ1 after participating in the GS mechanism (Θ,Π, x∗, tGS, ψ):

UGS
1 (θ1) = UO

1 (θ1) +

∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1),
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where UO
1 (θ1) denotes the outside option utility for the seller of type θ1 and is

defined as follows:

UO
1 (θ1) =

∫
Θ2

ũe1(θ1, θ2)dF (θ2),

and ũei (θi, θ−i) =
∫
Ω
ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)) for each agent i ∈ {1, 2} and each

type profile (θi, θ−i) ∈ Θ. Then, we compute the seller’s ex ante expected utility

as follows:∫
Θ1

UGS
1 (θ1)dF (θ1) =

∫
Θ1

∫
Θ2

ũe1(θ1, θ2)dF (θ2)dF (θ1)

+

∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1).

This implies that the seller’s ex ante expected utility in the GS mechanism is

identical to the upper bound in (4). This completes the proof of Step IV.

9.5 Proof of Claim 2

Proof. The proof is completed by two steps.

Step 1: Condition (i) of Assumption 1 is always satisfied, that is, for each agent

i ∈ {1, 2}, each θi, θ
r
i ∈ Θi such that θi ̸= θri and each θj ∈ Θj where j ̸= i, we

have
∫
Ωψ(θi,θj ;θri )

dH (ω|(θi, θj)) > 0.

Proof. For each agent i ∈ {1, 2}, each θi, θ
r
i ∈ Θi such that θi ̸= θri , and each

θj ∈ Θj where j ̸= i, the set of feasible allocation payoffs of agent j ̸= i given the

true type profile (θi, θj) is

Π̃j(θi, θj) = {ûj ∈ R : there exists ω ∈ Ω s.t. h (ω|(θi, θj)) > 0 and ũj(θi, θj;ω) = ûj}
= {ûj ∈ R : ûj = (1 + ωj)(θj + γjθi) for some ωj ∈ [−0.1, 0.1]}
= [0.9(θj + γjθi), 1.1(θj + γjθi)].

Similarly, the set of feasible allocation payoffs of agent j given the deviation (θri , θj)

becomes

Π̃j(θ
r
i , θj) = {ûj ∈ R : there exists ω ∈ Ω s.t. h (ω|(θri , θj)) > 0 and ũj(θ

r
i , θj;ω) = ûj}

= {ûj ∈ R : ûj = (1 + ωj)(θj + γjθ
r
i ) where ωj ∈ [−0.1, 0.1]}

= [0.9(θj + γjθ
r
i ), 1.1(θj + γjθ

r
i )].
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Suppose θri > θi without loss of generality. Then, there exist some allocation

payoffs of agent j such that they are feasible given the true type profile (θi, θj),

but they are not feasible given the deviation (θri , θj), which is,[0.9(θj + γjθi), 1.1(θj + γjθi)] if 1.1(θj + γjθi) < 0.9(θj + γjθ
r
i ),

[0.9(θj + γjθi), 0.9(θj + γjθ
r
i )) otherwise.

As a result, the set of residual uncertainties under which agent j’s allocation payoffs

are feasible given the true type profile (θi, θj), but not feasible given the deviation

(θri , θj), is as follows:

Ωψ(θi, θj; θ
r
i ) =

[−0.1, 0.1]2 if 1.1(θj + γjθi) < 0.9(θj + γjθ
r
i ),{

(ωi, ωj) : ωi ∈ [−0.1, 0.1] and ωj ∈
[
−0.1,

0.9(θj+γjθ
r
i )

θj+γjθi
− 1
)}

otherwise.

Therefore, we obtain
∫
Ωψ(θi,θj ;θri )

dH (ω|(θi, θj)) > 0 for each i ∈ {1, 2}, each θi, θri ∈
Θi such that θi ̸= θri , and each θj ∈ Θj where j ̸= i, implying that Condition (i) in

Assumption 1 is always satisfied in Example 1. This completes the proof of Step

1.

Step 2: Condition (ii) of Assumption 1 is satisfied, that is, for each agent i ∈ {1, 2}
and θi, θ

r
i ∈ Θi, if Uψ0

i (θi; θ
r
i ) > Uψ0

i (θi; θi), there exists a positive-measure set

Θ+
j ⊆ Θj where j ̸= i such that

∫
Θ+
j
x∗j(θ

r
i , θj)dF (θj) > 0.

Proof. We prove this by its contrapositive: for each i ∈ {1, 2} and θi, θ
r
i ∈ Θi, if∫

Θ+
j
x∗j(θ

r
i , θj)dF (θj) = 0 for all subsets Θ+

j ⊆ Θj, then Uψ0

i (θi; θ
r
i ) ≤ Uψ0

i (θi; θi)

must be satisfied. In words, if the good is never allocated to agent j ̸= i after

agent i deviates to θri , or equivalently, the good is always allocated to agent i, then

agent i has no incentive to deviate. Recall that there are two cases in Example 1:

Case (i): 0 < γ2 ≤ γ1 < 1 and Case (ii): 0 < γ1 < γ2 < 1.

Case (i): 0 < γ2 ≤ γ1 < 1

There are two steps to be checked in this case.

Step 2-1-1: For each θ1, θ
r
1 ∈ Θ1, if

∫
Θ+

2
x∗2(θ

r
1, θ2)dF (θ2) = 0 for all subsets

Θ+
2 ⊆ Θ2, then it follows that Uψ0

1 (θ1; θ
r
1) ≤ Uψ0

1 (θ1; θ1).

Proof. Suppose that
∫
Θ+

2
x∗2(θ

r
1, θ2)dF (θ2) = 0 for all subsets Θ+

2 ⊆ Θ2, that is, the

seller always keeps the good after she deviates to θr1. Consider the seller of type

θ1. The seller obtains the following expected utility under truth-telling in the GS

mechanism with ψ = 0:

Uψ0

1 (θ1; θ1) =

∫
Θ∗

2(θ1)

ũe2(θ1, θ2)dF (θ2) +

∫
Θ2\Θ∗

2(θ1)

ũe1(θ1, θ2)dF (θ2),
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where Θ∗
2(θ1) = {θ2 ∈ Θ2 : x

∗(θ1, θ2) = 1} and ũei (θi, θ−i) =
∫
Ω
ũi(θi, θ−i;ω)dH (ω|(θi, θ−i))

for each agent i ∈ {1, 2} and each type profile (θi, θ−i) ∈ Θ. On the other hand,

if the seller deviates to θr1, she always keeps the good and her expected utility

becomes the following:

Uψ0

1 (θ1; θ
r
1) =

∫
Θ2

ũe1(θ1, θ2)dF (θ2).

Recall in the proof of Proposition 1 that the seller’s expected utility under truth-

telling is at least as high that from the outside option which is
∫
Θ2
ũe1(θ1, θ2)dF (θ2).

Since the seller’s expected utility after deviation is equivalent to
∫
Θ2
ũe1(θ1, θ2)dF (θ2),

we conclude that the seller will never be better off after such a deviation so that

she has no incentive to deviate from truth-telling in the GS mechanism with ψ = 0.

This completes the proof of Step 2-1-1.

Step 2-1-2: For each θ2, θ
r
2 ∈ Θ2, if

∫
Θ+

1
x∗1(θ1, θ

r
2)dF (θ1) = 0 for all subsets

Θ+
1 ⊆ Θ1, then it follows that Uψ0

2 (θ2; θ
r
2) ≤ Uψ0

2 (θ2; θ2).

Proof. Suppose that
∫
Θ+

1
x∗1(θ1, θ

r
2)dF (θ1) = 0 for all subsets Θ+

1 ⊆ Θ1, or equiva-

lently,
∫
Θ+

1
x∗2(θ1, θ

r
2)dF (θ1) = 1 for all positive-measure subsets Θ+

1 ⊆ Θ1. Recall

that in Case (i), we have
∫
Θ
x∗2(θ1, θ

r
2)dF (θ1) < 1 for all θr2 < θ. Hence, there is

only one possible value of θr2 which could satisfy
∫
Θ+

1
x∗2(θ1, θ

r
2)dF (θ1) = 1 for all

positive-measure subsets Θ+
1 ⊆ Θ1, that is, θr2 = θ. Consider the buyer of type

θ2. The buyer receives the following expected utility under truth-telling in the GS

mechanism with ψ = 0:

Uψ0

2 (θ2; θ2) =

∫
Θ∗

1(θ2)

(ũe2(θ1, θ2)− ũe2(θ1, θ2)) dF (θ1) = 0,

where Θ∗
1(θ2) = {θ1 ∈ Θ1 : x∗(θ1, θ2) = 1}. On the other hand, if the buyer

deviates to θr2 = θ, his expected utility becomes the following:

Uψ0

2 (θ2; θ
r
2) =

∫
Θ∗

1(θ)

(
ũe2(θ1, θ2)− ũe2(θ1, θ)

)
dF (θ1) =

∫
Θ1

(
ũe2(θ1, θ2)− ũe2(θ1, θ)

)
dF (θ1) < 0,

The second equality follows because we assume the buyer receives the good with

probability one after he deviates to θ, and the inequality follows because θ2 < θ

implies ũe2(θ1, θ2) < ũe2(θ1, θ) for all θ1 ∈ Θ1. As a result, we obtain Uψ0

2 (θ2; θ
r
2) <

Uψ0

2 (θ2; θ2). This completes the proof the Step 2-1-2.

