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Abstract

A social choice function (SCF) is robustly implementable in rationalizable strate-

gies (RoRat-implementable) if every (interim correlated) rationalizable outcome on

every type space agrees with the SCF. We establish that RoRat-implementation is

equivalent to weak rationalizable implementation, an implementation notion based on

belief-free rationalizability. Applying this equivalence, we identify weak robust mono-

tonicity (weak RM) as the characterizing condition for RoRat-implementation. We

show that weak RM is equivalent to semi-strict ex post incentive compatibility and the

preference-reversal condition. Furthermore, we clarify the relationships between differ-

ent “robust” and “rationalizable” implementation notions discussed in the literature.

In particular, we prove that strict robust monotonicity (strict RM) characterizes ro-

bust implementation in interim equilibria (RoEq-implementation), closing a gap in the

literature. We present an example in which weak RM is strictly weaker than strict RM.

Thus, RoRat-implementation may be more permissive than RoEq-implementation. We

apply our results to quasilinear environments and provide a comprehensive discussion

on additional implications of RoRat-implementation.
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1 Introduction

We consider robust (full) implementation of a social choice function (SCF) in (interim cor-

related) rationalizable strategies (henceforth, RoRat-implementation). That is, we want the

designer to construct a mechanism such that, regardless of the type space, all rationalizable

outcomes agree with the SCF.

A type space defines each player’s beliefs and higher-order beliefs about other player’s

payoff types. Standard Bayesian implementation settings (e.g., Jackson 1991) assume that a

specific type space is common knowledge among the players. The designer is therefore able

to exploit the players’ beliefs in the construction of the implementing mechanism. Naturally,

whether an SCF can and cannot be implemented in Bayesian settings crucially depends on

the specification of the assumed type space. Following the seminal work of Bergemann and

Morris (henceforth, BM, 2005b, 2009a, 2009b, 2011), we take a global approach to robustness

by requiring that the mechanism implement the SCF for all possible type spaces which are

consistent with the underlying payoff environment.1

The solution concept adopted by the designer encapsulates a theory of how players behave

in strategic settings. We study the implication of (interim correlated) rationalizability as the

solution concept. Rationalizability has some remarkable properties in that regard. It is a

set-valued concept that, in contrast to equilibrium, does not require players to have correct

conjectures about others’ strategies. Furthermore, a type’s rationalizable strategies depend

only on its belief hierarchy and not on “redundant” features of the type space (Dekel et al.,

2007). On a given type space, rationalizability characterizes outcomes that are consistent

with common certainty of rationality and the type space (Dekel et al., 2007). Finally,

rationalizability also characterizes outcomes that are robust to players gaining information

by observing payoff-irrelevant signals (BM, 2017).

The union of rationalizable strategies on all type spaces is characterized by the belief-free

rationalizability correspondence. The latter is defined by an iterative elimination procedure

such as the one for rationalizability, but now on the domain of payoff types. Neverthe-

less, RoRat-implementation is not the same as implementation in belief-free rationalizability

(henceforth, BfRat-implementation), as demonstrated by the example in Appendix 11.1.

Indeed, our first main result is that RoRat-implementation is equivalent to weak rational-

izable implementation (henceforth, wRat-implementation). Introduced in the appendix in

1BM (2009a, 2011) and Ollár and Penta (2017) are closely related to our work, as further discussed in
the paper. Unlike us, BM (2005b) focus on robust partial implementation whereas BM (2009b) study robust
virtual or approximate implementation in finite mechanisms. Artemov et al. (2013) examine robust virtual
implementation using the solution concept of ∆-rationalizability, which allows for general belief restrictions.
Guo and Yannelis (2022) study robust coalitional implementation where the designer also takes into account
the possibility of collusion by a coalition of players.
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BM (2010), wRat-implementation is BfRat-implementation plus an extra restriction that

the best responses to all first-order beliefs exist. The extra restriction is needed to guarantee

that rationalizable strategies are nonempty on all type spaces. The equivalence between

RoRat-implementation and wRat-implementation allows us to utilize the latter as an instru-

ment to characterize the former. This approach has the advantage that we do not need to

consider rationalizable strategies in different type spaces; instead, as wRat-implementation

is defined by imposing conditions on the belief-free rationalizability correspondence, we can

simply focus on that correspondence.

In our second main result, we identify weak robust monotonicity (weak RM) as the key

condition that characterizes RoRat-implementable SCFs under a mild restriction on the en-

vironment. Although weak RM could be difficult to check directly, its formulation provides

a clean comparison with another important condition in the literature, as further discussed

below. Still, in order to provide more insight into the condition, we show that weak RM

comprises of incentive and monotonicity-type constraints that are typically found in im-

plementation theory. Specifically, in private-value environments, weak RM is equivalent to

semi-strict ex post incentive compatibility (semi-strict EPIC). In interdependent-value envi-

ronments, weak RM is equivalent to semi-strict EPIC and the preference-reversal condition.

The preference-reversal condition is a monotonicity-type restriction on players’ ex post pref-

erences. It is equivalent to semi-strict EPIC in private-value environments but not more

generally.

As an application of our results, we consider quasilinear environments with monetary

transfers. In these environments, a deterministic and interior SCF is RoRat-implementable

if it satisfies semi-strict EPIC and the sign-preserving property. In fact, when all agents are

risk neutral, semi-strict EPIC and the sign-preserving property characterize all (stochastic or

deterministic) RoRat-implementable SCFs that have interior transfers. The sign-preserving

property is even easier to check than the preference-reversal condition, and is intuitively

appealing. It compares the effect on an agent’s marginal valuation at her expected allocation

when she is the sole liar to when everyone else also lies. The property requires that, for at

least one agent, either the two effects are in the same direction (positive or negative), or the

effect when she is the sole liar dominates the effect when everyone else also lies.

This paper complements the work on RoRat-implementation by BM (2009a) and Ollár

and Penta (2017). In contrast to our discrete setting, both papers assume that each player’s

payoff type is a continuous variable that forms a compact subset of the real line. In sin-

gle crossing aggregator (SCA) environments, BM (2009a) prove that, for responsive SCFs,

strict ex post incentive compatibility (strict EPIC) and the contraction property charac-

terize RoRat-implementation by mechanisms with a compact message space. Indeed, they
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show that such an SCF can be RoRat-implemented using the direct mechanism. The con-

traction property requires that the degree of preference interdependence is sufficiently low,

which guarantees that truthful revelation in the unique rationalizable strategy. Ollár and

Penta (2017) also focus on direct mechanisms and responsive SCFs but allow for general

belief restrictions in environments with monetary transfers. Their key insight is that the

(im)possibility of RoRat-implementation hinges on the strength of strategic externalities in

the mechanism for any given level of preference interdependence. Unlike preference inter-

dependence, strategic externalities can be manipulated by the designer using her informa-

tion about the players’ beliefs. Such manipulation is not feasible in our setting; thus the

degree of preference interdependence, reflected in the sign-preserving property in quasilin-

ear environments or the preference-reversal condition more generally, is the key to RoRat-

implementation.

The focus on direct mechanisms and responsive SCFs in BM (2009a) and Ollár and Penta

(2017) however has its limitations. Example 8.1 presents an (approximately) efficient, RoRat-

implementable SCF in an SCA auction environment, which cannot be RoRat-implemented

by the direct mechanism. This is true even though the SCF is responsive, and satisfies strict

EPIC and the contraction property, highlighting an important gap between discrete and

continuous settings. Example 8.3 demonstrates starkly the significance of non-responsive

SCFs in RoRat-implementation. In a social decision setting, that example shows that none

of the responsive SCFs is RoRat-implementable but there exists an (approximately) efficient,

non-responsive SCF that is RoRat-implementable.2

Another important contribution of this paper is to clarify the relationships between dif-

ferent “robust” and “rationalizable” implementation notions discussed in the literature (see

Figure 1 and Footnote 11). The relation between RoRat-implementation and robust imple-

mentation in interim equilibria (henceforth, RoEq-implementation) deserves a special men-

tion. BM (2011) show that strict robust monotonicity (strict RM) is necessary and almost

sufficient for RoEq-implementation. We firstly close this gap between the necessary and suffi-

cient conditions by showing that strict RM in fact characterizes RoEq-implementation under

our mild restriction on the environment. Secondly, we show that strict RM implies weak RM

2There are several other economically relevant environments where the desired SCF is non-responsive.
For instance, consider a voting environment where there are two distinct payoff types of a player (viz.,
“extreme left” or “extreme right”) such that the player is in the minority regardless of the payoff types of
the opponents. Then the Condorcet winner will not be responsive to those two payoff types of the player. As
another example, suppose the SCF is Rawlsian, i.e., it chooses the alternative that maximizes the utility of
the worst-off individual in each payoff state. If a player has a payoff type such that she is never the worst-off
individual regardless of the payoff types of the opponents, then the SCF will not be responsive to an even
“higher” payoff type of that player (i.e., a payoff type that leads to a higher utility for each alternative).
Indeed, even the utilitarian SCF that chooses the alternative that maximizes the sum of individuals’ utilities
can be non-responsive (see Example 8.6).
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but the converse is not true (Example 8.6). Hence, if an SCF is RoEq-implementable, then

it is RoRat-implementable but the converse is not true. Thus, robustness considerations do

not in general make the difference between rationalizable strategies and equilibria moot.

Like BM (2011), we rely on a countably infinite mechanism with an integer game con-

struction to characterize RoRat-implementation. Such canonical mechanisms are commonly

deployed in implementation theory but their use has been criticized (see, for e.g., Jackson,

1992). It is worth emphasizing though that the canonical mechanisms are not necessarily

meant to be practical devices; these mechanisms serve a different purpose, that being, to un-

derstand the constraints imposed by the solution concept on the set of implementable SCFs.

With that purpose in mind, we give the designer maximum flexibility in terms of the mecha-

nisms she can use. A natural next step is to limit the designer to a class of mechanisms (e.g.,

direct, finite etc.) to understand the additional constraints imposed by that restriction. This

two-step approach helps to clearly demarcate the effect of the solution concept from that of

the mechanism. Indeed, as we show, there is no difference between BfRat-implementation,

RoRat-implementation, and RoEq-implementation if we restrict the designer to mechanisms

that satisfy the nonempty best response property.

Another strand of the literature examines implementation in rationalizable strategies

on a fixed type space. In complete-information environments, Bergemann et al. (2011)

show that the necessary condition for implementation in rationalizable strategies is stronger

than Maskin monotonicity, which is necessary and almost sufficient for Nash implementa-

tion (Maskin, 1999). They also give an example of a Nash implementable SCF that is not

implementable in rationalizable strategies. Recently, Xiong (2023) has provided a complete

characterization of SCFs that are implementable in rationalizable strategies under complete

information when there are at least three agents. The implementing mechanism in Xiong

(2023) also Nash implements the SCF. Thus, in complete-information environments, the

designer can implement a strictly larger set of SCFs in equilibrium than in rationalizable

strategies.3 In a subsequent paper, Kunimoto et al. (2023), we show that “weak interim

rationalizable monotonicity” is necessary and almost sufficient for implementation in ra-

tionalizable strategies in incomplete-information environments. That paper also shows that

implementation in rationalizable strategies can be more permissive than Bayesian implemen-

tation in some incomplete-information environments, including those with private values. In

contrast, RoRat-implementation coincides with RoEq-implementation under private values

(see Section 7).

The rest of the paper is organized as follows. We present the preliminary definitions in

3This is true only for SCFs. For multi-valued social choice correspondences, implementation in rational-
izable strategies is strictly weaker than Nash implementation, as shown in Kunimoto and Serrano (2019).
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Section 2. In Section 3, we connect RoRat-implementation to belief-free rationalizability

and show that RoRat-implementation is equivalent to wRat-implementation. In Section 4,

we show that weak RM characterizes RoRat-implementation. In Section 5, we show that

weak RM is equivalent to semi-strict EPIC and the preference-reversal condition. We apply

our results to quasilinear environments in Section 6. We compare RoRat-implementation

and RoEq-implementation in Section 7. Section 8 provides three examples to illustrate the

significance of indirect mechanisms and non-responsive SCFs for RoRat-implementation,

and the connections between RoRat-implementation and other notions of implementation.

In Section 9, we provide a comprehensive discussion on additional implications of RoRat-

implementation. Section 10 concludes. The Appendix contains the example that demon-

strates the gap between BfRat-implementation and wRat-implementation, and the proofs

omitted from the main body of the paper.

2 Preliminaries

There is a finite set of players I = {1, . . . , n}. A player’s payoff type is θi ∈ Θi, where we

assume that Θi is finite.
4 A payoff state is θ ∈ Θ ≡ ×i∈IΘi. Denote Θ−i ≡ Θ1×· · ·×Θi−1×

Θi+1 × · · · ×Θn.
5

There is a countable set of alternatives A with at least two elements. We assume that A

is a separable metrizable space such that its closure, Ā, is compact.

For any set X , we will use ∆(X) to denote the set of probability measures over X . As A

is a separable metrizable space, so is ∆(A) under the weak∗ topology (Aliprantis and Border,

2006, Theorem 15.12). Therefore, ∆(A) contains a countable dense subset, which we denote

by ∆∗(A).

We denote an arbitrary probability measure in ∆(Ā) by ℓ. For any a ∈ Ā, we abuse

notation and use a to denote the degenerate probability measure that puts probability 1 on

a. We use the term lottery for any probability measure in ∆(Ā) with a countable support.

Note that, since A is countable, any probability measure in ∆(A) is a lottery. For any

lottery ℓ, let ℓ[a] be the probability assigned by ℓ to a ∈ Ā. Let Z be any countable set of

indices. For any countable set of lotteries {ℓz}z∈Z and corresponding weights {αz}z∈Z such

that αz ≥ 0, for all z ∈ Z, and
∑

z∈Z αz = 1, we let
∑

z∈Z αzℓz be the lottery that is obtained

as a reduced form of the compound lottery in which, for all z ∈ Z, lottery ℓz is selected with

4BM (2011) allow Θi to be countable, for all i ∈ I. But that inadvertently introduces an error in their
paper: The canonical mechanism constructed in the proof of their Theorem 2 is not necessarily countable,
contradicting their restriction to countable mechanisms. We assume a finite payoff-type space to avoid a
similar error.

5Similar notation will be used for products of other sets.
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probability αz.

Preferences of player i are represented by the von Neumann-Morgenstern expected utility

function ui : ∆(Ā)×Θ → ℜ. Since a lottery has a countable support, for any payoff state θ

and lottery ℓ, we can write ui(ℓ, θ) =
∑

a∈A ℓ[a]ui(a, θ). It is worth emphasizing that, while

the utility function is defined on the domain ∆(Ā), mechanisms, as defined below, can only

realize outcomes in ∆(A).

The environment is one of private values if the utility of each player i ∈ I is independent

of the other players’ payoff types θ−i ∈ Θ−i. If not, then the environment has interdependent

values. In a private-value environment, we simplify notation to write the expected utility of

player i as a function of the lottery and her own payoff type, i.e., ui : ∆(Ā)×Θi → ℜ.
For each i ∈ I, let Z1

i = ∆(Θ−i) be the set of all possible first-order beliefs (i.e., beliefs

about the payoff types of the other players) that player i can have. Throughout, we restrict

to environments that satisfy a mild assumption on the players’ preferences:

Assumption 2.1 (No-Complete-Indifference). For each i ∈ I, θi ∈ Θi, and z
1
i ∈ Z1

i , there

exist a, a
′ ∈ A such that

∑

θ−i∈Θ−i

z1i (θ−i)ui
(

a, (θi, θ−i)
)

6=
∑

θ−i∈Θ−i

z1i (θ−i)ui
(

a
′

, (θi, θ−i)
)

.

No-complete-indifference rules out indifference across alternatives regardless of a player’s

belief about the payoff types of the other players. It is trivially satisfied in economic en-

vironments with money, a private good that is desirable in greater quantities in all payoff

states. BM (2009b), too, assume no-complete-indifference to characterize robust virtual im-

plementation in finite mechanisms. Abreu and Matsushima (1992) and Serrano and Vohra

(2005) make analogous assumptions in Bayesian settings. See the discussion in Section 9.3

for environments in which no-complete-indifference is violated.

2.1 Type Space

A type space is a collection T = (Ti, θ̂i, π̂i)i∈I such that for each i ∈ I, Ti is countable,

θ̂i : Ti → Θi, and π̂i : Ti → ∆(T−i). A player’s type ti ∈ Ti defines her payoff type θ̂i(ti) ∈ Θi

and her belief type π̂i(ti) ∈ ∆(T−i). For any t−i ∈ T−i, we let π̂i(ti)[t−i] denote the probability

that player i of type ti assigns to the type profile t−i of the other players. We assume that

θ̂i : Ti → Θi is surjective for all i ∈ I, i.e., no payoff type is redundant.

Given the type space T , for each player i ∈ I and type ti ∈ Ti, we let z1i (ti) ∈ Z1
i be the

first-order belief of ti, i.e., z
1
i (ti)[θ−i] =

∑

t−i∈T−i:θ̂−i(t−i)=θ−i
π̂i(ti)[t−i], for all θ−i ∈ Θ−i.
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2.2 Social Choice Function and Mechanism

The planner’s objective is specified by a social choice function (SCF) f : Θ → ∆(A). The

SCF f is deterministic if f(θ) ∈ A (more formally, f(θ) is a degenerate lottery), for all

θ ∈ Θ.

We say that the SCF f is responsive to θi and θ
′

i, denoted by θ
′

i 6∼f
i θi, if f(θi, θ−i) 6=

f(θ
′

i, θ−i) for some θ−i ∈ Θ−i. Otherwise, f is non-responsive to θi and θ
′

i, denoted by

θ
′

i ∼f
i θi. We say that individual i is relevant for the SCF f if there exist θi, θ

′

i ∈ Θi such

that f is responsive to θi and θ
′

i; otherwise, we say i is irrelevant for f . Without loss of

generality, we assume that all individuals i ∈ I are relevant for the SCF f .6

The SCF f is responsive if for all i ∈ I and θi, θ
′

i ∈ Θi: θi 6= θ
′

i ⇒ θi 6∼f
i θ

′

i. Otherwise, f

is non-responsive.

A mechanism Γ = ((Mi)i∈I , g), where Mi is a countable nonempty set of messages for

player i, M = ×i∈IMi, and g : M → ∆(A) is the outcome function. The mechanism

Γ = ((Mi)i∈I , g) is finite if Mi is finite, for all i ∈ I. The mechanism Γ = ((Mi)i∈I , g) is the

direct mechanism if Mi = Θi, for all i ∈ I, and g(θ) = f(θ), for all θ ∈ Θ.

2.3 Interim Correlated Rationalizability

Fix a type space T and mechanism Γ = ((Mi)i∈I , g). A message correspondence profile

S = (S1, . . . , Sn), where each Si : Ti → 2Mi.

Let S be the collection of all such message correspondence profiles. The collection S is a

complete lattice with the natural ordering of set inclusion: S ≤ S
′

if Si(ti) ⊆ S
′

i(ti), for all

i ∈ I and ti ∈ Ti. The largest element is S̄ = (S̄1, . . . , S̄n), where S̄i(ti) = Mi, for all i ∈ I

and ti ∈ Ti. The smallest element is S = (S1, . . . , Sn), where Si(ti) = ∅, for all i ∈ I and

ti ∈ Ti.

We define the best response operator b : S → S as follows:

bi(S)[ti] ≡



























mi ∈Mi :

∃λi ∈ ∆(T−i ×M−i) such that

(i) mi ∈ arg max
m

′

i∈Mi

∑

t−i,m−i

λi(t−i, m−i)ui
(

g(m
′

i, m−i), θ̂(ti, t−i)
)

(ii) margT−i
λi = π̂i(ti)

(iii) λi(t−i, m−i) > 0 ⇒ m−i ∈ S−i(t−i)



























,

6The problem is trivial if all individuals are irrelevant for the SCF since then the SCF is constant.
In case there are some relevant (I∗) and some irrelevant (I\I∗) individuals, then the planner can simply
ignore the messages of the irrelevant individuals in the mechanism. For instance, in the canonical mechanism
constructed to prove Theorem 4.3, the three rules will be defined in the same manner while conditioning only
on the messages of the individuals in I∗. Moreover, since the planner can ignore the irrelevant individuals,
all of our results are obtained in environments where the no-complete-indifference condition applies only to
individuals in I∗.
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where S−i(t−i) = ×j 6=iSj(tj), for all t−i ∈ T−i.

Observe that b is increasing by definition: i.e., S ≤ S
′ ⇒ b(S) ≤ b(S

′

). Since b is

increasing and S is a complete lattice, by Tarski’s fixed point theorem, there is a largest

fixed point of b, which we label B∞. Thus, (i) b(B∞) = B∞ and (ii) b(S) ≥ S ⇒ S ≤ B∞.

B∞ is the (interim correlated) rationalizable message correspondence profile (Dekel et

al., 2007). For each type of each player, it characterizes the messages that are consistent

with common certainty of rationality and the type space (Dekel et al., 2007, Proposition 2).

2.4 Robust Implementation in Rationalizable Strategies

We now define robust implementation in rationalizable strategies (RoRat-implementation).

To do so, we start by defining what we mean by implementation in rationalizable strategies

on a specific type space.

Definition 2.2. A mechanism Γ = ((Mi)i∈I , g) implements the SCF f in rationalizable

strategies on the type space T if, for all t ∈ T , we have

(nonemptiness) B∞(t) 6= ∅ and (uniqueness) g(m) = f(θ̂(t)), ∀m ∈ B∞(t).

We now define RoRat-implementation as implementation in rationalizable strategies over

“all type spaces”.

Definition 2.3. A mechanism Γ robustly implements the SCF f in rationalizable strategies

(or, RoRat-implements the SCF f) if, for all type spaces T , the mechanism implements

f in rationalizable strategies on T . The SCF f is robustly implementable in rationalizable

strategies (or, RoRat-implementable) if there exists a mechanism that RoRat-implements f .

3 Connections with Belief-Free Rationalizability

In this section, we will show that insisting on implementation in rationalizable strategies

that is robust to the underlying type space forces the solution concept to be “belief-free”

and depend only on the payoff types of the individuals.

To that end, we first define belief-free rationalizability.7 Fix a mechanism Γ = ((Mi)i∈I , g).

A message correspondence profile with payoff-type domain S = (S1, . . . ,Sn), where each

Si : Θi → 2Mi.

7Our definition coincides with the definition of belief-free rationalizability in Bergemann and Morris
(2017) for a known payoff-type environment (i.e., each player knows his own payoff type and thinks every
payoff-type profile of other players is possible), except that we allow for countable mechanisms.
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Let SΘ be the collection of such message correspondence profiles with payoff-type domain.

The collection SΘ is a complete lattice with the natural ordering of set inclusion: S ≤ S ′

if Si(θi) ⊆ S ′

i(θi) for all i ∈ I and θi ∈ Θi. The largest element is S̄ = (S̄1, . . . , S̄n), where
S̄i(θi) = Mi for each i ∈ I and θi ∈ Θi. The smallest element is S = (S1, . . . ,Sn), where
Si(θi) = ∅ for each i ∈ I and θi ∈ Θi.

We define the best response operator for payoff types bΘ : SΘ → SΘ as follows:

bΘi (S)[θi] ≡



















mi ∈Mi :

∃ψi ∈ ∆(Θ−i ×M−i) such that

(i) mi ∈ argmax
m

′

i

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θi, θ−i)
)

(ii) ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S−i(θ−i)



















,

where S−i(θ−i) = ×j 6=iSj(θj) for each θ−i ∈ Θ−i.

As the operator bΘ is increasing and SΘ is a complete lattice, by Tarski’s fixed point

theorem, there is a largest fixed point of bΘ, which we denote by S∞. Thus, (i) bΘ(S∞) = S∞

and (ii) bΘ(S) ≥ S ⇒ S ≤ S∞.

S∞ is the belief-free rationalizable message correspondence profile. Belief-free rationaliz-

ability is a special case of ∆-rationalizability of Battigalli and Siniscalchi (2003), where ∆

denotes a set of restrictions on the first-order beliefs of the players. (These restrictions affect

the best response operator above by constraining the marginal of ψi on Θ−i to be consistent

with ∆.) For each payoff type of each player, ∆-rationalizability characterizes the messages

that are consistent with common certainty of rationality and the belief restriction ∆. In

the case of belief-free rationalizability, ∆ is unrestricted so that players can hold arbitrary

first-order beliefs.

Battigalli and Siniscalchi (2003) show that belief-free rationalizability characterizes in-

terim equilibria on all type spaces. Belief-free rationalizability is similarly related to ratio-

nalizable strategies: The former is equivalent to the union of rationalizable strategies over

all type spaces. For the sake of completeness, we state and prove this result next.

Lemma 3.1. Consider any mechanism Γ such that S∞
i (θi) 6= ∅, for all θi ∈ Θi and i ∈ I.

The message profile m ∈ S∞(θ) if and only if there exists a type space T such that m ∈
⋃

t∈T :θ̂(t)=θ B
∞(t).

