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Abstract

Most state-of-the-art nonrigid shape recovery methods
usually use explicit deformable mesh models to regularize
surface deformation and constrain the search space. These
triangulated mesh models heavily relying on the quadratic
regularization term are difficult to accurately capture large
deformations, such as severe bending. In this paper, we pro-
pose a novel Gaussian process regression approach to the
nonrigid shape recovery problem, which does not require to
involve a predefined triangulated mesh model. By taking
advantage of our novel Gaussian process regression for-
mulation together with a robust coarse-to-fine optimization
scheme, the proposed method is fully automatic and is able
to handle large deformations and outliers. We conducted
a set of extensive experiments for performance evaluation
in various environments. Encouraging experimental results
show that our proposed approach is both effective and ro-
bust to nonrigid shape recovery with large deformations.

1. Introduction

Nonrigid shape recovery [2, 16] in a visual scene is an
important computer vision problem, which plays a critical
role for a variety of applications in image analysis, med-
ical imaging, augmented reality, digital entertainment and
human computer interaction. Extensive research efforts in
image analysis and computer vision domains have focused
on the problems related to deformable object modeling and
tracking [4, 16]. Such research work on deformable object
tracking is closely related to problems such as image regis-
tration, feature matching, and object recognition.

In general, nonrigid shape recovery can be formulated
as a problem of fitting a mapping function between a tar-
get model and some observations. Due to noisy obser-
vations, practical nonrigid shape recovery methods often
require some effective solutions to reject non-homologies
matchings. To this purpose, regularized deformable models
are often engaged, which have been shown as a vital tool
for handling noisy observation and ill-posed optimization.

(a) Bending (b) Cluttered enviroment

(c) Waveform (d) Sharply folded surface

Figure 1. Recovering highly deformable shapes from single image
(a-d). (a) Severely bending. (b) Bended paper in clutter environ-
ment. (c) Waveform deformation. (d) Sharply folded paper.

Various regularization methods have been proposed,
such as Thin-Plate Spline [21], data embedding methods,
and Finite Element Models (FEM) [8, 16, 24, 25]. Thin-
Plate Spline is a well-known interpolation method widely
used in point set registration, which mainly penalizes the
second order derivatives [21]. Besides, the data embed-
ding techniques, such as Principal Component Analysis
(PCA) [2, 20, 22], are also engaged as the regularization
technique, although PCA requires a large number of train-
ing samples to obtain sufficient generalization capability.
Finally, the FEM based regularization approach has also
been extensively studied [8, 16, 25]. However, for the tech-
niques using the FEM models, the nonrigid surface must
be explicitly represented by a triangulated mesh. Moreover,
the triangulated FEM models heavily rely on a quadratic
regularization term, which usually limits their capability of
accurately recovering sharply-folded and severely-bended
surfaces, as shown in Fig. 1.
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Recently there are a surge of research interests on the
3D deformable surface tracking [18, 23]. These methods
do not impose strong prior models, and often achieve con-
siderably more accurate results. However, they often rely
on either temporal information or certain good initializa-
tion in order to solve the ambiguity in the nonrigid surface
recovery problem. Although some recent extension work
of constraints-based methods in [19] avoids the initializa-
tion, their approach still needs 2D nonrigid surface detec-
tion techniques [16, 24, 25] in order to first reject large out-
liers.

Since all the existing approaches have limitations, there
is a need for developing new techniques to resolve these
challenges. In this paper, we attempt to solve the problem
by proposing a novel Gaussian process regression approach
for the nonrigid shape recovery. Gaussian processes [17]
enjoy a solid foundation in statistics and machine learn-
ing, which provide a promising non-parametric Bayesian
approach to regression problems and offer probability pre-
dictions. In contrast to the FEM-based nonrigid surface de-
tection methods [16, 24, 25], the proposed Gaussian process
approach does not require any explicit triangulated mesh
representation for nonrigid shape model, and can handle
large deformations without resorting to the 3D deformable
surface model. Moreover, our proposed approach is fully
automatic, which can recover the nonrigid shapes from clut-
tered environment. Fig. 1 illustrates the example results on
severely-bended and sharply-folded surfaces.