We complete the proof for Case (i) and proceed to Case (ii).

Case (ii): 0 < γ1 < γ2 < 1
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We first argue that for the seller, there does not exist θr1 ∈ Θ1 such that∫
Θ+

2
x∗2(θ

r
1, θ2)dF (θ2) = 0 for all subsets Θ+

2 ⊆ Θ2 in Case (ii). Recall that in

Case (ii), θ∗2 = (1 − γ2)/(1 − γ1) < θ and the good is always allocated to the

buyer whenever the buyer reports a type higher than the cutoff θ∗2. Hence, for all

θr1 ∈ Θ1, we have
∫
Θ2
x∗2(θ

r
1, θ2)dF (θ2) > 0, implying that

∫
Θ+

2
x∗2(θ

r
1, θ2)dF (θ2) = 0

for all subsets Θ+
2 ⊆ Θ2 is impossible. As a result, it is sufficient to check whether

condition (ii) holds for the buyer.

Step 2-2: For each θ2, θ
r
2 ∈ Θ2, if

∫
Θ+

1
x∗1(θ1, θ

r
2)dF (θ1) = 0 for all subsets Θ+

1 ⊆ Θ1,

then it follows that Uψ0

2 (θ2; θ
r
2) ≤ Uψ0

2 (θ2; θ2).

Proof. Suppose that
∫
Θ+

1
x∗1(θ1, θ

r
2)dF (θ1) = 0 for all subsets Θ+

1 ⊆ Θ1. That is,

the good is never allocated to the seller after the buyer deviates, or equivalently,

the buyer always receives the good. As a result, θr2 ≥ θ∗2 must hold. There are two

subcases, depending on the value of the true type θ2.

We first consider the buyer of type θ2 < θ∗2. The buyer receives the following

expected utility under truth-telling in the GS mechanism with ψ = 0:

Uψ0

2 (θ2; θ2) =

∫
Θ∗

1(θ2)

(ũe2(θ1, θ2)− ũe2(θ1, θ2)) dF (θ1) = 0,

where Θ∗
1(θ2) = {θ1 ∈ Θ1 : x∗(θ1, θ2) = 1}. On the other hand, if the buyer

deviates to θr2 ≥ θ∗2, his expected utility becomes the following:

Uψ0

2 (θ2; θ
r
2) =

∫
Θ1

(ũe2(θ1, θ2)− g(θ1)) dF (θ1) =

∫
Θ1

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ1) < 0.

The second equality follows because by the proof of Claim 1, we have
∫
Θ1
g(θ1)dF (θ1) =∫

Θ1
ũe2(θ1, θ

∗
2)dF (θ1), and the inequality follows because θ2 < θ∗2 implies ũe2(θ1, θ2) <

ũe2(θ1, θ
∗
2) for all θ1 ∈ Θ1. Therefore, we obtain Uψ0

2 (θ2; θ
r
2) ≤ Uψ0

2 (θ2; θ2) in this

case.

Next, we consider the buyer of type θ2 ≥ θ∗2. The buyer receives the following

expected utility under truth-telling in the GS mechanism with ψ = 0:

Uψ0

2 (θ2; θ2) =

∫
Θ1

(ũe2(θ1, θ2)− g(θ1)) dF (θ1).

On the other hand, if the buyer deviates to θr2 ≥ θ∗2, his expected utility becomes

the following:

Uψ0

2 (θ2; θ
r
2) =

∫
Θ1

(ũe2(θ1, θ2)− g(θ1)) dF (θ1),

which is identical to Uψ0

2 (θ2; θ2). Therefore, we conclude that U
ψ0

2 (θ2; θ
r
2) ≤ Uψ0

2 (θ2; θ2)

is satisfied. This completes the proof of Step 2-2.
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Therefore, we obtain that if Uψ0

i (θi; θ
r
i ) > Uψ0

i (θi; θi), there exists a positive-

measure set Θ+
j ⊆ Θj with j ̸= i such that Condition (ii) in Assumption 1 is

satisfied. This completes the proof of Step 2.

We conclude that Assumption 1 is satisfied in Example 1. This completes the

proof of this claim.

9.6 Proof of Proposition 4

Proof. We first prove the sufficiency of Assumption 2. By Lemma 2, we divide

the proof into the following two cases. In Case 1 where θ∗2 = θ, it follows from

Proposition 1 that the GS mechanism satisfies the seller’s IIR. In Case 2 where

θ∗2 ∈ (θ, θ), it is clear from Claim 1 that the GS mechanism satisfies the seller’s IIR

constraint if the expression for C, which is identified in (3), is nonnegative. That

is, ∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1) ≥ 0.

This is identical to Assumption 2. Therefore, we complete the proof of the suffi-

ciency part.

We now prove the necessity. Suppose, on the contrary, that Assumption 2 is

violated. Recall that Assumption 2 is always satisfied in Case 1: θ∗2 = θ. Then

Assumption 2 must be violated in Case 2: θ∗2 ∈ (θ, θ). If both agents report their

type and allocation payoff truthfully, the proof of Step IV of Proposition 3 allows

us to obtain the following ex ante expected utility for the seller after participating

in the GS mechanism (Θ,Π, x∗, tGS, ψ):∫
Θ1

UO
1 (θ1)dF (θ1) +

∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1),

where UO
1 (θ1) =

∫
Θ2
ũe1(θ1, θ2)dF (θ2) is the outside option utility for the seller of

type θ1 and ũei (θi, θ−i) =
∫
Ω
ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)) for each agent i ∈ {1, 2}

and each (θi, θ−i) ∈ Θ. As we assume that Assumption 2 is violated, the sum of the

last two terms of the above expression is negative, implying that the seller’s ex ante

expected utility after participating in the mechanism is lower than her outside op-

tion utility. Hence, the seller’s ex ante individual rationality constraint is violated
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in the GS mechanism (Θ,Π, x∗, tGS, ψ). Since IIR implies ex ante individual ra-

tionality constraint, we further conclude that the GS mechanism (Θ,Π, x∗, tGS, ψ)

violates the seller’s IIR constraint. This completes the proof of the proposition.

9.7 Proof of Lemma 3

Proof. Recall our Assumption 2 says that∫
Θ1

∫
Θ∗

2(θ1)

(ũe2(θ1, θ2)− ũe1(θ1, θ2)) dF (θ2)dF (θ1)

−
∫
Θ1

∫
Θ∗∗

2

(ũe2(θ1, θ2)− ũe2(θ1, θ
∗
2)) dF (θ2)dF (θ1) ≥ 0,

where for each agent i ∈ {1, 2} and each type profile (θi, θ−i) ∈ Θ,

ũei (θi, θ−i) =

∫
Ω

ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)) ,

and for each θ1 ∈ Θ1,

Θ∗
2(θ1) =

{
{θ} if {θ2 ∈ Θ2 : x

∗(θ1, θ2) = 1} = ∅
{θ2 ∈ Θ2 : x

∗(θ1, θ2) = 1} otherwise,

Θ∗∗
2 = [θ∗2, θ], and θ

∗
2 ∈ (θ, θ] is the cutoff point identified in Lemma 2. From Figure

4, we know that in Case (ii): θ∗2 ∈ (θ, θ),

Θ∗
2(θ1) =

[
1− γ2
1− γ1

θ1, 1

]
for all θ1 ∈ [0, 1], and θ∗2 = (1− γ2)/(1− γ1); hence,

Θ∗∗
2 =

[
1− γ2
1− γ1

, 1

]
.