Proof. (⇒) Battigalli and Siniscalchi (2003, Proposition 4.3) or BM (2011, Proposition 1)

show that if m ∈ S∞(θ), then there exist a type space T , a pure-strategy interim equilibrium

σ, and a type profile t such that σ(t) = m and θ̂(t) = θ. Therefore, m ∈ B∞(t).8

8The assumption S∞
i (θi) 6= ∅, for all θi ∈ Θi and i ∈ I, ensures that the constructed type space T satisfies

the restriction that θ̂i : Ti → Θi is surjective, for all i ∈ I.
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(⇐) Consider any type space T . Define the message correspondence profile with payoff-

type domain Ŝ = (Ŝ1, . . . , Ŝn) such that for all i ∈ I,

Ŝi(θ
′

i) =
⋃

ti∈Ti:θ̂i(ti)=θ
′

i

B∞
i (ti), ∀θ

′

i ∈ Θi.

If m
′

i ∈ Ŝi(θ′

i), then there exists t
′

i ∈ Ti such that θ̂i(t
′

i) = θ
′

i and m
′

i ∈ B∞
i (t

′

i). Thus, there

exists a belief λi ∈ ∆(T−i ×M−i) such that

m
′

i ∈ arg max
m

′′

i ∈Mi

∑

t−i,m−i

λi(t−i, m−i)ui(g(m
′′

i , m−i), θ̂(t
′

i, t−i)),

margT−i
λi = π̂i(t

′

i) and λi(t−i, m−i) > 0 ⇒ m−i ∈ B∞
−i(t−i).

Define ψi ∈ ∆(Θ−i ×M−i) as follows:

ψi(θ−i, m−i) =
∑

t−i∈T−i:θ̂−i(t−i)=θ−i

λi(t−i, m−i), ∀θ−i, m−i.

Then ψi(θ−i, m−i) > 0 implies thatm−i ∈
⋃

t−i∈T−i:θ̂−i(t−i)=θ−i
B∞

−i(t−i) = Ŝ−i(θ−i). Moreover,

by construction,

m
′

i ∈ arg max
m

′′

i ∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui(g(m
′′

i , m−i), (θ
′

i, θ−i)).

Thus, m
′

i ∈ bΘi (Ŝ)[θ
′

i]. Hence, b
Θ(Ŝ) ≥ Ŝ. Therefore, Ŝ ≤ S∞.

Now suppose there exist m ∈ M and θ ∈ Θ such that m ∈ ⋃

t∈T :θ̂(t)=θ B
∞(t). Then

m ∈ Ŝ(θ), and hence m ∈ S∞(θ). This completes the proof of the lemma.

The above result confirms that belief-free rationalizability encapsulates the implications

of imposing robustness with respect to the type space on rationalizable strategies. Thus, one

might be inclined to conjecture that RoRat-implementation is equivalent to “implementation

in belief-free rationalizability”, by which we mean the following:

Definition 3.2. A mechanism Γ = ((Mi)i∈I , g) implements in belief-free rationalizability (or

BfRat-implements) the SCF f if

1. (uniqueness) m ∈ S∞(θ) ⇒ g(m) = f(θ); and

2. (nonemptiness) S∞
i (θi) 6= ∅, for all θi ∈ Θi and i ∈ I.

11



The SCF f is implementable in belief-free rationalizability (or, BfRat-implementable) if there

exists a mechanism that BfRat-implements f .9

We argue below that the above conjecture is false.

We first show that RoRat-implementation is equivalent to a different implementation

notion that too is based on belief-free rationalizability. This equivalence is the key to char-

acterizing RoRat-implementation, as we will show later. In their Appendix, BM (2010)

define weak rationalizable implementation (wRat-implementation) as follows:

Definition 3.3. A mechanism Γ = ((Mi)i∈I , g) weakly rationalizably implements (or, wRat-

implements) the SCF f if

1. (uniqueness) m ∈ S∞(θ) ⇒ g(m) = f(θ); and

2. (nonemptiness) For each i ∈ I, θi ∈ Θi and z1i ∈ Z1
i , there exists a belief ψi ∈

∆(Θ−i ×M−i) such that:

(a) arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θi, θ−i)
)

6= ∅.

(b) ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ−i).

(c) margΘ−i
ψi = z1i .

The SCF f is wRat-implementable if there exists a mechanism that wRat-implements f .

Notice that BfRat-implementation and wRat-implementation have the same uniqueness

requirements. However, the nonemptiness requirement in wRat-implementation implies the

nonemptiness requirement in BfRat-implementation. Thus, wRat-implementation is BfRat-

implementation with additional restrictions on the existence of best responses for all first-

order beliefs.

We now establish that RoRat-implementation is equivalent to wRat-implementation.

Theorem 3.4. The SCF f is RoRat-implementable by the mechanism Γ if and only if f is

wRat-implementable by the same mechanism Γ.

Proof. We prove the necessity part of Theorem 3.4 first.

Suppose the SCF f is RoRat-implementable by the mechanism Γ. Then the following is

true for all type spaces T : For all t ∈ T , we have

B∞(t) 6= ∅ and g(m) = f(θ̂(t)), ∀m ∈ B∞(t).

9This definition is equivalent to the concept of robust exact implementation in Artemov et al. (2013)
when ∆ is unrestricted. Note that the main focus of Artemov et al. (2013) is robust virtual implementation.
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Pick any θ ∈ Θ. If m ∈ S∞(θ), then it follows from Lemma 3.1 that there exists a type

space T ′

such that m ∈ ⋃t∈T ′ :θ̂(t)=θ B
∞(t). Hence, g(m) = f(θ).

Next, pick any i, θi and z
1
i . For each j 6= i, pick any z1j ∈ Z1

j . Define the type space T
such that (i) Tj = {tθ̃jj : θ̃j ∈ Θj} for all j ∈ I, and (ii) θ̂j(t

θ̃j
j ) = θ̃j and π̂j(t

θ̃j
j )[t

θ̃−j

−j ] = z1j (θ̃−j)

for all t
θ̃−j

−j ∈ T−j and t
θ̃j
j ∈ Tj .

By our hypothesis of RoRat-implementation, B∞
i (tθii ) 6= ∅. Therefore, there exists λi ∈

∆(T−i ×M−i) such that

1. argmaxm′

i

∑

t
θ
−i

−i ,m−i
λi(t

θ−i

−i , m−i)ui
(

g(m
′

i, m−i), θ̂(t
θi
i , t

θ−i

−i )
)

6= ∅.

2. margT−i
λi = π̂i(t

θi
i )

3. λi(t
θ−i

−i , m−i) > 0 ⇒ m−i ∈ B∞
−i(t

θ−i

−i ).

Define ψi ∈ ∆(Θ−i ×M−i) as follows: for any θ−i ∈ Θ−i and m−i ∈M−i,

ψi(θ−i, m−i) = λi(t
θ−i

−i , m−i).

Then ψi(θ−i, m−i) > 0 implies that m−i ∈ B∞
−i(t

θ−i

−i ). It follows from Lemma 3.1 that

m−i ∈ S∞
−i(θ−i). Lastly, by construction, margΘ−i

ψi = z1i and

arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θi, θ−i)
)

6= ∅.

We prove the sufficiency part of Theorem 3.4 next.

Suppose that the SCF f is wRat-implementable by the mechanism Γ. Consider any

type space T . If m ∈ B∞(t), then it follows from Lemma 3.1 that m ∈ S∞(θ̂(t)). Hence,

g(m) = f(θ̂(t)).

We now show that B∞(t) 6= ∅ for all t ∈ T . Define the message correspondence profile

Ŝ = (Ŝ1, . . . , Ŝn) such that, for all i ∈ I and ti ∈ Ti,

Ŝi(ti) = S∞
i (θ̂i(ti)).

Pick any type ti ∈ Ti. By our hypothesis of wRat-implementability, there exists a belief

ψi ∈ ∆(Θ−i ×M−i) such that

(a) arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

6= ∅.

(b) ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ−i).
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(c) margΘ−i
ψi = z1i (ti).

By the definition of S∞
i (θ̂i(ti)), we have

∅ 6= arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

⊆ S∞
i (θ̂i(ti)).

Since Ŝi(ti) = S∞
i (θ̂i(ti)), we also have Ŝi(ti) 6= ∅.

We now show that Ŝi(ti) ≤ bi(Ŝ)[ti]. Consider any message m̃i ∈ Ŝi(ti). By our hypothesis

of wRat-implementability, we have that for any θ ∈ Θ, m
′ ∈ S∞(θ) ⇒ g(m

′

) = f(θ). Since

m̃i ∈ S∞
i (θ̂i(ti)) and ψi(θ−i, m−i) > 0 implies m−i ∈ S∞

−i(θ−i), by wRat-implementability, we

have

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m̃i, m−i), (θ̂i(ti), θ−i)
)

=
∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

f(θ̂i(ti), θ−i), (θ̂i(ti), θ−i)
)

.

Thus, either every message in Ŝi(ti) is a best response to ψi or none of the messages in Ŝi(ti)

is a best response to ψi. But, as already argued,

Ŝi(ti) = S∞
i (θ̂i(ti)) ⊇ arg max

m
′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

6= ∅.

Thus, every message in Ŝi(ti) is a best response to ψi.

Now pick any mi ∈ Ŝi(ti). As argued above,

mi ∈ arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

.

Define the belief λi ∈ ∆(T−i ×M−i) such that for all (t−i, m−i) ∈ T−i ×M−i,

λi(t−i, m−i) =

{

π̂i(ti)[t−i]
(

ψi(θ̂−i(t−i),m−i)

z1i (ti)[θ̂−i(t−i)]

)

, if π̂i(ti)[t−i] > 0

0, otherwise.

Since
∑

m−i
ψi(θ̂−i(t−i), m−i) = z1i (ti)[θ̂−i(t−i)], we have margT−i

λi = π̂i(ti). Moreover,

λi(t−i, m−i) > 0 ⇒ ψi(θ̂−i(t−i), m−i) > 0 ⇒ m−i ∈ S∞
−i(θ̂−i(t−i)) = Ŝ−i(t−i).

Finally, for all m
′

i ∈Mi,

∑

t−i,m−i

λi(t−i, m−i)ui
(

g(m
′

i, m−i), θ̂(ti, t−i)
)
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=
∑

θ−i,m−i





∑

t−i∈T−i:θ̂−i(t−i)=θ−i

π̂i(ti)[t−i]
ψi(θ−i, m−i)

z1i (ti)(θ−i)
ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)





=
∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

,

where the last equality follows because
∑

t−i∈T−i:θ̂−i(t−i)=θ−i
π̂i(ti)[t−i] = z1i (ti)(θ−i). Hence,

we must have

mi ∈ arg max
m

′

i∈Mi

∑

t−i,m−i

λi(t−i, m−i)ui
(

g(m
′

i, m−i), θ̂(ti, t−i)
)

.

We thus conclude that mi ∈ bi(Ŝ)[ti].

As b(Ŝ) ≥ Ŝ, we have Ŝ ≤ B∞. Pick any t ∈ T . Then B∞(t) 6= ∅ because, as already

shown, Ŝ(t) 6= ∅. This completes the proof of the theorem.

The above theorem clarifies the difference between RoRat-implementation and BfRat-

implementation. Both implementation notions have identical uniqueness requirements, stem-

ming from the equivalence between belief-free rationalizability and the union of rationalizable

strategies over all type spaces. The nonemptiness requirement in BfRat-implementation,

however, does not guarantee that rationalizable strategies are nonempty on all type spaces.

For that guarantee, we need the stronger nonemptiness requirement of wRat-implementation,

as shown in the proof of the theorem. We illustrate this difference in the Appendix by pre-

senting an example of an SCF that is not wRat-implementable but BfRat-implementable.

Having said that, notice that the two nonemptiness requirements coincide in mechanisms

where best responses exist for all beliefs (e.g., finite mechanisms and mechanisms with a

compact message space when payoff functions are continuous; see Section 9.4).

4 Characterization: Weak Robust Monotonicity

We now use the equivalence between RoRat-implementation and wRat-implementation (The-

orem 3.4) to characterize RoRat-implementation.

A deception is a profile of correspondences β = (β1, . . . , βn) such that βi : Θi → 2Θi and

θi ∈ βi(θi), for all θi ∈ Θi and i ∈ I. A deception β is unacceptable if there exist θ ∈ Θ and

θ
′ ∈ β(θ) for which f(θ) 6= f(θ

′

); otherwise, β is acceptable.

For each i ∈ I and θi ∈ Θi, define

Y w
i [θi] ≡

{

y : Θ−i → ∆(A) : ∀θ−i, ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

y(θ−i), (θi, θ−i)
)}

.
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Thus, Y w
i [θi] is the collection of all mappings y : Θ−i → ∆(A) such that for every θ−i ∈ Θ−i,

the lottery y(θ−i) is weakly worse than f(θi, θ−i) for individual i in the payoff state (θi, θ−i).

Next, define a subset of Y w
i [θi], as follows:

Yi[θi] ≡











y : Θ−i → ∆(A) :

∀θ−i ∈ Θ−i,

either y(θ−i) = f(θi, θ−i)

or ui
(

f(θi, θ−i), (θi, θ−i)
)

> ui
(

y(θ−i), (θi, θ−i)
)











.

Thus, Yi[θi] is the collection of all mappings y : Θ−i → ∆(A) such that for every θ−i ∈ Θ−i,

the lottery y(θ−i) is either equal to f(θi, θ−i) or strictly worse than f(θi, θ−i) for individual

i in the payoff state (θi, θ−i). Note that Yi[θi] ⊆ Y w
i [θi].

Definition 4.1. We say that an unacceptable deception β is weakly refutable if there exist

i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all θ̃i ∈ Θi and ψi ∈

∆(Θ−i ×Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), there exists y ∈ Yi[θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

. (1)

Definition 4.2. The SCF f satisfies weak robust monotonicity (weak RM) if every unac-

ceptable deception β is weakly refutable.

Here is the main result characterizing RoRat-implementation:

Theorem 4.3. The SCF f is RoRat-implementable if and only if f satisfies weak RM.

We relegate the proof of the theorem to the Appendix. Here we give a sketch of the

argument for why weak RM is necessary, and present the canonical mechanism used to show

that weak RM is sufficient.

To understand the necessity of weak RM, consider an unacceptable deception β. Define

the message correspondence profile with payoff-type domain S such that Si(θi) = {mi ∈
S∞
i (θ

′

i) : θ
′

i ∈ βi(θi)}, for all θi ∈ Θi and i ∈ I. Since β is unacceptable, we cannot have

S ≤ bΘ(S) because that would imply S ≤ S∞. Thus, there must be some payoff type θi of

some player i, some “imitated” payoff type θ
′

i ∈ βi(θi), and some message in S∞
i (θ

′

i) such that

the message is not a best response for the payoff type θi to any belief ψ̂i ∈ ∆(Θ−i×M−i) that

is consistent with others playing according to S−i. Due to this consistency requirement, the

belief ψ̂i is in fact a belief about the true θ−i, the “imitated” θ
′

−i ∈ β−i(θ−i), and messages

m−i ∈ S∞
−i(θ

′

−i).

Fix any belief ψi ∈ ∆(Θ−i × Θ−i) and θ̃i ∈ Θi. Pick any θ
′

−i ∈ Θ−i and consider the

first-order belief z1i that puts probability 1 on θ
′

−i. The nonemptiness requirement in wRat-

16



implementation implies that the payoff type θ̃i of player i has a message in S∞
i (θ̃i) that is a

best response to some belief ψ
(θ̃i,θ

′

−i)

i ∈ ∆(Θ−i×M−i) that is consistent with z
1
i and such that

ψ
(θ̃i,θ

′

−i)

i (θ
′

−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ

′

−i). By the uniqueness requirement, the best response

must result in f(θ̃i, θ
′

−i) and any deviation can change the outcome only if it is strictly worse

for player i in the payoff state (θ̃i, θ
′

−i).

Now consider the belief ψΓ
i ∈ ∆(Θ−i × M−i) such that player i assigns probability

ψi(θ−i, θ
′

−i) × ψ
(θ̃i,θ

′

−i)

i (θ
′

−i, m−i) to the event that the true payoff profile is θ−i, the “imi-

tated” profile is θ
′

−i ∈ β−i(θ−i), and the message m−i ∈ S∞
−i(θ

′

−i). As argued above, there is

some message mi ∈ S∞
i (θ

′

i) that is not a best response for the payoff type θi to the belief

ψΓ
i . Due to the uniqueness requirement, when player i plays mi while holding the belief ψΓ

i ,

then player i believes that she obtains the outcome f(θ
′

i, θ
′

−i) with probability ψi(θ−i, θ
′

−i).

From the argument in the previous paragraph, it follows that any deviation from mi results

in some y ∈ Yi[θ̃i]. Thus, the inequality (1) must be satisfied to ensure that mi is not a best

response for the payoff type θi to the belief ψΓ
i .

To construct the canonical mechanism used to show the sufficiency of weak RM, we first

define a countable subset of Y w
i [θi]. Recall that ∆

∗(A) is a countable dense subset of ∆(A).

For each i and θi, define

Y ∗
i [θi] ≡











y : Θ−i → ∆(A) :

∀θ−i ∈ Θ−i,

(i) y(θ−i) ∈ ∆∗(A)
⋃

θ
′

i∈Θi
{f(θ′

i, θ−i)} and

(ii) ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

y(θ−i), (θi, θ−i)
)











Note that Y ∗
i [θi] ⊆ Y w

i [θi].

Since Θ−i is finite and ∆∗(A) is countable, Y ∗
i [θi] is also countable. Thus, we denote Y

∗
i [θi]

by {y0i [θi], y1i [θi], . . . , yki [θi], . . .}. For each i ∈ I and θi ∈ Θi, we then define yθii : Θ−i → ∆(A)

such that

yθii (θ−i) = (1− δ)

∞
∑

k=0

δkyki [θi](θ−i), ∀θ−i,

where δ ∈ (0, 1).

Similarly, since A is countable, we denote it by {a0, a1, . . . , ak, . . .}. Then, we define

ᾱ = (1− η)

∞
∑

k=0

ηkak,

where η ∈ (0, 1).

For the sufficiency result, we propose the following mechanism Γ = ((Mi)i∈I , g): For

each individual i, pick any one payoff type from Θi. We denote this payoff type as θ∗i .
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Each individual i sends a message mi = (m1
i , m

2
i , m

3
i , m

4
i ), where m

1
i = (m1

i [j])j∈I such that

m1
i [j] ∈ Θj for all j ∈ I, m2

i ∈ N, m3
i = (m3

i [θi])θi∈Θi
such that m3

i [θi] ∈ Y ∗
i [θi] for all θi ∈ Θi,

and m4
i ∈ A. Note that each Mi is countable. The outcome function g : M → ∆(A) is

defined as follows: For each m ∈M ,

Rule 1: m2
i = 1 for all i ∈ I ⇒ g(m) = f(m1

1[1], m
1
2[2], . . . , m

1
n[n]).

Rule 2: If there exists i ∈ I such that m2
i > 1 but m2

j = 1 for all j ∈ I\{i}, then one of the

following sub-rules apply:

Rule 2-1: If there exists θi ∈ Θi such that m1
j [i] = θi for all j ∈ I\{i}, then

g(m) =

{

m3
i [θi]

(

(m1
j [j])j 6=i

)

with probability m2
i /(m

2
i + 1),

yθii
(

(m1
j [j])j 6=i

)

with probability 1/(m2
i + 1).

Rule 2-2: If m1
j
′ [i] 6= m1

k[i] for some j
′

, k ∈ I\{i}, then

g(m) =

{

m3
i [θ

∗
i ]
(

(m1
j [j])j 6=i

)

with probability m2
i /(m

2
i + 1),

y
θ∗i
i

(

(m1
j [j])j 6=i

)

with probability 1/(m2
i + 1).

Rule 3: In all other cases:

g(m) =



































m4
1 with probability m2

1/(1 +m2
1)n,

m4
2 with probability m2

2/(1 +m2
2)n,

...
...

m4
n with probability m2

n/(1 +m2
n)n,

ᾱ with remaining probability.

Although the above mechanism shares aspects with standard canonical constructions

(e.g., use of the integer game), it is worth pointing out one of its distinctive features (compare,

for instance, to the mechanism in BM, 2011): Each player reports a payoff state, i.e., not

just her own but also everyone else’s payoff type. To see the importance of this, consider two

types ti and t
′

i of agent i with distinct payoff types, say θi and θ
′

i, respectively. Moreover,

suppose that both ti and t
′

i agree on the payoff types of everyone else, say θ−i. Then, from

the perspective of ti, the true payoff state is (θi, θ−i) whereas from the perspective of t
′

i, the

true payoff state is (θ
′

i, θ−i). Since their truths are different, these two types cannot both

be correct if they believe that everyone else is reporting the payoff state truthfully. While
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this is problematic for truthful behavior to form an equilibrium, it does not cause any issues

for truthful behavior to be rationalizable because rationalizability does not require the two

types to hold common beliefs about the other agents’ strategies. This is precisely the kind

of flexibility that is needed in order to RoRat-implement an SCF that cannot be robustly

implemented in interim equilibria, as discussed in Section 7.

5 Incentive and Preference-Reversal Conditions

While weak RM is the key condition for RoRat-implementation, it is a difficult condition to

check directly. In this section, we characterize weak RM in terms of simpler and easier-to-

check incentive and preference-reversal conditions, which parallel the incentive and mono-

tonicity conditions that are typically found in the full-implementation literature.

We begin by defining the relevant incentive constraints.

Definition 5.1. The SCF f satisfies ex post incentive compatibility (EPIC) if, for all i ∈ I,

θi, θ
′

i ∈ Θi, and θ−i ∈ Θ−i,

ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

.

The SCF f satisfies semi-strict ex post incentive compatibility (semi-strict EPIC) if the

above inequality becomes strict whenever θi 6∼f
i θ

′

i. Finally, the SCF f satisfies strict ex post

incentive compatibility (strict EPIC) if the above inequality becomes strict whenever θi 6= θ
′

i.

While semi-strict EPIC is in general weaker than strict EPIC, the two conditions are

equivalent for responsive SCFs.

The next result shows that weak RM implies semi-strict EPIC.

Lemma 5.2. If the SCF f satisfies weak RM, then it satisfies semi-strict EPIC.10

Proof. Suppose the SCF f satisfies weak RM. Pick any i ∈ I, θi, θ
′

i ∈ Θi. If θi ∼f
i θ

′

i,

then trivially ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

for all θ−i ∈ Θ−i. So suppose

θi 6∼f
i θ

′

i. Consider the deception β such that βj(θj) = {θj} for all θj and j 6= i but

βi(θ̃i) =

{

{θi, θ′

i}, if θ̃i = θi

{θ̃i}, otherwise.

10Here is an indirect proof of this lemma. BM (2010, Lemma 6) show that if f is wRat-implementable, then
it satisfies semi-strict EPIC. The lemma follows since weak RM implies wRat-implementation (Theorems
3.4 and 4.3). BM (2011, Lemma 1) show that “robust monotonicity” implies semi-strict EPIC. The above
lemma, however, does not follow from BM’s result because robust monotonicity is stronger than weak RM
(see Remark 7.7).
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Since θi 6∼f
i θ

′

i, the deception β is unacceptable. Hence, it must be weakly refutable. That

is, there exist j ∈ I, θ̂j ∈ Θj, and θ̂
′

j ∈ βj(θ̂j) satisfying θ̂
′

j 6∼f
j θ̂j such that for any θ̃j ∈ Θj

and ψj ∈ ∆(Θ−j ×Θ−j) satisfying ψj(θ−j, θ
′

−j) > 0 ⇒ θ
′

−j ∈ β−j(θ−j), there exists y ∈ Yj[θ̃j ]

such that

∑

θ−j ,θ
′

−j

ψj(θ−j, θ
′

−j)uj
(

y(θ
′

−j), (θ̂j , θ−j)
)

>
∑

θ−j ,θ
′

−j

ψj(θ−j , θ
′

−j)uj
(

f(θ̂
′

j , θ
′

−j), (θ̂j, θ−j)
)

.

Since θ̂
′

j 6∼f
j θ̂j and θ̂

′

j ∈ βj(θ̂j), it must be that j = i, θ̂j = θi and θ̂
′

j = θ
′

i.

Now pick any θ−i ∈ Θ−i. Consider θ̃i = θi and the degenerate belief ψi such that

ψi(θ−i, θ−i) = 1. Note that θ−i ∈ β−i(θ−i). Hence, we must have some y ∈ Yi[θ̃i] =

Yi[θi] such that ui
(

y(θ−i), (θi, θ−i)
)

> ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

. But y ∈ Yi[θi] implies that

ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

y(θ−i), (θi, θ−i)
)

. We thus conclude that ui
(

f(θi, θ−i), (θi, θ−i)
)

>

ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

.

To characterize weak RM, it is helpful to distinguish between private- and interdependent-

value environments.