The rest of this paper is organized as follows. Section 2
reviews some previous approaches related to nonrigid shape
recovery. Section 3 proposes a novel Gaussian process re-
gression approach to tackle the nonrigid shape recovery
problem, and presents a practically-efficient optimization
method using an effective active set selection scheme. Sec-
tion 4 describes the details of our experimental implementa-
tion and discusses experimental results. Section 5 addresses
limitations of our work and some future work. Section 6
sets out our conclusion.

2. Related Work

Considerable research efforts have been expended on the
nonrigid shape modeling and recovery in image analysis
and computer vision community [1, 16]. The methods pre-
sented in [16, 24] are designed to estimate mapping func-
tions from some matched point pairs, which offer fully au-
tomatic solutions to detect and recover nonrigid surfaces.
The correspondences are often built via some sophisticated
feature matching algorithms, such as SIFT [11]. Ideally if
the point correspondences contain no outliers, finding the
nonrigid mapping function only requires solving simple lin-
ear equations. In practice, such ideal case seldom happens
in a real computer vision problem, in which outliers could
account for up to 90% of the points in some typical point

matching problems [16]. Therefore, it is difficult to directly
apply regular function estimation techniques widely used in
statistics. This is because a typical statistical estimator re-
quires that inliers must be the absolute majority of the data
in order to achieve a reasonable solution [12].

Another group of research is based on the nonrigid point
set matching, which intends to establish a consistent cor-
respondence between two point sets and recover the map-
ping function with the best alignment. Extensive studies
can be found in the literature [1, 13]. Rangaranjan et al. [4]
present a coarse-to-fine approach to jointly determine the
correspondences and nonrigid transformation between two
point sets through deterministic annealing and soft-assign.
The probabilistic approach for the nonrigid point set match-
ing has attracted increasing research interests [9, 13]. The
point set matching is interpreted as a mixture density esti-
mation problem [7], where one point set represents the cen-
ters of Gaussian mixture models and the other represents
sample data. Another idea is to model each of the two point
sets by a kernel density function [9] and then measure the
similarity. All these methods employ the Thin-Plate Spline
to obtain smooth nonlinear transformation. Myroneko et
al. [13] present a coherent point drift method for nonrigid
point set registration, which does not make an explicit as-
sumption on the transformation model.

In comparison to some real-time automated solution
in [16], the point set matching methods [1, 13] are usually
computationally very expensive, and few of them can be ap-
plied to point sets extracted from real images. In contrast,
the feature correspondence based approaches have already
been applied to track nonrigid objects in realtime videos.

Most recently, 3D deformable surface recovery has at-
tracted increasing research interests in computer vision
community. To address the highly ill-posed optimiza-
tion problems, both temporal information and edge con-
straints [18, 23] are employed to constrain the surface de-
formation. However, these methods still rely on 2D non-
rigid surface detection techniques in order to build reliable
correspondences containing smaller noisy matches.

In this paper, we propose a novel fully automatic non-
rigid shape recovery approach, which can effectively handle
large deformations without resorting to a 3D environment.
The key of our presented method is to formulate the non-
rigid shape recovery as a Gaussian process regression task,
which only makes the Gaussian process prior assumption on
the nonrigid shape mapping. To the best of our knowledge,
no existing study directly formulates the nonrigid shape re-
covery problem as a Gaussian process regression task.

3. Gaussian Process Regression Approach

In this section, we present the proposed Gaussian process
regression approach to nonrigid shape recovery. We first
formulate the nonrigid shape recovery problem as a Gaus-



sian process regression task. Then, we propose a practically
efficient algorithm with an active set selection scheme to
address the challenge of noisy observations. Finally, we
present the details of our optimization approach.

