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City-size distributions are known to be well approximated by
power laws across a wide range of countries. But such distribu-
tions are also meaningful at other spatial scales, such as within
certain regions of a country. Using data from China, France, Ger-
many, India, Japan, and the United States, we first document
that large cities are significantly more spaced out than would be
expected by chance alone. We next construct spatial hierarchies
for countries by first partitioning geographic space using a given
number of their largest cities as cell centers and then continuing
this partitioning procedure within each cell recursively. We find
that city-size distributions in different parts of these spatial hier-
archies exhibit power laws that are, again, far more similar than
would be expected by chance alone—suggesting the existence of
a spatial fractal structure.

city size | power law | fractal structure | spatial hierarchy

A variety of power-law properties related to cities (both
within and across cities) have been documented (1–4). In

particular, city-size distributions are known to be well approx-
imated by power laws across a wide range of countries (5).
But one may also examine city-size distributions at other spa-
tial scales, such as within certain regions of a country. A natural
question is whether there is any relation among city-size distri-
butions in different spatial units. One possibility is related to
the idea of fractal structure, in which smaller parts of a sys-
tem structurally resemble the larger ones, including the entire
system (6). If any system is a fractal structure and exhibits a
power law as a whole, then the scale-invariant property of fractal
structures implies that its smaller parts must also exhibit similar
power laws. More generally, whenever a system exhibits this sim-
ilarity property, the system is said to exhibit a common power
law (CPL).

Examples of fractal structures are diverse, from biology (7,
8) to the internet (9, 10) to firms (11) and cities (12–14). With
respect to cities in particular, there is some empirical evidence to
suggest that individual cities can be viewed as fractal structures
(12, 14, 15). But is this also true of the entire system of cities
within a country? This article provides evidence of striking simi-
larities among city-size distributions in terms of their power laws
when such city systems are viewed as spatial hierarchies. This
spatially oriented CPL result suggests the existence of spatial
fractal structure at the city-system level.

The most popular theoretical derivation of power laws for
city-size distributions postulates that growth rates of individual
cities are independently and identically distributed (iid) ran-
dom variables (16–18)—i.e., Gibrat’s law (19). This fundamental
assumption necessarily implies that growth rates for any subset of
these cities must also be iid and, thus, that the city system must
have a fractal structure in the above sense. Moreover, the argu-
ment leading to a power law for the entire system must imply the
same power law for each (sufficiently large) subset of cities and,
thus, must imply that this system exhibits a CPL. But this result is
so inclusive that a CPL must hold for arbitrary subsets of cities,
regardless of the spatial relations between them. In short, these

random growth models suggest that spatial relations among cities
do not influence the distribution of city sizes.

However, there is a growing literature showing that space does
indeed play a crucial role in shaping the economic landscape
we observe. At the city-system scale, distances between cities
have been shown to influence both commodity flows and inter-
actions between cities (20, 21). At the within-city scale, distances
between city centers and suburbs have been shown to influence a
variety of urban phenomena (e.g., land use, housing, commuting
patterns, and city growth) (22–24).

Taken together, these many research efforts suggest that the
distribution of city sizes may indeed be influenced by the spa-
tial relations among these cities. To study this question, we
begin by postulating that the spatial organization and sizes of
cities are linked by the spatial-grouping property that larger
cities tend to serve as centers around which smaller cities are
grouped. Moreover, this relation is recursive in the sense that
some of these smaller cities may also serve as centers around
which even smaller cities are grouped. For city landscapes
that exhibit this type of hierarchical spatial-grouping property,
one might then expect to find similar city-size relations among
groups. This, in turn, suggests that the CPL property above may
indeed be stronger for such groupings than for arbitrary subsets
of cities.