5.1 Private Values

In private-value environments, weak RM is equivalent to semi-strict EPIC.

Proposition 5.3. Suppose we have a private-value environment. The SCF f satisfies weak

RM if and only if f satisfies semi-strict EPIC.

Proof. Lemma 5.2 shows that weak RM implies semi-strict EPIC. To argue the converse,

suppose the SCF f satisfies semi-strict EPIC. Pick any unacceptable deception β. Then there

exist i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi. Fix θ̃i ∈ Θi and ψi ∈ ∆(Θ−i ×Θ−i)

satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i).

Define y : Θ−i → ∆(A) as y(θ−i) = f(θi, θ−i), for all θ−i ∈ Θ−i. On the one hand, if

θ̃i ∼f
i θi, then f(θi, θ−i) = f(θ̃i, θ−i), for all θ−i ∈ Θ−i. Hence, y ∈ Yi[θ̃i]. On the other,

if θ̃i 6∼f
i θi, then semi-strict EPIC implies that ui

(

f(θ̃i, θ−i), θ̃i
)

> ui
(

f(θi, θ−i), θ̃i
)

, for all

θ−i ∈ Θ−i. Hence, again, y ∈ Yi[θ̃i]. Furthermore,

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), θi
)

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θi, θ
′

−i), θi
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), θi
)

,
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where the inequality is due to semi-strict EPIC and θ
′

i 6∼f
i θi. Hence, f satisfies weak RM.

Thus, semi-strict EPIC characterizes RoRat-implementable SCFs in private-value envi-

ronments.

Corollary 5.4. Suppose we have a private-value environment. The SCF f is RoRat-

implementable if and only if f satisfies semi-strict EPIC.

In fact, under private values, RoRat-implementation can be achieved using the direct

mechanism, as noted in the next proposition. This is because, when the SCF satisfies semi-

strict EPIC, reporting one’s true or equivalent payoff type strictly dominates reporting any

other payoff type in the direct mechanism.

Proposition 5.5. Suppose we have a private-value environment. The SCF f is RoRat-

implementable if and only if f is RoRat-implementable by the direct mechanism.

Proof. If f is RoRat-implementable by the direct mechanism, then it is obviously RoRat-

implementable. To argue the converse, suppose f is RoRat-implementable. Then f satis-

fies semi-strict EPIC. Consider the direct mechanism. Fix a type space T and pick any

type ti ∈ Ti of any player i ∈ I. Due to semi-strict EPIC, ui
(

f(θ̂i(ti), θ−i), θ̂i(ti)
)

≥
ui
(

f(θ
′

i, θ−i), θ̂i(ti)
)

, for all θ
′

i ∈ Θi and θ−i ∈ Θ−i, with a strict inequality if θ̂i(ti) 6∼f
i θ

′

i.

Therefore, for type ti of player i, reporting any θi ∼f
i θ̂i(ti) is strictly better than reporting

any θ
′

i 6∼f
i θ̂i(ti), regardless of the strategies of the other players. Hence, B

∞
i (ti) = {θi : θi ∼f

i

θ̂i(ti)}. Thus, the direct mechanism RoRat-implements the SCF f .

5.2 Interdependent Values

In interdependent-value environments, weak RM is strictly stronger than semi-strict EPIC.

For instance, in Example 8.3, there exist responsive SCFs satisfying semi-strict EPIC that

are not RoRat-implementable, and hence, do not satisfy weak RM. We now identify the

additional restriction imposed by weak RM in interdependent-value environments.

Definition 5.6. The SCF f satisfies the preference-reversal condition if, for all unacceptable

deceptions β, there exist i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all

θ̃i ∼f
i θ

′

i, there exists y ∈ Y w
i [θ̃i] such that

ui
(

y(θ
′

−i), (θi, θ−i)
)

> ui
(

f(θ̃i, θ
′

−i), (θi, θ−i)
)

,

for all θ−i ∈ Θ−i and θ
′

−i ∈ β−i(θ−i).
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The preference-reversal condition is implied by semi-strict EPIC in private-value envi-

ronments. But the two conditions are independent in interdependent-value environments.

Here is the main result of this section: In interdependent-value environments, semi-strict

EPIC and the preference-reversal condition together equal weak RM. Formally:

Proposition 5.7. Suppose we have an interdependent-value environment. The SCF f satis-

fies weak RM if and only if f satisfies semi-strict EPIC and the preference-reversal condition.

Hence, semi-strict EPIC and the preference-reversal condition characterize RoRat-implementable

SCFs in interdependent-value environments.

Corollary 5.8. Suppose we have an interdependent-value environment. The SCF f is

RoRat-implementable if and only if f satisfies semi-strict EPIC and the preference-reversal

condition.

6 Application: Quasi-linear Environments

Let X ≡ {0, . . . , x} ⊂ ℜ+ be a countable set such that x > 0. An allocation is an n-tuple

q ∈ Xn. The set of feasible allocations is some Q ⊆ Xn. Given q ∈ Q, we let qi denote the

allocation of agent i ∈ I. We allow for monetary transfers (positive or negative) from the

agents to a planner such that each agent’s monetary transfer τi is a rational number bounded

by some z > 0. We define τ = (τi)i∈I .

Let A =
{

(q, τ) ∈ Q × Qn : |τi| ≤ z, ∀i ∈ I
}

be the set of alternatives, where Q is the

set of rational numbers. Thus, A is separable and, as it is bounded, Ā is compact in the

Euclidean topology. Note that Ā = Q̄× [−z, z]n, where Q̄ is the closure of Q.

We assume an interdependent-value environment with quasilinear preferences. Specifi-

cally, we assume that there is a valuation function vi : ℜ ×Θ → ℜ such that ui
(

(q, τ), θ
)

=

vi(qi, θ)− τi, for all (q, τ) ∈ Ā and θ ∈ Θ. We further assume that vi(qi, θ) is differentiable

in qi, for all θ ∈ Θ and i ∈ I. Due to the presence of monetary transfers, the environment

satisfies no-complete-indifference.

We therefore have the following corollary:

Corollary 6.1. [Quasilinear Environments] The SCF f is RoRat-implementable if and

only if f satisfies semi-strict EPIC and the preference-reversal condition.

We now present some prominent examples where we can apply the above result to deter-

mine RoRat-implementable SCFs:

Bilateral trading: There are a buyer (b) and seller (s) of an indivisible good. Let X =

{0, 1}. Let Q = {q ∈ X2 : qb + qs = 1} be the set of feasible allocations. The interpretation
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is that if (qb, qs) = (1, 0), then the good is traded whereas if (qb, qs) = (0, 1), then the good is

not traded. The buyer’s value and the seller’s cost in the payoff state θ are, respectively, v(θ)

and c(θ). Let vb(qb, θ) = v(θ)qb and vs(qs, θ) = c(θ)(qs − 1). Then, if the alternative (q, τ) is

implemented in the payoff state θ, the buyer receives a utility of vb(qb, θ)− τb = v(θ)qb − τb

and the seller receives a utility of vs(qs, θ)− τs = c(θ)(qs − 1)− τs. ⋄

Auction: There are n ≥ 2 agents who want to obtain an indivisible good from an auctioneer.

Let X = {0, 1}. Let Q = {q ∈ Xn :
∑

i∈I qi ≤ 1} be the set of feasible allocations. The

interpretation is that if q ∈ Q is such that qi = 1 and qj = 0, for all j 6= i, then the good

is allocated to agent i; whereas if qi = 0, for all i ∈ I, then the good is retained by the

auctioneer. Each agent i’s value for the good is given by vi(θ) in the payoff state θ. Let

vi(qi, θ) = vi(θ)qi, for all i ∈ I. Then, if the alternative (q, τ) is implemented in the payoff

state θ, agent i receives a utility of vi(qi, θ)− τi = vi(θ)qi − τi. ⋄

Social decision: There are n ≥ 2 agents who face a social decision. The cost of imple-

menting the social decision is c(θ) in the payoff state θ. Let X = {0, 1}. Let Q = {q ∈
Xn : qi = qj , ∀i 6= j} be the set of feasible allocations. The interpretation is that if q ∈ Q

is such that qi = 1 for all i ∈ I, then the social decision is implemented; whereas if qi = 0,

for all i ∈ I, then the social decision is not implemented. Each agent i obtains a value of

vi(θ), if the social decision is implemented, and zero, otherwise, in the payoff state θ. Let

vi(qi, θ) = vi(θ)qi, for all i ∈ I. Then, if the alternative (q, τ) is implemented in the payoff

state θ, agent i receives a utility of vi(qi, θ)− τi = vi(θ)qi − τi. ⋄

Allocation of a private good: There are n ≥ 2. A total of x units of a divisible private

good is available, where x > 0 is a rational number. Each agent can be allocated any

quantity in X = [0, x]∩Q. In this case, let Q = {q ∈ Xn :
∑

i∈I qi = x} be the set of feasible

allocations. Each agent i’s value for qi ∈ ℜ+ units of the private good is given by vi(qi, θ) in

the payoff state θ. Then, if the alternative (q, τ) is implemented in the payoff state θ, agent

i receives a utility of vi(qi, θ)− τi. ⋄

Public good’s provision: There are n ≥ 2. A public good can be provided in any quantity

in X = [0, x] ∩ Q, where x > 0 is a rational number. The cost of providing x̂ units of the

public good is c(x̂, θ) in the payoff state θ. In this case, let Q = {q ∈ Xn : qi = qj , ∀i 6= j}
be the set of feasible allocations. Each agent i’s value for qi ∈ ℜ+ units of the public good is

given by vi(qi, θ) in the payoff state θ. Then, if the alternative (q, τ) is implemented in the

payoff state θ, agent i receives a utility of vi(qi, θ)− τi. ⋄
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6.1 Sign-Preserving Property

For any ℓ ∈ ∆(Ā), let
(

qℓ, τ ℓ
)

denote the expected value of ℓ. Thus, for all i ∈ I, qℓi is the

expected allocation and τ ℓi is the expected monetary transfer of agent i as per the probability

measure ℓ.

Given the SCF f , for all i ∈ I and θ, θ
′ ∈ Θ, define

wi(θ
′

, θ) ≡ ∂vi
(

q
f(θ

′

)
i , θ

)

∂qi
.

Intuitively, wi(θ
′

, θ) is agent i’s marginal valuation at her expected allocation when all agents

report their payoff types as θ
′

in the payoff state θ.

The following property plays an important role in what follows:

Definition 6.2. The SCF f satisfies the sign-preserving property if, for all unacceptable

deceptions β, there exist i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all

θ̃i ∼f
i θ

′

i

sign
(

wi
(

(θ̃i, θ
′

−i), (θi, θ
′

−i)
)

− wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

)

= sign
(

wi
(

(θ̃i, θ
′

−i), (θi, θ−i)
)

− wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

)

6= 0, (2)

for all θ−i ∈ Θ−i and θ
′

−i ∈ β−i(θ−i).

To understand (2), suppose all agents report their payoff types as (θ̃i, θ
′

−i) when the

true payoff state is (θi, θ−i). At the implemented outcome, f(θ̃i, θ
′

−i), agent i’s marginal

valuation at her expected allocation is wi
(

(θ̃i, θ
′

−i), (θi, θ−i)
)

. If, instead, the reported payoff

types were truthful, then agent i’s marginal valuation at her expected allocation would be

wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

. Thus, wi
(

(θ̃i, θ
′

−i), (θi, θ−i)
)

− wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

is the impact on

agent i’s marginal valuation at her expected allocation when all agents jointly lie in their

reports. This effect can be decomposed as

(

wi
(

(θ̃i, θ
′

−i), (θi, θ−i)
)

−wi
(

(θ̃i, θ
′

−i), (θi, θ
′

−i)
)

)

+
(

wi
(

(θ̃i, θ
′

−i), (θi, θ
′

−i)
)

−wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

)

.

The second term is the impact on agent i’s marginal valuation at her expected allocation if

she is the sole liar. The first term is the additional impact on agent i’s marginal valuation

at her expected allocation because other agents are lying too. Equation (2) says that either

these two effects are in the same direction (positive or negative) or the impact stemming

from the agent’s lie dominates the additional impact stemming from the other agents’ lies.
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6.2 Risk-Neutral Preferences

We say that the agents are risk neutral if all agents are risk neutral in all payoff states. In

this case, vi(qi, θ) is linear in qi, and hence, it can be expressed as vi(θ)qi+κi(θ). Notice that

the agents are risk neutral in the bilateral trading, auction, and social decision examples.

If the agents are risk neutral, we have ∂vi(qi, θ)/∂qi = vi(θ), for all θ ∈ Θ and i ∈ I.

Therefore, the following equivalence is obvious (proof is omitted):

Lemma 6.3. Suppose the agents are risk neutral. The SCF f satisfies the sign-preserving

property if and only if, for all unacceptable deceptions β, there exist i ∈ I, θi ∈ Θi, and

θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all θ̃i ∼f

i θ
′

i

sign
(

vi(θi, θ
′

−i)− vi(θ̃i, θ
′

−i)
)

= sign
(

vi(θi, θ−i)− vi(θ̃i, θ
′

−i)
)

6= 0, (3)

for all θ−i ∈ Θ−i and θ
′

−i ∈ β−i(θ−i).

Remark 6.4. If the function vi(θi, θ−i) is strictly increasing in θi, for all i ∈ I, and the SCF

f is responsive, then the sign-preserving property is equivalent to the contraction property

of BM (2009a). We are not making either of those assumptions here. ⋄

We say that the SCF f has interior transfers if τ
f(θ)
i ∈ (−z, z), for all θ ∈ Θ and i ∈ I.

The next result shows that, when the agents are risk neutral, the sign-preserving property is

necessary and, if the SCF satisfies semi-strict EPIC and has interior transfers, also sufficient

for the preference-reversal condition.

Lemma 6.5. Suppose the agents are risk neutral. If the SCF f satisfies the preference-

reversal condition, then f satisfies the sign-preserving property. The converse is true if f

satisfies semi-strict EPIC and has interior transfers.

We thus have the following corollary: When the agents are risk neutral, semi-strict

EPIC and the sign-preserving property characterize RoRat-implementable SCFs with interior

transfers.

Corollary 6.6. Suppose the agents are risk neutral and the SCF f has interior transfers.

Then, f is RoRat-implementable if and only if f satisfies semi-strict EPIC and the sign-

preserving property.

6.3 Deterministic SCFs

For each i ∈ I, define the projection ρi : Q̄ → [0, x] such that ρi(q) = qi, for all q ∈ Q̄.

We say that Q̄ is rich if ρi(Q̄) has a nonempty interior, for all i ∈ I. Notice that Q̄ is
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rich in the allocation of a private good and public good’s provision examples; in both cases,

ρi(Q̄) = [0, x], for all i ∈ I.

When Q̄ is rich, we say that the SCF f has interior allocations if q
f(θ)
i is an interior point

of ρi(Q̄), for all θ ∈ Θ and i ∈ I. The SCF f is in the interior if f has interior allocations

and interior transfers.

The next result shows that, when Q̄ is rich and the SCF is deterministic and interior,

the sign-preserving property is sufficient for the preference-reversal condition regardless of

the agents’ risk attitudes.

Lemma 6.7. Suppose Q̄ is rich and the SCF f is deterministic and interior. If f satisfies

the sign-preserving property, then it satisfies the preference-reversal condition.

We thus have the following corollary:

Corollary 6.8. Suppose Q̄ is rich and the SCF f is deterministic and interior. If f satisfies

semi-strict EPIC and the sign-preserving property, then f is RoRat-implementable.

7 Comparison with Robust Implementation in Interim

Equilibria

We have assumed the solution concept of (interim correlated) rationaliable strategies, which

characterizes behavior consistent with common certainty of rationality and the type space.

On any given type space, interim equilibrium is a stronger solution concept than ratio-

nalizability. Unlike rationalizability, interim equilibrium assumes that players have correct

beliefs about each other’s behavior. In this section, we compare our results with that of

robust implementation in interim equilibrium (RoEq-implementation).

Consider a type space T and a mechanism Γ = ((Mi)i∈I , g). The resulting incomplete

information game is denoted by (T ,Γ). A strategy for individual i in this game is a mapping

σi : Ti → ∆(Mi). A strategy profile σ = (σ1, . . . , σn) is an interim equilibrium of the game

(T ,Γ) if, for all i ∈ I, ti ∈ Ti, and mi ∈Mi with σi(ti)[mi] > 0, we have

∑

t−i∈T−i

π̂i(ti)[t−i]
∑

m−i∈M−i

σ−i(t−i)[m−i]ui
(

g(mi, m−i), θ̂(ti, t−i)
)

≥
∑

t−i∈T−i

π̂i(ti)[t−i]
∑

m−i∈M−i

σ−i(t−i)[m−i]ui
(

g(m
′

i, m−i), θ̂(ti, t−i)
)

, ∀m′

i ∈Mi.

We then have the following notion of interim implementation:

26



Definition 7.1. A mechanism Γ = ((Mi)i∈I , g) interim implements the SCF f on the type

space T if (i) (nonemptiness) the game (T ,Γ) has an interim equilibrium and (ii) (uniqueness)

for every interim equilibrium σ of the game (T ,Γ), if σ(t)[m] > 0, then g(m) = f(θ̂(t)).

Robust implementation in interim equilibria is defined as interim implementation over

“all type spaces”.

Definition 7.2. A mechanism Γ robustly implements the SCF f in interim equilibria (or,

RoEq-implements the SCF f) if, for all type spaces T , the mechanism Γ interim implements

f on T . The SCF f is robustly implementable in interim equilibria (or, RoEq-implementable)

if there exists a mechanism that RoEq-implements f .

Battigalli and Siniscalchi (2003) show that belief-free rationalizablity is equivalent to the

union of interim equilibria on all type spaces. Recall that belief-free rationalizability also

characterizes rationalizable strategies on all type spaces (see Lemma 3.1). Thus, if every

equilibrium outcome on every type space agrees with the SCF, then so will every rational-

izable outcome on every type space, and vice versa. Hence, it might seem that asking for

robustness (with respect to the type space) makes the difference between rationalizability

and equilibrium moot in the context of implementation theory. However, that intuition over-

looks the second condition that must be satisfied in order to achieve robust implementation,

viz., the theory of behavior (be it rationalizability or equilibrium) must make a nonempty

prediction on every type space. That is, irrespective of their beliefs and higher-order beliefs,

players must be able to act in accordance with the theory. Due to the greater permissiveness

of rationalizability on every type space, the nonemptiness requirement is a priori weaker in

RoRat-implementation than in RoEq-implementation. In fact, it is strictly weaker, as we

argue below.

To build the argument, it is important to recall the main results from BM (2011). BM

(2011) analyze RoEq-implementation by connecting it with “rationalizable implementation”,

which is another implementation notion based on belief-free rationalizability.

Definition 7.3. Amechanism Γ = ((Mi)i∈I , g) rationalizably implements (or, Rat-implements)

the SCF f if

1. (uniqueness) m ∈ S∞(θ) ⇒ g(m) = f(θ); and

2. (nonemptiness) For each i ∈ I and z1i ∈ Z1
i , there exists a belief ψi ∈ ∆(Θ−i ×M−i)

such that:

(a) arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θi, θ−i)
)

6= ∅, for all θi ∈ Θi.
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(b) ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ−i).

(c) margΘ−i
ψi = z1i .

The SCF f is Rat-implementable if there exists a mechanism that Rat-implements f .

Remark 7.4. wRat-implementation and Rat-implementation have the same uniqueness re-

quirement. But the nonemptiness requirement in Rat-implementation is stronger than that

in wRat-implementation. Notice the change in the order of quantifiers: “for all θi” comes

after “there exists a belief ψi” in the definition of Rat-implementation. Thus, if an SCF

is Rat-implementable, then it is wRat-implementable (or RoRat-implementable). But the

converse is not true, as discussed below. ⋄

BM (2011, Theorem 3) prove that if a mechanism RoEq-implements an SCF, then the

same mechanism also Rat-implements the SCF; and the converse is true if the mechanism

satisfies the “ex post best response property”, which guarantees the nonemptiness of interim

equilibria in all type spaces (see Section 9.5).11

BM (2011, Theorem 1) identify “strict robust monotonicity” as a necessary condition for

Rat-implementation (and hence, for RoEq-implementation too). We present an equivalent

definition below.

Definition 7.5. We say that an unacceptable deception β is strictly refutable if there exist

i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all ψi ∈ ∆(Θ−i × Θ−i)

satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), there exists y ∈ ⋂θ̃i∈Θi
Yi[θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

11 Recently, Jain et al. (2023) define the appropriate strengthening of the nonemptiness requirement in
Rat-implementation, which results in yet another implementation notion based on belief-free rationalizability
– “s-rationalizable implementation” – that they show is equivalent to RoEq-implementation. Using this
equivalence, they provide examples to show that if a mechanism Rat-implements an SCF, then the same

mechanism need not RoEq-implement the SCF. (By BM (2011, Theorem 3), that mechanism must fail the
ex post best response property.) Jain et al. (2023) also differentiate between RoEq-implementation (in
which the existence requirement can be satisfied by either a pure- or -mixed strategy equilibrium on all type
spaces) and RoEq-implementation in pure-strategy equilibra (in which a pure-strategy equilibrium must exist
on all type spaces). They first argue that RoEq-implementation in pure-strategy equilibria is equivalent to
“wr-implementation”, which too is based on belief-free rationalizability and was first introduced by Müller
(2020) in the context of dynamic mechanisms. Then they provide an example to show that if a mechanism
RoEq-implements an SCF, then the same mechanism need not RoEq-implement the SCF in pure-strategy
equilibria. However, Jain et al. (2023) do not characterize RoEq-implementable SCFs (in pure-strategy
equilibria or otherwise). They also do not answer the question whether RoEq-implementation is strictly
stronger (in terms of the set of implementable SCFs) than Rat-implementation when there are three or
more individuals. (For the case of two individuals, Jain et al. (2023, Corollary 1) show that the set of
Rat-implementable and RoEq-implementable SCFs are equal.) We settle these questions in environments
satisfying no-complete-indifference; see Theorem 7.9 and Footnote 12.
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Definition 7.6. The SCF f satisfies strict robust monotonicity (strict RM) if every unac-

ceptable deception β is strictly refutable.

Remark 7.7. Strict RM implies weak RM since the former imposes a stronger refutability

requirement on every unacceptable deception, i.e., if an unacceptable deception β is strictly

refutable, then it is weakly refutable. This is because strict refutability requires us to find

a y in
⋂

θ̃i∈Θi
Yi[θ̃i] whereas for weak refutability, we are allowed to find a y in Yi[θ̃i] that

depends on θ̃i. BM (2011) also define “robust monotonicity”, which, if taken at face value,

seems weaker than strict RM. However, it can be shown that robust monotonicity and strict

RM are in fact equivalent conditions. ⋄

BM (2011, Theorem 2 and Corollary 1) show that strict RM and “conditional no to-

tal indifference” are sufficient for both RoEq-implementation and Rat-implementation. We

provide an equivalent definition of conditional no total indifference below.

Definition 7.8. The SCF f satisfies conditional no total indifference (NTI) if, for all i ∈
I, θi ∈ Θi, and ψi ∈ ∆(Θ−i ×Θ−i), there exist y, y

′ ∈ ⋂θ̃i∈Θi
Y w
i [θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′

(θ
′

−i), (θi, θ−i)
)

.

Notice that conditional NTI is a property of the SCF whereas we have assumed no-

complete-indifference, a property of the agents’ preferences. The next result closes the gap

between the necessary and sufficient conditions for RoEq-implementation as well as between

RoEq-implementation and Rat-implementation in our setting.

Theorem 7.9. The SCF f is RoEq-implementable ⇔ f is Rat-implementable ⇔ f satisfies

strict RM.

Proof. It follows from BM (2011) that the SCF f is RoEq-implementable ⇒ f is Rat-

implementable ⇒ f satisfies strict RM. We complete the argument by showing that f satisfies

strict RM ⇒ f is RoEq-implementable.

Suppose f satisfies strict RM. Then f satisfies weak RM, and hence, semi-strict EPIC

(see Lemma 5.2). The next lemma shows that if f satisfies semi-strict EPIC, then f satisfies

conditional NTI.

Lemma 7.10. If the SCF f satisfies semi-strict EPIC, then f satisfies conditional NTI.

Proof. Pick i ∈ I, θi ∈ Θi, and ψi ∈ ∆(Θ−i ×Θ−i). For all θ
′

−i ∈ Θ−i, define the lottery

ℓθ
′

−i =
1

|Θi|
∑

θ
′

i∈Θi

f(θ
′

i, θ
′

−i).
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Since individual i is relevant for the SCF f , for all θ̃i ∈ Θi, there exists θ
′

i ∈ Θi such

that θ
′

i 6∼f
i θ̃i. Then, as f satisfies semi-strict EPIC, we have ui

(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

>

ui
(

ℓθ
′

−i , (θ̃i, θ
′

−i)
)

, for all θ
′

−i ∈ Θ−i and θ̃i ∈ Θi.

