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Abstract: We propose a procedure to identify latent group structures in nonlinear panel data models where 
some regression coefficients are heterogeneous across groups but homogeneous within a group and the 
group number and membership are unknown. To identify the group structures, we consider the order 
statistics for the preliminary unconstrained consistent estimators of the regression coefficients and 
translate the problem of classification into the problem of break detection. Then we extend the sequential 
binary segmentation algorithm of Bai (1997) for break detection from the time series setup to the panel 
data framework. We demonstrate that our method is able to identify the true latent group structures with 
probability approaching one and the post-classification estimators are oracle-efficient. The method has 
the advantage of more convenient implementation compared with some alternative methods, which is a 
desirable feature in nonlinear panel applications. To improve the finite sample performance, we also 
consider an alternative version based on the spectral decomposition of certain estimated matrix and link 
the group identification issue to the community detection problem in the network literature. Simulations 
show that our method has good finite sample performance. We apply this method to explore how 
individuals’ portfolio choices respond to their financial status and other characteristics using the 
Netherlands household panel data from year 1993 to 2015, and find three latent groups. 

JEL Classification: C33, C38, C51.  

Keywords: Binary segmentation algorithm, clustering, community detection, network, oracle estimator, 
panel structure model, parameter heterogeneity, singular value decomposition 

 

1. Introduction 

Panel data modeling is one of the most active areas of research in econometrics. By combining individual 
observations across time, panel data can produce more efficient estimators than pure cross section or time 
series estimators and allow us to study some problems that are not feasible in the cross section or time 
series framework. Many advantages of the panel data analysis rest on the parameter homogeneity 
assumption. Conventional panel data analysis often assumes slope homogeneity to utilize the full power 
of cross section averaging and make the asymptotic theory easier to derive.  
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Nevertheless, such a homogeneity assumption is frequently called into question and rejected in empirical researches;
see Hsiao and Tahmiscioglu (1997), Phillips and Sul (2007), Browning and Carro (2007), Su and Chen (2013) and Lu and
Su (2017), among others. When the homogeneous slope assumption does not hold, inferences based on it are typically
misleading (Hsiao, 2014, Chapter 1). On the other hand, if complete heterogeneity is allowed, the advantages of using
panel data can be lost and even the estimation might be impossible. For this reason, more and more researchers consider
an intermediate case and study the panel structure model.

In a panel structure model, there exists a subset of parameters that are heterogeneous across groups but homogeneous
within a group, and neither the number of groups nor individuals’ group membership is known. There are many motivating
examples for such a model. In macroeconomics, Phillips and Sul (2007) study the hypothesis of convergence clubs where
countries belonging to different groups behave differently; in financial markets, stocks in the same sector share some
similar characteristics and behave similarly (Ke et al., 2015). In the previous two examples, the group structures are
latent. In some other studies, the group structures are assumed to be observable. In labor economics, researchers consider
black–white racial differences and classify them into different groups in studying earnings dynamics (Hu, 2002); in
economic geography, location is a natural criterion for group classification (Fan et al., 2011; Bester and Hansen, 2016); in
international trade, GATT/WTO has uneven impacts on different groups of country-pairs (Subramanian and Wei, 2007).
All these examples motivate the use of panel structure models.

The panel structure model is also closely related to the subgroup analysis in the statistics literature. Statisticians are
interested in identifying the latent subgroups in order to design group-specific treatments in clinical trials, marketing
strategies and so on. Shen and He (2015) use a structured logistic-normal mixture model to test the existence of subgroups
and obtain predictive scores for the subgroup membership at the same time. Ma and Huang (2017) propose a penalized
approach for subgroup analysis by applying concave penalty functions to pairwise differences of the intercepts in a
regression model. Radchenko and Mukherjee (2017) study the asymptotic properties of a convex clustering method, which
is adapted from the K-means algorithm.

To identify the latent group structure is not an easy task. It is computationally infeasible to try all possible combinations
of groups, which is a Bell number (Shen and Huang, 2010). Some authors propose to use external variables to determine
the group structure; see, e.g., Hu (2002), Subramanian and Wei (2007), and Bester and Hansen (2016). However, this
approach may fail for various reasons. For example, it may be impossible to find such an external variable to determine
the group structure in empirical studies, and the wrong choice of such a variable can lead to misleading inferences. Several
data-driven approaches have been proposed to overcome the shortcomings of reliance on external variables to form
groups. One popular approach is based on the K-means algorithm; see Lin and Ng (2012), Sarafidis and Weber (2015),
Bonhomme and Manresa (2015) and Ando and Bai (2016). The second popular approach is based on the classifier-Lasso
(C-Lasso) that has been recently proposed by Su et al. (2016a, SSP hereafter) and extended in Su and Ju (2018), Su et al.
(2019), and Wang et al. (2019). In particular, SSP construct a novel C-Lasso procedure where the penalty term is the
addition of some multiplicative penalty terms and show that their method can identify the group structures and estimate
the parameters consistently at the same time. In addition, Wang et al. (2018, WPS hereafter) extend the CARDS algorithm
of Ke et al. (2015) to the panel data framework to identify the group structure of slope parameters.

Recently, Ke et al. (2016, KLZ hereafter) borrow the idea of binary segmentation in the structural change literature
(e.g., Bai (1997)) and apply it to identify the unobserved group structures in linear panel data models with interactive
fixed effects. Let N denote the number of cross sectional units and p the dimension of a parameter vector βi that is
associated with individual i. Let B = (β⊤

1 , . . . , β⊤

N )⊤. KLZ assume that the number of distinct elements in the Np-vector B
is given by a finite number, say N + 1 in their notation. Based on consistent preliminary estimates B̃ of B, they order the
elements of B̃ in ascending order and then apply the binary segmentation algorithm sequentially as used in Bai (1997) to
identify the group structure and estimate the distinct elements in B. Apparently, the setup in KLZ is quite different from
the general setup in econometrics where the parameters of interest, βi as a whole vector, are assumed to be heterogeneous
across groups but homogeneous within a group.

Following the lead of Bai (1997) and KLZ, we propose to apply the sequential binary segmentation algorithm (SBSA)
to identify the latent group structure on parameter vectors in nonlinear panel data models. In comparison with KLZ, our
method is different from theirs in three important ways. First, KLZ consider the classification of scalar coefficients but we
consider the classification of parameter vectors. In KLZ’s case, there is a natural ordering for their preliminary estimates
and they can draw support from the structural change literature where parameters of interest are ordered naturally
along the time dimension. In our case, there is no natural order for the estimates of parameter vectors, and fortunately,
inspired by the CART-split criterion (Breiman et al., 1984), we are able to propose a variant of binary segmentation
algorithm to classify the vectors. Second, KLZ consider the linear panel data models with interactive fixed effects. They
obtain their preliminary estimates by using an EM algorithm and then conduct the binary segmentation based on the
ordered preliminary estimates. In contrast, we consider general nonlinear panel data models that contain the linear panel
data model as a special case, and apply the modified binary segmentation algorithm on the quasi-maximum likelihood
estimates (QMLEs) of the parameter vectors of interest. Third, to determine when the sequential binary segmentation
stops, KLZ propose to use the BIC to select a tuning parameter but do not justify the asymptotic validity of information
criterion. In contrast, we propose a BIC-type information criterion to determine the number of groups directly and prove
that our information criterion can select the number of groups correctly with probability approaching one (w.p.a.1).
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In comparison with WPS, both papers rely upon some preliminary consistent estimates of the regression coefficients
to obtain ordered statistics along each component and then proceed to estimate the latent panel structure. The main
differences lie in two aspects. First, WPS rely on the ordered segmentations to construct the Lasso-type penalties for
individuals within the same segment and for those in neighboring segments, while we employ the ordering simply for the
purpose of extending the SBSA from the time series structural change literature to identifying the latent group structure
in our setup. Second, WPS need to specify at least three tuning parameters, one for the between-segment penalty, one
for the within-segment penalty, and the other one for controlling the number of the segments. In sharp contrast, we do
not need to specify any tuning parameter once the number of groups is given.

In comparison with SSP’s C-Lasso method and the K-means algorithm, our method has both pros and cons. First, the
K-means algorithm is NP hard and thus computationally demanding. SSP’s C-Lasso procedure is not a convex problem
but can be transformed into a sequence of convex problems. So the computational burden of SSP’s C-Lasso method is not
as much as the K-means algorithm but is still quite expensive. In contrast, our SBSA is least computationally demanding
among the three methods. Second, the SSP’s C-Lasso needs the choice of two tuning parameters, one is used to determine
the number of groups, and the other is used for the C-Lasso penalty. Unlike the C-Lasso method but like the K-means
algorithm, our binary segmentation algorithm only relies on a single tuning parameter to determine the number of groups
via an information criterion. Of course, if the number of groups is known a priori, there is no tuning parameter involved
in our procedure and the K-means algorithm as well, and one tuning parameter is involved in the C-Lasso procedure.
Third, SSP’s C-Lasso may leave some individuals unclassified and one has to classify some unclassified individuals after
the algorithm based on some distance measure. Like the K-means algorithm, our binary segmentation algorithm forces all
individuals to be classified into one of the groups. As SSP argue, leaving some individuals unclassified is not necessarily
a bad thing. We also find through our simulations that the preliminary estimates based on some realizations can be
rather abnormal when the time dimension T in the panel is not large. In this case, including such abnormal estimates
in the algorithm can significantly deteriorate the classification performance. Fourth, in some sense, our method can be
regarded as a universal method and it works for all panel structure models as long as one can obtain preliminary consistent
estimates. The model can be nonstationary panels or panel data models with interactive fixed effects.

In addition, we also allow the presence of common parameters across all individuals. This corresponds to the mixed
panel structure model mentioned in SSP (Section 2.7). It is useful when economic theory suggests that some regressors’
coefficients are identical across individuals (e.g., Pesaran et al. (1999)) while others’ are not. Besides, when a regressor
(e.g., employment status) is time-invariant for some individuals, we have no choice but to assume its slope coefficient is
homogeneous across individuals in the linear-type panel data models.1

To enhance the finite sample performance of the SBSA, we also propose an alternative algorithm based on the spectral
decomposition of certain symmetric matrix and establish the linkage between the panel structure model and the stochastic
block model (SBM) that is widely used for community detection in the network literature (e.g., von Luxburg (2007) and
Rohe et al. (2011)). Using a useful variant of the deep Davis-Kahan sin θ theorem a la Yu et al. (2015), we are able to show
that the individuals’ group information is contained in the largest few eigenvectors of such a matrix and it is feasible to
conduct SBSA based on such eigenvectors. We also establish the asymptotic distribution theory in this case.

In the application, we study how individuals’ portfolio choices are affected by financial assets, non-capital income,
retirement status and other factors. Among them, financial assets and non-capital income are modeled to have heteroge-
neous responses for different individuals. The response variable is the safe asset ratio, which is left censored at 0 and right
censored at 1. We use data from the De Nederlandsche Bank (DNB) panel survey. By using the method proposed here,
we are able to identify three latent groups. The first group of individuals responds to increasing non-capital income by
decreasing the safe assets ratio while the other two groups do the opposite. The increase in financial assets has negative
effects on all groups. But the extent is rather different between the second group and the others. The results are consistent
with the general observation that some people tend to invest income on safe assets while others (e.g., risk-loving people)
do the contrary.

The rest of the paper is organized as follows. We introduce the latent structure panel data model and the estimation
algorithms in Section 2. Asymptotic properties of the algorithm and the final estimators are given in Section 3. In
Section 4, we propose an improved algorithm and give its asymptotic properties. In Section 5, we show the finite sample
performance of our method by Monte Carlo simulations. In Section 6, we apply our method to study individuals’ portfolio
choices by using the Netherlands household survey panel data. Section 7 concludes. To save space, all proofs are relegated
to the online supplementary appendix.

Notation. Rn (Nn) denotes the n-dimensional Euclidean (natural number) space. For a real matrix (vector) A, we denote
its transpose A⊤ and its Frobenius norm ∥A∥. When A is symmetric, λmax(A), λmin(A), and λj (A) denote its largest, smallest,
and jth largest eigenvalues, respectively. Ip and 0p×1 denote the p×p identity matrix and p×1 vector of zeros, respectively.
1{·} denotes the indicator function. The operators

D
→ and

P
→ denote convergence in distribution and in probability,

respectively.

1 In the empirical application studied in this paper, some people change from the work status to the retirement status while others stay in the
work or retirement status over the whole observed time periods. In other words, the retirement dummy changes from 0 to 1 for some individuals
and remains fixed to be either 0 or 1 over the period of study for the other individuals.
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2. The model and the estimators

In this section, we consider the panel structure model and propose a sequential binary segmentation algorithm (SBSA)
to estimate the group structures.

2.1. The panel structure model and examples

We consider the general panel data model with latent group structures:

yit = g(xit , εit; βi, µi, θ ), i = 1, . . . ,N, t = 1, . . . , T , (2.1)

where g(·) is a general regression function, xit is a vector of regressors that may contain the lagged dependent variables
(e.g., yi,t−1), εit is the idiosyncratic shock, µi is an r × 1 vector of nuisance parameters (e.g., the fixed effects), θ is a q× 1
vector of parameters that are common across individuals, and βi is a p×1 vector of parameters whose true values exhibit
a group pattern of the general form

β0
i =

K0∑
k=1

α0
k · 1

{
i ∈ G0

k

}
.

Here α0
k ̸= α0

l for any k ̸= l and G0
≡ {G0

1, . . . ,G
0
K0} forms a partition of the set {1, . . . ,N}. We denote the number of

individuals in G0
k by Nk ≡ |G0

k |, where |G| denotes the cardinality of the set G. In this model, the true number of groups
K 0 and the group structure G0 are both unknown.