Given this line of reasoning, our main objective is to develop
explicit tests of these hypotheses using data of city size and road
distances for various countries. We first test one implication

Significance

Socioeconomic attributes of cities (e.g., wages, education,
industrial diversity, and crime) exhibit strong correlations with
city size, as measured by population. It has thus been a major
research objective to characterize and explain city-size distri-
butions. Whereas city-size distributions are known to exhibit
power laws at the country level, we find that they exhibit
strikingly similar power laws when examined along a spatial
hierarchy of regions within a country. Such a high degree of
similarity could not be obtained if city sizes were generated
by a random (growth) process. The fact that this regular-
ity emerges along spatial dimensions in a recursive manner
suggests the existence of spatial fractal structures. However,
such estimated common power laws differ markedly across
countries.
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of the spatial-grouping property which we call the spacing-out
property: The largest cities are spaced out relative to the whole
set of cities. We then construct appropriate hierarchical sys-
tems of sets and subsets of cities that are consistent with the
spatial-grouping property. A city system exhibiting both spatial
grouping and a CPL is said to exhibit a spatial CPL. By gener-
ating random counterfactual systems that differ only in terms of
this spatial-grouping property, we are able to conduct a spatial
CPL test: whether power laws are significantly more similar in
the systems that reflect spatial grouping relative to the random
counterparts.

We find strong evidence for both the spacing-out property and
spatial CPL property in essentially all countries tested. Recall,
moreover, that iid random growth processes can also generate
similar power laws across arbitrary (large) subsets of cities (16)
and that our random counterfactual systems are precisely col-
lections of such subsets. Thus, the much tighter CPL resulting
under systems that reflect spatial grouping implies that such a
high degree of similarity could not be obtained if city sizes were
generated by a random growth process. We discuss various the-
oretical possibilities for explaining this spatial CPL property in
Conclusion.

Data
We examine countries that are relatively large in terms of
both population and land area, and two groups of coun-
tries are considered. For countries in which the process of
urbanization has essentially been completed, we consider the
United States, France, Germany, and Japan; for countries in
which urbanization is still ongoing, we consider China and
India. We view cities as agglomerations of population and
employ the same definition of cities across countries. In par-
ticular, a city is defined for each country to be a set of con-
tiguous areas, each with a density of at least 1,000 people
per square kilometer, yielding a total population of at least
10,000 (Fig. 1).

For all countries except Japan, population-count data were
obtained for each 30′′ × 30′′ (∼1 km × 1 km) grid from the
LandScan 2015TM database (25).∗ For Japan, population-count
data in 30′′ × 45′′ grids was obtained from the Grid Square
Statistics of the 2015 Census of Japan (26, 27).

The road distance between each pair of cities is computed as
the shortest-path road distance between the two cities, and the
most densely populated grids are chosen to represent the loca-
tions of cities. The road-network data were downloaded from
OpenStreetMap (http://download.geofabrik.de/), and details of
calculating the distances are provided in SI Appendix. We
also provide additional results in SI Appendix for both the
spacing-out test and the spatial CPL test (to be described
below), for the case in which travel time along the shortest-
time path is used to measure proximity between each pair of
cities. The results are essentially the same as those under road
distance.

For each country, we consider mostly its continental por-
tion; however, if large islands are connected by roads or if
reasonable road-equivalent distances can be computed, then
these islands are included. For example, Hainan in China and
Hokkaido in Japan are included, while Hawaii in the United
States is not.

Data Availability Statement. The generated dataset of city popula-
tions and locations, together with that of bilateral road distances
and travel times, is provided in SI Appendix, Dataset S1.

*More specifically, we used the High Resolution Global Population Data Set copyrighted
by UT-Battelle, LLC, operator of Oak Ridge National Laboratory under Contract DE-
AC05-00OR22725 with the US Department of Energy.

The Spacing-Out Property
For our purposes, we first need to specify how a spatial par-
tition is constructed. For any given set of cities for a given
country, U, and selection, {u1, . . . , uK}, of cities in U, we
first identify the subset, Ui , of cities in U that are closest to
each city, ui , where “closeness” is here defined in terms of
road distance between city locations. This collection of subsets,
(U1, . . . ,UK ), defines the Voronoi K partition of U generated
by these K cities, where each subset, Ui , is designated as a
Voronoi cell, and its size is defined by the number of cities
in the cell.

For any given number, L, of the largest cities in U, and for
any partition, v , of U, let NL(v) denote the number of par-
tition cells of v containing at least one of these L cities. If
there is indeed substantial spacing between the largest cities in
U, then we would expect NL(v) to be larger for Voronoi par-
titions than for random partitions of the same cell sizes. For
given values of L and K , we simulate M (= 1,000) random
Voronoi K partitions, v =1, . . . ,M , where the cities on which
the Voronoi partitions are based are selected at random. The
resulting Voronoi count vector for these simulations is denoted
by NL≡ [NL(v) : v =1, 2, . . . ,M ].