Reflecting the type space Θ = [0, 1]2 and each agent i’s expected valuation

ũei (θi, θ−i) = θi + γiθ−i in Assumption 2, we obtain∫ 1

0

∫ 1

1−γ2
1−γ1

θ1

((1− γ1)θ2 − (1− γ2)θ1) dθ2dθ1 −
∫ 1

0

∫ 1

1−γ2
1−γ1

(
θ2 −

1− γ2
1− γ1

)
dθ2dθ1 ≥ 0.
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We compute the left-hand side of the above inequality:∫ 1

0

[
1

2
(1− γ1)

(
1−

(
1− γ2
1− γ1

θ1

)2
)

− (1− γ2)θ1

(
1− 1− γ2

1− γ1
θ1

)]
dθ1

−
∫ 1

0

[
1

2

(
1−

(
1− γ2
1− γ1

)2
)

− 1− γ2
1− γ1

(
1− 1− γ2

1− γ1

)]
dθ1

=

∫ 1

0

[
1

2
(1− γ1)−

1

2

(1− γ2)
2

1− γ1
(θ1)

2 − (1− γ2)θ1 +
(1− γ2)

2

1− γ1
(θ1)

2

]
dθ1

−
∫ 1

0

[
1

2
− 1

2

(
1− γ2
1− γ1

)2

− 1− γ2
1− γ1

+

(
1− γ2
1− γ1

)2
]
dθ1.

We continue our computation below:∫ 1

0

[
1

2
(1− γ1)− (1− γ2)θ1 +

1

2

(1− γ2)
2

1− γ1
(θ1)

2

]
dθ1 −

∫ 1

0

[
1

2
− 1− γ2

1− γ1
+

1

2

(
1− γ2
1− γ1

)2
]
dθ1

=
1

2
(1− γ1)−

1

2
(1− γ2) +

1

6

(1− γ2)
2

1− γ1
− 1

2
+

1− γ2
1− γ1

− 1

2

(
1− γ2
1− γ1

)2

=
1

6

(1− γ2)
2

1− γ1
+

1− γ2
1− γ1

− 1

2

(
1− γ2
1− γ1

)2

+
1

2
(γ2 − γ1 − 1).

Therefore, our Assumption 2 is reduced to

1

6

(1− γ2)
2

1− γ1
+

1− γ2
1− γ1

− 1

2

(
1− γ2
1− γ1

)2

+
1

2
(γ2 − γ1 − 1) ≥ 0.

This completes the proof of Lemma 3.

9.8 Proof of Claim 5

Proof. We define the mechanism (Θ,Π, x̂, t̂, ψ) as follows: for each type report

(θr1, θ
r
2) ∈ Θ and each payoff report (ur1, u

r
2) ∈ Π1 × Π2,

x̂(θr1, θ
r
2) = (1− ε)x∗(θr1, θ

r
2) + εx0(θr1, θ

r
2)

and

t̂i(θ
r
1, θ

r
2;u

r
1, u

r
2) = (1− ε)tGSi (θr1, θ

r
2;u

r
1, u

r
2) + εt0i (θ

r
1, θ

r
2;u

r
1, u

r
2)

for each agent i ∈ {1, 2}. It suffices to check that the mechanism (Θ,Π, x̂, t̂, ψ) is

equivalent to the approximate GS mechanism (Θ,Π, xε, tε,GS, ψ). We first compare

the decision rules x̂ and xε.
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1. If x∗(θr1, θ
r
2) = 1, then x̂ dictates that the good is delivered to the buyer with

probability (1− ε), which is the same as xε;

2. If x∗(θr1, θ
r
2) = 0, then x̂ dictates that the seller keeps the good with proba-

bility one, which is the same as xε.

Therefore, the decision rule x̂ is equivalent to xε.

Finally, we compare the transfer rules t̂ and tε,GS.

1. If x∗(θr1, θ
r
2) = 1 and trade occurs after randomization, then t̂ dictates

(a) the buyer pays an amount equal to ũe2(θ
r
1, θ

r
2);

(b) the seller receives an amount equal to ũe2(θ
r
1, θ

r
2) if u

r
2 ∈ Π̃2(θ

r
1, θ

r
2);

(c) the seller pays a penalty equal to ψ if ur2 /∈ Π̃2(θ
r
1, θ

r
2).

Hence, the realizations of transfers under the transfer rule t̂ is the same as

those under tε,GS.

2. If trade does not occur after randomization, then t̂ dictates

(a) the seller makes no transfer;

(b) the buyer makes no transfer if ur1 ∈ Π̃1(θ
r
1, θ

r
2);

(c) the buyer pays a penalty equal to ψ if ur1 /∈ Π̃1(θ
r
1, θ

r
2).

Hence, the realizations of transfers under the transfer rule t̂ is the same as

those under tε,GS.

Thus, we conclude that the mechanism (Θ,Π, x̂, t̂, ψ) is equivalent to the approxi-

mate GS mechanism (Θ,Π, xε, tε,GS, ψ).

9.9 Proof of Claim 7

Proof. The proof consists of four steps. In Step 1, we show that if
∫
Θ∗∗

2
dF (θ2) =

0 and Assumption 1 holds for x∗, then Assumption 3 holds for xε. In Step 2,

we provide an example where
∫
Θ∗∗

2
dF (θ2) = 0, Assumption 3 holds for xε, but

Assumption 1 is violated for x∗. Combining Steps 1 and 2, we obtain that when∫
Θ∗∗

2
dF (θ2) = 0, Assumption 3 is weaker than Assumption 1, as desired. On

the other hand, Step 3 provides an example where Assumption 1 holds for x∗,

but Assumption 3 is violated for xε when
∫
Θ∗∗

2
dF (θ2) > 0. Step 4 provides an

example where Assumption 3 holds for xε, but Assumption 1 is violated for x∗ when
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∫
Θ∗∗

2
dF (θ2) > 0. Combining Steps 3 and 4, we obtain that when

∫
Θ∗∗

2
dF (θ2) > 0,

Assumption 1 neither implies nor is implied by Assumption 3, as desired.

Step 1: If
∫
Θ∗∗

2
dF (θ2) = 0 and Assumption 1 holds for x∗, then Assumption 3

holds for xε.

Proof. Observe that Condition (i) in Assumption 3 is identical to Condition (i) in

Assumption 1. Then, it suffices to check (a) the relation between U ε,ψ0

i (θi; θ
r
i ) −

U ε,ψ0

i (θi; θi) in Assumption 3 and Uψ0

i (θi; θ
r
i ) − Uψ0

i (θi; θi) in Assumption 1 and,

(b) the relation between Condition (ii) in Assumption 3 and Condition (ii) in

Assumption 1. We complete the proof of Step 1 by considering the following two

subcases, each of which dictates who deviates in the first stage.

Case 1-A: If the seller deviates in the first stage while the buyer reports truthfully,

Step 1-A-1: We show

U ε,ψ0

1 (θ1; θ
r
1)− U ε,ψ0

1 (θ1; θ1) = (1− ε)
(
Uψ0

1 (θ1; θ
r
1)− Uψ0

1 (θ1; θ1)
)

for all θ1, θ
r
1 ∈ Θ1.

Proof. Consider the seller of type θ1. Recall that in the approximate GS mech-

anism (Θ,Π, xε, tε,GS, ψ), if both agents report truthfully and trade occurs after

randomization, the seller’s monetary transfer is ũe2(θ1, θ2). Then, the expected

utility of the seller under truth-telling is∫
Θ2

[xε(θ1, θ2)ũ
e
2(θ1, θ2) + (1− xε(θ1, θ2)) ũ

e
1(θ1, θ2)] dF (θ2),

where ũei (θi, θ−i) =
∫
Ω
ũi(θi, θ−i;ω)dH (ω|(θi, θ−i)) for each agent i. Note that the

expected utility of the seller under truth-telling is identical to that in the approx-

imate GS mechanism with ψ = 0, which is U ε,ψ0

1 (θ1; θ1). The seller’s expected

utility under truth-telling can be rewritten as follows:

U ε,ψ0

1 (θ1; θ1) =

∫
Θ2

[(1− ε)x∗(θ1, θ2)ũ
e
2(θ1, θ2) + (1− x∗(θ1, θ2) + εx∗(θ1, θ2)) ũ

e
1(θ1, θ2)] dF (θ2)

=

∫
Θ2

[x∗(θ1, θ2)ũ
e
2(θ1, θ2) + (1− x∗(θ1, θ2)) ũ

e
1(θ1, θ2)] dF (θ2)

−ε
∫
Θ2

[x∗(θ1, θ2)ũ
e
2(θ1, θ2)− x∗(θ1, θ2)ũ

e
1(θ1, θ2)] dF (θ2).