Let z1i (θ−i) =
∑

θ
′

−i
ψi(θ−i, θ

′

−i), for all θ−i ∈ Θ−i. By no-complete-indifference, there exist

a, a
′

such that
∑

θ−i
z1i (θ−i)ui

(

a, (θi, θ−i)
)

>
∑

θ−i
z1i (θ−i)ui

(

a
′

, (θi, θ−i)
)

. Pick any ǫ ∈ (0, 1),

and define yǫ : Θ−i → ∆(A) and y
′ǫ : Θ−i → ∆(A) as follows: yǫ(θ

′

−i) = (1− ǫ)ℓθ
′

−i + ǫa and

y
′ǫ(θ

′

−i) = (1− ǫ)ℓθ
′

−i + ǫa
′

, for all θ
′

−i ∈ Θ−i.

As Θ is finite, we can find sufficiently small but positive ǫ such that

ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

yǫ(θ
′

−i), (θ̃i, θ
′

−i)
)

and ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

y
′ǫ(θ

′

−i), (θ̃i, θ
′

−i)
)

,

for all θ
′

−i ∈ Θ−i and θ̃i ∈ Θi.

We fix any such small but positive ǫ. Then yǫ, y
′ǫ ∈ ⋂θ̃i∈Θi

Y w
i [θ̃i] and, by construction,

∑

θ−i,θ
′

−i
ψi(θ−i, θ

′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i
ψi(θ−i, θ

′

−i)ui
(

y
′

(θ
′

−i), (θi, θ−i)
)

.

Since f satisfies strict RM and conditional NTI, it follows from BM (2011, Theorem 2

and Corollary 1) that f is RoEq-implementable.12

Thus, strict RM characterizes RoEq-implementable (or Rat-implementable) SCFs. As

remarked above, strict RM implies weak RM. Example 8.6 shows that strict RM can be

strictly stronger than weak RM. As weak RM characterizes RoRat-implementation, it fol-

lows that RoRat-implementation can be strictly weaker than RoEq-implementation (or Rat-

implementation).

The gap between RoRat- and RoEq-implementation, however, is only possible for non-

responsive SCFs in interdependent-value environments. In private-value environments, an

SCF is RoRat-implementable if and only if it is RoRat-implementable by the direct mech-

anism (see Proposition 5.5). As the direct mechanism satisfies the non-empty best re-

sponse property, it also RoEq-implements the SCF (see Proposition 9.6). Thus, RoRat-

implementation and RoEq-implementation coincide in private-value environments. The same

is true for responsive SCFs because strict RM is equivalent to weak RM in that case (see

Lemma 9.1).

Figure 1 summarizes the relationships between the different implementation notions dis-

cussed in this paper. It is worth reiterating that all these implementation notions impose

the same uniqueness requirement on the implementing mechanism; where they differ, if at

all, is in the strengths of their respective nonemptiness requirements.

12 The canonical mechanism in BM (2011) has a pure-strategy interim equilibrium on all type spaces. Thus,
the set of RoEq-implementable SCFs is the same regardless of whether we require robust implementation in
mixed- or pure-strategy equilibria.
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Figure 1: Relationships between different implementation notions.

8 Examples

This section provides three examples. The first two illustrate the significance of indirect

mechanisms and non-responsive SCFs for RoRat-implementation, respectively. The third

example shows the connections between RoRat-implementation and other notions of imple-

mentation discussed in this paper.

Example 8.1 (Significance of Indirect Mechanisms). Consider the auction setting discussed

in Section 6. Suppose there are two agents and Θi = {0, 0.5, 1}, for all i ∈ I. Furthermore,

suppose the monetary transfers are rational numbers bounded by z = 2.

Each agent i’s valuation for the object is given by vi(θi, θj) ≡ θi+γθj , where γ is a rational

number such that 3/4 ≤ γ < 1. Thus, we are in an interdependent-value environment. Notice

that the agent’s are risk neutral here.

For each θ ∈ Θ, we define the set of agents with the highest valuation for the object:

W (θ) = {i ∈ I : θi + γθ−i ≥ θ−i + γθi} .

For each i ∈ I and θ ∈ Θ, let
(

qi(θ), τ i(θ)
)

∈ A denote the alternative in which agent i

obtains the object at the price of (1+ γ)θj . Formally, qii(θ) = 1, qij(θ) = 0, τ ii (θ) = (1+ γ)θj ,

and τ ij(θ) = 0.

The ex post efficient SCF f ∗ is defined as follows for all θ ∈ Θ: If W (θ) = {i}, then f ∗(θ)

puts probability 1 on
(

qi(θ), τ i(θ)
)

whereas if W (θ) = I, then f ∗(θ) puts equal probability
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on
(

qi(θ), τ i(θ)
)

and
(

qj(θ), τ j(θ)
)

. Therefore, for each i ∈ I and θ ∈ Θ, the probability of

obtaining the object is

q
f∗(θ)
i =

{

1/|W (θ)|, if i ∈ W (θ),

0, otherwise,

and the expected monetary transfer is τ
f∗(θ)
i = (1 + γ)θjq

f∗(θ)
i .

The SCF f ∗ is responsive and satisfies EPIC but it fails semi-strict EPIC. For instance,

0.5 6∼f∗

i 1 but the payoff type 0.5 is indifferent between f ∗(0.5, 0) and f ∗(1, 0) in the payoff

state (0.5, 0). Thus, it is impossible to RoRat-implement f ∗. However, instead of f ∗, the

auctioneer can implement an SCF that is arbitrarily close to f ∗.

For each i ∈ I, let
(

q̂i(θ), τ̂ i(θ)
)

∈ A denote the alternative in which agent i obtains the

object at the price of (θi + γθj)/2. Formally, q̂ii(θ) = 1, q̂ij(θ) = 0, τ̂ ii (θ) = θi/2 + γθj , and

τ̂ ij (θ) = 0.

Consider then the ǫ-efficient allocation rule, as defined in BM (2009a, Section 7): Fix

ǫ ∈ (0, 1), and for θ ∈ Θ, define f ǫ(θ) as follows: The alternative is picked according to

f ∗(θ) with probability (1 − ǫ); for each i ∈ I, the alternative
(

q̂i(θ), τ̂ i(θ)
)

is picked with

probability ǫθi/2; and the alternative in which the good is kept by the auctioneer and each

agent’s transfer equals zero is picked with probability ǫ
∑

i∈I(1 − θi)/2. Therefore, for each

i ∈ I and θ ∈ Θ, the probability of obtaining the object is

q
fǫ(θ)
i =

ǫ

2
θi + (1− ǫ)q

f∗(θ)
i .

and the expected monetary transfer is

τ
fǫ(θ)
i =

ǫ

4
θ2i +

γε

2
θjθi + (1− ǫ)τ

f∗(θ)
i .

The SCF f ǫ is responsive and, as argued in BM (2009a, Section 7), satisfies strict EPIC.

Assuming that the payoff type space is [0, 1], for all i ∈ I, BM (2009a) show that in this

two-bidder auction environment, any responsive SCF that satisfies strict EPIC is RoRat-

implementable by the direct mechanism as long as the level of preference interdependence γ

is strictly less than 1. The same result does not hold for f ǫ when the payoff types are finite,

as proven in the claim below.

Claim 8.2. f ǫ is not RoRat-implementable by the direct mechanism.

Proof. Suppose f ǫ is RoRat-implementable by a direct mechanism Γ = ((Mi)i∈I , g). Consider

the type space such that Ti = {ti, t′i, t
′′

i }, for all i ∈ I. The payoff types of ti, t
′

i, and t
′′

i are,

respectively, 0, 0.5 and 1. Types ti, t
′

i, and t
′′

i respectively believe that the other agent is of

type t
′′

−i, t
′

−i, and t−i with probability one. Since 3/4 ≤ γ < 1, the following strategy profile
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forms an interim equilibrium on this type space: For all i ∈ I, type ti reports 1, type t
′

i

reports 0.5, and finally type t
′′

i reports 0. Thus, in particular, reporting 0 is rationalizable

for t
′′

2 whereas reporting 1 is rationalizable for t1. But then f ǫ(1, 0) is implemented when

types t1 and t
′′

2 play these rationalizable actions, contradicting RoRat-implementation.

The SCF f ǫ has interior transfers, and satisfies semi-strict EPIC and the sign-preserving

property.13 Hence, f ǫ is RoRat-implementable (see Corollary 6.6). However, the auctioneer

must consider indirect mechanisms if she wishes to RoRat implement f ǫ. ⋄

Example 8.3 (Significance of Non-responsive SCFs). Consider the social decision setting

discussed in Section 6. Suppose there are two agents and Θi = {0.1, 0.2, 0.5, 0.6, 0.9, 1}, for
all i ∈ I. Here, an agent’s payoff types are clustered, so that they could be categorized as

being “low”, i.e., θi ∈ {0.1, 0.2}, “middle”, i.e., θi ∈ {0.5, 0.6}, or “high”, i.e., θi ∈ {0.9, 1}.
Furthermore, suppose the cost of implementing the social decision c(θ) = 1, for all θ ∈ Θ,

and the monetary transfers are rational numbers bounded by z = 2.

Agent i’s valuation function is vi(θi, θj) ≡
√
θi + γθ2j , where γ = (1−

√
0.9)/(1− 0.92) ≈

0.27. (In fact, as Θ is finite, there exists an α > 0 such that the following claims are true

whenever (1 −
√
0.9)/(1 − 0.92) ≤ γ < (1 −

√
0.9)/(1 − 0.92) + α.) As γ > 0, we are in an

interdependent-value environment. Notice that the agent’s are risk neutral here.

We first claim that it is impossible to RoRat-implement a responsive SCF in this envi-

ronment.

Claim 8.4. If the SCF f is responsive, then f is not RoRat-implementable.

Proof. Suppose the SCF f is responsive. We argue that f does not satisfy the sign-preserving

property. Consider the deception β such that for all i ∈ I, we have βi(0.9) = βi(1) = {0.9, 1}
and βi(θi) = {θi}, for all θi ≤ 0.6. Now pick any i ∈ I, θi ∈ Θi and θ

′

i ∈ βi(θi) such that

θ
′

i 6= θi. Thus, either θi = 0.9 and θ
′

i = 1 or θi = 1 and θ
′

i = 0.9.

Consider the case when θi = 0.9 and θ
′

i = 1. If for agent j 6= i, we pick θj = 1 and

θ
′

j = 0.9 ∈ βj(θj), then vi(θi, θ
′

j)− vi(θ
′

i, θ
′

j) =
√
0.9− 1 < 0. However,

vi(θi, θj)− vi(θ
′

i, θ
′

j) =
√

θi + γθ2j − (
√

θ
′

i + γθ
′2
j ) = −(1−

√
0.9) + γ(1− 0.92) = 0,

where the last equality is due to the specification of γ. Likewise, if θi = 1 and θ
′

i = 0.9,

then we can pick θj = 0.9 and θ
′

j = 1 ∈ βj(0.9). Now, vi(θi, θ
′

j) − vi(θ
′

i, θ
′

j) = 1 −
√
0.9 > 0.

However, again, vi(θi, θj)− vi(θ
′

i, θ
′

j) = 0.

13Since γ < 1, the SCF f ǫ satisfies the contraction property in BM (2009a). In this example, the contrac-
tion property is equivalent to the sign-preserving property because vi(θi, θj) is strictly increasing in θi and
the SCF is responsive.
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It follows from Lemma 6.3 that f does not satisfy the sign-preserving property. As

a result, f does not satisfy the preference-reversal condition (see Lemma 6.5). Hence, f

cannot be RoRat-implemented (see Corollary 6.1).

Although we cannot implement any responsive SCF in this environment, we now show

that there exists an ǫ-efficient, non-responsive SCF that is RoRat-implementable. To simplify

the discussion, we define an SCF in its “reduced” form, i.e., in terms of the probability of

implementing the social decision x(θ) ∈ [0, 1] and the expected monetary transfers of both

agents,
(

τ1(θ), τ2(θ)
)

∈ [−2, 2]2, in each payoff state θ ∈ Θ.14

Ex post efficiency dictates that the probability of implementing the social decision in

each θ ∈ Θ must be such that

x∗(θ) =

{

1, if
∑

i∈I

√
θi (1 + γθ1.5i ) ≥ 1,

0, otherwise.

For each i ∈ I and θj ∈ Θj , where j 6= i, define ϑi(θj) ∈ [0, 1] such that

√

ϑi(θj)
(

1 + γ(ϑi(θj))
1.5
)

= 1−
√

θj
(

1 + γθ1.5j
)

.

In this example, 0.2 < ϑi(0.2) < ϑi(0.1) < 0.5 and ϑi(θj) < 0.1, for all θj ≥ 0.5. Thus,

when one agent has any of the high or middle payoff types, then it is ex post efficient to

implement the social decision regardless of the other agent’s payoff type. However, if both

agents have any of the low payoff types, then it is ex post efficient to not implement the

social decision.

Define the expected monetary transfers τ ∗ such that, for each i ∈ I and θ ∈ Θ,

τ ∗i (θ) =

{

1− γ
(

ϑi(θj)
)2 −

√

θj , if θi ≥ ϑi(θj),

0, otherwise.

We pair x∗ with τ ∗ to obtain an ex post efficient SCF f ∗. It is easy to see that, for each

i ∈ I, the SCF f ∗ is non-responsive to θi and θ
′

i if and only if either {θi, θ′

i} ⊂ {0.1, 0.2} or

{θi, θ′

i} ⊂ {0.5, 0.6, 0.9, 1}. While the SCF f ∗ satisfies EPIC, it does not satisfy semi-strict

14For any
(

x, (τ1, τ2)
)

∈ [0, 1] × [−2, 2]2, there exists a lottery ℓ ∈ ∆(A) such that, under ℓ, the social
decision is implemented with probability x and each agent i’s expected monetary transfer is equal to τi. For
each i ∈ I, let ςτi be an indicator function that takes the value 1 if τi > 0 and zero otherwise. Without
loss of generality, suppose |τ1| ≤ |τ2|. For each i ∈ I, we let si ∈ {−2, 0, 2}2 be the vector of transfers such
that if j < i, then sij = 0 whereas if j ≥ i, then sij = 2(2ςτj − 1). Then define the lottery ℓ as follows: It

assigns probability x|τ1|/2 to the alternative ((1, 1), s1); probability (1−x)|τ1|/2 to the alternative ((0, 0), s1);
probability x(|τ2| − |τ1|)/2 to the alternative ((1, 1), s2); probability (1 − x)(|τ2| − |τ1|)/2 to the alternative
((0, 0), s2); probability x(1 − |τ2|/2) to the alternative

(

(1, 1), (0, 0)
)

; and probability (1 − x)(1 − |τ2|/2) to
the alternative

(

(0, 0), (0, 0)
)

.
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EPIC. For instance, 0.1 6∼f∗

i 0.5 but the payoff type 0.1 is indifferent between f ∗(0.1, 0.5)

and f ∗(0.5, 0.5) in the payoff state (0.1, 0.5). Thus, it is impossible to RoRat-implement f ∗.

Although the planner cannot implement f ∗, there exists an ǫ-efficient non-responsive SCF

that is RoRat-implementable. Fix ǫ ∈ (0, 1) and define the probability of implementing the

social decision in state θ as

xǫ(θ) = ǫ

(

∑

i∈I

min{θi, 0.9}
2

)

+ (1− ǫ)x∗(θ).

In all states θ, the probability of implementing the social decision differs between xǫ(θ) and

x∗(θ) by at most ǫ. We pair xǫ(θ) with the expected monetary transfers τ ǫ such that

τ ǫi (θ) =
ǫ

3

(

min{θi, 0.9}
)1.5

+
γǫ

2
θ2j min{θi, 0.9}+ (1− ǫ)τ ∗i (θ),

for all θ ∈ Θ and i ∈ I, to obtain the SCF f ǫ.

The SCF f ǫ has interior transfers because τ ǫi (θ) ∈ (−2, 2), for all θ ∈ Θ and i ∈ I. Recall

that the SCF f ∗ is non-responsive to payoff types 0.9 and 1, for each i ∈ I. Therefore, by

construction, for each i ∈ I, the SCF f ǫ is non-responsive to payoff types 0.9 and 1 and

it is responsive to any other pair of payoff types. Then it is easy to check that f ǫ satisfies

semi-strict EPIC. We now claim that f ǫ satisfies the sign-preserving property.

Claim 8.5. The SCF f ǫ satisfies the sign-preserving property.

Proof. Pick any unacceptable deception β. Define the setR ≡
{

(i, θi, θ
′

i) ∈ I ×Θ2
i : θ

′

i ∈ βi(θi)
}

.

Consider, without loss of generality, any tuple (1, θ1, θ
′

1) that solves

max
(i,θi,θ

′

i)∈R
|θ2i − θ

′2
i |.

As β is unacceptable, it must be that θ1 6= θ
′

1.

First, suppose θ
′

1 ≤ 0.6. Then there does not exist any θ̃1 6= θ
′

1 such that θ̃1 ∼fǫ

1 θ
′

1.

Now, pick any θ2 ∈ Θ2 and θ
′

2 ∈ β2(θ2). It then follows that (2, θ2, θ
′

2) ∈ R. Hence,

|θ22 − θ
′2
2 | ≤ |θ21 − θ

′2
1 |. If θ1 − θ

′

1 > 0, then v1(θ1, θ
′

2)− v1(θ
′

1, θ
′

2) > 0 and

v1(θ1, θ2)− v1(θ
′

1, θ
′

2) =
√

θ1 + γθ22 −
(

√

θ
′

1 + γθ
′2
2

)

≥
√

θ1 −
√

θ
′

1 − γ(θ21 − θ
′2
1 )

= (
√

θ1 −
√

θ
′

1)

(

1− (
√
θ1 +

√

θ
′

1)(θ1 + θ
′

1)

(1 +
√
0.9)(1 + 0.9)

)
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> 0,

where the equality follows from γ = (1 −
√
0.9)/(1 − 0.92) and the strict inequality follows

because
√
θ1 +

√

θ
′

1 < 1+
√
0.9 and θ1 + θ

′

1 < 1+ 0.9 since θ
′

1 ≤ 0.6. If, instead, θ1 − θ
′

1 < 0,

then we can similarly show that v1(θ1, θ
′

2)− v1(θ
′

1, θ
′

2) < 0 and v1(θ1, θ2)− v1(θ
′

1, θ
′

2) < 0.

Second, suppose θ
′

1 ≥ 0.9 and θ1 ≤ 0.6. Then pick any θ̃1 ∼fǫ

1 θ
′

1, θ2 ∈ Θ2 and θ
′

2 ∈ β2(θ2).

It then follows that θ̃1 = 1 or 0.9 and (2, θ2, θ
′

2) ∈ R. Hence, |θ22−θ
′2
2 | ≤ |θ21−θ

′2
1 |. As θ̃1 ∼fǫ

1 θ
′

1,

we have θ1 − θ̃1 < 0. Then v1(θ1, θ
′

2)− v1(θ̃1, θ
′

2) < 0 and

v1(θ1, θ2)− v1(θ̃1, θ
′

2) =
√

θ1 + γθ22 −
(
√

θ̃1 + γθ
′2
2

)

≤
√

θ1 −
√

θ̃1 + γ|θ21 − θ
′2
1 |

=

(

√

θ
′

1 −
√

θ1

)

(

−
√

θ̃1 −
√
θ1

√

θ
′

1 −
√
θ1

+
(
√

θ
′

1 +
√
θ1)(θ

′

1 + θ1)

(1 +
√
0.9)(1 + 0.9)

)

,

where the equality follows because γ = (1−
√
0.9)/(1−0.92) and |θ21−θ

′2
1 | = (θ

′

1−θ1)(θ
′

1+θ1).

The above expression is clearly negative if θ̃1 ≥ θ
′

1, which in turn happens in one of the

following cases: θ̃1 = θ
′

1 = 0.9; θ̃1 = θ
′

1 = 1; and θ̃1 = 1 and θ
′

1 = 0.9. So, we are left with

only one possibility θ̃1 = 0.9 and θ
′

1 = 1. Even in that case, it can be shown that the above

expression is negative for all values of θ1 ≤ 0.6.

Finally, suppose θ
′

1 ≥ 0.9 and θ1 ≥ 0.9. Then θ
′

1 ∼fǫ

1 θ1. As β is unacceptable, there

must exist another tuple (i, θ̂i, θ̂
′

i) ∈ R such that θ̂
′

i 6∼fǫ

i θ̂i. Then pick any θ̃i ∼fǫ

i θ̂
′

i, θj ∈ Θj

and θ
′

j ∈ βj(θj). It then follows that (j, θj , θ
′

j) ∈ R. Hence, |θ2j − θ
′2
j | ≤ |θ21 − θ

′2
1 | = 0.19

(because θ
′

1, θ1 ≥ 0.9 and θ1 6= θ
′

1). Assume θ̂i > θ̃i. Then vi(θ̂i, θ
′

j) − vi(θ̃i, θ
′

j) > 0. Since

θ̂
′

i 6∼fǫ

i θ̂i, it follows from the transitivity of ∼fǫ

i that θ̃i 6∼fǫ θ̂i. So, the smallest possible value

of
√

θ̂i −
√

θ̃i is obtained when θ̂i = 0.6 and θ̃i = 0.5. But then

vi(θ̂i, θj)− vi(θ̃i, θ
′

j) =

√

θ̂i + γθ2j −
(
√

θ̃i + γθ
′2
j

)

≥
√
0.6−

√
0.5− γ(0.19) > 0,

where the strict inequality follows because γ = (1 −
√
0.9)/(1 − 0.92) = (1 −

√
0.9)/0.19.

Next, assume θ̂i < θ̃i. Then vi(θ̂i, θ
′

j) − vi(θ̃i, θ
′

j) < 0. Since θ̂
′

i 6∼fǫ

i θ̂i, it follows from the

transitivity of ∼fǫ

i that θ̃i 6∼fǫ θ̂i. So, the largest possible value of
√

θ̂i −
√

θ̃i is obtained

when θ̂i = 0.5 and θ̃i = 0.6. But then

vi(θ̂i, θj)− vi(θ̃i, θ
′

j) =

√

θ̂i + γθ2j −
(
√

θ̃i + γθ
′2
j

)

≤
√
0.5−

√
0.6 + γ(0.19) < 0,
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where the strict inequality follows because γ = (1−
√
0.9)/(1− 0.92) = (1−

√
0.9)/0.19.

We thus conclude that f ǫ satisfies the sign-preserving property.

It then follows from Corollary 6.6 that f ǫ is RoRat-implementable. ⋄

Example 8.6 (RoRat-implementation is strictly weaker than Rat-implementation). There

are two players i ∈ {1, 2}. Player 1 has three payoff types: Θ1 = {θ1, θ′

1, θ
′′

1} and player 2

has two payoff types: Θ2 = {θ2, θ′

2}. There are six pure alternatives: A = {a, b, c, d, z, z′}.
The following tables list the payoffs of the two players:

a θ2 θ
′

2

θ1 4, 4 4, 0

θ
′

1 0, 0 4, 1

θ
′′

1 1, 1 4, 0

b θ2 θ
′

2

θ1 0, 0 3, 3

θ
′

1 1, 1 2, 0

θ
′′

1 0, 0 2, 1

c θ2 θ
′

2

θ1 0, 0 3, 1

θ
′

1 3, 3 3, 0

θ
′′

1 3, 3 3, 0

d θ2 θ
′

2

θ1 3, 4 2, 0

θ
′

1 0, 0 3, 3

θ
′′

1 0, 0 3, 3

z θ2 θ
′

2

θ1 4, 1 2, 0

θ
′

1 2, 2 5, 0

θ
′′

1 2, 2 2, 0

z
′

θ2 θ
′

2

θ1 4, 0 4, 1

θ
′

1 2, 0 2, 2

θ
′′

1 2, 0 5, 0

It is straightforward to check that the environment satisfies no-complete-indifference.

The SCF f selects the alternative that maximizes the aggregate payoff in each payoff

state.

f θ2 θ
′

2

θ1 a b

θ
′

1 c d

θ
′′

1 c d

We first show that f fails strict RM.

Claim 8.7. The SCF f violates strict RM.

Proof. Consider the unacceptable deception β such that

β1(θ1) = {θ1, θ
′

1}, β1(θ
′

1) = {θ′

1}, β1(θ
′′

1 ) = {θ′′

1},

and

β2(θ2) = {θ2, θ
′

2}, β2(θ
′

2) = {θ′

2}.

Given this deception, there are exactly two tuples (i, θi, θ
′

i) such that θ
′

i ∈ βi(θi) and θ
′

i 6∼f
i θi:

(1, θ1, θ
′

1) and (2, θ2, θ
′

2).
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First, consider (2, θ2, θ
′

2). Fix the degenerate belief ψ2 ∈ ∆(Θ1×Θ1) such that ψ2(θ1, θ
′

1) =

1. Then, there does not exist any y ∈ ⋂θ̃2∈Θ2
Y2[θ̃2] such that

u2
(

y(θ
′

1), (θ1, θ2)
)

> u2
(

f(θ
′

1, θ
′

2), (θ1, θ2)
)

,

because f(θ
′

1, θ
′

2) = d is one of the best alternatives for player 2 in the payoff state (θ1, θ2).