For each of these Voronoi K partitions, v , we then simulate M
random K partitions, ω=1, . . . ,M , of the same cell sizes. Note
that these random partitions are formed without any regard to
space. Rather than conducting separate tests for each random
Voronoi partition, v , which may produce rather uneven cell sizes,
we construct a summary test statistic using appropriate mean
values as follows.

We write the random partitions for v as ordered pairs (v ,ω),
ω=1, . . . ,M , to indicate their size dependency on v . In a
manner paralleling NL(v), we then let NL(v ,ω) denote the
number of cells in random partition (v ,ω) that contain at
least one of the L largest cities in U. In these terms, the
count vectors,

NL(ω)= [NL(v ,ω) : v =1, . . . ,M ] , ω=1, . . . ,M [1]

can each be regarded as random-partition versions of the
Voronoi count vector NL. In this setting, our basic null hypoth-
esis is essentially that the Voronoi count vector, NL, is drawn
from the same population as its random-partition versions in Eq.
1. But for operational simplicity, we focus only on the associated
mean counts:

N L =
1

M

M∑
v=1

NL(v),

and

N L(ω)=
1

M

M∑
v=1

NL(v ,ω) , ω=1, . . . ,M .

In these terms, our explicit null hypothesis, H0, is that the
Voronoi mean count, N L, is drawn from the same population
as its associated random mean counts, N L(ω), ω=1, . . . ,M , so
that the effective sample size under H0 is M +1. If for the given
set of simulated random partitions above, we now let M0 denote
the number of instances of N L(ω) which are at least as large as
N L (including the observed case itself), then the P value, p0, for
a one-sided test of H0 is given by

p0 =
M0

M +1
,

where in the present case, M + 1 = 1,001. For example, if from
among these samples, say, 30 (=M0)are as large as the observed

6470 | www.pnas.org/cgi/doi/10.1073/pnas.1913014117 Mori et al.
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Fig. 1. Cities in the United States (A), France (B), Germany (C), Japan (D), China (E), and India (F) are shown on the corresponding maps, where the
numbers of cities are 931; 202; 331; 450; 7,204; and 7,915, respectively. In each map, nonblack areas indicate cities, where a warmer color corresponds to a
larger population size. For each of the three larger countries—the United States, China, and India—the largest 10 cities are indicated with their population
rankings, whereas the largest five cities are indicated for the other three countries.

value, then under H0, the chance of observing a value this large
is only po = 30/1,001≈ 0.03, which provides substantial evidence
against H0.

The test results are given in Fig. 2. For each K and L, the
result is represented by red if p0< 0.01. Similarly, orange, yel-
low, and linen colors indicate 0.01≤ p0< 0.05, 0.05≤ p0< 0.1,
and p0≥ 0.1, respectively. Obviously, the evidence for US cities
being spaced out is quite strong, as P values are <0.01 for
all combinations of K and L. The evidence for France, Ger-
many, Japan, and China is also quite strong, except for a few
cases. For the case of France, the third- and fourth-largest cities
(Marseille and Nice) are rather close; for Germany and Japan,
the second and third largest cities (Essen and Cologne; and
Osaka and Nagoya) are rather close. These indicate that natu-
ral geographic advantages matter for city locations, despite the
fact that such advantages are to some degree controlled for
by the construction of random Voronoi partitions;† for exam-
ple, in the case of Japan, large flat areas are quite limited and
are mostly concentrated on the Pacific coast. Nevertheless, the
spacing-out property generally holds. For India, the spacing-
out property holds well up to and including the six largest
cities, but not for cases where smaller cities are included. Given

†Note that city sites are unevenly distributed in geographic space (think about plain
versus mountainous areas). In the construction of a random Voronoi partition, factors
(such as natural advantages and economic development) that affect the density of city
sites in a region are accounted for to some extent because the likelihood of each city
site being drawn as a center of a Voronoi cell is the same. Hence, cities in regions with
a high density of city sites are more likely to be drawn.