Recall that the seller’s expected utility under truth-telling in the GS mechanism

(Θ,Π, x∗, tGS, ψ) with ψ = 0 is

Uψ0

1 (θ1; θ1) =

∫
Θ2

[x∗(θ1, θ2)ũ
e
2(θ1, θ2) + (1− x∗(θ1, θ2)) ũ

e
1(θ1, θ2)] dF (θ2).
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Hence, the seller’s expected utility under truth-telling in the approximate GS mech-

anism (Θ,Π, xε, tε,GS, ψ) with ψ = 0 can be further rewritten as follows:

U ε,ψ0

1 (θ1; θ1) = Uψ0

1 (θ1; θ1)− ε

[
Uψ0

1 (θ1; θ1)−
∫
Θ2

ũe1(θ1, θ2)dF (θ2)

]
= (1− ε)Uψ0

1 (θ1; θ1) + ε

∫
Θ2

ũe1(θ1, θ2)dF (θ2). (15)

On the other hand, if the seller deviates to θr1 in the approximate GS mechanism

(Θ,Π, xε, tε,GS, ψ) with ψ = 0, her expected utility becomes

U ε,ψ0

1 (θ1; θ
r
1)

=

∫
Θ2

[
xε(θr1, θ2)ũ

e
2(θ

r
1, θ2)

(
1−

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2))

)
+ (1− xε(θr1, θ2)) ũ

e
1(θ1, θ2)

]
dF (θ2),

which can be rewritten as

U ε,ψ0

1 (θ1; θ
r
1)

=

∫
Θ2

(1− ε)x∗(θr1, θ2)ũ
e
2(θ

r
1, θ2)

(
1−

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2))

)
dF (θ2)

+

∫
Θ2

(1− x∗(θr1, θ2) + εx∗(θr1, θ2)) ũ
e
1(θ1, θ2)dF (θ2)

=

∫
Θ2

[
x∗(θr1, θ2)ũ

e
2(θ

r
1, θ2)

(
1−

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2))

)
+ (1− x∗(θr1, θ2)) ũ

e
1(θ1, θ2)

]
dF (θ2)

−ε
∫
Θ2

[
x∗(θr1, θ2)ũ

e
2(θ

r
1, θ2)

(
1−

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2))

)
− x∗(θr1, θ2)ũ

e
1(θ1, θ2)

]
dF (θ2).

Recall that the seller’s expected utility after deviation in the GS mechanism (Θ,Π, x∗, tGS, ψ)

with ψ = 0 is

Uψ0

1 (θ1; θ
r
1)

=

∫
Θ2

[
x∗(θr1, θ2)ũ

e
2(θ

r
1, θ2)

(
1−

∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2))

)
+ (1− x∗(θr1, θ2)) ũ

e
1(θ1, θ2)

]
dF (θ2).

Hence, the seller’s expected utility after deviation in the approximate GS mecha-

nism (Θ,Π, xε, tε,GS, ψ) with ψ = 0 can be further rewritten as follows:

U ε,ψ0

1 (θ1; θ
r
1) = Uψ0

1 (θ1; θ
r
1)− ε

[
Uψ0

1 (θ1; θ
r
1)−

∫
Θ2

ũe1(θ1, θ2)dF (θ2)

]
= (1− ε)Uψ0

1 (θ1; θ
r
1) + ε

∫
Θ2

ũe1(θ1, θ2)dF (θ2). (16)
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Then, using (15) and (16), we compute

U ε,ψ0

1 (θ1; θ
r
1)− U ε,ψ0

1 (θ1; θ1) = (1− ε)
[
Uψ0

1 (θ1; θ
r
1)− Uψ0

1 (θ1; θ1)
]
.

As a result, U ε,ψ0

1 (θ1; θ
r
1) > U ε,ψ0

1 (θ1; θ1) if and only if Uψ0

1 (θ1; θ
r
1) > Uψ0

1 (θ1; θ1),

implying that the seller has an incentive to deviate in the approximate GS mech-

anism (Θ,Π, xε, tε,GS, ψ) if and only if she has an incentive to deviate in the GS

mechanism (Θ,Π, x∗, tGS, ψ). This completes the proof of Step 1-A-1.

In words, the seller has an incentive to deviate in the approximate GS mech-

anism (Θ,Π, xε, tε,GS, ψ0) if and only if she has an incentive to deviate in the GS

mechanism (Θ,Π, x∗, tGS, ψ0).

Step 1-A-2: We show that if the seller deviates in the first stage while the buyer

reports truthfully, then Condition (ii) of Assumption 3 is equivalent to Condition

(ii) of Assumption 1.

Proof. If the seller deviates to θr1 in the approximate GS mechanism (Θ,Π, xε, tε,GS, ψ0),

then for any positive-measure set Θ+
2 ⊆ Θ2, we have∫

Θ+
2

xε2(θ
r
1, θ2)dF (θ2) =

∫
Θ+

2

xε(θr1, θ2)dF (θ2)

=

∫
Θ+

2

(1− ε)x∗(θr1, θ2)dF (θ2) =

∫
Θ+

2

(1− ε)x∗2(θ
r
1, θ2)dF (θ2),

implying that
∫
Θ+

2
xε2(θ

r
1, θ2)dF (θ2) > 0 if and only if

∫
Θ+

2
x∗2(θ

r
1, θ2)dF (θ2) > 0.

Therefore, Condition (ii) of Assumption 3 and Condition (ii) of Assumption 1 are

equivalent. This completes the proof of Step 1-A-2.

Combining Steps 1-A-1 and 1-A-2, we obtain that if the seller deviates in the

first stage, then Assumption 3 under xε is equivalent to Assumption 1 under x∗.

Case 1-B: If the buyer deviates in the first stage while the seller reports truthfully,

Step 1-B-1: We show

U ε,ψ0

2 (θ2; θ
r
2)− U ε,ψ0

2 (θ2; θ2) = (1− ε)
(
Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2)
)

for all θ2, θ
r
2 ∈ Θ2.

Proof. Consider the buyer of type θ2. Recall that if both agents report truthfully

and trade occurs after randomization, the buyer’s monetary transfer is −ũe2(θ1, θ2).
Then, the expected utility of the buyer under truth-telling is∫

Θ1

xε(θ1, θ2) (ũ
e
2(θ1, θ2)− ũe2(θ1, θ2)) dF (θ1) = 0,
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where ũe2(θ1, θ2) =
∫
Ω
ũ2(θ1, θ2;ω)dH (ω|(θ1, θ2)). Note that the expected utility of

the buyer under truth-telling is identical to that in the approximate GS mechanism

with ψ = 0, which is U ε,ψ0

2 (θ2; θ2). Recall that the buyer’s expected utility under

truth-telling in the GS mechanism (Θ,Π, x∗, tGS, ψ) with ψ = 0, Uψ0

2 (θ2; θ2), is

also zero. On the other hand, if the buyer deviates to θr2 in the approximate GS

mechanism (Θ,Π, xε, tε,GS, ψ) with ψ = 0, his expected utility becomes

U ε,ψ0

2 (θ2; θ
r
2) =

∫
Θ1

xε(θ1, θ
r
2) (ũ

e
2(θ1, θ2)− ũe2(θ1, θ

r
2)) dF (θ1)

=

∫
Θ1

(1− ε)x∗(θ1, θ
r
2) (ũ

e
2(θ1, θ2)− ũe2(θ1, θ

r
2)) dF (θ1).

Recall that the buyer’s expected utility after deviation in the GS mechanism

(Θ,Π, x∗, tGS, ψ) with ψ = 0 is

Uψ0

2 (θ2; θ
r
2) =

∫
Θ1

x∗(θ1, θ
r
2) (ũ

e
2(θ1, θ2)− ũe2(θ1, θ

r
2)) dF (θ1).

Hence, the buyer’s expected utility after deviation in the approximate GS mecha-

nism (Θ,Π, xε, tε,GS, ψ) with ψ = 0 can be rewritten as follows:

U ε,ψ0

2 (θ2; θ
r
2) = (1− ε)Uψ0

2 (θ2; θ
r
2),

Finally, we compute

U ε,ψ0

2 (θ2; θ
r
2)− U ε,ψ0

2 (θ2; θ2) = (1− ε)Uψ0

2 (θ2; θ
r
2) = (1− ε)

(
Uψ0

2 (θ2; θ
r
2)− Uψ0

2 (θ2; θ2)
)
.