Second, consider (1, θ1, θ
′

1). Fix the degenerate belief ψ1 such that ψ1(θ2, θ
′

2) = 1. If there

exists y ∈ ⋂θ̃1∈Θ1
Y1[θ̃1], then y(θ

′

2) must satisfy the following equations

u1
(

f(θ
′

1, θ
′

2), (θ
′

1, θ
′

2)
)

≥ u1
(

y(θ
′

2), (θ
′

1, θ
′

2)
)

u1
(

f(θ
′′

1 , θ
′

2), (θ
′′

1 , θ
′

2)
)

≥ u1
(

y(θ
′

2), (θ
′′

1 , θ
′

2)
)

.

These two inequalities imply that

2y(θ
′

2)[z] + y(θ
′

2)[a] ≤ y(θ
′

2)[z
′

] + y(θ
′

2)[b] and 2y(θ
′

2)[z
′

] + y(θ
′

2)[a] ≤ y(θ
′

2)[z] + y(θ
′

2)[b],

where y(θ
′

2)[x] is the probability of alternative x in the lottery y(θ
′

2). Summing these two

inequalities, we obtain y(θ
′

2)[z] + y(θ
′

2)[z
′

] + 2y(θ
′

2)[a] ≤ 2y(θ
′

2)[b]. In order to satisfy strict

RM, we must satisfy the following inequality:

u1
(

y(θ
′

2), (θ1, θ2)
)

> u1
(

f(θ
′

1, θ
′

2), (θ1, θ2)
)

.

The above inequality is translated into y(θ
′

2)[z] + y(θ
′

2)[z
′

] + y(θ
′

2)[a] > 3y(θ
′

2)[b] + 3y(θ
′

2)[c].

We then claim that this inequality is impossible to satisfy. Plugging y(θ
′

2)[z] + y(θ
′

2)[z
′

] +

2y(θ
′

2)[a] ≤ 2y(θ
′

2)[b] into y(θ
′

2)[z] + y(θ
′

2)[z
′

] + y(θ
′

2)[a] > 3y(θ
′

2)[b] + 3y(θ
′

2)[c], we obtain

−y(θ′

2)[a] > y(θ
′

2)[b] + 3y(θ
′

2)[c].

However, this inequality is impossible because y(θ
′

2)[a], y(θ
′

2)[b], and y(θ
′

2)[c] all are nonneg-

ative. We therefore conclude that the SCF f does not satisfy strict RM.

Next we argue that f satisfies weak RM.

Claim 8.8. The SCF f satisfies weak RM.

Proof. Weak RM is equivalent to semi-strict EPIC and the preference-reversal condition

(Proposition 5.7). It is straightforward to check that f satisfies semi-strict EPIC. We show

that f satisfies the preference-reversal condition.

First, we consider any unacceptable deception β such that either θ
′

1 ∈ β1(θ1) or θ
′′

1 ∈
β1(θ1). As θ

′

1 ∼f
1 θ

′′

1 , in what follows, we consider each possible case of θ̃1 ∈ {θ′

1, θ
′′

1}.
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Case 1: θ̃1 = θ
′

1.

Define y : Θ2 → ∆(A) to be such that y(θ2) = a and y(θ
′

2) = z
′

. It is straightforward to

confirm that y ∈ Y w
1 [θ

′

1]. Moreover, u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

= 4 > 3 ≥ u1
(

f(θ
′

1, θ̃
′

2), (θ1, θ̃2)
)

, for

all θ̃2 ∈ Θ2 and θ̃
′

2 ∈ β2(θ̃2).

Case 2: θ̃1 = θ
′′

1 .

Define y : Θ2 → ∆(A) to be such that y(θ2) = a and y(θ
′

2) =
1
5
c+ 4

5
z. It is straightforward

to confirm that y ∈ Y w
1 [θ

′′

1 ]. Moreover, u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

> u1
(

f(θ
′′

1 , θ̃
′

2), (θ1, θ̃2)
)

, for all

θ̃2 ∈ Θ2 and θ̃
′

2 ∈ β2(θ̃2), because

(θ̃2, θ̃
′

2) such that θ̃
′

2 ∈ β2(θ̃2)

(θ2, θ2) (θ2, θ
′

2) (θ
′

2, θ2) (θ
′

2, θ
′

2)

u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

4 16/5 4 11/5

u1
(

f(θ
′′

1 , θ̃
′

2), (θ1, θ̃2) 0 3 3 2

Second, we consider any unacceptable deception β such that θ
′

2 ∈ β2(θ2) and β1(θ1) =

{θ1}. Define y : Θ1 → ∆(A) to be such that y(θ1) = y(θ
′

1) = y(θ
′′

1 ) = z. It is straightforward

to confirm that y ∈ Y w
2 [θ

′

2]. Moreover, u2
(

y(θ̃
′

1), (θ̃1, θ2)
)

> u2
(

f(θ̃
′

1, θ
′

2), (θ̃1, θ2)
)

, for all

θ̃1 ∈ Θ1 and θ̃
′

1 ∈ β1(θ̃1), because β1(θ1) = {θ1} and

(θ̃1, θ̃
′

1) such that θ̃
′

1 ∈ β1(θ̃1)

(θ1, θ1) (θ
′

1, θ1) (θ
′

1, θ
′

1) (θ
′

1, θ
′′

1 ) (θ
′′

1 , θ1) (θ
′′

1 , θ
′

1) (θ
′′

1 , θ
′′

1 )

u2
(

y(θ̃
′

1), (θ̃1, θ2)
)

1 2 2 2 2 2 2

u2
(

f(θ̃
′

1, θ
′

2), (θ̃1, θ2)
)

0 1 0 0 0 0 0

Third, we consider any unacceptable deception β such that θ2 ∈ β2(θ
′

2) and β1(θ1) = {θ1}.
Define y : Θ1 → ∆(A) to be such that y(θ1) = y(θ

′

1) = y(θ
′′

1 ) =
1
4
b+ 3

4
z
′

. It is straightforward

to confirm that y ∈ Y w
2 [θ2]. Moreover, u2

(

y(θ̃
′

1), (θ̃1, θ
′

2)
)

> u2
(

f(θ̃
′

1, θ2), (θ̃1, θ
′

2)
)

, for all

θ̃1 ∈ Θ1 and θ̃
′

1 ∈ β1(θ̃1), because β1(θ1) = {θ1} and

(θ̃1, θ̃
′

1) such that θ̃
′

1 ∈ β1(θ̃1)

(θ1, θ1) (θ
′

1, θ1) (θ
′

1, θ
′

1) (θ
′

1, θ
′′

1 ) (θ
′′

1 , θ1) (θ
′′

1 , θ
′

1) (θ
′′

1 , θ
′′

1 )

u2
(

y(θ̃
′

1), (θ̃1, θ
′

2)
)

3/2 3/2 3/2 3/2 1/4 1/4 1/4

u2
(

f(θ̃
′

1, θ2), (θ̃1, θ
′

2)
)

0 1 0 0 0 0 0

Fourth, we consider any unacceptable deception such that β1(θ1) = {θ1}, β2(θ2) = {θ2},
and β2(θ

′

2) = {θ′

2}. Such a deception involves either θ1 ∈ β1(θ
′

1) or θ1 ∈ β1(θ
′′

1 ). Then we can
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use the fact that f satisfies semi-strict EPIC to generate the required preference reversal.

For example, suppose θ1 ∈ β1(θ
′

1) – similar argument applies to case when θ1 ∈ β1(θ
′′

1 ). Then

define y : Θ2 → ∆(A) such that y(θ2) = f(θ
′

1, θ2) = c and y(θ
′

2) = f(θ
′

1, θ
′

2) = d. It is

straightforward to confirm that y ∈ Y w
1 [θ1] and u1

(

y(θ̃
′

2), (θ
′

1, θ̃2)
)

> u1
(

f(θ1, θ̃
′

2), (θ
′

1, θ̃2)
)

,

for all θ̃2 ∈ Θ2 and θ̃
′

2 ∈ β2(θ̃2).

We thus conclude that f satisfies the preference-reversal condition.

9 Further Implications of RoRat-Implementation

9.1 Responsive SCFs

We previously argued that RoRat-implementation is strictly weaker than RoEq-implementation

(or Rat-implementation). We did so by pointing to Example 8.6, which shows that strict RM

– the characterizing condition for RoEq-implementation – is strictly stronger than weak RM –

the characterizing condition for RoRat-implementation. Notice that the SCF in Example 8.6

is non-responsive. Is there a gap between RoRat-implementation and RoEq-implementation

for the class of responsive SCFs? The answer is no because strict RM and weak RM coincide

for responsive SCFs, as we show next.

Lemma 9.1. Suppose the SCF f is responsive. Then f satisfies strict RM if and only if f

satisfies weak RM.

Proof. Suppose the SCF f is responsive. If f satisfies strict RM, then it clearly satisfies

weak RM.

Now, suppose f satisfies weak RM. Fix an unacceptable deception β. Then β is weakly

refutable. Thus, there exist i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for

all θ̃i ∈ Θi and ψi ∈ ∆(Θ−i ×Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), there exists

y ∈ Yi[θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

Pick any belief ψ̂i ∈ ∆(Θ−i × Θ−i) satisfying ψ̂i(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i). Then,

for θ
′

i, there exists y
′ ∈ Yi[θ

′

i] such that

∑

θ−i,θ
′

−i

ψ̂i(θ−i, θ
′

−i)ui
(

y
′

(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ̂i(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.
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Pick any ǫ ∈ (0, 1) and define yǫ : Θ−i → ∆(A) such that, for any θ−i ∈ Θ−i,

yǫ(θ−i) = ǫy
′

(θ−i) + (1− ǫ)f(θ
′

i, θ−i).

As f is responsive, if θ̃i 6= θ
′

i, then θ̃i 6∼f
i θ

′

i. Moreover, since f satisfies weak RM, it

satisfies semi-strict EPIC (see Lemma 5.2). Hence, if θ̃i 6= θ
′

i, then ui
(

f(θ̃i, θ−i), (θ̃i, θ−i)
)

>

ui
(

f(θ
′

i, θ−i), (θ̃i, θ−i)
)

for all θ−i. Since Θ is finite, we can find a sufficiently small ǫ such

that ui
(

f(θ̃i, θ−i), (θ̃i, θ−i)
)

> ui
(

yǫ(θ−i), (θ̃i, θ−i)
)

for all θ−i and θ̃i 6= θ
′

i. Thus, yǫ ∈ Yi[θ̃i]

for all θ̃i 6= θ
′

i. Moreover, yǫ ∈ Yi[θ
′

i] since both y
′

and f(θ
′

i, ·) are in Yi[θ
′

i]. We thus conclude

that yǫ ∈ ⋂θ̃i∈Θi
Yi[θ̃i].

Since ǫ is positive, by construction of yǫ, we have

∑

θ−i,θ
′

−i

ψ̂i(θ−i, θ
′

−i)ui
(

yǫ(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ̂i(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

Therefore, β is strictly refutable. Hence, f satisfies strict RM.

Thus, we obtain the following corollary:

Corollary 9.2. Suppose the SCF f is responsive. Then,

f is RoRat-implementable ⇔ f is Rat-implementable ⇔ f is RoEq-implementable.

9.2 Type Spaces in which the Canonical Mechanism has Interim

Equilibria

As discussed earlier, RoRat-implementation is strictly weaker than RoEq-implementation

because the nonemptiness requirement in the latter is strictly stronger than that in the for-

mer. Any mechanism, in particular the canonical mechanism used to prove Theorem 4.3,

that RoRat-implements an SCF which is not RoEq-implementable must fail the nonempti-

ness requirement for RoEq-implementation. That is, there must exist some type space in

which the set of interim equilibria of the mechanism is empty. Although one might find it

pathological that the induced game has no equilibria on some type space, notice that the

mechanism is well-behaved in terms of rationalizability. After all, rationalizable strategies

exist on all type spaces, ensuring that the players have a complete theory of how to play the

game, without invoking the strong equilibrium requirement that they have correct conjec-

tures about each other’s strategies. Furthermore, the lack of equilibria in some type space

does not preclude the existence of interim equilibria in other type spaces.
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For instance, we now establish that our canonical mechanism has nonempty interim

equilibria on all type spaces T = (Ti, θ̂i, π̂i)i∈I that are sufficiently large in the following

sense: For all i ∈ I, there exists a surjective mapping τ i : Ti → Θ such that (i) τ i(ti)i = θ̂i(ti),

for all ti ∈ Ti and i ∈ I, and (ii) for all i ∈ I, ti ∈ Ti and t−i ∈ T−i,

π̂i(ti)[t−i] > 0 ⇒ τ j(tj)i = θ̂i(ti), ∀j ∈ I\{i},

where τ j(tj)i ∈ Θi denotes the i-th coordinate of τ j(tj), for all j ∈ I. These conditions imply

that each individual i ∈ I has at least as many types in Ti as the number of payoff states

in Θ and if types ti and t
′

i have different payoff types, then the supports of their respective

beliefs, π̂i(ti) and π̂i(t
′

i), do not intersect. A prominent example of such a type space is the

complete-information type space, i.e., when individuals have complete information about the

realized payoff state.15

Suppose the SCF f satisfies weak RM, so that it is RoRat-implementable by the canonical

mechanism Γ constructed in the proof of Theorem 4.3. Pick any type space T , as defined

above. We now show that the canonical mechanism Γ has a pure-strategy interim equilibrium

in T .

For each individual i ∈ I, we pick any (m3
i , m

4
i ), where m

3
i = (m3

i [θi])θi∈Θi
such that

m3
i [θi] ∈ Y ∗

i [θi], for all θi ∈ Θi, and m4
i ∈ A. Now let σ be the strategy-profile such that

σi(ti) = (τ i(ti), 1, m
3
i , m

4
i ), for all ti ∈ Ti and i ∈ I. We argue that σ is an interim equilibrium

of the game (T ,Γ).
Pick individual i ∈ I of type ti ∈ Ti. If everyone plays the game (Γ, T ) according to

the strategy profile σ, then the outcome is given by Rule 1 and type ti ∈ Ti of individual i

expects a payoff of

∑

t−i∈T−i

π̂i(ti)[t−i]ui
(

f(τ i(ti)i, (τ
j(tj)j)j∈I\{i}), (θ̂i(ti), θ̂−i(t−i))

)

=
∑

t−i∈T−i

π̂i(ti)[t−i]ui
(

f(θ̂i(ti), θ̂−i(t−i)), (θ̂i(ti), θ̂−i(t−i))
)

,

where the equality follows because τ j(tj)j = θ̂j(tj), for all tj ∈ Tj and j ∈ I.

On the one hand, if type ti deviates to m̂i such that m̂1
i [i] = θ̃i and m̂

2
i = 1, then Rule 1 is

still triggered so that she expects the payoff of
∑

t−i∈T−i
π̂i(ti)[t−i]ui

(

f(θ̃i, θ̂−i(t−i)), (θ̂i(ti), θ̂−i(t−i))
)

,

which is not improving due to semi-strict EPIC. On the other hand, if type ti deviates to

m̂i such that m̂2
i > 1, then Rule 2 is triggered. Since π̂i(ti)[t−i] > 0 ⇒ τ j(tj)i = θ̂i(ti), ∀j ∈

15The complete-information type space is such that Ti = {tθi : θ ∈ Θ}, for all i ∈ I; θ̂i(t
θ
i ) = θi and

π̂i(t
θ
i )
[

(tθj )j∈I\{i}

]

= 1, for all tθi ∈ Ti and i ∈ I.
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I\{i}, and τ j(tj)j = θ̂j(tj), for all tj ∈ Tj and j ∈ I \ {i}, she expects the payoff of

∑

t−i∈T−i

π̂i(ti)[t−i]















(

m̂2

i

1+m̂2

i

)

ui
(

m̂3
i [θ̂i(ti)](θ̂−i(t−i)), (θ̂i(ti), θ̂−i(t−i))

)

+
(

1− m̂2

i

1+m̂2

i

)

ui
(

y
θ̂i(ti)
i (θ̂−i(t−i)), (θ̂i(ti), θ̂−i(t−i))

)















.

As m̂3
i [θ̂i(ti)] is chosen from Y ∗

i [θ̂i(ti)], type ti cannot improve her payoff by any such devi-

ation. Hence, the message σi(ti) is a best response of type ti against σ−i, which completes

the argument that σ is an interim equilibrium of the game (T ,Γ).
More generally, take any mechanism that RoRat-implements an SCF. Then, for every

type space in which the mechanism has no interim equilibrium, there exists an “expanded”

type space in which the mechanism has an interim equilibrium. This is because, by the

definition of RoRat-implementation, the set of rationalizable strategies is nonempty on every

type space. And every rationalizable strategy profile on every type space can be obtained as

a pure-strategy interim equilibrium on another type space (see Lemma 3.1 and its proof).

This new type space is basically an expansion of the original type space, where individuals

now additionally observe payoff-irrelevant signals (Bergemann and Morris (2017, Proposition

7)).

9.3 Environments violating No-Complete-Indifference

We have assumed that the environment satisfies the mild restriction of no-complete-indifference.

The following results also hold in environments that violate no-complete-indifference: The

equivalence between wRat-implementation and RoRat-implementation (Theorem 3.4); the

necessity of weak RM for RoRat-implementation in Theorem 4.3; the equivalence between

weak RM and semi-strict EPIC in private-values environments (Proposition 5.3); and the

equivalence between weak RM, on the one hand, and semi-strict EPIC and the preference-

reversal condition, on the other (Proposition 5.7).

Which condition(s) on the SCF is(are) sufficient for RoRat-implementation in environ-

ments that violate no-complete-indifference? This remains an open question. In fact, the

same question is open for RoEq-implementation too! That might seem surprising in light

of the result in BM (2011) that strict RM and conditional NTI – two conditions on the

SCF – are sufficient for RoEq-implementation. While that result ostensibly applies to all

environments, we now argue that the assumption of conditional NTI in fact implies that the

environment satisfies no-complete-indifference.

Lemma 9.3. Suppose there exists an SCF that satisfies conditional NTI. Then the environ-
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ment satisfies no-complete-indifference.

Proof. Pick any i ∈ I, θi ∈ Θi, and belief z1i ∈ Z1
i . Pick any θ

′

−i ∈ Θ−i. Then define

ψi(θ−i, θ
′

−i) = z1i (θ−i), for all θ−i ∈ Θ−i. Since θ
′

−i is fixed, by conditional NTI, there

exist lotteries ℓ, ℓ
′ ∈ ∆(A) such that

∑

θ−i
z1i (θ−i)ui(ℓ, (θi, θ−i)) >

∑

θ−i
z1i (θ−i)ui(ℓ

′

, (θi, θ−i)),

which implies no-complete-indifference.

It is worth noting though that RoRat-implementation (or RoEq-implementation) is not

feasible in arbitrary environments. Indeed, as we show next, if an SCF is RoRat-implementable

(or RoEq-implementable), then the environment must satisfy the following weakening of no-

complete-indifference.

Definition 9.4. The environment satisfies weak no-complete-indifference if, for each i ∈ I,

θi ∈ Θi, and z
1
i ∈ Z1

i , there exist y : Θ−i → ∆(A) and y
′

: Θ−i → ∆(A) such that

∑

θ−i∈Θ−i

z1i (θ−i)ui
(

y(θ−i), (θi, θ−i)
)

6=
∑

θ−i∈Θ−i

z1i (θ−i)ui
(

y
′

(θ−i), (θi, θ−i)
)

.

Lemma 9.5. If the SCF f is RoRat-implementable (or RoEq-implementable), then the en-

vironment satisfies weak no-complete-indifference.

Proof. If f is RoRat-implementable (or RoEq-implementable), then f satisfies semi-strict

EPIC. Pick any i ∈ I, θi ∈ Θi, and belief z1i ∈ Z1
i . Since all individuals are relevant for

the SCF, there exists θ
′

i 6∼f
i θi. Then, by semi-strict EPIC, we have ui

(

f(θi, θ−i), (θi, θ−i)
)

>

ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

, for all θ−i ∈ Θ−i. Let y : Θ−i → ∆(A) and y
′

: Θ−i → ∆(A)

be such that y(θ−i) = f(θi, θ−i) and y
′

(θ−i) = f(θ
′

i, θ−i), for all θ−i ∈ Θ−i. Clearly,
∑

θ−i∈Θ−i
z1i (θ−i)ui

(

y(θ−i), (θi, θ−i)
)

>
∑

θ−i∈Θ−i
z1i (θ−i)ui

(

y
′

(θ−i), (θi, θ−i)
)

.

Weak no-complete-indifference rules out indifference across payoff-type-dependent lot-

teries regardless of a player’s belief about the payoff types of the other players. In con-

trast, it is easy to see that no-complete-indifference rules out indifference across payoff-type-

independent lotteries.16 Thus, the gap between environments where our characterization

applies and those where RoRat-implementation (or RoEq-implementation) is feasible is lim-

ited to environments where some payoff type of some individual is indifferent between all

payoff-type-independent lotteries for some first-order belief but that indifference does not

extend to all payoff-type-dependent lotteries.17 Are there any interesting environments that

fall within that gap? This remains an open question.

16That is, no-complete-indifference is equivalent to the condition that for each i ∈ I, θi ∈ Θi, and z1i ∈ Z1
i ,

there exist ℓ, ℓ
′ ∈ ∆(A) such that

∑

θ−i∈Θ−i
z1i (θ−i)ui

(

ℓ, (θi, θ−i)
)

6=∑θ−i∈Θ−i
z1i (θ−i)ui

(

ℓ
′

, (θi, θ−i)
)

.
17We have assumed that all individuals are relevant for the SCF f . If only a nonempty subset of individuals

I∗ ⊆ I are relevant for the SCF f and f is RoRat-implementable (or RoEq-implementable), then the
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9.4 Nonempty Best Response Property

We say the mechanism Γ =
(

(Mi)i∈I , g
)

satisfies the nonempty best response property if best

responses exist for all beliefs, i.e., argmaxmi∈Mi
ψi(θ−i, m−i)ui

(

g(mi, m−i), (θi, θ−i)
)

6= ∅, for
all ψi ∈ ∆(Θ−i ×M−i), θi ∈ Θi and i ∈ I.

When the planner is restricted to mechanisms that satisfy the nonempty best response

property, all the implementation notions discussed in this paper coincide. (This is true

regardless of whether the environment satisfies no-complete-indifference or not.) Formally,

Proposition 9.6. Suppose the mechanism Γ =
(

(Mi)i∈I , g
)

satisfies the nonempty best

response property. Then, for any SCF f ,

Γ BfRat-implements f ⇔ Γ RoRat-implements f

⇔ Γ Rat-implements f ⇔ Γ RoEq-implements f.

Proof. We have already pointed out that the mechanism Γ RoEq-implements the SCF f ⇒
Γ Rat-implements f ⇒ Γ RoRat-implements f ⇒ Γ BfRat-implements f .

Suppose the mechanism Γ satisfies the nonempty best response property. We only need

to show that Γ BfRat-implements f ⇒ Γ RoEq-implements f . Consider any type space T .

Let σ be an interim equilibrium of the game (Γ, T ). Recall that belief-free rationalizability

characterizes interim equilibria on all type spaces (Battigalli and Siniscalchi, 2003). There-

fore, if σ(t)[m] > 0, then m ∈ S∞
(

θ̂(t)
)

. As Γ BfRat-implements f , we have g(m) = f(θ).

We are therefore left to argue that the game (Γ, T ) has an interim equilibrium. It is

sufficient to prove that Γ has an ex post equilibrium, i.e., there exists a profile (s∗i )i∈I , where

s∗i : Θi →Mi, for all i ∈ I, such that

ui
(

g(s∗(θ)), θ
)

≥ ui
(

g(mi, s
∗
−i(θ−i)), θ

)

, ∀mi ∈Mi, θ ∈ Θ, i ∈ I.

Since Γ BfRat-implements f , we have S∞
i (θi) 6= ∅, for all θi ∈ Θi and i ∈ I. Then for all

i ∈ I, define s∗i by fixing s∗i (θi) to be any message in S∞
i (θi), for all θi ∈ Θi.