We denote the minus log-likelihood function of yit conditional on xit and the history of (xit , yit ) by ϕ(wit; βi, µi, θ ). Let
β = (β1, . . . , βN )⊤, α = (α1, . . . , αK0 )⊤, and µ = (µ1, . . . , µN )⊤. The true values of β, α, µ, and θ are denoted by β0,
α0, µ0, and θ0, respectively. Without any information about the group structure, we propose to minimize the following
objective function

LNT (β, µ, θ ) =
1
NT

N∑
i=1

T∑
t=1

ϕ(wit; βi, µi, θ ). (2.2)

When the likelihood function is correctly specified, by minimizing the above function we obtain the maximum likelihood
estimates (MLEs) β̃ = (β̃1, . . . , β̃N )⊤, µ̃ = (µ̃1, . . . , µ̃N )⊤, and θ̃ of β, µ, and θ , respectively. Otherwise, they are the
quasi-maximum likelihood estimates (QMLEs).

Next, we give some concrete examples for the model in (2.1) and its associated likelihood function in (2.2).

Example 2.1 (Linear Panel). We consider two cases.

(i) The standard heterogeneous linear panel data model with individual fixed effects is given by

yit = x⊤

it β
0
i + µ0

i + εit , (2.3)

where µi is the scalar fixed effect so that r = 1, βi, xit , and εit are defined as above, and the model does not contain
any common parameter of interest so that θ is absent. In this case, we can set ϕ(wit; βi, µi) =

1
2 (yit − x⊤

it βi − µi)2,
where wit = (yit,x⊤

it )
⊤.

(ii) Following Pesaran et al. (1999), we can consider a mixed linear panel data model that contains both homogeneous
and heterogeneous slope coefficients:

yit = x⊤

1,itβ
0
i + x⊤

2,itθ
0
+ µ0

i + εit ,

where xit = (x⊤

1,it , x
⊤

2,it )
⊤ is a (p + q) × 1 vector of regressors, µi is the scalar fixed effects, and βi, θ , and εit are as

defined above. In this case, ϕ(wit; βi, µi, θ ) =
1
2 (yit − x⊤

1,itβi − x⊤

2,itθ − µi)2, where wit = (yit,x⊤

1,it , x
⊤

2,it )
⊤.

Example 2.2 (Censored Panel). The observed response variable yit is subject to two-sided censoring

yit = mami(L, y∗

it , R),

where the notation mami(·) is borrowed from Alan et al. (2014) and defined as

mami(L, y, R) =

⎧⎨⎩
L if y ≤ L
y if L < y < R
R if y ≥ R.

Clearly, the one-sided censoring is included as a special case by setting L = −∞ or R = +∞ to obtain the right or left
censored model. Let ILit = 1{yit = L} and IRit = 1{yit = R}. We consider four cases.
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(i) The unobserved response variable y∗

it is generated as

y∗

it = x⊤

it β
0
i + µ0

i + εit ,

and we only observe {xit , yit}, where yit = mami(L, y∗

it , R), xit , βi and µi are as defined in Example 2.1, εit ’s are
independent and identically distributed (i.i.d.) N

(
0, σ 2

)
. So here the common parameter θ = σ 2 and

− ϕ(wit; βi, µi, σ
2) = ILit lnΦ

(
(yit − x⊤

it βi − µi)/σ
)
+ IRit ln

(
1 − Φ

(
(yit − x⊤

it βi − µi)/σ
))

+ (1 − ILit − IRit ) ln
[
φ
(
(yit − x⊤

it βi − µi)/σ
)
/σ
]
, (2.4)

where φ and Φ denote the probability density function and cumulative distribution function of a standard normal
variable, respectively.

(ii) The model in case (i) can be made slightly more general to include a common parameter vector in the regression
part:

y∗

it = x⊤

1,itβ
0
i + x⊤

2,itθ
0
2 + µ0

i + εit ,

where θ = (σ 2, θ⊤

2 )⊤ and θ2 is a (q − 1)-vector. The QMLE objective function follows directly from (2.4) with
yit − x⊤

it βi − µi being replaced by yit − x⊤

1,itβi − x⊤

2,itθ2 − µi.
(iii) Here the DGP is similar to the first case. The only difference is that εit ’s are i.i.d. N

(
0, σ 2

i

)
across t . Then µ′

i =

(µi, σ
2
i )

⊤ plays the role of µi in (2.1). The QMLE objective function here is similar to (2.4) but with σ being replaced
by σi.

(iv) This case is similar to case (ii) except that εit ’s are i.i.d. N
(
0, σ 2

i

)
across t . Note that here the individual incidental

parameters and common parameters are (µi, σ
2
i )

⊤ and θ , respectively. The QMLE objective function also follows
from (2.4) with yit − x⊤

it βi − µi and σ being replaced by yit − x⊤

1,itβi − x⊤

2,itθ − µi and σi, respectively.

Example 2.3 (Binary Choice Panel). As in Example 2.1, we also consider two cases:

(i) The model is yit = 1{x⊤

it β
0
i + µ0

i − εit ≥ 0}, where xit , βi, and µi are defined as in Example 2.1 and εit ’s are i.i.d.
N (0, 1). So in this case, −ϕ(wit; βi, µi) = yit lnΦ(yit − x⊤

it βi − µi) + (1 − yit ) ln[1 − Φ
(
yit − x⊤

it βi − µi
)
].

(ii) The model is yit = 1{x⊤

1,itβ
0
i + x⊤

2,itθ
0
+ µ0

i − εit ≥ 0}. Here, −ϕ(wit; βi, µi, θ ) = yit lnΦ(yit − x⊤

1,itβi − x⊤

2,itθ − µi) +
(1 − yit ) ln[1 − Φ(yit − x⊤

1,itβi − x⊤

2,itθ − µi)].

2.2. Sequential binary segmentation algorithm

The main interest of this paper is to identify the group structure G0, which contains the information about the number
of groups and all individuals’ group membership.

To introduce the estimation algorithm, we rewrite the N × p matrix β̃ ≡ (β̃1, . . . , β̃N )⊤ as

β̃ = (β̃·1, . . . , β̃·p),

where β̃·j denotes the jth column of β̃ for j = 1, . . . , p. Let β0
i,j, α0

k,j and β̃i,j denote the jth element of β0
i , α0

k and β̃i,
respectively, for j = 1, . . . , p. We sort the N elements of β̃·j in ascending order and denote the order statistics by

β̃πj(1),j ≤ β̃πj(2),j ≤ · · · ≤ β̃πj(N),j, (2.5)

where {πj(1), . . . , πj(N)} is a permutation of {1, . . . ,N} that is implicitly determined by the order relation in (2.5). Let

Si,l (j) ≡ {β̃πj(i),j, β̃πj(i+1),j, . . . , β̃πj(l),j}

for 1 ≤ i < l ≤ N .
Fix j ∈ {1, . . . , p}. Intuitively speaking, if the β0

i,j’s are not identical across i for some j, then finding the homogeneity
among β0

i,j’s is equivalent to finding the “break points” among the ordered version of β0
i,j’s. When β̃i,j’s are consistent

estimates of β0
i,j’s, we expect the “break points” in the ordered β0

i,j’s will be carried upon to the ordered β̃i,j’s. Consequently,
we can apply the binary segmentation algorithm sequentially to detect all breaks among the ordered β0

i,j’s. For example,
suppose K 0

= 3, α0
1,j < α0

2,j < α0
3,j, and N1 (resp. N2 and N − N1 − N2) β0

i,j’s take value α0
1,j (resp. α

0
2,j and α0

3,j). Then we
expect to see two break points in the sequence S1,N (j) = {β̃πj(1),j, β̃πj(2),j, . . . , β̃πj(N),j} in large samples that are given by
N1 and N1 +N2. This is simply because when the sample size is sufficiently large, all elements in the subsamples S1,N1 (j),
SN1+1,N1+N2 (j), and SN1+N2+1,N (j) have the probability limits α0

1,j, α0
2,j, and α0

3,j, respectively. We will show that w.p.a.1,
we can identify the two break points N1 and N1 + N2 based on the ranking relationship in (2.5) provided that α0

1,j, α0
2,j,

and α0
3,j are distinct from each other.
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Complications arise here because it is possible for all j ∈ {1, . . . , p}, α0
1,j, . . ., and α0

K0,j
are not all distinct from each

other and K 0 is typically unknown. For this reason, we have to allow the possibility that {α0
k,j, k = 1, . . . , K 0

} are not all
distinct from each other for all j and the possibility that α0

1,j = · · · = α0
K0,j

for some j. We achieve the identification of
all K 0 groups based on the key observation that the sample variance of the subsample Si,l (j) behaves quite differently
depending on whether β0

πj(i),j
is the same as β0

πj(l),j
. If β0

πj(i),j
= β0

πj(i+1),j = · · · = β0
πj(l),j

, then the sample variance of
Si,l (j) is proportional to T−1 when the preliminary estimates β̃i are all

√
T -consistent; on the other hand, if there is a

break between i and l such that β0
πj(i),j

< β0
πj(l),j

, then the sample variance of Si,l (j) will be bounded away from zero. This
motivates us to choose regressor index j such that β̃i,j’s has the largest variance in the investigated segment (i, l) to detect
a possible break point.

Let

β̄i,l (j) =
1

l − i + 1

l∑
i′=i

β̃πj(i′),j and V̂ 0
i,l (j) ≡

1
l − i

l∑
i′=i

[β̃πj(i′),j − β̄i,l (j)]2

denote the sample mean and variance of the subsample Si,l (j), respectively. Let σ̂ 2
i (j) denote a consistent estimator of

the asymptotic variance Var(
√
T β̃πj(i),j). Let V̂i,l (j) ≡ V̂ 0

i,l (j) /σ̄ 2
i,l (j) where σ̄ 2

i,l (j) =
1

l−i+1

∑l
i′=i σ̂

2
i′ (j). Define

Ŝi,l(j,m) =
1

l − i + 1

{
m∑
i′=i

[
β̃πj(i′),j − β̄i,m (j)

]2
+

l∑
i′=m+1

[
β̃πj(i′),j − β̄m+1,l (j)

]2}
, (2.6)

which measures the variation in Si,l (j) in the presence of a conjectured break point at m. Since K 0 is typically unknown,
we have to pick up a large enough number Kmax such that 1 ≤ K 0

≤ Kmax. Let K denote a generic number of groups. We
propose to adopt the following SBSA to estimate G0.

Sequential Binary Segmentation Algorithm 1 (SBSA 1)2

1. Let K ∈ [1, Kmax]. When K = 1, there is only one group, i.e., slope coefficients βi’s are actually homogeneous. In
this case, the estimated group Ĝ1 (1) = {1, . . . ,N}.

2. When K = 2, let ȷ̂1 = argmax1≤j≤p V̂1,N (j). Given ȷ̂1, we solve the following minimization problem

m̂1 ≡ argmin
1≤m<N

Ŝ1,N (ȷ̂1,m),

which is an estimated break point. Now we have two segments – Ĝ1(2) = S1,m̂1 (ȷ̂1) and Ĝ2(2) = Sm̂1+1,N (ȷ̂1).
3. When K ≥ 3, we use m̂1, . . . , m̂K−2 denote the break points detected in the previous steps such that m̂1 < · · · <

m̂K−2 perhaps after relabeling the K − 2 break points that have been detected so far. Define

ȷ̂K−1 ≡ argmax
1≤j≤p

K−1∑
k=1

V̂m̂k−1+1,m̂k (j) ,

m̂K−1 (k) ≡ argmin
m̂k−1+1≤m<m̂k

Ŝm̂k−1+1,m̂k (ȷ̂K−1,m) for k = 1, . . . , K − 1,

where m̂0 = 0, m̂K−1 = N , and we suppress the dependence of m̂K−1 (k) on ȷ̂K−1. Then m̂K−1 (k) divides Ĝk (K − 1)
into two subsegments, which are labeled as Ĝk1 (K − 1) and Ĝk2 (K − 1) respectively. Calculate for k = 1, . . . , K −1,

ŜK−1 (k) ≡

∑
i∈Ĝk1(K−1)

[
β̃i,ȷ̂K−1 − β̄Ĝk1(K−1)

(
ȷ̂K−1

)]2
+

∑
i∈Ĝk2(K−1)

[
β̃i,ȷ̂K−1 − β̄Ĝk2(K−1)

(
ȷ̂K−1

)]2
+

∑
1≤l≤K−1,l̸=k

∑
i∈Ĝl(K−1)

[
β̃i,ȷ̂K−1 − β̄Ĝl(K−1)

(
ȷ̂K−1

)]2
,

where, e.g., β̄Ĝk1(K−1)

(
ȷ̂K−1

)
= |Ĝk1 (K − 1) |

−1∑
i∈Ĝk1(K−1) β̃i,ȷ̂K−1 . Note that ŜK−1 (k) measures the subsegment

variation of {β̃i,ȷ̂K−1}
N
i=1 when an additional potential break point m̂K−1 (k) is detected in the set Ĝk (K − 1). Let

k̂ = argmin
1≤k≤K−1

ŜK−1 (k) ,

2 A major difference between our algorithm and that of KLZ is that KLZ specify a tuning parameter δ that is compared with something similar
to our S1,N (j,m) to determine when one should stop the algorithm. Even though they propose to use the BIC to choose δ, there is no asymptotic
justification for this. In contrast, we propose to use an information criterion to determine the number of groups directly and justify its asymptotic
validity. Admittedly, Kmax plays the role of δ in KLZ but our result is insensitive to its choice.
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which is the estimated segment number based on which we find the new break point. We now obtain the K − 1
break points and the K segments given by {m̂1, . . . , m̂K−2, m̂K−1(k̂)} and {Ĝ1 (K − 1) , . . . , Ĝk̂−1 (K − 1), Ĝk̂1 (K − 1),
Ĝk̂2 (K − 1), Ĝk̂+1 (K − 1) , . . ., ĜK−1 (K )}, respectively. Relabel these K −1 break points as {m̂1, . . . , m̂K−1} such that
m̂1 < m̂2 < · · · < m̂K−1, and the corresponding K groups as {Ĝ1 (K ), Ĝ2(K ), . . ., ĜK (K )}.