The first equality follows because U ε,ψ0

2 (θ2; θ2) = 0. The second equality holds

because Uψ0

2 (θ2; θ2) = 0. As a result, U ε,ψ0

2 (θ2; θ
r
2) > U ε,ψ0

2 (θ2; θ2) if and only if

Uψ0

2 (θ2; θ
r
2) > Uψ0

2 (θ2; θ2), implying that the buyer has an incentive to deviate in

the approximate GS mechanism (Θ,Π, xε, tε,GS, ψ) with ψ = 0 if and only if he has

an incentive to deviate in the GS mechanism (Θ,Π, x∗, tGS, ψ) with ψ = 0. This

completes the proof of Step 1-B-1.

In words, the buyer has an incentive to deviate in the approximate GS mech-

anism (Θ,Π, xε, tε,GS, ψ0) if and only if he has an incentive to deviate in the GS

mechanism (Θ,Π, x∗, tGS, ψ0).

Step 1-B-2: We show that if the buyer deviates in the first stage while the seller

reports truthfully, Condition (ii) of Assumption 3 is satisfied for any positive-

measure set Θ+
1 ⊆ Θ1.
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Proof. If the buyer deviates to θr2 in the approximate GS mechanism (Θ,Π, xε, tε,GS, ψ)

with ψ = 0, then for any positive-measure set Θ+
1 ⊆ Θ1, we have∫

Θ+
1

xε1(θ1, θ
r
2)dF (θ1) =

∫
Θ+

1

(1− xε(θ1, θ
r
2)) dF (θ1) =

∫
Θ+

1

[1− (1− ε)x∗(θ1, θ
r
2)] dF (θ1) > 0.

The inequality follows because for all θ1 ∈ Θ1, 1− (1− ε)x∗(θ1, θ
r
2) ≥ 1− (1− ε) =

ε > 0. Hence, Condition (ii) of Assumption 3 is always satisfied if the buyer

deviates. This completes the proof of Step 1-B-2.

Recall
∫
Θ∗∗

2
dF (θ2) = 0. If Θ∗∗

2 = ∅ and the buyer deviates to some θr2, there

always exists a positive-measure set Θ+
1 ⊆ Θ1 such that

∫
Θ+

1
x∗1(θ1, θ

r
2)dF (θ1) > 0.

In other words, there always exists a positive-measure set Θ+
1 ⊆ Θ1 such that

Condition (ii) of Assumption 1 is satisfied. Moreover, if Θ∗∗
2 is a singleton, say,

Θ∗∗
2 = {θ̂2}, and the buyer has an incentive to deviate to θ̂2 in the GS mechanism

(Θ,Π, x∗, tGS, ψ), then
∫
Θ+

1
x∗1(θ1, θ̂2)dF (θ1) = 0 for all Θ+

1 ⊆ Θ1, implying that

Condition (ii) of Assumption 1 is violated. We thus conclude that Condition (ii)

of Assumption 1 is stronger than Condition (ii) of Assumption 3. This completes

the proof of Step 1.

Step 2: We provide an example in which
∫
Θ∗∗

2
dF (θ2) = 0; Assumption 3 holds for

xε; but Assumption 1 fails for x∗.

Proof. The proposed example is based on Example 1, except that we specify the

valuation functions differently.

Example 4. Suppose that each agent i’s type θi is drawn from the uniform dis-

tribution on the unit interval [0, 1]. Conditional on the type profile θ, ω1 and

ω2 are independently drawn from the uniform distribution on the closed interval

[−0.1, 0.1]. Then, we define Ω = {(ω1, ω2)| ω1, ω2 ∈ [−0.1, 0.1]} as the set of resid-

ual uncertainties. Each agent’s valuation for the object when the true type profile

is (θ1, θ2) and the residual uncertainty is ω = (ω1, ω2) ∈ Ω is given as follows:

ũ1(θ1, θ2;ω) =

{
1.5θ1 if θ1 ≥ 0.3;

θ1 + 0.2θ2 + ω1 otherwise

and

ũ2(θ1, θ2;ω) = θ2 + 0.2θ1 + ω2.

We compute

ũe2(θ1, θ2)− ũe1(θ1, θ2) =

{
θ2 − 1.3θ1 if θ1 ≥ 0.3;

0.8(θ2 − θ1) otherwise,

66



implying that the efficient decision rule is

x∗(θ1, θ2) =

{
1 if either θ2 ≥ 1.3θ1 for every θ1 ≥ 0.3 or θ2 ≥ θ1 for every θ1 < 0.3;

0 otherwise

The following figure illustrates the decision at different type profiles in this example;

in particular, the shaded region represents Θ∗ = {(θ1, θ2) ∈ [0, 1]2 : x∗(θ1, θ2) = 1}.

Figure 6

The example exhibits the following features regarding the buyer’s incentive

constraints. Under the efficient decision rule x∗, there exist some type profiles

where it is efficient not to trade (i.e., the seller keeps the good with probability

one) but the seller’s allocation payoff does not reveal to the seller herself any

information about the buyer’s type. In that case, the buyer’s deviation cannot

be detected in the GS mechanism (Θ,Π, x∗, tGS, ψ), implying that Assumption 1

is violated. In all the type profiles, the seller keeps the good with probability

ε > 0 under the decision rule xε. Since the seller’s valuation function is strictly

increasing in the buyer’s type, we can find a set of states with positive probability

in which the buyer’s deviation can be detected in the approximate GS mechanism

(Θ,Π, xε, tε,GS, ψ), implying that Assumption 3 can be satisfied. The rest of the

proof formally establish these points.

The proof of Step 2 is completed by two steps.

Step 2-1: Assumption 1 is violated for x∗ in Example 4.

Proof. Consider the buyer of type θ2 > 0.39. If both agents report truthfully in

both stages, he receives zero expected utility in the GS mechanism (Θ,Π, x∗, tGS)

with ψ = 0. If he deviates to θr2 ∈ (0.39, θ2), then his expected utility in the GS

mechanism (Θ,Π, x∗, tGS, ψ) with ψ = 0 becomes∫
Θ1

x∗(θ1, θ
r
2) (ũ

e
2(θ1, θ2)− ũe2(θ1, θ

r
2)) dF (θ2) > 0,
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because the buyer’s expected utility is strictly increasing in his own type. As a

result, the buyer of type θ2 > 0.39 has an incentive to deviate to θr2 ∈ (0.39, θ2) in

the GS mechanism (Θ,Π, x∗, tGS, ψ) with ψ = 0. Moreover, after the deviation, the

good will be allocated to the seller only when θ1 > 0.3; in that region, the seller’s

allocation payoff is always equal to 1.5θ1, which is independent of the buyer’s type.

In other words, all feasible allocation payoffs of the seller conditional on the true

type profile (θ1, θ2) are also feasible given the deviation (θ1, θ
r
2), implying that

Condition (i) of Assumption 1 is violated. Therefore, Assumption 1 is violated in

this example. This completes the proof of Step 2-1.

Step 2-2: Assumption 3 holds for xε in Example 4.

Proof. The proof of Step 2-2 is further divided into two steps.

Step 2-2-1: Assumption 3 is satisfied for the seller.

Proof. Consider the seller of type θ1. If both agents report truthfully in both stages,

the seller’s expected utility after particiating in the approximate GS mechanism

(Θ,Π, xε, tε,GS, ψ) is∫
Θ2

[xε(θ1, θ2)ũ
e
2(θ1, θ2) + (1− xε(θ1, θ2)) ũ

e
1(θ1, θ2)] dF (θ2) ≥

∫
Θ2

ũe1(θ1, θ2)dF (θ2),

where the inequality follows from the proof of Claim 6. Note that the seller’s

expected utility under truth-telling is identical to that in the approximate GS

mechanism with ψ = 0, which is U ε,ψ0

1 (θ1; θ1). If the seller keeps the good with

probability one after she deviates to θr1, her expected utility in the approximate

GS mechanism with ψ = 0 equals
∫
Θ2
ũe1(θ1, θ2)dF (θ2) and this is not a profitable

deviation. Therefore, the seller has an incentive to deviate in the approximate GS

mechanism with ψ = 0 only if the good is allocated to the buyer with positive

probability after the deviation. In other words, if U ε,ψ0

1 (θ1; θ
r
1) > U ε,ψ0

1 (θ1; θ1), then

there must exist a positive-measure set Θ+
2 ⊆ Θ2 such that

∫
Θ+

2
xε(θr1, θ2)dF (θ2) >

0, implying that Condition (ii) of Assumption 3 is satisfied.