Fix i ∈ I and θ ∈ Θ. By construction, s∗(θ) ∈ S∞(θ). Since Γ BfRat-implements

f , we have g(s∗(θ)) = f(θ). Now, consider the belief ψi ∈ ∆(Θ−i × M−i) such that

ψi
(

θ−i, s
∗
−i(θ−i)

)

= 1. As Γ satisfies the nonempty best response property, there exists

environment must satisfy the weak no-complete-indifference condition that applies to only i ∈ I∗. In that
case, as already mentioned in Footnote 6, all of our results can be obtained in environments that satisfy a
similar weakening of no-complete-indifference. Thus, the gap between the environments where our results
apply and those where RoRat-implementation (or RoEq-implementation) is feasible is still limited to the
gap between indifference over all payoff-type-independent lotteries vs all payoff-type-dependent lotteries but
now only for the relevant individuals.
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m
′

i ∈ argmaxmi∈Mi
ψi(θ

′

−i, m−i)ui
(

g(mi, m−i), (θi, θ
′

−i)
)

. But since ψi(θ
′

−i, m−i) > 0 ⇒ θ
′

−i =

θ−i and m−i = s∗−i(θ−i) ∈ S∞
−i(θ−i), it follows thatm

′

i ∈ S∞
i (θi). Then, g(m

′

i, s
∗
−i(θ−i)) = f(θ)

because Γ BfRat-implements f . As g(s∗(θ)) = g(m
′

i, s
∗
−i(θ−i)), it follows that s∗i (θi) ∈

argmaxmi∈Mi
ψi(θ

′

−i, m−i)ui
(

g(mi, m−i), (θi, θ
′

−i)
)

. Due to the construction of ψi, this means

that ui
(

g(s∗(θ)), θ
)

≥ ui
(

g(mi, s
∗
−i(θ−i)), θ

)

, for all mi ∈ Mi. Hence, (s∗i )i∈I is an ex post

equilibrium of Γ.

Finite mechanisms satisfy the nonempty best response property. Thus, all notions of

robust implementation discussed in this paper coincide when restricting to finite mechanisms.

BM (2011) show that an additional “robust measurability” condition is necessary for robust

implementation using finite mechanisms. Robust measurability is generally not related to

weak RM.18 It is, therefore, an additional restriction on robust implementation when using

only finite mechanisms.

In single crossing aggregator (SCA) environments, BM (2007) show that, for responsive

SCFs, robust measurability is equivalent to both the contraction property and strict RM.

BM (2011, Section 5) suggest that, in SCA environments, robust implementation can be

attained using the direct mechanism if the SCF satisfies strict EPIC and the contraction

property. However, that claim is false in discrete settings, as demonstrated in Example 8.1.

While it is in general difficult to obtain sufficient conditions for robust implementation using

finite mechanisms, BM (2009b) show that EPIC and robust measurability are sufficient for

robust virtual implementation using finite mechanisms.

In a complete-information environment with lotteries and transfers, Chen et al. (2021)

show that Maskin monotonicity*, a strengthening of Maskin monotonicity, is a necessary

and sufficient condition for implementation in rationalizable strategies by a finite mecha-

nism. They also show that Maskin monotonicity* is strictly stronger than Maskin mono-

tonicity, which is a necessary and sufficient condition for Nash implementation by a finite

mechanism in the same class of environments with transfers and lotteries (See Chen et al.,

2022). Therefore, if we restrict our attention to finite mechanisms in a complete information

setup, implementation in rationalizable strategies is more restrictive than Nash implemen-

tation. This exhibits a contrast with the equivalence between RoRat-implementation and

RoEq-implementation using finite mechanisms.

18We can show this using Examples 1 and 2 in Section 8.3 in BM (2007).
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9.5 Ex Post Best Response Property

The mechanism Γ =
(

(Mi)i∈I , g
)

satisfies the ex post best response property if for all i ∈ I

and θi ∈ Θi, there exists a message m∗
i (θi) ∈ S∞

i (θi) such that

m∗
i (θi) ∈ arg max

mi∈Mi

ui
(

g(mi, m−i), (θi, θ−i)
)

,

for all θ−i ∈ Θ−i and m−i ∈ S∞
−i(θ−i). This notion was introduced by Bergemann and Morris

(2011).

Notice that the ex post best response property is a condition imposed on the belief-free

rationalizability correspondence, S∞. Thus, unlike the nonempty best response property,

which is guaranteed to hold under natural restrictions (e.g., finite mechanisms or compact

mechanisms when utility functions are continuous), we need to first determine the belief-free

rationalizability correspondence of a mechanism in order to check whether the mechanism

satisfies the ex post best response property. To the extent that the literature has given a

reasonable amount of attention to the ex post best response property, we find it useful to

discuss its implications in robust implementation below.

In general, the ex post best response property is not related to the nonempty best response

property. But, in the context of robust implementation, nonempty best response property

implies the ex post best response property in the following sense:

Lemma 9.7. Suppose the mechanism Γ =
(

(Mi)i∈I , g
)

BfRat-implements the SCF f .19 If

Γ satisfies the nonempty best response property, then it satisfies the ex post best response

property.

Proof. Since Γ BfRat-implements f and satisfies the nonempty best response property, Γ

has an ex post equilibrium (s∗i )i∈I such that s∗i (θi) ∈ S∞
i (θi), for all θi ∈ Θi and i ∈ I (as

argued in the proof of Proposition 9.6).

Fix i ∈ I and θi ∈ Θi. Since Γ satisfies the nonempty best response property, we have

argmaxmi∈Mi
ui
(

g(mi, m−i), (θi, θ−i)
)

6= ∅, for all θ−i ∈ Θ−i and m−i ∈ S∞
−i(θ−i).

For any θ−i ∈ Θ−i and m−i ∈ S∞
−i(θ−i), pick m

′

i ∈ argmaxmi∈Mi
ui
(

g(mi, m−i), (θi, θ−i)
)

.

Then, (m
′

i, m−i) ∈ S∞(θ). But we also have (s∗i (θi), m−i) ∈ S∞(θ). Then it follows

that g(s∗i (θi), m−i) = g(m
′

i, m−i) = f(θ) as Γ BfRat-implements f . So, we have s∗i (θi) ∈
argmaxmi∈Mi

ui
(

g(mi, m−i), (θi, θ−i)
)

.

The ex post property is then satisfied by setting m∗
i (θi) = s∗i (θi), for all θi ∈ Θi and

i ∈ I.

19Since BfRat-implementation is the weakest notion of implementation discussed in this paper, the lemma
holds for all the other implementation notions too.
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The converse of the above lemma is not true. For example, the canonical mechanism

in BM (2011) RoEq-implements (and hence, BfRat-implements) an SCF and satisfies the

ex post best response property but fails the nonempty best response property because it

includes an integer game.

Recall from BM (2011, Theorem 3) that if a mechanism RoEq-implements an SCF,

then the same mechanism Rat-implements the SCF; and the converse is true if the mech-

anism satisfies the ex post best response property. Thus, RoEq-implementation and Ra-

implementation coincide when the planner is restricted to mechanisms that satisfy the ex

post best response property. We now show that, in fact, all the implementation notions

discussed in this paper coincide under that restriction. (This is true regardless of whether

the environment satisfies no-complete-indifference or not.) Formally,

Proposition 9.8. Suppose the mechanism Γ =
(

(Mi)i∈I , g
)

satisfies the ex post best response

property. Then, for any SCF f ,

Γ BfRat-implements f ⇔ Γ RoRat-implements f

⇔ Γ Rat-implements f ⇔ Γ RoEq-implements f.

Proof. As in the proof of Proposition 9.6, we only need to show that if the mechanism Γ

satisfies the ex post best response property and BfRat-implements the SCF f , then Γ RoEq-

implements f . Like in that proof, the uniqueness requirement of RoEq-implementation is

satisfied because Γ BfRat-implements f and belief-free rationalizability characterizes interim

equilibria on all type spaces. Next, since Γ satisfies the ex post best response property, Γ has

an ex post equilibrium.20 Therefore, Γ has a pure-strategy interim equilibrium in all type

spaces, which completes the argument.21

10 Conclusion

We examine the implications of (interim correlated) rationalizability as the solution concept

in robust implementation. The resulting notion, RoRat-implementation, is connected but not

equivalent to implementation in belief-free rationalizability (BfRat-implementaion). Indeed,

20If Γ satisfies the ex post best response property, then it is straightforward to see that the profile (s∗i )i∈I ,
where s∗i (θi) = m∗

i (θi), for all θi ∈ Θi, forms an ex post equilibrium of Γ.
21This qualifies the main result in Jain et al. (2023). They argue that for a fixed mechanism Γ, wr-

implementation, s-implementation, and Rat-implementation are strictly nested. That is, Γ wr-implements
f ⇒ Γ s-implements f ⇒ Γ Rat-implements f but the converse of neither implication is true. But, as we
have argued, if Γ satisfies the ex post best response property, all these implementation notions coincide: Γ
wr-implements f ⇔ Γ s-implements f ⇔ Γ Rat-implements f .
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we show that RoRat-implementation is equivalent to wRat-implementation, which is stronger

than BfRat-implementation because it requires that best responses to all first-order beliefs ex-

ist. Utilizing this equivalence, we prove that weak RM characterizes RoRat-implementation

in environments satisfying the mild no-complete-indifference condition. Weak RM can be

decomposed into incentive and monotonicity-type constraints: precisely, weak RM is equiv-

alent to semi-strict EPIC and the preference-reversal condition. Interestingly, semi-strict

EPIC and the preference-reversal condition coincide in private-value environments but not

more generally.

We also clarify the relationships between different “robust” and “rationalizable” im-

plementation notions discussed in the literature. We prove that strict RM characterizes

both RoEq-implementation and Rat-implementation under our mild restriction on the en-

vironments, closing the gap not only between the necessary and sufficient conditions for

RoEq-implementation but also between RoEq-implementation and Rat-implementation in

BM (2011). Strict RM can be strictly stronger than weak RM; thus, RoEq-implementation

can be strictly stronger than RoRat-implementation. Hence, equilibrium and rationalizablity

have different implications for robust implementation when the designer is unrestricted in

the choice of mechanisms. However, when restricted to mechanisms satisfying the nonempty

best response property, the set of robustly implementable SCFs are the same regardless of

whether we adopt equilibrium, rationalizability, or belief-free rationalizability as the solution

concept. The characterization of these SCFs remains an open question for future research.

11 Appendix

In the Appendix, we provide the arguments and proofs omitted from the main body of the

paper.

11.1 BfRat-Implementation and wRat-Implementation

Recall that RoRat-implementation is equivalent to wRat-implementation (Theorem 3.4).

Although the uniqueness requirement of wRat-implementation is identical to that of BfRat-

implementation, the nonemptiness requirement for wRat-implementation is significantly

more involved than that for BfRat-implementation. In what follows, we argue by means

of an example that the nonemptiness requirement of wRat-implementation results in a sub-

stantial constraint on implementability whereas BfRat-implementation is still permissive.

Suppose that there are two agents, I = {1, 2}; three alternatives, A = {a, b, c}; agent 1’s
payoff type space, Θ1 = {θ1, θ′

1}; and agent 2’s payoff type space, Θ2 = {θ2, θ′

2}. The SCF f
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is such that:

f θ2 θ
′

2

θ1 a 1
2
b+ 1

2
c

θ
′

1 c b

The environment is one of private values with utilities as follows:

(θ1, θ2) a b c

Agent 1 4 2 3

Agent 2 2 3 4

(θ1, θ
′

2) a b c

Agent 1 4 2 3

Agent 2 0 4 2

(θ
′

1, θ2) a b c

Agent 1 2 3 4

Agent 2 2 3 4

(θ
′

1, θ
′

2) a b c

Agent 1 2 3 4

Agent 2 0 4 2

We claim that the SCF f is not wRat-implementable. The SCF f does not satisfy EPIC,

which is implied by weak RM, the key necessary condition for RoRat-implementation (See

Lemma 5.2 for this). To see the violation of EPIC, since player 1 of payoff type θ
′

1 finds c

better than b, we have

u1(f(θ
′

1, θ
′

2), θ
′

1) < u1(f(θ1, θ
′

2), θ
′

1).

Thus, f is not RoRat-implementable. By the equivalence between RoRat-implementation

and wRat-implementation, we conclude that f is not wRat-implementable.

Using the same example, however, we show that the SCF f is BfRat-implementable.

Consider the mechanism with M1 = {m−1
1 , m0

1, m
1
1, m

2
1, . . . }, M2 = {m−1

2 , m0
2, m

1
2, m

2
2, . . .},

and the outcome function g as follows:

g(m) m−1
2 m0

2 m1
2 m2

2 m3
2 · · ·

m−1
1 b c 1

3
b+ 2

3
c 1

3
b+ 2

3
c 1

3
b+ 2

3
c · · ·

m0
1

1
2
b+ 1

2
c a 1

2
a+ 1

2
c 1

3
a + 2

3
c 1

4
a+ 3

4
c · · ·

m1
1

1
2
b+ 1

2
c 1

4
b+ 3

4
c 1

3
b+ 2

3
c 1

3
b+ 2

3
c 1

3
b+ 2

3
c · · ·

m2
1

1
3
b+ 2

3
c 1

5
b+ 4

5
c 1

4
b+ 3

4
c 1

4
b+ 3

4
c 1

4
b+ 3

4
c · · ·

m3
1

1
4
b+ 3

4
c 1

6
b+ 5

6
c 1

5
b+ 4

5
c 1

5
b+ 4

5
c 1

5
b+ 4

5
c · · ·

...
...

...
...

...
...

. . .

First, consider the first step of eliminating never best responses according to bΘ, the best

response operator for payoff types.
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1. We argue that S1
1 (θ1) = {m0

1}. Pick mz
1 such that z ≥ 1. The message mz

1 is strictly

dominated by message mz+1
1 because c is better than b for payoff type θ1. Hence, m

z
1 is

never a best response to any belief. Now consider message m−1
1 . Since a is better than

c, which in turn is better than b for payoff type θ1, message m−1
1 is strictly dominated

by message m0
1. Hence, m−1

1 is never a best response to any belief. Finally, since a

is the most-preferred outcome for payoff type θ1, message m0
1 is a best response to

any belief ψ1 ∈ ∆(Θ2 ×M2) such that player 2 plays m0
2 with probability 1. Thus,

S1
1 (θ1) = {m0

1}.

2. We argue that S1
1 (θ

′

1) = {m−1
1 }. Pick mz

1 such that z ≥ 1. The message mz
1 is strictly

dominated by message mz+1
1 because c is better than b for payoff type θ

′

1. Hence, mz
1

is never a best response to any belief.

Next, consider message m0
1 and pick any belief ψ1 ∈ ∆(Θ2 ×M2). Let ψ̂1 denote the

marginal of ψ1 on M2. Then the expected payoff of payoff type θ
′

1 when she plays m0
1

and holds the belief ψ1 is

ψ̂1(m
−1
2 )(3.5) + ψ̂1(m

0
2)(2) +

∑

z
′
≥1

ψ̂1(m
z
′

2 )

(

1

z′ + 1
(2) +

z
′

z′ + 1
(4)

)

< 4.

If instead she were to play mz
1, then her expected payoff is

ψ̂1(m
−1
2 )

(

1

z + 1
(3) +

z

z + 1
(4)

)

+ ψ̂1(m
0
2)

(

1

z + 3
(3) +

z + 2

z + 3
(4)

)

(

1

z + 2
(3) +

z + 1

z + 2
(4)

)

∑

z
′≥1

ψ̂1(m
z
′

2 ).

Since the limit of the above expression as z → ∞ is equal to 4, we conclude that there

is a sufficiently high enough z such that mz
1 is a better response than m0

1 when player

1 of payoff type θ
′

1 holds the belief ψ1. Thus, m
0
1 is never a best response to any belief.

Finally, since c is the most-preferred outcome for payoff type θ
′

1, message m−1
1 is a best

response to any belief ψ1 ∈ ∆(Θ2 ×M2) such that player 2 plays m0
2 with probability

1. Thus, S1
1 (θ

′

1) = {m−1
1 }.

3. We argue that S1
2 (θ2) = {m0

2}. Pick mz
2 such that z ≥ 1 and any belief ψ2 ∈ ∆(Θ1 ×

M1). Let ψ̂2 denote the marginal of ψ2 on M1. First, suppose ψ̂2(m
0
1) = 0. Since c

is better than b for payoff type θ2, message m0
2 gives a higher expected payoff than

message mz
2. Second, suppose ψ̂2(m

0
1) > 0. Then, since c is better than a for payoff

type θ2, message mz+1
2 gives a higher expected payoff than message mz

2. Hence, m
z
2 is
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never a best response to any belief.

Next, consider message m−1
2 . For payoff type θ2, lottery 1/5a + 4/5c is better than

1/2b+1/2c and alternative c is better than b. Hence, message m−1
2 is strictly dominated

by message m4
2. So, m

−1
2 is never a best response to any belief.

Finally, since c is the most-preferred alternative for payoff type θ2, message m0
2 is a best

response to any belief ψ2 ∈ ∆(Θ1 ×M1) such that player 1 plays m−1
1 with probability

1. Thus, S1
2 (θ2) = {m0

2}.

4. We argue that S1
2 (θ

′

2) = {m−1
2 }. This is because every message m2 6= m−1

2 is strictly

dominated by m−1
2 for payoff type θ

′

2 since b is better than c, which in turn is better

than a for payoff type θ
′

2.

Since b is the most-preferred alternative for payoff type θ
′

2, m
−1
2 is a best response to

any belief ψ2 ∈ ∆(Θ1 ×M1) such that player 1 plays m−1
1 with probability 1. Thus,

S1
2 (θ

′

2) = {m−1
2 }.

Next, consider the second step of eliminating never best responses according to bΘ.

1. S2
1 (θ1) = {m0

1}. This is because if player 1’s belief is such that ψ1(θ2, m
0
2) = 1, then

indeed it is a best response for player 1 of payoff type θ1 to play m0
1.

2. S2
1 (θ

′

1) = {m−1
1 }. This is because if player 1’s belief is such that ψ1(θ2, m

0
2) = 1, then

indeed it is a best response for player 1 of payoff type θ
′

1 to play m−1
1 .

3. S2
2 (θ2) = {m0

2}. This is because if player 2’s belief is such that ψ2(θ
′

1, m
−1
1 ) = 1, then

indeed it is a best response for player 2 of payoff type θ2 to play m0
2.

4. S2
2 (θ

′

2) = {m−1
2 }. This is because if player 2’s belief is such that ψ2(θ

′

1, m
−1
1 ) = 1, then

indeed it is a best response for player 2 of payoff type θ
′

2 to play m−1
2 .

Since the first two steps of elimination coincide, we have S∞
1 (θ1) = {m0

1}, S∞
1 (θ

′

1) =

{m−1
1 }, S∞

2 (θ2) = {m0
2}, and S∞

2 (θ
′

2) = {m−1
2 }. Furthermore, if m ∈ S∞(θ̂), then the

outcome is f(θ̂), thereby completing the argument.

11.2 Omitted Proofs

Proof of Theorem 4.3.

(⇒): We first show that weak RM is necessary for RoRat-implementation.

Suppose the mechanism Γ = ((Mi)i∈I , g) RoRat-implements f . It follows from Theorem 3.4

that Γ wRat-implements f . We now argue that f must satisfy weak RM.
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Pick any i ∈ I and θ ∈ Θ. Consider the belief z1i ∈ ∆(Θ−i) that puts probability one on

θ−i. By wRat-implementability, there exists a belief ψθi ∈ ∆(Θ−i ×M−i) such that

(a) arg max
m̃i∈Mi

∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(m̃i, m̃−i), (θi, θ̃−i)
)

6= ∅.

(b) ψθi (θ̃−i, m̃−i) > 0 ⇒ m̃−i ∈ S∞
−i(θ̃−i).

(c) margΘ−i
ψθi = z1i .

If θ̃−i 6= θ−i, then ψ
θ
i (θ̃−i, m̃−i) = 0 because margΘ−i

ψθi = z1i and z1i assigns probability

one on θ−i. Therefore, for all m̃i ∈Mi,

∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(m̃i, m̃−i), (θi, θ̃−i)
)

=
∑

m̃−i∈S∞

−i(θ−i)

margM−i
ψθi (m̃−i)ui

(

g(m̃i, m̃−i), θ
)

= ui





∑

m̃−i∈S∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(m̃i, m̃−i), θ



 . (4)

Define the set of lotteries

Li(θ) =







∑

m̃−i∈S∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(m̃i, m̃−i) : m̃i ∈Mi







.

Pick any mi ∈ argmaxm̃i∈Mi

∑

θ̃−i,m̃−i
ψθi (θ̃−i, m̃−i)ui

(

g(m̃i, m̃−i), (θi, θ̃−i)
)

. Then mi ∈
S∞
i (θi) because ψ

θ
i (θ̃−i, m̃−i) > 0 implies m̃−i ∈ S∞

−i(θ̃−i). Therefore, by wRat-implementability,

∑

m̃−i∈S∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(mi, m̃−i) = f(θ).

Moreover, for all m̃i ∈Mi, we have

ui





∑

m̃−i∈S∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(mi, m̃−i), θ



 =
∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(mi, m̃−i), (θi, θ̃−i)
)

≥
∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(m̃i, m̃−i), (θi, θ̃−i)
)

= ui





∑

m̃−i∈S∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(m̃i, m̃−i), θ



 ,
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where the first and last equality follows from (4). Hence, ui
(

f(θ), θ
)

≥ ui
(

ℓ, θ
)

for all

ℓ ∈ Li(θ).

We next claim that for any ℓ ∈ Li(θ), ℓ 6= f(θ) implies ui
(

f(θ), θ
)

> ui
(

ℓ, θ
)

. Suppose not.

Then there is some ℓ ∈ Li(θ) such that ℓ 6= f(θ) but ui
(

ℓ, θ
)

≥ ui
(

f(θ), θ
)

. By construction

of Li(θ), there exists a message m̃i such that
∑

m̃−i∈S∞

−i(θ−i)
margM−i

ψθi (m̃−i)g(m̃i, m̃−i) = ℓ.

Then, as per the above arguments, ui(ℓ, θ) ≥ ui(f(θ), θ) is equivalent to

∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(m̃i, m̃−i), (θi, θ̃−i)
)

≥
∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(mi, m̃−i), (θi, θ̃−i)
)

,

for some mi ∈ argmaxm̃′

i∈Mi

∑

θ̃−i,m̃−i
ψθi (θ̃−i, m̃−i)ui

(

g(m̃
′

i, m̃−i), (θi, θ̃−i)
)

. Therefore, m̃i is

also a best response to the belief ψθi when i’s payoff type is θi. Hence, m̃i ∈ S∞
i (θi). But

g(m̃i, m̃−i) 6= f(θ) for at least one m̃−i ∈ S∞
−i(θ−i), which contradicts wRat-implementation

of f .

We are now ready to prove the theorem. Consider any deception β. Define the message

correspondence profile with payoff-type domain S = (S1, . . . ,Sn) such that

Si(θi) =
⋃

θ
′

i∈βi(θi)

S∞
i (θ

′

i).

Suppose β is not weakly refutable. Then, by definition of weak refutablility, for all i ∈ I,

θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi, there exist θ̃i and ψi ∈ ∆(Θ−i × Θ−i), which

satisfies ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), such that for all y ∈ Yi[θ̃i], we have

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

≥
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

. (5)

We first show that for any i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i ∼f
i θi, there exist

θ̃i ∈ Θi and ψi ∈ ∆(Θ−i × Θ−i) satisfying ψi(θ−i, θ−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i) such that (5)

holds for all y ∈ Yi[θ̃i].

Pick any i, θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i ∼f
i θi. We set θ̃i = θi and the belief ψi ∈

∆(Θ−i × Θ−i) such that ψi(θ̂−i, θ̂−i) = 1 for some θ̂−i ∈ Θ−i. As θ̂−i ∈ β−i(θ̂−i), the belief

ψi satisfies ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i). Since θi ∼f
i θ

′

i, we have f(θ
′

i, θ̂−i) = f(θi, θ̂−i).
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Moreover, Yi[θ̃i] = Yi[θi] because θ̃i = θi. Therefore, for all y ∈ Yi[θ̃i], we have

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

= ui
(

f(θi, θ̂−i), (θi, θ̂−i)
)

≥ ui
(

y(θ̂−i), (θi, θ̂−i)
)

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

.

Thus, if we combine the above result with the hypothesis that β is not weakly refutable,

then we can hypothesize that for all i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi), there exist θ̃i ∈ Θi and

ψi ∈ ∆(Θ−i × Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i) such that (5) holds for all

y ∈ Yi[θ̃i].

We next show that bΘ(S) ≥ S. Pick any i ∈ I, θi ∈ Θi, and m
′

i ∈ Si(θi). We now

construct a belief ψΓ
i ∈ ∆(Θ−i ×M−i) satisfying ψΓ

i (θ−i, m−i) > 0 implies m−i ∈ S−i(θ−i)

such that m
′

i is a best response for agent i of payoff type θi against ψ
Γ
i .

By definition of S, we have m
′

i ∈ S∞
i (θ

′

i) for some θ
′

i ∈ βi(θi). Then, by our hypothesis,

there exist θ̃i ∈ Θi and ψi ∈ ∆(Θ−i ×Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i) such

that (5) holds for all y ∈ Yi[θ̃i]. Define the belief ψΓ
i ∈ ∆(Θ−i ×M−i) as follows: for any

(θ−i, m−i),

ψΓ
i (θ−i, m−i) =

∑

θ
′

−i

ψi(θ−i, θ
′

−i)×margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i).