India’s current economic development, it is likely that loca-
tions of smaller cities are more influenced by natural geographic
advantages.

Power Laws in City Size
A city-size distribution is said to satisfy a power law with expo-
nent α if and only if for some positive constant c, the probability
of a city size S larger than s is given by

Pr(S > s)≈ cs−α, s→∞. [2]

If a given set of n cities is postulated to satisfy such a power law,
i.e., with city sizes distributed as in Eq. 2, and if these city sizes
are ranked as s1≥ s2≥ · · ·≥ sn , so that the rank ri of city i is
given by ri = i , then it follows that a natural estimate of Pr(S >
si) is given by the ratio, i/n ≡ ri/n . So, by Eq. 2, we obtain the
following approximation:

ri/n ≈Pr(S > si)≈ cs−α
i ⇒ ln si ≈ b− 1

α
ln ri , [3]

where b= ln(cn)/α. This motivates the standard log regression
procedure for estimating α in terms of the “rank-size” data,
[ln(ri), ln(si)], i =1, . . . ,n .

A natural way to estimate α is by running ordinary least
squares on Eq. 3. However, many authors (28, 29) have observed
that this may underestimate α when smaller cities are included in
the sample. We use a simple procedure for correcting this bias, as

Mori et al. PNAS | March 24, 2020 | vol. 117 | no. 12 | 6471
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Fig. 2. Results of the spacing-out test for the United States (A), France (B),
Germany (C), Japan (D), China (E), and India (F).

proposed by Gabaix and Ibragimov (28), by subtracting 0.5 from
the rank, which yields the modified regression,

ln(si)= b− θ ln(ri − 0.5)+ εi , i =1, . . . ,n [4]

with θ=1/α.

Measuring the Commonality of Power Laws
We now develop a method for examining the commonality of
power laws for a collection of subsets of cities. To do so, we start
with an estimation of a model hypothesizing a CPL and then
develop an appropriate goodness-of-fit measure for this model.
Generally, if for any subset of cities, Uj ⊆U, j =1, . . . ,m , it is
true that the cities in each subset Uj exhibit power laws with
a common exponent α, then these subsets are said to exhibit a
CPL. Given the rank-size data for each subset Uj , the regression
framework in Eq. 4 can be extended to a categorical regression
with fixed effects for each subset. Let nj and rij denote the num-
ber of cities and the rank of city i in each subset Uj . Also, let
subset 1 denote a “reference” subset, and for each other subset,
j =2, . . . ,m , define indicator variables δj over the collection of
subsets, h =1, . . . ,m , by δj (h)= 1 if h = j and zero otherwise.
For each i and j , the desired categorical regression model is
given by

ln sij = b1− θ ln(rij − 0.5)+
∑m

h=2βj δj (h)+ εij . [5]

Note that for any given subset Uj , this model reduces to Eq. 4,
where bj ≡ b1 +βj for j =2, . . . ,m , and where the crucial slope
coefficient θ (and hence, α) is the same for all subsets.

While the goodness of fit of this model can be measured in
terms of R squared, one must then specify the joint distribution
of the error terms, εij , which in the present setting is completely
unknown. However, our primary objective is not to gauge how

well this model fits any given system, but, rather, to determine
whether it yields a better fit for systems that are consistent with
the spatial-grouping property. Hence, our strategy is to use the
least-squares estimates of the model in Eq. 5 to construct a non-
parametric goodness-of-fit measure, which is used to compare
commonality of power laws between systems exhibiting spatial
groupings and (appropriately defined) counterfactual systems
that do not.

To do so, we start by using the least-squares estimates
(θ̂, b̂1, β̂2, . . . , β̂m) of the model parameters in Eq. 5 to obtain
the corresponding predictions,

l̂n sij = b̂1− θ̂ ln(rij − 0.5)+

m∑
h=2

β̂j δj (h),

of log city sizes, ln sij . While R squared could, in principle, still
be used as a measure of fit in this nonparametric setting, there
is general agreement that measures reflecting actual error mag-
nitudes are more meaningful. Because regression minimizes the
sum of squared errors, which is equivalent to minimizing mean
squared error (MSE), we take root MSE (RMSE) to be the
appropriate measure of fit. The RMSE for the estimated model
above is given by

RMSE=

√√√√ 1∑m
j=1 nj

m∑
j=1

nj∑
i=1

(
ln sij − l̂n sij

)2
.