It remains to verify that Condition (i) of Assumption 3 is satisfied, that is, for

every θ2 ∈ Θ+
2 ,
∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) > 0. The set of feasible allocation payoffs

of the buyer given the true type profile (θ1, θ2) is

Π̃2(θ1, θ2) = {û2 ∈ R : there exists ω ∈ Ω s.t. h (ω|(θ1, θ2)) > 0 and ũ2(θ1, θ2;ω) = û2}
= {û2 ∈ R : û2 = θ2 + 0.2θ1 + ω2 for some ω2 ∈ [−0.1, 0.1]}
= [θ2 + 0.2θ1 − 0.1, θ2 + 0.2θ1 + 0.1].
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Similarly, the set of feasible allocation payoffs of the buyer given the deviation

(θr1, θ2) becomes

Π̃2(θ
r
1, θ2) = {û2 ∈ R : there exists ω ∈ Ω s.t. h (ω|(θr1, θ2)) > 0 and ũ2(θ

r
1, θ2;ω) = û2}

= {û2 ∈ R : û2 = θ2 + 0.2θr1 + ω2 where ω2 ∈ [−0.1, 0.1]}
= [θ2 + 0.2θr1 − 0.1, θ2 + 0.2θr1 + 0.1].

Suppose θr1 > θ1 without loss of generality. Then, there exist some allocation

payoffs of the buyer such that they are feasible given the true type profile (θ1, θ2),

but they are not feasible given the deviation (θr1, θ2), which is,[θ2 + 0.2θ1 − 0.1, θ2 + 0.2θ1 + 0.1] if θ2 + 0.2θr1 − 0.1 > θ2 + 0.2θ1 + 0.1,

[θ2 + 0.2θ1 − 0.1, θ2 + 0.2θr1 − 0.1) otherwise.

As a result, the set of residual uncertainties under which the buyer’s allocation

payoffs are feasible given the true type profile (θ1, θ2), but not feasible given the

deviation (θr1, θ2), is as follows:

Ωψ(θ1, θ2; θ
r
1) =

[−0.1, 0.1]2 if θ2 + 0.2θr1 − 0.1 > θ2 + 0.2θ1 + 0.1,

{(ω1, ω2) : ω1 ∈ [−0.1, 0.1] and ω2 ∈ [−0.1, 0.2(θr1 − θ1)− 0.1)} otherwise.

Therefore, for every θ1, θ
r
1 ∈ Θ1 and every θ2 ∈ Θ2, there exists a positive-measure

set of residual uncertainties under which the buyer’s allocation payoffs are feasible

given the true type profile (θ1, θ2), but not feasible given the deviation (θr1, θ2),

implying that Condition (i) of Assumption 3 is satisfied for all θ1, θ
r
1 ∈ Θ1 and all

θ2 ∈ Θ2. Recall that Condition (ii) of Assumption 3 is also satisfied. We conclude

that Assumption 3 is satisfied for the seller.

Step 2-2-2: Assumption 3 is satisfied for the buyer.

Proof. Consider the buyer of type θ2. Recall xε(θ1, θ2) = (1 − ε)x∗(θ1, θ2) for all

(θ1, θ2) ∈ Θ. Then, for all (θ1, θ2) ∈ Θ, the probability that the seller keeps the

good is at least as high as ε. Moreover, when θ1 < 0.3, the set of feasible allocation

payoffs of the seller given the true type profile (θ1, θ2) is

Π̃1(θ1, θ2) = {û1 ∈ R : there exists ω ∈ Ω s.t. h (ω|(θ1, θ2)) > 0 and ũ1(θ1, θ2;ω) = û1}
= {û1 ∈ R : û1 = θ1 + 0.2θ2 + ω1 for some ω1 ∈ [−0.1, 0.1]}
= [θ1 + 0.2θ2 − 0.1, θ1 + 0.2θ2 + 0.1].
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Similarly, the set of feasible allocation payoffs of the buyer given the deviation

(θ1, θ
r
2) becomes

Π̃1(θ1, θ
r
2) = {û1 ∈ R : there exists ω ∈ Ω s.t. h (ω|(θ1, θr2)) > 0 and ũ1(θ1, θ

r
2;ω) = û1}

= {û1 ∈ R : û1 = θ1 + 0.2θr2 + ω1 where ω1 ∈ [−0.1, 0.1]}
= [θ1 + 0.2θr2 − 0.1, θ1 + 0.2θr2 + 0.1].

Suppose θr2 < θ2 without loss of generality. Then, there exist some allocation

payoffs of the seller such that they are feasible given the true type profile (θ1, θ2),

but they are not feasible given the deviation (θ1, θ
r
2), which is,[θ1 + 0.2θ2 − 0.1, θ1 + 0.2θ2 + 0.1] if θ1 + 0.2θr2 + 0.1 < θ1 + 0.2θ2 − 0.1

(θ1 + 0.2θr2 + 0.1, θ1 + 0.2θ2 + 0.1] otherwise.

As a result, the set of residual uncertainties under which the seller’s allocation

payoffs are feasible given the true type profile (θ1, θ2), but not feasible given the

deviation (θ1, θ
r
2), is as follows:

Ωψ(θ2, θ1; θ
r
2) =

[−0.1, 0.1]2 if θ1 + 0.2θr2 + 0.1 < θ1 + 0.2θ2 − 0.1,

{(ω1, ω2) : ω1 ∈ (0.2(θr2 − θ2) + 0.1, 0.1] and ω2 ∈ [−0.1, 0.1]} otherwise.

Therefore, for every θ2, θ
r
2 ∈ Θ2, if θ1 < 0.3, there exists a positive-measure set of

residual uncertainties under which the seller’s allocation payoffs are feasible given

the true type profile (θ1, θ2), but not feasible given the deviation (θ1, θ
r
2). Since the

seller keeps the good with positive probability for every (θ1, θ2) ∈ Θ, we conclude

that Assumption 3 is satisfied for the buyer.

We conclude that Assumption 3 is satisfied in Example 4. This completes the

proof of Step 2-2.

This completes the proof of Step 2.

Step 3: We provide an example in which Assumption 1 holds for x∗, whereas

Assumption 3 is violated for xε when
∫
Θ∗∗

2
dF (θ2) > 0.

Proof. The proposed example is built on Example 1, except that we specify the

valuation functions differently.

Example 5. Suppose that each agent i’s type θi is drawn from the uniform dis-

tribution on the unit interval [0, 1]. Conditional on the type profile θ, ω1 and

ω2 are independently drawn from the uniform distribution on the closed interval
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[−0.1, 0.1]. Then, we define Ω = {(ω1, ω2)| ω1, ω2 ∈ [−0.1, 0.1]} as the set of resid-

ual uncertainties. Each agent’s valuation for the object when the true type profile

is (θ1, θ2) and the residual uncertainty is ω = (ω1, ω2) ∈ Ω is given as follows:

ũ1(θ1, θ2;ω) =

{
θ1 + ω1 if θ2 ≥ 0.4;

θ1 + 0.5θ2 + ω1 otherwise

and

ũ2(θ1, θ2;ω) = θ2 + 0.8θ1 + ω2.

We compute

ũe2(θ1, θ2)− ũe1(θ1, θ2) =

{
θ2 − 0.2θ1 if θ2 ≥ 0.4;

0.5θ2 − 0.2θ1 otherwise,

implying that the efficient decision rule is

x∗(θ1, θ2) =

{
1 if θ2 ≥ 0.4θ1;

0 otherwise

The following figure illustrates the decision at different type profiles in this example;

in particular, the shaded region represents Θ∗ = {(θ1, θ2) ∈ [0, 1]2 : x∗(θ1, θ2) = 1}.

Figure 7

We will show that in this example, Assumption 1 holds for x∗, while Assumption

3 is violated for xε. The example exhibits the following features. Under the

GS mechanism (Θ,Π, x∗, tGS, ψ), the buyer has no incentive to deviate because

the payments are always the same. However, if we consider the approximate GS

mechanism (Θ,Π, xε, tε,GS, ψ), the buyer can lower his payment by deviating to a

lower type so that he has an incentive to deviate. We present an example in which
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such a profitable deviation cannot be detected through the seller’s allocation payoff.

Hence, Assumption 3 is violated for xε.

Step 3-1: Assumption 1 holds for x∗ in Example 5.