3.1. Gaussian Process Regression Formulation

Let us denote by Im and It the model image and the tar-
get image, respectively, xi the 2D coordinates of a feature
point in the model image Im, and yi the coordinates of its
match in the target image It. Assume that a set of corre-
spondences M = {(xi,yi) ∈ R

d}n
i=1 between the model

and target images can be obtained through a point matching
algorithm such as SIFT [11], where d = 2 and n is the total
number of matched pairs.

The goal of nonrigid shape recovery is to find a latent
function f(x) to map the points in the model space into the
target image space It. Mathematically, this can be formu-
lated as a regression problem, which aims to fit a function
from the input data of correspondence pairs (x,y). Let vec-
tor y denote the measurement target of the input vector x.
Typically, one can assume that the observed target data y
differs from the function value x by some additive Gaus-
sian noise ε with zero mean and variance σ2. Therefore, the
target value can be written as y = f(x) + ε.

Following a Bayesian approach to regression, the pos-
terior distribution over these latent functions f is derived
below:

p(f |M) ∝ p(f)p(M |f)

where the likelihood p(M |f) captures how function values
and observed data are related. p(f) is the a priori prob-
ability of the random field f(x), which embodies a priori
knowledge to constrain the nonrigid shape model. Since a
Gaussian process [17] is completely specified by its mean
function m(x) and covariance function k(x,x′), we write
the Gaussian process posterior distribution over function
f(x) as follows:

p(f |M) ∝ N (f |m(x), k(x,x′))
n∏

i=1

pi(yi|f(x)) (1)

where we define a nonrigid mapping function f(x) as
a Gaussian Process with the deterministic mean function
m(x) = x:

f(x) ∼ GP(x, k(x,x′)) (2)

As discussed in [17], there are various choices for select-
ing the covariance function k(x,x′), such as linear, poly-
nomial, exponential and rational quadratic, amongst others.
We choose the squared exponential covariance function k:

k(x,x′) = exp
(
− 1

2ρ2
‖x − x′‖2

)

Note that applying the mean function m(x) = x is
equivalent to employing the usual zero mean Gaussian pro-
cess to model the difference between the observations and
the mean function. Therefore, we can write the joint dis-
tribution of the observed target values Y ∈ Rn×d and the
estimated function values f∗ under the prior as:

[
Y
f∗

]
∝ N

(
X,

[
KX,X + σ2I KX,X∗
KX∗,X KX∗,X∗

])

where K is the covariance matrix, X ∈ Rn×d is the matrix
of model points, and X∗ denotes the points sampled from
the model image. Thus, we can write the mean prediction
matrix f∗(X) as follows:

f∗(X∗) = X∗ + KX∗,X(KX,X + σ2I)−1(Y − X) (3)

Using the compact notation for a single sampled point x,
the mean prediction of the mapping function f∗(x) can be
further written as follows:

f∗(x) = x + k�
∗ (K + σ2I)−1(Y − X) (4)

where k�
∗ denotes the vector of covariances between the

sampled model point and the n points in the model image.
It can be further formulated as a linear combination of n
kernel functions:

f∗(x) = x +
n∑

i=1

αik(x,xi) (5)

where αi is a d-dimensional coefficient vector. The optimal
coefficient matrix α can be computed by:

α = (K + σ2I)−1(Y − X) (6)

3.2. Nonrigid Shape Recovery

In general, incorrect matches cannot be avoided in the
first stage of the feature matching process when only lo-
cal image descriptors are compared. The great challenge
for nonrigid shape recovery is to deal with large numbers
of outliers. In this paper, we present a robust optimization
scheme to attack this critical problem.