4. Repeat the last step until K = Kmax.

Of course, if K 0 is known a priori, we can set Kmax
= K 0. At the end of the SBSA 1, we obtain the Ĝ

(
K 0
)

≡

{Ĝ1, Ĝ2, . . . , ĜK0} as the estimates of the true group structure G0. Otherwise, we need first to estimate K 0 before we
obtain the final estimate of G0. See the next subsection.

2.3. The estimation of the model parameters

Let Ĝ(K ) ≡ {Ĝ1 (K ) , Ĝ2 (K ) , . . . , ĜK (K )}. Given the estimated group structure Ĝ(K ) for K ∈ [1, Kmax], we propose to
estimate the model parameters by minimizing

LNT (β, µ, θ ) =
1
NT

N∑
i=1

T∑
t=1

ϕ(wit; βi, µi, θ )

s.t. βi = αk for i ∈ Ĝk (K ) and k = 1, . . . , K . (2.7)

Let β̂ (K ), µ̂ (K ), θ̂ (K ), and α̂ (K ) denote the solution to the above minimization problem, where β̂ (K ) = (β̂1 (K ) , . . . ,

β̂N (K ))⊤, µ̂ (K ) = (µ̂1 (K ) , . . . , µ̂N (K ))⊤, α̂ (K ) =
(
α̂1 (K ) , . . . , α̂K (K )

)⊤, and α̂k (K ) is the estimate of the group-specific
parameter vector αk. We propose to select K to minimize the following BIC-type information criterion

IC1(K ) = 2LNT (β̂ (K ) , µ̂ (K ) , θ̂ (K )) + pK · ρNT , (2.8)

where ρNT is a function of (N, T ). It plays the role of ln (NT ) /(NT ) in the use of BIC in the panel setup. Let

K̂ ≡ argmin
1≤K≤Kmax

IC1(K ) and Ĝ ≡ Ĝ(K̂ ) ≡ {Ĝ1(K̂ ), Ĝ2(K̂ ), . . . , ĜK̂ (K̂ )} (2.9)

be the estimated number of groups and the estimated group structure, respectively. We will show that

P(K̂ = K 0) → 1 and P(Ĝ = G0) → 1 as (N, T ) → ∞.

Given K̂ and Ĝ, we consider the constrained minimization problem in (2.7) with K being replaced by K̂ and obtain the
final estimate of β, µ, α, and θ as

β̂ ≡ β̂(K̂ ) = (β̂1(K̂ ), . . . , β̂N (K̂ ))⊤, µ̂ ≡ µ̂(K̂ ) = (µ̂1(K̂ ), . . . , µ̂N (K̂ ))⊤,

α̂ ≡ α̂(K̂ ) = (α̂1(K̂ ), . . . , α̂K̂ (K̂ ))
⊤, θ̂ ≡ θ̂ (K̂ ).

Note that these estimates can be obtained via the standard profile maximum likelihood method once we have the
estimated group structure Ĝ. That is, α̂ and θ̂ can be obtained as the minimizer of the following objective function

Q̂NT (α, θ ) =
1
NT

K̂∑
k=1

∑
i∈Ĝk(K̂ )

T∑
t=1

ϕ(wit; αk, µ̂i(αk, θ ), θ ), (2.10)

where µ̂i(αk, θ ) = argminµi
1
T

∑T
t=1 ϕ(wit; αk, µi, θ ) for i ∈ Ĝk(K̂ ) and k = 1, . . . , K̂ . We will study the asymptotic

properties of α̂ and θ̂ in the next section.

3. Asymptotic properties

In this section, we first study the consistency of the preliminary estimators and then study the asymptotic properties
of our estimates of the group structure and other model parameters.

3.1. Consistency of the preliminary estimates

Let γi = (β⊤

i , µ⊤

i )
⊤, ςi = (γ ⊤

i , θ⊤)⊤, γ 0
i = (β0⊤

i , µ0⊤
i )⊤, and ς0

i = (γ 0⊤
i , θ0⊤)⊤. Following the literature on nonlinear

panels (e.g., Hahn and Newey, 2004; Hahn and Kuersteiner, 2011, and SSP), we consider the profile log-likelihood function

QNT (θ ) =
1
NT

N∑
i=1

T∑
t=1

ϕ (wit; γ̃i(θ ), θ) , (3.1)
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where γ̃i(θ ) = argminγi
1
T

∑T
t=1 ϕ(wit; γi, θ ). Let θ̃ = argminθ QNT (θ ) and γ̃i = γ̃i(θ̃ ) = (β̃⊤

i , µ̃⊤)⊤. Let

γi (θ) ≡ argmin
γi

1
T

T∑
t=1

E[ϕ(wit; γi, θ )].

Note that γ 0
i = γi(θ0) for i = 1, . . . ,N .

Let Z(wit; γi, θ ) ≡ ∂ϕ(wit; γi, θ )/∂γi and W (wit; γi, θ ) ≡ ∂ϕ(wit; γi, θ )/∂θ . Let Zγi denote the first derivative of Z with
respect to γ ⊤

i . Define W γi and W θ similarly. Define

Hi,γ γ (θ ) =
1
T

T∑
t=1

E [Zγi (wit; γi (θ) , θ )] and Hi,θθ (θ ) =
1
T

T∑
t=1

E
[
W θ

it (θ ) + W γi
it (θ )

∂γi(θ )
∂θ⊤

]
,

where W θ
it (θ ) = W θ

i (wit; γi (θ) , θ ) and W γi
it (θ ) = W γi

i (wit; γi (θ) , θ ). For notational simplicity, let maxi and maxi,t
abbreviate max1≤i≤N and max1≤i≤N,1≤t≤T , respectively, and similarly for mini and mini,t .

To state the first main result, we make the following assumptions.

Assumption A1. (i) For each i, {wit , t ≥ 1} is stationary strong mixing with mixing coefficient αi(·). Let α(·) ≡ maxi αi(·)
satisfies α(s) ≤ cαρs for some cα > 0 and ρ ∈ (0, 1). {wit} are independent across i.

(ii) For any η > 0, there exists a constant ϵ > 0 such that mini{minςi:∥ςi−ς0
i ∥>η

1
T

∑T
t=1 E[ϕ(wit; ςi) −ϕ(wit; ς0

i )]} > ϵ

and infθ :∥θ−θ0∥>η
1
N

∑N
i=1

[
Ψi (γi (θ) , θ) − Ψi(γi(θ0), θ0)

]
> ϵ, where Ψi (γi, θ) =

1
T

∑T
t=1 E[ϕ(wit; γi, θ )].

(iii) Let Υ and Θ denote the parameter space for ςi and θ , respectively. Υ is compact and convex and the true value
ς0
i lies in the interior of Υ for all i = 1, . . . ,N .
(iv) For a (p + r + q) × 1 vector d = (d1, . . . , dp+r+q)⊤ ∈ Np+r+q, we let |d| denote

∑p+r+q
j=1 dj. Let Ddϕit (wit; ςi) ≡

∂ |d|ϕit (wit; ςi)/∂d1ςi,1 · · · ∂dp+r+qςi,p+r+q, where ςi,j denotes the jth element of ςi. There is a non-negative real function
M(·) such that supςi∈Υ ∥Ddϕit (wit; ςi)∥ ≤ M(wit ) and ∥Ddϕit (wit; ςi) − Ddϕit (wit; ς ′

i )∥ ≤ M(wit )∥ςi − ς ′

i ∥ for all ςi, ς ′

i ∈ Υ

and |d| ≤ 3, and maxi E|M(wit )|κ ≤ cM for some cM < ∞ and κ ≥ 6.
(v) There exists a finite constant cH > 0 such that mini infθ∈Θ λmin

(
Hi,γ γ (θ )

)
≥ cH and mini λmin (Hi,θθ (θ0)) ≥ cH .

(vi) NT 1−κ/2
→ c ∈ [0, ∞), (p/T ) (ln T )6 → 0 and q = O(p) as (N, T ) → ∞.

Assumption A1(i)–(v) parallel Assumption A1(i)–(v) in SSP. Assumption A1(i) imposes that wit ’s are independent across
individuals and strong mixing over time. This condition is commonly assumed in the nonlinear panel literature; see,
e.g., Hahn and Kuersteiner (2011) and SSP. The stationarity condition is not necessary; it is assumed only for the purpose
of simplifying the notation in the proofs of some asymptotic results in the appendix. Note that Assumption A1(i) allows
the dynamic panel data model. Assumption A1(ii) imposes the identification condition for the common parameter θ .
Assumption A1(iii) requires {ςi} take values in the same bounded and closed subset of Rp+r+q. Assumption A1(iv) requires
ϕ(·) and its partial derivatives up to the third order are sufficiently smooth and satisfying some moment conditions.
Assumption A1(v) assumes that the Hessian matrices Hi,γ γ (θ ) and Hi,θθ (θ0) have eigenvalues that are bounded away from
zero. Assumption A1(vi) imposes conditions on N , T , p, and q. It requires that N , p, and q should not diverge to infinity
too fast relative to T . In particular, we allow N/T 2

→ c ∈ [0, ∞) if κ = 6. The condition q = O(p) is imposed to facilitate
the presentation below because in this case the estimation of θ0 will not affect the L2-convergence rate of γ̃i’s.

The following theorem establishes the consistency of the preliminary estimates θ̃ and γ̃i.

Theorem 3.1 (Consistency of the Preliminary Estimators). Suppose that Assumption A1 holds. Then (i) ∥θ̃−θ0
∥ = OP

(
(q/T )1/2

)
,

(ii) ∥γ̃i − γ 0
i ∥ = OP

(
(p/T )1/2

)
, (iii) max1≤i≤N ∥γ̃i − γ 0

i ∥ = OP ((p/T )1/2 (ln T )3), and (iv) 1
N

∑N
i=1 ∥γ̃i − γ 0

i ∥
2

= OP (p/T ).

The proof of Theorem 3.1 is rather complicated and relegated to the appendix. The results are applied to both static and
dynamic panel data models. The rate in Theorem 3.1(iii) is not optimal. In fact, following Su et al. (2016b), SSPb hereafter)
we can establish that P(max1≤i≤N

γ̃i − γ 0
i

 ≥ C(p/T )1/2 (ln T )3) = o(N−1) for some large positive constant C . We can
obtain a slightly tighter probability order for max1≤i≤N

γ̃i − γ 0
i

 when we do not restrict the above tail probability to be
o(N−1) or relax the moment conditions in Assumption A1(iv).

Note that SSP also obtains preliminary rates of convergence for their Lasso estimators. Our results in Theorem 3.1(ii)
and (iv) parallel those in Theorem 2.1(i)–(ii) of SSP. The major difference is that we allow for the presence of a common
parameter (θ) and permit both p and q to diverge to infinity whereas SSP does not allow the presence of a common
parameter in their basic model and only focus on the fixed p case. As a result, the convergence rates of our estimators
θ̃ and γ̃i in terms of Frobenius norm depend on q and p, respectively, while that of SSP’s estimates of the regression
coefficient are affected by the choice of a tuning parameter in their C-Lasso procedure.

3.2. Consistency of classification

To study the classification consistency, we introduce some additional notation. Let G(K ) = {G1 (K ) ,G2 (K ) , . . . ,GK (K )}

be an arbitrary partition of {1, . . . ,N} where |Gk (K )| ≥ 1 for k = 1, . . . , K . Define σ̂ 2
G(K ) = 2(NT )−1∑K

k=1



280 W. Wang and L. Su / Journal of Econometrics 220 (2021) 272–295∑
i∈Gk

∑T
t=1 ϕ(wit; β̌i (K ) , µ̌i(K ), θ̌ (K )), where β̌i (K ) , µ̌i(K ), and θ̌ (K ) solve the constrained problem in (2.7) with {Ĝk (K )}

being replaced by {Gk (K )}.
We add two assumptions.

Assumption A2. (i) There exists a constant cL > 0 such that slopes min1≤k<k′≤K0 ∥α0
k − α0

k′∥ > cL.
(ii) The number of groups K 0 is fixed. Nk/N → τk ∈ (0, 1) as N → ∞ for k = 1, . . . , K 0.

Assumption A3. (i) p3/2N1/2(lnN)9/T → 0 as (N, T ) → ∞.
(ii) As (N, T ) → ∞, min1≤K<K0 minG(K ) σ̂

2
G(K )

P
→ σ̄ 2 > σ 2

0 , where σ 2
0 ≡ lim(N,T )→∞ 2(NT )−1 ∑K0

k=1
∑

i∈G0k

∑T
t=1

Eϕ(wit; α0
k , µ

0
i , θ

0).
(iii) pρNT → 0 as (N, T ) → ∞ and TρNT → ∞ as (N, T ) → ∞.