By construction, ψΓ
i (θ−i, m−i) > 0 implies that there exists θ

′

−i ∈ Θ−i such that ψi(θ−i, θ
′

−i) >

0 and margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i) > 0. But ψi(θ−i, θ
′

−i) > 0 implies θ
′

−i ∈ β−i(θ−i). Moreover,

margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i) > 0 implies m−i ∈ S∞
−i(θ

′

−i) – recall the definition of ψ
(θ̃i,θ

′

−i)

i from

the beginning of this proof. Since θ
′

−i ∈ β−i(θ−i) and m−i ∈ S∞
−i(θ

′

−i), it follows from the

definition of S that m−i ∈ S−i(θ−i).

For any mi ∈Mi, define y
mi : Θ−i → ∆(A) as follows: for all θ−i ∈ Θ−i,

ymi(θ−i) =
∑

m−i

margM−i
ψ

(θ̃i,θ−i)
i (m−i)g(mi, m−i).

By construction, ymi(θ−i) ∈ Li(θ̃i, θ−i). Therefore, if f(θ̃i, θ−i) 6= ymi(θ−i), then, as argued

earlier in the proof, we must have

ui
(

f(θ̃i, θ−i), (θ̃i, θ−i)
)

> ui
(

ymi(θ−i), (θ̃i, θ−i)
)

.
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So ymi ∈ Yi[θ̃i]. By our hypothesis, (5) holds for all y ∈ Yi[θ̃i]. Hence, for any mi ∈Mi,

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

≥
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

ymi(θ
′

−i), (θi, θ−i)
)

. (6)

We are ready to show that m
′

i is a best response for agent i of payoff type θi against ψ
Γ
i .

∑

θ−i,m−i

ψΓ
i (θ−i, m−i)ui

(

g(m
′

i, m−i), (θi, θ−i)
)

=
∑

θ−i,m−i







∑

θ
′

−i

ψi(θ−i, θ
′

−i)×margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i)ui
(

g(m
′

i, m−i), (θi, θ−i)
)







(by definition of ψΓ
i )

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

(

by weak rationalizable implementability of f because m
′

i ∈ S∞
i (θ

′

i)

and margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i) > 0 implies m−i ∈ S∞
−i(θ

′

−i)

)

≥
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

ymi(θ
′

−i), (θi, θ−i)
)

(∵ inequality (6) holds for any mi ∈Mi)

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)





∑

m−i

margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i)ui
(

g(mi, m−i), (θi, θ−i)
)





(by definition of ymi)

=
∑

θ−i,m−i

ψΓ
i (θ−i, m−i)ui

(

g(mi, m−i), (θi, θ−i)
)

(by definition of ψΓ
i ).

Since m
′

i is a best response for agent i of payoff type θi against ψ
Γ
i and ψΓ

i (θ−i, m−i) > 0

implies m−i ∈ S−i(θ−i), it follows by definition that m
′

i ∈ bΘi (S)[θi].
As bΘ(S) ≥ S, we have S ≤ S∞. For any θ ∈ Θ and θ

′ ∈ β(θ), we obtain S∞(θ
′

) 6= ∅ since
the mechanism Γ wRat-implements f . So pick any m

′ ∈ S∞(θ
′

) ⊆ S(θ) ⊆ S∞(θ). Then

g(m
′

) = f(θ
′

) and g(m
′

) = f(θ) because, once again, the mechanism Γ wRat-implements f .

Thus, f(θ
′

) = f(θ). So β is acceptable. This completes the proof of necessity.

(⇐): We use the mechanism Γ constructed in Section 4 to prove that Γ wRat-implements f ,

which implies that Γ RoRat-implements f because of Theorem 3.4. We first note two useful

technical lemmata.
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Lemma 11.1. If the SCF f satisfies weak RM, then for all i ∈ I, θi, θ̃i ∈ Θi and ψi ∈
∆(Θ−i ×Θ−i), there exists y ∈ Y ∗

i [θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yθ̃ii (θ
′

−i), (θi, θ−i)
)

.

Proof. Suppose the SCF f satisfies weak RM. By Lemma 5.2, f satisfies semi-strict EPIC.

Pick any i ∈ I, θi, θ̃i ∈ Θi and ψi ∈ ∆(Θ−i × Θ−i). By applying the same argument as in

the proof of Lemma 7.10, we can find yǫ : Θ−i → ∆(A) and y
′ǫ : Θ−i → ∆(A) such that

ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

yǫ(θ
′

−i), (θ̃i, θ
′

−i)
)

and ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

y
′ǫ(θ

′

−i), (θ̃i, θ
′

−i)
)

,

for all θ
′

−i ∈ Θ−i, and

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yǫ(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′ǫ(θ

′

−i), (θi, θ−i)
)

.

Since ∆∗(A) is a dense subset of ∆(A), for each θ
′

−i, there exists a sequence of lotteries

{ℓz(θ′

−i)}∞z=1 ∈ ∆∗(A) converging to yǫ(θ
′

−i). For each z ≥ 1, define yz : Θ−i → ∆∗(A) such

that yz(θ
′

−i) = ℓz(θ
′

−i), for all θ
′

−i. Similarly, we can define y
′z : Θ−i → ∆∗(A) such that

y
′z(θ

′

−i) converges to y
′ǫ(θ

′

−i), for all θ
′

−i. As Θ−i is finite, there exists a sufficiently large z

such that

ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

yz(θ
′

−i), (θ̃i, θ
′

−i)
)

and ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

y
′z(θ

′

−i), (θ̃i, θ
′

−i)
)

,

for all θ
′

−i, and

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yz(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′z(θ

′

−i), (θi, θ−i)
)

. (7)

The first set of inequalities imply that yz, y
′z ∈ Y ∗

i [θ̃i].

Lastly, since yθ̃ii assigns a positive weight to all y ∈ Y ∗
i [θ̃i], if

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yθ̃ii (θ
′

−i), (θi, θ−i)
)

≥
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

, ∀y ∈ Y ∗
i [θ̃i],
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then it must be that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yz(θ
′

−i), (θi, θ−i)
)

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′z(θ

′

−i), (θi, θ−i)
)

,

which contradicts (7).

Lemma 11.2. For all i ∈ I, θi ∈ Θi and z
1
i ∈ Z1

i , there exists a ∈ A such that

∑

θ−i

z1i (θ−i)ui
(

a, (θi, θ−i)
)

>
∑

θ−i

z1i (θ−i)ui
(

ᾱ, (θi, θ−i)
)

.

Proof. Pick any i ∈ I, θi ∈ Θi and z
1
i ∈ ∆(Θ−i). As ᾱ assigns a positive weight to all a ∈ A,

if
∑

θ−i

z1i (θ−i)ui
(

ᾱ, (θi, θ−i)
)

≥
∑

θ−i

z1i (θ−i)ui
(

a, (θi, θ−i)
)

, ∀a ∈ A,

then it must be that

∑

θ−i

z1i (θ−i)ui
(

a, (θi, θ−i)
)

=
∑

θ−i

z1i (θ−i)ui
(

a
′

, (θi, θ−i)
)

,

for all a, a
′ ∈ A, which contradicts no-complete-indifference..

Now, we are ready to the prove that Γ wRat-implements f . The proof consists of Steps

1 through 4.

Step 1: mi ∈ S∞
i (θi) ⇒ m2

i = 1.

Proof. Suppose by way of contradiction that mi ∈ S∞
i (θi) but m

2
i > 1. Then, mi is a best

response of individual i of payoff type θi against some conjecture ψi ∈ ∆(Θ−i ×M−i).

For each θ
′

i 6= θ∗i and θ
′

−i ∈ Θ−i, we define

M2
−i(θ

′

i, θ
′

−i) =
{

m−i : m
2
j = 1 and m1

j [i] = θ
′

i, ∀j 6= i, and (m1
j [j])j 6=i = θ

′

−i

}

.

For θ∗i and each θ
′

−i ∈ Θ−i, we define

M2
−i(θ

∗
i , θ

′

−i) =











m−i :

(m1
j [j])j 6=i = θ

′

−i and

either m2
j = 1 and m1

j [i] = θ∗i , ∀j 6= i,

or m2
j = 1, ∀j 6= i, but m1

j
′ [i] 6= m1

k[i] for some j
′

, k 6= i











.
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Also define

M3
−i =

{

m−i : there exist one or more j 6= i such that m2
j > 1

}

.

Note that
(

(M2
−i(θ̃i, θ

′

−i))θ̃i∈Θi,θ
′

−i∈Θ−i
,M3

−i

)

defines a partition of M−i. As m2
i > 1, if

m−i ∈ M2
−i(θ̃i, θ

′

−i), then Rule 2 is used under the profile (mi, m−i) whereas if m−i ∈ M3
−i,

then Rule 3 is used under the profile (mi, m−i).

For each θ̃i ∈ Θi, define

Ψ2,θ̃i
i =

∑

θ−i,θ
′′

−i

∑

m−i∈M2

−i(θ̃i,θ
′′

−i)

ψi(θ−i, m−i).

Thus, Ψ2,θ̃i
i is the probability of the event that all other individuals report a message profile

in
⋃

θ
′′

−i
M2

−i(θ̃i, θ
′′

−i).

Also, define

Ψ3
i =

∑

θ−i,m−i∈M3

−i

ψi(θ−i, m−i).

Thus, Ψ3
i is the probability of the event that all other individuals report a message profile

in M3
−i.

If θ̃i is such that Ψ2,θ̃i
i > 0, then define ψ2,θ̃i

i ∈ ∆(Θ−i×Θ−i) such that for all θ−i, θ
′

−i ∈ Θ−i,

ψ2,θ̃i
i (θ−i, θ

′

−i) =
∑

m−i∈M2

−i(θ̃i,θ
′

−i)

ψi(θ−i, m−i)

Ψ2,θ̃i
i

.

Thus, ψ2,θ̃i
i (θ−i, θ

′

−i) is the conditional probability of the event that the payoff-type profile of

all other individuals is θ−i and they report a message profile in M2
−i(θ̃i, θ

′

−i) given the event

that all other individuals report a message profile in
⋃

θ
′′

−i
M2

−i(θ̃i, θ
′′

−i).

If the payoff-type profile of all other individuals is θ−i and they report a message profile

in M2
−i(θ̃i, θ

′

−i), then when individual i of payoff type θi plays mi, she expects the outcome

to be given by the lottery

(

m2
i

1 +m2
i

)

m3
i [θ̃i]

(

θ
′

−i

)

+

(

1− m2
i

1 +m2
i

)

yθ̃ii
(

θ
′

−i

)

.

As a result, conditional on the event that all other individuals report a message profile in
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⋃

θ
′′

−i
M2

−i(θ̃i, θ
′′

−i), the expected payoff of individual i of payoff type θi when she plays mi is

(

m2
i

1 +m2
i

)

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

+

(

1− m2
i

1 +m2
i

)

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

yθ̃ii (θ
′

−i), (θi, θ−i)
)

. (8)

If Ψ3
i > 0, then define ψ3

i ∈ ∆(Θ−i) such that, for any θ−i ∈ Θ−i,

ψ3
i (θ−i) =

∑

m−i∈M3

−i

ψi(θ−i, m−i)

Ψ3
i

.

Thus, ψ3
i (θ−i) is the conditional probability of the event that the payoff-type profile of all

other individuals is θ−i and they report a message profile in M3
−i given the event that all

other individuals report a message profile in M3
−i.

If the payoff-type profile of all other individuals is θ−i and they report a message profile

m−i ∈ M3
−i, then when individual i of payoff type θi plays mi, she expects the outcome to

be given by the lottery

1

n

(

m2
i

1 +m2
i

)

m4
i +

1

n

(

1− m2
i

1 +m2
i

)

ᾱ +
∑

j 6=i

(

1

n

(

m2
j

1 +m2
j

)

m4
j +

1

n

(

1− m2
j

1 +m2
j

)

ᾱ

)

.

As a result, conditional on the event that all other individuals report a message profile in

M3
−i, the expected payoff of individual i of payoff type θi when she plays mi is

1

n

(

m2
i

1 +m2
i

)

∑

θ−i

ψ3
i (θ−i)ui

(

m4
i , (θi, θ−i)

)

+
1

n

(

1− m2
i

1 +m2
i

)

∑

θ−i

ψ3
i (θ−i)ui

(

ᾱ, (θi, θ−i)
)

+
∑

θ−i,m−i∈M3

−i

ψi(θ−i, m−i)

Ψ3
i

∑

j 6=i

(

1

n

(

m2
j

1 +m2
j

)

ui
(

m4
j , (θi, θ−i)

)

+
1

n

(

1− m2
j

1 +m2
j

)

ui
(

ᾱ, (θi, θ−i)
)

)

.

(9)

Now let individual i of payoff type θi deviate to m̂i = (m1
i , m̂

2
i , m̂

3
i , m̂

4
i ) such that

• m̂2
i = m2

i + 1.

• m̂3
i is defined as follows: for each θ̃i:
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⊲ If Ψ2,θ̃i
i > 0, then let m̂3

i [θ̃i] ∈ Y ∗
i [θ̃i] be such that

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m̂3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

≥
∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

and
∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m̂3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui(y
θ̃i
i (θ

′

−i), (θi, θ−i)
)

.

Note that such m̂3
i [θ̃i] exists because of Lemma 11.1.

⊲ If Ψ2,θ̃i
i = 0, then let m̂3

i [θ̃i] = m3
i [θ̃i].

• m̂4
i is defined as follows:

⊲ If Ψ3
i > 0, then let m̂4

i ∈ A be such that

∑

θ−i

ψ3
i (θ−i)ui

(

m̂4
i , (θi, θ−i)

)

≥
∑

θ−i

ψ3
i (θ−i)ui

(

m4
i , (θi, θ−i)

)

and
∑

θ−i

ψ3
i (θ−i)ui

(

m̂4
i , (θi, θ−i)

)

>
∑

θ−i

ψ3
i (θ−i)ui

(

ᾱ, (θi, θ−i)
)

.

Note that such m̂4
i exists because of Lemma 11.2.

⊲ If Ψ3
i = 0, then let m̂4

i = m4
i .

If Ψ2,θ̃i
i > 0, then conditional on the event that all other individuals report a message

profile in
⋃

θ
′′

−i
M2

−i(θ̃i, θ
′′

−i), the expected payoff of individual i of payoff type θi when she

plays m̂i is

(

m̂2
i

1 + m̂2
i

)

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m̂3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

+

(

1− m̂2
i

1 + m̂2
i

)

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

yθ̃ii (θ
′

−i), (θi, θ−i)
)

,

which is, by construction, greater than her expected payoff in (8) when she plays mi.

If Ψ3
i > 0, then conditional on the event that all other individuals report a message profile

in M3
−i, the expected payoff of individual i of payoff type θi when she plays m̂i is

1

n

(

m̂2
i

1 + m̂2
i

)

∑

θ−i

ψ3
i (θ−i)ui

(

m̂4
i , (θi, θ−i)

)

+
1

n

(

1− m̂2
i

1 + m̂2
i

)

∑

θ−i

ψ3
i (θ−i)ui

(

ᾱ, (θi, θ−i)
)
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+
∑

θ−i,m−i∈M3

−i

ψi(θ−i, m−i)

Ψ3
i

∑

j 6=i

(

1

n

(

m2
j

1 +m2
j

)

ui
(

m4
j , (θi, θ−i)

)

+
1

n

(

1− m2
j

1 +m2
j

)

ui
(

ᾱ, (θi, θ−i)
)

)

,

which is, by construction, greater than her expected payoff in (9) when she plays mi.

As
∑

θ̃i
Ψ2,θ̃i
i + Ψ3

i = 1 (because m2
i > 1), it follows that m̂i is a better response for

individual i of payoff type θi against ψi, a contradiction. This completes the proof of Step

1.

Step 2: For each i ∈ I and θi ∈ Θi, let

βi(θi) = {θi} ∪ {θ′

i ∈ Θi : ∃ mi ∈ S∞
i (θi) such that m1

i [i] = θ
′

i}.

Then, the deception β = (βi)i∈I is acceptable.

Proof. Suppose not, that is, β is unacceptable. Then, by weak RM, β must be weakly

refutable. That is, there exist i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for

all θ̃i ∈ Θi and ψi ∈ ∆(Θ−i ×Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), there exists

y ∈ Yi[θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

As θ
′

i 6∼f
i θi and θ

′

i ∈ βi(θi), we can find a message mi ∈ S∞
i (θi) such that m1

i [i] = θ
′

i.

Then, mi is a best response to some belief ψΓ
i ∈ ∆(Θ−i ×M−i) such that ψΓ

i (θ−i, m−i) >

0 ⇒ m−i ∈ S∞
−i(θ−i). From Step 1, it follows that ψΓ

i (θ−i, m−i) > 0 implies m2
j = 1 for all

j 6= i. We next define a partition of all those message profiles in M−i such that m2
j = 1 for

all j 6= i.

For each θ̂i 6= θ∗i and θ
′

−i ∈ Θ−i, we define

M1
−i(θ̂i, θ

′

−i) =
{

m−i : m
2
j = 1 and m1

j [i] = θ̂i, ∀j 6= i, and (m1
j [j])j 6=i = θ

′

−i

}

.

For θ∗i and each θ
′

−i ∈ Θ−i, we define

M1
−i(θ

∗
i , θ

′

−i) =











m−i :

(m1
j [j])j 6=i = θ

′

−i and

either m2
j = 1 and m1

j [i] = θ∗i , ∀j 6= i,

or m2
j = 1, ∀j 6= i, but m1

j
′ [i] 6= m1

k[i] for some j
′

, k 6= i











.
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For each θ̃i ∈ Θi, we define

Ψ1,θ̃i
i =

∑

θ−i,θ
′′

−i

∑

m−i∈M1

−i(θ̃i,θ
′′

−i)

ψΓ
i (θ−i, m−i).

Thus, Ψ1,θ̃i
i is the probability of the event that all other individuals report a message profile

in
⋃

θ
′′

−i
M1

−i(θ̃i, θ
′′

−i).

If θ̃i is such that Ψ1,θ̃i
i > 0, then define ψ1,θ̃i

i ∈ ∆(Θ−i×Θ−i) such that for all θ−i, θ
′

−i ∈ Θ−i,

ψ1,θ̃i
i (θ−i, θ

′

−i) =
∑

m−i∈M1

−i(θ̃i,θ
′

−i)

ψΓ
i (θ−i, m−i)

Ψ1,θ̃i
i

.

Thus, ψ1,θ̃i
i (θ−i, θ

′

−i) is the conditional probability of the event that the payoff-type profile of

all other individuals is θ−i and they report a message profile in M1
−i(θ̃i, θ

′

−i) given the event

that all other individuals report a message profile in
⋃

θ
′′

−i
M1

−i(θ̃i, θ
′′

−i).

If the payoff-type profile of all other individuals is θ−i and they report a message profile

inM1
−i(θ̃i, θ

′

−i), then when individual i of payoff type θi plays mi, she expects the outcome to

be f(θ
′

i, θ
′

−i). As a result, conditional on the event that all other individuals report a message

profile in
⋃

θ
′′

−i
M1

−i(θ̃i, θ
′′

−i), the expected payoff of individual i of payoff type θi when she

plays mi is

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

. (10)

Now, ψ1,θ̃i
i (θ−i, θ

′

−i) > 0 implies that ψΓ
i (θ−i, m−i) > 0 for some m−i ∈ M1

−i(θ̃i, θ
′

−i). But

ψΓ
i (θ−i, m−i) > 0 also implies that m−i ∈ S∞

−i(θ−i). Hence, due to the construction of β, we

have θ
′

−i ∈ β−i(θ−i). So, it follows from weak refutability of β that there exists y[θ̃i] ∈ Yi[θ̃i]

such that

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

y[θ̃i](θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

It is without loss of generality to assume that y[θ̃i] ∈ Y ∗
i [θ̃i]. If not, then consider

any sequence ℓz : Θ−i → ∆∗(A) ∪ {f(θ̃i, θ−i)} such that (a) if y[θ̃i](θ−i) = f(θ̃i, θ−i), then

ℓz(θ−i) = f(θ̃i, θ−i) for all z ∈ N and (b) if y[θ̃i](θ−i) 6= f(θ̃i, θ−i), then ℓ
z(θ−i) converges to

y[θ̃i](θ−i) for all θ−i ∈ Θ−i as z → ∞. As Θ−i is finite and ui(·, θ) is continuous over ∆(A),
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we can find a sufficiently large ẑ such that

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

ℓẑ(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

,

and, because y[θ̃i] ∈ Yi[θ̃i], if ℓ
ẑ(θ−i) 6= f(θ̃i, θ−i), then

ui
(

f(θ̃i, θ−i), (θ̃i, θ−i)
)

> ui
(

ℓẑ(θ−i), (θ̃i, θ−i)
)

.

The latter condition implies that ℓẑ ∈ Y ∗
i [θ̃i].

Now, let individual i of payoff type θi deviate to m̂i = (m1
i , m̂

2
i , m̂

3
i , m

4
i ) such that

• m̂2
i > 1, where the specific value is chosen later.

• m̂3
i is defined as follows: for each θ̃i ∈ Θi:

⊲ If Ψ1,θ̃i
i > 0, then let m̂3

i [θ̃i] = y[θ̃i].

⊲ If Ψ1,θ̃i
i = 0, then let m̂3

i [θ̃i] = m3
i [θ̃i].

If Ψ1,θ̃i
i > 0, then conditional on the event that all other individuals report a message

profile in
⋃

θ
′′

−i
M1

−i(θ̃i, θ
′′

−i), the expected payoff of individual i of payoff type θi when she

plays m̂i is

(

m̂2
i

1 + m̂2
i

)

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

y[θ̃i](θ
′

−i), (θi, θ−i)
)

+

(

1− m̂2
i

1 + m̂2
i

)

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

yθ̃ii (θ
′

−i), (θi, θ−i)
)

.

If m̂2
i is large enough, then the above expression is greater than her expected payoff in (10)

when she plays mi. Since Θi is finite, we can find a sufficiently large m̂2
i such that the

above statement is true for all θ̃i ∈ Θi such that Ψ1,θ̃i
i > 0. As

∑

θ̃i
Ψ1,θ̃i
i = 1 (because

ψΓ
i (θ−i, m−i) > 0 ⇒ m−i ∈ S∞

−i(θ−i) ⇒ m2
j = 1, ∀j 6= i), it follows that m̂i is a better

response for individual i of payoff type θi against ψ
Γ
i , a contradiction. This completes the

proof of Step 2.

It follows from Steps 1 and 2 that m ∈ S∞(θ) ⇒ g(m) = f(θ).

Step 3: Define the message correspondence profile with payoff-type domain S = (S1, . . . ,Sn)
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such that for all i ∈ I and θi ∈ Θi,

Si(θi) = {(m1
i , 1, m

3
i , m

4
i ) : m

1
i [i] = θi}.

Then, we have bΘ(S) ≥ S, which implies that S ≤ S∞.

Proof. Pick any i ∈ I, θi ∈ Θi, and mi ∈ Si(θi). Fix some θ−i ∈ Θ−i and pick any

m̃−i ∈ S−i(θ−i) such that m̃1
j [i] = θi and m̃1

j [j] = θj , for all j 6= i. Let the belief ψi ∈
∆(Θ−i ×M−i) be such that ψi(θ−i, m̃−i) = 1. When individual i of payoff type θi holds the

belief ψi and plays mi, then she expects the payoff of ui
(

f(θi, θ−i), (θi, θ−i)
)

. On the one

hand, if she deviates to m̂i such that m̂1
i [i] = θ

′

i and m̂
2
i = 1, then she expects the payoff of

ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

, which is not improving due to semi-strict EPIC. On the other hand,

if she deviates to m̂i such that m̂2
i > 1, then she expects the payoff of

(

m̂2
i

1 + m̂2
i

)

ui
(

m̂3
i [θi](θ−i), (θi, θ−i)

)

+

(

1− m̂2
i

1 + m̂2
i

)

ui
(

yθii (θ−i), (θi, θ−i)
)

.

As m̂3
i [θi] ∈ Y ∗

i [θi], she cannot improve by any such deviation. Hence, mi ∈ bΘi (S)[θi]. This

completes the proof of Step 3.

Step 4: Condition (2) in Theorem 3.4 is satisfied by the constructed mechanism

Proof. Pick i ∈ I, θi ∈ Θi and z
1
i ∈ Z1

i . For each θ−i ∈ Θ−i, pick some m̃−i ∈M−i such that

m̃1
j [i] = θi, m̃

1
j [j] = θj , and m̃

2
j = 1 for all j 6= i. From Step 3, it follows that m̃−i ∈ S∞

−i(θ−i).

Define the belief ψi ∈ ∆(Θ−i ×M−i) such that ψi(θ−i, m̃−i) = z1i (θ−i) for all θ−i ∈ Θ−i.