Since large outliers are overemphasized in the Gaus-
sian process regression, we employ an active set selec-
tion scheme [10] to choose inlier matches. This approach
chooses the inlier matches with estimated residual error
δ = y − f∗(x) below the variance σ, which is proven to
be relatively insensitive to the outliers [3, 16, 24]. There-
fore, we can obtain the following solution:

α =
(
I0K + σ2I

)−1 [
I0(Y − X)

]
(7)

where I0 denotes an n×n matrix with inliers’ entries being
one and others zero. Let K ′ ∈ Rl×l denote the matrix part



of the inliers block in the original kernel matrix K, and l
is the number of inlier matches. Since l is always less than
n, the above linear system in Eqn. 7 can be reduced to a
smaller problem:

α′ =
(
K ′ + σ2I

)−1
(Y ′ − X ′) (8)

where Y ′ and X ′ refer to the inliers block of the correspond-
ing matrices. α′ is an l×d matrix, which is associated with
the inlier model points only. The above linear system can
be efficiently solved by LU decomposition. Moreover, it
can be observed that the outliers are not involved into the
computation. In addition, both precision and computational
cost of our method are dependent only on the total number
of inlier points.

Furthermore, we introduce a weight ωi associated with
each feature correspondence. Similar to the one defined in
EM-ICP [6], ωi is the posterior probability, which decays
exponentially as a function of distance, so that the large
numbers of outliers have little influence on the minimiza-
tion:

ωi =
exp(− 1

2σ2 ‖yi − f∗(xi)‖2)∑n
i=1 exp(− 1

2σ2 ‖yi − f∗(xi)‖2)

Let W denote a diagonal weight matrix with Wii = ωi, we
can obtain the following solution:

α′ =
(
W ′K ′ + σ2λI

)−1
[W ′(Y ′ − X ′)] (9)

Note that a feature point in the model image Im may be
matched with multiple points in the target image It. Simply
summing them together is equivalent to matching with the
center of these points in It, which may be neither effective
nor efficient. In this case, we only retain the correspon-
dences with the highest match scores.

Once the mapping function f∗(x) is computed, then we
can warp the model image Im to the target image It using
Eqn. 5 for applications.

3.3. Optimization

In order to facilitate Gaussian process regression, we first
normalize both the model and the target point sets with zero
mean and unit variance. This procedure is equivalent to
translating the central of the point set to the origin and scal-
ing the point set size to one.

To handle the large numbers of outliers, we introduce
an incremental outlier threshold scheme, which has been
successfully used in [16, 24]. The noise variance σ is pro-
gressively decayed at a constant annealing rate γ, which
means more feature correspondences will be selected as in-
liers with large noise variance. Moreover, the fitting results
become more accurate when the noise variance becomes
smaller. In order to select most of the correspondences into
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(b) σ = 0.02

Figure 2. (a) Y − f(X) with 955 inlier matches when σ = 2.0.
(b) Y − f(X) with 182 inlier matches when σ = 0.2.

the initial active set, and to avoid getting stuck at local min-
ima, the initial value of σ is usually set to a sufficiently large
value. In our experiments, we set this value to 2 empirically.

For each value of σ, we estimate the mapping function
through Eqn. 9 until the inlier set no longer changes or the
maximum number of iterations is reached. The result is
then employed as the initial state for the next minimization.
Also, the inlier set is updated using the current estimated
mapping function. To deal with the global transformation,
we re-normalize the input point set with respect to the in-
liers for each noise variance level. The whole optimization
procedure stops when noise variance σ reaches a value close
to the expected precision, and then the algorithm reports
a successful result when the number of inlier matches is
above a given threshold. Ultimately, the proposed optimiza-
tion scheme involves 2 or 3 iterations for each σ, and around
20 iterations in total to ensure the convergence. Fig. 2 plots
the initial inlier Y − f(X) and the final results. We find
that the magnitude of Y − f(X) is greatly reduced via the
proposed optimization scheme.

3.4. Fast Computation

Since the optimization procedure only involves the part
of the covariance matrix K that is constant in the whole
process, we can pre-compute it to save computational cost.
Similarly, we can pre-compute the projection matrix which
maps the mesh from the model to the target.