Assumption A2(i)–(ii) is commonly assumed in the literature on panel structure models; see, e.g., Bonhomme and
Manresa (2015) and SSP. Assumption A2(i) requires the minimum distance between the group-specific parameters
are bounded away from zero. At the cost of more complicated arguments, we can allow min1≤k<k′≤K0 ∥α0

k − α0
k′∥

to shrink to zero at a rate slower than (p/T )1/2 (ln T )3. But in practice, when the group-specific parameters are not
sufficiently separated from each other, it is hard to estimate the group structure accurately with any finite period of
time series observations. Assumption A2(ii) requires each group has a nonnegligible ratio of members asymptotically.
Assumption A3(i) parallels Assumption A2(ii) in SSP and strengthens the condition in Assumption A1(vi) to ensure that
the estimation error from the preliminary estimates does not play a role in the determination of the number of groups
and the asymptotic distribution of our final estimators. Note that unlike KLZ who require (N lnN)2/T → 0, we allow
N to diverge to infinity at a faster rate than T . A reason for such a big distinction is that we explicitly evaluate the
smaller order terms in the differences of the objective functions in the proof of Theorem 3.2 while KLZ only apply a rough
probability bound to control them. Assumption A3(ii)–(iii) imposes some typical conditions to ensure both over-grouped
and under-grouped panel structure models are ruled out. In particular, Assumption A3(ii) ensures that for all under-fitted
models, the mean square errors would be asymptotically greater than σ 2

0 .
The following theorem indicates that we can estimate the true group structure G0 in the case of the known number

of groups.

Theorem 3.2 (Classification Consistency). Suppose that Assumptions A1–A2 hold. Suppose the true number of groups is known
to be K 0. Let Ĝ(K 0) = {Ĝ1(K 0), . . . , ĜK0 (K 0)} be the estimated group structure based on the SBSA 1. Then P(Ĝ

(
K 0
)

= G0) → 1
as (N, T ) → ∞.

Theorem 3.2 shows that when the true number of groups (K 0) is known, we can estimate the true group structure G0

correctly w.p.a.1. The proof of Theorem 3.2 relies on the result in Theorem 3.1 but is quite involved.
Nevertheless, K 0 is typically unknown in practice. In this case, we need to rely on the information criterion in (2.8) to

determine the number of groups. The following theorem establishes the consistency of the information criterion.

Theorem 3.3 (Consistency of the Information Criterion). Suppose that Assumptions A1–A3 hold. Let K̂ be as defined in (2.9).
Then P(K̂ = K 0) → 1 as (N, T ) → ∞.

That is, we can consistently estimate the number of groups in practice. By using K̂ in place of K 0, we can estimate the
true group structure G0 w.p.a.1 by Theorems 3.2 and 3.3.

Note that the last condition in Assumption A3(iii) imposes that TρNT → ∞ as (N, T ) → ∞ so that ρNT can only
converge to zero at a speed slower than T−1. This is simply due to the fact that the heterogeneous incidental parameters
µi’s in the model can only be estimated at the slow T−1/2 convergence rate. For linear panel data models where µi is an
additive fixed effect, it can be eliminated through the within-group transformation and does not affect the convergence
rate of the estimator of the error variance in the model. In this case, we can easily relax Assumption A3(iii) to

Assumption A3 (iii*). pρNT → 0 as (N, T ) → ∞ and (NT + T 2)ρNT → ∞ as (N, T ) → ∞.

If the constrained estimates of βi’s in (2.7) for the linear model are bias corrected. The above condition can be further
relaxed to

Assumption A3 (iii**). pρNT → 0 as (N, T ) → ∞ and NTρNT → ∞ as (N, T ) → ∞.

An implication for this is that the usual BIC information criterion (ρNT = ln (NT ) /(NT )) is also working in our
framework when the model is linear and the estimators are bias-corrected.
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3.3. Asymptotic distribution

In this section, we study the asymptotic distributions of α̂k’s and θ̂ . Recall that W (wit; βi, µi, θ ) ≡ ∂ϕ(wit; βi, µi, θ )/
∂θ . Let U (wit; βi, µi, θ) = ∂ϕ(wit; βi, µi, θ )/∂βi and V (wit; βi, µi, θ) ≡ ∂ϕ(wit; βi, µi, θ )/∂µi. Let Uj denote the jth
element in U , and similarly for Vj and Wj. Let Uβ denote the derivative of U with respect to β⊤. Define Uµ, V β , Vµ, V θ , Wµ

and W θ analogously. For notational simplicity, let Uit ≡ U(wit; β0
i , µ

0
i , θ

0), and similarly for Vit , Wit , U
µ

it , V
β

it , V
µ

it , V
θ
it , W

µ

it

and W θ
it . Let U

µ

it,j ≡ ∂Uj(wit; β0
i , µ0

i , θ
0)/∂µ⊤

i , U
µµ

it,j ≡ ∂2Uj(wit; β0
i , µ

0
i , θ

0)/∂µi∂µ⊤

i , and similarly for Wµ

it,j, V
µµ

it,j and Wµµ

it,j .

Define SiU ≡
1
T

∑T
t=1 E(U

µ

it ), SiV ≡
1
T

∑T
t=1 E(V

µ

it ), SiW ≡
1
T

∑T
t=1 E(W

µ

it ), SiU2,j ≡
1
T

∑T
t=1 E(U

µµ

it,j ), SiV2,j ≡
1
T

∑T
t=1 E(V

µµ

it,j ),

SiW2,j ≡
1
T

∑T
t=1 E(W

µµ

it,j ), Uit ≡ Uit − SiUS−1
iV Vit , U

µ

it ≡ Uµ

it − SiUS−1
iV Vµ

it , Wit ≡ Wit − SiW S−1
iV Vit , W

µ

it ≡ Wµ

it − SiW S−1
iV Vµ

it ,

ΩiT ,ββ ≡
1
T

∑T
s=1
∑T

t=1 E(UisU⊤

it ), ΩiT ,βθ ≡
1
T

∑T
s=1
∑T

t=1 E(UisW⊤

it ), and ΩiT ,θθ ≡
1
T

∑T
s=1
∑T

t=1 E(WisW⊤

it ). Next, let

BNT ≡ (B⊤

1NT , . . . ,B
⊤

K0NT
,B⊤

θNT )
⊤

= ((B1,1NT − B2,1NT )⊤, . . . , (B1,K0NT − B2,K0NT )⊤, (B1,θNT − B2,θNT )⊤)⊤, where

B1,kNT =
1√
NkT 3

∑
i∈G0k

T∑
s=1

T∑
t=1

Uµ

it S
−1
iV Vis,B1,θNT =

(
NT 3)−1/2

N∑
i=1

T∑
s=1

T∑
t=1

Wµ

it S
−1
iV Vis,

[
B2,kNT

]
j =

1
2
√
NkT

∑
i∈G0k

(
1

√
T

T∑
t=1

Vit

)⊤

S−1
iV SiU2,jS−1

i,V

(
1

√
T

T∑
t=1

Vit

)
−

1
2
√
NkT

∑
i∈G0k

SiUS−1
iV RiV ,

[
B2,θNT

]
j =

1

2
√
NT

N∑
i=1

(
1

√
T

T∑
t=1

Vit

)⊤

S−1
iV SiW2,jS−1

i,V ·

(
1

√
T

T∑
t=1

Vit

)
−

1

2
√
NT

N∑
i=1

SiW S−1
iV RiW ,

where [A]j denotes the jth element of the vector A, [RiV ]j = ( 1
√
T

∑T
t=1 Vit )⊤S−1

iV SiV2,jS−1
iV ( 1

√
T

∑T
t=1 Vit ), and [RiW ]j =

( 1
√
T

∑T
t=1 Vit )⊤S−1

iV SiW2,jS−1
iV ( 1

√
T

∑T
t=1 Vit ). Define

ΩNT ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
N1

∑
i∈G01

ΩiT ,ββ · · · 0 1
N1

∑
i∈G01

ΩiT ,βθ

...
. . .

...
...

0 · · ·
1

NK0

∑
i∈G0

K0

ΩiT ,ββ
1

NK0

∑
i∈G0

K0

ΩiT ,βθ

1
N1

∑
i∈G01

Ω⊤

iT ,βθ · · ·
1

NK0

∑
i∈G0

K0

Ω⊤

iT ,βθ
1
N

N∑
i=1

ΩiT ,θθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

HNT (β, θ) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
N1

∑
i∈G01

Hi,ββ (βi, θ ) · · · 0 1
N1

∑
i∈G01

Hi,βθ (βi, θ )

...
. . .

...
...

0 · · ·
1

NK0

∑
i∈G0

K0

Hi,ββ (βi, θ ) 1
NK0

∑
i∈G0

K0

Hi,βθ (βi, θ )

1
N

N∑
i=1

Hi,θβ (βi, θ ) · · ·
1
N

N∑
i=1

Hi,θβ (βi, θ ) 1
N

N∑
i=1

Hi,θθ (βi, θ )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.2)

where

Hi,ββ (βi, θ ) =
1
T

T∑
t=1

[
Uβ (wit; βi, µi(βi, θ ), θ ) + Uµ(wit; βi, µi(βi, θ ), θ )

∂µi(βi, θ )
∂β⊤

i

]
,

Hi,βθ (βi, θ ) =
1
T

T∑
t=1

[
Uθ (wit; βi, µi(βi, θ ), θ ) + Uµ(wit; βi, µi(βi, θ ), θ )

∂µi(βi, θ )
∂θ⊤

]
,

Hi,θβ (βi, θ ) =
1
T

T∑
t=1

[W β (wit; βi, µi(βi, θ ), θ ) + Wµ(wit; βi, µi(βi, θ ), θ )
∂µi(βi, θ )

∂β⊤

i
], and
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Hi,θθ (βi, θ ) =
1
T

T∑
t=1

[W θ (wit; βi, µi(βi, θ ), θ ) + Wµ(wit; βi, µi(βi, θ ), θ )
∂µi(βi, θ )

∂θ⊤
].

Let HNT ≡ HNT
(
β0, θ0

)
. Note that H−1

NT BNT and H−1
NT ΩNT (H−1

NT )
⊤ are associated with the asymptotic bias and variance of

our estimators, respectively.
To study the asymptotic distribution of our estimators, we add an assumption.

Assumption A4. (i) Ω ≡ lim(N,T )→∞ ΩNT exists and is positive definite.
(ii) H ≡ lim(N,T )→∞ E[HNT ] exists and is nonsingular.

Assumption A4 is needed to derive the asymptotic bias and variance of the post-classification estimators α̂k’s and θ̂ .
Define the oracle estimators α̂∗

k ’s and θ̂∗ of αk and θ that are obtained with K̂ and Ĝk(K̂ ) in (2.10) being replaced by K 0

and G0
k . The following theorem indicates that these two set of estimators are asymptotically equivalent.

Theorem 3.4 (Asymptotic Distribution). Suppose that Assumptions A1–A4 hold. By using the SBSA 1 in Section 2.2 and the
information criteria in (2.8), the final estimators α̂k’s and θ̂ are asymptotically equivalent to the oracle estimators α̂∗

k ’s and θ̂∗.
In particular, conditional on the large-probability event {K̂ = K 0

} we have

SDNT

⎡⎢⎢⎢⎣
α̂1 − α0

1
...

α̂K0 − α0
K0

θ̂ − θ0

⎤⎥⎥⎥⎦+ SH−1
NT BNT

D
→ N

(
0, SH−1Ω(H−1)⊤S⊤

)
, (3.3)

where DNT = diag(
√
N1T Ip, . . . ,

√
NK0T Ip,

√
NTIq), S is an arbitrary k ×

(
pK 0

+ q
)
selection matrix with full rank k, and

k ∈ [1, pK 0
+ q] is a fixed positive integer.

Note that we specify a selection matrix S in Theorem 3.4. It is not needed if both p and q remain fixed as (N, T ) → ∞.
That is, one can replace S by IpK0+q in this case to obtain the joint normality of δ̂NT ≡ ((α̂1 − α0

1)
⊤, . . . , (α̂K0 − α0

K0 )⊤,
(θ̂ − θ0)⊤)⊤. When p or q or both pass to infinity as (N, T ) → ∞, the dimension of δ̂NT also diverges to infinity at the rate
p + q so that we cannot derive its asymptotic normality directly. We follow the literature on inferences with a diverging
number of parameters (e.g., Lam and Fan, 2008; Qian and Su, 2016) and prove the asymptotic normality for any arbitrary
linear combinations of elements of δ̂NT .

Note that we explicitly write elements of BNT as the difference between two terms that are derived from the first-
and second-order Taylor expansions of the profile log-likelihood estimating equation, respectively. Comparing the above
results with those in Hahn and Kuersteiner (2011) and SSP, our asymptotic bias and variance formulas are a little bit
more complicated than theirs due to the presence of the common parameter θ . In the absence of θ , both formulas can
be simplified and one can easily verify that in this case the asymptotic bias and variance of α̂k’s are the same as those of
the group-specific parameter estimators in SSP. Following Hahn and Newey (2004) and Hahn and Kuersteiner (2011) and
SSP, it is easy to show that elements of BNT are oP (1) and the bias term can be removed in (3.3) if the model is a linear
model and all regressors are strictly exogenous. In the more general case where the model is either nonlinear or contains
lagged dependent variables, the elements of BNT are OP (

√
N/T ).

To make the inference, we need to estimate both the asymptotic bias and variance consistently. Given the fact that the
elements of HNT and BNT share similar structures as those in SSP, one can follow SSPb and obtain the analytical formulas
for both estimates and justify their consistency. Alternatively, we can use the jackknife method to correct bias. See Hahn
and Newey (2004) and Dhaene and Jochmans (2015) for static and dynamic panels, respectively.

4. An improved algorithm

In this section, we consider an improved algorithm that is based on the spectral decomposition of the N × N matrix
D̃N = N−1β̃β̃

⊤

. We first explain why the eigenvectors associated with the few largest eigenvalues of D̃N contain the
individuals’ group information. Then we show that we can apply the SBSA to these eigenvectors to infer the group
membership for all individuals w.p.a.1. The post-classification estimation and inference then follow directly from the
previous section.