If the RMSE value for the given system is sufficiently small com-
pared to those of the counterfactuals, then it can be concluded
that this system is significantly more consistent with the CPL than
are random counterfactuals.

Spatial Hierarchical Partitions
Next, we develop specific collections of subsets of cities that are
consistent with the spatial-grouping property. Note that when
a Voronoi partition of the entire set of cities U is generated
with the L largest cities in U being the centers, then, by con-
struction, all cities are grouped around their closest large cities.
Thus, any such Voronoi L partition of U is said to satisfy the
spatial-grouping property.

If each cell of cities is taken to define a region, then it is also
reasonable to postulate that this relationship between large and
small cities in each region is recursive. For example, suppose that
San Francisco is included in the Los Angeles region. Then, in
a similar manner, smaller cities around San Francisco might be
included in a San Francisco subregion. If so, then such relations
generate a system of regions and subregions all exhibiting this
same spatial-grouping property. Our interest is then in whether
such systems also exhibit a CPL.

To be more specific, we now consider hierarchical regional sys-
tems consisting of many possible layers, where the subregions
in each layer define Voronoi partitions of regions in the layer
above. While there are a multitude of possibilities here, the sim-
plest approach is to construct regional hierarchies with the same
number of subregions in each region, as in central-place theory
dating from the seminal work of Christaller (30).

This type of hierarchical system simplifies the analysis by
allowing the number of subregions, L, to be left unspecified,
so that tests can be conducted over a range of possible L val-
ues. Moreover, for each value of L, it allows a unique hierarchy
of regions to be constructed that is fully consistent with the
spatial-grouping property.

The construction of these hierarchies is simple. To compare
possible power laws for the country as a whole with those of its
subregions, we start by treating the country itself as a region—
which by definition exhibits spatial grouping with respect to its

6472 | www.pnas.org/cgi/doi/10.1073/pnas.1913014117 Mori et al.
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Fig. 3. The spatial hierarchical three-partition for the United States: three layer-two regions (A); nine layer-three regions (B); and 27 layer-four regions (C).
Here, the partitions of land are based on Voronoi partitions of the set of cities, with noncity land assigned to the closest cities.

largest city. For any given L, we then choose the L largest cities
in the country (including the largest city) and take these to
define the central cities for a Voronoi L partition of the coun-
try region. This yields a two-layer hierarchy consisting of the
country region and L subregions. This hierarchy is then extended
by choosing the L largest cities in each subregion (including its
central city) and defining a new Voronoi L partition of subre-
gions with respect to these central cities. Of course, this process
cannot be continued indefinitely, since there are only finitely
many cities in a country. So our “stopping rule” is that no region
can be divided into L subregions if it contains less than L cities.
This process results in a unique hierarchical partition which
reflects the spatial-grouping property at every layer and is, thus,
designated as a spatial hierarchical L partition.

As an example, we now consider the spatial hierarchical three-
partition for the United States. The first layer of this system,
associated with the largest city (New York), is by definition the
whole country. The second layer constitutes the Voronoi three-
partition generated by the three largest cities in the United States
(New York, Los Angeles, and Miami), as shown in Fig. 3A. The
third layer shown in Fig. 3B then consists of three Voronoi three-

partitions, each generated by the three largest cities in one of
the Voronoi regions in the second layer. For example, the three
largest cities in the New York region (New York, Chicago, and
Washington, DC) define the relevant third-layer partition of this
particular region. Fig. 3C further shows 27 layer-four regions.

Note, for example, that New York is, by definition, the cen-
tral city of one region in each layer. If these regions are viewed
as successively more local hinterlands of New York, then it is
natural to designate the largest of these (i.e., the highest-layer
Voronoi region in which New York appears as the central city) as
the global hinterland of New York. For New York in particular,
this global hinterland is the entire country. Similarly, the global
hinterland of the second-layer city, Los Angeles, is shown by the
red region in Fig. 3A, and that for the third-layer city, Phoenix, is
shown by the light red region in Fig. 3B. Since the size of each of
these cities is more directly related to its global hinterland than to
any of its local hinterlands, we now designate the city-size distri-
bution of its global hinterland as the city-size distribution for that
city. With these conventions, the city-size distributions for every
central city in the spatial hierarchical partition for each country
are shown in Fig. 4.