In our experiments, we find that the registration accuracy
can be guaranteed when reaching a sufficiently large num-
ber of inlier matches. On the other hand, too large num-
ber of inlier matches in the early optimization stage will in-
cur heavy computational cost. Therefore, we select a suffi-



Figure 3. We use a piece of paper as the nonrigid surface. The first row shows the images captured by a DV camera size of 720 × 576
overlaid by the nonrigid shape recovery results using the FEM-based method [24]. The second row is our results for recovering the severely
bended paper surface.

Figure 4. Recovering the bended paper surface in the cluttered environment. The first row shows the results using the FEM-based
method [24]. The second row plots the results obtained from proposed method.

ciently large number of inlier matches when computing the
mapping function to balance the tradeoff between accuracy
and efficiency. In addition, instead of using a random sam-
pling process, we employ the top ranked correspondences
according to the feature matching scores, which is proven
to be effective in pose estimation [5].

4. Experimental Results

In this section, we present the details of our experimental
implementation and report the results of performance eval-
uation on nonrigid shape recovery. We demonstrate that the
proposed approach is effective to handle large deformations
in nonrigid shape recovery. In addition, similarly convinc-
ing results are obtained for medical image registration and
3D face alignment.

4.1. Experimental Setup

All the experiments reported in this paper were carried
out on a Pentium-4 3.0GHz PC with 1GB RAM, and a DV

camera was employed to capture video. We employ the
SIFT method [11] to build the reliable correspondences be-
tween the model image and the target image. Moreover, a
model image is usually acquired when the nonrigid shape
contains no deformation.

In our experiments, a set of synthetic data is used to
select the parameters, and the reference mesh is manually
registered. The performance is evaluated by measuring the
percentage of mesh vertices within two pixels of those in
the reference mesh. The RBF kernel width ρ is set to 1.0,
and the best regularization coefficient is found to be around
0.005 by grid searching. Similarly, the initial support is
fixed to 2.0, and the annealing coefficient is 0.7.

4.2. Nonrigid Shape Recovery

We investigate the proposed nonrigid shape recovery
performance on some deformable surfaces based on a piece
of paper. To evaluate the effectiveness of the proposed
method, the grid mesh is mapped from the model image
to the input image using the recovered mapping function.



Figure 5. Recovering the paper surface with waveform deformation. The first row shows the results using the FEM-based method [24].
The second row plots the results obtained from proposed method.

Figure 6. Recovering the sharply folded paper surface in the cluttered environment using the proposed approach.

As shown in Fig. 3, the proposed method is robust in han-
dling large bending deformations. Moreover, we compare
the proposed approach with the FEM-based method [24],
whose results are illustrated in the first row. It can be clearly
observed that the FEM-based approach fails in the cases
with severe bending due to the oversmoothing regulariza-
tion method. On the other hand, our proposed method can
successfully deal with the cases by taking advantage of the
Gaussian process prior on the surface deformation. We also
study the nonrigid shape recovery performance in the clut-
tered environment, as shown in Fig. 4. Fig. 5 shows the
experimental results on the waveform deformation using
both the FEM-based method and our approach. We find that
large registration errors occur in the boundary region using
the FEM-based method. As for our proposed approach, it
accurately recovers the nonrigid shape from the input im-
age. Furthermore, we investigate the sharply folded surface
deformation with the cluttered background, and plot the re-
sults in Fig. 6.

The complexity of the proposed method is determined
by the order of Eqn. 9, which is equal to the total number
of inlier matches. As shown in Fig. 7, we employ the pro-
posed method to track the nonrigid object and re-texture a
piece of paper as in [16, 24]. The proposed method runs
around 14 frames per second on real-time video with size
of 720 × 576, which requires about 20 iterations to achieve
the convergence. The semi-implicit iterative approach [16]
runs about 9 frames per second with a mesh of 120 vertices,
and gradient-based method [24] runs around 18 frames per

second.