4.1. Spectral decomposition

Define the K 0
× K 0 matrix and N × N matrix:

A ≡ α0α0⊤
=

⎛⎜⎝α0⊤
1 α0

1 · · · α0⊤
1 α0

K0

...
. . .

...

α0⊤
K0 α0

1 · · · α0⊤
K0 α0

K0

⎞⎟⎠ and DN ≡ N−1β0β0⊤. (4.1)
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Fig. 1. Comparison of the plots of the p columns in the preliminary estimates β̃ with the three eigenvectors of N−1β̃β̃
⊤

associated with its three
largest eigenvalues when p > K 0: row 1 for preliminary estimates and row 2 for eigenvectors.

Define an N ×K 0 matrix ZN ∈ {0, 1}N×K0
that has exactly one 1 in each row and Nk 1’s in column k where k = 1, . . . , K 0.

Let z⊤

i denote the ith row of ZN for i = 1, . . . ,N . The position of the single 1 in zi indicates the group membership of
individual i. For example, z⊤

i = (1, 0, . . . , 0) indicates that individual i belongs to Group 1 and z⊤

i = (0, 0, . . . , 1) indicates
that individual i belongs to Group K 0. Apparently, we have

DN = N−1ZNAZ⊤

N . (4.2)

The expression in (4.2) helps us to link the panel structure model with the stochastic block model (SBM) that is widely
used for community detection in the network literature. In an SBM that contains N nodes (vertices) and K communities
(blocks), each node belongs to one of the K communities, and the probability for two nodes to form a link only depends
on the community membership. Comparing with the SBM, ZN stores the individuals’ group membership in our model
and nodes’ community membership in an SBM. The matrix A here is analogous to the probability matrix that contains
the probability of edges within and between blocks in an SBM; but we do not restrict elements of A to lie between 0 and
1. In both cases, the main interest is to estimate ZN based on some sample information.

Various spectral clustering algorithms have been proposed for community detection based on an SBM. It has been
suggested that the eigenvectors corresponding to the few largest eigenvalues of a certain matrix associated with the
adjacency matrix reveal the clusters of interest. For example, Rohe et al. (2011) work on the eigenvectors of a normalized
adjacency matrix. This motivates us to consider the eigenvectors of the sample analogue of DN , the counterpart of the
adjacent matrix, to identify the latent group structure.

To appreciate the advantages of using eigenvectors to identify the latent group structures, we consider two examples
below.

Example 4.1 (When p > K 0). This is a case when implementing SBSA on the eigenvectors is generally better than on β̃. If
the difference between different columns of the p× K 0 matrix α0⊤ is small for each row, then it is difficult to use SBSA 1
to achieve group identification. Nevertheless, the eigenvectors associated with the few largest eigenvalues of N−1β̃β̃

⊤

(or
DN ) summarize all the useful group information and implementing the SBSA on the eigenvectors tend to outperform that
based on the original β̃ matrix. Due to limited space, we only consider N = 200 and T = 20 for a linear DGP with three
groups (K 0

= 3) and p regressors, where the group ratio is 3 : 3 : 4. We consider three values of p: 6, 8, 10. In Fig. 1,
the first row plots different columns in β̃ for p = 6, 8, 10, and the second row plots the three eigenvectors corresponding
to the three largest eigenvalues of N−1β̃β̃

⊤

for each p. The true group coefficients are not displayed here to save space.
From the figure, we can tell that the eigenvectors reveal the true group information much more clearly than β̃. This is
especially true when p is large (say p = 10).
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Example 4.2 (Linear Dependence). In this example we consider a case that the rows of the p× K 0 matrix α0⊤ are linearly
dependent. Let p = 2 and K 0

= 3. The true group-specific parameters are

α0⊤
= (α0

1, α
0
2, α

0
3) =

([
1
1

]
,

[
1.4
1.4

]
,

[
2
2

])
,

where (α0
11, α

0
21, α

0
31)

⊤ and (α0
12, α

0
22, α

0
32)

⊤ are linearly dependent. Now, the eigenvector associated with the largest
eigenvalue of N−1β̃β̃

⊤

contains all the useful individual group identity information in β̃ and essentially serves as a “signal
enhancement”. As a result, such an eigenvector can reveal the true group information much more clearly than β̃ itself.

Let K ∗ denote the number of strictly positive eigenvalues of A. Apparently, K ∗
≤ min

(
K 0, p

)
. We consider the spectral

decomposition of A

A = uΛu⊤,

where Λ = diag(λ1, . . . , λK∗ ) is a K ∗
× K ∗ matrix that contains the nonzero eigenvalues of A such that λ1 ≥ λ2 ≥

· · · ≥ λK∗ > 0, and the columns of u contain the eigenvectors of A such that u⊤u = IK∗ . Interestingly, Assumption A2(i),
min1≤k<k′≤K0 ∥α0

k −α0
k′∥ > cL > 0, ensures that the K 0 rows of u are distinct from each other. See the proof of Lemma 4.1.

Similarly, we consider the spectral decomposition of DN

DN = N−1UNΣNU⊤

N = N−1U1,NΣ1,NU⊤

1,N ,

where ΣN = diag(µ1N , . . . , µK∗N , 0, . . . , 0) is a p × p matrix that contains the eigenvalues of DN in descending order
along its diagonal, Σ1,N = diag(µ1N , . . . , µK∗N ), the columns of UN contain the eigenvectors of DN associated with the
eigenvalues in ΣN , UN =

(
U1,N ,U2,N

)
, and U⊤

NUN = Ip. The following lemma establishes the link between the eigenvalues
and eigenvectors of A and those of DN .

Lemma 4.1. Let A, DN , Λ, Σ1,N , u and U1,N be defined as above. Then there exists a nonsingular matrix S ≡ SN such that (i)
the diagonal matrix Σ1,N can be written as S−1Λ(S−1)⊤, (ii) U1,N = N−1/2ZNuS , (iii) S is given by (N−1/2U⊤

1,NZNu)−1, and
(iv) z⊤

i uS = z⊤

j uS if and only zi = zj for i, j = 1, 2, . . . ,N.

The last result in Lemma 4.1 is obvious if uS is a nonsingular square matrix. In this case, there exists a one-to-one map
between U1,N and ZN . In the general case, we allow K ∗ < K 0 so that uS has rank K ∗ only, and we show in the proof of
the above lemma that the rows of uS are distinct from each other. This ensures that the rows of U1,N contain the same
group information as ZN . Therefore, we can infer each individual’s group membership based on the eigenvector matrix
U1,N if DN is observed.

In practice, DN is not observed. But we can estimate it by

D̃N ≡ N−1β̃β̃
⊤

.

Consider the spectral decomposition of D̃N : D̃N = ŨNΣ̃N Ũ
⊤

N , where Σ̃N = diag(µ̃1,N , . . . , µ̃p,N ) contains the first p
eigenvalues of D̃N in descending order. By Theorem 3.1, we can readily show that ∥D̃N − DN∥ = OP ((p/T )1/2), ensuring
that max1≤ℓ≤N

⏐⏐µ̃ℓ,N − µℓ,N
⏐⏐ ≤ ∥D̃N − DN∥ = OP

(
(p/T )1/2

)
, where µ̃ℓ,N and µℓ,N denote the ℓth largest eigenvalues of

D̃N and DN , respectively. To take into account the possibility of estimating a zero eigenvalue of DN by a positive value,
we have to ensure that µK∗N is not too close to zero in order to identify the nonzero eigenvalues of DN and apply the
Davis–Kahan theorem (see, e.g., the sin θ theorem in Davis and Kahan, 1970, Chapter VII in Bhatia, 1997, Proposition 2.1
in Rohe et al., 2011, Theorem 3 in Yu et al., 2015).

Recall λj (A) denotes the jth largest eigenvalue of a symmetric matrix A. For clarity, we continue to assume that K 0 is
fixed. In this case, it is natural to assume that λK∗ (A) = λK∗

(
α0α0⊤

)
≥ c for some constant c > 0. Noting that AB and BA

share the same set of nonzero eigenvalues, we have

µK∗N = λK∗ (DN ) = λK∗

(
N−1ZNAZ⊤

N

)
= λK∗

(
AN−1Z⊤

N ZN
)

≥ λK∗ (A) λmin
(
N−1Z⊤

N ZN
)

≥ c min
1≤k≤K0

Nk/N. (4.3)

It follows that limN→∞ µK∗N ≥ c min1≤k≤K0 τk > 0 under Assumption A2(ii). Since only the eigenvectors that are
associated with the K ∗ nonzero eigenvalues of DN can contain the group information, we will restrict our attention to
the eigenvectors associated with the first KN eigenvalues of D̃N such that λKN (D̃N ) ≥ cN , where cN is a positive sequence
that converges to zero at a slow rate, e.g., cN = 0.1/logN . By choosing such a tuning parameter, we can effectively avoid
using eigenvectors associated with the eigenvalues of D̃N whose population values are zero. To see this, notice that when
KN > K ∗, λKN (D̃N ) converges to zero in probability at rate (p/T )1/2. So it is easy to show that KN = K ∗ w.p.a.1.

Given KN , we decompose ŨN and Σ̃N as follows: ŨN = (Ũ1,N , Ũ2,N ) and Σ̃N = diag(Σ̃1,N , Σ̃2,N ), where Ũ1,N is an N×KN
matrix and Σ̃1,N contains the largest KN eigenvalues of D̃N along its diagonal in descending order. Let ũ⊤

i = (ũ⊤

1,i, ũ
⊤

2,i) and
u⊤

i = (u⊤

1,i, u
⊤

2,i) denote the ith row of ŨN = (Ũ1,N , Ũ2,N ) and UN = (U1,N ,U2,N ), respectively.
To state the next theorem, we add the following assumption.
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Assumption A5. There exists a positive constant c such that λK∗ (A) ≥ c.

The main result in this subsection is summarized in the following theorem.

Theorem 4.2. Suppose that Assumptions A1–A5 hold and max1≤i≤N
β0

i

 = O (1). Then KN = K ∗ w.p.a.1. Furthermore,
conditional on KN = K ∗, there exists a sequence of K ∗

×K ∗ orthogonal matrices ON such that max1≤i≤N
√
N
ũ1,i − ONu1,i

 =

OP
(
(p/T )1/2(ln T )3

)
.

An immediate implication of Theorem 4.2 is ∥Ũ1,N − U1,NON∥ = OP
(
(p/T )1/2(ln T )3

)
= oP (1), and like U1,N , Ũ1,N

contains the true group information for all individuals. As a result, we can consider the SBSA based on Ũ1,N instead of β̃.

4.2. An eigenvector-based SBSA

Since Ũ1,N contains the group membership for all individuals, we implement the SBSA based on it. Let Ũ1,N =

(Ũ ·1, . . . , Ũ ·KN ) and U1,N =
(
U ·1, . . . ,U ·KN

)
.3 Let Uij and Ũij denote the ith element of U ·j and Ũ ·j, respectively. We

sort the N elements of Ũ ·j in ascending order and denote the order statistics by

Ũπj(1),j ≤ Ũπj(2),j ≤ · · · ≤ Ũπj(N),j, (4.4)

where {πj(1), . . . , πj(N)} is a permutation of {1, . . . ,N} that is implicitly determined by the order relation in (4.4). Let

S̃i,l (j) ≡ {Ũπj(i),j, Ũπj(i+1),j, . . . , Ũπj(l),j}

where 1 ≤ i < l ≤ N .
Let

Ūi,l (j) =
1

l − i + 1

l∑
i′=i

Ũπj(i′),j and Ṽi,l (j) ≡
1

l − i

l∑
i′=i

[Ũπj(i′),j − Ūi,l (j)]2

denote the sample mean and variance of the subsample S̃i,l (j). Define

S̃i,l(j,m) =
1

l − i + 1

{
m∑
i′=i

[
Ũπj(i′),j − Ūi,m (j)

]2
+

l∑
i′=m+1

[
Ũπj(i′),j − Ūm+1,l (j)

]2}
, (4.5)

which measures the variation of S̃i,l (j) in the presence of a conjectured break point at m. We propose to adopt the
following eigenvector-based SBSA to estimate G0.

Sequential Binary Segmentation Algorithm 2 (SBSA 2). SBSA 2 is essentially the same as with Ũ1,N (N × KN ), S̃i,l (j),
Ūi,l (j), Ṽi,l (j) and S̃i,l(j,m) in place of β̃ (N × p), Si,l (j), β̄i,l (j), V̂i,l (j), and Ŝi,l(j,m) in SBSA, respectively.4

Of course, if K 0 is known a priori, we can set Kmax
= K 0. At the end of the SBSA, we obtain the Ĝ

(
K 0
)

≡

{G̃1, G̃2, . . . , G̃K0} as the estimates of the true group structure G0. Otherwise, we can estimate K 0 either based on SBSA 1
or SBSA 2.

Let β̂
∗

(K ) , µ̂
∗
(K ), and θ̂∗ (K ) be defined analogously to β̂ (K ) , µ̂ (K ), and θ̂ (K ), now with the estimated group based

on SBSA 2. We can estimate K 0 by minimizing the following BIC-type information criterion

IC2(K ) = 2LNT (β̂
∗

(K ) , µ̂
∗
(K ) , θ̂∗ (K )) + pK · ρNT . (4.6)

Let

K̃ ≡ argmin
1≤K≤Kmax

IC2(K ) and G̃ ≡ G̃(K̃ ) ≡ {G̃1(K̃ ), G̃2(K̃ ), . . . , G̃K̃ (K̃ )}, (4.7)

be the estimated number of groups and the estimated group structure, respectively. We will show that P(K̃ = K 0) → 1
and P(G̃ = G0) → 1 as (N, T ) → ∞.