Proof. Note that the efficient decision rule in Example 5 corresponds to Case (ii):

0 < γ1 < γ2 < 1 in Example 1. It follows from the proof of Claim 2 that if

Uψ0

i (θi; θ
r
i ) > Uψ0

i (θi; θi), then there exists a positive-measure set Θ+
j ⊆ Θj with

j ̸= i such that
∫
Θ+
j
x∗j(θ

r
i , θj)dF (θj) > 0 where x∗j(·) denotes the probability that

agent j is allocated the good. In other words, Condition (ii) of Assumption 1 is

satisfied.

It remains to verify that Condition (i) of Assumption 1 is satisfied as well, that

is,
∫
Ωψ(θi,θj ;θri )

dH (ω|(θi, θj)) > 0 for every θj ∈ Θ+
j . In doing so, we further divide

the proof into two steps.

Step 3-1-1: Condition (i) of Assumption 1 is satisfied for the seller.

Proof. Consider the seller of type θ1. The set of feasible allocation payoffs of the

buyer given the true type profile (θ1, θ2) is

Π̃2(θ1, θ2) = {û2 ∈ R : there exists ω ∈ Ω s.t. h (ω|(θ1, θ2)) > 0 and ũ2(θ1, θ2;ω) = û2}
= {û2 ∈ R : û2 = θ2 + 0.8θ1 + ω2 for some ω2 ∈ [−0.1, 0.1]}
= [θ2 + 0.8θ1 − 0.1, θ2 + 0.8θ1 + 0.1].

Similarly, the set of feasible allocation payoffs of the buyer given the deviation

(θr1, θ2) becomes

Π̃2(θ
r
1, θ2) = {û2 ∈ R : there exists ω ∈ Ω s.t. h (ω|(θr1, θ2)) > 0 and ũ2(θ

r
1, θ2;ω) = û2}

= {û2 ∈ R : û2 = θ2 + 0.8θr1 + ω2 where ω2 ∈ [−0.1, 0.1]}
= [θ2 + 0.8θr1 − 0.1, θ2 + 0.8θr1 + 0.1].

Suppose θr1 > θ1 without loss of generality. Then, there exist some allocation

payoffs of the buyer such that they are feasible given the true type profile (θ1, θ2),

but they are not feasible given the deviation (θr1, θ2), which is,[θ2 + 0.8θ1 − 0.1, θ2 + 0.8θ1 + 0.1] if θ2 + 0.8θr1 − 0.1 > θ2 + 0.8θ1 + 0.1

[θ2 + 0.8θ1 − 0.1, θ2 + 0.8θr1 − 0.1) otherwise.

As a result, the set of residual uncertainties under which the buyer’s allocation

payoffs are feasible given the true type profile (θ1, θ2), but not feasible given the
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deviation (θr1, θ2), is as follows:

Ωψ(θ1, θ2; θ
r
1) =

[−0.1, 0.1]2 if θ2 + 0.8θr1 − 0.1 > θ2 + 0.8θ1 + 0.1,

{(ω1, ω2) : ω1 ∈ [−0.1, 0.1] and ω2 ∈ [−0.1, 0.8(θr1 − θ1)− 0.1)} otherwise.

Therefore, for every θ1, θ
r
1 ∈ Θ1 and every θ2 ∈ Θ2, there exists a positive-measure

set of residual uncertainties under which the buyer’s allocation payoffs are feasible

given the true type profile (θ1, θ2), but not feasible given the deviation (θr1, θ2),

implying that Condition (i) of Assumption 1 is satisfied for all θ1, θ
r
1 ∈ Θ1 and all

θ2 ∈ Θ2. We thus conclude that Assumption 1 is satisfied for the seller.

Step 3-1-2: Condition (i) of Assumption 1 is satisfied for the buyer.

Proof. Consider the buyer of type θ2. Recall that Condition (ii) of Assumption 1 is

satisfied, that is, if Uψ0

2 (θ2; θ
r
2) > Uψ0

2 (θ2; θ2), then there exists a positive-measure

set Θ+
1 ⊆ Θ1 such that

∫
Θ+

1
x∗1(θ1, θ

r
2)dF (θ1) > 0 where x∗1(·) denotes the probability

that the seller is allocated the good. Since the seller never keeps the good when

θr2 ≥ 0.4 in Example 5, it suffices to consider θr2 < 0.4.

When θr2 < 0.4, the set of feasible allocation payoffs of the seller given the true

type profile is

Π̃1(θ1, θ2) = {û1 ∈ R : there exists ω ∈ Ω s.t. h (ω|(θ1, θ2)) > 0 and ũ1(θ1, θ2;ω) = û1}
= {û1 ∈ R : û1 = θ1 + 0.5θ2 + ω1 for some ω1 ∈ [−0.1, 0.1]}
= [θ1 + 0.5θ2 − 0.1, θ1 + 0.5θ2 + 0.1].

Similarly, the set of feasible allocation payoffs of the buyer given the deviation

(θ1, θ
r
2) becomes

Π̃1(θ1, θ
r
2) = {û1 ∈ R : there exists ω ∈ Ω s.t. h (ω|(θ1, θr2)) > 0 and ũ1(θ1, θ

r
2;ω) = û1}

= {û1 ∈ R : û1 = θ1 + 0.5θr2 + ω1 where ω1 ∈ [−0.1, 0.1]}
= [θ1 + 0.5θr2 − 0.1, θ1 + 0.5θr2 + 0.1].

Suppose θr2 < θ2 without loss of generality. Then, there exist some allocation

payoffs of the seller such that they are feasible given the true type profile (θ1, θ2),

but they are not feasible given the deviation (θ1, θ
r
2), which is,[θ1 + 0.5θ2 − 0.1, θ1 + 0.5θ2 + 0.1] if θ1 + 0.5θr2 + 0.1 < θ1 + 0.5θ2 − 0.1

(θ1 + 0.5θr2 + 0.1, θ1 + 0.5θ2 + 0.1] otherwise.
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As a result, the set of residual uncertainties under which the seller’s allocation

payoffs are feasible given the true type profile (θ1, θ2), but not feasible given the

deviation (θ1, θ
r
2), is as follows:

Ωψ(θ2, θ1; θ
r
2) =

[−0.1, 0.1]2 if θ1 + 0.5θr2 + 0.1 < θ1 + 0.5θ2 − 0.1,

{(ω1, ω2) : ω1 ∈ (0.5(θr2 − θ2) + 0.1, 0.1] and ω2 ∈ [−0.1, 0.1]} otherwise.

Therefore, for every θ2 ∈ Θ2, if θ
r
2 < 0.4, there exists a positive-measure set of

residual uncertainties under which the seller’s allocation payoffs are feasible given

the true type profile (θ1, θ2), but not feasible given the deviation (θ1, θ
r
2). Recall

that Condition (ii) of Assumption 1 is also satisfied. we conclude that Assumption

1 is satisfied for the buyer.

We conclude that Assumption 1 is satisfied in Example 5. This completes the

proof of Step 3-1.

Step 3-2: Assumption 3 is violated for xε in Example 5.

Proof. Consider the buyer of type θ2 ≥ 0.4. If both agents report truthfully, then

the buyer’s expected utility in the approximate GS mechanism (Θ,Π, xε, tε,GS, ψ)

is ∫
Θ1

xε(θ1, θ2) (ũ
e
2(θ1, θ2)− ũe2(θ1, θ2)) dF (θ1) = 0.

Note that the expected utility of the buyer under truth-telling is identical to

that in the approximate GS mechanism (Θ,Π, xε, tε,GS, ψ) with ψ = 0, which is

U ε,ψ0

2 (θ2; θ2). If he deviates to θ
r
2 ∈ [0.4, θ2), his expected utility in the approximate

GS mechanism (Θ,Π, xε, tε,GS, ψ) becomes

U ε,ψ0

2 (θ2; θ
r
2) =

∫
Θ1

xε(θ1, θ
r
2) (ũ

e
2(θ1, θ2)− ũe2(θ1, θ

r
2)) dF (θ1) > 0,

where the inequality follows because the buyer’s valuation is strictly increasing in

his own type. Hence, the buyer of type θ2 ≥ 0.4 has an incentive to deviate to

θr2 ∈ [0.4, θ2). However, the seller’s true allocation payoffs equal θ1 + ω1, which is

independent of the buyer’s type. In other words, all feasible allocation payoffs of

the seller given the true type profile (θ1, θ2) are feasible given the deviation (θ1, θ
r
2).

Hence, Assumption 3 is violated.

This completes the proof of Step 3.