Figure 7. Re-texturing a picture on a piece of paper. The left image
is the input frame. The right image is the re-texturing result.

4.3. Medical Image

We also evaluate the proposed approach for medical im-
age registration. A pair of sagittal images [15] with size
of 256 × 256 from two different patients are used in the
experiments. The source and target images differ in both
geometry and intensity. The results are plotted in Fig. 8; it
can be seen that the source image is successfully registered.
In comparison with the locally affine but globally smooth
method [15], which takes about four minutes, our proposed
method can solve the problem within half a second. More-
over, the sparse correspondences-based method can natu-
rally handle the missing data and partial occlusion problem.
As shown in Fig. 8, even with the source images in a region
removed, the nonrigid shape can still be recovered. Since it
is a fully automated approach, we can employ the fitting re-
sult to initialize other local methods [15] in order to further
improve the registration accuracy.



(a) Source (b) Target (c) Before (d) Registered (e) After

Figure 8. Applying the proposed method to medical image registration. A pair of sagittal images from two different patients is shown.
(a,b,d) are the source, target and registered source respectively. (c) and (e) are the overlaid images before and after registration. The second
row displays the synthetic example with missing data.

(a) Target face (b) Input female face (c) Aligned face (d) Input male face (e) Aligned face

Figure 9. Applying the proposed method to 3D face registration. (a) shows the target 3D face model. (b,d) are the two input 3D faces. (c)
and (e) illustrates the results after deformation. The second row displays the rendered profile view of 3D face models in the first row.

4.4. 3D Face Registration

The proposed method can be directly applied to the 3D
deformable surface registration. We employ the 3D mor-
phable model [2] to synthesize three sample face models, as
shown in Fig. 9. We randomly select 500 correspondences
from over 79K points to facilitate the proposed method.
Once the input face is registered using the selected matches,
we transform the remaining points to the target surface by
the learnt mapping function. Fig. 9 illustrates the fitting re-
sults both in frontal view and in profile view.

5. Discussions and Future Work

We have proposed a Gaussian process regression ap-
proach to nonrigid shape recovery. Compared with the FEM

based methods [16, 24], the proposed method makes no as-
sumption about the model except for a Gaussian process
prior, which does not require an explicit mesh model. More-
over, the proposed method can handle severe deformations,
while the FEM based methods may fail due to the over-
smoothing second order regularization. It is easy to im-
plement the proposed approach, which only involves solv-
ing a linear equation. Although the linear system of the
present method is not a sparse one as in [16], experimental
results indicate that the proposed approach is more efficient
than the semi-implicit iterative method. This is mainly be-
cause the presented optimization scheme requires fewer it-
erations and the problem size is greatly reduced. Further-
more, the presented method can be directly applied to the
high-dimensional data.



Although promising experimental results have validated
the efficacy of the proposed approach, some limitations and
future directions should be addressed. First of all, some jit-
ter may occur due to the point matching algorithm. Second,
we only employ the synthesized data to evaluate the 3D face
registration. In future work, the effective feature descrip-
tors will be introduced to deal with the jittering problem.
Finally, we consider to implement the 3D feature descriptor
and feature matching method described in [14] to facilitate
the real-world 3D registration.

6. Conclusion

It is clear that our novel approach to nonrigid shape re-
covery is powerful and effective. It offers several distinct
advantages over the conventional approaches. First, we pro-
pose a novel non-parametric Bayesian approach to nonrigid
shape recovery. Moreover, our method can handle the large
deformations without resorting to a 3D deformable surface
model. Finally, our active set selection gradually decreases
the noise variations, which can handle the noisy feature
matching with large numbers of outliers.

Our approach has been tested in several applications,
such as recovery of highly deformed shape from single im-
ages, Augmented Reality, medical image, 3D face align-
ment. Encouraging experimental results show that our pro-
posed approach is both effective and promising.
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