By construction, ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ−i) and margΘ−i

ψi = z1i . When

individual i of payoff type θi holds the belief ψi and plays mi = (m1
i , 1, m

3
i , m

4
i ) such that

m1
i [i] = θi, then she expects the payoff of

∑

θ−i
z1i (θ−i)ui

(

f(θi, θ−i), (θi, θ−i)
)

. On the one

hand, if she deviates to m̂i such that m̂1
i [i] = θ

′

i and m̂
2
i = 1, then she expects the payoff of

∑

θ−i
z1i (θ−i)ui

(

f(θ
′

i, θ−i), (θi, θ−i)
)

, which is not improving due to semi-strict EPIC. On the

other hand, if she deviates to m̂i such that m̂2
i > 1, then she expects the payoff of

(

m̂2
i

1 + m̂2
i

)

∑

θ−i

z1i (θ−i)ui
(

m̂3
i [θi](θ−i), (θi, θ−i)

)

+

(

1− m̂2
i

1 + m̂2
i

)

∑

θ−i

z1i (θ−i)ui
(

yθii (θ−i), (θi, θ−i)
)

.

As m̂3
i [θi] ∈ Y ∗

i [θi], she cannot improve by any such deviation. Hence,

arg max
m′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m′
i, m−i), (θi, θ−i)

)

6= ∅,

which completes the proof of Step 4.

65



Steps 1 through 4 complete the proof of sufficiency.

Proof of Proposition 5.7.

(⇐) Pick an unacceptable deception β. Then, according to the preference-reversal condition,

there exist i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all θ̃i ∼f

i θ
′

i, there

exists yθ̃i ∈ Y w
i [θ̃i] such that

ui
(

yθ̃i(θ
′

−i), (θi, θ−i)
)

> ui
(

f(θ̃i, θ
′

−i), (θi, θ−i)
)

,

for all θ−i ∈ Θ−i and θ
′

−i ∈ β−i(θ−i).

Pick any θ̃i ∈ Θi and any belief ψi ∈ ∆(Θ−i × Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈
β−i(θ−i).

We divide the rest of the argument into the following two cases.

Case 1: θ̃i 6∼f
i θ

′

i.

Trivially, θ
′

i ∼f
i θ

′

i. Thus, by the preference-reversal condition, there exists yθ′i
∈ Y w

i [θ
′

i]

such that for any θ−i ∈ Θ−i and θ
′

−i ∈ β−i(θ−i),

ui
(

yθ′
i
(θ

′

−i), (θi, θ−i)
)

> ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

. (11)

Pick any ε ∈ (0, 1). For each θ
′

−i ∈ Θ−i, we define

yε(θ
′

−i) ≡ εy
θ
′

i
(θ

′

−i) + (1− ε)f(θ
′

i, θ
′

−i).

Since θ̃i 6∼f
i θ

′

i, by semi-strict EPIC, we have that, for any θ
′

−i ∈ Θ−i,

ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

f(θ
′

i, θ
′

−i), (θ̃i, θ
′

−i)
)

.

Since Θ−i is finite, we can find ε ∈ (0, 1) small enough so that, for any θ
′

−i ∈ Θ−i,

ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

yε(θ
′

−i), (θ̃i, θ
′

−i)
)

.

This further implies that yε ∈ Yi[θ̃i]. In the rest of the argument, we fix any such small

enough ε ∈ (0, 1).

Since ε ∈ (0, 1), it follows from (11) and the definition of yε that, for any θ−i ∈ Θ−i and

θ
′

−i ∈ β−i(θ−i),

ui
(

yε(θ
′

−i), (θi, θ−i)
)

> ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.
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This further implies that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yε(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

Case 2: θ̃i ∼f
i θ

′

i.

Since θ̃i ∼f
i θ

′

i, by the preference-reversal condition, there exists yθ̃i ∈ Y w
i [θ̃i] such that,

for any θ−i ∈ Θ−i and θ
′

−i ∈ β−i(θ−i),

ui
(

yθ̃i(θ
′

−i), (θi, θ−i)
)

> ui
(

f(θ̃i, θ
′

−i), (θi, θ−i)
)

= ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

(∵ θ̃i ∼f
i θ

′

i). (12)

Pick any ε ∈ (0, 1). For each θ
′

−i ∈ Θ−i, we define

yε(θ
′

−i) ≡ εyθ̃i(θ
′

−i) + (1− ε)f(θi, θ
′

−i).

Since θ
′

i 6∼f
i θi but θ̃i ∼f

i θ
′

i, it follows from the transitivity of ∼f
i that θ̃i 6∼f

i θi. Then, by

semi-strict EPIC, we have that, for any θ
′

−i ∈ Θ−i,

ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

f(θi, θ
′

−i), (θ̃i, θ
′

−i)
)

.

Since yθ̃i ∈ Y w
i [θ̃i] and ε ∈ (0, 1), it follows from the definition of yε that, for any θ

′

−i ∈ Θ−i,

ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

yε(θ
′

−i), (θ̃i, θ
′

−i)
)

.

This implies that yε ∈ Yi[θ̃i].

Since Θ−i × Θ−i is finite, it follows from (12) and the definition of yε that we can find

ε ∈ (0, 1) large enough so that, for any θ−i ∈ Θ−i and θ
′

−i ∈ β−i(θ−i),

ui
(

yε(θ
′

−i), (θi, θ−i)
)

> ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

Fixing any such large enough ε ∈ (0, 1), the above implies that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yε(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i
)

).

After considering the two cases, we thus conclude that the SCF f satisfies weak RM.

(⇒) Suppose the SCF f satisfies weak RM. Lemma 5.2 shows that f satisfies semi-strict
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EPIC. We now argue that f satisfies the preference-reversal condition.

Pick any unacceptable deception β. Then, by weak RM, there exist i ∈ I, θi ∈ Θi, and

θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all θ̃i ∈ Θi and ψi ∈ ∆(Θ−i × Θ−i) satisfying

ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), there exists y ∈ Yi[θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

Fix θ̃i ∼f
i θ

′

i and θ
′

−i ∈ Θ−i. The set of θ−i ∈ Θ−i such that θ
′

−i ∈ β−i(θ−i) is nonempty

because θ
′

−i ∈ β−i(θ
′

−i). Pick any first-order belief z1i ∈ Z1
i satisfying z1i (θ−i) > 0 ⇒ θ

′

−i ∈
β−i(θ−i). Consider the belief ψi ∈ ∆(Θ−i×Θ−i) such that ψi(θ−i, θ̃−i) = z1i (θ−i), if θ̃−i = θ

′

−i,

and ψi(θ−i, θ̃−i) = 0, otherwise. By weak RM, there exists y
′

(θ
′

−i) ∈ ∆(A) such that

ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

y
′

(θ
′

−i), (θ̃i, θ
′

−i)
)

(13)

and

∑

θ−i

z1i (θ−i)ui
(

y
′

(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i

z1i (θ−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

=
∑

θ−i

z1i (θ−i)ui
(

f(θ̃i, θ
′

−i), (θi, θ−i)
)

, (14)

where the equality follows from the fact that θ̃i ∼f
i θ

′

i.

Consider the normal-form game with two players i and k such that the set of actions for

players i and k are equal to

M̂i =
{

ℓ ∈ ∆(Ā) : ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

≥ ui
(

ℓ, (θ̃i, θ
′

−i)
)}

,

and

M̂k = {θ−i ∈ Θ−i : θ
′

−i ∈ β−i(θ−i)},

respectively. The payoff function for player i is given by ûi(ℓ, θ−i) = ui
(

ℓ, (θi, θ−i)
)

. Finally,

the payoff function for player k is given by ûk(ℓ, θ−i) = −ûi(ℓ, θ−i). This makes it a two-

person zero-sum game.

∆(Ā) is compact in the weak∗ topology because Ā is compact. Hence, M̂i is a closed

subset of ∆(Ā), and therefore, compact in the weak∗ topology. As Θ−i is finite, M̂k is

compact in the discrete topology. In addition, the payoff functions are continuous.

It follows from (13) and (14) that the action f(θ̃i, θ
′

−i) is never a best response for player

i in the normal-form game. By applying the same arguments as in Pearce (1984, Lemma 3)
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and using the fact that the action spaces are compact and payoff functions are continuous

– which guarantees the existence of Nash equilibrium –, we can establish that the action

f(θ̃i, θ
′

−i) is strictly dominated for player i in the normal-form game. Hence, there exists a

strategy σi ∈ ∆(M̂i) of player i in the normal-form game such that

∫

M̂i

ûi(m̂i, θ−i)σi(dm̂i) > ûi
(

f(θ̃i, θ
′

−i), θ−i
)

,

for all θ−i ∈ M̂k. Observe that M̂i is clearly convex. By the linearity of the expected utility

function and convexity of M̂i, there exists m̄i ∈ M̂i such that

ûi(m̄i, θ−i) =

∫

M̂i

ûi(m̂i, θ−i)σi(dm̂i) > ûi
(

f(θ̃i, θ
′

−i), θ−i
)

, (15)

for all θ−i ∈ M̂k. As m̄i ∈ M̂i, we also have ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

≥ ui
(

m̄i, (θ̃i, θ
′

−i)
)

.

Recall Equation (13) involving y
′

(θ
′

−i). Pick any ε ∈ (0, 1), and let m̄ε
i = (1 − ε)m̄i +

εy
′

(θ
′

−i). Since Θ−i is finite, it follows from (13) and (15) that there exists ε > 0 small

enough such that

ûi(m̄
ε
i , θ−i) > ûi

(

f(θ̃i, θ
′

−i), θ−i
)

,

for all θ−i ∈ M̂k and ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

m̄ε
i , (θ̃i, θ

′

−i)
)

.

The set of probability measures with a finite support is dense in ∆(Ā). Since the utility

function is continuous, Θ−i is finite, and Ā is the closure of A, there exists m̄
′

i ∈ ∆(A) with

finite support such that

ûi(m̄
′

i, θ−i) > ûi
(

f(θ̃i, θ
′

−i), θ−i
)

,

for all θ−i ∈ M̂k and ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> ui
(

m̄
′

i, (θ̃i, θ
′

−i)
)

.

Define y(θ
′

−i) ∈ ∆(A) such that y(θ
′

−i) = m̄
′

i. Then we have ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

≥
ui
(

y(θ
′

−i), (θ̃i, θ
′

−i)
)

and

ui
(

y(θ
′

−i), (θi, θ−i)
)

> ui
(

f(θ̃i, θ
′

−i), (θi, θ−i)
)

,

for all θ−i ∈ Θ−i such that θ
′

−i ∈ β−i(θ−i).

Now let y : Θ−i → ∆(A) be such that y(θ
′

−i) is as defined above for each θ
′

−i ∈ Θ−i. Then

y ∈ Y w
i [θ̃i] and it satisfies the inequality in the preference-reversal condition.

Proof of Lemma 6.5. (⇒) Suppose the SCF f satisfies the preference-reversal condition.

We argue that f satisfies the sign-preserving property.

Pick an unacceptable deception β. Then, according to the preference-reversal condition,

there exist i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all θ̃i ∼f

i θ
′

i, there
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exists y ∈ Y w
i [θ̃i] such that

ui
(

y(θ
′

−i), (θi, θ−i)
)

> ui
(

f(θ̃i, θ
′

−i), (θi, θ−i)
)

,

for all θ−i ∈ Θ−i and θ
′

−i ∈ β−i(θ−i)

Pick any θ̃i ∼f
i θ

′

i and y ∈ Y w
i [θ̃i] that satisfies the above condition. Fix θ−i ∈ Θ−i and

θ
′

−i ∈ β−i(θ−i). Since y ∈ Y w
i [θ̃i], we have ui

(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

≥ ui
(

y(θ
′

−i), (θ̃i, θ
′

−i)
)

. Also,

since θ
′

−i ∈ β−i(θ
′

−i), the preference-reversal condition implies that

ui
(

y(θ
′

−i), (θi, θ
′

−i)
)

> ui
(

f(θ̃i, θ
′

−i), (θi, θ
′

−i)
)

and ui
(

y(θ
′

−i), (θi, θ−i)
)

> ui
(

f(θ̃i, θ
′

−i), (θi, θ−i)
)

.

Then the above three inequalities imply that

(

vi(θ̃i, θ
′

−i)−vi(θi, θ
′

−i)
)(

q
f(θ̃i,θ

′

−i)

i −qy(θ
′

−i)

i

)

> 0 and
(

vi(θ̃i, θ
′

−i)−vi(θi, θ−i)
)(

q
f(θ̃i,θ

′

−i)

i −qy(θ
′

−i)

i ) > 0.

Therefore, it must be that sign
(

vi(θi, θ
′

−i)− vi(θ̃i, θ
′

−i)
)

= sign
(

vi(θi, θ−i)− vi(θ̃i, θ
′

−i)
)

6= 0.

(⇐) Suppose the SCF f has interior transfers, and satisfies semi-strict EPIC and the

sign-preserving property. We argue that f satisfies the preference-reversal condition.

Pick an unacceptable deception β. Then, the sign-preserving property implies that there

exist i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all θ̃i ∼f

i θ
′

i

sign
(

vi(θi, θ
′

−i)− vi(θ̃i, θ
′

−i)
)

= sign
(

vi(θi, θ−i)− vi(θ̃i, θ
′

−i)
)

6= 0,

for all θ−i ∈ Θ−i and θ
′

−i ∈ β−i(θ−i).

Pick any θ̃i ∼f
i θ

′

i. Fix θ
′

−i ∈ Θ−i. Since θ
′

−i ∈ β−i(θ
′

−i), the sign-preserving property

implies that vi(θi, θ
′

−i) 6= vi(θ̃i, θ
′

−i). Suppose vi(θi, θ
′

−i) < vi(θ̃i, θ
′

−i). (The argument for the

case vi(θi, θ
′

−i) > vi(θ̃i, θ
′

−i) is similar and left to the reader.)

As θ̃i ∼f
i θ

′

i and θ
′

i 6∼f
i θi, we have θ̃i 6∼f

i θi. By semi-strict EPIC, ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

>

ui
(

f(θi, θ
′

−i), (θ̃i, θ
′

−i)
)

and ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

> ui
(

f(θ̃i, θ
′

−i), (θi, θ
′

−i)
)

. Therefore,

vi(θ̃i, θ
′

−i)
(

q
f(θ̃i,θ

′

−i)

i − q
f(θi,θ

′

−i)

i

)

> τ
f(θ̃i,θ

′

−i)

i − τ
f(θi,θ

′

−i)

i > vi(θi, θ
′

−i)
(

q
f(θ̃i,θ

′

−i)

i − q
f(θi,θ

′

−i)

i

)

.

Then, since vi(θ̃i, θ
′

−i) > vi(θi, θ
′

−i), it follows that q
f(θ̃i,θ

′

−i)

i > q
f(θi,θ

′

−i)

i .

Let

θ̂−i ∈ argmax
θ−i∈Θ−i: θ

′

−i∈β−i(θ−i)

vi(θi, θ−i).

Since vi(θi, θ
′

−i) < vi(θ̃i, θ
′

−i), by the sign-preserving property, we have vi(θi, θ̂−i) < vi(θ̃i, θ
′

−i).
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Pick any δ such that vi(θi, θ̂−i) < δ < vi(θ̃i, θ
′

−i). Since f has interior transfers, it follows

that τ
f(θ̃i,θ

′

−i)

i ∈ (−z, z). Hence, we can find a sufficiently small ǫ > 0, and define τ ǫi such

that τ ǫi ≡ τ
f(θ̃i,θ

′

−i)

i − ǫδ
(

q
f(θ̃i,θ

′

−i)

i − q
f(θi,θ

′

−i)

i

)

∈ (−z, z).
Consider the lottery ℓǫ ≡ (1 − ǫ)f(θ̃i, θ

′

−i) + ǫf(θi, θ
′

−i). Now, define the lottery y(θ
′

−i) ∈
∆(Ā) as follows: For all (q, τi, τ−i) ∈ Ā, let

y(θ
′

−i)[(q, τi, τ−i)] =

{

0, if τi 6= τ ǫi ,
∑

τ
′

i∈[−z,z]
ℓǫ
[(

q, (τ
′

i , τ−i)
)]

, if τi = τ ǫi .

By construction, we have that q
y(θ

′

−i)

i = (1− ǫ)q
f(θ̃i,θ

′

−i)

i + ǫq
f(θi,θ

′

−i)

i and τ
y(θ

′

−i)

i = τ ǫi .

Note that
(

q
f(θ̃i,θ

′

−i)

i −qy(θ
′

−i)

i

)

= ǫ
(

q
f(θ̃i,θ

′

−i)

i −qf(θi,θ
′

−i)

i

)

, which is positive because q
f(θ̃i,θ

′

−i)

i >

q
f(θi,θ

′

−i)

i . By the definition of δ and τ
y(θ

′

−i)

i , we obtain the following:

vi(θ̃i, θ
′

−i)ǫ
(

q
f(θ̃i,θ

′

−i)

i − q
f(θi,θ

′

−i)

i

)

> δǫ
(

q
f(θ̃i,θ

′

−i)

i − q
f(θi,θ

′

−i)

i

)

> vi(θi, θ̂−i)ǫ
(

q
f(θ̃i,θ

′

−i)

i − q
f(θi,θ

′

−i)

i

)

⇒ vi(θ̃i, θ
′

−i)
(

q
f(θ̃i,θ

′

−i)

i − q
y(θ

′

−i)

i

)

> τ
f(θ̃i,θ

′

−i)

i − τ
y(θ

′

−i)

i > vi(θi, θ̂−i)
(

q
f(θ̃i,θ

′

−i)

i − q
y(θ

′

−i)

i

)

.

Since the above inequalities are strict, it is without loss of generality to assume that y(θ
′

−i) ∈
∆(A).22 Then, the first inequality implies that ui

(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

≥ ui
(

y(θ
′

−i), (θ̃i, θ
′

−i)
)

.

By the very definition of θ̂−i, the second inequality implies that

τ
f(θ̃i,θ

′

−i)

i − τ
y(θ

′

−i)

i > vi(θi, θ̂−i)
(

q
f(θ̃i,θ

′

−i)

i − q
y(θ

′

−i)

i

)

≥ vi(θi, θ−i)
(

q
f(θ̃i,θ

′

−i)

i − q
y(θ

′

−i)

i

)

,

for all θ−i ∈ Θ−i such that θ
′

−i ∈ β−i(θ−i). Thus, ui
(

y(θ
′

−i), (θi, θ−i)
)

> ui
(

f(θ̃i, θ
′

−i), (θi, θ−i)
)

,

for all θ−i ∈ Θ−i such that θ
′

−i ∈ β−i(θ−i).

Let y : Θ−i → ∆(A) be such that y(θ
′

−i) is defined as above for all θ
′

−i ∈ Θ−i. Clearly,

y ∈ Y w
i [θ̃i] and it satisfies the inequality in the preference-reversal condition.

Proof of Lemma 6.7. Suppose Q̄ is rich. Let f be a deterministic and interior SCF. Pick

an unacceptable deception β. Then, the sign-preserving property implies that there exist

i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all θ̃i ∼f

i θ
′

i

sign
(

wi
(

(θ̃i, θ
′

−i), (θi, θ
′

−i)
)

− wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

)

22As the set of probability measures with finite support is dense in ∆(Ā), we can find a lottery ℓ with
a finite support that is close enough to y(θ

′

−i) such that the above two inequalities are satisfied when we

replace (q
y(θ

′

−i)

i , τ
y(θ

′

−i)

i ) by (qℓi , τ
ℓ
i ). Next, since Ā is the closure of A and ℓ has a finite support, we can

approximate the points in the support of ℓ by points in A to obtain a lottery in ∆(A) that satisfies the two
inequalities.
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= sign
(

wi
(

(θ̃i, θ
′

−i), (θi, θ−i)
)

− wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

)

6= 0,

for all θ−i ∈ Θ−i and θ
′

−i ∈ β−i(θ−i).

Pick any θ̃i ∼f
i θ

′

i. Fix θ
′

−i ∈ Θ−i. It thus follows from the sign-preserving prop-

erty that wi
(

(θ̃i, θ
′

−i), (θi, θ
′

−i)
)

6= wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

. Suppose wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

>

wi
(

(θ̃i, θ
′

−i), (θi, θ
′

−i)
)

. (The argument for the other case is similar and left to the reader.)

For any ǫ > 0, let qǫi = q
f(θ̃i,θ

′

−i)

i − ǫ. Then, by the definition of partial derivative,

lim
ǫ→0

vi
(

q
f(θ̃i,θ

′

−i)

i , (θ̃i, θ
′

−i)
)

− vi
(

qǫi , (θ̃i, θ
′

−i)
)

q
f(θ̃i,θ

′

−i)

i − qǫi

= wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

and

lim
ǫ→0

vi
(

q
f(θ̃i,θ

′

−i)

i , (θi, θ−i)
)

− vi
(

qǫi , (θi, θ−i)
)

q
f(θ̃i,θ

′

−i)

i − qǫi

= wi
(

(θ̃i, θ
′

−i), (θi, θ−i)
)

,

for all θ−i ∈ Θ−i such that θ
′

−i ∈ β−i(θ−i).

Let

θ̂−i ∈ argmax
θ−i∈Θ−i: θ

′

−i∈β−i(θ−i)

wi
(

(θ̃i, θ
′

−i), (θi, θ−i)
)

.

Since wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> wi
(

(θ̃i, θ
′

−i), (θi, θ
′

−i)
)

, by the sign-preserving property, we have

that wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> wi
(

(θ̃i, θ
′

−i), (θi, θ̂−i)
)

.

Pick any δ such that wi
(

(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

> δ > wi
(

(θ̃i, θ
′

−i), (θi, θ̂−i)
)

. Since Θ−i is

finite, by the very definition of θ̂−i, there exists ǫ∗ > 0 such that for all ǫ ∈ (0, ǫ∗), we have

vi
(

q
f(θ̃i,θ

′

−i)

i , (θ̃i, θ
′

−i)
)

− vi
(

qǫi , (θ̃i, θ
′

−i)
)

q
f(θ̃i,θ

′

−i)

i − qǫi

> δ >
vi
(

q
f(θ̃i,θ

′

−i)

i , (θi, θ−i)
)

− vi
(

qǫi , (θi, θ−i)
)

q
f(θ̃i,θ

′

−i)

i − qǫi

,

for all θ−i ∈ Θ−i such that θ
′

−i ∈ β−i(θ−i).

For all ǫ ∈ (0, ǫ∗), define τ ǫi = τ
f(θ̃i,θ

′

−i)

i − δ(q
f(θ̃i,θ

′

−i)

i − qǫi ). Then, by construction of δ and

τ ǫi , we obtain

vi
(

q
f(θ̃i,θ

′

−i)

i , (θ̃i, θ
′

−i)
)

− vi
(

qǫi , (θ̃i, θ
′

−i)
)

> τ
f(θ̃i,θ

′

−i)

i − τ ǫi

> vi
(

q
f(θ̃i,θ

′

−i)

i , (θi, θ−i)
)

− vi
(

qǫi , (θi, θ−i)
)

,

for all θ−i ∈ Θ−i such that θ
′

−i ∈ β−i(θ−i).

Recall that qǫi = q
f(θ̃i,θ

′

−i)

i − ǫ < q
f(θ̃i,θ

′

−i)

i and τ ǫi = τ
f(θ̃i,θ

′

−i)

i − δ(q
f(θ̃i,θ

′

−i)

i − qǫi ) < τ
f(θ̃i,θ

′

−i)

i .
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Since f is in the interior, there exist ǫ̂ ∈ (0, ǫ∗) and y(θ
′

−i) ∈ A such that q
y(θ

′

−i)

i = qǫ̂i and

τ
y(θ

′

−i)

i = τ ǫ̂i . Then,

vi
(

q
f(θ̃i,θ

′

−i)

i , (θ̃i, θ
′

−i)
)

− vi
(

q
y(θ

′

−i)

i , (θ̃i, θ
′

−i)
)

> τ
f(θ̃i,θ

′

−i)

i − τ
y(θ

′

−i)

i

> vi
(

q
f(θ̃i,θ

′

−i)

i , (θi, θ−i)
)

− vi
(

q
y(θ

′

−i)

i , (θi, θ−i)
)

,

for all θ−i ∈ Θ−i such that θ
′

−i ∈ β−i(θ−i).

As y(θ
′

−i) ∈ A, the first inequality implies that ui
(

f(θ̃i, θ
′

−i), (θ̃i, θ
′

−i)
)

≥ ui
(

y(θ
′

−i), (θ̃i, θ
′

−i)
)

.

The second inequality implies that ui
(

y(θ
′

−i), (θi, θ−i)
)

> ui
(

f(θ̃i, θ
′

−i), (θi, θ−i)
)

, for all θ−i ∈
Θ−i such that θ

′

−i ∈ β−i(θ−i).

Let y : Θ−i → A be such that y(θ
′

−i) is defined as above for all θ
′

−i ∈ Θ−i. Clearly,

y ∈ Y w
i [θ̃i] and it satisfies the inequality in the preference-reversal condition.
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