A B C

FED

Fig. 4. For each country, the city-size distribution in each cell of the spatial hierarchical three-partition is plotted. The numbers of cells constituting
these hierarchical partitions are 220; 50; 77; 117; 1,709; and 1,923 in the United States (A), France (B), Germany (C), Japan (D), China (E), and India (F),
respectively.
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Here, power laws appear to be good approximations of the
rank-size data, and there seems to be reasonable agreement
between the slopes of these curves. But, to test the significance
of the commonality of power laws and, in particular, to isolate
the contribution of spatial grouping, it is necessary to construct a
statistical population of random hierarchical partitions that
differ from this given system only in terms of spatial grouping.

To do so, we replace “largest-city Voronoi L partitions” with
“largest-city random L partitions” in the sense that cities are
assigned to the L largest cities randomly and, hence, without any
regard to spatial relations. This process of generating largest-city
random L partitions is repeated recursively in each cell with the
constraint that the sizes of cells in each layer are given by the
actual spatial hierarchical partition.

Testing the Spatial CPL
To perform the actual tests for any value of L, we begin by gen-
erating N = 1,000 random hierarchical L partitions. For any
given L, the categorical regression in Eq. 5 can be estimated for
both the observed spatial and random hierarchical L-partitions.
This estimation procedure will then yield an RMSEL value for
the observed spatial hierarchical L partition together with the
RMSELv value for each of the simulated random hierarchical L
partitions, v =1, . . . ,N . In this context, the relevant null hypoth-
esis to be tested is that the observed spatial hierarchical partition
is simply another instance of these random hierarchical parti-
tions. Thus, the effective sample size under the null hypothesis is
N +1. So, if we now let NL denote the number of RMSELv val-
ues not exceeding RMSEL (including the observed case itself),
then the fraction

pL =
NL

N +1
,

is the estimated P value for a one-sided test of this null
hypothesis.

The test results are shown in Fig. 5. First, it is clear from
Fig. 5A that the CPL under spatial grouping, i.e., the spatial CPL,
holds very tightly for the United States, since the likelihood of
random counterfactuals exhibiting stronger CPL properties than
the observed spatial hierarchical L partition for the United States
is <0.01 for all values of L=2, . . . , 6. For France, Germany, and
Japan, the spatial CPL also holds quite significantly overall. For
China, it is significant in some cases, but not all. Only for the
case of India does the spatial CPL fail to be significant for any
value of L.

We conjecture that this lack of significance for India is related
to its low degree of urbanization, given its current stage of
economic development. Moreover, the high level of overall pop-
ulation density in India suggests that, even in rural areas, the
local density of population may often be sufficiently high to qual-
ify as “cities” under our definition above. In particular, it can
be seen by a close examination of the India map in Fig. 1 that
the Ganges Basin is filled with “cities.” Similar observations can
be made for China, and the mixed results for China are consis-

A B

Fig. 5. Results of the spatial CPL test. A and B show the results when a city
is defined to have at least a population of 10,000 and 20,000, respectively.

A B

Fig. 6. The estimated common slope coefficient θ̂ in Eq. 5. A and B show
the results when a city is defined to have at least a population of 10,000 and
20,000, respectively.

tent with the fact that China’s degree of urbanization is higher
than India’s, but lower than the other four countries’. Compared
with the number of cities in the United States (931), the num-
bers of cities in India and China are much larger, at 7,915 and
7,204, respectively, while the populations of these two countries
are only roughly four times as large as the United States.