Given K̃ and G̃, we consider the constrained minimization problem in (2.7) with K being replaced by K̃ and obtain the
final estimates of β, µ, θ , and α. In particular, we denote the estimates of α and θ as α̃ and θ̃ , which can be obtained
as the minimizer of (2.10) with K̂ and Ĝk(K̂ ) being replaced by K̃ and G̃k(K̃ ). Let α̃k denote the kth column of α̃⊤. The
following subsection reports the asymptotic properties of G̃(K 0), K̃ , α̃, and θ̃ .

3 To account for the scale effect, we use β̃
′

= (β̃
′

·1, . . . , β̃
′

·p) where β̃
′

·j = β̃·j/

√
σ̄ 2
1,N (j), j = 1, . . . , p, instead of β̃ in calculating the eigenvectors

Ũ1,N . Recall that σ̄ 2
1,N (j) is defined in Section 2.2.

4 For completeness, we provide the details of SBSA 2 in the online supplementary material.
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4.3. Asymptotic properties

In this subsection, we first state Theorems 4.3–4.5 which parallel Theorems 3.2–3.4 in Section 3, and then provide
some intuitive explanations on why they hold.

Theorem 4.3 (Classification Consistency). Suppose Assumptions A1–A2 and A5 hold. Suppose the true number of groups is
known to be K 0. Let G̃(K 0) = {G̃1(K 0), . . . , G̃K0 (K 0)} be the estimated group structure based on the SBSA 2. Then P(G̃(K 0) =

G0) → 1 as (N, T ) → ∞.

Theorem 4.4 (Consistency of the Information Criterion). Suppose Assumptions A1–A3 and A5 hold. Let K̃ be as defined in (4.7).
Then P(K̃ = K 0) → 1 as (N, T ) → ∞.

Theorem 4.5 (Asymptotic Distribution). Suppose that Assumptions A1–A5 hold. By using the SBSA 2 in Section 4.2 and the
information criterion in (4.6), the final estimators α̃k’s and θ̃ are asymptotically equivalent to the oracle estimators α̂∗

k ’s and
θ̂∗. In particular, conditional on the large-probability event {K̃ = K 0

}, the asymptotic distribution of DNT ((α̃1−α0
1)

⊤, . . . , (α̃K0−

α0
K0 )⊤, (θ̃ − θ0)⊤)⊤ is identical to DNT ((α̂1 − α0

1)
⊤, . . . , (α̂K0 − α0

K0 )⊤, (θ̂ − θ0)⊤)⊤ studied in Theorem 3.4.

Combining the results in Theorems 4.3–4.4, we can recover the true group structure G0 w.p.a.1 by using the SBSA 2
and IC2 defined in (4.6). From the proof of Theorem 3.2, we can tell that the key condition to ensure the consistency of
classification is the uniform consistency of the preliminary estimates β̃i and the convergence rate does not play a role here.
Theorem 4.2 ensures that Ũ1,N contains all the individuals’ group information that is required and it implies the uniform
convergence of

√
N(ũ1,i − Ou1,i) to zero where O is the probability limit of ON . This is all that we need in order to infer

the individuals’ group membership consistently. Given the consistency of G̃ = G̃(K̃ ) with G0, the results in Theorem 4.5
can be derived in the same way as those in Theorem 3.4.

5. Monte Carlo simulations

In this section, we evaluate the finite sample performance of our SBSA through simulations.

5.1. Data generating processes

Here we consider five data generating processes (hereafter DGPs). DGPs 1–3 specify linear panel data models while
DGPs 4–5 consider a two-sided-censored static panel data model and a left-censored dynamic panel data model,
respectively. In all DGPs, the candidate number of individuals are N = 100, 200 and the time spans are T = 10, 20,
40. We will evaluate all 6 combinations of N and T for all DGPs except DGP 2. For DGP 2, we have p = 10 and cannot
consider the case with T = 10 because we cannot obtain any reasonable preliminary estimates in this case. The true
number of groups is 3, and the group member proportion is given by |G0

1| : |G0
2| : |G0

3| = 4 : 3 : 3 in all DGPs.

DGP 1 (Linear Panel). The data are generated as

yit = x⊤

it βi + µi + εit ,

where xit = (x1,it , x2,it )⊤, x1,it = 0.2µi + e1,it , x2,it = 0.2µi + e2,it , and e1,it , e2,it , εit and the fixed effect µi are all i.i.d.
standard normal and mutually independent of each other. The true coefficients βi can be classified into 3 groups with
true group-specific parameter values given by

(α0
1, α

0
2, α

0
3) =

([
0.5
−1

]
,

[
0.5
1

]
,

[
0.5
2

])
.

Note that here α0
1,1 = α0

2,1 = α0
3,1 but we do not assume that they are known to be common. We want to use this DGP to

show our method is robust to this kind of specifications.

DGP 2 (Linear Panel With p = 10). The data are generated as

yit = x⊤

it βi + µi + εit ,

where xit is a 10 × 1 vector with the jth element given by xj,it = 0.2µi + ej,it , j = 1, . . . , 10, and ej,it , εit , and the fixed
effect µi are all i.i.d. standard normal and mutually independent of each other. The true coefficients βi can be classified
into 3 groups with true group-specific parameter values given by α0

1 = (−1, −1.1, −1.2, 0.3, 2, 1, 0.9, 0.1, 0.1, −0.1)⊤,
α0
2 = (−1.1, 0.4, 0.7, 0.6, 1.7, 1.3, 2, 0.5, 0.1, −0.1)⊤, and α0

3 = (0, 1.8, 0.8, 0.2, 1.2, −0.3, 1.9, −0.2, 0.1, −0.1)⊤. We
want to use this DGP to show our SBSA 2 is well suited for the large p case.



W. Wang and L. Su / Journal of Econometrics 220 (2021) 272–295 287

DGP 3 (Linear Panel With Diverging p). The data are generated as

yit = x⊤

it βi + µi + εit ,

where xit is a p× 1 vector with the jth element given by xj,it = 0.2µi + ej,it , j = 1, . . . , p, and ej,it , εit , and the fixed effect
µi are all i.i.d. standard normal and mutually independent of each other. And p takes 4, 6, and 8 for T = 10, 20, and 40,
respectively. The true coefficients βi can be classified into 3 groups with true group-specific parameter values given by

(α0
1, α

0
2, α

0
3) =

⎛⎜⎜⎝
⎡⎢⎢⎣

−1
−0.9

...

−1 + 0.1(p − 1)

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
0.5
0.6
...

0.5 + 0.1(p − 1)

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
1
1.1
...

1 + 0.1(p − 1)

⎤⎥⎥⎦
⎞⎟⎟⎠ .

This DGP is designed to corroborate our asymptotic theory for the diverging p case and to evaluate its finite sample
performance.

DGP 4 (Two-sided-censored Static Panel). The data are generated according to

yit = mami
(
0, x⊤

it βi + µi + εit , 4
)
,

where xit = (x1,it , x2,it )⊤ = (e1,it+0.1µi, e2,it+0.1µi)⊤, and e1,it , e2,it , εit , µi are all independently drawn from the standard
normal distribution and are mutually independent of each other. The censored ratio is around 51% (with left censored
ratio 50% and right censored ratio 1%). The true group-specific parameter values are

(α0
1, α

0
2, α

0
3) =

([
1.5

−1.5

]
,

[
−0.5
0.5

]
,

[
−1.8
1.8

])
.

The variance σ 2
= Var(εit ) is modeled as the common parameter across all individuals.

DGP 5 (Dynamic One-sided Censored Panel). The model is

yit = max
(
0, ρyi,t−1 + x⊤

it βi + µi + εit
)
,

where xit , µi, and εit are generated as in DGP 4. To generate T periods of observations for individual i, we first generate
T + 100 observations with initial value yi0 = 0, and then take the last T periods of observations. We discard those
individuals which have constant regressor or constant regressand across all T periods. The censored ratio is around 40%.
For the parameters, ρ0

= 0.4 and the true group-specific parameter values are

(α0
1, α

0
2, α

0
3) =

([
−1.2
1.6

]
,

[
0.6

−0.8

]
,

[
1.5

−1.9

])
.

As in DGP 4, σ 2 is modeled as the common parameter across all individuals but we do not assume ρ is common in the
estimation procedure.

In all DGPs, we use the information criterion in (2.8) to choose the number of groups. For DGPs 1–3, the information
criterion is

IC1(K ) = σ 2
Ĝ(K ) + pKρ1(NT ),

where ρ1(NT ) =
1
30 ln(NT )/(NT )1/3, Ĝ(K ) = {Ĝ1(K ), . . . , ĜK (K )}, σ 2

Ĝ(K )
=

1
NT

∑K
k=1

∑
i∈Ĝk(K )

∑T
t=1[ỹit − x̃⊤

it α̂k(K )]2,

ỹit = yit − T−1∑T
t=1 yit , and similarly for x̃it . For DGPs 4–5, the information criterion is

IC2(K ) = 2LNT (β̂(K ), µ̂(K ), θ̂ (K )) + pKρ2(NT ), (5.1)

where LNT (·) is given in Section 2, and ρ2(NT ) =
1
60 ln(NT )/(NT )1/3.

5.2. Simulation results

For all DGPs, results reported here are based on 500 repetitions. Tables 1 and 2 report the frequency for the selected
number of groups based on our information criteria by setting Kmax

= 5. The true number of groups is given by K 0
= 3.

We compare 4 algorithms: K-means on β̃, K-means on the eigenvectors of N−1β̃β̃
⊤

, SBSA 1 and SBSA 2 for all DGPs.
For DGPs 1–3 we also consider C-Lasso.5 From Tables 1 and 2, we see that for all algorithms, given N , the frequency
of choosing the right number of groups increases as T grows. Our methods, especially SBSA 2, enable us to identify the
true number of groups with large probability. In DGPs 1 and 3, SBSA 2 slightly outperforms the C-Lasso and in DGP 2,

5 Even in the linear case, the computing time of C-Lasso is around 100 times longer than that of the SBSA methods.
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Table 1
The frequency of selecting K = 1, . . . , 5 groups when K 0

= 3 and Kmax
= 5.

N T DGP 1 DGP 2 DGP 3

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

K-means on β̃ 100 10 0 0 0.880 0.120 0 0 0.588 0.372 0.040 0
100 20 0 0 0.874 0.126 0 0 0 0.928 0.066 0.006 0 0.102 0.876 0.022 0
100 40 0 0 0.906 0.094 0 0 0 0.930 0.070 0 0 0.090 0.838 0.072 0
200 10 0 0 0.872 0.116 0.012 0 0.278 0.678 0.044 0
200 20 0 0 0.854 0.146 0 0 0 0.942 0.058 0 0 0.228 0.694 0.078 0
200 40 0 0 0.870 0.128 0.002 0 0 0.932 0.068 0 0 0.198 0.722 0.080 0

K-means on 100 10 0 0.284 0.200 0.210 0.306 0 0.532 0.186 0.166 0.116
eigenvectors 100 20 0 0.060 0.414 0.348 0.178 0 0 0.978 0.022 0 0 0.212 0.384 0.170 0.234

100 40 0 0 0.794 0.198 0.008 0 0 0.982 0.018 0 0 0.090 0.156 0.354 0.400
200 10 0 0.146 0.234 0.274 0.346 0 0.700 0.160 0.118 0.022
200 20 0 0.022 0.342 0.378 0.258 0 0 0.988 0.012 0 0 0.492 0.354 0.106 0.048
200 40 0 0 0.734 0.262 0.004 0 0 0.994 0.006 0 0 0.224 0.290 0.264 0.222

C-Lasso 100 10 0 0 0.996 0.004 0 0 0.012 0.982 0.006 0
100 20 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
100 40 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
200 10 0 0 0.994 0.006 0 0 0.020 0.974 0.006 0
200 20 0 0 1 0 0 0 0 0.998 0.002 0 0 0.002 0.998 0 0
200 40 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

SBSA 1 100 10 0 0.012 0.988 0 0 0 0.282 0.274 0.254 0.190
100 20 0 0 1 0 0 0 0 0.102 0.898 0 0 0.608 0.346 0.046 0
100 40 0 0 1 0 0 0 0 0.024 0.972 0.004 0 0.012 0.986 0.002 0
200 10 0 0 0.998 0.002 0 0 0.246 0.368 0.268 0.118
200 20 0 0 1 0 0 0 0 0.068 0.932 0 0 0.232 0.742 0.026 0
200 40 0 0 1 0 0 0 0 0.006 0.994 0 0 0.006 0.994 0 0

SBSA 2 100 10 0 0 0.996 0.004 0 0 0.088 0.898 0.014 0
100 20 0 0 1 0 0 0 0 0.994 0.006 0 0 0 1 0 0
100 40 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
200 10 0 0 1 0 0 0 1 0
200 20 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
200 40 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

the opposite is true. Both of them outperform other algorithms significantly. We also see one special property of the
binary segmentation algorithm: for fixed T , the frequency of choosing the correct number of groups also increases with
N , which is not observed when either the K-means algorithms or SSP’s C-Lasso method is employed. In all DGPs under
investigation, our information criterion works well for T as small as 10, and it works almost perfectly when T ≥ 20. In
short, our information criterion is quite effective in determining the number of groups.