Step 4: We provide an example where Assumption 3 holds for xε, but Assumption

1 is violated for x∗ when
∫
Θ∗∗

2
dF (θ2) > 0.
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Proof. We use Example 3 in Section 4.5. Recall that in Example 3, each agent’s

valuation for the object when the true type profile is (θ1, θ2) and the residual

uncertainty is ω = (ω1, ω2) ∈ Ω is given as follows:

ũ1(θ1, θ2;ω) = θ1 + 2θ2 + ω1;

ũ2(θ1, θ2;ω) = 0.5 + 2θ1 + θ2 + ω2.

We compute

ũe2(θ1, θ2)− ũe1(θ1, θ2) = 0.5 + θ1 − θ2,

implying that the efficient decision rule dictates

x∗(θ1, θ2) =

{
1 if θ2 ≤ 0.5 + θ1;

0 otherwise

The following figure illustrates the decision at different type profiles in this example;

in particular, the shaded region represents Θ∗ = {(θ1, θ2) ∈ [0, 1]2 : x∗(θ1, θ2) = 1}.

Figure 8

We already show in Claim 4 that Assumption 1 is violated in Example 3. We

will show below, by means of an example, that Assumption 3 holds for xε. The

proposed example exhibits the following features. The buyer of type θ2 > 0.5

has an incentive to deviate to θr2 < 0.5 in the GS mechanism (Θ,Π, x∗, tGS, ψ).

This deviation induces that the good is never allocated to the seller after the

deviation, which guarantees that the buyer’s deviation cannot be detected. Thus,

Assumption 1 for x∗ is violated. On the contrary, this deviation can be detected

under xε because the good is always allocated to the seller with probability at least

ε > 0 under xε.

We divide the proof of Step 4 into two substeps.

Step 4-1: Assumption 3 is satisfied for the seller in Example 3.
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Proof. Observe from Figure 8 that in Example 3, for all θ1 ∈ Θ1, there exists

a positive-measure set Θ+
2 ⊆ Θ2 such that xε(θ1, θ2) = (1 − ε)x∗(θ1, θ2) > 0 for

all θ2 ∈ Θ+
2 . Hence, Condition (ii) of Assumption 3 is satisfied for the seller. It

remains to verify that Condition (i) of Assumption 1 is satisfied as well, that is,∫
Ωψ(θ1,θ2;θr1)

dH (ω|(θ1, θ2)) > 0 for every θ1, θ
r
1 ∈ Θ1 and every θ2 ∈ Θ+

2 .

Consider the seller of type θ1. The set of feasible allocation payoffs of the buyer

given the true type profile (θ1, θ2) is

Π̃2(θ1, θ2) = {û2 ∈ R : there exists ω ∈ Ω s.t. h (ω|(θ1, θ2)) > 0 and ũ2(θ1, θ2;ω) = û2}
= {û2 ∈ R : û2 = 0.5 + 2θ1 + θ2 + ω2 for some ω2 ∈ [−0.1, 0.1]}
= [0.5 + 2θ1 + θ2 − 0.1, 0.5 + 2θ1 + θ2 + 0.1].

Similarly, the set of feasible allocation payoffs of the buyer given the deviation

(θr1, θ2) becomes

Π̃2(θ
r
1, θ2) = {û2 ∈ R : there exists ω ∈ Ω s.t. h (ω|(θr1, θ2)) > 0 and ũ2(θ

r
1, θ2;ω) = û2}

= {û2 ∈ R : û2 = 0.5 + 2θr1 + θ2 + ω2 where ω2 ∈ [−0.1, 0.1]}
= [0.5 + 2θr1 + θ2 − 0.1, 0.5 + 2θr1 + θ2 + 0.1].

Suppose θr1 > θ1 without loss of generality. Then, there exist some allocation

payoffs of the buyer such that they are feasible given the true type profile (θ1, θ2),

but they are not feasible given the deviation (θr1, θ2), which is,[0.5 + 2θ1 + θ2 − 0.1, 0.5 + 2θ1 + θ2 + 0.1] if 0.5 + 2θr1 + θ2 − 0.1 > 0.5 + 2θ1 + θ2 + 0.1

[0.5 + 2θ1 + θ2 − 0.1, 0.5 + 2θr1 + θ2 − 0.1) otherwise.

As a result, the set of residual uncertainties under which the buyer’s allocation

payoffs are feasible given the true type profile (θ1, θ2), but not feasible given the

deviation (θr1, θ2), is as follows:

Ωψ(θ1, θ2; θ
r
1) =


[−0.1, 0.1]2

if 0.5 + 2θr1 + θ2 − 0.1 > 0.5 + 2θ1 + θ2 + 0.1,

{(ω1, ω2) : ω1 ∈ [−0.1, 0.1] and ω2 ∈ [−0.1, 2(θr1 − θ1)− 0.1)}
otherwise.

Therefore, for every θ1, θ
r
1 ∈ Θ1 and every θ2 ∈ Θ2, there exists a positive-measure

set of residual uncertainties under which the buyer’s allocation payoffs are feasible

given the true type profile (θ1, θ2), but not feasible given the deviation (θr1, θ2),

implying that condition (i) of Assumption 3 is satisfied for all θ1, θ
r
1 ∈ Θ1 and all

θ2 ∈ Θ2. We conclude that Assumption 3 is satisfied for the seller.
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Step 4-2: Assumption 3 is satisfied for the buyer in Example 3.

Proof. Recall that for all (θ1, θ2) ∈ Θ, the probability that the seller keeps the

good under decision rule xε is at least as high as ε. Hence, Condition (ii) of

Assumption 3 is always satisfied for the buyer. It remains to verify that Condition

(i) of Assumption 3 is satisfied as well, that is, for all θ2, θ
r
2 ∈ Θ2, there exists a

positive-measure set Θ+
1 ⊆ Θ1 such that

∫
Ωψ(θ2,θ1;θr2)

dF (θ2) > 0 for all θ1 ∈ Θ+
1 .

Consider the buyer of type θ2. The set of feasible allocation payoffs of the seller

given the true type profile (θ1, θ2) is

Π̃1(θ1, θ2) = {û1 ∈ R : there exists ω ∈ Ω s.t. h (ω|(θ1, θ2)) > 0 and ũ1(θ1, θ2;ω) = û1}
= {û1 ∈ R : û1 = θ1 + 2θ2 + ω1 for some ω1 ∈ [−0.1, 0.1]}
= [θ1 + 2θ2 − 0.1, θ1 + 2θ2 + 0.1].

Similarly, the set of feasible allocation payoffs of the seller given the deviation

(θ1, θ
r
2) becomes

Π̃1(θ1, θ
r
2) = {û1 ∈ R : there exists ω ∈ Ω s.t. h (ω|(θ1, θr2)) > 0 and ũ1(θ1, θ

r
2;ω) = û1}

= {û1 ∈ R : û1 = θ1 + 2θr2 + ω1 where ω1 ∈ [−0.1, 0.1]}
= [θ1 + 2θr2 − 0.1, θ1 + 2θr2 + 0.1].

Suppose θr2 < θ2 without loss of generality. Then, there exist some allocation

payoffs of the seller such that they are feasible given the true type profile (θ1, θ2),

but they are not feasible given the deviation (θ1, θ
r
2), which is,[θ1 + 2θ2 − 0.1, θ1 + 2θ2 + 0.1] if θ1 + 2θr2 + 0.1 < θ1 + 2θ2 − 0.1,

(θ1 + 2θr2 + 0.1, θ1 + 2θ2 + 0.1] otherwise.

As a result, the set of residual uncertainties under which the seller’s allocation

payoffs are feasible given the true type profile (θ1, θ2), but not feasible given the

deviation (θ1, θ
r
2), is as follows:

Ωψ(θ2, θ1; θ
r
2) =

[−0.1, 0.1]2 if θ1 + 2θr2 + 0.1 < θ1 + 2θ2 − 0.1,

{(ω1, ω2) : ω1 ∈ (2(θr2 − θ2) + 0.1, 0.1] and ω2 ∈ [−0.1, 0.1]} otherwise.

Therefore, for every θ1 ∈ Θ1 and every θ2, θ
r
2 ∈ Θ2, there exists a positive-measure

set of residual uncertainties under which the seller’s allocation payoffs are feasible

given the true type profile (θ1, θ2), but not feasible given the deviation (θ1, θ
r
2).

Recall that Condition (ii) of Assumption 3 is also satisfied. We conclude that

Assumption 3 is satisfied for the buyer.
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We conclude that Assumption 3 holds for xε in Example 3. This completes the

proof of Step 4.

This completes the proof of the claim.
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