To check these observations further, we next modify our defi-
nition of cities by increasing the total population threshold to be
at least 20,000 inhabitants. Under this more stringent definition,
the numbers of cities in both India and China are essentially cut
in half (3,480 and 3,524, respectively). More importantly, a rep-
etition of the above analysis under this city definition, presented
in Fig. 5B, shows that the spatial CPL for India and China now
holds very tightly, as well as for the United States. For France,
Germany, and Japan, the smaller total areas of these coun-
tries together with this more stringent city definition effectively
reduced the numbers of cities (i.e., sample sizes) to the point
where categorical regression results were affected. Nonetheless,
the spatial CPL for these countries continues to be relatively
significant. Note, in particular, that Fig. 5B now exhibits no
insignificant cases.

Taken together, the results in Fig. 5 provide strong evidence
for the spatial CPL in all countries we have tested. These find-
ings, in turn, raise the question of whether there might be a
“common” power law for all these countries. Fig. 6 shows the
estimated CPL exponents θ̂ for each country over a range of
L values. Note, in particular, that the between-country varia-
tions in θ̂ values are substantially larger than their within-country
variations across L. Therefore, there is no CPL across countries.

This is consistent with the idea of spatial fractal structure
because the examined countries are geographically separated
(except France and Germany), so that there are generally no
clear spatial hierarchical relations among them.

Conclusion
Using data from China, France, Germany, India, Japan, and
the United States, we first document the spacing-out property
that large cities are much more spaced out than their random
counterparts. Given the ubiquity of smaller cities and towns,
this suggests the existence of local city systems surrounding the
largest cities and, thus, supports the spatial-grouping property.‡

Using the same data, spatial hierarchical partitions are formed,
and it is found that city-size distributions in different parts of

‡
The spatial-grouping property may also be examined by using data on trade flows
among cities. In SI Appendix, we present corroborating evidence for the spatial-
grouping property using intercity trade data from Japan that is aggregated from
individual shipments by manufacturing establishments. We find that in a spatial hier-
archical partition, centers and their hinterland cities trade with each other much more
frequently than with other cities. For example, in a spatial hierarchical three-partition, a
layer-three center on average exports to its own hinterland cities 15.4 times more than
to hinterland cities of other same-layer centers; a layer-three hinterland city on average
imports 175.3 times more from its own center than from other same-layer centers.
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this hierarchical structure exhibit a high degree of commonality
in terms of power laws compared with their random counter-
parts. This spatial CPL suggests the existence of a spatial fractal
structure.

An alternative explanation of the CPL for countries is sug-
gested by the theory of random growth processes, as in ref. 16
and related literature. However, this theory implies that the CPL
should hold for essentially all random subsets of cities within a
country and, thus, should hold for our random counterfactuals.
But our test results suggest that the CPL is much stronger for
spatial hierarchical partitions of cities than for random subsets
and, thus, cast doubt on this random growth explanation.

More generally, our results point toward theories that gen-
erate city systems as spatial fractal structures. One prominent
candidate is central-place theory, which was initially proposed
by Christaller (30) and later formally modeled by others, includ-
ing refs. 31–33. The central tenets of this theory assert that the
degree of scale economies differs across goods and, hence, that
the spatial extent of markets also differs. Given the existence
of certain agglomeration forces and competition mechanisms,
a hierarchy of cities (and, hence, a city-size distribution) natu-
rally arises. The resulting central-place hierarchies, as depicted in
ref. 30, already suggest a spatial fractal structure. Drawing from
recursive city–hinterland relations in a central-place hierarchy, it
is shown in ref. 34 that power laws for city size emerge; however,
there is little sense of geographic space in the resulting model. By

building an equilibrium model of firm entry with a continuum of
goods and a continuum of geographic space, it is shown in ref. 31
that the resulting central-place hierarchy yields an explicit spatial
fractal structure which exhibits a spatial CPL.

Whereas the model in ref. 31 relies on more complex structural
assumptions than standard fractal theories (as in ref. 6), a differ-
ent approach by ref. 12, which is somewhat closer to standard
fractal theories, utilizes insights from central-place theory to
develop city systems as fractal structures based in city–hinterland
relations. But such systems are not yet sufficiently explicit to draw
conclusions about spatial CPL properties. Finally, one could also
consider extensions of random growth processes by adding spa-
tial relations among cities (15, 24, 35) or adopting techniques
from spatial networks (12, 13, 36–38) to develop a theory of
city systems. Whether and how these approaches might generate
spatial CPL are questions yet to be investigated.
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