Suppose the true number of groups K 0 is identified. Now we examine the performance of classification and the post-
classification estimators. We follow SSP to define the evaluation criteria. First, we define the ratio of correct classification
as N−1∑K0

k=1
∑

i∈Ĝk
1{β0

i = α0
k }, which denotes the ratio of individuals falling into the right group. We show its average

value across all replications in columns 4, 8 and 12 of Table 3 and in columns 4 and 8 of Table 4. Columns 5–7 and
9–11 (13–15) report the performance of the estimates of α0

·2 ≡ (α0
1,2, . . . , α

0
K0,2

)⊤, i.e., the second regressor’s coefficient
of all groups, in these two tables. We evaluate the performance through three criteria: the root mean squared error
(RMSE), bias, and coverage ratio. The RMSE is defined as the weighted average RMSEs of α0

k,2, k = 1, . . . , K 0, with

weight Nk/N . Specifically, it is
∑K0

k=1
Nk
N RMSE (α0

k,2). Similarly, we define weighted versions of bias, and coverage ratio
of the 95% confidence interval estimators. Tables 3 and 4 contain the classification and post-classification results where
the oracle estimates are obtained by using the true group structure and the other estimates are obtained based on the
post-classification ones.

We summarize some important findings from Tables 3 and 4. First, the ratio of correct classification generally increases
with T for all classification methods under consideration for all DGPs but DGP 3. In DGP 3, the number of parameters (p)
increases as T increases, which makes it more difficult to achieve correct classification with large T . In this case, the K-
means based on the eigenvectors does not improve as T increases while the other methods still improve. In particular, for
all models under investigation, we can achieve almost perfect classification when T increases to 40 by using the improved
SBSA 2 method. Second, as expected, the oracle estimates usually have smaller RMSE and bias and more accurate coverage
probability than the post-classification estimates. Third, like the C-Lasso method, our SBSA 2 method typically outperforms
the other methods. As T increases, the RMSEs of the post-classification estimates based on both the C-Lasso method and
our SBSA 2 method decrease rapidly and can match those of the oracle ones when T = 40. Fourth, the coverage ratios
for the post-classification estimates of SBSA 2 improve quickly and get closer to those of the oracle ones as T increases.

In general, the higher the correct classification ratio, the more accurate post-classification estimates we can obtain.
When the correct classification ratio based on the same classification method improves (say, as T increases), we should
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Table 2
The frequency of selecting K = 1, . . . , 5 groups when K 0

= 3 and Kmax
= 5.

N T DGP 4 DGP 5

1 2 3 4 5 1 2 3 4 5

K-means on β̃ 100 10 0 0.050 0.882 0.068 0 0 0.072 0.702 0.224 0.002
100 20 0 0.030 0.882 0.088 0 0 0.058 0.632 0.310 0
100 40 0 0.002 0.946 0.052 0 0 0.032 0.666 0.294 0.008
200 10 0 0 0.962 0.038 0 0 0.148 0.722 0.130 0
200 20 0 0 0.898 0.102 0 0 0.122 0.710 0.168 0
200 40 0 0 0.914 0.086 0 0 0.048 0.660 0.292 0

K-means on 100 10 0 0.012 0.734 0.248 0.006 0 0.178 0.708 0.102 0.012
eigenvectors 100 20 0 0 0.906 0.094 0 0 0.060 0.640 0.278 0.022

100 40 0 0 0.886 0.114 0 0 0.030 0.644 0.312 0.014
200 10 0 0.002 0.754 0.232 0.012 0 0.105 0.704 0.166 0.025
200 20 0 0 0.862 0.138 0 0 0.080 0.688 0.224 0.008
200 40 0 0 0.882 0.118 0 0 0.004 0.758 0.238 0

SBSA 1 100 10 0 0.120 0.634 0.230 0.016 0 0.058 0.816 0.120 0.006
100 20 0 0 0.964 0.036 0 0 0 0.998 0.002 0
100 40 0 0 0.998 0.002 0 0 0 1 0 0
200 10 0 0 0.740 0.220 0.040 0 0.006 0.978 0.016 0
200 20 0 0 0.988 0.012 0 0 0 1 0 0
200 40 0 0 1 0 0 0 0 1 0 0

SBSA 2 100 10 0 0.004 0.996 0 0 0 0.002 0.996 0.002 0
100 20 0 0 1 0 0 0 0 1 0 0
100 40 0 0 1 0 0 0 0 1 0 0
200 10 0 0 1 0 0 0 0 1 0 0
200 20 0 0 1 0 0 0 0 1 0 0
200 40 0 0 1 0 0 0 0 1 0 0

also observe that the rmse and bias decrease. The story changes slightly when we compare different classification methods.
Even when two classification methods perform similarly in terms of correct classification ratio, their performance can
differ quite a bit in terms of rmse or bias because of the differences of the two classification methods. For example, for
DGP 1 in Table 3, we observe that the K-means on β̃ with T = 40 yields a higher correct classification ratio than SBSA
2 with T = 10 whereas the former’s associated RMSE/bias is still larger than that of SBSA 2. Our simulations suggest
that K-means sometimes generate very erratic classifications comparing with the true group structure, which results in
a significant increase in the RMSE and bias. One potential reason behind this observation is that K-means selects initial
centroids randomly and it is very much affected by such an initial choice. We think that this observation also helps to
explain why the K-means methods often have a lower frequency of choosing the true number of groups than the SBSA
method in Tables 1 and 2.

6. Empirical application

6.1. The model and data

Individual portfolio choices are influenced by many factors, some of which are observable and others are unobservable.
For example, age, financial assets, labor income, and returns and risk measures of different assets are among the set of
observable factors. For a seminal paper on the problem of portfolio choice, see Samuelson (1969). Cocco et al. (2005)
investigate how labor income and financial wealth affect portfolio decisions. Unobservable factors also play a very
important role in the process of portfolio decision making. For example, individual risk preference, habits and information
acquirement affect how people respond to various observable factors. Samuelson (1969) models risk preference as the
fundamental factor in portfolio choices. Polkovnichenko (2007) employs the life cycle model to study the implications
of endogenous habit formation preferences on portfolio choices. Both academic studies and common sense suggest that
different people tend to have different responses to the same information. This fact motivates us to consider the panel
structure model in studying how individuals’ portfolio choices are affected by various factors.

In this application, we consider a censored model similar to that in Abrevaya and Shen (2014, hereafter AS). The
dependent variable yit is the ratio of safe assets in individual i’s portfolio in year t , and it is left censored at 0 and right
censored at 1. To account for parameter heterogeneity, we consider the mixed panel structure model of the form

y∗

it = x⊤

1,itβ1i + x⊤

2,itβ2 + µi + εit , (6.1)
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Table 3
Classification and point estimation of α0

·2 .

N T DGP 1 DGP 2 DGP 3

Correct ratio Comparison criteria Correct ratio Comparison criteria Correct ratio Comparison criteria

RMSE Bias Coverage RMSE Bias Coverage RMSE Bias Coverage

Oracle 100 10 1 0.061 0.002 0.924 1 0.056 −0.004 0.944
100 20 1 0.040 −0.002 0.917 1 0.043 0.000 0.925 1 0.041 −0.002 0.950
100 40 1 0.027 0.000 0.958 1 0.028 0.003 0.954 1 0.029 0.002 0.952
200 10 1 0.041 −0.001 0.931 1 0.039 −0.002 0.962
200 20 1 0.027 −0.002 0.950 1 0.028 −0.000 0.944 1 0.031 0.003 0.943
200 40 1 0.019 0.001 0.946 1 0.020 0.001 0.950 1 0.020 0.001 0.948

K-means 100 10 0.884 0.301 −0.081 0.764 0.747 0.312 −0.176 0.528
on β̃ 100 20 0.914 0.293 −0.106 0.787 0.970 0.171 −0.031 0.883 0.932 0.178 −0.053 0.850

100 40 0.960 0.214 −0.055 0.886 0.962 0.195 −0.028 0.900 0.936 0.181 −0.052 0.866
200 10 0.894 0.247 −0.072 0.760 0.806 0.238 −0.104 0.702
200 20 0.923 0.272 −0.091 0.834 0.979 0.128 −0.023 0.920 0.865 0.243 −0.103 0.690
200 40 0.945 0.227 −0.067 0.854 0.967 0.270 −0.029 0.894 0.932 0.170 −0.055 0.864

K-means 100 10 0.702 0.537 −0.243 0.334 0.641 0.447 −0.176 0.292
on eigen- 100 20 0.778 0.383 −0.191 0.491 0.978 0.126 −0.007 0.881 0.582 0.532 −0.121 0.200
vectors 100 40 0.902 0.278 −0.106 0.794 0.993 0.123 0.006 0.943 0.529 0.602 −0.078 0.078

200 10 0.695 0.544 −0.254 0.316 0.657 0.379 −0.157 0.322
200 20 0.775 0.376 −0.171 0.430 0.986 0.065 −0.008 0.905 0.637 0.452 −0.103 0.250
200 40 0.873 0.316 −0.142 0.735 0.993 0.107 −0.003 0.940 0.585 0.502 −0.066 0.122

C-Lasso 100 10 0.941 0.076 −0.015 0.861 0.935 0.069 −0.015 0.866
100 20 0.986 0.044 −0.006 0.900 1 0.043 0.000 0.925 0.995 0.043 −0.004 0.942
100 40 0.999 0.027 −0.000 0.957 1 0.028 0.003 0.954 1 0.029 0.002 0.952
200 10 0.942 0.053 −0.018 0.829 0.929 0.050 −0.014 0.854
200 20 0.986 0.028 −0.005 0.938 1 0.028 −0.000 0.944 0.995 0.035 0.002 0.927
200 40 0.999 0.019 0.001 0.937 1 0.020 0.001 0.950 1 0.020 0.001 0.948

SBSA 1 100 10 0.930 0.089 0.006 0.851 0.737 0.261 −0.152 0.442
100 20 0.984 0.043 −0.003 0.901 0.780 0.518 −0.045 0.327 0.887 0.093 −0.001 0.614
100 40 0.999 0.027 0.000 0.959 0.851 0.287 −0.024 0.314 0.953 0.045 0.001 0.806
200 10 0.932 0.052 0.003 0.856 0.754 0.205 −0.095 0.397
200 20 0.985 0.029 −0.001 0.934 0.772 0.481 −0.046 0.314 0.884 0.085 −0.005 0.560
200 40 0.999 0.019 0.001 0.943 0.853 0.224 −0.026 0.294 0.953 0.033 0.002 0.734

SBSA 2 100 10 0.931 0.077 0.005 0.860 0.911 0.066 0.003 0.848
100 20 0.985 0.043 −0.003 0.911 0.991 0.047 0.001 0.894 0.989 0.042 −0.003 0.945
100 40 0.998 0.027 −0.000 0.958 1 0.028 0.003 0.954 1 0.029 0.002 0.952
200 10 0.930 0.051 0.005 0.862 0.911 0.044 0.003 0.831
200 20 0.984 0.030 −0.002 0.925 0.992 0.032 0.001 0.911 0.990 0.032 0.003 0.923
200 40 0.999 0.019 0.001 0.942 1 0.020 0.001 0.950 1 0.020 0.001 0.948

where x1,it includes log financial assets and log non-capital income, x2,it includes AEX premium, time trend and retirement
dummy, µi is the fixed effect, and εit ’s are i.i.d. normal.67 The observable dependent variable yit is subject to two-sided
censoring: yit = mami{0, y∗

it , 1}. Note that β2 is common across individuals in (6.1). We assume that the true values of
β1i’s exhibit the group structure, β0

1i =
∑K0

k=1 α0
k · 1

{
i ∈ G0

k

}
. We are interested in identifying the number of groups (K 0)

and the group membership for each individual i.
Next, we explain briefly why we allow β1i’s to be heterogeneous across groups and impose homogeneity assumption

on β2. The variables contained in x1,it , namely, log financial asset and log non-capital income, are usually modeled as
determinant factors in portfolio choice theories. Curcuru et al. (2004) argue that there is substantial heterogeneity in
the portfolio choices. In other words, different people tend to have different responses towards the same factors. But
individuals’ behavior also tends to exhibit certain grouped patterns. For example, some individuals prefer to holding
diversified portfolios in order to hedge against various kinds of risks whereas others hold almost no position on risky or
riskless assets. In modeling economic behavior, the homogeneous representative individual assumption is a convenient
way to explain some phenomenon. But it is quite fragile as heterogeneity is ubiquitous. The panel structure model studied
in this paper offers a flexible and manageable alternative to handle the parameter heterogeneity issue.

The retirement dummy, which is contained in x2,it , may change over the time span for some individuals, and remains
as a constant (0 or 1) for other individuals. To avoid the multicollinearity issue, we treat its coefficient as constant across

6 AEX premium is defined as Amsterdam exchange index return minus the deposit rate. The retirement age in the Netherlands is 65. For the
detailed explanation of all variables defined here, please refer to Alessie et al. (2002) and AS.
7 Note that the time trend is nonstationary and our asymptotic theory does not apply to this case directly. But one can readily modify our

asymptotic analysis to allow for the time trend by permitting different convergence rates for different parameter estimators.
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Table 4
Classification and point estimation of α0

·2 .

N T DGP 4 DGP 5

Correct ratio Comparison criteria Correct ratio Comparison criteria

RMSE Bias Coverage RMSE Bias Coverage

Oracle 100 10 1 0.089 -0.001 0.935 1 0.073 0.004 0.942
100 20 1 0.059 0.002 0.941 1 0.046 0.001 0.953
100 40 1 0.044 0.004 0.958 1 0.036 0.002 0.937
200 10 1 0.066 0.002 0.932 1 0.056 −0.003 0.928
200 20 1 0.043 0.004 0.927 1 0.041 −0.004 0.932
200 40 1 0.031 0.000 0.943 1 0.029 −0.002 0.945

K-means 100 10 0.930 0.231 −0.029 0.830 0.882 0.268 −0.053 0.628
on β̃ 100 20 0.967 0.148 −0.013 0.810 0.915 0.272 −0.079 0.672

100 40 0.982 0.188 −0.026 0.852 0.923 0.278 −0.095 0.642
200 10 0.934 0.179 −0.005 0.795 0.864 0.233 −0.068 0.620
200 20 0.967 0.167 −0.016 0.802 0.914 0.219 −0.059 0.633
200 40 0.985 0.175 −0.030 0.869 0.927 0.204 −0.054 0.684

K-means 100 10 0.770 0.338 0.052 0.445 0.834 0.317 −0.084 0.531
on eigen- 100 20 0.927 0.276 0.029 0.769 0.912 0.286 −0.042 0.654
vectors 100 40 0.918 0.255 −0.007 0.728 0.907 0.269 −0.059 0.627

200 10 0.751 0.351 0.041 0.396 0.806 0.326 −0.085 0.548
200 20 0.906 0.288 0.023 0.714 0.825 0.294 −0.053 0.602
200 40 0.917 0.228 0.014 0.745 0.916 0.231 −0.048 0.671

SBSA 1 100 10 0.882 0.173 0.059 0.538 0.876 0.133 0.021 0.653
100 20 0.956 0.089 0.028 0.837 0.948 0.072 0.001 0.847
100 40 0.992 0.046 -0.001 0.932 0.984 0.039 0.003 0.917
200 10 0.884 0.176 0.088 0.463 0.877 0.125 0.022 0.592
200 20 0.963 0.078 0.037 0.756 0.955 0.056 -0.002 0.767
200 40 0.992 0.033 0.001 0.925 0.986 0.032 −0.003 0.933

SBSA 2 100 10 0.931 0.107 0.033 0.861 0.924 0.088 0.007 0.875
100 20 0.987 0.064 0.011 0.928 0.971 0.052 0.006 0.941
100 40 0.997 0.045 0.003 0.947 0.993 0.037 -0.001 0.933
200 10 0.938 0.100 0.039 0.824 0.927 0.067 0.016 0.878
200 20 0.985 0.049 0.007 0.916 0.976 0.045 0.003 0.908
200 40 0.998 0.032 0.003 0.942 0.997 0.030 −0.000 0.940

Table 5
Summary statistics for the DNB household survey dataset.

yit log(FA) log(NCI) AEX prem. Time (t) Retire dummy

min. 0.0000 1.609 5.247 −0.475 2.000 0.000
max. 1.0000 14.881 13.768 0.384 23.000 1.000
mean 0.6606 9.852 10.227 0.009 13.012 0.260
median 0.8126 9.974 10.296 0.080 13.000 0.000
std. 0.3656 1.695 0.749 0.217 6.050 0.439

i. Classic theory (e.g., Cocco et al. (2005)) generally predicts that the ratio of savings in safe assets tends to increase after
retirement. AEX premium is believed to be negatively correlated with yit , the ratio of safe assets in the portfolio. There
are few reasons to believe otherwise. Besides, AS’s regression results are aligned with these theoretical predictions, which
motivates us to assume homogeneous effects of the variables in x2,it across individuals.

The dataset comes from the De Nederlandsche Bank (DNB) Household Survey of Netherlands, which contains detailed
demographic and financial information of Dutch household and individual samples from 1993 to 2015. We use unbalanced
panel data and first include all individuals with time dimension Ti larger than or equal to 10. There are N = 378 individuals
included in our regression. The average period of observations for all individuals is about N−1∑N

i=1 Ti ≈ 12.3. The majority
of censoring is right censoring at one. To be specific, the right censored ratio is 1691 out of 4666 (36.2%); and the left
censored ratio is 142 out of 4666 (3.0%). Table 5 provides a brief summary of the dataset.

6.2. Classification and post-classification regression results

We apply our SBSA method to the above dataset and obtain the classification and post-classification regression results.
Based on SBSA 2, IC2 in (5.1) determines three estimated groups with Groups 1–3 containing 112, 100, and 166 individuals,
respectively. Fig. 2 reports the scatter diagram for the preliminary estimates of β1i, viz, the slope coefficients of log(FA)
and log(NCI) along with the individual estimated group identity. Even though one cannot well separate individuals in
a group from those in the other groups simply via eyeballing, the patterns for the SBSA2-based classification are clear.
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Fig. 2. Scatter plot for the preliminary estimates of β1i ’s in the application. The x-axis and y-axis mark the estimates of the slope coefficients of
log financial assets (log(FA)) and log non-capital income (log(NCI)), respectively. By applying SBSA 2, we identify 3 groups. Groups 1, 2 and 3 are
marked with red dots, black circles, and blue stars, respectively.

Table 6
Regression results for the DNB household survey dataset.

(1) Pooled (2) Group 1 (3) Group 2 (4) Group 3 (5) AS

log(FA) −0.128*** −0.055*** −0.223*** −0.048*** −0.129***
(0.005) (0.009) (0.009) (0.008) (0.011)

log(NCI) 0.035*** −0.255*** 0.056*** 0.091*** −0.006*
(0.012) (0.024) (0.018) (0.016) (0.004)

AEX premium 0.008 −0.007 −0.039**
(0.023) (0.022) (0.017)

Time (t) 0.024*** 0.020*** −0.013***
(0.001) (0.001) (0.002)

Retirement dummy 0.079*** 0.065***
(0.021) (0.020)

σ 2 0.310*** 0.290***
(0.004) (0.004)

Note: Column (1) reports the pooled estimation of all 378 individuals. By using SBSA 2, we obtain 3
groups. Columns (2)–(4) report the regression results for each group where the coefficients of AEX
premium, time trend and retirement dummy are common. Column (5) reports part of the regression
results drawn from AS for comparison purpose. Standard errors are in parentheses.
*Significance at 10% level.
**Significance at 5% level.
***Significance at 1% level.

First, the estimate of the slope coefficients of log(NCI) tends to be negative for individuals in Group 1 and positive for
individuals in the other two groups. Second, even though log(NCI) tends to have positive effects on the ratio of safe assets
for the individuals in both Groups 2 and 3, the effect of log(FA) in Group 2 tends to negative and stronger than that in
Group 3.

Table 6 reports the regression results for different specifications. Column (1) corresponds to the usual pooled censored
panel data regression with fixed effects. Columns (2)–(4) correspond to the joint estimation of group-specific parameters
and the common parameters in the model. Note that we assume the effects of variables in x2,it and the variance of
the error terms are common across all individuals for this joint estimation. Column (5) collects some regression results,
corresponding to the relevant variables used here, from AS. Following AS, we include many common explanatory variables
and also use the censored regression model. That being said, the data used here are different from theirs. They use the
DNB household survey from 1993 to 2008 with individuals’ time periods (Ti) larger than or equal to three. Our data come
from the same source, but range from 1993 to 2015 with individuals’ time periods longer than or equal to ten.

We summarize some important findings from Table 6. First, the coefficient of log financial assets (log(FA)) is very
similar between the pooled model (column (1)) and AS’s model (column (5)). The negative relationship between log(FA)
and safe asset ratio (yit ) is very stable across time and individuals. For the other regressors, our pooled estimates are
somewhat different from those of AS’s. The coefficient of the time trend is positive and significant at the 1% level while it
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Table 7
Regression results for the DNB household survey data for Ti ≥ 9 or 8 after using SBSA 2.

Ti ≥ 9 Ti≥ 8

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

log(FA) −0.043*** −0.240*** −0.055*** −0.040*** −0.224*** −0.028***
(0.008) (0.009) (0.007) (0.008) (0.007) (0.005)

log(NCI) −0.304*** 0.027 0.068*** −0.414*** 0.031** 0.028**
(0.024) (0.017) (0.013) (0.025) (0.013) (0.011)

AEX premium −0.013 −0.010
(0.020) (0.017)

Time (t) 0.019*** 0.022***
(0.001) (0.001)

Retirement dummy 0.069*** 0.052***
(0.018) (0.015)

σ 2 0.290*** 0.266***
(0.004) (0.003)

**Significance at 5% level.
***Significance at 1% level.

is negative and significant at the 1% level in AS. One possible explanation is that we use data from individuals with periods
of observation more than or equal to ten, which is longer than that of AS’s. After many periods of portfolio decisions, a
person gets older and tends to allocate more assets to safe investments. If the time periods are very short (three in AS’s
data for many individuals), the effect may not be captured properly. In short, when we choose to include individuals with
periods of observations greater than or equal to 10, we tend to choose different samples than that of AS. It has some
impacts on our regression results.

Second, our SBSA 2 method yields three estimated groups whose regression outputs are reported in Columns (2), (3),
and (4) in Table 6. The table suggests that the signs of the coefficient estimates for log non-capital income (log(NCI)) are
opposite for Group 1 and the other two groups while the signs of the coefficient estimates for log(FA) are common across
all three groups. The former finding provides a partial explanation for the opposite direction of log(NCI) in columns (1) and
(6). There are three latent groups. Pooling them together yields a weighted average of the estimates in columns (2)–(4),
which is positive for log(NCI) in column (1). Different composition of elements from the three groups might generate a
negative slope for log(NCI) in the pooled estimation, e.g., in AS (column (6)).

Third, the effects of log(FA) on the ratio of safe assets (yit ) are similar in Groups 1 and 3 and they are much smaller
than that in Group 2. So the separation between Groups 1 and 3 is mainly caused by the quite distinct effects of log(NCI)
on the ratio of safe assets.

Fourth, our estimate of the common coefficient of AEX premium is negative, which is different from the pooled estimate
but consistent with AS’s results and the theoretical prediction.

6.3. Robustness check

In the above subsection, we consider the classification and post-classification regression results by using SBSA 2 for
individuals with Ti ≥ 10. There are 378 individuals in total. As a robustness check, we now consider the cases where
Ti ≥ 9 or Ti ≥ 8.

First, we consider the classification results based on individuals with Ti ≥ 9. Now the number of individuals (N)

increases to 504. By using the SBSA 2 method, we still obtain 3 groups. Groups 1–3 contain 129, 121, and 254 individuals,
respectively. The left panel of Table 7 reports the post-classification regression results in this case. A comparison with
Table 6 suggests that the post-classification results share some similar patterns, in terms of both the estimated number
of groups and coefficient estimates for each group.

Next, we consider individuals with Ti ≥ 8. There are 627 individuals for this case. We apply SBSA 2 method on this
new subsample. As before, we obtain 3 groups. Groups 1–3 contain 116, 182, and 329 individuals, respectively. The post-
classification regression results are reported in the right panel of Table 7. A comparison between Table 6 and the right
panel of Table 7 suggests that the post-classification results here are similar to those in Table 6

In sum, we conclude that our SBSA 2 classification and estimation results are quite robust to the choice of the minimum
value of Ti.

We might also want to know how many individuals in Group 1 when Ti ≥ 10 are still in Group 1 when Ti ≥ 9. Such
statistics are reported in Table 8. For example, the number 0.857 in row 2 and column 2 in the table means that 85.7%
of the members in Group 1 are still in Group 1 when we relax Ti ≥ 10 to Ti ≥ 9. Similarly, Table 9 reports the group
membership shifts when the minimum Ti decreases from 9 to 8. Both Tables 8 and 9 show that the majority of individuals
have stable membership when we decrease the minimum Ti.
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Table 8
The classification membership shifts when minimum Ti changes from 10 to 9.
Ratio Group 1, Ti ≥ 10 Group 2, Ti ≥ 10 Group 3, Ti ≥ 10

Group 1, Ti ≥ 9 0.857 0 0
Group 2, Ti ≥ 9 0.045 0.870 0
Group 3, Ti ≥ 9 0.098 0.130 1.000

Table 9
The classification membership shifts when minimum Ti changes from 9 to 8.
Ratio Group 1, Ti ≥ 9 Group 2, Ti ≥ 9 Group 3, Ti ≥ 9

Group 1, Ti ≥ 8 0.674 0 0
Group 2, Ti ≥ 8 0.109 1.000 0.067
Group 3, Ti ≥ 8 0.217 0 0.933

7. Conclusion

In this paper, we propose a sequential binary segmentation algorithm (SBSA) to estimate a panel structure model.
This method is motivated by the intuition that the parameter heterogeneity problem can be translated into the break
detection problem, which is well studied and understood in the time series literature. We also propose information
criteria to determine the number of groups. We show that our method can recover the true group structure w.p.a.1 and
our post-classification estimators exhibit oracle efficiency. Furthermore, we build the link between the panel structure
model and the stochastic block model (SBM) in the network literature. The linkage enables us to use community detection
techniques from the SBM to the panel structure model. We apply SBSA on the eigenvectors corresponding to the few
largest eigenvalues of N−1β̃β̃

⊤

and improve the finite sample performance significantly in some cases. Our method is
easy to implement and efficient to compute. Simulations demonstrate superb finite sample performance of our method.
We also apply our method to study how financial assets and non capital income, among others, affect individuals’ portfolio
choices by allowing unobserved parameter heterogeneity and using the DNB household survey dataset. We detect three
latent groups in the dataset.

There are several possible extensions. First, we can also include time effects in our model. Following the asymptotic
analysis of Chen (2016) we can also show that the preliminary estimates of the individual parameters are

√
T -consistent,

which enables us to conduct the SBSA as in the current paper to detect possible group patterns. Second, we do not
allow cross sectional dependence in this paper. Chen et al. (2014) study homogeneous nonlinear panel data models with
interactive fixed effects (IFEs) and Su and Ju (2018) consider a linear panel structure model with IFEs. It is possible to
combine the approaches in these papers and study heterogeneous nonlinear panel data models with IFEs. Again, as long
as we can establish the consistency of the preliminary estimates of the individual parameters of interest, we can apply the
SBSA to detect latent groups among them. Third, we do not allow nonstationary unit-root-type regressors in our model
as in Huang et al. (2020). It is possible to extend our method to nonstationary panels with latent group structures. Fourth,
it is also possible to allow for structural changes in the model; see, e.g., Okui and Wang (2021). We leave these topics for
future research.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.04.003.
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